From f6a4e90cc8513b4c51c372f023e4c281556f09c5 Mon Sep 17 00:00:00 2001 From: ibiscp Date: Fri, 19 Aug 2022 03:29:47 +0000 Subject: [PATCH] deploy: eea16e3713ad1b4039328578b08fb47ae8cad904 --- _images/notebooks_quickstart2_7_0.pdf | Bin 0 -> 38417 bytes _modules/index.html | 4 +- _modules/wavy/models.html | 213 +- _modules/wavy/panel.html | 169 +- _modules/wavy/plot.html | 64 +- _modules/wavy/utils.html | 153 - _sources/api/models.rst.txt | 3 +- _sources/api/utils.rst.txt | 3 - _sources/api/wavy.models.BaseModel.rst.txt | 33 + .../api/wavy.models.BaselineConstant.rst.txt | 16 + .../api/wavy.models.BaselineShift.rst.txt | 14 + _sources/api/wavy.models.ConvModel.rst.txt | 16 + _sources/api/wavy.models.DenseModel.rst.txt | 16 + .../api/wavy.models.LinearRegression.rst.txt | 26 + .../wavy.models.LogisticRegression.rst.txt | 26 + _sources/api/wavy.plot.PanelFigure.rst.txt | 2 - _sources/api/wavy.utils.reverse_diff.rst.txt | 6 - .../api/wavy.utils.reverse_pct_change.rst.txt | 6 - _sources/manual/models.rst.txt | 23 - _sources/notebooks/quickstart2.ipynb.txt | 2966 +------------- _static/basic.css | 41 +- _static/documentation_options.js | 2 +- _static/searchtools.js | 17 +- api/models.html | 35 +- api/panel.html | 9 +- api/plot.html | 7 +- api/utils.html | 174 - api/wavy.models.BaseModel.html | 310 ++ api/wavy.models.BaselineConstant.html | 133 +- api/wavy.models.BaselineShift.html | 122 +- api/wavy.models.ConvModel.html | 131 +- api/wavy.models.DenseModel.html | 131 +- api/wavy.models.LinearRegression.html | 144 +- api/wavy.models.LogisticRegression.html | 144 +- api/wavy.models.ShallowModel.html | 37 +- api/wavy.models.compute_default_scores.html | 13 +- api/wavy.models.compute_score_per_model.html | 9 +- api/wavy.panel.Panel.html | 126 +- api/wavy.panel.concat_panels.html | 9 +- api/wavy.panel.create_panels.html | 15 +- api/wavy.panel.dropna_match.html | 9 +- api/wavy.panel.reset_ids.html | 7 +- api/wavy.panel.set_training_split.html | 20 +- api/wavy.plot.PanelFigure.html | 96 +- api/wavy.plot.plot.html | 11 +- api/wavy.utils.reverse_diff.html | 179 - api/wavy.utils.reverse_pct_change.html | 177 - genindex.html | 172 +- index.html | 4 +- manual/installation.html | 3 +- manual/introduction.html | 3 +- manual/link.html | 3513 +---------------- manual/models.html | 166 - manual/quickstart.html | 3 +- manual/tutorials.html | 3 +- notebooks/quickstart2.html | 76 +- notebooks/quickstart2.ipynb | 2966 +------------- objects.inv | Bin 2948 -> 3620 bytes py-modindex.html | 8 +- search.html | 3 +- searchindex.js | 2 +- 61 files changed, 1967 insertions(+), 10822 deletions(-) create mode 100644 _images/notebooks_quickstart2_7_0.pdf delete mode 100644 _modules/wavy/utils.html delete mode 100644 _sources/api/utils.rst.txt create mode 100644 _sources/api/wavy.models.BaseModel.rst.txt delete mode 100644 _sources/api/wavy.utils.reverse_diff.rst.txt delete mode 100644 _sources/api/wavy.utils.reverse_pct_change.rst.txt delete mode 100644 _sources/manual/models.rst.txt delete mode 100644 api/utils.html create mode 100644 api/wavy.models.BaseModel.html delete mode 100644 api/wavy.utils.reverse_diff.html delete mode 100644 api/wavy.utils.reverse_pct_change.html delete mode 100644 manual/models.html diff --git a/_images/notebooks_quickstart2_7_0.pdf b/_images/notebooks_quickstart2_7_0.pdf new file mode 100644 index 0000000000000000000000000000000000000000..30a1cb96ff4c6baac5f3684e1d3cf558ae9c3619 GIT binary patch literal 38417 zcmce-W0a=NvMpLw-Bs0P+qP}nwrv|-wr$(C)n(hZ?LJlCTKld&?z#Jn^XrcBjLdu@ zBO+(ci09WkUm{sSVJbRmMsT9Jvy&ZgI$T;@8+~(dPEHyDdm}wZ8+%+*0aJS$D>El6 zGH@DMdmBS11EVjaf`yqL%~ve06)Wr4#y`$xHr9fAjz+kog6#CP^z^i>bZoQ?^bEAj z6tuJ?U(c7Hl#Sv4*@c@M+{oJS8v?_Bpcv@k(t*?POX1Q;+t^#_S^md~@jp%ieBVz0 za+MUor3I&v6#r*b`L;_*;xdBMDDdGr+B+Hjf9GQQzsg1bf0c{*|0)+9HPb)YzH9wex|YoI(XUY{Ui~WeGIHLB2n1w{#MW)8LPwad$N;#CY)Ph zBI%FGdeP*=ZtGvPJ=HXa&GoX61T^L)_g=;hq>4^B$YzR2n*==>dzG`e`Rk5asv}R; z6n2vrSGkFSLqlSCggf0ZSSFd7d+|e}L6&EXg7l%X1Eyu`+r1ua;IIyKZ>sTJ6*Srm%hzXXC02$L0aOm=^KtX) z)eCFN$PnW7!~~7!SI&er9l;iNpys8~KJ_`(hI?gQhLQo2#H9-2an3MG&4G$RmPe8L ztO6Ld3K94U`kM#uKN;FWKaGe~+~pKD2c~O3-4ao#IGDQ46`alP7J_PDBFuZ99^h*e zFUS*yEJc&f$^q*KpA!p!MyOmdgCpgyK+O)H&h!5a^G*YLbCBPjBA2$^iXg*+u4KN+ zRqK%oN$*^N5@#7v-|O-vcDl-@Zy4SJoXjoj&)Sx{L8X`|&&ir4xSN^@P7>FRL_ z{*BXVy_Wd0La$vF`|F)puzB)~_LIqNj0?WPQwo*qba zNQcAOR6r;k@JGJN%#)+_Y&gj3B#&Q>#urgpi-;mrFNOi6VffspKB}Umk|*00Agp)j+_)YqUi5x9 zaM|+o=I61od&-7W1~?6hZ}efd^WbMlLd1NL}06vlUDFLFf;@lr0M3u~2Vc|rUD$zn1_G{4TDJDx~ zLjHONlBy_PT{W6ukmRiIp5v{CeUnr?G<#}RX!Tb6FN0l0k_)d9t{>AkxVMujFcn#TJpiF+3l>)#T_6f;0K zm`rQCjvKR$?K{+OSd~bsng&s?X=#X`b85#Y0Oz_RlNlb~`jxLN{#r}RrL2FUbuHq0 zL(}#!#`fTXNM6x^Nh(go{*1uqHcdC+W)1|02{G^;;D=)C2*i-`7O!%)_IH9+zGCkt z$84Jjm98SMhI(w&Wy+?nA)Cl#t0%cgrPM}Szbs2^aO_EGw9Kqsy2_h%omr1^eziY5 z$sTnU-OY-$V(#Sy9&K`mArlVnYo{;mFt@xT3L9Hsq+NtYS0bATyL^m0#XQ>8ht}fD?n7ZY^V4 zh1W9H>SY16#GN?UOQ38whQ>}2bT-_I3Py~P=oe<+~Bhgl3bc@DhATZY6s#^ghU zz{Bn~W6}!n$e&|?Y~iy)BM~LSvF4}if)5Bd{)h6iuV!>mfHwR9B^rtlwYjdzU~SCS z8Y4g?Rh%;dnIc5s(wK#WI0{{%$jM5Ox-3sH+IlV_}ylM)tt`SOGP27aPi1yBkvHYx_VNz-A z6p%6VdfZEIl|e710&u+`^6e@y6hx~BYHw3_%3Qe@Xv%n_ElYog3WTLA_d>1${M}X( zoS&{jD2aOWFOM5Z<)_|bjq$@pBPuH(6 z3N(l#=Qo4UfWIiFf6)!@ppP;SzJDVVZJy;5Yh^o3T4C4~l#Lh6qsq(9|^oV-A z=`BQ_kkdX=T-&53wR2qQwvK)Y$eRPbap|zq%%a1bH`$Gi@h7O<3$}u>+93z%l9AV=6GSvqp9Ve+aQd@yw8m0abkO1F5ops^>Hh zOH}3rb+t{ij&tcR)eRm7HWKuX>v5Q^0Ob0a<-RkWbMMjfW5TKRk>IsfvrDUK*6Tk& zT(@zwI)kI8?hK!LjtYmn89TwTGB=l|I$#rK3+am&{!z4Bv14?hvo)<^?%U#eN#S7% zp~UP)v$QDZZ0ir&_B630@W8^gvXXnerqz+k%9`A?B6+gpqc4ISfgiT+fm7B%{^b}{ z+k~GCD>e#xsEPVi<)Y9<=0_e61@$~(g_*HZl}GDw7C-NAz^xh*W;<*^%sHgV#Gkhs zX;Os!ql+^t_>2WuqI~Gs;-~?%`2f5hZl=}yf|5Ry5X^dhRt{B^Mxb}cb#mB0Pa@I{ z`KVunh-HwoSc;{>v(yWhuHIZz526A&Z=n*^^Y6XU^zaeutdSPbxWmTj!k}KqxPv`w zOC+L*dXm@JDC&^I;PGjM>t!4p!Hv(5!vt&xxs7-pvz6*HZ;EgYS0Q?Js?DeXgmrQR z_yc_-1DBg1pp1r)p|*Jw<;qcJ0@_GIIek)VP*=EP$+fAiPi^D2kJT9+^EeBNj?>6p zLgMBmnX%|;)tF{JZFfT}J8!L-l_jV^O;W=VHwL8)clxFS|MG$sxzR)yfg<4!^Y|~J z&X|z-j?jZ;Il7MKVG_H1XwLdo#Qa=@2q=fDxV@8o^xe%E5KF>qO)U&6tfWI|+d+2d zcZZ4H+qkKsoda&cYiEyc8bqGMgca53kqPSXVltY`tq0>D-MvH?EvTHNKaweRZxxM? zRG$|)n9&vP)gJKQ>33)vt&Qs?cJ0n5Jjse#oWPF3=LLsJ8lXve5|(xO0xVe$Q4#T* zw2XnG1qqoyIkpXu!^2mc7pa3AQs(zmc@AqzMK;~3F=4^bqSyh8oF<#e!n|qDT)Bg zeKm^dDoaYDB^f8`qSd(|esO*!Ng{?3vB20owa=1W1uM~BiMp&6d5^6g;5iLmTCfv# zB=94zezI2pi7Y&os1+V9g6#&Jq&9oM8iBzDP}WGlbpiE$HXq$ z*``TX%Uw~mbHNlzoL}FjI^@S3oSc2$-yiaR1NczTfzus0hoFCn!P5Tt(Z`lo@Qe}l zj8P-citB*GN19z&uGRT@|Cu)DqjNVFi+gGiD9%4iTkrRE4i;kmFml09zg4wx2%nV< z*E$ob0uHS;XO1~GhaACDBx|5fGCIS4^nqBBZI1f{$uC8QS&lq0aYKbg8O3CFn?9GN`NLQHM|4|yME`-=I-4lQ zwi)_SQ-AuYu0%d1u4O=~%uq?eaHCVnQM9b32&=N!Is83&)VY*?urQ~#5<(11Ou2ck zBLTo*wb;|m?@bOuzb}|Wn8sKUu+d68C zM?0K5M{KRC;3BaH9UcJLD{G%gt=(O+qyt{=#6QS1Zpk@DcY>_YDieI4SSEbCi+y@W zw-gS2I8zpIPS}FVnPgc_GSCo4z(s({er1r>$RgCQ;Z8*oBjvF5N=egsd5S7fUCA}S zjIpXg8F*D4bu*Sugp>U3nIqT_AaQspN5~oHO)s9Z+=@D5s5vP-yy*$XV zHVAgq{d!vr+RRv5kyD}_&v7c3^pFh;?O6t701^6`+P3Cc)S}D)H50vji(0I0w$$W2 z@bNoAaMhAk`6R)=jOB33A%`B$`CPg1eaz>~^yu(P_KzELpi_jwM%n2bTGEff>@PD( z!}7DLYb?1mdb!SAUWyf*W4f+ZC8hid{FUBIEvhn_#;S&VBQX*vKoxY-PN*I&_MM3^ zJ+q&;mFIFXj>vYo3lO5)P*9j18vguT4XF)hX}V_YKZ^03gyy{|Gku{}x`4eP3K)=0 z^Zp*2XN2jd?i%c5I3Dy}C4`FzweusjTqckm%bIEqRq5N9#DD~f^0!YEStg=6aYx%i zsH3E5&(xfRGy#j@R%oMgg`d397U2e84%q%~e{(ca8nKOekj!`c@LzQ6T|$9C_qxm{ z$?dz%V@m>+0*mW0ol;bENLq4nqN==9g9+0ui@wU>BP`|5i7mdH6LAdH0y34Ksrm)$ z>@*U|)N-tp*fh5sM%{lq+Fb2!i&wFqHc1{wR0FsHg>+3h(W{J8hbBMcjvDt9Lkj(O zm{IDOYGt@h9|)$k#(ZBf7ZqnbSC&3?cmykv#LbC z1|s3T91zQR;#wiOUOk4o%x;g>VH`8X72%(C7*%378WPX`&Bk0n`ah%|kag!pJ-W~Y zQZP;8Ya>dIXh8*CVL+=8WdpcQ;z*gmjiMnq>#Fk+?1jnXb(@f#d~}tq7+m8^3Gsc3 z4ah|me>YA*r*0D&nWjoafr1rDh-`qUUdA}3tMkTmq3g5Jz$}#B#NNzfwa8l@f>0uV z!r`P3-fJ7qhV>$p78vAM=%ZT6(<9ailiv#gL|Us!%sQSN;_80ArF#I^3#@+bY0$}i!=h0 zBI9_gJVt52Dv#)2m;_cnodIZ)MiSVY{m@S|_MOc4EQ`{u_ZA{&^4_AxIAiR7lK=X`u# zcaWr-$G8$zd;sZ!sYUX>#4p)&OECT&7aD+s7cuoJjzmD1lV6YPRxZBq-EFJq$ozdA z3z5v=b=7c<j zElDWQYf18QXG_$6L-4lCr#m%!10;+UNe>I_bvcXG@Nt*5N`Dv)8L%Pi(BJSH9m(>f z@|6PLHl@xF7OCLM7Hn^7Z{}Gubm>sri`0TIh7!?HPUey%rT}!NRkKP99Ggs46yL&= z$!@Vl6<-#p7sByU>;8H#Q)h;qCW1g{Fa9V`9cXh$KZWO8n4T@Mb5>J47oW@c z{j|`d;49ZP?A~m5l7@Na|Jsc!;Y1R0R(iRT7%0n#P3Wl}U87A0K*i<3-dxT( z*86m0I1u~KxL-IV$Ts*2r-EqIyEsV`)-dy zaO@~%>6iKy){S-HlaygrnFpq8KhSKcw0e`QRnP*TGQBJHDW%j3R16TJ>jsEZu((ru z)sr|?Q-s~zn_M6B9C8dwQFJJMAyj3nH6MFm(ZR|j)Y=84h%B}SwQB(?)pfTy@rfPb zijwk@r5wo@3dby-{`{g5EHTm!no^DQT%jOG@91xM^|q~{bRbh>km3KZ z6(_H7MTAi%dUg?2$$SdOH=;%M3Q9bc`M^x0B3Yh2*`5m@nud0QXUPQfhI-y9Xc6 zWfzy8Xq7%ft*C0xca9TZ>%FL4*Hx3x!_Uc{-mn%0Mz1KHx>F2_0U#@Jy|P3bYhxl< z2@?|G8&EsDT}4^JkiuELLsWJugmsML3E))VBU)p?$ulkuW&HUxhBV7Gc)D;RwV@E- zs2NS|UQm{b+SU#%LKD~2fE=28QX;B1i#Q{?>bhNVV-Do!Kboq74dzPi@Ctm4+mU0Z9T&k-~GP zW547clqVJ^RpV?L6`HJgju;m5#Gm-+Sg~MjrJ@&H3gd$U;6lI&g^BM`DS1ZF;rxln z3+k<6b?NJ>4PXkzEF5$j%^D80glIAHs?KF+?%GY1iEyR@y82qK4vXkq#8WiKPS_Nx z-wI)&RXDBs(zkBsQ#p@%Fqo~Ei<*sQjxyZ!A2*@XkM35H-Jwnw?=xvuR*Ec4(|q}& z^+t_2cnj4!EBmEM*dWrxph+3UvdPz|O{cR!CJp?GJ0OJ~&e@3^QB13Y^(Z?U6OUHZ z`Q)*m0*cwj=!MO65*bZ8O0oWp}Nz2h={z;vPi#vUC}yR=}V6*=KCSNA{M5E z*lWJZIIY%UNU~V@8(MpdThi(S|Ke&tUT-$8b0?1I0+jhma>v(WL#&%`xm6RA+a3Ba z{LU@d21-WuweU^A71$3`-YZ)c9r08|RA*2_qOr7CUf|X*8Wd1_$l_Q5k=H!nKvNWJ zB9GbGu|j9zX?HrMh8gLCwXtwFtP-Kw*Fr71ODMQ0z&xN+V-$Zxa2tn95NPVI(!NM@ z&Q&RG(XfF?LsjRtOzSi&LzBIF+dYekvDI?6XIhtB3y1D8sjqFrQDT!IR&vJSJt^sk zS`_)iiGL;66oC*ci-?+2su{w1_%-a34^!A69&@4ItyK?0W^qYr$PESiJok#^5(R6f zf4U;Mg7oJiq1TnTj;MJ_3Kb5QjX#r_q3b;DgS8ZVb!qy@&x{J<(qZC2Y8!>a+Be;O z@og$nFNi_%U??!TTX;Yz1HMnY#NT3(;#;R{Z>7D;Sh~5LLF?03DYH^!+$+C8ckfFx;veuUNZT|iTk64cE(-zB921Z z%uFozqJkm?aJ!8d?)a~V3fjW?=4Efv;aT*Wfo|H|mPYCzgj_Uxj2j!>bNJ zD{L1P%32&ZPL5v;`km9x*&?YQPaB2rr=Ob9ritY)8X`(4EgB2W_9Br(&+nLl)?kX( zO=;{HMFfl2-YP1?Z00yOjuQ>-^KrJ*0($n@C6)RgoHv*LIO{Gk*M?&JRjzNnOYzmg zQad=MhKIMol#OX>9`5F4{YYkOA7A-r!#OqnYol%~L-TO|pN-UUqtueO9OC#^%KrjD zFLg*S^$!5aLwd=12imXq{|E0El<_y+mhp`*G~Y-67ZjG{RLyy>X-#AM)RFI#7+Sxe zY=G|5t9+sQ22V}xU?(@_`wi(l@6vyl-sB6__r@f(gZUsZ%ioCpXyqg0^yu9G@+f88Ev4j0H*MT4COiI%!|nf>p8q$dFIvjO-JvxP zPw7!moNyGATU*8lzrohO^`2i|VYc9mUxL=RcaQmwoqN-^zqMnwd>hmY?74i#f4`)@ zcUvMQ%f|-+qOhMuUEf3@OI95zv~UNX5lB6q0XI=>TpsZpqgBx~pE1?29*L;$MV`HI zY3lSp#9r>aa(JW1Xii4ox9t`0j3!R*yozq!%*h^#Z{4`hGHBvlp8 z`9pt=IuNcxZJ_V!J=MS+*p5BXK;DSg?$dxg;Li&_Dg|WQDnGoLwjXl7M-?FL*ebwo z_-hKlYEZ1}F~DxjZ`ZF;02$VUhKx$vK?g&f{S8#iGMLvc%YWSZGu$hyAZ942<{ zJrtOz706Q@8(|y z#OrdvZuEc7|1Urk-%!FF!JZF%bfEu;H`VqM zkTwka*Z9R%nBzCV=zk3VGglBVBG4~G{?Omk_bMLxIq;nz*mF+|^qv1RmWmtI<|Lb8 zs{fI1V>{n%GqA}k>I{pDRcET$)(d(`B<*quVp64TW9s)bgQkx4(o$#d4bGflI`7nf zuYB5)*1sz6w)tO`=e+v=z4B>GnRf)0ZkrFD;7dogUIkxO&T=Wda^*Tf`{vheP*Z?1nj?SJG~7MJ>=3?8+2USdlxKW@l4!RIYKRov<07i z!PItP^rhiriKfLk&4&!aP&H{GF{5A}SS=4w6cUu zmVSf1|E#=Q=jn=bA4ag5V2Xvm*=+xjkn1vYa|5sz-5fK2#e;jD>F_sL3C_tDm*#KN zNx4*%Sk-UwLR|VOo{QnU&i%P6oY$%RPciFM+f?kIhS!;zA1Xg*v2vYa$huJ&uZ6Gg;R(WEqRR+436WL1I-f1_rZZKW|af&XQDJ+BD{V6^#CSXce zD-Augd3ffxMqpg8QV0gmV8py*o=(&@!-H&)YSC^JlD$8KD{eJBUi&IvqXEi0+mQ-c z!uD^a%U%?+Z?t=xo84LDE4%03FLJumRe3(pZ17&xKt4dRZ|C$fY`lkGCIX7Ly855$ z>>i_aK5_aZvBtioH~&_T{9A-W{~zUvqMNM|E{&|7$(P_n-pIkm$=<-o0ryKN^d$;1 zP%v`D)%ZsbM5Acr>WE7tX7%OB|Lo~qUNPZ*D{;P8%(&k=8u>4|4~?*mwc~e$FbgirzjlRLaasSh`@Jt^WN4T>e>He{E`a&Yl%zu9sGUX zzpww#`@i*2|GB@zcS5HxJYTvZ2{S_nT#av<5Re^>lmXu5eSC_VDnjC2)?r4cuXrBOGSr8k+$ zg9mc9)gX~dgj1oe^2hq|QsCm#B8$Wd8Oe#v=%KEQWNx8K4Ei|<$_+Uo+BvSv!7bsF z=R?kRY_+nS>>|GHJiT4N^x!yXZ?PP0x?FiYWq3@s9tCmw00M9U!N{_0r0dXCFu?f8 z8CZQp)QK^Tb!*h4j)emdiX2i~o1&%PjywU>g}Q#cwo)WzS8qqCAy1`e2z0?-mAG~s|D$zw5g^Lg?7 z4uir{VY!o3<9cP!+1py6cf*<9t_z*i-FwEMk(Nw_LZL_0vuwBTJ~rz{b(>@ZOc{TZ z1(?J_tHB3kKcWSX^C%kWZQrg-^p=CEnwW4z$T^i)<#P<>A#675Sd1XiIwEW)Ux2I~ zSDw<%>ia^_IuuM8JUnL#1A@w*6Qp1dw~vcLP=Z607ncXF7-B9#hISxi_8xLJr;U92@AyxcJkT4GVL!?N%VFVh zUra%oef&fItY?CKx$$66L7Zn;h#Y_!7{D7H*c{bgfg%06sQPe-c+kOcyJDz-gCT>o z@OFfQalT%Xp!v5B?U5qo~a~*PePPr1683GLKwE;2PATYIiZ;l zEpn0Vh{pvpfRpjH!SQY|e#vD()x(|TK-XfQ!eQt}Ju{8xvZ5T~GxHPda;5~kqK%_; z`@KvDEDPEJQu1p4f`Fq59vh_5gQFDIl(Yk*-M40CEJw`8`DMGwO5UD zCDJ7GhNjR3-c_oBw<8)X-!UIhsuAY|Dc57#MSq6cwIS91v4q>iU;d0%5!e{A)Mo?t z8)6AhTja*QMVk}+Oc!ex%J#>u`?61q@2>DNsW*7KF2Zi4Ey1poEyM0a4VoRpE=dh= z6Rve&WyqQ?#x9jD#cpK?PQR5c#_rX&OGtD7MTkp}^T35|vFp#v0#}rG?3*Vj95#?Hhp>luLn*=-rQNfZZR6I02x8FxxWMu)6|?I6)$? zIJwUz&-KsT?=bJcH#FCzyZNxfkP4oV*a%zx%%%eCP!}N=*Q~pHHK2AdyY1IMIenJ_ zJ>Z`DxCgwh33uZ|u6Rit@wtIz@IH~Uggwz82`+<827dQ3AZ7=ez`^u5giQ6`g-j82 zL4oez?rv?{gwXUrgwXU!gwXVk?P^@pclbSn531}a4RrTggjDyQ?ec6pg#~ZJ?qXbn z?CP;bJQKeQ48(tVGViV-{ssFh=n1-s1k>MsjlJt}&At1E$m0V8%M$=I$g)kq>gO7; z`{x>Lmjsa~P-alT7Li-v9Wn|J+kXmy>Gz+P9i??L%fRW$-%wM5VI9D#)!Bag3O z@^qL8y0QOwEU8_(P@U;(p%U@*XVK7g8^GiV!t}A1f|(%OI=RFsWt}3^p7IvJEm3SA z){v}tEL&ZZw!;#GAD))=@piG0a8OV!=!G$$Gn#`<8MF0knzy#EZ%j9gsBP}A?^Bo4 zj7^rMC@W|iyR@3u*Jr3|9YQiZOx|9nAW1Ds9Te~_AA{AG9_(wPB3oC83~3$Ow_b~D zZY4t7{gwKlW_N27dW4G3LSS{4)$n(-ht zNgLfswp>fhENEX@ianzh)H$ghy%08=_E7clSOdp1)(;}%O4)?kep-^brf99TO*kl( zzR1zvUbJ}MeTuKDp<(e6h(6TvXWnL&ap(fGzSLVmAh^XjYOU18#=Rm>UqQmHlL1n} zybp5ms(l6<+d;ufRcC7eQY1DM)1YYK=LPkT&A|iw+s$RX9!$!BCF#o0q)ggBn;?Em z3K+&`BZ(heD&q_LqpMjIof~Hxic5t|8JU9^Dv~ZLl9_6Ilv|287`7G0U&2pR2%_lL zR44@;gcPVblf`qPKaSQVWo8CwO$}WINhPsVm1QSe5HhpL>bSwJ_~D!5x&zxa=d8th z)rCDH}DSM*H{m1(d&%C)D2Sv zK7|{CTl6ciH|{8t)Y7Y{Ng^tp*h8wY;4GeZ3L$waS+H!J1jgD8bXX^p|HPo84!T@wBS^) zQcOsqDzB-+GO69~jb;{QX}Cz6o|2xr5WC0_E#q}nbs<75lg8O<-*+>?v6;f{wrV)f zY0#^xP3Z>VqKWad+b}}0?66^-Rk(_Q6|y40=@>Ory0Wm(l*zoYLH*3oUz1^}&n`o~ z+N8V{`X(d?AIKgVA6Eo1PBdUYPLxKvYzFs~37rhT^~ce}0O|hOt!vnACtfwp&)&=T zoT+ej+tznhgU@$fJzUvihL-1DhAVpCVTs<#Qa10;C&^3a%Vm&yGQHX3xv9L1^+7*7^*?>{WKr&*6gveV5GKq8sKTN_X78)I`n09Pa(HOPWJ}7#%EXZ_^LBXa#gp>m zwDUycO~FC)M2kdJ`{;#tkPhP$VpQk$0_BxXq89Sx;&(zEXpG?zu!NY$_idJ~E}~V^ z(_&6Qji7vyvnP&aV0M&eDLunj73)TF2!*Qif@H{9qyzkl@x1J+l>5@i;SMHs)GM*$ zdH7e3C%*-yU~}3|=#k|T9balNN5_P8`AgCOx8 zkk9Y=A46HlMib-;ELX^jbucHcr00s?86%>UzZZ4v16}=8YAt1Ko#*f`O`I<)>x58B zc0)m~R;;|HeyXN!LV~2hn2bV=dNrzpTCsF?9{L%KAH86PiLRVaCn-z1QN?dA9>_@- z#!oiGuO}ZhICww^MYF$<5t$Z|mNrtALw)?K?zCO_Bs%c^4=1*OXKdHl8PV$rP+p4c zw5lL?$A*v)-YzGygd)o2euHCoG`oaeHA3r$>bXNn$!&;4EVprZ;L>4KnymWG?Sh50 z#)%M)}4>(W=FW{#Hc^Bk&1VVLvq}I&`x}!M+hzX>3Jha(7{4UOy-e{yVRbU26zH3h9Q>d^q+$q^+14cPB8M$8GOP3v(x)*Xg&B;I z&vglfzN4!&vNI=fvwC8kT-p+;F}1@YAI+ruLRW*O*Y08McacIuZmr|)UM$^P{Q;=W zy^&qx&yd{7zB?|zYr5NGxaM#846UE$#yewS9j@rC*Ha76t1e%&Lf&%a*sWHOa?mD#{ zMfLTGafcFzULhg^eG&C}jaleOV;)lC&nxKOdWU&7)n>K12^6u)^e8<2+D0z2kP>}?Wtj`J$zp7=Z60n70#jUF@UDNmsgo8nP)Ao z5b$^&-nD-aJZ)gACtff@O*9y?I&<$#jrMpVD~ICTauD+H0zn4y3wNQ+PV+L7YMYBh zh@I%Ib4k+6&4KqBd4P|1?fcyW>7=?j+N-&@+Jw0&_es74^OayU;aPn9CqIUp=$mUf{Bg7~>OMZ;MzAa0Jl1eWyJmv?OBSDfg>h7_XGs!T>ov zHgW2u6KxaVlEkd2LN2{^m@7ZAqy1)Ql{8 zX7MvGZj`h(dnOyb6$gHBv^UO+>zNZpGF{Pc&jHeEHK#c%t*7eF!^_e+c^k@9ju|?q zz-A&whnp^{X3o*~8#Fj+9M!wsU!^r(C)rUQPJcUo1kUc#YPh+bjgAdb4bwtLQ>?6a zp3ffYB{l4K@K9;ubaAz{A4D4n#`MzT`R;tk-`i*Q<(4Sg(uV7Wvd|MdUgH20)oOVw z7X}0bR{un@QxDBRWhHBlPa5`=ApokxyNHE5K_@=3+m6q&o|4{vT#zhk(-WiDhYXMQ8|?RwsT<;` zgMCRfh2F)Qu@t5XM20pBwxB&#H#W&_)ubI)QQsX}gyw>=n;?mOb~gXt)I) z&1v!Wk@OJ{c$&ZhtT%=Mxu%?8dc0s4B)D7Aa)EYq+(EJ9m!E|8WpD8;sr}=6Be`?h zoIJ6FdYEQ?tZ~ED0gTsl5CQ6qaV{jJ6V{ssgzm$6DN?n{984#(6~L>n1Bd4eqe?|d z0}E>6%G{2IReZEHApQ#4YyoKW1L%&oZutk|k`eH!f&y(ixNXLvpbzwdCjoHByOXQ9 za=`NR0=flwB?6qpsHUoUfXJ4NuudT+s|K~9hjJ;p)4nsyM#`k3eSG#L%ZE!ZSf4rB zV<)gOGocfBQj7%>Q5lXSwdJ$}5P|!tW_OsGV0h}_0MI8y8l16we$}P9d(=!r;}n49vMj?bh4Xwqz5<5yd6#ZlD$(pyH=NkaM9D@?wX4 zF`~LH}>zX z?c4NX=928wXh+QS36tYFMwVJ%i7Uns)v+2cyn^bROuElsGNRwSI5m#n3npZ`-m zUm-qAKL{OcJuJ#ljSt2&VWCK_CR;39t~Fn*$(S#VtG*~Z2{M`TI|FgF1iHD!kvf>- zco!2=30lmCHn|p~6g^VWN|>!xzrdVf_Dnd*k-5s@krX^J0cSQlLcM)Tf4Q-5yE;yt}%N~8`IHq@TG-jNUU9rfe1k!5i9x@T{t~xJ% zEPhgzyD^v^s_Hgi zMIftU1$K*uSg`+zChuph2h7iKvzQ#bzG;kVI+E*Dvkclhr%YjszVk4#-)ZwJYIAH) zH{Ep>#Fa8*<0-7W<2oH#XS)nKqe0+j9AaEI{&8Px)wi1C=s|a>Iw^7^@A#6P`8F)SJa9nyG?_4zV z^c@OzMRNW@WB}n57KRq=@;bWSaoKb|x+sBikeC^Xm?lf%&0k_=%23Z07^7A?B?M<1 zA$5ObBMHcz2k9kDQJ1Vx7mgGZK1iC0!ONc=vkb$=P`GE$_G4DQ4*&&LYlGZ(4nxd? z3XHo~iE$%n<~`h+??J@a1wl{oJ%^qlu%kF;5^R>d{L5JCYF$cSPj5TI)iT_`DW9I4 zIB2CrP8`X3$A;7P+c;2AnA0`%8SRPr(3ab{%{DYaX?eoZk4q{xHLjXenoLeoGL;HU zt*G7Dwfr`nD4gFX7qf!ZqyVqG}YdQwilVvCqg>byWiOyzw1dHoO>Iy&W56l z#4kOq1Kw=S4ieCaMn;qamD0Wc#N8^jZuW6Lg@4{8#*b}Shp(1NqVoVAxhFg$tx>Ij zIh!Jg&%>t=5bP+ruaHKHlhv;6`Df(O*D}Q}^ht%cX%px*}GCDxTZ{ol3lLaruUx z!-|A~{q}zHmkPrY1LHy!uJT`Q4N9>3t3C5HLew1bKl+#CdiF$q0fS@O<81;yVk~M` z@6=+?N0gsZO|B@@zXZ+-K`uN85HJ;1pa15~RwP za!OpVjZmEF^l-z*C)=WwceL!uLREb5OkDxE5uucJv{1;xR3swccN1e29MSA2#{c67 zpSte}^Ux8)pFaax!G+?6G(B}Qg$SWJSc*${MvLJ8i`)&eC zJ=I2!IuYJ&_%NUQC%-nZESbSAIgPg4f_ta8?nUcx`A?<4K+~)=c)tVU$w9)MP@)(? z{PlDz!(d-3&v3aCb1roNl&U)d;tI;?fA znpM7y#{Byq#eD8*xLv;i#|7CGwfnRxZdVl)6hIf%!D5@+K~B(Mz`TGnPF?9Y47YgM zyw-JVFZ<-=jg1d`)H(2OFIRE7tiEb1=ZFE9y|1P#GHHrNxv0e|J~=XirkXAq(vi&~ zI)yj$1mzAMBbp#^ATGM;#VRTTO8A5nR}(>^R^zlSIBALT zon!RZPoN(b@nEqml%OXke%?{hVPeFixwpgyKO=DH|H;AR`F!o$SQ>zfGzmZIP6izG zh_tRc#6WICZVx7ABBnqCbeoiv1YJ@1mzRGt5UaohUfy2 zS8&uj@Z0M-@y~ZvdymPuA?vSH`tk>nEvb)C`2i#9rOHGQM3*B{5B(vj zLBYIq<{=oSi4(^mYM*9}Xya`;Uz*C`oCjP%8fw^v>W8Z%Z!k53wBZk4ysZf5UGh2- z7N>mNY7mopflPylQmS6jXPE&o;0G$MH`$571FDT(8zGyC%<=RPb6Bq++6Eg4*GGUHt~Q2qd@bj+sx2#hGqqTMK9+v!b%HSaWU+ zT+_DUm@Qi0a?Xn+>h3akio3RES)+11YFq?seYS=X+01s#L)!)z6)jknzjvs?cOs@+bN#QCa- zN*ZF;^>cmKw#w9|)KPH?AunvGCG)x)a1ITr2z@jy%vn=9Y#d_-FbeEbBMR*C z7i1`qthi}#pl`(hfXTM2d#A*n%7FyqmfvT;vnnzCUQCZE4Z_H#9qs9+9YylgiZO-b zE_L_#X3Cf;{i@jMycK`SA>&+nn`zFjs&l>8QE4S>D|L{)#MNmXjkIEFkiB)cj%^dI zQ9{1AfT7w~zsCiyQzVuGBVyDy1W{5-4mw2t$kMq_BivO)u*p(sxH-v08f;aSs)VSO zuDXsh%*>!iGGSc}IYwDDv~rrQw|Z?b&S{iOqk@y1%)}f}a9w9qm`ey)(GHPP6Lrh( zoEi+0K9<%;asakzs0!ttG(anaEBK+BbDeHPJ&C}R^9@3vxC;J%!Ws)H1{PLEKmij$eLFE@b5k=Xd^SclT6z|G zHg-rlaRBaMZpd$AYGwSd2+O~L2>b`npkd}85CIay!p`y^ z5kSbuL`%=i%Fd3@!U1qV&&0r_jnBr4&-TwLGc7X%Gd(LlI|IOsiIJ9_fsqBDm7bNB zgNcdd9|S{>&&&wOI13v_;xhr}hMt*`gH0Qsk%^><$Q@U-5(n5Ge(-Axs1EhOk}p5P ztDQoI8Dc!+TXPMYai-$>$j(!JipnbBnpI#6;J6|{aULZkBNyG8f$|3<7oy1UlkM0b zeHofUgmt#25(o2FKF1<}@ZTQS$Ja4bW*x5X!i8^D3Y6b~Dr+nLY-vTm_Wx`SOiLya zyYenwUFm8D7C<(-)OhQ1c-XM~qMT{u7Xxy1AQA~rGzZyG(Tzi?_a#9l`<4jN_?o;G zTYfs|Y?fr%eZOFrVKdG{E6~n!!XlpyD`PC3poVJN7eblOITKO>;l$-8fshTz-8{Ow zIn>WAOu6X+)bafD3J^TZRmPUWF~@t{`Ms(yNh5rv7=R;gg- zy|EE#EK9jXGf2%M`9F{GfAG`)1|j&_W!Zmg>3-Eg8r?}|7TIt zi2e5w4mcG!{c{9BnHc_qVF9LF$yV9M{9k<`e1`wElL>;wBAJV?ky%Vgsltx&sNdOqtE0){Q42*s$?o9k z@sATtG%eQJ$nWAiTtAe+{S^>PRY}3{R+)o`>K_%Wbmtmg>mf)lls~z(e?(+Qo>pG~ zk?HyP!_yf5xu>Grul>;B`^}H=dw84#imuZ@fArn=SK9usxw2I1jMlre>D!v2ziDJj zbo_9Wy3DIUTGacFX5+?{wP_zw^nSC_YNa*DRH#$$e~%B-T=O6Y@!G9+P_!rbj{|== zx*j$@X1k}-Kt8TG{QZC&`4(P{P_ASmPy?sGg~Z%h?k=Nx`f3FA>H+Rsg67U8?#}zs zd_Wc3p&8maZ!+sA&lv&?bhO@YW`Z10 z1gS8S5L9@C>M&h?+%yDhJ^m&^+ydY~cKPQNR9qM~)9zZl1vg2sLoAwn=kxpU`)K(+XYrnTMebK2C|!qnY5l3`h;R(?i+w9)#BY*nmeHuo@Dk2m6CK1gFQK z71Z{N6F!wu3)GS6cCdIZybb$=KxgERi=OWRx5^JBOuG)=o`hQ9DnyczOb-PBHBH;W zQ1fd+Ndh=0Nv7KY6zJNZ<1p2J3u6~dh#sYE__HNUs~+@NiOs1Vo&ToKq9wxCr_cLFj2SQFeH=1?YvjepKm z<{Z>2;TL>Q=wG6c);{O3)`6#Vw!KjR_GEqMJ+!G0T+#t-Gc;EX?F)p3a2qro#uuDP zKQoKI1H$)v3zUt>M)U*e1KR_^_a~pw2gwKcAJwqh!EHOJ10Dbi)eYdFyaA|C?Y_&< zZXZtA%b?1muit*49ogFls!v2)pgyKgNE_141a>g*T1XpI3(-wTE)nmq-mxx7&%M+z zIHs#mU4olnPe#!_gpk;Q?y%T?@37dxS|;D1T?Q|p8&PaOF!c#TVK?Lye%Bv3{d8YDglx}!=w%ON=mo>)M<^rMo*)23n_WA*OrULj>&pY5p&avmbD!-*_|Ux%4vMLH2K>QHy*gSzio?kFgk~ zzC-MvL?h>T3^Lzg_HUv9kwMlM0ziab>O02%DF_fT%6!M!zkvZndRbpT4WqZW4!v%YW-A722XQTESYhmS~6i?Z}GeEsa7+5kO98Q)aH<>1c=(u#QQAAj{z)=&PRAhQ8*cw52@n}&eGwi$ zq5(vJEC~Zd0H5*pZ;?@paDc%A)aef&2LTPhU;zs7hmV2)BS4aX07ifa``AB0M$W+i z<1@(+Bk=!hoC0+8vV8pP-+lrN&`bFMN#qzgp9Ksh#{SJ`Z!mk0D_{0cz~>uXX7|lEa#8owH+<3c-z@v~o&V6fVJ3r%r`POL|2fu1 z_;wbre>ldR7!Ss2mqRz8-U)QNjY1BB;Zma*lAq|14`rX?3ua0VHQn`2^8%zY)2b7Z zIWGmohe_v4b?4pO;{~9Q@u6Rqh#JA|G}c*ro^B3#J;VB3`)737Q(~nmi56<@$;~UUEBeU=R8S=bm9y<#aGwMSGkfedgEvQ#w+SyLb2?=A4Ev#44Rw0%$31P=GM^&y{b zc>O9F;X&191d3z9Mhxo$HbkFCEcckDM?hN=H-@~^cze6>6(|u>G$%%)p98T9j8Ll; z$89QGfXiTP5>tzHxocts6vL=E{g1kKh3%wWzT-FtI|sIVt>C37yLgC$-u z6j-63b)f3czdnN3>S5&@qN)gQ4W>QYx4YueUh#8}u>PKVarqMYQhif@2h7oI(RJ0N z<)xLj>9W|KaS76yXfUoC>cYzzbQ6}9D&?0j;H@qhw>i*?Vq6Q1cVnv7Nw?j6z+ZOY zV07cHJM%ScW{y#ng2(+>ai>V}!I0R7IWp;LO#mB9JTh;{?UL@vV^j5WMNpkyc8uOq zvte)r20X|S+D^0;+Lfx?S9|Jt*Auxr*h}h%4~`)WvU7-%iSj}TR~DgksQj=zn~Te> z=vDGLr71{%gqy+Sv^ke3h-YMCQZw`xD&I*tm|@eWVIz#ug>}1|M|{KYC@B)wg);2S^_fn@GcqFKa#JKOua{=4!ZYLV^TK|3VrV=%^xIX z{zhY;Tbo-HH^BWOC60LUg!`dK`ZgfDV-y&*J=AMKm&ka8$GwovTbzu2Jkz?Px~cBi z7AUUqh7p}@X#9vVjwwbYrVw`C*f!#@q*zvM18KKrX+Hzp-)VJA)jr-b+V#`JAZ4ZCrAm zmjqDpFJwf%4s)_8{8?vlG&pLlPi;DD?LbEZ?P?dPW8bp`m#uMpgU3Px=`25lfneIj z%|uKtgub?;UIetDatG``;_nHDC+U;ffBZ5(qfNSJlXJz5#1sIzvA(GDY1}^*fLPHG zFwqI8@Zk)4fgtCwPL@7Scz<7Ls#Qt2Zq8i$41AJ zew;<1v0JPj<~J^rVTYFQm%DSJr6NmV zMWS*t%5k`xy1952y9P1^bZ7v`&+**b2ahe<(!m_l<}~5N`Mgzg7K>yBf;(*ggp<8B z84B&SbX3T|!_m}*(>?CTG}jnWQw@RIdZNRkVi{CvObo@5v{WymlB{To+-Py3a@Y$A z$)c0IB;GaTq_^=asExVLz!JUABwVAL@u}^}El?*gptRo>F0|$e3q^_+GO^m7Mv9K6 zNG7d{rPk1_voor%EBKdF*kz%nxyYxIz+`7_|y zW;N4ny7Q{r$C1FBQd5e=4+Hi-n178HNi(2=V5&2i8yjj2N5rQrtn`_fn~wLDWWEWf z?P4s_LDOcr%4=riuF6c(kJfFKG#yqT&D7#CI7%9BhBylHe3Y1+DunaeY&7vp*!JdK zZ_WJ}es-B6nhqXyvB8W4*$vWOW0W3fXv5mrTsQ)ymMgfX-;?@~!-_myl zR&J9`dXpfHn?)zm+3h{n>AVLNSUQfZ)Te~&Kd$bY;74*Y;DzQp?Od>)`eF&WS=YLn z9Jys!sth+a))`-&J*Q`D#`YSk3vEPYfV0`XR?}$21N@uY&4l$$zgVu zJ1%y8NzH!b5reW_A8-C`k=CBh9vs}wbvJ4x<9RM|u^K{Dh%A`yPs`?aI0WG`b~tQW zxAqj?YTIV-u8t+rGCWOl*$}9)_tf)2dZ!V#mF=x%(t+e$yFbu}~i2 zpruR4b1}TVq+@oOmc??9Zs&Xjj@?WuA9_z&IDj zJ^2gQ(zx;#l6M~bTl?Wwuu- zoTWld?r6Cj@HF5PdZ0g$b{Yp@GLw*7&5{E@QoaVKAR2(0A#jF_=*A>)=q!&mibQH; zXO`ovGjP_Pu^uOD3fgP0VunHUed@RoYU(!clllV&jFegY+qUFXR_5-I2OHX?JpE_0 z_GU)2S>ezoFy*lC=xRi+t8!zg&*SMqs}QXhzU`(5v~KU}`pYme|q;2gk$ zd>RZ+88j~T%3-OSYIk4gD41QmWe2DJO&E?tr_R zA$tGjel1u-7&vlzJ^NwUx;!!cd$fF;RB?p>3>wr4#f%xExoW3ir(`Ezg*%_OWTwoW zMYOQ;oe6K!y&#O1E4tDpG&Wp_8yE7$@wgLc)OSB>xFqWgzBg>x0Eg<5G}3g=ADESW zt-hgWCX3KSk`g5{nGCZwNw`(C()F^tFkI$xzFkBxD$KdwvX+FZlPk}#m<6K_1WHLF zlS4KgCq{lb8O0^EyP<&7ye0x!1Tt{ear$@>GCR6g!~2heYMxL<6uUr98$Z=BVuTpG z7Ol3k$@$9eXI^2=)-hd=8EHo4fXTuDuv*d80husqj{U@o;PvYm31Ud=WamEBbIwSyRf5T!UNmwcBr}r-s+_iDeBpR@JvSe5UI)zRSwfd` zq$8w%EliyavJzX#2xkU<)jClk!h+!ilJiD~XoyavJCPtgp(s+N?9G@~KS-=z43Vy# zbrIB~*vNih-iTY(im7tnuH9mnxeflwc(5DJJ2X5UtvN)|?c>A#P6m%9L&7#ZY!vS_ zH1SG5gj{8sDMb>^5=Fe_*p)<=_K78x!++(u`OTlctB6d#_krt-PyWX9{F{F7MF@yL zbW!~WFiZZ1f$H+7ka$Jfr zUsL;`*c76Kbi(u`M$%mU<;eI-jFeQ?r{K~AkT3+MrfXq(1F<}g6G%4F&?qD(Ay@7r zDdt6?UJ?L+=5JNpHkM6vE{50?Y%i zR}k{XAQX=m-K_N~L@$576w=nUiv#wlg5?`T!>nW@#e0@PlcH-ypn`{$#6v;JOZ{y9 z`*}tG-_U2uewM+IkV|Y#*|*RgLJ+}8C8LX7--stG42_9DRXMAZ1nQ02gU%MxoEkCbiKkOgaTemHG8`aF0<$MAmV zZHx^SE>bfpiPhFkB{-)_ESihSI4V^ph|*9ij@&B`G{eQZu+qx3L)c_Sps&#%uv3t_rYf31rl_Y^oreA5Aw{0aXoww5m~ZC=T8G3WcG}@ zWRd&GgRd1Gh(8Ykp8^5!R9(@5QV-n7?A%Xx5|_B4KmOw%eSMkrYrKDw1KZF?xbGpe zT@^`8(^aIY6Zn=DeREA>Q(A|pFZHyKU-TPo92L$R*DQzMay+S+n;)n zopz1HS`xOf%ag6zuU*wF2-x#XU! zVK9|8G?MiwiW^tNt|Fb8;SJSK%;0HtkCKRb20~tzWn5s&l*?N#XCbP$`YDn+Q$S4d zR-#d>B<}8!fb`EtB%xU>DI5Phcm0_T_x`xVNqgx;QCcL)G3Qp^ z)agt?1AAOXXkj_OQc%sWnHaD(R*AETp;8fo5_2IxULi0NAETdL*D&BO0q#Ir(=3)+ zXtl&=Fv2XMiR)p1=mTHDYkTARPzc7G%~H*)H8u=2_~)^uvLxzRqX{;#taaI0TR}(C zhAw@BxzS|dDK%YtS93*e$7y(KZbT9iQo>@AvO>c2S>)5ufDQV(*TyMlLQd6DbCIT~ za7K9{9g{D$$JJsY3m&;F@GU>da(wz@piS!3Ug^AOQKh^@QGJ{lhD40FGv#f=88Q3B zg!7w(C;J;QGP*~1LJBWFi#hnnJIEKz%L#KYan|4UtggbNg z$#w+v&`iwct0%nC)vx0m`q_v?tY=pK7=we14lM-SFdXpK4@jia7J2PWWPS_PV4eatawtBBw zoiI~SmuM_il+p(`sj8|9CZA@zW`o2zq+JBOu*xGh*{r~}?lsiR{IvWW+)imgIc-7( zuOyc&my&1L{hfnr`{mysMp21!g3#Ov9I%{8^(UO>6;Aa|;V$h?$xSdV;=S_M$~=ly zR7#peZ=jMr&EqGLYgk>cJ*0f3ix4ENE0$k~3JM3O&OUP>kBHelsG6nSqdkK&@7LWf zGhgCO%Hhu2%1SE2*P){%$CAn7+YI)K)E$szMLd!JYB;$~OlE14nwC1H1o++-! z22nW<+{pb(JYkHP1|z-jHM>f8+x$c4>wBz}c;qw+J)~s;xyDo6k)LQh(E;+O<%Hw> z*bz0B=eDvmm-LYI`_1%l+o0~UlFgTQ#uBz>OE!kpxwwSZ{kdILzJSbF=5FyX^O1k7 zZffEgVKdJxs0UI6K6<*bkz~SrN}Rvka3(PP`MjfvUMmZn;k-O+raT1jocn+YN|_K! zX+b|Ti!-;-;l2rzV^Hz$QAfDNb^N4DC-UEI&wFn{h(g5`g@u9PPnq@pfBSzTmu4}) zTk*6V$^i3Ky*El2Nh&Q09KoaL%afEZP;NcC5YpJHLR8>E^uoXW%0Vq2D49=J6C38B zo6U{AE|RgLiQuuO(GcN!V#NG>Ri_wDw#TP>4uvz&=6ZH^8lqIwt}jvAGEOzFX&hXJ z$aWWX3zobmgz!*wSF85e* zQYc0Zo3P^O`Xzd2 zr>i582j!QnA$t5L1^N0gk~=6S?83dddn}Q0eH`-L;~kaDmM=MVwU89Txi&*`kM|`l z1I>Ogl19FCd30Ig$u^4hC#ypHfuxb-06CUsG&j0%q0x~nW_bLHP@uQD)s(H(_>7d6 z9$BusI@!T}IF>HLOD97-F1eFpe1vo1g{*1=3ai$5Sx2ZOBW=ADN^l0I(yh4RrVR;v zjOO}GijGJ9lMP*29kVulajK*uD6>U{4QjEHdZdF;F4_Chc*t>1(>j^;v-n_+Q6Z@@ zk~T%EkqpKhJtcZQXiICWX0lZx&jf$FpP`msYcO!I)2dvaS2nd)oBlIQvCpQX>(=ME z?#stfIuq8IH{^VCp2vps*4e3Qt&W}W&PXeS`!!Ml=UwJTi(Ir9jZFMQ$jH5~fVMNU zl%LC&%d01<=jC;2MiKu(o3hxF+%{M~$nE zxDDrb#|aJ1Ztk1mXl%A-=`)lkN+(Wd_Iu@XEA$ix_vzoPL`QC$aTN;Ehl)=}qzI1$oyecHi%!XaNOaiC8uDJ@xjIG zuay{^7BKE5@Ei%zKv+*wPt#A9m9&ZIA;A%DR1tNXE>p7Df?>xYI_lUt%zfe(X`a4V zE>XmS-z^3A9w~-k&1~aZ*@7HjF03sKEF2mcL`W2^&g{h=6vH=(T7iaK9e+Z6GUnJ~ zm`imsSEQ5OV-aINX>B;JR+1Y-lX^8|blZS85WbT8D#g0!729wC4Ox5#=gX*%m3r1kS>!FD@>tK4H+ctvAb zGvlaU)q4=SW;%~|g!5uLnkGd~pL1iOryTZ_^cd6a;<-8P-3iJW6`ZmSpUekXnm$O*W-bl@&U33{qd;rl&Me5-5Hx|xASv@lzzgp^DzOPrJ zr@mRHD{S+Jn~)TusB4lIM3D+ZEf>h%G|?-!Wh0+BX}K(!ObS-BqEF$5iKGQw>ajub z)0Ge(PAkL%MaA*tRz@Hr9=FT>&C23^-+R8~%#FZsFAiWErmbCfbzN*j^u^!5_So-= zL7DVf-FjEn3Uc|sHRNtd}0i!!%t?It0Q8(YvXMq_D!#%#bWVooRz62)FoVMTAlh(&0s2a!M604G+FM++PK<53ZL zB8zqg8PtB43FV+iZRHf7^7MUXesZ&d+DU>G!yr7Kaw^HhJjRUUqEuNySZLA-sXEae zP`)0p$z~}O^K%DFa|LYbSjaFo^9~!gnSbDv;+5zZ7qb*PNW5p(>j#IdK%;S6fmGaq zIhHazedE=}M<#A$$SkQ#=_~5XO4~-q)nJryXbp}g6*ZSMmPC4tvj{106~3PM>=0){ zNff@uhl6aG^{_Lbhn=83KZvwbr$r^PC>@h!0{+H=u1IJtOqs}EI)pHHYb2~7Cbmd+ zN_&b?nNf%bOA^3SKBTs!xTLrwL-G`N7i)DS?L{ba%6YUYkzZpw&w6;o$)Y)SROF6t z#PMtnwk)M9Qj{c_#y-SR-f!syYhXMhd!W$L$(L_a=BCya-l{#{VR3>dpwSKuX=U^L znaRFt0Pe7G@f%e!KvA5WM{CU=%qgo*9H;78r7xZ|WU)ZHpL=C(7npp{L_D4(-B2(L zwU~uE;gI%erLiGK9iBEl(Ou?#Abe#LjGa!%+L0qyAeSMKZq>%F&EP!hZkxh`RBvWs zdVOff;M#UyAt1KTBnpNVN$`S)h9bp}A>V5zUdni}35JlrP z?KZq5em~W380B!%9kk2|}CMG{Ke(m|I{&|+~Rv*JxkfQ7)JF}6fG|Bn+Z;ZBEJ-KPA{O#!^HG|I zJrR74*RQDA0$xkx-E+-Q90bS1pd*w!$gopQ8zBZ0|4~4SW}V;=vRqB!;$BpyV|+^{ zvW^dQrmWUro|&w6o-e3v?~-Npkg;}GS$Spue5A7oEu-n)cg-*h#XfnZD>;jbs)b#Nl^~;gKOWA|uNTbELdAU(O7$Y%M7wpih2|0v?Snh0-7Fx^B`IJqKnL6XLLKi)AqCJSekR^B0ALrO_l zKq?eT8L`DgI&q3Bx=-j^P*@3mrS4cp9EDQ8L#mxpZdvSTIwL_rR)(kra=m|6=0bAV z+b>`bE#DL=x|q#%o1pXe9 zQEo5lxlzms8Q@TL6r5ZhDMO*c@rv&n2md6EOrdLm?4k`}!u5j+4m`5iOP2|=YO z2YHvZIMdn)7Zu~==rv#6^*VO#E(P#Tx6oAbB$;4OwdKC@rFulZGAk!0?L$o#m@L6l z51(pNrG%8+?=s_dBesi)QRwKFiDZp@{rh7}=aKuA{CRi7N%_e;5h-H25g6WO#>ShA zd@9pdZK+XuX_C}h&DU-M-O%k*h~N<#;>BCsTN5dm>2#zIoh(z*JNvgSsfUyEWTk

(Xv6{DR8>gd@{mnp*EKfPV~XJHsi77dW#8kx=pKK`m%Uoa$k*?3vYC4Fak z_o_8dN`Y%K>MB|1opb?i7jK+@%n&_JrAh$e3fnv(n_YYE5DAA7U*knw$nj_BFXk1(qu(PpkD+4kta%6|KR;QAa0 zf--I8k=Zr(_Z!K@C@U{Fx3%(w-tqzgj~i9>BKA4rI7N6txNZl{hgU|*C9$GD8rTuA zR#P`)Jr>_1vI$>fIdiC(GiC`x{BsA+nk@*F3gl07t9vW3&V`f2lEk^NMw+>5XPKmG zUdyOs+&<7V(mqmoV|M%FIYsjjWtsvG6Kgx|q5(^>f^ZI|oU!$~s>TI*4yS~qwf|`E zjwQ8*r|D}>IdYYUkH-Bx&3ZS}b$Y@6Bc_w}>hH~YPA40m+w?A-ZCUT-g=y%{#@D+d zoAUzO0u&Qj8(%?HGL$lhc%)LpOGz?gGEodYO$y+X#%<#)B>PG96KNUNEG>LO8U%(d zxpE0X@ps)2@{t6HdJTSrT^77Tm4kMUEb39>N8J%=_6;rDY0FujkFF?Kj0(1O6XzKe z6lDQ`{%=bg--l{kUQ1yu9G>}2g^o@5C{W4`z!81f}BXt1bv zf%k!0(AXdyDtBEszP~vb`TfT4MGYM!budVPE~Xex(klpN8SUt zDEW?dUoHwS?!DZyCdqsd$*|AK>UrI|s&dhhsQR`^I{^nZtj-EU&vbBD=vfrrRdO#JRevCV#dxVagO?1{KT`<33 ze9CZB^H%5Srhnh3cpgpES03QMD!XlZ#&(l~`)ucH7R8#shR`f}O5$A&*7qYP2 z9L%dT(u2M7{;EulMuDbIsRi^3{FNEf=2r5HRG~(NV>YlZAq-_te#D3FJW2&O@n;wW zE~bHu@r+s}-7wv>UP?r{+l!Fo$KtB14Urc6&A-+ix#%9&-8VY2wXT-^*ZtPT9$8}y z9uq>cvqsw7=y2Aw?MzOl;RS`+GPaKKM-t`{S`>tqih#QS&uJTg_Xlk#VR$6d7mA+` zdr5Z77x-z-or*I|CPNy-y$7mG#;)L6Rt%X>pBRsy7&qu4pi&PcP{va;Pm6C68!#(I zpuwoc_?y@%w4m2v1CQ_@GBZ6)uMQB=C3wq5VLjq+hAleMh7!3-h@g$;wJ+rGyi!67 zhde2C6gYJI4@}Zwaw*==e$M-ku1e|R)^R}l`@Ph>PB)&wbSrCkoVr$$sb&aA=Ik;& zUeQdFrmP?f1InuW9qy=p)nLPLU7SWM%AmWcmY&vd4;?geA`Cq?{+d_@JT(!THEyrA zMy44z=w;yw^{v!r zdtQ7Yc;x&p6{_=k#JY%;Cg(nnHIJ=|CKr#}-Ly@1#p#$GoKnuS_$P|D>nJ8NxzRx~ zXiomA805Tqe745JtsB@Z3ng?aYko&uq(+Hn)K+?PSklV#Kh)`NM`FhEdtQ#jYl})N zDj$RLl@d7e`{VhkqdBkE@2~R(uTYeyw0kMPt|Uj%XbY%_LN(SfzEr>+!?TpuiL6=! zheU#d&x#12aRR=k%+*JG*y3{Ear?usY}6eZ!)zi`M;f6cGlO&d8WIVUxLooKA?9l_ z+3kQ0oI;X0$Iq1BB%(M`ymg=8w=2q;{W^~W*$c|rS0e*+VQn+gg?nx7X8cd6m7j%i zYgaCavlr1Jx#(A|QaB4tMzb_1xq={2;@3qk&EzYgNJ!li7~h`)1)z9F zisY#WPuZ6Gjb;tPkxz_bDT9!OT9^vx`&xR)gRC~?zfGQLtP_OJQUoLBo(OOdDx3;G znit%@-Ng4*G)qsoi2D1MKJ19gV&XuRdpg7yg1s+%7N|9w;b9LGgfr%U0v*M69`c(;wo0q%KkEYC?lMst~TBBjOZn$l@E8k9V8DSe?^fG>xilu~c$=#X2yVWK7<`Xix zwPlLAQ-i!xbt&@cBxB&MKuNj4CBUYFeVLopS75)WAceBsrNq*tt=T2oqT8msZKrFe zXXlUMGOK;&tIla*@T*9$ICHu*iO;<4bE;6YyeMF`uguI%)!0;{I4EEbc<8DNT9^s0 zjEHwt)lHP6NDj*n7iA+d?GfS8c1JR#tygXT~hI z8s5=KB^D1BKyfKo$~R)CONYL^ju$IX$W>J@9}S)CE6Ed4L2god2Zeo12izsEL$LP%RWtqFhR1ke zOVwKVtr;VJ+!c(+!9XbDQ{<@>X2kh@&V>=oUPIyXU`BQr38yJmwl1cni1PsFjHp5M z&xP!Ku|lNtNC%8az0G!y_tHk`PN{%obkFtUwy1Zwx{1j?Ejx(;SlT?h zoHL@Z;zU%5P)qUIz^19>dSgoPg$8SdWp+|^i&FDO3Z=wRae>*Cg{Q0&+F?IKWnu=1-?+?y|Y$|6-kuI%Qmh?yWx8+ z^aDNRLb>OR>=C#S9%C_P_+^c3O;L2@#LLI|_ZXKlQh2$T7BtT4$G5u+N*bJxqj9Bn z&waLJI(E3emTQ-GDq$d!Db#kGUir`gzc;@h{j^;QSC@<0B;$~l4yQO z@2;O^bNJIDz>D=4=N~MXg2HeN^X0txx)RH>pmG$8S*19$GDfy`|U zMaWMzXpnHKV?>k)4ftg;lVQHwl@+`_zcA_7d*t!2t*0bwfwOatYfBMJ@*P6(Vi!j` zZnr4QdwG0m!e(rd#XPZ?1UTlg($CP#f0>=<*6z=}ZN+>O`{JZ+?FM(?P?^am=iGeg1&ad-5s#y|F1md8Wr`Zl-{g{39Fm7?kg4?mOQk-|P$BJzM>U zaQrdd!p9RP(`OG+5HK(6$0@5jabR?tlpb8v-P~eNK1M#aMisR$72wAa>Mv+YQ4rwbD3vuO!-)cz}yD2FqqkPWz2DUB3dZ7!d)}? z?Af&VZAcd`Bq|ECj=zBQNg) zFeQA9M-1TAzpq!c)uX4n9YAC z)3-MN2*%4Ru4jF5Jk(V+CmxJy^OD>6`(Lvc{1Y5)!)#$d0CQeN%$EV8MA}Mk(09hz z(aZDeXIUEiz@Q|Tzljodh}jbVI7I{zWCHLpG#{Ead(QZLyEHB!2{rUfS^%|Jw#hPT z$YNs~&L(4HZ~`_$AJi6E{&mdwA(nqx5T@_&4if$OX~<8W9{_udqLa~707P&gT=nbu zWuT%@j%f;UzjFDTopgZj(`8wB0+~aT_~qL8dlPE$GfuL#=o2`N{%QoI6C#)Fc-v+CMAzCC&!Ynop0&kMEOa#*;hH`VG_seen<;sy|mgNS>is zCG~%X)b!n<*g>Qqeu}*L>TcBjDF-@Jb*h|a!Aa4BKF__N<|pEHF3ddOewEmpfggw{;99HdmaZ4QGv@4`uWl=A!H3-IlE9&q|v)b^_H?dc!M^^^G`S{vyF z8=V8kFNh7R@nF_Io5_R$S+%;ncRh~Y| z3_K8USm->qs3T(Z530YO`aBslW-fUMeL-iUNTN*1Z+9;bFNQp~Bafs*>=`I#EqMra zP`-g*sR~E8hpF?sqQ|xew!%Fx51Fr;X`fV0+h*TDpAYk29K4F2nm4a9P3C`P9lkXG ztj9d#aJ;)bzT|mhy%+QHeIIT;X!yWLwsM-Q^{`p*kWMxj1YCq;=rd?eRWJ%z5=QE zQPgN@z9fs4CDAFd;Zo5bRc?QHY{`76a36GiKNDfTJvWZhwVjCjTh}rr7uw#(HEs7H zp0y0Mx;aN6c^s43W_N6hV{kree_za(j z3hDOBx0nVPi!UX9aM=(kyRntkrLCwuoK%8^f8^(=#3ibp_vV~;Ar&K^R}$-9Nct^g zjDwk>LH8N3Y#@KrPR?)=@A!jSYrES~+bbj2eV!JY@Cgz^fm?di27PYL#KmmQkl!-4 zE8MLvKDd9jCv#jSDoY(_h0Rqh3NY<(9=|5fJNla8rPYV!=Zq8c)tVw?)Dt_K zD|PPG7w`{rJH45{a9{QJF1Peq6#+Be4i(?98m^Z{JW&;c?3@=Y)M#(8cJZjLT_Lis zTh)6Wi?lsu%C&Cf%QLpJQ={=X zjogvNX1}7tt`CZW`7?sr0-bwYn#ox>KTaUWmN^Y@b%3UOJP zR$g(-s$oXDW14)NU_G&fin@yN3KiD{4jo$EAYeq48zzBLK&b}s6{mDLJ>GoDhc$+w z`zOXdwa89&yvre5D%({z#qW4%T({^>SFayY7d@7j))<{}Jkq;JnXZJfzSrlkj>&v3 zYdfx&^R-iLDkH&DT%e=m&@1p2oX(%WmH!dy^HFixo5h7 z{(#xws9DmGStybVBE5gEnZEtGrh3ec`pXOrtY}HIb+6jR$A04lR1F=}!SPfL*Qf~X z5v~KZlh9r*!N<^)7loSr8%!PROeN%CEgz*o{}Gi!H?9UqT6zfohQs5WW?F(;vu$S( zI;OhvubMO(n-~pKV;Tb`Z}*8#nI7G%oCZ5HxmC}0xHd56XF(eol5X{5W&#gh(E7{m zh}-VOYxt46el;5j)3$=C)b#vZlH|p2b{ooAgsS%sTjnJ`7 z;jqUh&+tT}CDpu)kXKwy4`Tb28E1}1dDpoR`H2b9F<@fxTe7!e|7l)YeGZcY#b><0 zZ4Ls^q89Ey{a(#gzbQ?MaJjl3v{N&8G@B`;BP?e@Vy7zFoMiKM0%LV*Y-^iyt^4EL z60gYY@$r+}oB`3BX@^(t-1Xk}kM%*&%W8FZ#DtJBMR$6*5(T`-m@^zC-b2NmRe@aL zN>B6hdwp#$m-*UrrIE-339_oWREg#hwicJYnm4x9-PcG>!K8!qt?qhBk5&fgtG0xf z^JkBR*48768tcKiEsq`J^miAu7$xP0m1gzjxej@-y0~KGvMabr2Q{3PsIpC@J!hQT z=jl$pl_u9J&F4C=D|%t@>daz(2^-p*5%|Hw^K>OW;cvK(4-WKW-iuEsU$9KxrgNKG zObPUy4z;}YK+@Z=l~}gyd}Dr=VeZBHkYV@4OhMoLq>hUyA$irsxYy2k_-y`L9i-{$ zt>#PEdD~1ys)3tbmo0nZqskZ=aPSl0Dm|jQ7$_XC=-SgB5a5snoMxbd&!&Yr@K=xp zEFAvVO0^j?uWYbbT)SC*1H?4Rmwb12q-|M2LkxE3sGf}p2ycsu)H+iSZ)w*uk1T}A zhSQDhxL<~(7&iN+gteFy+^6MLY<(iK&5~t$ivP_cmqV*A(JjGUcg zhdvxaN}lSu`}&DT7;F?~8tWl(LtxD^;O4z0POvaeU36#1_w2U>#Z+o!Uz zw(_|;c?Q^*1O&9P&pxHi8F6l?mYA@tx5@3{K3fS8`LBB0P3-cTjiVfk*Of=pWt>z- zH!H>6hvz(ch5H}j)tp<|=t3CEE9gWS`Z*nh2XzWF71U`Y?1lvf97WfG8Oi8@yR^@9 zE5hO{=pD(OO?~z{U5tf(mvF_;p7l3^hCvKwRCZOgh$Zd9jDs0D$}pxVYMyP0lwD(Q;9eaE#B%lNk+r6{FJbMRepMX zn1`u%c3E9exU|0-OPbP>3?aIUOcNDQ@J3W`%Dz~8xSB!d*#Vuj>U~C7^Ggm0(uDP? zDzBA?dWUqZO_^DFs5a{txeGY_9~saLvZKH_bHS;q@MDHb^WzcpVD=r!#>%XZKQk}T zUpg<}U8B#=(Pzr(BHq#3^_=xpZD&VwC(R4ki@?TR)CurdzL-vcwj=?C!lVG0=^N<; zI72W9pb32=ouClF`T9FN;)BsUzi{Y>4cO(0`d?HFry$43g(2A zKmmjhd@ttobzZNpm=I+quV1h>6qDwAqrtmb*@HR#qV3-(oc{ys1PE3@Yo#E7!~~-p ztrP-C0U$R?eUHNd;|YdBOF)qjC?yL>Anhm^8U+Ufg3jkCpgl=}k#H~!1_)1prUl*A zpWtwq1PU$8NKZNf!zHS9xf8jk*)Tl3A z^l!=!3<@w;;4ibtd8Qc0V(oXmr)_pQkC51ftPqwN0*A}s{?=6*ZNu3^5tck_w|(Ue zMUJ$+sTG*@7J8@rAb+0dB76OD$xPiREj-@*?t;#~ntCigA|WKeV!^ zURB?bD;TL_o zR8+D8J|d1crWmIEDKf4}SzPPZ#bc+d1vTAkQ<>ND29O4^X8N((9k7)rU~8+iv=`O< zGMb4g0cs50x2;w3noGbPv9b}d0fGg^O?vRtgJ(RSI!?ZI${RzV^YYU>%!oGc(SS-Aai@mp%I9m>H<{SkH-R)Mgc

  • wavy.panel Module
  • wavy.models Module
  • wavy.plot Module
  • -
  • wavy.utils Module
  • @@ -88,7 +87,6 @@

    All modules for which code is available

    diff --git a/_modules/wavy/models.html b/_modules/wavy/models.html index bf7df4f..5d91009 100644 --- a/_modules/wavy/models.html +++ b/_modules/wavy/models.html @@ -22,7 +22,7 @@ @@ -58,7 +58,6 @@
  • wavy.panel Module
  • wavy.models Module
  • wavy.plot Module
  • -
  • wavy.utils Module
  • @@ -86,16 +85,17 @@

    Source code for wavy.models

    -import warnings
    -from typing import List
    +from __future__ import annotations
    +
    +import warnings
     
     import numpy as np
     import pandas as pd
     import tensorflow as tf
    +from keras import Sequential
    +from keras.layers import Conv1D, Dense, Flatten, Reshape
     from sklearn.base import is_classifier
     from sklearn.metrics import auc, roc_curve
    -from tensorflow.keras import Sequential
    -from tensorflow.keras.layers import Conv1D, Dense, Flatten, Reshape
     
     from .panel import Panel, set_training_split
     
    @@ -110,7 +110,7 @@ 

    Source code for wavy.models

             return inputs
     
     
    -class _BaseModel:
    +
    [docs]class BaseModel: """Base class for panel models.""" def __init__( @@ -120,9 +120,21 @@

    Source code for wavy.models

             model_type: str = None,
             loss: str = None,
             optimizer: str = None,
    -        metrics: List[str] = None,
    +        metrics: list[str] = None,
             last_activation: str = None,
         ):
    +        """
    +        Base model class.
    +
    +        Args:
    +            x (``Panel``): Panel of input data.
    +            y (``Panel``): Panel of output data.
    +            model_type (``str``): Type of model.
    +            loss (``str``): Loss function.
    +            optimizer (``str``): Optimizer.
    +            metrics (``list[str]``): Metrics.
    +            last_activation (``str``): Last activation.
    +        """
     
             PARAMS = {
                 "regression": {
    @@ -196,7 +208,7 @@ 

    Source code for wavy.models

             self.compile()
             self.model._name = self.__class__.__name__
     
    -    def set_arrays(self):
    +
    [docs] def set_arrays(self) -> None: """Set the arrays.""" self.x_train = self.x.train.values_panel self.x_val = self.x.val.values_panel @@ -204,17 +216,17 @@

    Source code for wavy.models

     
             self.y_train = self.y.train.values_panel.squeeze(axis=2)
             self.y_val = self.y.val.values_panel.squeeze(axis=2)
    -        self.y_test = self.y.test.values_panel.squeeze(axis=2)
    +        self.y_test = self.y.test.values_panel.squeeze(axis=2)
    - def get_auc(self): +
    [docs] def get_auc(self) -> float: """Get the AUC score.""" y = self.y_test.squeeze() prediction = self.model.predict(self.x_test).squeeze() fpr, tpr, _ = roc_curve(y, prediction) fpr, tpr, _ = roc_curve(y, prediction) - return auc(fpr, tpr) + return auc(fpr, tpr)
    - def fit(self, **kwargs): +
    [docs] def fit(self, **kwargs) -> None: """ Fit the model. @@ -226,9 +238,9 @@

    Source code for wavy.models

                 self.y_train,
                 validation_data=(self.x_val, self.y_val),
                 **kwargs,
    -        )
    +        )
    - def compile(self, **kwargs): +
    [docs] def compile(self, **kwargs) -> None: """Compile the model. Args: @@ -236,17 +248,17 @@

    Source code for wavy.models

             """
             self.model.compile(
                 loss=self.loss, optimizer=self.optimizer, metrics=self.metrics, **kwargs
    -        )
    +        )
    - def build(self): +
    [docs] def build(self) -> None: """Build the model.""" - pass + pass
    - def predict_proba(self, data: Panel = None, **kwargs): +
    [docs] def predict_proba(self, data: Panel = None, **kwargs) -> Panel: """Predict probabilities. Args: - data: Panel of data to predict. + data (``Panel``): Panel of data to predict. **kwargs: Additional arguments to pass to the predict method. Returns: @@ -280,17 +292,17 @@

    Source code for wavy.models

                 self.model.predict(x),
                 columns=self.y.columns,
                 index=index,
    -        )
    +        )
    - def predict(self, data: Panel = None, **kwargs): +
    [docs] def predict(self, data: Panel = None, **kwargs) -> Panel: """Predict. Args: - data: Panel of data to predict. + data (``Panel``): Panel of data to predict. **kwargs: Additional arguments to pass to the predict method. Returns: - Panel of predicted values. + ``Panel`` of predicted values. """ threshold = self.get_auc() if self.model_type == "classification" else None @@ -299,13 +311,13 @@

    Source code for wavy.models

     
             return (
                 panel if threshold is None else panel.apply(lambda x: (x > threshold) + 0)
    -        )
    +        )
    - def score(self, on=None, **kwargs): +
    [docs] def score(self, on: list[str] | str = None, **kwargs) -> pd.DataFrame: """Score the model. Args: - on: Columns to score on. + on (``list[str]`` or ``str``): Columns to score on. **kwargs: Additional arguments to pass to the score method. Returns: @@ -334,35 +346,37 @@

    Source code for wavy.models

             return pd.DataFrame(
                 {key: [value[index] for index in indexes] for key, value in dic.items()},
                 index=self.metrics,
    -        )
    +        )
    - def residuals(self): +
    [docs] def residuals(self) -> Panel: """Residuals. Returns: - Panel of residuals. + ``Panel`` of residuals. """ - return self.predict() - self.y + return self.predict() - self.y
    -class _Baseline(_BaseModel): +class _Baseline(BaseModel): def __init__( self, x, y, model_type: str = None, loss: str = None, - metrics: List[str] = None, + metrics: list[str] = None, ): super().__init__(x=x, y=y, model_type=model_type, loss=loss, metrics=metrics) - def build(self): + def build(self) -> None: """Build the model.""" self.model = _ConstantKerasModel()
    [docs]class BaselineShift(_Baseline): + """Baseline shift model.""" + # ! Maybe shift should be y.horizon by default, to avoid leakage # TODO test with different gap and horizon values @@ -372,7 +386,7 @@

    Source code for wavy.models

             y,
             model_type: str = None,
             loss: str = None,
    -        metrics: List[str] = None,
    +        metrics: list[str] = None,
             fillna=0,
             shift=1,
         ):
    @@ -403,12 +417,14 @@ 

    Source code for wavy.models

             self.y_val = self.y.val.values
             self.y_test = self.y.test.values
    -
    [docs] def build(self): +
    [docs] def build(self) -> None: """Build the model.""" self.model = _ConstantKerasModel()
    [docs]class BaselineConstant(_Baseline): + """Baseline constant model.""" + # TODO BUG: Not working when model_type="classification" def __init__( self, @@ -416,14 +432,14 @@

    Source code for wavy.models

             y,
             model_type: str = None,
             loss: str = None,
    -        metrics: List[str] = None,
    +        metrics: list[str] = None,
             constant: float = 0,
         ):
     
             self.constant = constant if model_type == "regression" else int(constant)
             super().__init__(x=x, y=y, model_type=model_type, loss=loss, metrics=metrics)
     
    -
    [docs] def set_arrays(self): +
    [docs] def set_arrays(self) -> None: """Set the arrays.""" self.x_train = np.full(self.y.train.shape, self.constant) self.x_val = np.full(self.y.val.shape, self.constant) @@ -434,7 +450,9 @@

    Source code for wavy.models

             self.y_test = self.y.test.values
    -
    [docs]class DenseModel(_BaseModel): +
    [docs]class DenseModel(BaseModel): + """Dense model.""" + def __init__( self, x, @@ -445,22 +463,22 @@

    Source code for wavy.models

             activation: str = "relu",
             loss: str = None,
             optimizer: str = None,
    -        metrics: List[str] = None,
    +        metrics: list[str] = None,
             last_activation: str = None,
         ):
             """
             Dense Model.
     
             Args:
    -            panel (Panel): Panel with data
    -            model_type (str): Model type (regression, classification, multi_classification)
    -            dense_layers (int): Number of dense layers
    -            dense_units (int): Number of neurons in each dense layer
    -            activation (str): Activation type of each dense layer
    -            loss (str): Loss name
    -            optimizer (str): Optimizer name
    -            metrics (List[str]): Metrics list
    -            last_activation (str): Activation type of the last layer
    +            panel (``Panel``): Panel with data
    +            model_type (``str``): Model type (regression, classification, multi_classification)
    +            dense_layers (``int``): Number of dense layers
    +            dense_units (``int``)t``)t``)t``)t``): Number of neurons in each dense layer
    +            activation (``str``): Activation type of each dense layer
    +            loss (``str``): Loss name
    +            optimizer (``str``): Optimizer name
    +            metrics (``list[str]``): Metrics list
    +            last_activation (``str``): Activation type of the last layer
     
             Returns:
                 ``DenseModel``: Constructed DenseModel
    @@ -480,7 +498,7 @@ 

    Source code for wavy.models

                 last_activation=last_activation,
             )
     
    -
    [docs] def build(self): +
    [docs] def build(self) -> None: """Build the model.""" dense = Dense(units=self.dense_units, activation=self.activation) layers = [Flatten()] # (time, features) => (time*features) @@ -497,11 +515,13 @@

    Source code for wavy.models

             self.model = Sequential(layers)
    -
    [docs]class ConvModel(_BaseModel): +
    [docs]class ConvModel(BaseModel): + """Convolutional model.""" + def __init__( self, - x, - y, + x: Panel, + y: Panel, model_type: str = None, conv_layers: int = 1, conv_filters: int = 32, @@ -511,25 +531,26 @@

    Source code for wavy.models

             activation: str = "relu",
             loss: str = None,
             optimizer: str = None,
    -        metrics: List[str] = None,
    +        metrics: list[str] = None,
             last_activation: str = None,
         ):
             """
             Convolution Model.
     
             Args:
    -            panel (Panel): Panel with data
    -            model_type (str): Model type (regression, classification, multi_classification)
    -            conv_layers (int): Number of convolution layers
    -            conv_filters (int): Number of convolution filters
    -            kernel_size (int): Kernel size of convolution layer
    -            dense_layers (int): Number of dense layers
    -            dense_units (int): Number of neurons in each dense layer
    -            activation (str): Activation type of each dense layer
    -            loss (str): Loss name
    -            optimizer (str): Optimizer name
    -            metrics (List[str]): Metrics list
    -            last_activation (str): Activation type of the last layer
    +            x (``Panel``): Panel with x data
    +            y (``Panel``): Panel with y data
    +            model_type (``str``): Model type (regression, classification, multi_classification)
    +            conv_layers (``int``): Number of convolution layers
    +            conv_filters (``int``): Number of convolution filters
    +            kernel_size (``int``): Kernel size of convolution layer
    +            dense_layers (``int``): Number of dense layers
    +            dense_units (``int``): Number of neurons in each dense layer
    +            activation (``str``): Activation type of each dense layer
    +            loss (``str``): Loss name
    +            optimizer (``str``): Optimizer name
    +            metrics (``list[str]``): Metrics list
    +            last_activation (``str``): Activation type of the last layer
     
             Returns:
                 ``DenseModel``: Constructed DenseModel
    @@ -557,7 +578,7 @@ 

    Source code for wavy.models

                 last_activation=last_activation,
             )
     
    -
    [docs] def build(self): +
    [docs] def build(self) -> None: """Build the model.""" if self.x.num_timesteps % self.kernel_size != 0: @@ -587,11 +608,15 @@

    Source code for wavy.models

     
     
     
    [docs]class LinearRegression(DenseModel): + """Linear regression model.""" + def __init__(self, x, y, **kwargs): super().__init__(x=x, y=y, model_type="regression", dense_layers=0, **kwargs)
    [docs]class LogisticRegression(DenseModel): + """Logistic regression model.""" + def __init__(self, x, y, **kwargs): super().__init__( x=x, y=y, model_type="classification", dense_layers=0, **kwargs @@ -599,14 +624,16 @@

    Source code for wavy.models

     
     
     
    [docs]class ShallowModel: - def __init__(self, x, y, model, metrics, **kwargs): + """Shallow model.""" + + def __init__(self, x: Panel, y: Panel, model: str, metrics: list[str], **kwargs): """Shallow Model. Args: - x (Panel): Panel with data - y (Panel): Panel with data - model (str): Model (regression, classification, multi_classification) - metrics (List[str]): Metrics list + x (``Panel``): Panel with x data + y (``Panel``): Panel with y data + model (``str``): Model (regression, classification, multi_classification) + metrics (``list[str]``): Metrics list **kwargs: Additional arguments Returns: @@ -623,7 +650,7 @@

    Source code for wavy.models

             self.metrics = metrics
             self.set_arrays()
     
    -
    [docs] def set_arrays(self): +
    [docs] def set_arrays(self) -> None: """ Sets arrays for training, testing, and validation. """ @@ -642,13 +669,10 @@

    Source code for wavy.models

     
             Args:
                 **kwargs: Keyword arguments for the fit method of the model.
    -
    -        Returns:
    -            ``ShallowModel``: The fitted model.
             """
    -        return self.model.fit(X=self.x_train, y=self.y_train, **kwargs)
    + self.model.fit(X=self.x_train, y=self.y_train, **kwargs)
    -
    [docs] def get_auc(self): +
    [docs] def get_auc(self) -> float: """Get the AUC score.""" y = self.y_test.squeeze() @@ -656,11 +680,11 @@

    Source code for wavy.models

             fpr, tpr, _ = roc_curve(y, prediction)
             return auc(fpr, tpr)
    -
    [docs] def predict_proba(self, data: Panel = None): +
    [docs] def predict_proba(self, data: Panel = None) -> Panel: """Predict probabilities. Args: - data (Panel): Panel with data + data (``Panel``): Panel with data Returns: ``ShallowModel``: The predicted probabilities. @@ -706,14 +730,14 @@

    Source code for wavy.models

                 index=index,
             )
    -
    [docs] def predict(self, data: Panel = None): +
    [docs] def predict(self, data: Panel = None) -> Panel: """Predict on data. Args: - data (Panel, optional): Data to predict on. Defaults to None. + data (``Panel``, optional): Data to predict on. Defaults to None. Returns: - Panel: Predicted data + ``Panel``: Predicted data """ if is_classifier(self.model): threshold = self.get_auc() @@ -739,14 +763,14 @@

    Source code for wavy.models

                     index=index,
                 )
    -
    [docs] def score(self, on=None): +
    [docs] def score(self, on: list[str] | str = None) -> pd.DataFrame: """Score the model. Args: - on (str): Data to use for scoring + on (``list[str]`` or ``str``): Data to use for scoring Returns: - pd.Series: Score + ``pd.Series``: Score """ on = [on] if on else ["train", "val", "test"] @@ -782,13 +806,14 @@

    Source code for wavy.models

                 }
     
                 dic["val"] = metrics_dict
    +
             return pd.DataFrame(dic, index=[a.__name__ for a in self.metrics])
    -
    [docs] def residuals(self): +
    [docs] def residuals(self) -> Panel: """Residuals. Returns: - Panel: Residuals + ``Panel``: Residuals """ return self.predict() - self.y
    @@ -800,7 +825,7 @@

    Source code for wavy.models

     
         Args:
             *models: Models to score
    -        on (str, optional): Data to use for scoring. Defaults to "val".
    +        on (``str``, optional): Data to use for scoring. Defaults to "val".
     
         Returns:
             pd.DataFrame: Scores
    @@ -818,11 +843,11 @@ 

    Source code for wavy.models

         Compute default scores for a model.
     
         Args:
    -        x (Panel): X data
    -        y (Panel): Y data
    -        model_type (str): Model type
    -        epochs (int, optional): Number of epochs. Defaults to 10.
    -        verbose (int, optional): Verbosity. Defaults to 0.
    +        x (``Panel``): X data.
    +        y (``Panel``): Y data.
    +        model_type (``str``): Model type.
    +        epochs (``int``, optional): Number of epochs. Defaults to 10.
    +        verbose (``int``, optional): Verbosity. Defaults to 0.
             **kwargs: Keyword arguments for the model.
     
         Returns:
    diff --git a/_modules/wavy/panel.html b/_modules/wavy/panel.html
    index 89e5087..dd2fe0d 100644
    --- a/_modules/wavy/panel.html
    +++ b/_modules/wavy/panel.html
    @@ -22,7 +22,7 @@
         
     
     
    @@ -58,7 +58,6 @@
     
  • wavy.panel Module
  • wavy.models Module
  • wavy.plot Module
  • -
  • wavy.utils Module
  • @@ -88,11 +87,10 @@

    Source code for wavy.panel

     from __future__ import annotations
     
    -import contextlib
    +# import contextlib
     import random
     import warnings
     from itertools import chain
    -from typing import Optional, Tuple, Union
     
     import numpy as np
     import pandas as pd
    @@ -108,18 +106,18 @@ 

    Source code for wavy.panel

     # Define column to y
     
    [docs]def create_panels( df: pd.DataFrame, lookback: int, horizon: int, gap: int = 0 -) -> Tuple[Panel, Panel]: +) -> tuple[Panel, Panel]: """ Create panels from a dataframe. Args: - df (pd.DataFrame): Dataframe - lookback (int): Lookback size - horizon (int): Horizon size - gap (int): Gap size + df (``pd.DataFrame``): Dataframe + lookback (``int``): Lookback size + horizon (``int``): Horizon size + gap (``int``): Gap size Returns: - ``Tuple``: Tuple of panels + ``tuple[Panel, Panel]``: Tuple of panels """ indices = df.index @@ -194,8 +192,8 @@

    Source code for wavy.panel

         Reset ids of a panel.
     
         Args:
    -        panels (list): List of panels
    -        inplace (bool): Whether to reset ids inplace or not.
    +        panels (``list``): List of panels
    +        inplace (``bool``): Whether to reset ids inplace or not.
     
         Returns:
             ``Panel``: Reset id of panel
    @@ -212,11 +210,11 @@ 

    Source code for wavy.panel

     
     
    [docs]def dropna_match(x, y): """ - Drop frames with NaN in both x and y and match ids. + Drop frames with NaN in panels and match ids. Args: - x (Panel): Panel with x data - y (Panel): Panel with y data + x (``Panel``): Panel with x data + y (``Panel``): Panel with y data Returns: ``Panel``: Panel with dropped frames and matched ids @@ -238,9 +236,9 @@

    Source code for wavy.panel

         Concatenate panels.
     
         Args:
    -        panels (list): List of panels
    -        reset_ids (bool): Whether to reset ids
    -        sort (bool): Whether to sort by id
    +        panels (``list``): List of panels
    +        reset_ids (``bool``): Whether to reset ids
    +        sort (``bool``): Whether to sort by id
     
         Returns:
             ``Panel``: Concatenated panels
    @@ -267,21 +265,21 @@ 

    Source code for wavy.panel

     
    [docs]def set_training_split( x: Panel, y: Panel, - train_size: Union[float, int] = 0.7, - val_size: Union[float, int] = 0.2, - test_size: Union[float, int] = 0.1, + train_size: float | int = 0.7, + val_size: float | int = 0.2, + test_size: float | int = 0.1, ) -> None: """ - Splits the panel in training, validation, and test, accessed with the - properties .train, .val and .test. + Splits panel in training, validation, and test. Args: - train_size (float, int): Fraction of data to use for training. - test_size (float, int): Fraction of data to use for testing. - val_size (float, int): Fraction of data to use for validation. + train_size (``float`` or ``int``): Fraction of data to use for training. + test_size (``float`` or ``int``): Fraction of data to use for testing. + val_size (``float`` or ``int``): Fraction of data to use for validation. Example: - >>> x,y = set_training_split(x, y, val_size=0.2, test_size=0.1) + + >>> x, y = set_training_split(x, y, train_size=0.8, val_size=0.2, test_size=0.1) """ x.set_training_split(train_size=train_size, val_size=val_size, test_size=test_size) @@ -320,7 +318,7 @@

    Source code for wavy.panel

     
     
    [docs]class Panel(pd.DataFrame): """ - Panel data structure. + Panel class. """ def __init__(self, *args, **kw): @@ -381,30 +379,32 @@

    Source code for wavy.panel

     
         @property
         def frames(self) -> DataFrameGroupBy:
    -        """Returns the frames in the panel."""
    +        """
    +        Returns panel's frames.
    +        """
             return self.groupby(level=0, as_index=True)
     
         @property
         def timesteps(self) -> pd.Int64Index:
             """
    -        Returns the ids of the panel.
    +        Returns panel's timesteps.
             """
             return self.index.get_level_values(1)
     
         @property
         def ids(self) -> pd.Int64Index:
             """
    -        Returns the ids of the panel without duplicates.
    +        Returns panel's ids without duplicates.
             """
             return self.index.get_level_values(0).drop_duplicates()
     
         @ids.setter
         def ids(self, ids: list[int]) -> None:
             """
    -        Set the ids of the panel.
    +        Set panel's ids.
     
             Args:
    -            ids (list): List of ids.
    +            ids (``list``): List of ids.
             """
     
             ids = np.repeat(ids, self.shape_panel[1])
    @@ -414,12 +414,12 @@ 

    Source code for wavy.panel

     
             self.index = index
     
    -
    [docs] def reset_ids(self, inplace: bool = False) -> Optional[Panel]: +
    [docs] def reset_ids(self, inplace: bool = False) -> Panel | None: """ - Reset the ids of the panel. + Reset panel's ids. Args: - inplace (bool): Whether to reset ids inplace. + inplace (``bool``): Whether to reset ids inplace. """ new_ids = np.repeat(np.arange(self.num_frames), self.num_timesteps) new_index = pd.MultiIndex.from_arrays( @@ -430,15 +430,18 @@

    Source code for wavy.panel

             return self.set_index(new_index, inplace=inplace)
    @property - def shape_panel(self) -> Tuple[int, int, int]: + def shape_panel(self) -> tuple[int, int, int]: """ - Returns the shape of the panel. + Return a tuple representing the dimensionality of the Panel. """ return (len(self.ids), int(self.shape[0] / len(self.ids)), self.shape[1]) -
    [docs] def row_panel(self, n: Union[list, int] = 0) -> Panel: +
    [docs] def row_panel(self, n: list[int] | int = 0) -> Panel: """ Returns the nth row of each frame. + + Args: + n (``list[int]`` or ``int``): Row index. """ if isinstance(n, int): n = [n] @@ -450,12 +453,12 @@

    Source code for wavy.panel

             self._copy_attrs(new_panel)
             return new_panel
    -
    [docs] def get_timesteps(self, n: Union[list, int] = 0) -> Panel: +
    [docs] def get_timesteps(self, n: list[int] | int = 0) -> Panel: """ Returns the first timestep of each frame in the panel. Args: - n (int): Timestep to return. + n (``list[int]`` or ``int``): Timestep to return. """ if isinstance(n, int): @@ -510,13 +513,13 @@

    Source code for wavy.panel

     
             return panel
    -
    [docs] def drop_ids(self, ids: Union[list, int], inplace: bool = False) -> Optional[Panel]: +
    [docs] def drop_ids(self, ids: list[int] | int, inplace: bool = False) -> Panel | None: """ Drop frames by id. Args: - ids (list, int): List of ids to drop. - inplace (bool): Whether to drop ids inplace. + ids (``list[int]`` or ``int``): List of ids to drop. + inplace (``bool``): Whether to drop ids inplace. Returns: ``Panel``: Panel with frames dropped. @@ -541,26 +544,27 @@

    Source code for wavy.panel

                 else pd.Int64Index([], name="id")
             )
    -
    [docs] def dropna_frames(self, inplace: bool = False) -> Optional[Panel]: +
    [docs] def dropna_frames(self, inplace: bool = False) -> Panel | None: """ Drop frames with missing values from the panel. Args: - inplace (bool): Whether to drop frames inplace. + inplace (``bool``): Whether to drop frames inplace. Returns: ``Panel``: Panel with frames dropped. """ return self.drop_ids(self.findna_frames(), inplace=inplace)
    -
    [docs] def match_frames(self, other: Panel, inplace: bool = False) -> Optional[Panel]: +
    [docs] def match_frames(self, other: Panel, inplace: bool = False) -> Panel | None: """ - Match panel with other panel. This function will match the ids and id - order of self based on the ids of other. + Match panel with other panel. + + This function will match the ids and id order of self based on the ids of other. Args: other (``Panel``): Panel to match with. - inplace (bool): Whether to match inplace. + inplace (``bool``): Whether to match inplace. Returns: ``Panel``: Result of match function. @@ -579,21 +583,21 @@

    Source code for wavy.panel

     
     
    [docs] def set_training_split( self, - train_size: Union[float, int] = 0.7, - val_size: Union[float, int] = 0.2, - test_size: Union[float, int] = 0.1, + train_size: float | int = 0.7, + val_size: float | int = 0.2, + test_size: float | int = 0.1, ) -> None: """ - Splits the panel in training, validation, and test, accessed with the - properties .train, .val and .test. + Splits Panel into training, validation, and test. Args: - train_size (float, int): Fraction of data to use for training. - test_size (float, int): Fraction of data to use for testing. - val_size (float, int): Fraction of data to use for validation. + train_size (``float`` or ``int``): Fraction of data to use for training. + test_size (``float`` or ``int``): Fraction of data to use for testing. + val_size (``float`` or ``int``): Fraction of data to use for validation. Example: - >>> panel.set_training_split(val_size=0.2, test_size=0.1) + + >>> panel.set_training_split(train_size=0.8, val_size=0.2, test_size=0.1) """ n_train, n_val, n_test = _validate_training_split( @@ -619,8 +623,7 @@

    Source code for wavy.panel

         @property
         def train(self) -> Panel:
             """
    -        Returns the Panel with the training set, according to
    -        the parameters given in the 'set_training_split' function.
    +        Returns the Panel with the training set.
     
             Returns:
                 ``Panel``: Panel with the training set.
    @@ -644,8 +647,7 @@ 

    Source code for wavy.panel

         @property
         def val(self) -> Panel:
             """
    -        Returns the Panel with the validation set, according to
    -        the parameters given in the 'set_training_split' function.
    +        Returns the Panel with the validation set.
     
             Returns:
                 ``Panel``: Panel with the validation set.
    @@ -685,8 +687,7 @@ 

    Source code for wavy.panel

         @property
         def test(self) -> Panel:
             """
    -        Returns the Panel with the testing set, according to
    -        the parameters given in the 'set_training_split' function.
    +        Returns the Panel with the testing set.
     
             Returns:
                 ``Panel``: Panel with the testing set.
    @@ -712,7 +713,7 @@ 

    Source code for wavy.panel

             Return the first n frames of the panel.
     
             Args:
    -            n (int): Number of frames to return.
    +            n (``int``): Number of frames to return.
     
             Returns:
                 ``Panel``: Result of head function.
    @@ -724,7 +725,7 @@ 

    Source code for wavy.panel

             Return the last n frames of the panel.
     
             Args:
    -            n (int): Number of frames to return.
    +            n (``int``): Number of frames to return.
     
             Returns:
                 ``Panel``: Result of tail function.
    @@ -737,18 +738,18 @@ 

    Source code for wavy.panel

             inplace: bool = False,
             kind: str = "quicksort",
             key: callable = None,
    -    ) -> Optional[Panel]:
    +    ) -> Panel | None:
             """
             Sort panel by ids.
     
             Args:
    -            ascending (bool or list-like of bools, default True): Sort ascending vs. descending. When the index is a MultiIndex the sort direction can be controlled for each level individually.
    -            inplace (bool, default False): If True, perform operation in-place.
    +            ascending (``bool`` or list-like of ``bools``, default True): Sort ascending vs. descending. When the index is a MultiIndex the sort direction can be controlled for each level individually.
    +            inplace (``bool``, default False): If True, perform operation in-place.
                 kind ({'quicksort', 'mergesort', 'heapsort', 'stable'}, default 'quicksort'): Choice of sorting algorithm. See also numpy.sort() for more information. mergesort and stable are the only stable algorithms. For DataFrames, this option is only applied when sorting on a single column or label.
                 key (callable, optional): If not None, apply the key function to the index values before sorting. This is similar to the key argument in the builtin sorted() function, with the notable difference that this key function should be vectorized. It should expect an Index and return an Index of the same shape. For MultiIndex inputs, the key is applied per level.
     
             Returns:
    -            ``Panel or None``: The original DataFrame sorted by the labels or None if `inplace=True`.
    +            ``Panel`` or ``None``: The original DataFrame sorted by the labels or None if `inplace=True`.
             """
     
             return self.sort_index(
    @@ -762,19 +763,19 @@ 

    Source code for wavy.panel

     
     
    [docs] def sample_panel( self, - samples: Union[int, float] = 5, + samples: int | float = 5, how: str = "spaced", reset_ids: bool = False, seed: int = 42, - ) -> Optional[Panel]: + ) -> Panel | None: """ Sample panel returning a subset of frames. Args: - samples (int or float): Number or percentage of samples to return. - how (str): Sampling method, 'spaced' or 'random' - reset_ids (bool): If True, reset the index of the sampled panel. - seed (int): Random seed. + samples (``int`` or ``float``): Number or percentage of samples to return. + how (``str``): Sampling method, 'spaced' or 'random' + reset_ids (``bool``): If True, reset the index of the sampled panel. + seed (``int``): Random seed. Returns: ``Panel``: Result of sample function. @@ -861,15 +862,13 @@

    Source code for wavy.panel

     
             return new_panel
    -
    [docs] def shuffle_panel( - self, seed: int = None, reset_ids: bool = False - ) -> Optional[Panel]: +
    [docs] def shuffle_panel(self, seed: int = None, reset_ids: bool = False) -> Panel | None: """ Shuffle the panel. Args: - seed (int): Random seed. - reset_ids (bool): If True, reset the index of the shuffled panel. + seed (``int``): Random seed. + reset_ids (``bool``): If True, reset the index of the shuffled panel. Returns: ``Panel``: Result of shuffle function. @@ -915,9 +914,9 @@

    Source code for wavy.panel

             Plot the panel.
     
             Args:
    -            add_annotation (bool): If True, plot the training, validation, and test annotation.
    -            max (int): Maximum number of samples to plot.
    -            use_timestep (bool): If True, plot the timestep instead of the sample index.
    +            add_annotation (``bool``): If True, plot the training, validation, and test annotation.
    +            max (``int``): Maximum number of samples to plot.
    +            use_timestep (``bool``): If True, plot the timestep instead of the sample index.
                 **kwargs: Additional arguments to pass to the plot function.
     
             Returns:
    diff --git a/_modules/wavy/plot.html b/_modules/wavy/plot.html
    index 8a50a34..fdc6a18 100644
    --- a/_modules/wavy/plot.html
    +++ b/_modules/wavy/plot.html
    @@ -22,7 +22,7 @@
         
     
     
    @@ -58,7 +58,6 @@
     
  • wavy.panel Module
  • wavy.models Module
  • wavy.plot Module
  • -
  • wavy.utils Module
  • @@ -88,14 +87,22 @@

    Source code for wavy.plot

     from __future__ import annotations
     
    +from functools import wraps
    +
     import plotly.express as px
     from plotlab import Figure
     
    +# from .panel import Panel
    +
     # TODO: Set plotting configs and add kwargs to functions
     # TODO: Check if kwargs would overwrite fig.add_trace if same params are used
     
     
     
    [docs]class PanelFigure(Figure): + """ + PanelFigure class. + """ + def __init__(self): # TODO: Add dynamic color changing once new traces are added # TODO: Add candlestick plot @@ -104,14 +111,14 @@

    Source code for wavy.plot

             self.colors = px.colors.qualitative.Plotly
             self.color_index = 0
     
    -
    [docs] def add_annotation(self, panel, color="gray", opacity=1): +
    [docs] def add_annotation(self, panel, color: str = "gray", opacity: float = 1.0) -> None: """ - Split panel into sets. + Plot vertical lines showing train, val, and test periods. Args: - panel (wavy.Panel): Panel to split - color (str): Color of the sets - opacity (float): Opacity of the sets + panel (``Panel``): Panel to split. + color (``str``): Color of the sets. + opacity (``float``): Opacity of the sets. """ # BUG: Seems to break if using "ggplot2" # ! Won't take effect until next trace is added (no axis was added) @@ -146,7 +153,8 @@

    Source code for wavy.plot

                 )
    # Add decorator for instance check and for loop -
    [docs] def iterator(func): + def _iterator(func): + @wraps(func) def inner(self, *args, **kwargs): args = list(args) @@ -158,55 +166,55 @@

    Source code for wavy.plot

                     if col != "frame":
                         func(self, df[col], *tuple(args), **kwargs)
     
    -        return inner
    + return inner -
    [docs] @iterator - def add_line(self, col: str, *args, **kwargs): +
    [docs] @_iterator + def add_line(self, col: str, *args, **kwargs) -> None: """ Add a line to the figure. Args: - col (str): Column to plot + col (``str``): Column to plot """ self.line(col, *args, **kwargs)
    -
    [docs] @iterator - def add_area(self, col: str, *args, **kwargs): +
    [docs] @_iterator + def add_area(self, col: str, *args, **kwargs) -> None: """ Add an area to the figure. Args: - col (str): Column to plot + col (``str``): Column to plot """ self.area(col, *args, **kwargs)
    -
    [docs] @iterator - def add_bar(self, col: str, *args, **kwargs): +
    [docs] @_iterator + def add_bar(self, col: str, *args, **kwargs) -> None: """ Add a bar to the figure. Args: - col (str): Column to plot + col (``str``): Column to plot """ self.bar(col, *args, **kwargs)
    -
    [docs] @iterator - def add_scatter(self, col: str, *args, **kwargs): +
    [docs] @_iterator + def add_scatter(self, col: str, *args, **kwargs) -> None: """ Add a scatter to the figure. Args: - col (str): Column to plot + col (``str``): Column to plot. """ self.scatter(col, *args, **kwargs)
    -
    [docs] @iterator - def add_dotline(self, col: str, *args, **kwargs): +
    [docs] @_iterator + def add_dotline(self, col: str, *args, **kwargs) -> None: """ Add a dotline to the figure. Args: - col (str): Column to plot + col (``str``): Column to plot. """ self.dotline(col, *args, **kwargs)
    @@ -215,12 +223,12 @@

    Source code for wavy.plot

         panel, use_timestep: bool = False, add_annotation: bool = False, **kwargs
     ) -> PanelFigure:
         """
    -    Plot a panel.
    +    Plot panel.
     
         Args:
    -        panel (Panel): Panel object
    -        use_timestep (bool): Use timestep instead of id
    -        add_annotation (bool): If True, plot vertical lines showing train, val, and test periods
    +        panel (``Panel``): Panel object.
    +        use_timestep (``bool``): Use timestep instead of id.
    +        add_annotation (``bool``): If True, plot vertical lines showing train, val, and test periods.
     
         Returns:
             ``Plot``: Plotted data
    diff --git a/_modules/wavy/utils.html b/_modules/wavy/utils.html
    deleted file mode 100644
    index 1994521..0000000
    --- a/_modules/wavy/utils.html
    +++ /dev/null
    @@ -1,153 +0,0 @@
    -
    -
    -
    -  
    -  
    -  wavy.utils — Wavy 0.1.9 documentation
    -      
    -      
    -      
    -  
    -  
    -        
    -        
    -        
    -        
    -        
    -        
    -    
    -    
    -    
    -
    -
    -
    -
    - 
    -  
    - - -
    - -
    -
    -
    - -
    -
    -
    -
    - -

    Source code for wavy.utils

    -from collections.abc import Iterable
    -
    -import pandas as pd
    -
    -
    -
    [docs]def reverse_pct_change(change_df, original_df, periods=1): - """ - Reverse the pct_change function. - - Args: - change_df (pd.DataFrame): Dataframe to reverse - original_df (pd.DataFrame): Reference Dataframe - periods (int): Number of periods used on pct_change operation - - Returns: - pd.DataFrame: Reversed dataframe - """ - - return original_df.shift(periods) * (change_df + 1)
    - - -
    [docs]def reverse_diff(diff_df, original_df, periods=1): - """ - Reverse the pct_diff function. - - Args: - diff_df (pd.DataFrame): Dataframe to reverse - original_df (pd.DataFrame): Reference Dataframe - periods (int): Number of periods used on diff operation - - Returns: - pd.DataFrame: Reversed dataframe - """ - - return original_df.shift(periods) + diff_df
    -
    - -
    -
    - -
    -
    -
    -
    - - - - \ No newline at end of file diff --git a/_sources/api/models.rst.txt b/_sources/api/models.rst.txt index 2d74b67..5fc913d 100644 --- a/_sources/api/models.rst.txt +++ b/_sources/api/models.rst.txt @@ -1,3 +1,4 @@ .. automodapi:: wavy.models - :no-inheritance-diagram: \ No newline at end of file + :no-inheritance-diagram: + :inherited-members: diff --git a/_sources/api/utils.rst.txt b/_sources/api/utils.rst.txt deleted file mode 100644 index c012f1c..0000000 --- a/_sources/api/utils.rst.txt +++ /dev/null @@ -1,3 +0,0 @@ - -.. automodapi:: wavy.utils - :no-inheritance-diagram: \ No newline at end of file diff --git a/_sources/api/wavy.models.BaseModel.rst.txt b/_sources/api/wavy.models.BaseModel.rst.txt new file mode 100644 index 0000000..c48f1ad --- /dev/null +++ b/_sources/api/wavy.models.BaseModel.rst.txt @@ -0,0 +1,33 @@ +BaseModel +========= + +.. currentmodule:: wavy.models + +.. autoclass:: BaseModel + :show-inheritance: + + .. rubric:: Methods Summary + + .. autosummary:: + + ~BaseModel.build + ~BaseModel.compile + ~BaseModel.fit + ~BaseModel.get_auc + ~BaseModel.predict + ~BaseModel.predict_proba + ~BaseModel.residuals + ~BaseModel.score + ~BaseModel.set_arrays + + .. rubric:: Methods Documentation + + .. automethod:: build + .. automethod:: compile + .. automethod:: fit + .. automethod:: get_auc + .. automethod:: predict + .. automethod:: predict_proba + .. automethod:: residuals + .. automethod:: score + .. automethod:: set_arrays diff --git a/_sources/api/wavy.models.BaselineConstant.rst.txt b/_sources/api/wavy.models.BaselineConstant.rst.txt index 28a7a3c..471f5ba 100644 --- a/_sources/api/wavy.models.BaselineConstant.rst.txt +++ b/_sources/api/wavy.models.BaselineConstant.rst.txt @@ -10,8 +10,24 @@ BaselineConstant .. autosummary:: + ~BaselineConstant.build + ~BaselineConstant.compile + ~BaselineConstant.fit + ~BaselineConstant.get_auc + ~BaselineConstant.predict + ~BaselineConstant.predict_proba + ~BaselineConstant.residuals + ~BaselineConstant.score ~BaselineConstant.set_arrays .. rubric:: Methods Documentation + .. automethod:: build + .. automethod:: compile + .. automethod:: fit + .. automethod:: get_auc + .. automethod:: predict + .. automethod:: predict_proba + .. automethod:: residuals + .. automethod:: score .. automethod:: set_arrays diff --git a/_sources/api/wavy.models.BaselineShift.rst.txt b/_sources/api/wavy.models.BaselineShift.rst.txt index 8efd2fc..5e6cab2 100644 --- a/_sources/api/wavy.models.BaselineShift.rst.txt +++ b/_sources/api/wavy.models.BaselineShift.rst.txt @@ -11,9 +11,23 @@ BaselineShift .. autosummary:: ~BaselineShift.build + ~BaselineShift.compile + ~BaselineShift.fit + ~BaselineShift.get_auc + ~BaselineShift.predict + ~BaselineShift.predict_proba + ~BaselineShift.residuals + ~BaselineShift.score ~BaselineShift.set_arrays .. rubric:: Methods Documentation .. automethod:: build + .. automethod:: compile + .. automethod:: fit + .. automethod:: get_auc + .. automethod:: predict + .. automethod:: predict_proba + .. automethod:: residuals + .. automethod:: score .. automethod:: set_arrays diff --git a/_sources/api/wavy.models.ConvModel.rst.txt b/_sources/api/wavy.models.ConvModel.rst.txt index 5ae65eb..e89f5a7 100644 --- a/_sources/api/wavy.models.ConvModel.rst.txt +++ b/_sources/api/wavy.models.ConvModel.rst.txt @@ -11,7 +11,23 @@ ConvModel .. autosummary:: ~ConvModel.build + ~ConvModel.compile + ~ConvModel.fit + ~ConvModel.get_auc + ~ConvModel.predict + ~ConvModel.predict_proba + ~ConvModel.residuals + ~ConvModel.score + ~ConvModel.set_arrays .. rubric:: Methods Documentation .. automethod:: build + .. automethod:: compile + .. automethod:: fit + .. automethod:: get_auc + .. automethod:: predict + .. automethod:: predict_proba + .. automethod:: residuals + .. automethod:: score + .. automethod:: set_arrays diff --git a/_sources/api/wavy.models.DenseModel.rst.txt b/_sources/api/wavy.models.DenseModel.rst.txt index 372bf54..f46d93a 100644 --- a/_sources/api/wavy.models.DenseModel.rst.txt +++ b/_sources/api/wavy.models.DenseModel.rst.txt @@ -11,7 +11,23 @@ DenseModel .. autosummary:: ~DenseModel.build + ~DenseModel.compile + ~DenseModel.fit + ~DenseModel.get_auc + ~DenseModel.predict + ~DenseModel.predict_proba + ~DenseModel.residuals + ~DenseModel.score + ~DenseModel.set_arrays .. rubric:: Methods Documentation .. automethod:: build + .. automethod:: compile + .. automethod:: fit + .. automethod:: get_auc + .. automethod:: predict + .. automethod:: predict_proba + .. automethod:: residuals + .. automethod:: score + .. automethod:: set_arrays diff --git a/_sources/api/wavy.models.LinearRegression.rst.txt b/_sources/api/wavy.models.LinearRegression.rst.txt index 8cf4d43..ad20d4b 100644 --- a/_sources/api/wavy.models.LinearRegression.rst.txt +++ b/_sources/api/wavy.models.LinearRegression.rst.txt @@ -5,3 +5,29 @@ LinearRegression .. autoclass:: LinearRegression :show-inheritance: + + .. rubric:: Methods Summary + + .. autosummary:: + + ~LinearRegression.build + ~LinearRegression.compile + ~LinearRegression.fit + ~LinearRegression.get_auc + ~LinearRegression.predict + ~LinearRegression.predict_proba + ~LinearRegression.residuals + ~LinearRegression.score + ~LinearRegression.set_arrays + + .. rubric:: Methods Documentation + + .. automethod:: build + .. automethod:: compile + .. automethod:: fit + .. automethod:: get_auc + .. automethod:: predict + .. automethod:: predict_proba + .. automethod:: residuals + .. automethod:: score + .. automethod:: set_arrays diff --git a/_sources/api/wavy.models.LogisticRegression.rst.txt b/_sources/api/wavy.models.LogisticRegression.rst.txt index 81fceaf..d6e06e0 100644 --- a/_sources/api/wavy.models.LogisticRegression.rst.txt +++ b/_sources/api/wavy.models.LogisticRegression.rst.txt @@ -5,3 +5,29 @@ LogisticRegression .. autoclass:: LogisticRegression :show-inheritance: + + .. rubric:: Methods Summary + + .. autosummary:: + + ~LogisticRegression.build + ~LogisticRegression.compile + ~LogisticRegression.fit + ~LogisticRegression.get_auc + ~LogisticRegression.predict + ~LogisticRegression.predict_proba + ~LogisticRegression.residuals + ~LogisticRegression.score + ~LogisticRegression.set_arrays + + .. rubric:: Methods Documentation + + .. automethod:: build + .. automethod:: compile + .. automethod:: fit + .. automethod:: get_auc + .. automethod:: predict + .. automethod:: predict_proba + .. automethod:: residuals + .. automethod:: score + .. automethod:: set_arrays diff --git a/_sources/api/wavy.plot.PanelFigure.rst.txt b/_sources/api/wavy.plot.PanelFigure.rst.txt index 8a5cc2b..ca18496 100644 --- a/_sources/api/wavy.plot.PanelFigure.rst.txt +++ b/_sources/api/wavy.plot.PanelFigure.rst.txt @@ -16,7 +16,6 @@ PanelFigure ~PanelFigure.add_dotline ~PanelFigure.add_line ~PanelFigure.add_scatter - ~PanelFigure.iterator .. rubric:: Methods Documentation @@ -26,4 +25,3 @@ PanelFigure .. automethod:: add_dotline .. automethod:: add_line .. automethod:: add_scatter - .. automethod:: iterator diff --git a/_sources/api/wavy.utils.reverse_diff.rst.txt b/_sources/api/wavy.utils.reverse_diff.rst.txt deleted file mode 100644 index 00593e9..0000000 --- a/_sources/api/wavy.utils.reverse_diff.rst.txt +++ /dev/null @@ -1,6 +0,0 @@ -reverse_diff -============ - -.. currentmodule:: wavy.utils - -.. autofunction:: reverse_diff diff --git a/_sources/api/wavy.utils.reverse_pct_change.rst.txt b/_sources/api/wavy.utils.reverse_pct_change.rst.txt deleted file mode 100644 index 8029f2f..0000000 --- a/_sources/api/wavy.utils.reverse_pct_change.rst.txt +++ /dev/null @@ -1,6 +0,0 @@ -reverse_pct_change -================== - -.. currentmodule:: wavy.utils - -.. autofunction:: reverse_pct_change diff --git a/_sources/manual/models.rst.txt b/_sources/manual/models.rst.txt deleted file mode 100644 index b569c2a..0000000 --- a/_sources/manual/models.rst.txt +++ /dev/null @@ -1,23 +0,0 @@ -Models -====== - -BaselineShift -------------- - -BaselineConstant ----------------- - -DenseModel ----------- - -ConvModel ---------- - -LinearRegression ----------------- - -LogisticRegression ------------------- - -ShallowModel ------------- \ No newline at end of file diff --git a/_sources/notebooks/quickstart2.ipynb.txt b/_sources/notebooks/quickstart2.ipynb.txt index 2bd06ce..5ebee98 100644 --- a/_sources/notebooks/quickstart2.ipynb.txt +++ b/_sources/notebooks/quickstart2.ipynb.txt @@ -16,19 +16,22 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "# Import libraries\n", "import numpy as np\n", "import pandas as pd\n", - "import wavy" + "import wavy\n", + "from wavy import models\n", + "import plotly.io as pio\n", + "pio.renderers.default = 'pdf'" ] }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -38,7 +41,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -46,6 +49,16 @@ "x, y = wavy.create_panels(df, lookback=10, horizon=1)" ] }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# Set training split\n", + "wavy.set_training_split(x, y, train_size=0.4, val_size=0.3, test_size=0.3)" + ] + }, { "cell_type": "code", "execution_count": 5, @@ -62,7 +75,7 @@ "source": [ "# x and y are contain the past and corresponding future data.\n", "# lookback and horizon are the number of timesteps.\n", - "print(\"Lookback:\", len(x[0]), \"Horizon:\", len(y[0]))" + "print(\"Lookback:\", x.num_timesteps, \"Horizon:\", y.num_timesteps)" ] }, { @@ -72,2891 +85,7 @@ "outputs": [ { "data": { - "application/vnd.plotly.v1+json": { - "config": { - "plotlyServerURL": "https://plot.ly" - }, - "data": [ - { - "line": { - "color": "#636EFA", - "width": 1.5 - }, - "mode": "lines", - "name": "price", - "type": "scatter", - "x": [ - 10, - 11, - 12, - 13, - 14, - 15, - 16, - 17, - 18, - 19, - 20, - 21, - 22, - 23, - 24, - 25, - 26, - 27, - 28, - 29, - 30, - 31, - 32, - 33, - 34, - 35, - 36, - 37, - 38, - 39, - 40, - 41, - 42, - 43, - 44, - 45, - 46, - 47, - 48, - 49, - 50, - 51, - 52, - 53, - 54, - 55, - 56, - 57, - 58, - 59, - 60, - 61, - 62, - 63, - 64, - 65, - 66, - 67, - 68, - 69, - 70, - 71, - 72, - 73, - 74, - 75, - 76, - 77, - 78, - 79, - 80, - 81, - 82, - 83, - 84, - 85, - 86, - 87, - 88, - 89, - 90, - 91, - 92, - 93, - 94, - 95, - 96, - 97, - 98, - 99, - 100, - 101, - 102, - 103, - 104, - 105, - 106, - 107, - 108, - 109, - 110, - 111, - 112, - 113, - 114, - 115, - 116, - 117, - 118, - 119, - 120, - 121, - 122, - 123, - 124, - 125, - 126, - 127, - 128, - 129, - 130, - 131, - 132, - 133, - 134, - 135, - 136, - 137, - 138, - 139, - 140, - 141, - 142, - 143, - 144, - 145, - 146, - 147, - 148, - 149, - 150, - 151, - 152, - 153, - 154, - 155, - 156, - 157, - 158, - 159, - 160, - 161, - 162, - 163, - 164, - 165, - 166, - 167, - 168, - 169, - 170, - 171, - 172, - 173, - 174, - 175, - 176, - 177, - 178, - 179, - 180, - 181, - 182, - 183, - 184, - 185, - 186, - 187, - 188, - 189, - 190, - 191, - 192, - 193, - 194, - 195, - 196, - 197, - 198, - 199, - 200, - 201, - 202, - 203, - 204, - 205, - 206, - 207, - 208, - 209, - 210, - 211, - 212, - 213, - 214, - 215, - 216, - 217, - 218, - 219, - 220, - 221, - 222, - 223, - 224, - 225, - 226, - 227, - 228, - 229, - 230, - 231, - 232, - 233, - 234, - 235, - 236, - 237, - 238, - 239, - 240, - 241, - 242, - 243, - 244, - 245, - 246, - 247, - 248, - 249, - 250, - 251, - 252, - 253, - 254, - 255, - 256, - 257, - 258, - 259, - 260, - 261, - 262, - 263, - 264, - 265, - 266, - 267, - 268, - 269, - 270, - 271, - 272, - 273, - 274, - 275, - 276, - 277, - 278, - 279, - 280, - 281, - 282, - 283, - 284, - 285, - 286, - 287, - 288, - 289, - 290, - 291, - 292, - 293, - 294, - 295, - 296, - 297, - 298, - 299, - 300, - 301, - 302, - 303, - 304, - 305, - 306, - 307, - 308, - 309, - 310, - 311, - 312, - 313, - 314, - 315, - 316, - 317, - 318, - 319, - 320, - 321, - 322, - 323, - 324, - 325, - 326, - 327, - 328, - 329, - 330, - 331, - 332, - 333, - 334, - 335, - 336, - 337, - 338, - 339, - 340, - 341, - 342, - 343, - 344, - 345, - 346, - 347, - 348, - 349, - 350, - 351, - 352, - 353, - 354, - 355, - 356, - 357, - 358, - 359, - 360, - 361, - 362, - 363, - 364, - 365, - 366, - 367, - 368, - 369, - 370, - 371, - 372, - 373, - 374, - 375, - 376, - 377, - 378, - 379, - 380, - 381, - 382, - 383, - 384, - 385, - 386, - 387, - 388, - 389, - 390, - 391, - 392, - 393, - 394, - 395, - 396, - 397, - 398, - 399, - 400, - 401, - 402, - 403, - 404, - 405, - 406, - 407, - 408, - 409, - 410, - 411, - 412, - 413, - 414, - 415, - 416, - 417, - 418, - 419, - 420, - 421, - 422, - 423, - 424, - 425, - 426, - 427, - 428, - 429, - 430, - 431, - 432, - 433, - 434, - 435, - 436, - 437, - 438, - 439, - 440, - 441, - 442, - 443, - 444, - 445, - 446, - 447, - 448, - 449, - 450, - 451, - 452, - 453, - 454, - 455, - 456, - 457, - 458, - 459, - 460, - 461, - 462, - 463, - 464, - 465, - 466, - 467, - 468, - 469, - 470, - 471, - 472, - 473, - 474, - 475, - 476, - 477, - 478, - 479, - 480, - 481, - 482, - 483, - 484, - 485, - 486, - 487, - 488, - 489, - 490, - 491, - 492, - 493, - 494, - 495, - 496, - 497, - 498, - 499, - 500, - 501, - 502, - 503, - 504, - 505, - 506, - 507, - 508, - 509, - 510, - 511, - 512, - 513, - 514, - 515, - 516, - 517, - 518, - 519, - 520, - 521, - 522, - 523, - 524, - 525, - 526, - 527, - 528, - 529, - 530, - 531, - 532, - 533, - 534, - 535, - 536, - 537, - 538, - 539, - 540, - 541, - 542, - 543, - 544, - 545, - 546, - 547, - 548, - 549, - 550, - 551, - 552, - 553, - 554, - 555, - 556, - 557, - 558, - 559, - 560, - 561, - 562, - 563, - 564, - 565, - 566, - 567, - 568, - 569, - 570, - 571, - 572, - 573, - 574, - 575, - 576, - 577, - 578, - 579, - 580, - 581, - 582, - 583, - 584, - 585, - 586, - 587, - 588, - 589, - 590, - 591, - 592, - 593, - 594, - 595, - 596, - 597, - 598, - 599, - 600, - 601, - 602, - 603, - 604, - 605, - 606, - 607, - 608, - 609, - 610, - 611, - 612, - 613, - 614, - 615, - 616, - 617, - 618, - 619, - 620, - 621, - 622, - 623, - 624, - 625, - 626, - 627, - 628, - 629, - 630, - 631, - 632, - 633, - 634, - 635, - 636, - 637, - 638, - 639, - 640, - 641, - 642, - 643, - 644, - 645, - 646, - 647, - 648, - 649, - 650, - 651, - 652, - 653, - 654, - 655, - 656, - 657, - 658, - 659, - 660, - 661, - 662, - 663, - 664, - 665, - 666, - 667, - 668, - 669, - 670, - 671, - 672, - 673, - 674, - 675, - 676, - 677, - 678, - 679, - 680, - 681, - 682, - 683, - 684, - 685, - 686, - 687, - 688, - 689, - 690, - 691, - 692, - 693, - 694, - 695, - 696, - 697, - 698, - 699, - 700, - 701, - 702, - 703, - 704, - 705, - 706, - 707, - 708, - 709, - 710, - 711, - 712, - 713, - 714, - 715, - 716, - 717, - 718, - 719, - 720, - 721, - 722, - 723, - 724, - 725, - 726, - 727, - 728, - 729, - 730, - 731, - 732, - 733, - 734, - 735, - 736, - 737, - 738, - 739, - 740, - 741, - 742, - 743, - 744, - 745, - 746, - 747, - 748, - 749, - 750, - 751, - 752, - 753, - 754, - 755, - 756, - 757, - 758, - 759, - 760, - 761, - 762, - 763, - 764, - 765, - 766, - 767, - 768, - 769, - 770, - 771, - 772, - 773, - 774, - 775, - 776, - 777, - 778, - 779, - 780, - 781, - 782, - 783, - 784, - 785, - 786, - 787, - 788, - 789, - 790, - 791, - 792, - 793, - 794, - 795, - 796, - 797, - 798, - 799, - 800, - 801, - 802, - 803, - 804, - 805, - 806, - 807, - 808, - 809, - 810, - 811, - 812, - 813, - 814, - 815, - 816, - 817, - 818, - 819, - 820, - 821, - 822, - 823, - 824, - 825, - 826, - 827, - 828, - 829, - 830, - 831, - 832, - 833, - 834, - 835, - 836, - 837, - 838, - 839, - 840, - 841, - 842, - 843, - 844, - 845, - 846, - 847, - 848, - 849, - 850, - 851, - 852, - 853, - 854, - 855, - 856, - 857, - 858, - 859, - 860, - 861, - 862, - 863, - 864, - 865, - 866, - 867, - 868, - 869, - 870, - 871, - 872, - 873, - 874, - 875, - 876, - 877, - 878, - 879, - 880, - 881, - 882, - 883, - 884, - 885, - 886, - 887, - 888, - 889, - 890, - 891, - 892, - 893, - 894, - 895, - 896, - 897, - 898, - 899, - 900, - 901, - 902, - 903, - 904, - 905, - 906, - 907, - 908, - 909, - 910, - 911, - 912, - 913, - 914, - 915, - 916, - 917, - 918, - 919, - 920, - 921, - 922, - 923, - 924, - 925, - 926, - 927, - 928, - 929, - 930, - 931, - 932, - 933, - 934, - 935, - 936, - 937, - 938, - 939, - 940, - 941, - 942, - 943, - 944, - 945, - 946, - 947, - 948, - 949, - 950, - 951, - 952, - 953, - 954, - 955, - 956, - 957, - 958, - 959, - 960, - 961, - 962, - 963, - 964, - 965, - 966, - 967, - 968, - 969, - 970, - 971, - 972, - 973, - 974, - 975, - 976, - 977, - 978, - 979, - 980, - 981, - 982, - 983, - 984, - 985, - 986, - 987, - 988, - 989, - 990, - 991, - 992, - 993, - 994, - 995, - 996, - 997, - 998, - 999 - ], - "y": [ - 0.06657949580650858, - 0.7042071210339776, - -1.2187134154182149, - -2.0438159662107087, - 0.9354952062579315, - -0.14629480653093715, - 1.4349731129940377, - 1.0308995266205496, - 1.0889189213097403, - -0.30710724897540126, - 1.0991149262428481, - -0.5978842357200534, - -0.7464901625452016, - -0.38411327878418644, - -0.058309614175752505, - -0.10644452518776774, - -1.8315634996455803, - 1.363731126925096, - -1.566941557704011, - 1.1432476782923935, - -0.5438997861199969, - -0.41443731166352626, - 0.6834270361981524, - 1.2792723882229176, - -0.5682993405240077, - -0.02609951374932082, - -1.4018465656017396, - -0.7605177314702534, - -0.275735422505185, - -1.6551096049685572, - -1.3247658618362472, - 1.4715274899369837, - -0.4984474052092241, - 1.1376955741955783, - -0.1589211395948154, - -0.9545426943169023, - 1.4499999018459975, - 0.7145277774562966, - -1.6603003508326633, - 1.5634292008163986, - 1.4974440278853725, - -0.4060832929567913, - 3.3974419740271804, - -1.474586686552337, - 1.6606196447362331, - 0.4500880780132674, - 0.12022103766541989, - 1.1022128828550566, - -0.8564926915691011, - 0.0778712662320427, - -0.09272682276561497, - 1.0211598324657853, - 0.8171274661362593, - 1.886814115334868, - 1.4433326967175908, - 1.014596186154694, - 1.6517451877130913, - -0.7506509115512537, - 1.0260613595761223, - -1.4063132638813742, - 1.0749348110252344, - 0.1897580586999632, - 0.3671860085829968, - 0.33149342272485643, - -1.5439584038782816, - -0.22606541567181407, - -0.12322035653621273, - -0.9348937517930265, - -0.7219486257319628, - -0.6912560453560557, - 0.13586844931610315, - -1.6540655197092853, - 1.1628618245895828, - -0.1803346698747063, - -1.3824828398342313, - 0.5666969267698645, - -0.20844608433716608, - 0.04128384395168908, - 1.3047373880992574, - -0.8328301784481946, - 0.1626387144823998, - 0.1924258632946733, - 0.09958002094867519, - 0.021069740325564384, - 0.4032449238135223, - -0.42765772259366597, - 0.1623813512691879, - -0.6231818542538072, - -1.4849178373306402, - -0.7336363158704325, - 0.3832795090845457, - 0.47031752864388066, - 0.48995444125295623, - 0.27345713724262855, - -0.0914161780568458, - -0.3140319089109977, - -1.0004679001320387, - 0.593908003677212, - -1.4974194699856576, - -1.207794006144397, - 0.0022405240324975297, - 0.4726662094782263, - -0.681124231490161, - 0.6393643300531231, - -0.5203900581142561, - -0.25946296430900895, - -1.4186120526229247, - -0.12298583975763708, - -0.9792565930551863, - 1.0564443715751681, - 0.8952269043159242, - 0.9815171706466476, - 1.0173702876488693, - -1.6218391072120193, - -1.3550792420732198, - -1.4443280182918838, - 0.09072837407970864, - 0.7160525357145655, - -2.42587790264626, - -1.3632482289017114, - 0.781163393693321, - -0.49359685006786147, - -0.8991199708960806, - 0.5696644865897532, - -0.334492715584694, - -1.0369735120150199, - -0.26163418924463205, - -1.904160287346853, - 1.1003199699820798, - 0.42735829113580254, - -0.19986774044920338, - 1.206060686144269, - 0.7235212988212015, - -0.6634973708698573, - 0.2423401591244117, - -0.9004319987767728, - -1.6648073390822695, - 0.25927236884369254, - -1.5366558376909945, - -1.084606600679036, - 0.2435352740109413, - 0.5281844577617784, - 0.7252372184225023, - -1.5666059323295565, - 0.4067562196486277, - 0.44404299872864667, - -0.17032038217482862, - 0.5221632335993641, - 0.5122490284309147, - -0.10238397597121947, - -0.5237556529041572, - -0.5803870522439922, - 0.3326739961418302, - -0.529898471270117, - -0.7425132619723852, - -0.14851642495278988, - 0.9796872034702306, - 0.7949147173434337, - 0.8593838024150303, - -0.8394291531627852, - -1.0422959210893497, - 1.2102012708039764, - 1.0177908650593928, - 0.56099346051176, - 0.33520451027596204, - -1.3681384716347351, - 1.9198785949061832, - 0.7640114801435517, - -0.45629223247403483, - 0.7048600126392744, - 0.9472825088617235, - -1.6276601939380488, - -0.36452223345702456, - 0.41102510921097324, - -0.4013850153943589, - -1.459140329875622, - -0.10102659762678608, - 0.8646011928369576, - 1.2761723500116484, - 0.02024391550334601, - -1.0158022276410426, - 2.5471276759510846, - 1.3663786228664883, - 1.0368069011278525, - 0.1275769356130981, - 1.8844657348993814, - -1.507183194872279, - -1.1793344352462634, - 0.4147793726882614, - 1.1664981751308257, - 0.010388817029583775, - -0.38587473016874646, - -0.7064216466506991, - -1.2372643055941408, - -0.9369845028619604, - 0.4349020935054483, - 2.346216698856833, - -1.5571004712721115, - 0.5952560980385858, - 0.6028758149890263, - 1.471673061422436, - 1.357601167655102, - -0.5966459641343468, - -1.0208039807559803, - 0.7872412271786862, - 1.7887305976344459, - -0.46563144842613424, - 0.0369825250843871, - 0.34877339501253246, - 0.7828423072391619, - 1.434784881410705, - -1.1370740483114172, - 0.42157775231221545, - 0.8080488782516375, - 0.3769091348912932, - -0.7018416773116258, - 1.3031070729854288, - 0.2989670165522678, - -0.5118937119799508, - 0.5490693710181883, - 1.1960766052934033, - -0.45529048959799484, - 1.3971329485531783, - -0.21165597459900515, - 0.7469464848502221, - -0.06515438732525378, - -0.5921709888018915, - -0.5264578087189562, - 1.4104432803825298, - 0.574292300201689, - -0.07549071412974467, - -1.667833023209295, - 0.9984741823702818, - -1.58320941547157, - -0.003341428250683831, - -0.11109790876105918, - -1.676908438114285, - 0.4091091061120369, - 0.43532764054689166, - -1.1433994269053869, - -1.7480599898474494, - 0.8642259605407514, - 0.6365601105336879, - -0.1955222756647389, - -1.2748004393694956, - 0.06303302740857754, - 1.2451436253223342, - 0.37322839455652956, - -1.5768929482992389, - 0.694014296727232, - -0.2570385210991602, - 2.2142012538202502, - -1.5005330087029989, - 0.6060979474124115, - 1.4184935989327954, - -0.06274754674055728, - -1.4867770853321085, - 1.2571084130635521, - -0.06957579578851479, - -0.4188035188709695, - 0.010733613958181438, - 1.6768528696777663, - 0.8864256260162515, - 0.14707464622797067, - 1.6779122755863654, - 0.8559066904470817, - 0.11193951149910018, - -0.13187718604750776, - 1.031054892495864, - 0.034396655229725945, - 0.4209851520385636, - -0.8136597588178065, - 1.3752464105246218, - 1.0307386629054998, - -0.5701354658313716, - -0.07334729516618461, - 0.5470673399553428, - -2.17227879608845, - -0.24879284139184463, - -1.2217401816778282, - 0.6030969351679943, - -1.978855039521635, - 2.2507482481107615, - -1.1772752738651369, - 0.38519987904452463, - 1.344303457787504, - -1.0559391019465418, - -1.8247058780666288, - -0.31515492029812997, - -0.8870787756221162, - -0.12077436701128975, - -0.297237169824904, - 0.38845984393728905, - 1.3278191241901618, - -0.3734303204313007, - 0.8279180455876117, - -1.4630044784790748, - -0.05193095216977354, - 0.05782713449793359, - 0.8478127186396591, - 0.05630777227836795, - 0.39121863699731485, - -1.4774313292429648, - 0.3963143977097747, - -1.4539647170174574, - -0.9793810591681177, - 0.7173368313212088, - -0.236159065713707, - -0.6155488713999003, - 0.18560944657474385, - 1.6476953472536133, - -1.5484869807981119, - 0.9377175139759644, - 0.5518952539381832, - 0.07356503462843031, - -1.3264878950171721, - 0.07535951097570871, - 0.12264244220040958, - -0.42537281954511785, - -0.4998962229037484, - 0.3330464358891232, - 0.015432939420272901, - 1.0797250519338277, - 0.6963403566497599, - 0.6889954608613271, - 0.9166520525475822, - 0.06483789225529443, - 0.4177780910651974, - -1.215176452044791, - 0.7654715021674819, - -0.07679809049501862, - 1.4578075345197414, - 2.522026606830127, - 1.152726916389, - -0.14866815699740818, - -2.0662481096455436, - -2.363842895085537, - -0.27360047532321413, - -1.8833479303941, - -1.3172885006128272, - 0.20452737107625082, - 0.7700117962299484, - -0.8283620640916174, - 0.42240980289304214, - 0.2480868023356565, - 0.11827593074695252, - 1.0494949533701485, - 1.478474698787826, - 0.1702414103593012, - 0.6495999569907174, - -0.49425570464728197, - 0.837118005596032, - -0.08372934101999836, - 1.9217417801903969, - 1.4752272423760706, - 0.757461543957001, - 1.2999922701245714, - 1.3446422263123126, - -1.2466610279144072, - -1.9339723336579848, - 1.8582538665763133, - -0.513393208808119, - -0.7894794954531047, - 2.9543307450059375, - -0.9724656965645276, - 0.49843082295299834, - 0.8285899792915569, - 0.8457814294655845, - 0.20830334868278944, - -0.4107627045988226, - -1.8881777898080343, - -0.04723726105078013, - -0.6065403480059925, - 0.19277509089130404, - -0.28080040161634906, - 1.2603865119625535, - -0.5108114146014595, - 0.21830494680026882, - 1.975475979246791, - -1.2153189992023306, - 0.45843891728524805, - 0.4886428714272332, - 1.9180627733438294, - -0.22859341088945828, - -1.7130249809570073, - -2.559114724090455, - -0.6312111039035885, - -0.8905331514021997, - -1.2150335600015143, - 2.444667287809592, - 0.17081156021541144, - 0.5077726656503165, - 1.038828873721946, - -1.2678954631483663, - 0.15492842328151213, - 2.2915533478175347, - 0.3439255049717159, - -0.6389708910872062, - -0.8103220568244995, - -0.6285810606444399, - 0.1618441666548604, - -1.3708656980759784, - -0.3165578985249459, - -0.19636302034509892, - -1.079960557998176, - 0.6644272458777207, - -0.9579594476226031, - 0.7006907406657614, - -0.982017507091568, - 1.0734876037978682, - 0.9083016548007746, - -0.004555715249828847, - 2.260508728767975, - 1.249981403669253, - 0.2877520373499534, - -1.1282470225621457, - 1.3845617640603873, - 0.10015380197512547, - -2.6082003686291793, - 0.7772224585995919, - -0.4616773490131915, - 0.3677235029176946, - 0.849003492250095, - -1.7592209399401113, - 0.14924669458554157, - -1.5526771473685053, - 0.060819073148988614, - 1.6244828460205518, - -0.7831810053626761, - -0.6781845305983837, - -1.206008233804651, - -0.9840497252188918, - -0.12680429610349458, - -0.29687328225815435, - -0.14202111512094318, - -0.7583273823229567, - -1.1262377731525384, - 0.10095428309096748, - 0.2814516423345005, - 0.49312772317901665, - -0.7710588327211317, - 1.6605010014546286, - 1.087596638483641, - -0.4746249063994664, - 0.7086531761170562, - 0.34348745524378915, - -1.4022018746629237, - 0.37015897217242466, - 0.0843301672463426, - -0.4330492681534202, - 1.7558782324465916, - 0.7202618501955251, - 1.2937594736948148, - 1.9284573451574751, - -2.0317157730642017, - -0.849163874530413, - 0.0810650741684899, - 0.05186472267625962, - -0.05791772507030962, - -0.7023655559808043, - -1.7999915698123228, - 2.2968211242744716, - -0.9467020953858171, - 0.11745625303761016, - 0.10265138797320832, - -0.06053234888361561, - -0.43331517309694545, - -0.5962271862991214, - 0.8280175575827052, - 1.0575822952108735, - 0.7454850822849407, - 1.788183655047735, - -0.5628622381358686, - -0.2632912211030889, - 0.15264668797834902, - -0.48088396901577324, - 0.9893468552770651, - 1.0844072168913828, - 0.27292278362486394, - -0.35751861293518933, - 1.472044898799596, - 1.302014434589241, - 0.3569287784903068, - 1.4727981194791506, - 0.6879250128779288, - 1.6474207328610961, - 0.475126194359889, - 1.4780826976659418, - -0.5954605354809445, - 0.636678013689965, - 0.7610959572342744, - 1.1556814710813383, - -0.635159422916024, - -0.6349945345712154, - -0.7585968648934003, - 0.0567525880695433, - -3.676899003049981, - 1.6280886551817202, - 0.5633434233896949, - -0.5077018274792533, - 0.4671489322471103, - 0.4961860603931495, - 0.3221646743723201, - 0.9836289606797799, - 0.14891999308668263, - -0.5628304439697212, - -1.6140944396048242, - 0.13663979682976915, - -1.0143493365903884, - -1.6219935005423454, - -0.3676566100104772, - 0.2345217375551218, - 0.008695102773521627, - -0.803907102883379, - 1.2914252266566233, - -0.6848449450332177, - -0.5873435258456958, - 0.7606716419638716, - 0.3667428984588238, - 1.699465234068763, - -0.708444640580674, - 0.9547783067383621, - 0.3259917484413387, - 0.6457499765940556, - 0.4509696100963814, - 0.23045691989902006, - -0.8264909446617337, - 0.3586182471327589, - -0.19862255406304857, - 0.4712245388206714, - 0.6485102089129624, - 0.23017293221916107, - 0.6040031328476771, - -0.2596668858741633, - -0.0270592522184338, - -0.7213408198685287, - 0.39372319745529455, - -0.1274393494908997, - -0.17956869544706822, - -1.278704724524306, - 0.005090959780293349, - -0.41165956331476894, - -0.6933415423438254, - 1.1284434771958196, - -1.378366484218425, - -1.5890948719552205, - -0.20618550638032176, - -0.7471840459898258, - 0.5435228402389166, - -0.8322729376338954, - 1.368394537477824, - 1.3022023488861683, - -0.16704949389743456, - 0.8670305562900176, - -1.3013181983944606, - 1.345923103293542, - 0.5279152388254413, - 1.5094490503706453, - -1.3183758784652577, - -0.4878452712083802, - -1.3048208906579541, - -0.8961268294964213, - -0.9636890911891638, - 0.5859013064427213, - 1.6615404049018438, - 0.48102997084281823, - 0.3809160572216325, - 1.03746084265434, - 0.050787280261992904, - 0.8263024696999308, - 1.4148844475357427, - 0.6039432749045278, - -0.9705504308170952, - 1.228779551587697, - 0.44254439422194014, - 0.5228931258615774, - 0.7277140108759714, - 0.36038090072137646, - 0.8469800429278125, - 0.25681338821973276, - -1.187781975505905, - 0.28641978896405396, - -2.0393977599899293, - -1.248933148027633, - -0.28981094744810104, - 1.643697828287795, - 0.05017782601859786, - -0.3094547636877666, - -0.6537385511576103, - 0.8922458044682097, - 0.2929186031472941, - -0.49532930832412375, - 1.1819368748793484, - 0.6257022459898259, - -0.44252210088020166, - 0.6033762471895691, - -0.9490013326350237, - -0.5465250840433468, - -0.3923133421893767, - 1.4131053820375479, - -0.5026007464560802, - -1.5375472118999758, - 1.2969314396076417, - 0.20438257507964466, - -1.1721021689648907, - -1.6865137671603536, - 1.2569870644356642, - 0.17706040931876205, - -2.2977895261400008, - 2.0292681531550927, - 0.9764452554756957, - -0.6342359791622514, - -0.18611550035544563, - 0.8224806033146688, - -0.7110876753132762, - 0.5324347996258455, - 0.6660837059808186, - -0.4503886808563981, - -0.9853439493484303, - 0.21102421797127344, - 1.0126891784456369, - 0.28852151541324783, - -0.8955512269003686, - -1.3190611676604653, - 0.5560156885242366, - -0.7883064976646555, - 1.5384059797216016, - -0.9439983003124212, - 0.5659984618843253, - 1.1249041750839843, - 0.6767410051956194, - -0.49160500631529014, - 0.1483107522447713, - 0.5115365517804981, - 2.8364191992492573, - 0.791720003889648, - 1.2383582091221652, - -1.0829922825027016, - -0.3867845414675819, - -0.8724569614134565, - 0.932469265746266, - -1.30579430416661, - 1.2247271989582578, - -0.8445762098108233, - 0.9470563586356399, - 0.5683744265581336, - 0.7849474221021006, - -0.3890565615181326, - -0.2829872999892831, - 0.13071325909096526, - -0.2987690218851445, - 0.7898343244483973, - 0.099431121274427, - 0.38220618151309727, - 0.711292525502263, - 0.18986784101621773, - 0.07917801452818249, - -0.8367187300319635, - 2.689090613860293, - 1.0038363801506756, - 1.0770133313127632, - -0.6527518527291182, - -0.016213968985555362, - 0.17790609312219963, - -1.2902284612020107, - -0.3864594709380328, - -0.10419507842331896, - -0.4629164970066934, - 0.6290267241957171, - -1.4219864770863424, - -0.5087187655938853, - 1.5918962053482788, - 0.6159827089282811, - -2.0218861828670485, - -1.0669468295055586, - 0.5796910129453231, - -2.6185300720128297, - 0.619301673799856, - 0.027236966486583403, - -0.25981101306424137, - 0.9298833692036681, - -1.4328703171091501, - 0.9048129929368183, - -0.8271176057108441, - -1.226864206922098, - 0.9545406983245001, - 1.5217169034527678, - -0.23450897299224294, - -1.1404018348617109, - -0.13330023950008685, - -2.0377825528315445, - -0.8276926974682682, - -2.585410056023325, - -0.09078874513783124, - 0.02150533512547358, - 0.21869629089561635, - 0.5739591192245197, - -0.6493923761977408, - 0.10920412084411836, - -0.021853258780881277, - -0.4118785228105728, - -0.17603834662410878, - 0.5746200257241932, - 0.4284764185572442, - -1.356394941061918, - -1.4047943619185956, - -0.3775051934190425, - -1.518116740641315, - 1.0465098035476301, - 0.9548071965496485, - 0.6272151262011754, - -0.7801353062775259, - 0.03175503021688545, - -1.1892542750316375, - 0.9800487151662681, - -0.5332606437780166, - -0.5889315089261001, - 0.3341222783905038, - 1.2299088471417146, - -0.24430963789214738, - -0.7255241075366841, - -0.39838023518724286, - -0.23406943821171475, - -1.416781587008113, - -1.2716274491600466, - 0.38688774541045945, - 0.2961387094763638, - -1.2553783618897594, - -0.7918407656657092, - 0.562807847231258, - -1.159987350506027, - 0.33137006170866634, - 0.5753633360391074, - 0.31896377367007595, - -0.9565786122433182, - -0.9184190499708218, - 1.7970834607596198, - -0.6174578809972053, - -0.1052529438517789, - 1.0362633726581372, - -0.4000538997749901, - 1.0317284970330505, - 1.564052513517503, - -0.619409443378424, - 0.4333162428097617, - -0.09501065331939876, - -1.6868460473559286, - -0.5695762021708808, - -1.1288462259920982, - -0.3237414008072606, - 0.538390259347078, - -0.3676513767027326, - 0.3171226231463222, - -0.742318729702504, - -0.8488053673672417, - 0.6464525682939155, - 0.5277279966880103, - 0.28612057652333217, - -0.8888052630719565, - -0.6738331073374428, - -0.20261571023405975, - -0.6075833827611219, - -0.386196408227281, - -0.15779297886469587, - -0.933176120466135, - -1.0211070848645405, - -0.12665521690509854, - 0.224905263482172, - -0.21253995315292754, - 0.20912265039647612, - 0.5099930469309428, - 2.1408613451222664, - 0.08544885103788852, - -1.2262604179655698, - -0.841819196292541, - -0.8062533508123542, - 0.18704118256347768, - 2.3773726392264964, - -0.2349774392131216, - -2.039913145908034, - -2.7708137301079883, - -1.440217398163521, - -0.5995072483161547, - -1.3460989019197025, - 1.5493884495085788, - -0.236328651540529, - 0.5993552435124827, - -0.14161629589560548, - 1.6134811689916744, - -0.050178329458602206, - -0.3133910483238147, - 1.2099550023606331, - -0.9425060014487805, - 0.9185727965040605, - 1.000222459438402, - -0.11937397123433868, - 0.21650740220793896, - 1.2418460570286436, - -0.8718766238608511, - -0.3298867252883004, - -0.6989785489238277, - -0.7848546748769792, - 0.9897501865351587, - 0.4009637802799042, - 0.7095179293735221, - 1.4357945144332909, - 1.8524967224316515, - -0.09516989795444708, - -0.7602792369008564, - -0.3018343214794774, - -0.40112471898845276, - 0.19810350275903787, - 0.6977198655482821, - -1.0120174754096811, - -2.3563508373876774, - 0.730109704661283, - 1.5268517999656577, - 1.530442468900263, - -0.807825605221895, - 0.7517373190537666, - 0.9076798976915479, - 2.092099479103067, - -0.341570378356104, - -1.7360607634901148, - 1.156861486312767, - 1.4716621130397116, - -0.4787507021180346, - 0.023744766274670027, - -1.5965671646546118, - -0.37021700136574104, - -0.27692514795255346, - -0.3091858541866916, - 0.2360271461002418, - 0.13386749897360478, - 0.14216632838163829, - 1.023034711692979, - -0.3987269319430655, - 0.549096886152482, - 0.017157699255227664, - 1.109032785498506, - 1.3640767107398544, - -1.1194841090436989, - 1.0410059169232033, - 1.5132324131526251, - 0.24305061815448895, - -1.019736710580556, - -0.42694250400633577, - 0.7725295493015006, - -1.1962384989413304, - -0.2968853248057844, - -0.7899434044364201, - -1.4875618384527145, - 0.6454219975119482, - -2.141450470084665, - 0.30572020678799694, - -0.5810850793717385, - 1.4798366749575191, - 0.2216281878888918, - 0.44350719177739745, - 0.46312940435735894, - -0.228796055110651, - 1.1983047302744245, - -0.6414700390386395, - -1.4944820818354236, - -1.9831451598419563, - -0.6074887631998206, - 0.5875200794644209, - 0.5804227935603117, - -0.3505862375410346, - 0.2707720393460868, - 0.8527609494649038, - -1.0561006233332695, - -0.41978349307565604, - -0.9905285637543743, - -0.11575923339532644, - 0.2297320675136182, - -0.8446240979853961, - -1.2912444624542925, - -0.013671109771068054, - -1.6976157372771925, - 1.6672974994072653, - 0.1911224870939968, - -1.0434563003332007, - -0.07742690061167322, - -2.840805497923274, - -0.266360988625872, - -0.08721675735493827, - -1.0465666956964246, - -0.7774518438463297, - -0.3460338986256431, - 1.9151057120404062, - 3.3759014692957137, - -1.5480194807442587, - -1.3366470595503326, - -0.7600936179851417, - -0.17220086985832367, - 1.731738706276745, - 0.026914870923869346, - -1.4478840651824056, - 0.36259989002529047, - 1.7708848275754603, - 0.7668992710093536, - -0.04329437017676449, - 1.682531835957653, - 0.10732293384394224, - 2.8874749846000345, - -0.41718876873283156, - 2.026745790233367, - -0.06759883909878223, - 2.6195063533482457, - 1.4116758268774359, - 0.022090807021911824, - -0.6851676503727415, - 0.6127192810265865, - 0.6307418088840328, - -1.575436292667157, - 0.2527314389303937, - 0.45752087572222805, - -0.4815994380530334, - -0.4648053905953706, - -2.27287699629857, - 1.888136472192083, - -0.11360387414467936, - -0.5440883761927148, - -0.06337640558062574, - -1.0542972859312079, - -1.7588372290926966, - -1.280217588793815, - 0.8110029325867991, - 1.2273015846246085, - -0.06821838237501232, - 0.7556153918737457, - -0.803697042045384, - 0.45446859489121927, - 0.3558252712548142, - -0.4376453965858135, - -1.1366424849142358, - -0.6106611693024279, - 0.7122948278684196, - -0.9179374538544223, - -2.0195381960480603, - 1.6475267693584579, - 1.4520589268265065, - -0.2938528246125576, - -1.5375554291303655, - -0.8678354130795327, - 0.734696867664772, - 0.8384561025302392, - -0.6660001571620074, - -0.2511029723184456, - 0.6341551452578051, - 1.6403127129510906, - 0.5037769462600085, - -0.3806205436561784, - 0.7324164140372157, - 0.31475791491958705, - 1.4019180508818652, - 0.5661000670332557, - 0.6946751345214279, - -1.1224899056192206, - -1.1983058796996087, - 0.010783558676113978, - -1.4547859532775687, - -0.5199340156451744, - -0.3305531442671791, - -0.18245671697900454, - -1.0060497733894083, - 0.8734800168083692, - 1.1669110302978631, - 1.0750983128222298, - 1.4805946996320283, - 0.44666546796515416, - 0.9011169104143123, - -0.04973536655230685, - 1.2295605084255754, - 1.5065883493634915, - -0.5154401089740808, - 1.5135837536298204, - 0.47700790256124664, - 0.19417403893863705, - -0.38842856627731853, - 1.4745839430891494, - 1.2697285235477471, - -1.4257481619513133, - 0.8551272859916781, - 0.5069168721972422, - -0.7196087477570158, - 0.016820538269393392, - 1.3337514856250758, - 1.496649716258155 - ] - } - ], - "layout": { - "annotations": [ - { - "showarrow": false, - "text": "Train", - "x": 10, - "xshift": 20, - "y": 3.3974419740271804 - }, - { - "showarrow": false, - "text": "Validation", - "x": 722, - "xshift": 35, - "y": 3.3974419740271804 - }, - { - "showarrow": false, - "text": "Test", - "x": 901, - "xshift": 18, - "y": 3.3974419740271804 - } - ], - "shapes": [ - { - "line": { - "color": "gray", - "dash": "dot" - }, - "opacity": 1, - "type": "line", - "x0": 10, - "x1": 10, - "xref": "x", - "y0": 0, - "y1": 1, - "yref": "y domain" - }, - { - "line": { - "color": "gray", - "dash": "dot" - }, - "opacity": 1, - "type": "line", - "x0": 722, - "x1": 722, - "xref": "x", - "y0": 0, - "y1": 1, - "yref": "y domain" - }, - { - "line": { - "color": "gray", - "dash": "dot" - }, - "opacity": 1, - "type": "line", - "x0": 901, - "x1": 901, - "xref": "x", - "y0": 0, - "y1": 1, - "yref": "y domain" - } - ], - "template": { - "data": { - "bar": [ - { - "error_x": { - "color": "#2a3f5f" - }, - "error_y": { - "color": "#2a3f5f" - }, - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "bar" - } - ], - "barpolar": [ - { - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "barpolar" - } - ], - "carpet": [ - { - "aaxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "baxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "type": "carpet" - } - ], - "choropleth": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "choropleth" - } - ], - "contour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "contour" - } - ], - "contourcarpet": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "contourcarpet" - } - ], - "heatmap": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmap" - } - ], - "heatmapgl": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmapgl" - } - ], - "histogram": [ - { - "marker": { - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "histogram" - } - ], - "histogram2d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2d" - } - ], - "histogram2dcontour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2dcontour" - } - ], - "mesh3d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "mesh3d" - } - ], - "parcoords": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "parcoords" - } - ], - "pie": [ - { - "automargin": true, - "type": "pie" - } - ], - "scatter": [ - { - "fillpattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - }, - "type": "scatter" - } - ], - "scatter3d": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter3d" - } - ], - "scattercarpet": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattercarpet" - } - ], - "scattergeo": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergeo" - } - ], - "scattergl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergl" - } - ], - "scattermapbox": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattermapbox" - } - ], - "scatterpolar": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolar" - } - ], - "scatterpolargl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolargl" - } - ], - "scatterternary": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterternary" - } - ], - "surface": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "surface" - } - ], - "table": [ - { - "cells": { - "fill": { - "color": "#EBF0F8" - }, - "line": { - "color": "white" - } - }, - "header": { - "fill": { - "color": "#C8D4E3" - }, - "line": { - "color": "white" - } - }, - "type": "table" - } - ] - }, - "layout": { - "annotationdefaults": { - "arrowcolor": "#2a3f5f", - "arrowhead": 0, - "arrowwidth": 1 - }, - "autotypenumbers": "strict", - "coloraxis": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "colorscale": { - "diverging": [ - [ - 0, - "#8e0152" - ], - [ - 0.1, - "#c51b7d" - ], - [ - 0.2, - "#de77ae" - ], - [ - 0.3, - "#f1b6da" - ], - [ - 0.4, - "#fde0ef" - ], - [ - 0.5, - "#f7f7f7" - ], - [ - 0.6, - "#e6f5d0" - ], - [ - 0.7, - "#b8e186" - ], - [ - 0.8, - "#7fbc41" - ], - [ - 0.9, - "#4d9221" - ], - [ - 1, - "#276419" - ] - ], - "sequential": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "sequentialminus": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ] - }, - "colorway": [ - "#636efa", - "#EF553B", - "#00cc96", - "#ab63fa", - "#FFA15A", - "#19d3f3", - "#FF6692", - "#B6E880", - "#FF97FF", - "#FECB52" - ], - "font": { - "color": "#2a3f5f" - }, - "geo": { - "bgcolor": "white", - "lakecolor": "white", - "landcolor": "#E5ECF6", - "showlakes": true, - "showland": true, - "subunitcolor": "white" - }, - "hoverlabel": { - "align": "left" - }, - "hovermode": "closest", - "mapbox": { - "style": "light" - }, - "paper_bgcolor": "white", - "plot_bgcolor": "#E5ECF6", - "polar": { - "angularaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "radialaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "scene": { - "xaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "yaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "zaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - } - }, - "shapedefaults": { - "line": { - "color": "#2a3f5f" - } - }, - "ternary": { - "aaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "baxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "caxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "title": { - "x": 0.05 - }, - "xaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - }, - "yaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - } - } - } - } - } + "application/pdf": "JVBERi0xLjQKJdPr6eEKMSAwIG9iago8PC9DcmVhdG9yIChDaHJvbWl1bSkKL1Byb2R1Y2VyIChTa2lhL1BERiBtODgpCi9DcmVhdGlvbkRhdGUgKEQ6MjAyMjA4MTkwMzIzMDYrMDAnMDAnKQovTW9kRGF0ZSAoRDoyMDIyMDgxOTAzMjMwNiswMCcwMCcpPj4KZW5kb2JqCjMgMCBvYmoKPDwvY2EgMQovQk0gL05vcm1hbD4+CmVuZG9iago0IDAgb2JqCjw8L0NBIDEKL2NhIDEKL0xDIDAKL0xKIDAKL0xXIDEKL01MIDQKL1NBIHRydWUKL0JNIC9Ob3JtYWw+PgplbmRvYmoKNSAwIG9iago8PC9DQSAxCi9jYSAxCi9MQyAwCi9MSiAwCi9MVyAyCi9NTCA0Ci9TQSB0cnVlCi9CTSAvTm9ybWFsPj4KZW5kb2JqCjYgMCBvYmoKPDwvQ0EgMQovY2EgMQovTEMgMAovTEogMAovTFcgMS41Ci9NTCAyCi9TQSB0cnVlCi9CTSAvTm9ybWFsPj4KZW5kb2JqCjkgMCBvYmoKPDwvRmlsdGVyIC9GbGF0ZURlY29kZQovTGVuZ3RoIDg3NTU+PiBzdHJlYW0KeJy9XdnKJclxvu+n+K8NOsolcgNhsNZrWQN+AMsSGI3B8vuD44slsypKZ3pG/D0a1F0Rp5aILzNjzap+lbrkfx+J//vF60LW0V65fPzn91/+9wt+LHmOV/vIrRf+6+//9eU//uXjf/i3ymc1ufwc8UX5A//9+x8+9ODvf/3yyz/Uj7/+n9xrpPTR+P98l798+SP/90894jXX/Hit0hr/2WngaQ/eefBMHxnPJb5N2c9+3r2t+hrtvRakWuBe3/PfxPf625c//cNbrUqv+kn3yuWzbtRze/XyOTfjs8rML+qTpfuh201c8/2XXvD3D9wtN3olSPcZN0ulv3r7pLuNkV8zf869OtGLPkvNlsdn3KbO9eK5/xnjWJpz3tyq/ZQZNtd6wTS8Fay9EQy3K41vlGFPclfrktTwvLEt53xYmDpn+XhRzcTmZCYSE/NgihAdQrBInecv27ZUWZj8ampQ+0cePBWZnVm28kpTzWym/kqJj5qwe01ySuYlxTf4G6SbxqrlNdhu8uPAHgWKvBp+LcyhVxkwnGz6+G5VODPpQxg7NuzMaq/a7W4sjYgm3JWUW/j6PJTbX0S4egK318rCWtNYtPRWYDOoxCeV16wmzDyKLFzErMU39keznqQPWaxHEqwy8fV+x5xeRQRlJVd6UVPexNCx/nmVFy07Nb9qU3Zp89WGsfmMasD39RKxle0qlMZsSJbrqwGzxfiVpALJLXgch41S7wdp5vfso8fIQNABfjsq8uoWqbryRxYQB9md+1GvYShFTuHvByaeZS70YEGVvXhQm91k8gDp09hi0nCpeQ1Xg55eGaPOSrGApU497qpgYT1E/5JfufPP/AspOZI+bfINfMaWF9YGz5o0NseFrTzNi83MUl8VQ0EvndJ1y155Vgybm4Ul5jEfPLakJEaEx1KuaXw7uevIhm3pokJZL4EUVl0lK4lhkDMGtMjsb7OOpbB8PHj8KsZPbj+hSubhLz7UzBrLJievKVl4CRKWMvR4dV1JqWPlMQsqs8Q85rIeeUV3Q52lB6y1vi6zoZA9vdoxKzj4UO7Fy1JXTu8uh3Dn1OuLTh29nldb0gnMT+o2GIytP594AIrBxuxmsx2TSPTihdhs6vEE6GZ6mN11nAovF4GP0pGU1VzKGkPPamnPBMouf2Gl01LWVMRyIR8rZvOqzGZTlFxNzxoy5syqrl7mKKwASEYvka2Kudc9c5ubp/ZKPv2IJa0234qLJWxXj0UbctsOm5hn1ylFg2FjTFgXfb6wXAkMKjj8fMy5ZMLOLT8v41ltGbNt5PnFvqZMM7DpaGDgMqvhMj7J5zg/2kVfCDSU1adYpVLFSjKrqNhr29AGv8AIsgKQumH8eSSOiZS1aJODVUp+pyZi8iSQpzMOtGfQXnjMZjnL5HOz3W2oTFhohi7bXVtK7Dxek5QFoXoWKWTm8oKr2dYI25qhLLP5MHimPfsZXntmHns9C5fZWw+Wp5ke/owiPmibYz42hQoPiGOBxEINObyFG01+Sq52boN1EFbvOr8qHLrNiU6uKq8N9rVgNZ8ysCnNnTmzJ+2ZLF4Z3O6qlbR0wJi1bJ2x1++i0njR3I52+nLm6Z/Kdkjino1tOsH/H1x4pRf1rXy/vsFdWzEYSDc3bPeKmv3Ch9PE5cPRTbamy3Fghcht2aOokUdcrKrCePhiZzdvLgwrdDTDhdlb3arGdFRWV2/Jc0/Gmm2jq7oseGFWYx+QGJtuT2iuIbjLuX1rAtc+lcXBI1senXZYKhZ1cHgiwz2Gr988jqPmQ1dBHKcBzuwF30CqFTjLNYAlEz86edFnuQD2QqBjFmuA2S9Ljkc724JgdyIBAczHLO7CsMrFQzCL5RePDSQYt7K2Y9vLcG4bhEeI5+LVDUkR1plKPIwWK4hD7mY3JyaODmHq6pTZgJl4eLAYbGZ1cx5s+4DbnFtYHsWinFF1fqV8Fg5UUZkL+3eZCSxkHXptG8fsMnuZk1iYBWBlF7qwks2DR17h2WZS0mFklqmRzwJmNtyS+cGuY8EsUwWzRBby2iYNC7l7GMG2v5jTq30HmMy1cDfDvFcLbHg+1aFTEvPflhGCYFOJJ1q3CHvxTFb3wehbzMXcubXiwd0RE7NtZReyBcHT2bTK69wVWYGrwRiY6Mof6kXg9AQEjJCdgMXoCQHYExaqWITMBytr6N0uMzWn6hpkdqsSFWuoTlvYki+3bZr38ATlUG+5/QLfzBPWv7jWzLMww6LuiAE89pbdJluXADsbG9Iio+7Omp6eiKU8d5iuCLvdbakym2KzpoVjkipCZdQiLjEiRDbpJfJKphSzzTCw/9KUSx7FqQYUGFjkRg93krY6M888VwipqecuzLb7iFIkPHKNSl5nsJm9zFXysjLXAn47GrXX5q1pa7xqQJd5OTTzkvxz1ccPVlSXBuJu1WZpylI0j83GMzHh9gemJMyky8PPpZ0b8TQgt/pFrTB4Jk9mX7y9f+bMQhMyGaQ9eziVMLEw2UYzXjcfx6u3i5qITLot9qkGEzxbYDDGWc9rrhJcMWXjWXzE5wmD55m6NjiPI2Lfac0smhzDm24VScNg8JZ5NrYdOtuRxAzBBZCbHstXD9LSZXEjxyQeiSFpFqcBV4H0hS2eBFqgt8hLraCGvrrQOMw9YteyxeaFtSPBzGE7adkAoYJpofw17D7jMkIcEVnCJyG5rzpOWVyzYvUL8Lo7uXYKGJnhyOp8ykaLeWZ1ETg2t6mZcx4kn0ViSqXHVHHZcTR3MXBorjbC3z35mD81iCwcvxlsa6s8usOG4HxncSN7HSBtbVH28DBfTZ6ezt5tJ/dsQTKmDMkSyG7AEVZbFgh0hrG2IpcQScoH5lwY9653U74pgiqTDQ34zW0cnNmuojB765PUg2M+WIiKcMhjJjzGXDVCotqNZ6YeA748jofrNwVLq8boa+e0B7flCsMR0bl+7SwynSQJbtTSURhIL0PB4XjOyIOiS415FufDRyU3xTynTTesfKl9IDGzalxhC6wWotWtGHz/9GXQyOc40mVdAsxz3erVxWG8zHNyOLiNFEdaln3LyhjGc8Xo6ox47pI5I/GAxnPNELwqb0qiNm1Y2ECYRrA9pRqvmW/KQwtul4wK9TK1Mz15RAFPW0VkXmq2LNnnnZQZyZSrMpa5hr6LdKjwaHCAsbXggG3rMTbMNxdfdcnzlJXezilmSOquy1yjML+0uTpAsWltbAdDsJa05z4bLE8+m95zQtjVXSplzb4jVCThNswIRb2QiNS8ieXYUTG8t8gncaMOPLPaFKOhE4wNc66S4+nkGuLekAZsJPBcXRstHZbmDnDFOg78c83i8pLPpuHlPkTwdnu/LxQ/5pTZWI/JzS6Lpykv7t/1ZgO/wSXtuBg8KAOXLGDyVGbnWPjWOzYaU/RZ9SL8MuEvtW5ms0vicezNfCmnN3UJ6ArURMgntA4oP5TYYEGEbDfmGBQitl1mAo9EJDb+O+BjFouL2XbWLoe0mNTjWD/msKlH3nouHBAJGY46AaZ1zhUsgv3ECcEAvjpsNu5S25pizrTImhDV8bLaRXCpaXRJ4TW245ylSGBTvcYGFtJQVAa2E+F7qAUEMLuozVzIvqweAPTrFK94gu9dVUDo44kojtnqiOfxvBB2E/Yr5WuZuGEYpO6md+vQqEiaa7QWmID2NumcZxStQi8j1e0hsN71CGTss8q99pRZUuwQl7N1XEi7ilRsP1CZTpBcisBS48VcTrpK015L4EJuJKfDWcVmq8wtZ7n0TWsMFvJibm0IwTP5Z1LXUjh1KSiNdM9NlTerGvTiz2xIExA+78oceFAoJ11Mkkh3Xb3VSu3s70wnSRuM1TS3z+Q3n64QS7utGNhdjfQeWoR80AqppOGK50MDorPOwUMVKYuZJbkSGZg+YdeX4CFVYhhDiRcKbBu7ih3GiFtqklWQ3ppcKit3gGdxj3ZvtmBdelRYvdVoFUpCYm+viAPTEVFyov8DUoLEIg0OhdC8H+YH/yYJmseCMpGrrD/LJcDLLhbSSl8KEo1p7WzbsoJ+x9BqQTF6ZkmS97RDp6PrmtzDgXaHRTb9ZXcim/JYa3OL0kyLXetFrgWJsWo2kOhqDMkdVCm0LpZl6x72gAvZULeS/gajqRYP2I3pZ3kXTBae3A59DRUNi7CaUy7obVStWtm6RzW5F6kYHYQrsJDYopLRaifKHDZ50OxQL8dBscdI4E7JYvU2bp8lkHC3DvZcYtD3sqhSmJK4xE2qZFVTZN29VXRIqrimHa3Bdov8l8p2qTLFpaCxrQtJHUlWt9O8lABj2qdkaXAho5yHNZcsAavaglfMWMBiSdoC1lIjvhulVu9ALZr23cg6K5LqeW8QbE674V6LPqBJ266k7ZXAGhIAFn2e5DVZu3pMqLwSUemDhmiS13aQYM0ppW2dCuQmT4vgvjrQ4WCpERrInVAB00ZrLXYn2FlMhWQPQ3dDLXLZxTBla4mCtPNXTBuY5rnvVVx22M8thVpVeKOqNMG0QdIdF0kfckiXUJ0Kmh7JLZOa6SYdIAnShtFWOiqXlnZpPhPhXJoKP3W/lNQLdwtKGgtTA3allxUCry5e2s9D7L7aNTQ91ESjGNCNtXT5YOELJ1sfBotU3ab0OZb1oI4lYraXi0jziNIlEpQed3cDg35G1cnWT1SCWVZNmG7WGlGLIqkjJ3W1D1i8vQ7QyVB5R3XpsOOiDMu6CzoY5LNwGzCdkTBH6iXhfMwtd5uI3Wte0jMWAEcy0bG6t5EYpp2EWWdho2uxHeA5mZeiCszzRApYqNpSlkT/NKsRVojme3ajPaESwjbsNjIaElVy9t3TB88kh2Wfm91dTvaHOvnRlshS0ljbN6EvYaF2PX1UrDzLYHhtqKlCU0Ktfte4WE9cZlhkQcmQSxcCrDFOdRh7uHK9lQ/A0v7yrexRkHQWcaHVC0jgDQ0cvFuDQj20mbTrmmBpOgOnIXVF1H4snYEN2b4FfQukMxZoov/oapyKYJniY+GcdOXC75SLR0W7QhW47pQp6FBoXMauYm9nkAaFSEK7zaZslRl1Po9wC1oXml7RsOmItgVJIKxeGD2L6fswpiCH7sRwf7v7dGVVyXCQ9Uyjef2D1nnB1xcLGn3uoyehwvKiOZYHTQmSwGjPVFRzltd3dS2t7lkPimCqj++cQSSpQqCRp/PTR3SJXQJoUtGuCBB2dcmNNbjoVZW209iKLsPyyrevenAhrOSaziqSJbAB3Q0V8CzNwVYfshlS0XoYkgQbTRp/imWZy1iti2+ty4Vr9jCJrKqxLFUgzbYlNaioTKnMfZymbpVeg57dzw6dCtswxdvNdlhLo1sUJPRRAjfMldulKmGzG1pP4sBt5pI2K+8kx9wPWCZ5Lyd8w961oQEyxyh7DLLspsBgDiNND7ZK28lVdBmGpL6KAtoLqsQgdUoVnQW1SIgf3FjUjDqllyqy3gy9QTGtuRs9zNeUk8JUtBamrP/d6QfP8pU0Nc+oSAKHVCclbwIt+cs8Tq+iy2AOs58ZCWtV+0n7apFdKrj1hheNBBEfm8X0XmTSisETqaRjoGtiGG1SMhSyRiryxrbT5mIsCHrtgVf0CprrZ7JP6cTk+3aPitRIo5WZjUaWgCAYc0g2H1Uvl2LG7DmJ5kER9y/CIpjsnproVqAqhlKWgl5RTHjY3zGNZQlNKTv7regXtB2rjMPVzgVW6tEAtk4VQ+PS/WKVZoHOo3yqjmCzfkUqNX7fLhvrNL/3UgS4Q3cceQW5ok+ghp18+ySzoCKacXqKl5Ekqd1rBh0CUzPtHXa1eisGFS9pw1VKmhs1m+N40HAzuWccSXKP8EL3kqElMLxRIJs+wBoWiNpWuYoGgWXf6VRTwPb2c9sZWbUdhlnCUa+pgDvVarEIuzFSEV9rr2YYqQGCJNmOHjoDVdIBT3ErymlFZrcJPSVlwp5V96bgmSJIB2RoaekOu0uSDZ6Vy+t16mLVk1T2t6VCwd9M7DohD9gqNLygtGgr6v1q83lyLu99VpT8h87OfNSTor+GTFl7zFUtk4Qo1Whrl+RLCFCbbAlC4XcvAJT5SVquO5UBD+kI9txtd4ESv7ra7BZCwjvVjTYKsq8RtSq71TJZpe27fV7Plm8gNtB9h1K31FimnmnQfeuBOO9iLGR2xaptFcl22cWpaizZizFPRFFRs89ailpnk2dF3b6LO/fgHyxPOCyOr9icYqnJ7pcqu+vet52gV1TxVTX442WsMbUtLaMNN6pKdbrEB3D3Q1bRHuq+TDcJD7qDsjw7SVbZrdjsadq1swGloupPbgd9twm4lhcO25ZSUevXLoLGEnDY6uGw48QnNKyW9dXcsqDWrxKS7rFVxzRkMx4Mshr7IbV0KaJNo1WF+95N7OXWLRGq1XDxsfHUOJxgMRi7plmH7caVGhfp05ZLzwBf0FieqaR0tmhXVPuLlynyHkhU+dUu1YshmbL/ftgunYrqlQYLXtYDq5nEunNVNi9jcuoSQdXQ0qhxdllU7ErTnH/31cBTgVG+yHq3cemaHOuD+r8Z0eFyzJ1p7IuXS1uK9uDkTQmTJr90HqIlUC/xiexx1AXWtBBQ0RIo2srvRlvWhP3le3GhopbP1g/Q1gUia4BW9AOWO/NRjbW0ZbAnHnoB6r/o0nKoYmxllu21gW6AVUYvNae6uvZeyu5ug+VJYfEOPtjDchSJCvfwoEGgHjlbvaIiQdShSOsUIsC23JDKJbBG32B5KaAYB6khGly6Szl5ntXpTAzSTtitJgKeZTlF97MaW7pfAFd39XJqUXaRfurdyIUex8yCiwwG4ArZPFOBq+h+Ujf5UAh0B0KYb9nd4a56gm0SzuMRKYljRUwrRp+wz8MSL3S9lGMbHFVe9AB21ucc6YaRzkVCMjU/tGQIsmjbqJ5qBnGOYDKOov1fsJCY5Hn2RRE6F2mb7mKsbrWyi84sim2d5WjbAxlwLV3Blm5XGYX3nX6tYixNWaRXYxOPssQmmB0+mcFaljxYmEZ5erZ49qJzoGOpF18sgQtYUK9c9sAQGgmqS1m7Q00la9/FXrEArVpg4DwiJnQRppail010KtWly2v3xwgvRKhlX8kmNjJoSw2x989YjXzZKyoavMO0+n5wsCxzKVkzT0L9cEoqrHgUD1Yl+HdE0Diwtyym0UvLa3sM8VqEZVhZK7uEKk/Pp0BE6B+o2x/jSIVXJLQRsJ+HroKlPHqKd1fkZaC9dx9V++pFYZ2HaCx0j8yrcUyj2gxA9AvUpMAjCoBV91W4eSH0CsihOkpOzblO5xisrrujdpJK28HtrdxgWVKiIqCf0N1uSAUarKnP81SGkAApqHjvbBnLujUj2YpFR0HEWevy2hfZG00f2vMUVnWlEHSSP4Q8U0El2zMfomapiTQE98sV0jXF6tXpTd1Tk7Vcjy56pKqZFsHuN/d3ey2ioWBhfzsJCaGvQNIsn8Noy7Tapc9A6DNYsruHTF48WZZh6xpAb0GtJlKOvXKbvckkJSvx24T+gupR6+VNuVY8OZlLnT7hNQqdPKhsFJcIwbLaJUWhiZNGRrRLR+BZejXcYqPtoI3UNqz/RM3fpULwITsqSXd5YD/sbiRRG9rnKbs8RG2/wbSbw+CZCugRlI3WkkQFlXlPxcDzJHGcbVkkDQhP5KSmTLuSLFvJNlzShVBj1XZ1l9CIGNvnOEvzGMRL29+i59CkBnyuJUtjZJuPRxWEnoNu4yQVsbuIvZ8X7Ei0U8X3uui+rWQnFISWQ9eNRtNoywhR9VbN1s5Ykm+1U7ZtP+cz1aJK90ExOB0QcE2P1Xelk4aEEYgKJEYm9BgsP8kaEYMlKqSzbZFgMrKvYw+lSWtzYLVptOVdRTAboq7sUNHzu2dWJR/PhL7CuO/mpjF3Sphcy+k5U6/7pRAOVzxtwpvf8tSZPOfAGzZu2Ka3ZdHnnHpi9t4Om+fz2hZ6DerW9J0v2dmma2iagUGPYcplO0ClWb2tw04nOQuaSQ4oNEmfKtsuaNCeBs5jgqe8DEX17DoldBdor4dhLLy1lefZWkFSHveEpznLMqahjXua3hmVEfcWNElzwQ2/moAlJX7rnihtKQpd5tnCm5KnQQNO2UmKVRTBato00Fm8ZCfWrX8OXt8+TG39Iu3v5JNh0pK94ZIl7Qc270zhgXvdSb9B2LlcDD56DuaL83mHbw1PUPql+0N4BYIcUn2fUBoU6kdIX8VbS7Wpp1JD8oKPBwFexmvoUxRAaoTlXEgdzaI2dnSsX9X34tCYsDYV7Ti1peKKrRO3gWtZl75Fh7aEaoS9W8oiyUTgHz1EAs/zrXKmXNN4VZrWZLQlW1hf8qpd6p6cXDqv4HqeNTS5bNLA0GAqXR8x9pbCut10S94jkUzRc/yWlucuSBb9dULZoWgTJB2eJS48TbcLbsj6iu5BHEZjkxzVs3m5YRtP1tdVxnkXHuyh7yfuFx3Rw9Csl6woBNYkfe9KX0hqqJgtHz1vgzVpZHjUMPVuTRKvqZvJBJysJqnIJoUub1Pmsftg5ErgLSh9C8Uqhw0JUfISAU1jQf5xlX9JjUrf6tv7qcFWHWChvYbc0O+Y0k0pPtnQ8thNm+Kpc0Po2uVVj9G01dJYClVk2z2wkNv063zjKWSpW7Y9B2DhvSh9T6PoleTKpXFmvvRHdEVeNjU39EhER6QR4rUbeiL65lNeRqNqqvtOi54yXIV5Xj5sZVoGJD0v4zTd3b/Tg1b0NaipVca9xNCZaP7CigJdxSei45h8VaNJYiXVtY1pQ69k6isVffchwMVTdQNk1xOLNqWG+kvQqhqscNZTqrh03eno+WPDdprsOY0u9uq1RvTQ97cZ0CZR7bSMqCxrtaVp440WiezzNgLbD6bcaC9xNEdEp9v7rK2Kb9M83eiVZHKjH+DbFfDNHExtD9j+9E98tOf2TRCWmzMkzk5G/mABmI0PazyY5+M9v/7uyy9/jy80fHz3ly9Zv1aUP37Byz9ztsLGm9PEj+++//IrFrD+68d3//3ld9999es+nyVFRhhUOYejqxgws/Vr4ty+EPRt5Rk/Rp7zlaFvK8z6UcLcvlT0bQX69Y8RKH7t6JNEQubCnpmTJvt8Ba9NFet3v2WR+ldEun4y6eeRqH1Fott3l34ekeiHRbp9Q+iTJMKmMs4gMI+CRF+bRddPSX17Yb4Cze1bVN9emq/MHfuY1beX4yur6vY1rG8vzTjS+Fer0v5i1Y/9Hh6nIx/nD4h459y+hYdvbn0vB1LxmuVyIJ/jkp/Iz8l+zj4gOydNO0eiLPx0DqafU/ScKlEN/7QPSL9dgJ+6n1P9nH3Q/RyTuU4T9Rwsk7lO8nOyn7MPTOY6TOY6TNTLwfRzXObuMu+D4TJ3l7m7qOfAZe4uc3NR90F3mZvL3FzUc+Ayk8tMLuo5cJnJZa4u6j4gl7m6zNVFPQcuc3WZi4u6D6rLXFzm4qKeA5c5u8zZRT0HLnN2mZOLug+yy5xc5uSingOXOZnMZZmo+6Amk7ks8nOyn7MPTOYyTeYyTdTLwfRzTOYyTNRzME3mMrqfU/2cfdD9HJe5u8z7YLjM3WXuLuo5cJmby9xc1HPgMjeXmVzUfdBcZnKZyUU9By4zuczVRd0H5DJXl7m6qOfAZS4uc3FRz4HLXFzm7KLug+IyZ5c5u6jnwGXOLnNyUfdBdpmTy5xc1HNgMnNGpefkZaJeDqafYzLnaaKeg2Uy59n9nOrn7IPu55jMeZio52CazHmQn5P9nH3gMneXubuo58Bl7i5zc1H3QXeZm8vcXNRz4DI3l5lc1H3QXGZymclFPQcuc3WZq4t6Dlzm6jIXF3UfVJe5uMzFRT0HLrP7wezu7xy4H8zuB7O7v8uBy+x+MLv7uxy4zO4Hs1qkcj2AzH/5mfy/bBWXUpOGARc6647w8Y4WTK7nU7g+h+sjTffrBbYr3e7nP+gZri+36zWwOOdHWuON6/k9XF/D9ZHu4fo7fhqQXM6P9Lrjp+HKlc7h+kjf8dNQ5krf8XrSM1wf8OsBv0iPgF8P+PWA14MO+PWAXwt4RboH/FrArwW8HnTAjwJ+FPB60AE/CvjVgFekKeBXA3414PWgA3414FcCXpGuAb8S8CsBrwcd8MsBvxzwetABvxzwSwGvSOeAXwr4pYDXgw74pTt+Zd3xirTGktfzKVyfw/WRvuOn4eaVvuP1pGe4/o6fBqKX8yM97/hpmHqla7g+0j1cH/DrAb9Ij4BfD/j1gNeDDvi1gF8LeD3ogF8L+FHAK9It4EcBPwp4PeiAHwX8asAr0hTwqwG/GvB60AG/EvArAa8HHfArAb8c8Ip0CfjlgF8OeD3ogF8O+KWAV6RzwC8F/FLA60Hf8dOU4Erf8XrSM1x/x0+Thcv5kV53/DSVuNI1XB/pHq6/46dJxuX8SM87fpqCXOkcro90wK8H/HrA60EH/HrArwW8It0Dfi3g1wJeDzrg1wJ+FPCKdAv4UcCPAl4POuBXA3414PWgA3414FcCXpGuAb8S8CsBrwcd8Av5Rw75xoMO+UcO+UcO+caTDviF/COHfONJB/xC/pEtPhhv6Z8zz8P2Qd3go3nehbZ9jusdLThfz6dwfQ7XR5ru1wvOV7rdz3/QM1xfbtfXvcHxH9Nkm0DP+T1cX8P1ke7h+jt+mtddzo/0uuOned6VzuH6SN/x0zzvSt/xetIzXB/w6wG/SI+AXw/49YDXgw749YBfC3hFugf8WsCvBbwedMCPAn4U8HrQAT8K+NWAV6Qp4FcDfjXg9aADfjXgVwJeka4BvxLwKwGvBx3wywG/HPB60AG/HPBLAa9I54BfCvilgNeDDvilO36a153zI6153vV8CtfncH2k7/hpnnel73g96Rmuv+Oned3l/EjPO36a513pGq6PdA/XB/x6wC/SI+DXA3494PWgA34t4NcCXg864NcCfhTwinQL+FHAjwJeDzrgRwG/GvCKNAX8asCvBrwedMCvBPxKwOtBB/xKwC8HvCJdAn454JcDXg864JcDfingFekc8EsBvxTwetB3/DTPu9J3vJ70DNff8dO87nJ+pNcdP83zrnQN10e6h+vv+Gledzk/0vOOn+Z5VzqH6yMd8OsBvx7wetABvx7wawGvSPeAXwv4tYDXgw74tYAfBbwi3QJ+FPCjgNeDDvjVgF8NeD3ogF8N+JWAV6RrwK8E/ErA60EH/EL+kUO+8aBD/pFD/pFDvvGkA34h/8gh33jSAb+Qf2SLD9Zb+prn/aSNsvJ7tY2hn7f7CF/KHrLrjKHRbUf4tyrwISrs2Kff8HH+4b2q42cTbJlQv1fB8CER0NiALIKWrwmb8R7k+Fbisnx4H/SKI96UaB0i3rdy/ZShd9Hx8QDbj7eQ1O8/IPCdc/+HVRF1cCAv/7bpq02OSa5/SqUgMs8/7ciiveTTrh/6z6P+SW6ZcJkeBGTwnVz9VwTSHaF1kCm/FzTwRYs5kNOnj+/+/PErjKD8YPvr69o/kG5XxL/YlTmouvww3l3xG/kBH6bttytshvyDK/7tzQ+p2q1ke14/P9TfyQ9475gjxesPSX6Q9+lZ3ouGbxWxGfKUl379RqzyW3v6wq36jwCrvbsVpTeK5PJOqvlTn/Fewbe3ejdSrb/T/O2gv5tYP/0ZbyH5WQb9Bx7y02Gcb37I+c2Ep9++w/eycfaPX/4fw40dywplbmRzdHJlYW0KZW5kb2JqCjIgMCBvYmoKPDwvVHlwZSAvUGFnZQovUmVzb3VyY2VzIDw8L1Byb2NTZXQgWy9QREYgL1RleHQgL0ltYWdlQiAvSW1hZ2VDIC9JbWFnZUldCi9FeHRHU3RhdGUgPDwvRzMgMyAwIFIKL0c0IDQgMCBSCi9HNSA1IDAgUgovRzYgNiAwIFI+PgovRm9udCA8PC9GNyA3IDAgUgovRjggOCAwIFI+Pj4+Ci9NZWRpYUJveCBbMCAwIDUyNS4xMiAzNzUuMTJdCi9Db250ZW50cyA5IDAgUgovU3RydWN0UGFyZW50cyAwCi9QYXJlbnQgMTAgMCBSPj4KZW5kb2JqCjEwIDAgb2JqCjw8L1R5cGUgL1BhZ2VzCi9Db3VudCAxCi9LaWRzIFsyIDAgUl0+PgplbmRvYmoKMTEgMCBvYmoKPDwvVHlwZSAvQ2F0YWxvZwovUGFnZXMgMTAgMCBSPj4KZW5kb2JqCjEyIDAgb2JqCjw8L0xlbmd0aDEgMTkwNDQKL0ZpbHRlciAvRmxhdGVEZWNvZGUKL0xlbmd0aCA4MTc0Pj4gc3RyZWFtCnic7Vx5fFNV9j9vyb6nSZomtEmaLrRpm7ZpUgqFPLqwFShLiy0Y2kKRgkArICIwFkeRRWVRR9FhGNxHnd8YS8WCdURRxnUUcXTcURHXIiqjDNK837k36eIU++H3+/D5wB9zXt83595373v3nHvOueeGPIABAD0CD1A53ZtfMawzD4BRY239jLJJNcu/W7MYy4sAJEfmLm5oGZvyyfcAsol4/fq5K5Y7J94zmsXy69hm+2Ut8xfvuuWRYwCKJgB2+PyGZS0QDwoA1X3kKfMXXX3ZjmXxHgDNKwDx6qbGxSuP3DWlHiDlnwCJ1qZ5DY1vxo3Mx+u3YftAE1bo/qxcDjD6BJZTmhYvX9mYqgoBlJgAuI5FzXMbTD9ry/H+7fj8Dxc3rGzhlrB473I8wbmkYfE8m7tgDpa/weszW5qXLRcrYSXA2HHkesvSeS3ylm8FLJPxngGWNzBbQQJyyV0SH/ZIjX5yu2Al+6AcWJWU5yQ8z6KugOgNe0Zp0nSnE0u5yUZpUqQWXpKrmL84gfkjucaHJIfI02gPBhhCoIZTchHkIBcjqB8lopKiClSIalAjakAjdoMWtIg60CHqKRrAgGgEo3gG4iAO0QRmRDNFC1gQ4yFe/BmsYEVMABuiDeyIdopDYIh4GhIhETEJkhAd4ER0UnSBS/w3JEMyohvciCmQipgKaYhpiKcgHdIRh8JQxAzIQMwED6IH8SfIgizEbMhGzIEcRC/kIuZCnvgj5FHMh3xEH/gQC6AA0Q8B8V8QoFgIhYjDYBhiERQhDocR4kkYAcWIxTAScSTFUTAKMQhB8QecgdGIoymWQAliKZQilkGZ+D2UwxjEMTAWcSzFcTAOcTyMF7+DCTABsQImIk6ESYiTKE6GyeIJqIRKxCkwFXEqTEOchvgtTIfpiFVQhVgN1Ygz4BLES6BGPA41FGuhFnEmzEScBZciXgoh8RsIUZwNsxHroA6xHuoRG2CO+DXMoTgX5iI2QiPiPJiHeBnMF7+C+dCE2ERxASxAXAgLES+Hy8UvYREsRlxMcQksQWyGZsQWaBG/gCtgKeJSistgGeJyWI54JVwpfg4rYAXiVbAScSXFq+FqxFWwSjwGq2E14hr4DeJvKF4D1yC2Qqv4GayFtYjXwm8RfwvXIV5H8Xq4XjwK62Ad4g1wA+J62IC4geJG2Ch+CptgE+KNcCPiTXAz4s2wGXEz4iewBbYgboWtiNtgG+ItcCvirYgfw21wG+Lv4HeIt8PtiHfAdsTtcKd4BO6keBf8HvH3FHfADsQ/wE7xI9hJ8Y+wC3EXxbvhbsR74F7xQ7gX7kO8j+L98ADiAxQfhAfFD+BP8BDiQxQfhkcQH6H4Z/iz+D78D/wF8S/wKOKjEEYMU3wMHhPfgzZoQ9wN7Yjt8Dji47AHcQ/iu/AEPIHYAXsR98I+xH3wJOKTiO9AJ3QiPgVPIf4VnkZ8GvYj7odnxH/CMxSfhWcRD8BziM/B84jPI74NB+Eg4t/gb4gvwAuIL8JLiC/By+Jb8DK8gvgKxVfhVcS/w2uIr8Hr4j/gdYqH4BDiG/AG4mE4jPgm/EPEk+Jb8Dbi2xT/Cf9EfAfeFQ/Du/Ae4nvwPuL7FD+ADxA/hA/FN+AjOIJ4hOLH8AniJxQ/hU/FQ3AUPkP8DI4hHoPPET+n+AV8Ib4OX8KXiF/B14hfU/wGvkHsgi7xNTgOxxG/hROIJ+A7xO/ge8TvEf8OP8APiCfhJOK/4EfEH+EnxJ8QX4VTcArx3/BvxNPwM+LPcEZ8Bc5AN2I3RBAjFEUQxVdofOdonFfjeorrDEZdPdYoMcIFMJpVYXRoQD9egB7aDMuTjaKIbXL7XWuk15bAUnJN/PRsx4fv0Sf8CkmTpCbJCckhfg0f4j7Ap4P4ufhxZGWkMVLL3YZxHtBDHkabOogz20OdaC2EVqBV7kcb6E/Xonc9gBbxLuqwh7aj1zyC1tyfttLa+9Ab/oJWvQ8tD9C/t2Ht/egPfdSMvr8F/XAXHGYSY3UHWBMTHcGXoGYPMcuYzai5LIzbl2KEugZjRhu8wEzEupFYNwVrl6J2b8HavWjDA2kk6jKEEXEJ+tpe9AdCmVhbhfpdSOuidAVGtY3o7w+iXzUjvx7He9dZ7nct62JdGCU/w54vMb9jD6JED8I6qQlnFnB1d5BVnuoWMOpApBHXK+DmsCfZe9ht8Ci7ECYK5uqqwkC+Nyc7Ky3VYYozGjRqCc9mOcNcarm73N3QtMlZ3uTc5C6rL8vOqphWU15md7lqs7OcWF3mDDP1zvLwmBVN1k3lpEHY6AmzqeXkXBgWbqxHxl3mcrnwSlzflQ5x/039LjkXhIWGMNzofCxr/6abOvQwp96jbnQ3NlxaE+Ya8FmPAQ6mqaqGjImc9U3OMI+9KdixJjZEcq2pHtFdhr3OWo/VitKa9a799rARP8vDBk94LLYYu+qondtUbl3gJMVNm9Y7w7um1vS/6iJYW1tr/YUaxrjH1G/aNMbtHLOpflNDh7h2jtupd296rKJiU0t5vTMMU2rCDNbvu9EeHnNTbVhf38QMR5GJHGOm1QTtLgPexeUi8t7YIcAcLITXTq2Jlp0wx94GgtdTG2bryZX9PVfM1eTK2p4rvd3r3VTXpTWcncUbV0x3V0ydWeMs31QfG3CsZli09BgLJY+5mQ1THxOYDdNn1uxFx3RuqKppYxm2tL6klqiRLa2q6d8LT9KXWiCHuSKL3sxgxOCw7Din426GZR5gZ7JfsF9wG7mN/Nz/5xHmwxL12Q6plh4HZKHY8Sw55Bo8Diqa6XFceVS14L/HOR83QHRvIWG3hK7+/o06XfG/wC6nRvDwNWUZ5PPZA498cUbVfavqVjlpqUDLiBJLijKQEnuRgekJKe5UyOl99YNXKeTlugwuQyoCg61Or5XggoafgAz2xjzsY36L5FvchbhhvZAcYIpUBeoRxhHWgqRyZryqTF1hrLCWJanN4xWsazyn1HWIJ/eo1Wy1zgUd4ol2nY6tRuakYFepkLOSS7AzVZfqSGXtalKyu6TYUIgjLaV6hQJRTdpKt6fof/R4PF2eUOwTgl3BrrzcEKNnXU7WoDe6nEYmEPAXpKWnpbmTpTKp1GyyxFssvvwAv+XnyKnIyZ9OMwpG/VPk3+6EhBT31XWzV6ckJ1hSXFc3zl7Dfhlpjmxk1jCbmJuZ1ZHWM49Pfe+u7UcmT5o8uXLC8c073pg+edpk1DxjwVheLHkLd1wbBL9kjFSq5rTcOEauMzgMrIR16BidTq2lwmg1arW0Wutkg1wz18JxnFqvZ6u5DvGIoCICchYiIEcUkkiE5JJIL06q0SDqNRopIrkD5/XEKOTr8niK8r0hry8Ewe78oM+LOnC5/Dhj/vxAYSBQ6DO4+OIz7zKByEvBrak5fv73TO527tgGsylh0ujTz6Lt3I0SbJOcwN3cx8LUKY56ByvhpAYLZzakGEZIhmn82mBiMKnIUSEZpynXViZWJo131HEh3KfOUsww1CXMtoeG1CXWJS3kGqXzDHPMzUkt7HJDq611SGtSKkrzRTsZNIuMECQc6PS6bLl3SK5O0El1ArUHQY3S6XSqCXEs65jAyB2s3GVRE6VY1EQpFp4oxEJUk0A6WCzkThaLc2eyLtmRzKIi73Tpf0RNEKC66TIWUZV0+bAcystFYEKomgBRC5oFsQk3lnz5vNlEzIP8ufhtZ/QLDs/av/nOjbPenKcc29X8GcN7MtMXVFx+dC7nOjSzvXbfe63LrxNK3nAP/+Cp6ltLRq0cv+D5KtTjg+gNa1CPI6FD2KxSSbw2ldmboUrzZhQXq/ymvOQC7wRVuak0udQ7g6mV1KqqvQtVl3kXFq9UrfAu968uthUMLxvOjhiO+mWyDdlsdnbGBIcij9VpHBpWozFMUCjdrkJqSoU8MYpCKdFCYVKOxcXlJA0v5NWcjZqMmprJrqAu6Aiy6rtG6Y+F9Mc8HkN8kb7L6yX66QKimFDQWEQ+vN1FRSHiPBZLVBfu5LR0v486S2GvE7n9WOxzqKjyiEuRPmaLhdfmjppQWvHy1WtOTNJVH7s8uDkrJ9uXnb12wswx2x/PyfDMGVX3Vh3R6eIHSsdNePSq3DXsq57fzr/s4eCY0hHuQ8MmZGZkLZw6ZUGSI/6B1lWBqTabqWzUIfeIoVm5G2at2WvVyn0YdSahve7GLEoJGjgiuHiNSZOiKdCUaVo0UrWVSK7WjMO5VEtlCs14RoJZDTEaabVEwsk4Th5UVipZpU7n0LEyNY8m1U50hswPgpY0451KhUZaKWWYDvGooCKGxyhJEyyfbid6R+a4kE/aMoxO6pAGpZw0jfiylKWBytovUNHpktJhSb09XkuZkLHIR/23KORF78Wp8HqKu/ONRUV5ucx6fTe/38OEGLfBjb7M+Aw+l4Hhd3+wv7uQPdTxQWRu99PMvZEQc+8xbtyZpeyu7vqeiPygpAuSoRB+JwyTaiyaolRfnq9wfGpJXmlhHTNDM8U5xTXPdWWe1sZljE+Mi4ufkMjpWD+GZ1uW1+h2gVGBMfl4X3CmGgAqB5a/EXREBbCjSFfkKGK9LgUJ6qSxYvswjMVd1NLQ1oipoSwkLhuLuvO9XnRIYmImIMaVxvoLjIWBFGJAZjcxKJD1mJPsrDH7wcg/3lnSXj4jVB2qYSx7R0zJUA65YsTbIpir7r28btvEmtqXC4M5LSOrb5nEsqOLci4PbnuA+fTTyMdlpdMZ4zMHmfyrrmhVap7W2SM/fObzu/0j990cWpXtNA3NtGQ4dj7hz8rAfBZWiR/yOyQ/QAIMhUJGvhfS0EA0KF5qR4xJ6WHcPUwyUdMKwmV7Csy+5IL0Al+ZeXRyWXq5b4p5VsJM+0xHVXKdpzarLq/KV1VYL5+jnWOck1Dvrk9foV1hXJ11gzFRyj6U9oCXTbMovTyXOFbP+sfhlDghjomLA69Sk+ECS5oTLHQe/hDVvtOloTNE1K/R5Lukd+AUkICHs3AUpwDnAMHg817RRddHY3xRCLNGIak2a2MWm5GVz/m9Gd4A7idmuBvdd6ZJbU43l5ZoIO0o1OKMUZul05biLwgU+tPS/AUpsaiJXs/RUBqdp/hAII5OXjqdOTJtOyKHj34f+XjrdSuXMaZ/fMQor1l1021d96+95u6p01JvLJk70TF1hbclNHPxvi23PMr88RkRTh9Y8+IIqbB96Z+OvHX/vAOF0uIwW3l568rLxi3IMA6PK9ncvezS5mGWtOS8Py1cH749urvlj2NEkMEyIYHh/VL0cp3CoahUcDCLYYk3MiZ08B8FJbFdflalhISFrwQVcVqJnBg4KbeTlsh8TyMCrSHtkRHpGibpceCTnm7PUeKz3fnoqy7qoi7+ePc3B7u/wZG4Tn8kcYVJXmbDxGw2jkwKNwmXjWXGsayEl8ikl0hvwJBhwhYSGX8JfwPP8SaO5eRMGVPB1rDLmDWsFDO6KzmG41h5OUzgWJbheEiB4TATt6TL8YZL5Do5g38qzsP5uWpuHreak3KNMoz1IVwFQzjxZIShaDwJYUAJ7Scg349RhXExPoaRzO7+JHKq+5M3mcPMYcmh0148P5EkYRxpwjiSyK+ENPAxC4RatZJ3JyjNbt5jJHrIophNsVY7NenSrAXa+sTm7NXKVaaWxNVZSlY+dGSuQTCwBoNTXjmEGTLEGnTyeaPlSkyMEplEQ7pfILpmiQf1MkTphBHo4s7aIFEFUjJDYKQhqEM8JhhoWKIBFmw0EHWIZ9pjsYnmUZhg0IHR2GVWKEjCQXIn2ObX+R3+oJ/L6RBP0YnNIU00pEuOnHTJsaswxAuF5JkqGr5VctJONYQ8T6WmvJQ8TGUhN1bR9VelJLdXrSugmWiUuoiVRANhlDAcdpPP/Hwa67vo6mvAkB+KhkXiYiGX2y+Nrb7E0wIphWddbTmDNBYaiYMlPplQPdS7atodbyyedxmTdF925tCWkRP2NCgLX5+34lEhWPLkjC/LpjYuv2rufVcZRhrjHS/8vvUP2dlOeaJQZY3Xp6c+rUtJ9+bcsiiSyBRKTHHxDdX1DZPQBhahDZSikcaBk2GF1GJb7pBhzkpbyZBxzhppk7RFrzAyrEFiHa3lGXlSiURpMP3KfGqi85ksxNaUHwU3nVbqeKCntTTNg0w6k8rYxB4Xsul86qJpI53FWzDdCyb3bA9oPmy3y63kTvIOMSJ4yN3k9G5yumGQ05ZymjDJaWIkl5M7yde5+iasyxPbSMSom04ViZkYNIuKgjhDdHLcyayBzAydCoOPM6TFgh+ZidLOqeH5L3w9tbzs8YaaDRWdnRNXjt0Z3nD7lPuuHDOZKWAMmz+cPHFKajpz9LTIXptse/+lv702lqzaC8VjfD2/Bqy4B39BSE/jPZpcfoSmOKmUr9BUJM3UTLEs1NTHr9SsStIyxQ6HbshIM68iCTXNa1QqWVCnUKtd1KdcNKNOIFrWUM4Gzph/nBTKqA63uHQuhyvo4hwMVQ5JbzCXsRupGo1UbUY5uWKkajPS60aWdDauc/YoCpWUH9KfjFq7z0szSg/Rl5duxFw9S3ehz4yac4JBD758ozlm0Hz9mRdHBQq2zFj6eZ6y7uDiyFeRFxjPyU/+9QRz6+137Faz9vl35uXmzsp6dWiAyWbMjJEpiZz6IfO2e9quR509isHzOsl7dOd6rxDHlLGCSlPIclKJRN6qYBS3kMAgZFHJ63lqDzwVlpcS1+WpJfA2hmZsTH0rXRE+bKcLQu+OTKKOrQjHexaCH3uWhjPt5DZkadhDl4YN8l77CR2l9uM56jlGfD3oQXUwDGbPnNvgY6578011Z6fEeuB0Kh8ia8STCFehn3HwGyGdZRg5GcstMYeIpl1yGsbokMHWypDMNDpUpneoDG3P9AyVIfOvopPLk85YPrWHMhv4voHSYdJBkmWMjO6qzk66LpHvPPk6tEkLkyHEcWaL+Uoz7kHlJXG8VsJo5Gf19FNUJ2x0l08jOFlCqauTyYin7s5Td5dT6ZJjhhlpj3n8ERLgUUgaMYAGVqw9JQylCthmdVjrraxeRbWiohKrqG5UVDcqm6ZHMcgcoSmspkcjml6NaGhHDU0AyNM09BZY/o6u8oTZQ56s2RDfLyZEw/cvogSxew8Ei2mQoCHC0BuvMSfwmWmcMPN1nUZrwuyKSX+a1NlZ0zn38b+yayatT8vMmDjizF/50Jrx0959lUaBj/krUOMqiIfTgm2EtkBfYBphqdCW6ctMFRa5LqjgzUFOqY4qmq1W96geme+jQVZtTxBiOj3THls0j0TTnNjXKx3iu+1UxUQvVKtRo6bMaWEkVfnWBF2CIyGY0JzAG3kaDajGjVTLRrvUQrc20W0OjRNSGiekJAAnkLuT72oQebrt4ck9peusvwi3/eNtF1Uj/f4GcxM9ZprRWAG9uSUJr1dEvvi6K/IlE9/1NWN99uE77nzo4e23P8LmRL6NPMcUMwY8RkYORL595/Dhd9545+2oDXNL0cmM0CmYQKPXODWcWqFDyy5V6iQKOckoevY5J4Sh1AbBJJhaTKxaRo1ERuWW0ZAho9LLbIoeG1P0Op+CNlb0hAcFWboM5HaKFKINhZL0V5B5I7dA5t/UwBQb4gYamIHsDtEjcSvoNUS3TO7/NKl4bqkyszJwyT24yLQ8UpuXlcVtVSomjTzzOR+6f2aFREY8eIn4Gfc25nA+ZrpwiZRV2M1sgj1NkZmSryhOKVFMTJktCVmmu2Z4q/KbJYss9c5G77x80ypJq2G58+qhyz2bmA2adbb1Q29j7rKrQGvN4JO4tclMskAmPzk5bVQSLyN7a5ooyWSqUZzCpSU25CHKyKCay6A6y7D7qVVa6cpipZtpK3U6K6rscdLEqu0xZi3d0dBvyuzgsspoDImZcm8wwRY0gJhiNt1ryqd6TPmUkE5NeXMs66vzt/olMmq4Mpq8yWx0Om8ooGlaX7JGd00ej7fXMnsXNgS6KyJTgvvY/l+S+AvS6bYnLZq4Bfq2tWi98XRrhAf3dvd7a14bo6x9t3HNTWlpi4Ze6791ddHwYf9zeeOrZcpxf587f7Mnc3bBtZ7rxo5lSu58boT7cGnllBklyclWhVWbfseS8lW53sI894v+8ZWTy91ui9qqTBo/Aed6lPgV2y3ZCXZoE0rUEpvEI+FUetkojUopsdvjg5yiMrE1kdXCTYlyjZ5aq55OkJ6uDno6TXqbUi4TNPpCnNYPBQNRtcxJzDvmCz3mLes1b9kQYt4yeg+s/S4ahGTxRPOyDUP6x8r8/Kh9e/U/5tPvKr1Bnw8RlZkazXgNuEIafAaX2WXoyxzYbv9v8h5pa23tZK6PrJFbLZMqcxotSqXW2PEyO20nMzry9M4IVzPXMzTVriBW/z5bLAmz7+NqmiQYoErHYu4qYXIlgoTFy17MukOASTdZ7/wuSfjnLP5NtngX0H8jATihUCgG/nuejBCQ49dJBvK+ghT/pPSfYfCPcLyUH6TvhSOZUqk8S+05ySvrX8A+EJOXcBervLjjUA2s/T/P7wB5JRepvLgrUA+slRMivyYbpOcv5JWTPhCTl3ASmeR8D/W8kEKj0QysPRd5FdDP8c8ir/R8D/W8kEKr1Z6lltAvJRrYBvo5Pkqo6JWXRECp/OKUF7Mt3cBaJSHyi8hBev5CXgVQKWPyKi9eedV6vX5g7bnIqwRV/wLQOC8hf4STKgaLdReONAaDYWCtihD5resgPZWg7l8AVa+8hJNdpPJqjUbjwNpzkVfVX14V6QM98iInv0jl1cXFxQ2sVRMiv2IepKca+gV2lFBN5CV5FpAVTq68OOXVm0ymgbUaQuT32oP0VIO2f4FKGZVXg5xCOdhaduFIbzabB9aei7ya/vJqSB/okRc5herilNdgsVgG1moJkV/iD9JTC/0WMpRQ2yuvlso72Np94cgYHx8/sFZHiLxzMEhPLej7F4DmLVReHXJK9cUpb5zVah1Yey7y6v5DXl2fvNhNqbk45TXZ7faBtQZC5D2SQXoaoN9ChqIbiPhkn0Q5tXawtezCkSUxMXFgrZEQeWNmkJ5G6BfYUTFGohySVwJZ0dW6i1Neq9PpHFhrIgQmOMtS1dcG+gU6XMNNZB2n8hJOaxgstl84srlcroG1ZkLk/adBepogvn8BzEQ5VF7CXazy2lNTUwfWWgmRt7sG6RkPCX0FnOp4Mt1k30A5fdxgse7CUVJmZubAWjsh8u7aID1t0M/xUXQbEZ/kWWBHzmgZLNZdOErOyckZWJtIiLyfN0jPIdH3DXoKkEiUQ+VNxJLJOlisu3CUlp+fP7DWSYi8fThITwck9xWSsIwnWbB14ETObBss1l04yggEAgNrkwmRNywH6emCfo6PikkmyqHyJmMEjB8yWKy7cJQ1fPjwgbWphCAVzhLKeikFhvYV3FjGMypvKnIJSWdJUy8C8paWlg6spf9AQt6FHaRnBvRzfBQ9k4hvJH+ZGejNbtv5Hup5ocKKioqBtbmEgBy/Tjng6ytko+bIiy1m8udFRTjTk873UM8LjZw+ffrAWj8hIMevkw+K+goY8wry8NNK/vxYcnvOksZcBFR26aWXDqwdTgjI8etUBMG+QiGW8YzKO3wYQHpuyvke6nmhisbGxoG1AiEQ+t7vPwuNgrK+QjGW8SQJih2CIzECFKSf76GeF5pGfl0rV0WmYaKQdUYlylS3Dnib9Lh8sBdM/48kscBGiYWx4OfdeD6I56Se+tjnqvP2sHMg/nhsXCvhnCMs/3do6uXPwCL+OVjY/zqbT3691ss/Se+vh738e33tuIVY9sASLh0t57/0XzrPJL0J3qduexzmgwwuBwl9X9QLM9AmlcwLsffSZTCTcDz5tqoRdsR4BrSwOcazyK+N8Rxchl4S5fl+bSTUd6K8lNbPgHmwFJbBAmiGJZiu+nG9z4U8WInevgDm4rVmvNqM91uOq0i0dSM0YNsGbD0Ny/PhSliEpaW91892NyemSgPvmPEfd/jl/R/CXvk0OwkgN7C3E0qRWwotFBuwJvrcHLwyGu+4iI5wAfk/N/Dasth4l9FnrEBspJkcF50HcSJ9738A7YUqcb+Q1JaRH9C3OduEtiltLW1r23a1hdtebzvSptzfdqKNJb++ank83hpwlDG6GY4ZbGV1XTXbXMX8serRKnbq9Hh+2nQLP32amZ8wfho/ZnwhP3Z8Pj8Oz/H+Ir44mM+PDI7kRwVdfGkwkS8JTuNH4yngGfTn8/m+Rt7nL+D9BVV8gT+Jf73gSMGJAq5DPL67PXVcoEM8srtd7w6QHwNp2hW6QLttHL9i9w27cVgndu+mLU4L4m5FSmC3aRy/cUMc37KoZSWr2/HRTlb4gyUhIOyw2APCHfHI3R5vD9ywLs6hu163TrdZt0W31XG9Y7Nji3fz2nVrN2zZtnXd1vVbN+iE3yr0Ad1Sx1JWuEKhDugWM84XGOffmODBbw+yzueF51mYw8Ac/RxWaNjVwOpmMdkmA59lSuU9piI+0xTHZ5jMvMOUxLucpbzTVMy/aCvnbfaxvN1WzNtM5KWWIj4Oh2s02XgDni0mRjCNLg3otJkOkDKaAxUO9bMVDuX+CocCT0lnhYN/qsLB7a1wsPsqHMyeCgc8UeE48GymY//TmY6nhBmdLse+vS7HE3tcjmcPPKd5ev8zms6n/qreu+9J9Z4nOtT6zrWdrLB37V5Wtye4p3JP6x5et8eLbDOyT+95bY+4R65UFPJqDSvhWfIeCLBTJEwHIzJhYwVUVJWE4xj8nF7ymCLfUxFunFay7uabE8O3V0yrCa9NrO2QY5uaMBNmNteG5RXTY2x0z7Fs+bJlnrNQmCsPS8ubGsJSd9kyUtCSgtZdhkxYR3idu8zDhE3lTWETcgNusqyHPMtiF6MPogBXnu2ZZCzLET2e/wUhU9cICmVuZHN0cmVhbQplbmRvYmoKMTMgMCBvYmoKPDwvVHlwZSAvRm9udERlc2NyaXB0b3IKL0ZvbnROYW1lIC9WZXJkYW5hCi9GbGFncyAxMgovQXNjZW50IDEwMDUuMzcxMDkKL0Rlc2NlbnQgMjA5Ljk2MDk0Ci9TdGVtViAxMDMuNTE1NjI1Ci9DYXBIZWlnaHQgNzI3LjA1MDc4Ci9JdGFsaWNBbmdsZSAwCi9Gb250QkJveCBbLTQ5NC42Mjg5MSAtMzAzLjIyMjY2IDE0NDYuNzc3MzQgMTAwMC40ODgyOF0KL0ZvbnRGaWxlMiAxMiAwIFI+PgplbmRvYmoKMTQgMCBvYmoKPDwvVHlwZSAvRm9udAovRm9udERlc2NyaXB0b3IgMTMgMCBSCi9CYXNlRm9udCAvVmVyZGFuYQovU3VidHlwZSAvQ0lERm9udFR5cGUyCi9DSURUb0dJRE1hcCAvSWRlbnRpdHkKL0NJRFN5c3RlbUluZm8gPDwvUmVnaXN0cnkgKEFkb2JlKQovT3JkZXJpbmcgKElkZW50aXR5KQovU3VwcGxlbWVudCAwPj4KL1cgWzAgWzEwMDBdIDE5IDI3IDYzNS43NDIxOSA1NSBbNjE2LjIxMDk0IDAgNjgzLjU5Mzc1XSA2OCBbNjAwLjU4NTk0IDAgMCA2MjMuMDQ2ODggNTk1LjcwMzEzXSA3NiA3OSAyNzQuNDE0MDYgODEgWzYzMi44MTI1IDYwNi45MzM1OSAwIDAgNDI2Ljc1NzgxIDUyMC45OTYwOSAzOTQuMDQyOTddIDIzNyBbODE4LjM1OTM4XV0KL0RXIDA+PgplbmRvYmoKMTUgMCBvYmoKPDwvRmlsdGVyIC9GbGF0ZURlY29kZQovTGVuZ3RoIDMwND4+IHN0cmVhbQp4nF2R22rDMAyG7/0UuuwuSuIceoAQ2NIWcrEDS/cAia10hsUxjnuRt59jtR3MkMAn6Zd+pKiqD7VWDqIPO4oGHfRKS4vTeLUCocOL0ownIJVwNwp/MbSGRV7czJPDodb9yIoCIPr02cnZGVbPcuzwiUXvVqJV+gKrr6rx3FyN+cEBtYOYlSVI7H2n19a8tQNCFGTrWvq8cvPaa/4qzrNBSAJzciNGiZNpBdpWX5AVsX8lFCf/SoZa/svvSNX14ru1SzXf++o4TjdloBeiXaB0GyjPiKgyp8osC7ThRBXRnuhEVAU6HjwlCU+Cn9vk7O7jYZunQcRpZhpTJ6JsRw3JSM7JSELBIwVzCpJgex9G7Zc9LPd6LFlcrfX7DUcNi11WqjQ+7m5Gs6iW7xdil5wlCmVuZHN0cmVhbQplbmRvYmoKNyAwIG9iago8PC9UeXBlIC9Gb250Ci9TdWJ0eXBlIC9UeXBlMAovQmFzZUZvbnQgL1ZlcmRhbmEKL0VuY29kaW5nIC9JZGVudGl0eS1ICi9EZXNjZW5kYW50Rm9udHMgWzE0IDAgUl0KL1RvVW5pY29kZSAxNSAwIFI+PgplbmRvYmoKMTYgMCBvYmoKPDwvTGVuZ3RoMSAyODg5NgovRmlsdGVyIC9GbGF0ZURlY29kZQovTGVuZ3RoIDE3Njc1Pj4gc3RyZWFtCnic7b15YFTV2T/+nHvv7Nudmcw+k7mTmclkMklmskzIhGhuSMIWlihbAkbCJotYQlhcKhKrFgErabUqtRW6uLRqGQJicKnRohURwaWIVgUVd9NSi762Qub7nDMTJLb29/b72/74vvfO+Zxzz74853Oec+5kAgQARAQBYOq0eEWXfq8GgOjRt3Nm0+S2KcEl38Pn5QDmWxdcNq+L/6XwHoAVg+HWBWtXS0OJt07i860Aqtcv6Vp82YYT9yoBPF0Aip2L563qAidgfoEQLWXx8isv4a/8Xj9AQRFAxcklCy+7YmHH+38EmOEE0KiXLJq38OjN767E+JgnVC9BD8tfNNcCXCzhc2jJZauvmPyMMIDPTVinruUrFsz7+OXjmHegCsMfuWzeFV3KQeWDAHN347P0nXmXLQr01nL4/ArG/0XXilWrMyFYCDDvChre1b2oK/X+swZ8vgPA1Aw8nyS9oAC14ieKSkwRztr8driEsxAFxyl5haDgeOwr4OGca/rkRglkkGC74qahsaRSFSCPykAymQxGvFUxiZYG2VQ8oZeC5wlHCDgVn+oG4Et1BtSgzgxhX2kRtQx1oMucAT3oEQ0MjWBANCGeBhFMiGaGFhARrYhfQR6YEW1gQbRDHqID8R84DjZEFzgQ3Qw94Mz8HbzgRvQxzAcPoh+8iBLilxAAH2IB+BGDICGGEP8LwhBALIQCxAjDIghlvoAohBGLoRAxBhHEEijKfA6lEEUsg2LEOMMExDKnoBxKECugFLGSYRXEM3+DJCQQqxmOgnLEGqjIfAYpqESshSTiaIZ1UI14HuJf4XwYhVgPNYgy1CI2IJ6EMTAasRHqEJvgPMRmxL/AWKhHHAcy4niGE6Ah82eYCGMQW6ARcRI0IU6G5swgTIGxiFNhHGIrwwtgfOZTuBAmIk5jOB1aEGfApMwnMBMmI85i2AZTEduhFXE2XJD5GOYwvAguROyAaYgXw/TMRzAXZiB2wkzEeTALcT7ih7AA2hAXwmzERTAH8RLED2AxXIS4BDoQlzJcBnMz78Ol0Im4HOYhXsbwOzA/8x6sgAWIXbAQcSUsQuyGSzInYBUsRlzNcA0sQVwLSxEvh0sz78IVDK+E5YhXwWWI34XvZN6Bqxmugy7Ea2Al4nrEt6EHuhGvhVWI34PViNfBmsxxuB7WIt4AlyN+H65A3IB4DG6EKxE3wncRNzHcDFdn3oKbYB3iD+AaxJsZboGezJvQC9ci/hC+h/gjhrfAdYi3wvWZN+DHcAPibfB9xNthA6a6A27E0K0MfwIbEe+EzYg/hZswzs8Y3gU/QNwGNyNuR/wT/Bx6EX8BP0T8JfwI8VeIr8PdcAviPXAr4r1wG+J9iK/Br+F2xN/AHYj3w1b0f4Dhg3An+vwWfoq4g2Eafoa4E+7KHIU+2Ia4C7Yj7oafIz4Ev8i8Cnvgl4gPM+yHXyHuhXsyR+ARho/CvYiPwX2Ij8OvM3+E3zF8Au5HHIAHEJ+EBzOvwFMMfw+/RdwHacSnEV+GZ2An4h9gF+KzsBtxP8Pn4KHMS3AA9iA+Dw8jHoR+xBdgb+ZFOASPIB5m+CI8ivgSPJY5DC/D7xBfYYi1QDwCA5lD8Co8iXiU4Wvwe8TXYV/mBfgTwzfgacQ34RnEt+APmYNwDJ5FPA77Ed+G5xDfgQOZ5+FdhifgecT34AXE9xl+AIcyB+BDOIz4EbyI+DHDT+DlzHPwKbyCOAh/RPwzw7/AEcST8CriX+Eo4mfwGuLf4PXMfjgFf0L8nOEX8Abif8FbmWfhSziG+HeG/4DjiF/B25k/wGmGZ+BdxCE4gZiB9zLP/A+n/x/O6Z8wTv+EcfrHjNM/Zpz+MeP0jxmnf8Q4/SPG6R8xTv+IcfpHjNM/Ypz+EeP0jxinf8g4/UPG6R8yTv+QcfoHjNM/YJz+AeP0Dxinv884/X3G6e8zTn+fcfr7jNPfY5z+HuP09xinv8c4/QTj9BOM008wTj/BOP1dxunvMk5/l3H6u4zT32Gc/g7j9HcYp7/DOP1txulvM05/m3H624zTjzNOP844/Tjj9OOM048xTj/GOP0Y4/RjjNOPMU5/i3H6W4zT3/r/kdPvyHH6a/9bnH6UcfpRxulHGacfZZx+lHH6UcbpRxmnv8o4/VXG6a8yTn+VcfqrjNOPME4/wjj9COP0I4zT/8g4/RXG6a8wTn+FcforjNNfZpz+MuP0lxmnv8w4/SXG6S8xTn+JcfpLjNNfZJz+IuP0Fxmnv8Q4/UXG6S8yTn+RcfqLjNMPM04/zDj9MOP0w4zTDzFOP8Q4/RDj9EOM019gnP4C4/QXGKe/wDj9BcbpBxmnH2ScfpBx+vOM0w8wTj/AOP0A4/QDjNMPME4/wDj9AOP05xmnH2CcfoBx+gHG6QcYpz/HOP05xunPMU5/jnH6fsbp+xmn72ecvp9x+rP/B3F67H84/X84/f8YTt/6f4vTX/1/idN3/A+n/3/A6QBc7jQnD5EwW8BZAci4IvrokWHjyDSTkQc6cJ4vwlm7AufdFSgFGXauU4ahk3KhC3GWfwdnKAvNvPst9wJWzrdeipvRTAI/Gi9/K/I/4CwDnLGQ+XBoYua04lIIDi3LHOfpMdyDOQPI9bfhnAjBSVKOkjSAtboHebUVZ9o4lIUduCpdSQ5g24LIrfdBmPix5WPBQRQ4215DfuvG0TqO60MLvEUsmE8zco8dUshTdvS7MbMXY2mRnX8Lj5DlZBr2SiOM50pIDEvekhnA9asocxAlPYyz9D0SyuxErv4Zjr0ZV571yAAW7LnncP0DzHs+3EuuJh/hutUJm4UqYVPmUlwnHoI/khZ0TYYrFUc1DyEn/hB+SRxkIHMM2e93AsHeX48sdSPWuA8GuDK+UbEdR6AQ15UpbGy+C68RKynn5UwkMyazFX3vhc+4GPcMr8J6xHDdmIsc9XPsjSMooZ8THUmSn5H78X6R/FlxFOvWgmN7FY7/z7D37kVW2EvKSTnn4BzYWw5cN2dg2BbklT7kgcOkhbSTAfIkf7ciMVSfycvYMh+gVBTjKrIVx+JJLOMUSWAcLIEv4FcL+cJqRcWZa7GFC5HRDuO8PIKz6T2U4y9JMd5vc9dw6zOzMvchbwPqGn5cTy/AdWgFcvzlyG8DOLL74K/kK06DMQ8JTyuuUpzM/Aj7thBXzxZc8y7A9W0hcvJvsYb9eB/BVpqJhK2oIVPIhWQx2UJuI/3kNfIap+QC3EruYz7NH+DfEKoVikwt5mRH/cKPUjIL16rluFbciLx9N0rM07Cf2EghKcUWHcH0X3CjuSa8f8kd4t7ib+C3CKcV3x86PvTJ0FeZTaBCKRuH/bAGWfYE/IXYsQ5RsoysIu9izXu53byRF/kgn+Qb+Ol8O38jfyv/LP+C0C3cL7yumKCYp7hfNW/oO0MvZloy12NfEFBivSKop1ShpjEf19RluHIuRxntQsm9GlewTbju/BDruh0ZvR/ZdT+y25vIK6cIkADWeSmWfhlK3Q3kZry3kgfIk+Rpsp+8Tb6gN1eAdxFXzdVzjdxYbjF3A963coe5I9yHvJdfwK/ne/C+i9/DvyaAIAgZRQXe4xWbFfcqD6iKVONV89XPnx48U3ym/cxbQzDkHpozdNvQk0MfZGZmrsT6h1G7KsOabsBabkUZvBvv36Ak7kF+fx7Zl9b1M8IRBUq8kwRRGkpw1OrJODIB78nkArxn4D2LzMZ7HplPluC9nvSQ75HryPXkB+TH7L4D23Y3+TXZg/fD5BG8/0iOkffJx+QzDoWY41Gaw1yEi3MpbGkjN46byl2I92JuBd5dXDe3FkfoXm4Xt5c7wlv5MF/Kz+NX8lv53/JP8a/wfxc4oUSIC3XCTGGxcJ1wSHhROCp8pfArmhVLFHcpnlJ6lFXKGcplyjuUO5QfKk+rlKpW1XzV1apXVBl1GNnqD9juh0ZQXlx5iKxS5AlXcMdwXjj5LsUGMgN7TMlN55fzN/MvKS4hJ3mJvE428Uv5SzO/5MdyX/IryEzuCVLA+xW1/CWogWTI/dzb3CnuA8FGpnMfkSLhh+RhbgXfyCkZr74s2ITrFB8i5b8Ktdw6MsA9zV/HX5d5HGoVd5Fjiru4F0ESjnNWOIazegN3OyZ6gVvKbYY2oUrxFSzFfv+14grs7/O5G0kx/4pwF7zHB7m/kZPkNmSNg2SiEOIu5lLkfmTcMyQfBslK6CI/Bpk8St4k/UDIffy9ZBKnx9FKcwYyCheCg3yAvMJrUeekYl7I2Ugrd5KbwT+mPMwnCUGWeAmuIjxJoOwMX0O4ylwCt3IR5LRmZJOXSQXuHG5Hvj819BhlbMVRxWaUs5/zJaj1JqCDO4Da+I+Qad7DOfl91OQfoToWJLg7UHvrIQuR9ycjf3LQT5ZBnOiQLR1Yt/W4Xti5AuTCuVjql8j/zyHrt5A/w+VEwpk1AEUCDblJaEZm6kT+3Yz3QlwLn8Jx/JHyIcXLMJU4AARp6C6U8jdQdx6LGkIF7m3qsH6z4edCCdZaQmZeiSl+OoT6Pd7fhwOEQ221FvcKy6BVGI/Me1tmGbZwKa5Rk3BN3I867+2o+T+Oevl1mc2oSf88cxGuvtMy9yH/rs304a5kg6Kdm6mICVXIsfvJPlyP/kQ2I2+Ph9eRj8LEiRrIx8iUAOcrHoVNwqvInfWZm1DjsmF/FGAPzcdV9ARq5X/GfhvPD0Dl0BRuZ2Ys34Ur1DHcF9yb8RMt6uDLkXkfg7tVCuSeHshX3I2yu1m4hEtgfaNgJ3H0vUixDUAeM2O6XH/+eXWja1M1o6qTVZUV5Yl4WWlJrDhaFCkMh4IFAcmf7/N63C6nw55ntZhFk9Gg12k1apVSIfAcgZLm4NhOKV3YmRYKg+PHl9Ln4Dz0mHeOR2daQq+xI+OkpU4WTRoZU8aYl3wjppyNKZ+NSUSpDupKS6TmoJQ+2BSU+snsC9rQ/YOmYLuUHmTuyczdy9wGdAcCmEBqdi5pktKkU2pOj127ZFNzZxNmt1OnbQw2LtKWlsBOrQ6dOnSlHcGuncRxPmEOztFcu5MDtQErlXYHm5rTrmATrUGaDzfPW5huvaCtuckTCLSXlqRJ44Lg/DQEx6RNMRYFGlkxaWVjWsWKkZbS1sBmaWfJwKab+kWY3xnTLwwunHdRW5qf107LMMew3Ka046oTzq8fMXNLY9uGc0M9/KZm51KJPm7atEFKb7+g7dzQAMX2dswjzYXHdm4aiwXfhF3YMk3Csrgb2tvS5AYsUKLtoG3Ktm5RsJn6dC6T0prgmOCSTcs6cWDcm9Jw4ZWBPrdb3ou7KneztGl6WzCQrvcE2+c1eXfmwaYLr9zlkiXXyJDSkp2iOdutO42mnENvONex6GwYc7Ho1NVy4dl+JbRGwQkoDmlpgYQ1aQtim2ooLKqBTQtqMBpe7QRTpRfieCxNaxo7N4m16C/S9GlFWAxKmz4HHP/g4KcjfeblfJRh8XOgTiolZwUNw4fd6VgsXVxMBUTViCOKdTyfPSdLS9b2c+lglyihhd0Hrdi389pr49j5gQAd3s39MszHh3TPBW3ZZwnme/pAjsfa01wnDRkYDrHNoCE9wyFnk3cGUY53M63dllYXnv2YRLu1eUltmtj/TfCibHjLtGDLBbPbpOZNnbm+bZk+4ikbXnM2LOci2QDs8LQQxp6aEETRu3B2G/XAjyI8Nti8tHM8TjWsY9ra2MZ7uPasi/PwLCuU34vO5kwf2vQ0LyGsZPK/sF+lRgFmPkQamxY7x2exXRsI/DcT9WdO0lTM+jpZrk3p2tjI59EjnkdUT7+JxwoLhVzL9NmbNmlHhI1Fstq0aWxQGrupc9O8/kzP/KAkBjft5dv4tk1dzZ3Dw9+feWSzJz32pnZsxBJSi6LNwZidQXLjBTtlcuO02W17Rdy43Ti9rY8jXGPnmHbaQq5xetu5Y8AEu700u97yqItzuCYS1O7pXnH0/+W9GPXQ/42bTMT7j/y/u2bh/UD2Vvya3iqLBrcDuin6940NpvnZ22y3TMreeb+1veaI0dt1BdOjURHitrxee9OJuaa6z9UuNWvgL971PUXt36uuuPGr1WduEkFtxEfN2Z0qR7yY0KugfaGCyTs58ij3O9TJVdwTfaAQ+rnf7eZBq6KOhwi41ErFExjOAU+ioCGXkovBGRO/qDtTN0U8VTf5TB3Uo1s8jVCeCJgD5jAC8QpwWuIHTssK3LVLwgCW/sPMCbICtQkdxGQvyEodL2vk2qRGrk/O1ZBtmh3Y9hv0y66iua/sjsUGoX6wPBGusNvylMGCwmRVNYG43FBW1tDwFMOyuEx7gc+c4M7HnTYPF8oaUBzwL65G7ayfj8gGjs/jOJ6nbdahPuSX8yQ+wXfyXfx2/jiv5B8lD3IHhH6yYucxWurgqQ4stK6+boOiLLZO3FeeiBFU37nzh2yt5BPFzf+YqfgNLbE48zZvxj19ED6SRzdbyFzr3DxuoaPLcYP+ftNAWGFxkkRYDnNutdrv4QIFPr+HBIJ2p1e0u1BOE3lyHteaR/L6ee1DriKDxuftz/xjt9XKzUDHqd0mU9YhBwwGdBVoNAm1rN6i3qbeoVY8oT6mzqh5NUejq/szH8t5ooguO42rdoePiUQ8Hgr3c+W7Asd/4YzFppzoEL+IxWIdK+smi2fQgQM2ONixsr7OnCJmSyoVi5UnGq+URbdHq3frvaOJTuvRuUZDjIh1sWuvJSu7O6BjpTUZsAULVEqbOU+ZHY5R1ZUVdoe9sqI6aa6KFEYKg89zzeXTCp2Nv1p98XJXoESqjDhCnrhBK8USikg4XC5ddWbp1t/9oKOu3OUvnlM9Zjp/1+KAy+KkfRpFzfJh7FMJ0rJHBBGVUonIBbNwM3M5t0naKv1a2ivpSUE/uVmuNC6snsFdlM9p/B4+UGAf5TGfV6D1e8RAUPJLqCTLKAwfeM0i5w1yvBoeIMu5fm6fHLc7lLTbHHraxQ497TIHdq9WT7tQy3y1buqrvSswr8MZQwmnHZbrt1OnqHQM1teJJzpot2G/ke4Y6SAOPpCsrBiV7YdgEHuqUEk7ymG3V2L3VAu3BVZ/9X7lzLDNG5lcyV2yfJYk6iuuW/DTa5aQy1VDveEaaTV/6XqpJBwmxfKVpx+Y5rflla3BXikAUH6GvZIg++UPTU5iBLXD6DIUmaKmYiGhspxHzou3O1eQJc7L4lc6byc/iR9wvu78kHziNBicROtQJsYm+GpndWKck7cnIs7CBK90KhIOBx+DKD6NhlpHypl0JRP1FVMrluDOZ63zStfqxCbY6LwhsRVuT/wa7klsr0hXPO/Y7xyoeMPxmvNwxaDjY+fHruMVX8A/HP+VCI8nExxj47NJu2NmfJnjCtczzqcTR5xHEu8530sYTX6PJlAg+T3uQEGZ31MUKOD8HnUgKPo99kAw4PdEAkGH01kAJA+cLiAup7Of2y+fn4jnJZyORNwZJ3Gsu8Ptcjk4jRo5LpGIFKkTc3BSu+JlBZIU2B5IBwYChwPHA8rAXXIFqSAczcIgmiSTmZthuqt83hvZsaR0NVns+KKDOlD+40M4oHUiu+sZOnBOpDaoy2IKnP9oO5kDp1EsO94dHSvxgpUduIrKnriYp68nWRBTTqc55RQtKVA7U47+zOGHHClHIi9FMCVkTTvBqRQgVDIqK23nCE0hCg0hZ2fYiGDCjz1zyhNuTQwVJWaG7HnGlmmkh3xKTpCe+KyQ3RtujZ8ZSMwK2s98Lqw5vXadvzgcrpK6+bWzi3yR8Fd/Etjj6U1nAzZ9tZnOuPuGlnGdiktxDbhWdsoaAioNLygKeU5UKQuBWDQOh5vvzwz0yUlm1VKrRw6OSoq8hBTawws9fC/PbecJv0GhTBPc7XZyHOdSa/oJss9Lsyn7nGK0U3eqg1J6bErzoqb3sc+x++mqwfiH9irBNcOGhuscGk/6h94iBUPLVGTq33+K9WwZWsrxrJ7XyyFZs13DdWoI1lSpKiQgKlDB4C31GkKrSwiXViqylaWWnI+VVUiKLkWPQuhR9Cq47Qqi2JCAHbieYT0fI+UQgOm4MrKqdkzOVpOtbbSmHedUNVvTlR1WrGYSTQvWczzW8y3FpV8OTVUuxBwnZAb5jfwO3BOfx0/YyVE9RJbqZUoo9TIlHptHVRZW63TcjDAjnzDoK1HRknUWCzej0k6j4PNbuykdVdIVwEYpqZLFrUypmK0qLaMtkzSYpKwS8oVoSaJKL2swU73s81E0Y5C+P/OKnE8j6fXCeidxMl8ni+EUw/mquhIB4oP1g/twabCk4lS+D8bP0AF5JXaQxPGByfzAwJux2D7xlYO4GMY88gqdd1MlZ5lWTSySP9VTf59mj5a3xCzrYF3l92GzbnNS6bPYa8X6nnpB452kmKRslpoLJtXK9Rt9aq1RJUHBBNKinaCbkGwZ1Vg74bxZusW6GzTXa6/Xmabbr7Nz/vq59VynuhKq6sqipVWPEg97ITuwR5PSF+lSetp2d21S1LfqORmhU89LzFqrF/R1zv7MUTmqS011znWucPJx53on57zGj2sitjhRJ9dx2Oyu0p5SrjSJ/dbPj5XNgq5soJSUdoah0qDXV1Vhx5/GEVDOqHyULIYQhGmJxhSE/eGecG9YkMMnw1xPmIRFGin8KNeIomlDmfOnbP1ksZzviafKVbIxJalaVT0qXlSRkyrSqiKqxvMbv8OICKWsOzZ58NRgDFcWKnJ1Z2I5GhKRnKD+1BlctQdX1g92n+lYGTOnsrMnvlNJZaqP1xPoaB/EscrOH1y9xyVHe4MK66ia6hpOqVFr1ZwSWbeAUyZ1KQnMPqsXLFaT3+AlBcHRipQXatRVEklW6Sxe0UuMBQi1yjov5SmsRIzEEPATKy4uvhZ1gG6CnIeaAHQ0tvXVW0gHMlkMupEEd5djS1Eij/eJzNpjTI2SsO39mQ/79NQ6Lut0KaekSznQeKm0u3UpLQ7lqCJqa9HWoq1BW5OC2MirHdsZVqqGFY7qUcmqQsaRjmGdsLLCgUoIciautUiXo2zUP2LGNEpbHnpx434Qqj5v7nfzowc+nTWtPlzIxQvD8fS2q6aM9lq0DpOot9V1XVJeS24vmdo0s2bS9ZeZXd9b1ljedMXM0MZLCgpKassqqkpn9kb9Y2I3DO2/bnSeylBXc1vTLaSjzlXSmRo/l753asqcEBSog/qhlGvJzfzCuEzncVTppNNWqaZTWck0DSVIPruW+tp1Ep3mZjr/JT2d/xKLjb5fykwfkZw0heR9hH8HfHQa4JPPb+nn35FFq6wxcjOseRAOa1QlJTybz/VvxgbjaEhu/r6Js3eAuukM9mQlSL7QgqlA0vE8Tert8hHZ1+njfH4dZqOzI9EoZ9gFKt9YwzxqS4LJhMjREEmKl0VZHNY45QylMl5mpiRyMGbOcsnAQVzwaGU6Og7WD1ocqfo3sXzPXohnBnaNG1cVp/N4TKysqjN+tXC1YpPQE98RH4ir5HhPnIO4vdgWm6GYoZ4eu02lGq8iUnyUdpx2pvYO4d7i7XHVQPxkjJNQQww8kjkOOpSx5jppqnSxdIl2uXSVtA22Sb9R7VU9U6wrVFsj+gZLvrXJ5ovYG7z5viY/JtMJJTbWa/4SUlLi53V+0AX0Ep2+Flunvce+w8777b12zv5JtFWJdd1VVFZF7YfHJZWNZY3rc7rh5MEz3R24OtCL6obd2GSzIyV+PniafA5Zi81Pd2FMUEfCheqoBDEBoUgVlkixokQClHmqIlx7LXTU4IVLDE617pUdKP0o+1kxt6CYo+hT2Y+EK3PC7lAEk+Yyjs0HJup/aOyZeNvxL39/5VST5HTHDMRcagrYPaW6oZNlyroF8bbmOenlcxaPPe+rp58m4yb/+mfj3WKw66s3fz7Oaw6u3E+ONnWlpi559rlXUaInZU7w0/g05IGPX5eT6CK1Pc8GehOKIBiZZWRLktGWkIFQxZsDEOnRc2ZgtzUPY9FRNptRCQPQecJmFahEFaeiwTQ1dTxE4+FmM3OEpUDHcw/T2SCU63QoQLj24PqEEkSlqqOjg4n1m7GB+MEBFKecNPtsPbjjTgM/rPuzSmRLVNNC5BAVYVElqdIq3PR2Ii1vVwmqHwm/EPoEnhalwqbRmVhIxTkvz5+P7aRObC2KPW0tWkY79TIa/flZKceVcSAr9ocPYl079nV0xCpYXbGmVNxll2Wus8PVCZ15R3iFS/IiCXpTdtmb8tNaaRsnVqn9jYaOaj8TsaIq5j2tuKzKo3Rp2qwX2+c6ZjvnuFWE1yhVGrVeYZug3MjdpNyg3yTe4Psld7/zIesr3Gum18VT3N94q6VT1anuwtZt1DypetZ0UqUWiMpwPcdr6DxR4jyZWK0Zy43TTPVP56Zr5nPd3EbrRtdW6680v9L2qx/SpLV/4D7gjutPafPUh1WoEh5WcSupTfuuFzstrVKq1gl5kLDbaFWtlpRlrm29bZvtmE2w2TwvCwRH8HBfXkqgC4CVWkfl8ZYU7eOLPISOiOp5tb3IkzLZyQr7evsWO28/lZfXoyYJda+aS+A+95iaF3HDiy1Rp9XH1Ur1b4w2ATZSueJLZEvCKBtbjTwYRaNk5E8aiZHWRIN9aWzMb2zJzkxcYCefWVkn4vKJG18R97sxkR4odFORinWj6k9XshU2XMmouodLMi6xTBWFmhpU70lj224lEI5b2c6WXnqx9W4vqLA0XTCll0tTBjRqqm4WpVRZi3JEnyf75MmG5Z602Sdt9knDnmSjJmUTXSmXZE4Z0DAqGLEGtre3W5Vskz3KQbmAY1xgt4UDhXTXUKB8nSxcuGH2DaV+23N33P3JX/f85JkzG8h9CtG1oHraddzo51evXnBF3sa3CXntE6I68JvatlCNfC1OkfOGxvJ/Ql11NEyAdv52+XsWe+vthVureSgV53Bri9dO46BYWaa8cLMk1I+aOmfFqDWFXXO2CFsU1zmud25Jbjr/uuYtLd+f+mPHj51bp/YLexW7Hbud+6v2twzMOTzn+JyTczxuyVYpJvOq/XMU96onVtd7wM5XByZ6wNX49bsQjdWap1GjOmUJU83XghwQppMB91TURtVYV78tvCP8RJgP95O7HmqL9QRIAKPKBhrXsi2wI/BEgA/k0jAbkwQwruzsnUgmyug7UUaviSWUVyaygxeilq0r1GS9Gh1mzEadVG5tJI39fLmsd03Uxl2k1dXj4lyPcy+BEjT8ZKjDIK1S5bqAXFBSYpr8Oz6BXJOPmILJfEL2iwmyIrElsS3BJ5yU2xJ6SjmJZKqM75lOptO2GXA5R8dzu8U85niLaZnTqUqkNSC9TA/7i0gRbTRud6u2FJGpRV1FA0WHi4QiI41ZNHw4hI4/yxaqFxStkeYk5shztmOfK+bQpF6dvmqOccttY8lYpp+OLZfsxGTvsh/Cidaf+Uw203R2PSVlO6ujvZ97XLZurSf15Qm+ledaeQK8yHN007fL5atiNubK0+KpikIdD9M28ktnz3mEXAEBot25EXdQ9JiJqrOotTLHYKz7hBhbmT19inXTmRdbKZ7AdbOje1AczE3IM+/T6VkvDnbjvEWG7xZpfIyMM3T3ocCxAIdztPvUIC6IMeoTPhZGn26qLJtRsaAqMBq2lRzWhq9qmVXbHEp6fQ4nURSGK8ory6vKeWVD4dTCsnBx4czwdC/xjs73QktysgRjSL0E5ynqvdBaOtkLF8amS6TJOdZLZkRmecnMWb5aD0b3jIZJ5RMl0jIxWS1zjRLuTM8X6rxkSvwCL0yLXiBBs6PRC2z2MuX5a2Dr+9mrGJf6a5lS3UGJZiWjFVlbJqKMJkUL1aJP7rQwVbidFOZ0XHbUZstDrTYYzB6IRpiC62A3C0EvpiTjzVKRAoyQPZ+rihQS5blP+JycPvvg9us6n4oZeaWCN8Uur9l3d9O4En8g4e164byOFct++tWTN7TozEnV3KpYitgmLmyqap00v7ly6Mt4onbh47vvr6z6ydtkSvSW9hv3yQqlxuHWKpTju3r25BWm8sySSuAVGkPXhSsX/GhWRbXTGR6jWeAv9wcv5jasvequWWO6r9o2e8zpayvbwonQ+evHV9ntAhIuGAD4v6EmXc1tyWkdvhqZTlxRa9aq2dmcM0SfneygDjd8X7I54aQ7DaZdO41USJ2F9GzUTz0KA1XJSCkJCHo9NyPA8giUOmkepfTclfqi44vdNKB0eI6h41PZRJOXsvxKCWrADVrUwi1owmiK0ESgChVxU1LWYNpkNUTMvhJBhWIdj1M9XBwc/PRTFMqcLs4UBnHfMxXivljW5yAq5/vO0cvbqix0SiYZYomRKsyUZmmOaDnqp1VSRUTLdBOtk3k5mZeTeTmdNaNIgHkHmHeAeQewNScZ26Djs900AB2nH6ZhpaU1o3JK+5uxYYWG1gwXPGwFqvAHc6c0dP8fr5GLk9qaTtRZTGFTYU9Nb42QrhmoOVzDx5Sktaazpot6yTVEUjuj+eZ+3iSbC0qj+ZGJBdpovjgxGIjmF/bzRrksmIyUNVTlJ5uIFKkG1kpc0sxmUetyhjS9WpLWEpO2S7tNe0graClJhUshECrzl7aWdpZ2lQo9pb2lXLqU4IpVOlB6uFQo7Rx1z3p6kE8Xc7qqn8nakD3bw7bUmVMpppRnj/OQKvLcXoVaGfYUehUuL1Gp3Sqfl7Cj71j28Bs6CJIXLsTEXJ098c6d7LIDump2gMdWYhVTy9EXt6HDnqitk8krvtcwpctjNWoT8tD5NrlCy/ubEuXLJtpSY4dqzwvmOU1+ty1uJBbFzWfmX9U88yL5N0OPzZKc3lAoUihOIU23XRyvmjrkvbjMHwpZtTUz+fOymjvdedYhqHC+6KCAy5057YUQLgQ+Ks4WAxN3Q4DtIgNOKtkBq5PX4ArCuBwdx5nga6gGToPR8cIeGltjcA4zPjre2Z2bbseHp9uRh9hsk+hW1DE1sCKwHpfhghU4hzuVRCmz7S7dMdEMlAVKK8TrjyCpH+wQ3+zI7U6zZ0wHcUogZ8b2URkbngkGic2BAEOaz+6WlpyjoSHrkF2jRilnyEoCyu1KjhaKW9pAgcpKm/eF7KUpNZpQ0MDmg4GjYm9g84G2LDsfnHTis/mDPg9np1AoeM4cyOr3WPc3D9YfzB7D5KaCqzdEOkNdod7Q9tDJkEIKtYY4mUKILpgVFVXMrqnN2qWJrB0MM1suc7mrcIJYJxYYovkWnBYRV4OUH2jSu/TWXmxKCqBAr7JatL0aokmxA9hGdg4rm+qT/KV6vcFlCDnlWMrJTsSqa6t6naTVSTqdXc5e53bnSafC2Rfs+yWbDux1Gp0DuPQOdrNXXLjyYtPE3GRgTcILRb2DdKOsn/PWzXpWrquHD6uZXEeLR48uLq4bfY2rvGGosbHMo1Hlu71FRpKnuJkG1BUXjx4KnJFmplCQ3XUzyLwfl0guU6gLuMyCobFki2ILSm2U7MvxvK7Iyg5MrH46fqd2U4Jmjpx4Hh8Wz6OyNSufWdnWUm8D7pyGWBJ0fMqSoOMNlsRPk2hoEj8ooxEqr/oimR6kFEXtnhdEiA8epCcm4pGDObGMxYYFM/YMbuP2/NRNlC4Soz1dPyppiPUh/cmx1lhv7D7jfb7tMaWEDz0xXkSfwzHerS6KSA2R/KImF22ScobVrSl2eaSoXmXvJ0bZIALoVViyaZuVWOmhQ11xdpjlcUm+LOZwuHF8s1LLjl1oSxFDfn+vREwS6ZS2SyclXpLYyUx/5nPZwM5l+opjLwbomMemnGKa2PCrq+xx9uRTOPqobNGDmfrsPEsrD3p2M3kb7G4XkSBT2beCllgKvj69EL35RpMv7DX5vSTf6KFaDmH0yI4pUIv5psCcczhHVY4RclMUq6uLoXj0PLt9Tlt5wO0xzws4y+xfS88WFlwcqxuSTl/yyYkxwWCFQTUrPOuH3E23xwJMggjoUU/4L9y/VHIv5+THkWR6QoIpAeUMjWqTPUj1gDL6FPSFomomM2qByoVaSZd+tZ2pE3amTtjZGZx9WAmwDx/G26nGXUij28HHEvtYRj6WhS/KtIkoUxSilFrZwR/lGBo1OqxcoOMfspamiIKXCyWoJGrKmSSWVxh+h/qEiKYgq1/ImpApVKFyl3BUn6iPx5kyIaKcmkdqFLGBnJvSlYj6BAN6XH+WTC+O29luhOn75czNKlCezd8UUjNaVDORUzPFQW1nR3125mVXUy+7PVkFPhbTxzx8LNDHGspOA4dZFR2fPUxjRKPJqv+ucoGUWptE7UKdpNpFItma7Ex2JXuTilKByMzdg0/ppDKdPJzk0knSiR4DSd6ntkfzTVlFIxrND00sUEfzjRODvmh+MKtolEeKGxL55U1eCFZUshaHgkGTyah12EOqXjVJq4lJ3aXepj6kFtRU0fBEK32hYn+0NdoZ7YoKPdHeaDrKQ1SMclF22JBnr4p2VmWVjdh/X9mwOF28Ugi7eIeXKJROhXtY1cCp1LESP6hsdDNd41s1DZxD53p+rWdUkpaf/6hluWQ36srHDI22ypVaoWHy5Wt1xvKWodF5Y8tRy/BGTCQvxg0+1TKz7uqhK2f5XUzHME0ll69b+b0hX4fd5wmFxi0k0+8e72ZMDc2ZE/xenGcm8HH63Ezz5umVVML17IRaz84A9SJ9raV3C3Tu0EDqkK3UU2DRBEdYrRPDwKQ5u/7nlv+vD/I0NJzGc9PEHipTbiGPSVyeXqQCpRfpg15gb82oUxDy9frsgZwZZUukwiUeZGfPg/QErtnSYyP32vfYnyb7Nft8r2mUlg+0ZLym2T7LdgO5SbPR9JpH5ZcrkgI7iNvmJ8/Y9rs52U8mqIdrYxHooMdwfzYVRVEghym2Cp1Cl9ArpAWl8KmeHjDI+m16Tn/2DIq+4aGKaKwlXTStJd16weyd+vwJO/3ChAtntz1O32mBgMafGaipqWlvbHsM3HwFCJDHV3wkfuQ55xH3Ee25BqEQVROfJWws5MLeQm1YWWg25UngI26J2DXocqrQZTWIEvHwCDadQwKXAoEt71/vQtk7HZQ1lDrS2Cab13BrlFdprzJeZbnCvsa5xqvuaO8A9pZb4xXNKQ8aG92Y6rIbU6oi0A2pMrftrK52FNAdpiW3weTg8DWXrj20/tBVi9c9Py156Zht35t3zdJx/I67Nuz47umeuzc/eM3fL2+ov+vqZ4fe2v77Uzd10jfSCzMnuD+irJULVTlJi1Sy96aVMpUjjjAtljAtlpg8bnVET/0jARPVDmiYicpNBQ03lavUEVNAsMQU5EoFWa4ginCcEFKscl2eTxbkk/yw5Cad7i4357booH5fRweOVhxttDroCwsqoiihB185KL6SfXtylk8rAqaIWii251vKFFxxuSqbjcvSoiCXKr6r4BThYlVTPlmYvzqfyw9bdITW8DPZTQXWZKqscKuNjG8jFmpFIpUVubcn+7L2Pnqa3EGNuG9fR724j73pw0pRiY5qSlwlnMVSJutSJUW6lDOvXT+78E7x1pBCq9IWaaOdlV2VPZVKU2U/keQNKNQHDAeM+0L7wq8Gj4ReK3lfeD/4fuijEp2lvqSj5Dul60q2kC3cFr7H1uPu8fR4N5ZuKTOYiInT8hq90qstebZgf1Dt5e15Fq/d54p6SrZqtmrvlG4J3hLSWWKGopKJJVMr51ZeEb2i5PvG+4I7Kj/k3/fqo+ryfHicyyd+Eicc6SexPni8rJ+4ZXOxM9/1uCff7XcT0S1hz9FA1+N2GlhgsaDGrhNMEWYp8skfoCxeXA5AO9V9jcvlpG9t8+xx2rHc8xZCLPSQ6C/0DJDPk3VdJtJp6jL1mnhTP6mWXRG3q8yvJuqSbRHSGemK9ER4KZKIcJFHiAQVRNrZMvxKdvJg9ylG42fo2XAmQDraU3GcAX0Zgk56WHUCw3EaUoI/IQ7S0ydCAeePFleUkEGXZzDoNhjLYsZ14r52J4ifnhrs6Cbi4KnBrJs5s0K0u0zSGKog1s4mtbco6pdEs1LlNwe8RBlVe0ES872gKlJ4SfYNETszwprJmq9UX4hfmL8qElDv6oaV9KWs7NpGtnHb+G26nxh6bb3uXk+vd2vB7cFtpXqcyDF6ykRPz2RdPBgPbS65M3RniaKjnU5vc5HkSmmKXCkia1McGk/2mNrNdljaVBl6lTCjSenFfEu9UaKAXNDnSTHLlQplD/uDWUuP1h5rqsRpzeZlyeZlsmARFizCkiqRLDTNSdwkYjRTihcNWI6BZnBSthiwHAPGQeM0M/PN18IjL5J9T4wb9CDbiNNzLocjd0pGF8egudKePfkqDEWG9VK6onK9gcLLLxo7U/LP/dGBx9dMXx6wOQyBgPeu+c2z5g29VVp653erJ1eaRYue3zH07C3LJpbWFEXLxi34xbqt+Vo3GXfTzRekmi/urU3NWnmHw2R0IoflZf7K1QlPgoecyXFY2CdbkMN8bHOj0zNVUW+zEoWVOa1Ma7QOn2NZh3c8VtoXTIu16tQlJnue0E88fYCb3PqDZw4fjA/uy+mAbw6Iz8RH8pPLkT3ZZWg7x43j8SHT0NzDDhc6ZPaGt0tHdCYPsS3NIxPyCCtORlHEsnUeomCqnoKpfQq2ICusWUVXyWrK9tDo+AfbQ1utPu85ah97O1Z/5nBHx4CIe6qO4d0mDqtnLxiwAg361Fwyl+PqfVvNW11P2J6w97s+dKm2+chGN5mqn2qYq59r+NyJOpPNGXHydpvT5eYJhTzPdsLbErna8gmOI0p9klbafsh2zPYXG29blOd5HnT95FO5RNITfVncl/ZxPiBEEBShvFYr6bESsIrWtHXAeth63Kq0dnrv35jbOFPNjt4dpzrokfUp+u2MMydQx8MnDDpBzI4UoLEgN7Pj3O4OnGpUGCttQXMeE7NK9ha3MGkOJqvp8SyZeORIZVHgfHMk2NNU1lb8w1GrSh1R4cmhl8ee+W37+dGi+Qsq5y7glgTsS8cXLqIrI4da2Bn+VghziZxU2SNst4PERoWF6KQi9h2C/sxpWce+N5Cf+x7BiexuWXKziG6Ll8azDIubhZ6AspMilDt2oGMJ0a8aOHADYnSGlTrJ6FT6Sow6FX1f9RDdqqi1gLvlgziiqLnXi4OfDm+amUW/b3DOgeYsVfZFHq/W6iSd0xgKOzDXbJY6ombHnFoqO4QJFZHcbMPrZt89cGuZBmhRqwslJnmSMvv1g0ILPcakUSzD5zfUwWTPYokU5mSPKoQURLYzojDAtr4ohGzbUf9m9i1tkkTolkOK0PUhHRGqdKP8tdJ4/3hJ4VZbp+Y7I8HA1PxwJKiOkAZVvrpJ0oV96n7SLFu1EA7jkkTbY9TqtDpdgH2JwAhpQkyki2wjh4hA2OGlxeXGnWartdfK9SCkrTwVOikndih0hU+tH16K2Hfm6FJEv1sgsj3FYHZfIbLt39ljG7o593hNZq/J7QXR7BF93uEv7tKDSyaIX39bYFgOcc+gSgZy0olPkSS/wBSw+yPGoT+Xrr26efLKEu+o8aShvT52WUtqNn/rmT9uY98ReKpnTPtNPWRrQ4WHhM/c2dNaPYlTTRnFhVFGPbgj/wBltIb/LCej+kKts6pQKAWvvySOm93dpVaRq0HHHijNNysBqYzua88cPjzAgC2ocToiGyzNWrLFsMW4xbyhcEPVEd0Rx+uR1ys1pjLUeXUhfbd2je79CpW3tsw0u1ooq1fUi/XmmsL6olRVonaCbqo41Tw2f0LhpKKWKrl2pmtmuLV2jWq9br243rzevt7xY9U2cZv5XuejhflGhUk0mU0lftFv9pdEtVFHvFYr1s7QzK5urRVyUhzCel9ZQ2poQ9bGSbyssMqpFaCMtiG/zOdLlZXVpnJbELqvractEd/soA1jSNv0i0Kn04U7t0hVVVKr0+srnVqNSuUqrEpWVSbDli32uJmYkzgN7HrfOlcraqjx8Irg+iAX3BIkQVe4rCxVWfpZNBqpbMXeXpckSYVCFXapVKFkOC+ZDOvtkUiiUp9XWanHhc6p0TsqI2GXriZe6NTy+ipV0uQlXj+ORLyMDkM+WMxmQkBZJpSS0tL8fJ9WjyL90Ao7sZeF+4lxl+QiLrpw68Wk7Eq7jrtOugTqsctkqXI9ylVDJajI4r5kWaSfqHdBJal8lHsSUlDLTd4VOMheCHagukO/4hZbmftuPWXS3FdtRfq1GZHJdwc9cmJEiv1G9acNxnX70HYyB3FaUuvizk/FEx20j0+wjrakOuId6COyR/HqT9GlUot1xroNRrFu3b591Nqn3qdCS42+7fTL2h0dMaBv3FayF/k61F20KR1S4cOalINqNej+cBfaNrooarzmeoPsEeud1BcfqC1bHcZ6Bd3tqZwI1dRVS0+50Y4WmWhuJ/eYUmHJlNL2Z472mejr/uNoVdDvxhkwwMB8qDZUKFFjRj8zTXe0T0fTHEd9iVlmZuEuOCViB5jROFB1EkVTyoymRLal6MLbZ0vZs5aF6lo2qmudlK22VLXalipK5KWiaMxqe0rDMrOnorIZjS1VQQ2W7KClo6HJd5pT5F8oWNml+ps61zkB7e3WgG1Y8aJ/C0m/z2xTqpQqldVud2TfieC2MMK+qUSf6TI4ih4JesiOaCCosze0jC8oJNXlofIZ605MH58aai11WeXv39JUWjr0x5CncPbAbydecB5/a9jrcFaIBUuWLHDbfOEw7yzovneo/8pyPhTKMzocHfv2zTE7I1wopMjzXZ45vXwUADjpb6DqtJpv/NYn8CMfR1wCqLTf8KA/+6nAjwIUSpZUSf8YGZUIdAHo9f9R/gpQ6f91/sqR+SsEJfM26LX/lL/wH+ePeamUoFKx/FUq6iOoWP4mg579duy5Sf5N/krQGL5RoIJmyXL9p/zxIxr/0/yN/zp/NcufJlWpz8nfbDL8U/6Kb89fBVrTt+Svxo+CPqg11Eehpr/fgGu1ifXTuUn+bf468RsNoqOJGWnVoNGwpmuohKkVGvrXWWCziP+Uv/Lb81eD3vKNAmlvY0Yo51otEx2tjkZUImJBTpuVDf+5VVJ9e/4aMNm+USDtbcxLrwOdnuWvpxKmoXKGH4/Txrrv3Cqpvz1/LYjObxRIexszQjnRG5noGKkEaOmfr+HQ+tyO/yR/HZjd35K/AQxG+ock2fx1NH/8SF4XG55zm6z59vwNYPV+o0Da20Yq6GAyaWhSE5UAnQblBj8Bn/s/yz/P9y/yN7H8RZHlL9L89Roz/b4jhAM+NvznNnkkg424TGAPjPDQ076hGaEcWqwsfyuVMKMW5QYdxeEAG/5zqzSSYUZcIrjCIzyMtG/o703bLGCz62lO9jwaUY9yg5+yaIgNz7lVGskwIy4LeKPfaBCdz5iR3Qp2OxNNu51GNKDc4KeiJMLk6JzLMJJhRlxWyC8Z4WHGG7MEcNnB5WT5O6mEWU0utsJUJ4rZ8J/b5JEMM+KygZT4RoNobzvpRAK3x0STejw0ogkRP7VVpWz4z23ySIYZcTmgoOobDaI/MuSmEwm8XpbUSyXMIXrpLyRBY10VsCae02Trt+fvhkjdNwrEToZ8gAIfBAqsNGkBlTC3tQCFH6ClsTb3c+NfV2kkw4y4fFDa+I0CaW9jRoUBCBfaaNLCQhrRVkh/MQmmTWxgw3/OZXN8e/4BqJg4wsNLO4FmVByGaNRBySmKIwqSA+UMPxddOJ7J0blNHskwI64w1Fw4wsOPN8uoLAqlZW46tGVlCCE3In4Wtk9B2RqRxDWSYUZcRTC6fYRHAf1jQSihgg7lFV6atKICIeJFrAT298KqwFAzzBLhq9X/OCbCP/121UXKFDlbJPftZf/bC9P9kEvBv1F9/p+9eB/QYQLhXYiqfKwT/uOL+w3cl7NbRuT9A5gw7MYFuwmfJ+Xc56ExYDvruFRmwblp0F+PpvkbdVyIcfOEc7pVoLOajsBFQH9T8We4tnHImnGYiQv/O8InqAvQuCqYTX/NTKB8vAzeyrkJTrSBnJtD1unLuXnoZl+Ap27hnDgKdBfk3ErWR9NhKVwGi2AVTEG8HC6EFfQ3C+E70ArTYDKGz0T/bgxfiiHfAQmSKKUJKEeshCswBvVdAavhSujCmLXn5Cjl8pTOyZW6F8FiWEN/HxHzrf3W/CX2CzZLYQGGrsDwFXAJlhL9Rvp/X9qv8akC6Fd0q9E1HZZgDOmf6ixBIz51o5viPPTP1qUMQxqwnOUsz6VY6hIMW5VrwypW77WIC+m8HZb0TID+P4J/vvbCdP7TXXyxv77Bxp+ATv4j2Ma/B8fQCCCij4iuejRd6M6gUWQG+Ld3NTdXyP1ox8qY3VcUrdhLA/rc3orH+be5ByBCXx3yx/rsHhbyVt+YMTlHdU3Wsau4tOJYg5Z/C/6ChuPf4o9h37JUu4rKKk42GNCD8NeAiRBkp+38m5BGw4HMv74rVFix7Qn+eQx/jt+PTaPJ9vcZzBWY4R/4h3G18vN7+IdyIQ/tMporoGEVzhACA4iH0RxHcxKNACv4e2E9mi1odqARwIToRxNHM5X68Pfz92M978b0JsQ4mhVotqARsAt/g/6XUuTv45fR30flb+JvRb7385v5W5j9K7TdaP8C/fPR/jk+U3tb7vlOtGn4T3L+W/HZjvYdOft29PegfRv7pT4//+Pc81p+DUu3Omdv51f15fvFhnwMl9Ak0PDouhVdt2LX3UolApHw1/HLWUk70a5A+7Ksjd21ri8QZGO0bpfDVbEdu3Qddv067Ll12HPr6Ith/urhOFdn45TyV2OcqzHO1RjnauyVBL8Ky1tFeQJRRCOh4bHfV2G/U/804gCaw8z/esReNNvpE3859mMUa7WRX9ZX5EchW7wrJVfUP8pfgl0t85fscvkqtnz9pNFSQUTbmLNNNO4iFrpol0ZPfRftcvuyNsa6tMHIL4DvouEgDzGEpgpNExqBX9AXivsf4afAZWqQjf713Hp+vbBeISSaiOUJvgJa1XTJtPClUIcRov65dWRUp6ZL06PhRY2kSWhkTatGsYJfz2/heT8f5+v5qfxcnv3xr6q2kp5bjVPWVvbqtuvSugHdYZ0irRxQHlYeV55UKiRlQikrW5Wdyi5lj7JXuV2p6VX2qrhOXZeuR8eLOkmX0Mm6Vp3CryLbG27g51OmRhTRdKHpRSNgH89Ff4m/GM1cHI252BUXU2JHBHwS0RxG93G0FfhkwngmjGdCXxP6muh+D5GGtKLpRNOVC1WeDRlOQ+OfpCFoUJXljehrxL49jniSutBMxCcDPhnwyYCxDnOnsYYiooSmFQ3P/I6jQalBHA5L5MI70ShZ+EkWZzhMpmm50/K8yECUpKNke5T0RolcV99QIRcgWCyWucG54blFc+8WVgRXhFcUrbhbmBqcGp5aNPVuoT5YH64vqr9biAfj4XhR/G7BH/SH/UX+u4Utk3ZMemLSoUnC3EkrJq2fxI+iJ4x9sUQFswvC1H6oz+WuGGVqGM3twObMRdyG5hgaHvyIcTT1aFagEbgdiH7uQfR9EH0fhKlo5qJRYIoHKb0g+nNh1H8bC6MuGs6NCOex4Q/01VZObZiIlDsXzTY0POb9AIY/wGJnXTuYfxrxOPOfmou/nfn7EYfT8EhwsxnNzcbpNxvJfzbMRdOFRgGH+Fm4OMyiOSP60XSh2YFG4GfjPYufxT2I9wPcA3yJbCi3+XP7HLNabBA5PcqAgdzH8A6GGxnWMwzJxomGLyYafjfR8P2Jhgg6uCJc6gzkVoYBWddg2N1gmNpgiDYYMDcH6skGzsZQSZF8wnAKwxI5L2D4e8Dwt4DhrwHDzwKGlQHDeQGazotz18DlMdRRJLcxnMiwUNb5Dc/4DbP8hlF+Q4OB3EWwdBjDMJ+hhyL5bLepyQSaR8ln0IQ5kb66qL+fA2aRTF9dA1pDfXXj0DrTV3cXWv/oq7vF/xj5O2FLGvmiL3TC32Ajp8gEgT7/LWf/lUyA+9E+ifZitO+BOhJG+1d9ddfS+L/E9D/B519AgZrG/zm0snTbyATm/7Ncup/2lczHUu/sK7kSS/0JlLBSb+8rOYG+t/SVbETrR30ly9Ha0hemFVzWV1fsbzDTvyznaNwFEOZoTSblShyPOS9He1w2cXNfCU3VRAvoJ419wXK0IrSWj5EgtLLi/H1B1kgfBFkWXgiySnsgzGwjMbHKG6CA2eq+4LWYi3J3+IT/v+oepQ2Hz4mp7y7/u49h+2bi4ztkQt/9/hf30u7q8x8q6SfhPf4Xgo/6nw71k5l9/oGSfjUGPFHSz5GH/Duxk9MYlyN7/DtKFvsfDLLQu4MYikO9ra7Uf2dwtn9rGJ/7/NeWPEarAZdhi2dicHvJ+f5Jdff7x4b7CQbLdViYrPXXBrv9KfSu6ScTdt3vLw/106okMI/79/iLscTCIKvKjFGPcElQkTVyiWq1ar5qpuoC1WhVpapUJal8Kq8qT21Ri2qjWq/WqtVqpVpQc2pQ59HT8BjdAuUp2U5IKVAUmFvk2DtXYDskjqg5nDtpK9/CtUwbQ9KWFmiZPiY9KtbSr8pcmK6JtaTVrXPadhJyczs+pbkb+wlMb0MBpV43eOhvzu0FQuI3/MBD7atv+EF7O2lJDyyAlvlS+otp2A7tBbPTiuAYJ9jX1jvrLeebU2Ob/gV05vCcg3jniGN5py99W8u0tvRvfO3pCurI+Npb0uPor9Xt5VZyK5qb9nJd1Gpv20uu4lY2X0j9yVVN7WejQQHXhdFwY9OVjbYLCmg0KCC7WLRJLBqKaUFz086Cgmykp8gEGgnF5ykWaXE2rxAWgXm1UgujcfkQYnmFuHwaDeUhm5np3Mz0QEwsM5MeWGZeGmlnOIxRSsI0ys5RYYywMzyKBd//dXAwnK1OO4RZOWHSzsoh5Os4Rdk4KAW5OJwa4/zbb5j8p9eiMf9BZLJr3hsLF9DfDOwMNi9C05nevHaJM90zX5J2Lnwj92OChZ3zFyyh9rxF6TeCi5rSC4NN0s55C/5F8AIaPC/YtBMWNE9v27lAXtTUN0+e1xyc19S+6571jS0jytp4tqzG9f8is/U0s0Za1j0t/yK4hQbfQ8tqoWW10LLuke9hZbVcOIa0tLbtVMMY+k0jZu/idFqcD52eQPsYu9h1PpscowPOazyPCIDLli7WntYHx6QNaGhQaUNpAw3C2UmDjPRXIXNBzmtGBzyPkPtyQSJ6m4NjIAbO5qVNZz+rVq1aTc2aNTHE1WuczG81TtrAtJb0WPobdnXpuua03NnUzl5qrcldjW2y+ETdoTpuRd36ui112+p21CnWrGlHb8sTBYcKuLkFKwrWF2wp2Fawo0BJAy5q2yPXbSv4SwG/BqWJrMaruYmVuQZt/NDH1WtW0QuwgFVossXF1sQa2xoKYAFquwQ181KwogmiqUQzDY0Cfo/4Mpp30fwNjQDXId6C5pdodlEfvpQvbXYubaIltsco6Tj5il2JZEVNP9rzLsna02Zn7eYpWbuuocKJdl99pbbBhIo3gUcQn0PzOpqP0fwDjYKv4CtY5muyUtu+ClbFCFafvgBcTWFVbDX742VCu3v1qlgMVmVfDxIcAfrC8BuvFoGsWgPYFTggaGEk5ruKJltD7eGLBiAV/y/EuqTuCmVuZHN0cmVhbQplbmRvYmoKMTcgMCBvYmoKPDwvVHlwZSAvRm9udERlc2NyaXB0b3IKL0ZvbnROYW1lIC9UaW1lc05ld1JvbWFuUFNNVAovRmxhZ3MgNgovQXNjZW50IDg5MS4xMTMyOAovRGVzY2VudCAyMTYuMzA4NTkKL1N0ZW1WIDExMC4zNTE1NjMKL0NhcEhlaWdodCA2NjIuMTA5MzgKL0l0YWxpY0FuZ2xlIDAKL0ZvbnRCQm94IFstNTY4LjM1OTM4IC0zMDYuNjQwNjMgMjAwMCAxMDA2LjgzNTk0XQovRm9udEZpbGUyIDE2IDAgUj4+CmVuZG9iagoxOCAwIG9iago8PC9UeXBlIC9Gb250Ci9Gb250RGVzY3JpcHRvciAxNyAwIFIKL0Jhc2VGb250IC9UaW1lc05ld1JvbWFuUFNNVAovU3VidHlwZSAvQ0lERm9udFR5cGUyCi9DSURUb0dJRE1hcCAvSWRlbnRpdHkKL0NJRFN5c3RlbUluZm8gPDwvUmVnaXN0cnkgKEFkb2JlKQovT3JkZXJpbmcgKElkZW50aXR5KQovU3VwcGxlbWVudCAwPj4KL1cgWzAgWzc3Ny44MzIwM10gMyAxNyAyNTAgMTggWzI3Ny44MzIwM10gNDUgWzM4OS4xNjAxNiAwIDYxMC44Mzk4NCA4ODkuMTYwMTZdIDYyIDY0IDMzMy4wMDc4MSA2OCBbNDQzLjg0NzY2IDAgMCA1MDAgNDQzLjg0NzY2IDAgNTAwIDUwMCAyNzcuODMyMDMgMjc3LjgzMjAzIDAgMCAwIDUwMCA1MDAgMCAwIDAgMzg5LjE2MDE2IDI3Ny44MzIwMyA1MDAgMCAwIDUwMF1dCi9EVyAwPj4KZW5kb2JqCjE5IDAgb2JqCjw8L0ZpbHRlciAvRmxhdGVEZWNvZGUKL0xlbmd0aCAzMTA+PiBzdHJlYW0KeJxdkk1rwzAMhu/+FT52h5LvpIcQ6JoWctgHy/YDUlvpDItjHPeQfz9bKhnM4MAj6X0l5ESnru20cjx6t7PowfFRaWlhme9WAL/CTWmWpFwq4R6EXzENhkVe3K+Lg6nT48zqmvPow2cXZ1e+O8r5Ck8serMSrNI3vvs69Z77uzE/MIF2PGZNwyWM3ullMK/DBDxC2b6TPq/cuveav4rP1QBPkROaRswSFjMIsIO+AatjfxpeX/xpGGj5L1+S6jqK78Fidear4ziNm0Bpi5QfkbIzUvGMlMdELVGOVCZIviRQdcCeD/et1zZakmBZklLPM/W8IGVkn5/IviI6UJecgkcK0pBlRa3JsyDPkjyLkoIkr7LHWDRI2Ep4vW3l4m6t3zY+Ma45LFhp2P4CM5ugCvcX5kyfEwplbmRzdHJlYW0KZW5kb2JqCjggMCBvYmoKPDwvVHlwZSAvRm9udAovU3VidHlwZSAvVHlwZTAKL0Jhc2VGb250IC9UaW1lc05ld1JvbWFuUFNNVAovRW5jb2RpbmcgL0lkZW50aXR5LUgKL0Rlc2NlbmRhbnRGb250cyBbMTggMCBSXQovVG9Vbmljb2RlIDE5IDAgUj4+CmVuZG9iagp4cmVmCjAgMjAKMDAwMDAwMDAwMCA2NTUzNSBmIAowMDAwMDAwMDE1IDAwMDAwIG4gCjAwMDAwMDkyNDcgMDAwMDAgbiAKMDAwMDAwMDE1NCAwMDAwMCBuIAowMDAwMDAwMTkxIDAwMDAwIG4gCjAwMDAwMDAyNjcgMDAwMDAgbiAKMDAwMDAwMDM0MyAwMDAwMCBuIAowMDAwMDE4ODY0IDAwMDAwIG4gCjAwMDAwMzc3OTggMDAwMDAgbiAKMDAwMDAwMDQyMSAwMDAwMCBuIAowMDAwMDA5NTAyIDAwMDAwIG4gCjAwMDAwMDk1NTggMDAwMDAgbiAKMDAwMDAwOTYwNyAwMDAwMCBuIAowMDAwMDE3ODY4IDAwMDAwIG4gCjAwMDAwMTgxMDUgMDAwMDAgbiAKMDAwMDAxODQ4OSAwMDAwMCBuIAowMDAwMDE4OTk2IDAwMDAwIG4gCjAwMDAwMzY3NTkgMDAwMDAgbiAKMDAwMDAzNjk5OCAwMDAwMCBuIAowMDAwMDM3NDE3IDAwMDAwIG4gCnRyYWlsZXIKPDwvU2l6ZSAyMAovUm9vdCAxMSAwIFIKL0luZm8gMSAwIFI+PgpzdGFydHhyZWYKMzc5NDAKJSVFT0Y=" }, "metadata": {}, "output_type": "display_data" @@ -2976,12 +105,12 @@ "name": "stdout", "output_type": "stream", "text": [ - "(712, 10, 1) (712, 1, 1)\n" + "(3960, 1) (396, 1)\n" ] } ], "source": [ - "# Convert to numpy arrays. Panels contain a train-val-test split by default.\n", + "# Convert to numpy arrays\n", "x_train, y_train = x.train.values, y.train.values\n", "x_test, y_test = x.test.values, y.test.values\n", "print(x_train.shape, y_train.shape)" @@ -2989,59 +118,12 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
    \n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    traintestval
    MAE1.3989961.4842631.412011
    \n", - "
    " - ], - "text/plain": [ - " train test val\n", - "MAE 1.398996 1.484263 1.412011" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "# Or just instantiate a model.\n", - "model = wavy.LinearRegression(x, y)\n", + "model = models.LinearRegression(x, y)\n", "model.score()" ] } diff --git a/_static/basic.css b/_static/basic.css index 9039e02..eeb0519 100644 --- a/_static/basic.css +++ b/_static/basic.css @@ -236,7 +236,6 @@ div.body p, div.body dd, div.body li, div.body blockquote { a.headerlink { visibility: hidden; } - a.brackets:before, span.brackets > a:before{ content: "["; @@ -247,6 +246,7 @@ span.brackets > a:after { content: "]"; } + h1:hover > a.headerlink, h2:hover > a.headerlink, h3:hover > a.headerlink, @@ -334,14 +334,12 @@ aside.sidebar { p.sidebar-title { font-weight: bold; } - -div.admonition, div.topic, aside.topic, blockquote { +div.admonition, div.topic, blockquote { clear: left; } /* -- topics ---------------------------------------------------------------- */ - -div.topic, aside.topic { +div.topic { border: 1px solid #ccc; padding: 7px; margin: 10px 0 10px 0; @@ -380,7 +378,6 @@ div.body p.centered { div.sidebar > :last-child, aside.sidebar > :last-child, div.topic > :last-child, -aside.topic > :last-child, div.admonition > :last-child { margin-bottom: 0; } @@ -388,7 +385,6 @@ div.admonition > :last-child { div.sidebar::after, aside.sidebar::after, div.topic::after, -aside.topic::after, div.admonition::after, blockquote::after { display: block; @@ -612,8 +608,6 @@ ol.simple p, ul.simple p { margin-bottom: 0; } - -/* Docutils 0.17 and older (footnotes & citations) */ dl.footnote > dt, dl.citation > dt { float: left; @@ -631,33 +625,6 @@ dl.citation > dd:after { clear: both; } -/* Docutils 0.18+ (footnotes & citations) */ -aside.footnote > span, -div.citation > span { - float: left; -} -aside.footnote > span:last-of-type, -div.citation > span:last-of-type { - padding-right: 0.5em; -} -aside.footnote > p { - margin-left: 2em; -} -div.citation > p { - margin-left: 4em; -} -aside.footnote > p:last-of-type, -div.citation > p:last-of-type { - margin-bottom: 0em; -} -aside.footnote > p:last-of-type:after, -div.citation > p:last-of-type:after { - content: ""; - clear: both; -} - -/* Footnotes & citations ends */ - dl.field-list { display: grid; grid-template-columns: fit-content(30%) auto; @@ -669,11 +636,11 @@ dl.field-list > dt { padding-left: 0.5em; padding-right: 5px; } - dl.field-list > dt:after { content: ":"; } + dl.field-list > dd { padding-left: 0.5em; margin-top: 0em; diff --git a/_static/documentation_options.js b/_static/documentation_options.js index ac8fb22..17fd07e 100644 --- a/_static/documentation_options.js +++ b/_static/documentation_options.js @@ -10,5 +10,5 @@ var DOCUMENTATION_OPTIONS = { SOURCELINK_SUFFIX: '.txt', NAVIGATION_WITH_KEYS: false, SHOW_SEARCH_SUMMARY: true, - ENABLE_SEARCH_SHORTCUTS: false, + ENABLE_SEARCH_SHORTCUTS: true, }; \ No newline at end of file diff --git a/_static/searchtools.js b/_static/searchtools.js index ac4d586..f2fb7d5 100644 --- a/_static/searchtools.js +++ b/_static/searchtools.js @@ -88,7 +88,7 @@ const _displayItem = (item, highlightTerms, searchTerms) => { linkEl.href = linkUrl + "?" + params.toString() + anchor; linkEl.innerHTML = title; if (descr) - listItem.appendChild(document.createElement("span")).innerText = + listItem.appendChild(document.createElement("span")).innerHTML = " (" + descr + ")"; else if (showSearchSummary) fetch(requestUrl) @@ -155,10 +155,8 @@ const Search = { _pulse_status: -1, htmlToText: (htmlString) => { - const htmlElement = document - .createRange() - .createContextualFragment(htmlString); - _removeChildren(htmlElement.querySelectorAll(".headerlink")); + const htmlElement = new DOMParser().parseFromString(htmlString, 'text/html'); + htmlElement.querySelectorAll(".headerlink").forEach((el) => { el.remove() }); const docContent = htmlElement.querySelector('[role="main"]'); if (docContent !== undefined) return docContent.textContent; console.warn( @@ -504,11 +502,12 @@ const Search = { * latter for highlighting it. */ makeSearchSummary: (htmlText, keywords, highlightWords) => { - const text = Search.htmlToText(htmlText).toLowerCase(); + const text = Search.htmlToText(htmlText); if (text === "") return null; + const textLower = text.toLowerCase(); const actualStartPosition = [...keywords] - .map((k) => text.indexOf(k.toLowerCase())) + .map((k) => textLower.indexOf(k.toLowerCase())) .filter((i) => i > -1) .slice(-1)[0]; const startWithContext = Math.max(actualStartPosition - 120, 0); @@ -516,9 +515,9 @@ const Search = { const top = startWithContext === 0 ? "" : "..."; const tail = startWithContext + 240 < text.length ? "..." : ""; - let summary = document.createElement("div"); + let summary = document.createElement("p"); summary.classList.add("context"); - summary.innerText = top + text.substr(startWithContext, 240).trim() + tail; + summary.textContent = top + text.substr(startWithContext, 240).trim() + tail; highlightWords.forEach((highlightWord) => _highlightText(summary, highlightWord, "highlighted") diff --git a/api/models.html b/api/models.html index c43e76b..34f9036 100644 --- a/api/models.html +++ b/api/models.html @@ -25,7 +25,7 @@ @@ -66,6 +66,7 @@
  • Classes
  • wavy.plot Module
  • -
  • wavy.utils Module
  • @@ -156,26 +156,29 @@

    Classes -

    BaselineConstant(x, y[, model_type, loss, ...])

    -

    +

    BaseModel(x, y[, model_type, loss, ...])

    +

    Base class for panel models.

    -

    BaselineShift(x, y[, model_type, loss, ...])

    -

    +

    BaselineConstant(x, y[, model_type, loss, ...])

    +

    Baseline constant model.

    -

    ConvModel(x, y[, model_type, conv_layers, ...])

    -

    +

    BaselineShift(x, y[, model_type, loss, ...])

    +

    Baseline shift model.

    -

    DenseModel(x, y[, model_type, dense_layers, ...])

    -

    +

    ConvModel(x, y[, model_type, conv_layers, ...])

    +

    Convolutional model.

    -

    LinearRegression(x, y, **kwargs)

    -

    +

    DenseModel(x, y[, model_type, dense_layers, ...])

    +

    Dense model.

    -

    LogisticRegression(x, y, **kwargs)

    -

    +

    LinearRegression(x, y, **kwargs)

    +

    Linear regression model.

    -

    ShallowModel(x, y, model, metrics, **kwargs)

    -

    +

    LogisticRegression(x, y, **kwargs)

    +

    Logistic regression model.

    + +

    ShallowModel(x, y, model, metrics, **kwargs)

    +

    Shallow model.

    diff --git a/api/panel.html b/api/panel.html index 7f2b5d0..4dfc759 100644 --- a/api/panel.html +++ b/api/panel.html @@ -25,7 +25,7 @@ @@ -75,7 +75,6 @@
  • wavy.models Module
  • wavy.plot Module
  • -
  • wavy.utils Module
  • @@ -143,13 +142,13 @@

    Functions

    dropna_match(x, y)

    -

    Drop frames with NaN in both x and y and match ids.

    +

    Drop frames with NaN in panels and match ids.

    reset_ids(panels[, inplace])

    Reset ids of a panel.

    set_training_split(x, y[, train_size, ...])

    -

    Splits the panel in training, validation, and test, accessed with the properties .train, .val and .test.

    +

    Splits panel in training, validation, and test.

    @@ -163,7 +162,7 @@

    Classes

    Panel(*args, **kw)

    -

    Panel data structure.

    +

    Panel class.

    diff --git a/api/plot.html b/api/plot.html index c535c8f..d7f3f1b 100644 --- a/api/plot.html +++ b/api/plot.html @@ -25,7 +25,7 @@ @@ -71,7 +71,6 @@ -
  • wavy.utils Module
  • @@ -133,7 +132,7 @@

    Functions

    plot(panel[, use_timestep, add_annotation])

    -

    Plot a panel.

    +

    Plot panel.

    @@ -147,7 +146,7 @@

    Classes

    PanelFigure()

    -

    +

    PanelFigure class.

    diff --git a/api/utils.html b/api/utils.html deleted file mode 100644 index 9e0d156..0000000 --- a/api/utils.html +++ /dev/null @@ -1,174 +0,0 @@ - - - - - - - wavy.utils Module — Wavy 0.1.9 documentation - - - - - - - - - - - - - - - - - - - - - -
    - - -
    - -
    -
    -
    - -
    -
    -
    -
    - - - -
    -

    wavy.utils Module

    -
    -

    Functions

    - ---- - - - - - - - - -

    reverse_diff(diff_df, original_df[, periods])

    Reverse the pct_diff function.

    reverse_pct_change(change_df, original_df[, ...])

    Reverse the pct_change function.

    -
    -
    - - -
    -
    - -
    -
    -
    -
    - - - - \ No newline at end of file diff --git a/api/wavy.models.BaseModel.html b/api/wavy.models.BaseModel.html new file mode 100644 index 0000000..a409c40 --- /dev/null +++ b/api/wavy.models.BaseModel.html @@ -0,0 +1,310 @@ + + + + + + + BaseModel — Wavy 0.1.9 documentation + + + + + + + + + + + + + + + + + + + + + +
    + + +
    + +
    +
    +
    + +
    +
    +
    +
    + + + +
    +

    BaseModel

    +
    +
    +class BaseModel(x: Panel, y: Panel, model_type: str = None, loss: str = None, optimizer: str = None, metrics: list[str] = None, last_activation: str = None)[source]
    +

    Bases: object

    +

    Base class for panel models.

    +

    Methods Summary

    + ++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

    build()

    Build the model.

    compile(**kwargs)

    Compile the model.

    fit(**kwargs)

    Fit the model.

    get_auc()

    Get the AUC score.

    predict([data])

    Predict.

    predict_proba([data])

    Predict probabilities.

    residuals()

    Residuals.

    score([on])

    Score the model.

    set_arrays()

    Set the arrays.

    +

    Methods Documentation

    +
    +
    +build() None[source]
    +

    Build the model.

    +
    + +
    +
    +compile(**kwargs) None[source]
    +

    Compile the model.

    +
    +
    Parameters
    +

    **kwargs – Additional arguments to pass to the compile method.

    +
    +
    +
    + +
    +
    +fit(**kwargs) None[source]
    +

    Fit the model.

    +
    +
    Parameters
    +

    **kwargs – Additional arguments to pass to the fit method.

    +
    +
    +
    + +
    +
    +get_auc() float[source]
    +

    Get the AUC score.

    +
    + +
    +
    +predict(data: Optional[Panel] = None, **kwargs) Panel[source]
    +

    Predict.

    +
    +
    Parameters
    +
      +
    • data (Panel) – Panel of data to predict.

    • +
    • **kwargs – Additional arguments to pass to the predict method.

    • +
    +
    +
    Returns
    +

    Panel of predicted values.

    +
    +
    +
    + +
    +
    +predict_proba(data: Optional[Panel] = None, **kwargs) Panel[source]
    +

    Predict probabilities.

    +
    +
    Parameters
    +
      +
    • data (Panel) – Panel of data to predict.

    • +
    • **kwargs – Additional arguments to pass to the predict method.

    • +
    +
    +
    Returns
    +

    Panel of predicted probabilities.

    +
    +
    +
    + +
    +
    +residuals() Panel[source]
    +

    Residuals.

    +
    +
    Returns
    +

    Panel of residuals.

    +
    +
    +
    + +
    +
    +score(on: list[str] | str = None, **kwargs) pd.DataFrame[source]
    +

    Score the model.

    +
    +
    Parameters
    +
      +
    • on (list[str] or str) – Columns to score on.

    • +
    • **kwargs – Additional arguments to pass to the score method.

    • +
    +
    +
    Returns
    +

    Panel of scores.

    +
    +
    +
    + +
    +
    +set_arrays() None[source]
    +

    Set the arrays.

    +
    + +
    + +
    + + +
    +
    + +
    +
    +
    +
    + + + + \ No newline at end of file diff --git a/api/wavy.models.BaselineConstant.html b/api/wavy.models.BaselineConstant.html index 37bcdfe..8909674 100644 --- a/api/wavy.models.BaselineConstant.html +++ b/api/wavy.models.BaselineConstant.html @@ -22,10 +22,10 @@ - + @@ -62,6 +62,7 @@
  • wavy.models Module
  • @@ -130,8 +130,9 @@

    BaselineConstant

    -class BaselineConstant(x, y, model_type: Optional[str] = None, loss: Optional[str] = None, metrics: Optional[List[str]] = None, constant: float = 0)[source]
    +class BaselineConstant(x, y, model_type: str = None, loss: str = None, metrics: list[str] = None, constant: float = 0)[source]

    Bases: _Baseline

    +

    Baseline constant model.

    Methods Summary

    @@ -139,15 +140,135 @@

    BaselineConstant

    + + + + + + + + + + + + + + + + + + + + + + + +

    build()

    Build the model.

    compile(**kwargs)

    Compile the model.

    fit(**kwargs)

    Fit the model.

    get_auc()

    Get the AUC score.

    predict([data])

    Predict.

    predict_proba([data])

    Predict probabilities.

    residuals()

    Residuals.

    score([on])

    Score the model.

    set_arrays()

    Set the arrays.

    Methods Documentation

    +
    +
    +build() None
    +

    Build the model.

    +
    + +
    +
    +compile(**kwargs) None
    +

    Compile the model.

    +
    +
    Parameters
    +

    **kwargs – Additional arguments to pass to the compile method.

    +
    +
    +
    + +
    +
    +fit(**kwargs) None
    +

    Fit the model.

    +
    +
    Parameters
    +

    **kwargs – Additional arguments to pass to the fit method.

    +
    +
    +
    + +
    +
    +get_auc() float
    +

    Get the AUC score.

    +
    + +
    +
    +predict(data: Optional[Panel] = None, **kwargs) Panel
    +

    Predict.

    +
    +
    Parameters
    +
      +
    • data (Panel) – Panel of data to predict.

    • +
    • **kwargs – Additional arguments to pass to the predict method.

    • +
    +
    +
    Returns
    +

    Panel of predicted values.

    +
    +
    +
    + +
    +
    +predict_proba(data: Optional[Panel] = None, **kwargs) Panel
    +

    Predict probabilities.

    +
    +
    Parameters
    +
      +
    • data (Panel) – Panel of data to predict.

    • +
    • **kwargs – Additional arguments to pass to the predict method.

    • +
    +
    +
    Returns
    +

    Panel of predicted probabilities.

    +
    +
    +
    + +
    +
    +residuals() Panel
    +

    Residuals.

    +
    +
    Returns
    +

    Panel of residuals.

    +
    +
    +
    + +
    +
    +score(on: list[str] | str = None, **kwargs) pd.DataFrame
    +

    Score the model.

    +
    +
    Parameters
    +
      +
    • on (list[str] or str) – Columns to score on.

    • +
    • **kwargs – Additional arguments to pass to the score method.

    • +
    +
    +
    Returns
    +

    Panel of scores.

    +
    +
    +
    +
    -set_arrays()[source]
    +set_arrays() None[source]

    Set the arrays.

    @@ -159,7 +280,7 @@

    BaselineConstant - +

    diff --git a/api/wavy.models.BaselineShift.html b/api/wavy.models.BaselineShift.html index aed841d..767735c 100644 --- a/api/wavy.models.BaselineShift.html +++ b/api/wavy.models.BaselineShift.html @@ -25,7 +25,7 @@ @@ -62,6 +62,7 @@
  • wavy.models Module
  • @@ -130,8 +130,9 @@

    BaselineShift

    -class BaselineShift(x, y, model_type: Optional[str] = None, loss: Optional[str] = None, metrics: Optional[List[str]] = None, fillna=0, shift=1)[source]
    +class BaselineShift(x, y, model_type: str = None, loss: str = None, metrics: list[str] = None, fillna=0, shift=1)[source]

    Bases: _Baseline

    +

    Baseline shift model.

    Methods Summary

    @@ -142,7 +143,28 @@

    BaselineShift

    - + + + + + + + + + + + + + + + + + + + + + + @@ -150,10 +172,100 @@

    BaselineShiftMethods Documentation

    -build()[source]
    +build() None[source]

    Build the model.

    +
    +
    +compile(**kwargs) None
    +

    Compile the model.

    +
    +
    Parameters
    +

    **kwargs – Additional arguments to pass to the compile method.

    +
    +
    +
    + +
    +
    +fit(**kwargs) None
    +

    Fit the model.

    +
    +
    Parameters
    +

    **kwargs – Additional arguments to pass to the fit method.

    +
    +
    +
    + +
    +
    +get_auc() float
    +

    Get the AUC score.

    +
    + +
    +
    +predict(data: Optional[Panel] = None, **kwargs) Panel
    +

    Predict.

    +
    +
    Parameters
    +
      +
    • data (Panel) – Panel of data to predict.

    • +
    • **kwargs – Additional arguments to pass to the predict method.

    • +
    +
    +
    Returns
    +

    Panel of predicted values.

    +
    +
    +
    + +
    +
    +predict_proba(data: Optional[Panel] = None, **kwargs) Panel
    +

    Predict probabilities.

    +
    +
    Parameters
    +
      +
    • data (Panel) – Panel of data to predict.

    • +
    • **kwargs – Additional arguments to pass to the predict method.

    • +
    +
    +
    Returns
    +

    Panel of predicted probabilities.

    +
    +
    +
    + +
    +
    +residuals() Panel
    +

    Residuals.

    +
    +
    Returns
    +

    Panel of residuals.

    +
    +
    +
    + +
    +
    +score(on: list[str] | str = None, **kwargs) pd.DataFrame
    +

    Score the model.

    +
    +
    Parameters
    +
      +
    • on (list[str] or str) – Columns to score on.

    • +
    • **kwargs – Additional arguments to pass to the score method.

    • +
    +
    +
    Returns
    +

    Panel of scores.

    +
    +
    +
    +
    set_arrays()[source]
    diff --git a/api/wavy.models.ConvModel.html b/api/wavy.models.ConvModel.html index 4e0bf28..9c1a68b 100644 --- a/api/wavy.models.ConvModel.html +++ b/api/wavy.models.ConvModel.html @@ -25,7 +25,7 @@ @@ -62,6 +62,7 @@
  • wavy.models Module @@ -130,8 +130,9 @@

    ConvModel

    -class ConvModel(x, y, model_type: Optional[str] = None, conv_layers: int = 1, conv_filters: int = 32, kernel_size: int = 3, dense_layers: int = 1, dense_units: int = 32, activation: str = 'relu', loss: Optional[str] = None, optimizer: Optional[str] = None, metrics: Optional[List[str]] = None, last_activation: Optional[str] = None)[source]
    -

    Bases: _BaseModel

    +class ConvModel(x: Panel, y: Panel, model_type: str = None, conv_layers: int = 1, conv_filters: int = 32, kernel_size: int = 3, dense_layers: int = 1, dense_units: int = 32, activation: str = 'relu', loss: str = None, optimizer: str = None, metrics: list[str] = None, last_activation: str = None)[source] +

    Bases: BaseModel

    +

    Convolutional model.

    Methods Summary

  • build()

    Build the model.

    set_arrays()

    compile(**kwargs)

    Compile the model.

    fit(**kwargs)

    Fit the model.

    get_auc()

    Get the AUC score.

    predict([data])

    Predict.

    predict_proba([data])

    Predict probabilities.

    residuals()

    Residuals.

    score([on])

    Score the model.

    set_arrays()

    Set the arrays.

    @@ -142,15 +143,135 @@

    ConvModel

    + + + + + + + + + + + + + + + + + + + + + + + +

    build()

    Build the model.

    compile(**kwargs)

    Compile the model.

    fit(**kwargs)

    Fit the model.

    get_auc()

    Get the AUC score.

    predict([data])

    Predict.

    predict_proba([data])

    Predict probabilities.

    residuals()

    Residuals.

    score([on])

    Score the model.

    set_arrays()

    Set the arrays.

    Methods Documentation

    -build()[source]
    +build() None[source]

    Build the model.

    +
    +
    +compile(**kwargs) None
    +

    Compile the model.

    +
    +
    Parameters
    +

    **kwargs – Additional arguments to pass to the compile method.

    +
    +
    +
    + +
    +
    +fit(**kwargs) None
    +

    Fit the model.

    +
    +
    Parameters
    +

    **kwargs – Additional arguments to pass to the fit method.

    +
    +
    +
    + +
    +
    +get_auc() float
    +

    Get the AUC score.

    +
    + +
    +
    +predict(data: Optional[Panel] = None, **kwargs) Panel
    +

    Predict.

    +
    +
    Parameters
    +
      +
    • data (Panel) – Panel of data to predict.

    • +
    • **kwargs – Additional arguments to pass to the predict method.

    • +
    +
    +
    Returns
    +

    Panel of predicted values.

    +
    +
    +
    + +
    +
    +predict_proba(data: Optional[Panel] = None, **kwargs) Panel
    +

    Predict probabilities.

    +
    +
    Parameters
    +
      +
    • data (Panel) – Panel of data to predict.

    • +
    • **kwargs – Additional arguments to pass to the predict method.

    • +
    +
    +
    Returns
    +

    Panel of predicted probabilities.

    +
    +
    +
    + +
    +
    +residuals() Panel
    +

    Residuals.

    +
    +
    Returns
    +

    Panel of residuals.

    +
    +
    +
    + +
    +
    +score(on: list[str] | str = None, **kwargs) pd.DataFrame
    +

    Score the model.

    +
    +
    Parameters
    +
      +
    • on (list[str] or str) – Columns to score on.

    • +
    • **kwargs – Additional arguments to pass to the score method.

    • +
    +
    +
    Returns
    +

    Panel of scores.

    +
    +
    +
    + +
    +
    +set_arrays() None
    +

    Set the arrays.

    +
    +
    diff --git a/api/wavy.models.DenseModel.html b/api/wavy.models.DenseModel.html index 6ed94ee..f406392 100644 --- a/api/wavy.models.DenseModel.html +++ b/api/wavy.models.DenseModel.html @@ -25,7 +25,7 @@ @@ -62,6 +62,7 @@
  • wavy.models Module
  • @@ -130,8 +130,9 @@

    DenseModel

    -class DenseModel(x, y, model_type: Optional[str] = None, dense_layers: int = 1, dense_units: int = 32, activation: str = 'relu', loss: Optional[str] = None, optimizer: Optional[str] = None, metrics: Optional[List[str]] = None, last_activation: Optional[str] = None)[source]
    -

    Bases: _BaseModel

    +class DenseModel(x, y, model_type: str = None, dense_layers: int = 1, dense_units: int = 32, activation: str = 'relu', loss: str = None, optimizer: str = None, metrics: list[str] = None, last_activation: str = None)[source] +

    Bases: BaseModel

    +

    Dense model.

    Methods Summary

    @@ -142,15 +143,135 @@

    DenseModel

    + + + + + + + + + + + + + + + + + + + + + + + +

    build()

    Build the model.

    compile(**kwargs)

    Compile the model.

    fit(**kwargs)

    Fit the model.

    get_auc()

    Get the AUC score.

    predict([data])

    Predict.

    predict_proba([data])

    Predict probabilities.

    residuals()

    Residuals.

    score([on])

    Score the model.

    set_arrays()

    Set the arrays.

    Methods Documentation

    -build()[source]
    +build() None[source]

    Build the model.

    +
    +
    +compile(**kwargs) None
    +

    Compile the model.

    +
    +
    Parameters
    +

    **kwargs – Additional arguments to pass to the compile method.

    +
    +
    +
    + +
    +
    +fit(**kwargs) None
    +

    Fit the model.

    +
    +
    Parameters
    +

    **kwargs – Additional arguments to pass to the fit method.

    +
    +
    +
    + +
    +
    +get_auc() float
    +

    Get the AUC score.

    +
    + +
    +
    +predict(data: Optional[Panel] = None, **kwargs) Panel
    +

    Predict.

    +
    +
    Parameters
    +
      +
    • data (Panel) – Panel of data to predict.

    • +
    • **kwargs – Additional arguments to pass to the predict method.

    • +
    +
    +
    Returns
    +

    Panel of predicted values.

    +
    +
    +
    + +
    +
    +predict_proba(data: Optional[Panel] = None, **kwargs) Panel
    +

    Predict probabilities.

    +
    +
    Parameters
    +
      +
    • data (Panel) – Panel of data to predict.

    • +
    • **kwargs – Additional arguments to pass to the predict method.

    • +
    +
    +
    Returns
    +

    Panel of predicted probabilities.

    +
    +
    +
    + +
    +
    +residuals() Panel
    +

    Residuals.

    +
    +
    Returns
    +

    Panel of residuals.

    +
    +
    +
    + +
    +
    +score(on: list[str] | str = None, **kwargs) pd.DataFrame
    +

    Score the model.

    +
    +
    Parameters
    +
      +
    • on (list[str] or str) – Columns to score on.

    • +
    • **kwargs – Additional arguments to pass to the score method.

    • +
    +
    +
    Returns
    +

    Panel of scores.

    +
    +
    +
    + +
    +
    +set_arrays() None
    +

    Set the arrays.

    +
    +
    diff --git a/api/wavy.models.LinearRegression.html b/api/wavy.models.LinearRegression.html index fe89d77..ded346a 100644 --- a/api/wavy.models.LinearRegression.html +++ b/api/wavy.models.LinearRegression.html @@ -25,7 +25,7 @@ @@ -62,6 +62,7 @@
  • wavy.models Module
  • @@ -132,6 +132,146 @@

    LinearRegression class LinearRegression(x, y, **kwargs)[source]

    Bases: DenseModel

    +

    Linear regression model.

    +

    Methods Summary

    + ++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

    build()

    Build the model.

    compile(**kwargs)

    Compile the model.

    fit(**kwargs)

    Fit the model.

    get_auc()

    Get the AUC score.

    predict([data])

    Predict.

    predict_proba([data])

    Predict probabilities.

    residuals()

    Residuals.

    score([on])

    Score the model.

    set_arrays()

    Set the arrays.

    +

    Methods Documentation

    +
    +
    +build() None
    +

    Build the model.

    +
    + +
    +
    +compile(**kwargs) None
    +

    Compile the model.

    +
    +
    Parameters
    +

    **kwargs – Additional arguments to pass to the compile method.

    +
    +
    +
    + +
    +
    +fit(**kwargs) None
    +

    Fit the model.

    +
    +
    Parameters
    +

    **kwargs – Additional arguments to pass to the fit method.

    +
    +
    +
    + +
    +
    +get_auc() float
    +

    Get the AUC score.

    +
    + +
    +
    +predict(data: Optional[Panel] = None, **kwargs) Panel
    +

    Predict.

    +
    +
    Parameters
    +
      +
    • data (Panel) – Panel of data to predict.

    • +
    • **kwargs – Additional arguments to pass to the predict method.

    • +
    +
    +
    Returns
    +

    Panel of predicted values.

    +
    +
    +
    + +
    +
    +predict_proba(data: Optional[Panel] = None, **kwargs) Panel
    +

    Predict probabilities.

    +
    +
    Parameters
    +
      +
    • data (Panel) – Panel of data to predict.

    • +
    • **kwargs – Additional arguments to pass to the predict method.

    • +
    +
    +
    Returns
    +

    Panel of predicted probabilities.

    +
    +
    +
    + +
    +
    +residuals() Panel
    +

    Residuals.

    +
    +
    Returns
    +

    Panel of residuals.

    +
    +
    +
    + +
    +
    +score(on: list[str] | str = None, **kwargs) pd.DataFrame
    +

    Score the model.

    +
    +
    Parameters
    +
      +
    • on (list[str] or str) – Columns to score on.

    • +
    • **kwargs – Additional arguments to pass to the score method.

    • +
    +
    +
    Returns
    +

    Panel of scores.

    +
    +
    +
    + +
    +
    +set_arrays() None
    +

    Set the arrays.

    +
    +
    diff --git a/api/wavy.models.LogisticRegression.html b/api/wavy.models.LogisticRegression.html index 5db45cc..77507d0 100644 --- a/api/wavy.models.LogisticRegression.html +++ b/api/wavy.models.LogisticRegression.html @@ -25,7 +25,7 @@ @@ -62,6 +62,7 @@
  • wavy.models Module
  • @@ -132,6 +132,146 @@

    LogisticRegression class LogisticRegression(x, y, **kwargs)[source]

    Bases: DenseModel

    +

    Logistic regression model.

    +

    Methods Summary

    + ++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

    build()

    Build the model.

    compile(**kwargs)

    Compile the model.

    fit(**kwargs)

    Fit the model.

    get_auc()

    Get the AUC score.

    predict([data])

    Predict.

    predict_proba([data])

    Predict probabilities.

    residuals()

    Residuals.

    score([on])

    Score the model.

    set_arrays()

    Set the arrays.

    +

    Methods Documentation

    +
    +
    +build() None
    +

    Build the model.

    +
    + +
    +
    +compile(**kwargs) None
    +

    Compile the model.

    +
    +
    Parameters
    +

    **kwargs – Additional arguments to pass to the compile method.

    +
    +
    +
    + +
    +
    +fit(**kwargs) None
    +

    Fit the model.

    +
    +
    Parameters
    +

    **kwargs – Additional arguments to pass to the fit method.

    +
    +
    +
    + +
    +
    +get_auc() float
    +

    Get the AUC score.

    +
    + +
    +
    +predict(data: Optional[Panel] = None, **kwargs) Panel
    +

    Predict.

    +
    +
    Parameters
    +
      +
    • data (Panel) – Panel of data to predict.

    • +
    • **kwargs – Additional arguments to pass to the predict method.

    • +
    +
    +
    Returns
    +

    Panel of predicted values.

    +
    +
    +
    + +
    +
    +predict_proba(data: Optional[Panel] = None, **kwargs) Panel
    +

    Predict probabilities.

    +
    +
    Parameters
    +
      +
    • data (Panel) – Panel of data to predict.

    • +
    • **kwargs – Additional arguments to pass to the predict method.

    • +
    +
    +
    Returns
    +

    Panel of predicted probabilities.

    +
    +
    +
    + +
    +
    +residuals() Panel
    +

    Residuals.

    +
    +
    Returns
    +

    Panel of residuals.

    +
    +
    +
    + +
    +
    +score(on: list[str] | str = None, **kwargs) pd.DataFrame
    +

    Score the model.

    +
    +
    Parameters
    +
      +
    • on (list[str] or str) – Columns to score on.

    • +
    • **kwargs – Additional arguments to pass to the score method.

    • +
    +
    +
    Returns
    +

    Panel of scores.

    +
    +
    +
    + +
    +
    +set_arrays() None
    +

    Set the arrays.

    +
    +
    diff --git a/api/wavy.models.ShallowModel.html b/api/wavy.models.ShallowModel.html index 10ef169..be57d2d 100644 --- a/api/wavy.models.ShallowModel.html +++ b/api/wavy.models.ShallowModel.html @@ -25,7 +25,7 @@ @@ -62,6 +62,7 @@
  • wavy.models Module
  • @@ -130,8 +130,9 @@

    ShallowModel

    -class ShallowModel(x, y, model, metrics, **kwargs)[source]
    +class ShallowModel(x: Panel, y: Panel, model: str, metrics: list[str], **kwargs)[source]

    Bases: object

    +

    Shallow model.

    Methods Summary

    @@ -171,45 +172,39 @@

    ShallowModelParameters

    **kwargs – Keyword arguments for the fit method of the model.

    -
    Returns
    -

    The fitted model.

    -
    -
    Return type
    -

    ShallowModel

    -
    -get_auc()[source]
    +get_auc() float[source]

    Get the AUC score.

    -predict(data: Optional[Panel] = None)[source]
    +predict(data: Optional[Panel] = None) Panel[source]

    Predict on data.

    Parameters
    -

    data (Panel, optional) – Data to predict on. Defaults to None.

    +

    data (Panel, optional) – Data to predict on. Defaults to None.

    Returns

    Predicted data

    Return type
    -

    Panel

    +

    Panel

    -predict_proba(data: Optional[Panel] = None)[source]
    +predict_proba(data: Optional[Panel] = None) Panel[source]

    Predict probabilities.

    Parameters
    -

    data (Panel) – Panel with data

    +

    data (Panel) – Panel with data

    Returns

    The predicted probabilities.

    @@ -222,38 +217,38 @@

    ShallowModel
    -residuals()[source]
    +residuals() Panel[source]

    Residuals.

    Returns

    Residuals

    Return type
    -

    Panel

    +

    Panel

    -score(on=None)[source]
    +score(on: list[str] | str = None) pd.DataFrame[source]

    Score the model.

    Parameters
    -

    on (str) – Data to use for scoring

    +

    on (list[str] or str) – Data to use for scoring

    Returns

    Score

    Return type
    -

    pd.Series

    +

    pd.Series

    -set_arrays()[source]
    +set_arrays() None[source]

    Sets arrays for training, testing, and validation.

    diff --git a/api/wavy.models.compute_default_scores.html b/api/wavy.models.compute_default_scores.html index 3ffd466..1bbc273 100644 --- a/api/wavy.models.compute_default_scores.html +++ b/api/wavy.models.compute_default_scores.html @@ -25,7 +25,7 @@ @@ -69,7 +69,6 @@
  • wavy.plot Module
  • -
  • wavy.utils Module
  • @@ -130,11 +129,11 @@

    compute_default_scores
    Parameters
      -
    • x (Panel) – X data

    • -
    • y (Panel) – Y data

    • -
    • model_type (str) – Model type

    • -
    • epochs (int, optional) – Number of epochs. Defaults to 10.

    • -
    • verbose (int, optional) – Verbosity. Defaults to 0.

    • +
    • x (Panel) – X data.

    • +
    • y (Panel) – Y data.

    • +
    • model_type (str) – Model type.

    • +
    • epochs (int, optional) – Number of epochs. Defaults to 10.

    • +
    • verbose (int, optional) – Verbosity. Defaults to 0.

    • **kwargs – Keyword arguments for the model.

    diff --git a/api/wavy.models.compute_score_per_model.html b/api/wavy.models.compute_score_per_model.html index 821b0b4..cc15200 100644 --- a/api/wavy.models.compute_score_per_model.html +++ b/api/wavy.models.compute_score_per_model.html @@ -21,11 +21,11 @@ - + @@ -69,7 +69,6 @@
  • wavy.plot Module
  • -
  • wavy.utils Module
  • @@ -131,7 +130,7 @@

    compute_score_per_modelParameters
    • *models – Models to score

    • -
    • on (str, optional) – Data to use for scoring. Defaults to “val”.

    • +
    • on (str, optional) – Data to use for scoring. Defaults to “val”.

    Returns
    @@ -150,7 +149,7 @@

    compute_score_per_model

    diff --git a/api/wavy.panel.Panel.html b/api/wavy.panel.Panel.html index accf546..258deab 100644 --- a/api/wavy.panel.Panel.html +++ b/api/wavy.panel.Panel.html @@ -25,7 +25,7 @@ @@ -68,7 +68,6 @@
  • wavy.models Module
  • wavy.plot Module
  • -
  • wavy.utils Module
  • @@ -126,7 +125,7 @@

    Panel
    class Panel(*args, **kw)[source]

    Bases: DataFrame

    -

    Panel data structure.

    +

    Panel class.

    Attributes Summary

    @@ -135,10 +134,10 @@

    Panel

    - + - + @@ -150,19 +149,19 @@

    Panel

    - + - + - + - + - + @@ -201,7 +200,7 @@

    Panel

    - + @@ -210,7 +209,7 @@

    Panel

    - + @@ -230,13 +229,13 @@

    Panel
    frames
    -

    Returns the frames in the panel.

    +

    Returns panel’s frames.

    ids
    -

    Returns the ids of the panel without duplicates.

    +

    Returns panel’s ids without duplicates.

    @@ -260,14 +259,13 @@

    Panel
    shape_panel
    -

    Returns the shape of the panel.

    +

    Return a tuple representing the dimensionality of the Panel.

    test
    -

    Returns the Panel with the testing set, according to -the parameters given in the ‘set_training_split’ function.

    +

    Returns the Panel with the testing set.

    Returns

    Panel with the testing set.

    @@ -281,14 +279,13 @@

    Panel
    timesteps
    -

    Returns the ids of the panel.

    +

    Returns panel’s timesteps.

    train
    -

    Returns the Panel with the training set, according to -the parameters given in the ‘set_training_split’ function.

    +

    Returns the Panel with the training set.

    Returns

    Panel with the training set.

    @@ -302,8 +299,7 @@

    Panel
    val
    -

    Returns the Panel with the validation set, according to -the parameters given in the ‘set_training_split’ function.

    +

    Returns the Panel with the validation set.

    Returns

    Panel with the validation set.

    @@ -335,13 +331,13 @@

    Panel

    Methods Documentation

    -drop_ids(ids: Union[list, int], inplace: bool = False) Optional[Panel][source]
    +drop_ids(ids: list[int] | int, inplace: bool = False) Panel | None[source]

    Drop frames by id.

    Parameters
      -
    • ids (list, int) – List of ids to drop.

    • -
    • inplace (bool) – Whether to drop ids inplace.

    • +
    • ids (list[int] or int) – List of ids to drop.

    • +
    • inplace (bool) – Whether to drop ids inplace.

    Returns
    @@ -355,11 +351,11 @@

    Panel
    -dropna_frames(inplace: bool = False) Optional[Panel][source]
    +dropna_frames(inplace: bool = False) Panel | None[source]

    Drop frames with missing values from the panel.

    Parameters
    -

    inplace (bool) – Whether to drop frames inplace.

    +

    inplace (bool) – Whether to drop frames inplace.

    Returns

    Panel with frames dropped.

    @@ -392,11 +388,11 @@

    Panel
    -get_timesteps(n: Union[list, int] = 0) Panel[source]
    +get_timesteps(n: list[int] | int = 0) Panel[source]

    Returns the first timestep of each frame in the panel.

    Parameters
    -

    n (int) – Timestep to return.

    +

    n (list[int] or int) – Timestep to return.

    @@ -407,7 +403,7 @@

    Panel

    Return the first n frames of the panel.

    Parameters
    -

    n (int) – Number of frames to return.

    +

    n (int) – Number of frames to return.

    Returns

    Result of head function.

    @@ -420,14 +416,14 @@

    Panel
    -match_frames(other: Panel, inplace: bool = False) Optional[Panel][source]
    -

    Match panel with other panel. This function will match the ids and id -order of self based on the ids of other.

    +match_frames(other: Panel, inplace: bool = False) Panel | None[source] +

    Match panel with other panel.

    +

    This function will match the ids and id order of self based on the ids of other.

    Parameters
    • other (Panel) – Panel to match with.

    • -
    • inplace (bool) – Whether to match inplace.

    • +
    • inplace (bool) – Whether to match inplace.

    Returns
    @@ -446,9 +442,9 @@

    Panel
    Parameters
      -
    • add_annotation (bool) – If True, plot the training, validation, and test annotation.

    • -
    • max (int) – Maximum number of samples to plot.

    • -
    • use_timestep (bool) – If True, plot the timestep instead of the sample index.

    • +
    • add_annotation (bool) – If True, plot the training, validation, and test annotation.

    • +
    • max (int) – Maximum number of samples to plot.

    • +
    • use_timestep (bool) – If True, plot the timestep instead of the sample index.

    • **kwargs – Additional arguments to pass to the plot function.

    @@ -463,32 +459,37 @@

    Panel
    -reset_ids(inplace: bool = False) Optional[Panel][source]
    -

    Reset the ids of the panel.

    +reset_ids(inplace: bool = False) Panel | None[source] +

    Reset panel’s ids.

    Parameters
    -

    inplace (bool) – Whether to reset ids inplace.

    +

    inplace (bool) – Whether to reset ids inplace.

    -row_panel(n: Union[list, int] = 0) Panel[source]
    +row_panel(n: list[int] | int = 0) Panel[source]

    Returns the nth row of each frame.

    +
    +
    Parameters
    +

    n (list[int] or int) – Row index.

    +
    +
    -sample_panel(samples: Union[int, float] = 5, how: str = 'spaced', reset_ids: bool = False, seed: int = 42) Optional[Panel][source]
    +sample_panel(samples: int | float = 5, how: str = 'spaced', reset_ids: bool = False, seed: int = 42) Panel | None[source]

    Sample panel returning a subset of frames.

    Parameters
      -
    • samples (int or float) – Number or percentage of samples to return.

    • -
    • how (str) – Sampling method, ‘spaced’ or ‘random’

    • -
    • reset_ids (bool) – If True, reset the index of the sampled panel.

    • -
    • seed (int) – Random seed.

    • +
    • samples (int or float) – Number or percentage of samples to return.

    • +
    • how (str) – Sampling method, ‘spaced’ or ‘random’

    • +
    • reset_ids (bool) – If True, reset the index of the sampled panel.

    • +
    • seed (int) – Random seed.

    Returns
    @@ -502,31 +503,32 @@

    Panel
    -set_training_split(train_size: Union[float, int] = 0.7, val_size: Union[float, int] = 0.2, test_size: Union[float, int] = 0.1) None[source]
    -

    Splits the panel in training, validation, and test, accessed with the -properties .train, .val and .test.

    +set_training_split(train_size: float | int = 0.7, val_size: float | int = 0.2, test_size: float | int = 0.1) None[source] +

    Splits Panel into training, validation, and test.

    Parameters
      -
    • train_size (float, int) – Fraction of data to use for training.

    • -
    • test_size (float, int) – Fraction of data to use for testing.

    • -
    • val_size (float, int) – Fraction of data to use for validation.

    • +
    • train_size (float or int) – Fraction of data to use for training.

    • +
    • test_size (float or int) – Fraction of data to use for testing.

    • +
    • val_size (float or int) – Fraction of data to use for validation.

    -

    Example: ->>> panel.set_training_split(val_size=0.2, test_size=0.1)

    +

    Example:

    +
    >>> panel.set_training_split(train_size=0.8, val_size=0.2, test_size=0.1)
    +
    +
    -shuffle_panel(seed: Optional[int] = None, reset_ids: bool = False) Optional[Panel][source]
    +shuffle_panel(seed: int = None, reset_ids: bool = False) Panel | None[source]

    Shuffle the panel.

    Parameters
      -
    • seed (int) – Random seed.

    • -
    • reset_ids (bool) – If True, reset the index of the shuffled panel.

    • +
    • seed (int) – Random seed.

    • +
    • reset_ids (bool) – If True, reset the index of the shuffled panel.

    Returns
    @@ -540,13 +542,13 @@

    Panel
    -sort_panel(ascending: bool = True, inplace: bool = False, kind: str = 'quicksort', key: Optional[callable] = None) Optional[Panel][source]
    +sort_panel(ascending: bool = True, inplace: bool = False, kind: str = 'quicksort', key: callable = None) Panel | None[source]

    Sort panel by ids.

    Parameters
      -
    • ascending (bool or list-like of bools, default True) – Sort ascending vs. descending. When the index is a MultiIndex the sort direction can be controlled for each level individually.

    • -
    • inplace (bool, default False) – If True, perform operation in-place.

    • +
    • ascending (bool or list-like of bools, default True) – Sort ascending vs. descending. When the index is a MultiIndex the sort direction can be controlled for each level individually.

    • +
    • inplace (bool, default False) – If True, perform operation in-place.

    • kind ({'quicksort', 'mergesort', 'heapsort', 'stable'}, default 'quicksort') – Choice of sorting algorithm. See also numpy.sort() for more information. mergesort and stable are the only stable algorithms. For DataFrames, this option is only applied when sorting on a single column or label.

    • key (callable, optional) – If not None, apply the key function to the index values before sorting. This is similar to the key argument in the builtin sorted() function, with the notable difference that this key function should be vectorized. It should expect an Index and return an Index of the same shape. For MultiIndex inputs, the key is applied per level.

    @@ -555,7 +557,7 @@

    Panel

    The original DataFrame sorted by the labels or None if inplace=True.

    Return type
    -

    Panel or None

    +

    Panel or None

    @@ -566,7 +568,7 @@

    Panel

    Return the last n frames of the panel.

    Parameters
    -

    n (int) – Number of frames to return.

    +

    n (int) – Number of frames to return.

    Returns

    Result of tail function.

    diff --git a/api/wavy.panel.concat_panels.html b/api/wavy.panel.concat_panels.html index 03cc718..e643c22 100644 --- a/api/wavy.panel.concat_panels.html +++ b/api/wavy.panel.concat_panels.html @@ -25,7 +25,7 @@ @@ -72,7 +72,6 @@
  • wavy.models Module
  • wavy.plot Module
  • -
  • wavy.utils Module
  • @@ -133,9 +132,9 @@

    concat_panels
    Parameters
      -
    • panels (list) – List of panels

    • -
    • reset_ids (bool) – Whether to reset ids

    • -
    • sort (bool) – Whether to sort by id

    • +
    • panels (list) – List of panels

    • +
    • reset_ids (bool) – Whether to reset ids

    • +
    • sort (bool) – Whether to sort by id

    Returns
    diff --git a/api/wavy.panel.create_panels.html b/api/wavy.panel.create_panels.html index b8e9777..35c75ae 100644 --- a/api/wavy.panel.create_panels.html +++ b/api/wavy.panel.create_panels.html @@ -25,7 +25,7 @@ @@ -72,7 +72,6 @@
  • wavy.models Module
  • wavy.plot Module
  • -
  • wavy.utils Module
  • @@ -128,22 +127,22 @@

    create_panels

    -create_panels(df: DataFrame, lookback: int, horizon: int, gap: int = 0) Tuple[Panel, Panel][source]
    +create_panels(df: pd.DataFrame, lookback: int, horizon: int, gap: int = 0) tuple[Panel, Panel][source]

    Create panels from a dataframe.

    Parameters
      -
    • df (pd.DataFrame) – Dataframe

    • -
    • lookback (int) – Lookback size

    • -
    • horizon (int) – Horizon size

    • -
    • gap (int) – Gap size

    • +
    • df (pd.DataFrame) – Dataframe

    • +
    • lookback (int) – Lookback size

    • +
    • horizon (int) – Horizon size

    • +
    • gap (int) – Gap size

    Returns

    Tuple of panels

    Return type
    -

    Tuple

    +

    tuple[Panel, Panel]

    diff --git a/api/wavy.panel.dropna_match.html b/api/wavy.panel.dropna_match.html index 0302b77..1f2cda8 100644 --- a/api/wavy.panel.dropna_match.html +++ b/api/wavy.panel.dropna_match.html @@ -25,7 +25,7 @@ @@ -72,7 +72,6 @@
  • wavy.models Module
  • wavy.plot Module
  • -
  • wavy.utils Module
  • @@ -129,12 +128,12 @@

    dropna_match
    dropna_match(x, y)[source]
    -

    Drop frames with NaN in both x and y and match ids.

    +

    Drop frames with NaN in panels and match ids.

    Parameters
      -
    • x (Panel) – Panel with x data

    • -
    • y (Panel) – Panel with y data

    • +
    • x (Panel) – Panel with x data

    • +
    • y (Panel) – Panel with y data

    Returns
    diff --git a/api/wavy.panel.reset_ids.html b/api/wavy.panel.reset_ids.html index 54aba83..caf5c63 100644 --- a/api/wavy.panel.reset_ids.html +++ b/api/wavy.panel.reset_ids.html @@ -25,7 +25,7 @@ @@ -72,7 +72,6 @@
  • wavy.models Module
  • wavy.plot Module
  • -
  • wavy.utils Module
  • @@ -133,8 +132,8 @@

    reset_ids
    Parameters
      -
    • panels (list) – List of panels

    • -
    • inplace (bool) – Whether to reset ids inplace or not.

    • +
    • panels (list) – List of panels

    • +
    • inplace (bool) – Whether to reset ids inplace or not.

    Returns
    diff --git a/api/wavy.panel.set_training_split.html b/api/wavy.panel.set_training_split.html index 6ea22bc..236633c 100644 --- a/api/wavy.panel.set_training_split.html +++ b/api/wavy.panel.set_training_split.html @@ -25,7 +25,7 @@ @@ -72,7 +72,6 @@
  • wavy.models Module
  • wavy.plot Module
  • -
  • wavy.utils Module
  • @@ -128,20 +127,21 @@

    set_training_split

    -set_training_split(x: Panel, y: Panel, train_size: Union[float, int] = 0.7, val_size: Union[float, int] = 0.2, test_size: Union[float, int] = 0.1) None[source]
    -

    Splits the panel in training, validation, and test, accessed with the -properties .train, .val and .test.

    +set_training_split(x: Panel, y: Panel, train_size: float | int = 0.7, val_size: float | int = 0.2, test_size: float | int = 0.1) None[source] +

    Splits panel in training, validation, and test.

    Parameters
      -
    • train_size (float, int) – Fraction of data to use for training.

    • -
    • test_size (float, int) – Fraction of data to use for testing.

    • -
    • val_size (float, int) – Fraction of data to use for validation.

    • +
    • train_size (float or int) – Fraction of data to use for training.

    • +
    • test_size (float or int) – Fraction of data to use for testing.

    • +
    • val_size (float or int) – Fraction of data to use for validation.

    -

    Example: ->>> x,y = set_training_split(x, y, val_size=0.2, test_size=0.1)

    +

    Example:

    +
    >>> x, y = set_training_split(x, y, train_size=0.8, val_size=0.2, test_size=0.1)
    +
    +
    diff --git a/api/wavy.plot.PanelFigure.html b/api/wavy.plot.PanelFigure.html index 9fafb37..8cc9eab 100644 --- a/api/wavy.plot.PanelFigure.html +++ b/api/wavy.plot.PanelFigure.html @@ -21,11 +21,10 @@ - @@ -68,7 +67,6 @@ -
  • wavy.utils Module
  • @@ -126,6 +124,7 @@

    PanelFigure class PanelFigure[source]

    Bases: Figure

    +

    PanelFigure class.

    Methods Summary

    frames

    Returns the frames in the panel.

    Returns panel's frames.

    ids

    Returns the ids of the panel without duplicates.

    Returns panel's ids without duplicates.

    num_columns

    Returns the number of columns in the panel.

    Returns the number of timesteps in the panel.

    shape_panel

    Returns the shape of the panel.

    Return a tuple representing the dimensionality of the Panel.

    test

    Returns the Panel with the testing set, according to the parameters given in the 'set_training_split' function.

    Returns the Panel with the testing set.

    timesteps

    Returns the ids of the panel.

    Returns panel's timesteps.

    train

    Returns the Panel with the training set, according to the parameters given in the 'set_training_split' function.

    Returns the Panel with the training set.

    val

    Returns the Panel with the validation set, according to the parameters given in the 'set_training_split' function.

    Returns the Panel with the validation set.

    values_panel

    3D matrix with Panel value.

    Plot the panel.

    reset_ids([inplace])

    Reset the ids of the panel.

    Reset panel's ids.

    row_panel([n])

    Returns the nth row of each frame.

    Sample panel returning a subset of frames.

    set_training_split([train_size, val_size, ...])

    Splits the panel in training, validation, and test, accessed with the properties .train, .val and .test.

    Splits Panel into training, validation, and test.

    shuffle_panel([seed, reset_ids])

    Shuffle the panel.

    @@ -134,39 +133,36 @@

    PanelFigure

    - + - - + + - - + + - - + + - - + + - - - - - + +

    add_annotation(panel[, color, opacity])

    Split panel into sets.

    Plot vertical lines showing train, val, and test periods.

    add_area(*args, **kwargs)

    add_area(col, *args, **kwargs)

    Add an area to the figure.

    add_bar(*args, **kwargs)

    add_bar(col, *args, **kwargs)

    Add a bar to the figure.

    add_dotline(*args, **kwargs)

    add_dotline(col, *args, **kwargs)

    Add a dotline to the figure.

    add_line(*args, **kwargs)

    add_line(col, *args, **kwargs)

    Add a line to the figure.

    add_scatter(*args, **kwargs)

    iterator()

    add_scatter(col, *args, **kwargs)

    Add a scatter to the figure.

    Methods Documentation

    -add_annotation(panel, color='gray', opacity=1)[source]
    -

    Split panel into sets.

    +add_annotation(panel, color: str = 'gray', opacity: float = 1.0) None[source] +

    Plot vertical lines showing train, val, and test periods.

    Parameters
      -
    • panel (wavy.Panel) – Panel to split

    • -
    • color (str) – Color of the sets

    • -
    • opacity (float) – Opacity of the sets

    • +
    • panel (Panel) – Panel to split.

    • +
    • color (str) – Color of the sets.

    • +
    • opacity (float) – Opacity of the sets.

    @@ -174,33 +170,58 @@

    PanelFigure
    -add_area(*args, **kwargs)[source]
    -

    +add_area(col: str, *args, **kwargs) None[source] +

    Add an area to the figure.

    +
    +
    Parameters
    +

    col (str) – Column to plot

    +
    +
    +
    -add_bar(*args, **kwargs)[source]
    -
    +add_bar(col: str, *args, **kwargs) None[source] +

    Add a bar to the figure.

    +
    +
    Parameters
    +

    col (str) – Column to plot

    +
    +
    +
    -add_dotline(*args, **kwargs)[source]
    -
    +add_dotline(col: str, *args, **kwargs) None[source] +

    Add a dotline to the figure.

    +
    +
    Parameters
    +

    col (str) – Column to plot.

    +
    +
    +
    -add_line(*args, **kwargs)[source]
    -
    +add_line(col: str, *args, **kwargs) None[source] +

    Add a line to the figure.

    +
    +
    Parameters
    +

    col (str) – Column to plot

    +
    +
    +
    -add_scatter(*args, **kwargs)[source]
    -
    - -
    -
    -iterator()[source]
    -
    +add_scatter(col: str, *args, **kwargs) None[source] +

    Add a scatter to the figure.

    +
    +
    Parameters
    +

    col (str) – Column to plot.

    +
    +
    +
    @@ -211,7 +232,6 @@

    PanelFigure -


    diff --git a/api/wavy.plot.plot.html b/api/wavy.plot.plot.html index 10ab6bc..8b7c310 100644 --- a/api/wavy.plot.plot.html +++ b/api/wavy.plot.plot.html @@ -25,7 +25,7 @@ @@ -68,7 +68,6 @@
  • Classes
  • -
  • wavy.utils Module
  • @@ -125,13 +124,13 @@

    plot
    plot(panel, use_timestep: bool = False, add_annotation: bool = False, **kwargs) PanelFigure[source]
    -

    Plot a panel.

    +

    Plot panel.

    Parameters
      -
    • panel (Panel) – Panel object

    • -
    • use_timestep (bool) – Use timestep instead of id

    • -
    • add_annotation (bool) – If True, plot vertical lines showing train, val, and test periods

    • +
    • panel (Panel) – Panel object.

    • +
    • use_timestep (bool) – Use timestep instead of id.

    • +
    • add_annotation (bool) – If True, plot vertical lines showing train, val, and test periods.

    Returns
    diff --git a/api/wavy.utils.reverse_diff.html b/api/wavy.utils.reverse_diff.html deleted file mode 100644 index ca154ff..0000000 --- a/api/wavy.utils.reverse_diff.html +++ /dev/null @@ -1,179 +0,0 @@ - - - - - - - reverse_diff — Wavy 0.1.9 documentation - - - - - - - - - - - - - - - - - - - - - -
    - - -
    - -
    -
    -
    - -
    -
    -
    -
    - - - -
    -

    reverse_diff

    -
    -
    -reverse_diff(diff_df, original_df, periods=1)[source]
    -

    Reverse the pct_diff function.

    -
    -
    Parameters
    -
      -
    • diff_df (pd.DataFrame) – Dataframe to reverse

    • -
    • original_df (pd.DataFrame) – Reference Dataframe

    • -
    • periods (int) – Number of periods used on diff operation

    • -
    -
    -
    Returns
    -

    Reversed dataframe

    -
    -
    Return type
    -

    pd.DataFrame

    -
    -
    -
    - -
    - - -
    -
    - -
    -
    -
    -
    - - - - \ No newline at end of file diff --git a/api/wavy.utils.reverse_pct_change.html b/api/wavy.utils.reverse_pct_change.html deleted file mode 100644 index a5c5755..0000000 --- a/api/wavy.utils.reverse_pct_change.html +++ /dev/null @@ -1,177 +0,0 @@ - - - - - - - reverse_pct_change — Wavy 0.1.9 documentation - - - - - - - - - - - - - - - - - - - - -
    - - -
    - -
    -
    -
    - -
    -
    -
    -
    - - - -
    -

    reverse_pct_change

    -
    -
    -reverse_pct_change(change_df, original_df, periods=1)[source]
    -

    Reverse the pct_change function.

    -
    -
    Parameters
    -
      -
    • change_df (pd.DataFrame) – Dataframe to reverse

    • -
    • original_df (pd.DataFrame) – Reference Dataframe

    • -
    • periods (int) – Number of periods used on pct_change operation

    • -
    -
    -
    Returns
    -

    Reversed dataframe

    -
    -
    Return type
    -

    pd.DataFrame

    -
    -
    -
    - -
    - - -
    -
    - -
    -
    -
    -
    - - - - \ No newline at end of file diff --git a/genindex.html b/genindex.html index cf11bdc..7d19d40 100644 --- a/genindex.html +++ b/genindex.html @@ -22,7 +22,7 @@ @@ -58,7 +58,6 @@
  • wavy.panel Module
  • wavy.models Module
  • wavy.plot Module
  • -
  • wavy.utils Module
  • @@ -134,14 +133,22 @@

    B

  • BaselineShift (class in wavy.models)
  • - - @@ -150,12 +157,28 @@

    B

    C

    - + @@ -325,12 +418,38 @@

    S

    diff --git a/index.html b/index.html index c3fdda8..ff90227 100644 --- a/index.html +++ b/index.html @@ -24,7 +24,7 @@ @@ -60,7 +60,6 @@
  • wavy.panel Module
  • wavy.models Module
  • wavy.plot Module
  • -
  • wavy.utils Module
  • @@ -129,7 +128,6 @@

    Wavy
  • wavy.panel Module
  • wavy.models Module
  • wavy.plot Module
  • -
  • wavy.utils Module
  • diff --git a/manual/installation.html b/manual/installation.html index a17a4de..3695f02 100644 --- a/manual/installation.html +++ b/manual/installation.html @@ -25,7 +25,7 @@ @@ -61,7 +61,6 @@
  • wavy.panel Module
  • wavy.models Module
  • wavy.plot Module
  • -
  • wavy.utils Module
  • diff --git a/manual/introduction.html b/manual/introduction.html index dae378e..8ab2c12 100644 --- a/manual/introduction.html +++ b/manual/introduction.html @@ -25,7 +25,7 @@ @@ -61,7 +61,6 @@
  • wavy.panel Module
  • wavy.models Module
  • wavy.plot Module
  • -
  • wavy.utils Module
  • diff --git a/manual/link.html b/manual/link.html index eef84a2..5e6c126 100644 --- a/manual/link.html +++ b/manual/link.html @@ -23,7 +23,7 @@ @@ -59,7 +59,6 @@
  • wavy.panel Module
  • wavy.models Module
  • wavy.plot Module
  • -
  • wavy.utils Module
  • @@ -139,7 +138,7 @@

    Link {

    ]

    @@ -155,7 +157,7 @@

    Link {

    “cell_type”: “code”, -“execution_count”: 3, +“execution_count”: 2, “metadata”: {}, “outputs”: [], “source”: [

    @@ -169,7 +171,7 @@

    Link {

    “cell_type”: “code”, -“execution_count”: 4, +“execution_count”: 3, “metadata”: {}, “outputs”: [], “source”: [

    @@ -183,6 +185,20 @@

    Link {

    “cell_type”: “code”, +“execution_count”: 4, +“metadata”: {}, +“outputs”: [], +“source”: [

    +
    +

    “# Set training splitn”, +“wavy.set_training_split(x, y, train_size=0.4, val_size=0.3, test_size=0.3)”

    +
    +

    ]

    +
    +

    }, +{

    +
    +
    @@ -217,3501 +233,66 @@

    Link “outputs”: [

    -
    {
    -
    “data”: {
    -
    “application/vnd.plotly.v1+json”: {
    -
    “config”: {

    “plotlyServerURL”: “https://plot.ly

    -
    -
    -

    }, -“data”: [

    -
    -
    {
    -
    “line”: {

    “color”: “#636EFA”, -“width”: 1.5

    +
    “data”: {

    “application/pdf”: “JVBERi0xLjQKJdPr6eEKMSAwIG9iago8PC9DcmVhdG9yIChDaHJvbWl1bSkKL1Byb2R1Y2VyIChTa2lhL1BERiBtODgpCi9DcmVhdGlvbkRhdGUgKEQ6MjAyMjA4MTkwMzIzMDYrMDAnMDAnKQovTW9kRGF0ZSAoRDoyMDIyMDgxOTAzMjMwNiswMCcwMCcpPj4KZW5kb2JqCjMgMCBvYmoKPDwvY2EgMQovQk0gL05vcm1hbD4+CmVuZG9iago0IDAgb2JqCjw8L0NBIDEKL2NhIDEKL0xDIDAKL0xKIDAKL0xXIDEKL01MIDQKL1NBIHRydWUKL0JNIC9Ob3JtYWw+PgplbmRvYmoKNSAwIG9iago8PC9DQSAxCi9jYSAxCi9MQyAwCi9MSiAwCi9MVyAyCi9NTCA0Ci9TQSB0cnVlCi9CTSAvTm9ybWFsPj4KZW5kb2JqCjYgMCBvYmoKPDwvQ0EgMQovY2EgMQovTEMgMAovTEogMAovTFcgMS41Ci9NTCAyCi9TQSB0cnVlCi9CTSAvTm9ybWFsPj4KZW5kb2JqCjkgMCBvYmoKPDwvRmlsdGVyIC9GbGF0ZURlY29kZQovTGVuZ3RoIDg3NTU+PiBzdHJlYW0KeJy9XdnKJclxvu+n+K8NOsolcgNhsNZrWQN+AMsSGI3B8vuD44slsypKZ3pG/D0a1F0Rp5aILzNjzap+lbrkfx+J//vF60LW0V65fPzn91/+9wt+LHmOV/vIrRf+6+//9eU//uXjf/i3ymc1ufwc8UX5A//9+x8+9ODvf/3yyz/Uj7/+n9xrpPTR+P98l798+SP/90894jXX/Hit0hr/2WngaQ/eefBMHxnPJb5N2c9+3r2t+hrtvRakWuBe3/PfxPf625c//cNbrUqv+kn3yuWzbtRze/XyOTfjs8rML+qTpfuh201c8/2XXvD3D9wtN3olSPcZN0ulv3r7pLuNkV8zf869OtGLPkvNlsdn3KbO9eK5/xnjWJpz3tyq/ZQZNtd6wTS8Fay9EQy3K41vlGFPclfrktTwvLEt53xYmDpn+XhRzcTmZCYSE/NgihAdQrBInecv27ZUWZj8ampQ+0cePBWZnVm28kpTzWym/kqJj5qwe01ySuYlxTf4G6SbxqrlNdhu8uPAHgWKvBp+LcyhVxkwnGz6+G5VODPpQxg7NuzMaq/a7W4sjYgm3JWUW/j6PJTbX0S4egK318rCWtNYtPRWYDOoxCeV16wmzDyKLFzErMU39keznqQPWaxHEqwy8fV+x5xeRQRlJVd6UVPexNCx/nmVFy07Nb9qU3Zp89WGsfmMasD39RKxle0qlMZsSJbrqwGzxfiVpALJLXgch41S7wdp5vfso8fIQNABfjsq8uoWqbryRxYQB9md+1GvYShFTuHvByaeZS70YEGVvXhQm91k8gDp09hi0nCpeQ1Xg55eGaPOSrGApU497qpgYT1E/5JfufPP/AspOZI+bfINfMaWF9YGz5o0NseFrTzNi83MUl8VQ0EvndJ1y155Vgybm4Ul5jEfPLakJEaEx1KuaXw7uevIhm3pokJZL4EUVl0lK4lhkDMGtMjsb7OOpbB8PHj8KsZPbj+hSubhLz7UzBrLJievKVl4CRKWMvR4dV1JqWPlMQsqs8Q85rIeeUV3Q52lB6y1vi6zoZA9vdoxKzj4UO7Fy1JXTu8uh3Dn1OuLTh29nldb0gnMT+o2GIytP594AIrBxuxmsx2TSPTihdhs6vEE6GZ6mN11nAovF4GP0pGU1VzKGkPPamnPBMouf2Gl01LWVMRyIR8rZvOqzGZTlFxNzxoy5syqrl7mKKwASEYvka2Kudc9c5ubp/ZKPv2IJa0234qLJWxXj0UbctsOm5hn1ylFg2FjTFgXfb6wXAkMKjj8fMy5ZMLOLT8v41ltGbNt5PnFvqZMM7DpaGDgMqvhMj7J5zg/2kVfCDSU1adYpVLFSjKrqNhr29AGv8AIsgKQumH8eSSOiZS1aJODVUp+pyZi8iSQpzMOtGfQXnjMZjnL5HOz3W2oTFhohi7bXVtK7Dxek5QFoXoWKWTm8oKr2dYI25qhLLP5MHimPfsZXntmHns9C5fZWw+Wp5ke/owiPmibYz42hQoPiGOBxEINObyFG01+Sq52boN1EFbvOr8qHLrNiU6uKq8N9rVgNZ8ysCnNnTmzJ+2ZLF4Z3O6qlbR0wJi1bJ2x1++i0njR3I52+nLm6Z/Kdkjino1tOsH/H1x4pRf1rXy/vsFdWzEYSDc3bPeKmv3Ch9PE5cPRTbamy3Fghcht2aOokUdcrKrCePhiZzdvLgwrdDTDhdlb3arGdFRWV2/Jc0/Gmm2jq7oseGFWYx+QGJtuT2iuIbjLuX1rAtc+lcXBI1senXZYKhZ1cHgiwz2Gr988jqPmQ1dBHKcBzuwF30CqFTjLNYAlEz86edFnuQD2QqBjFmuA2S9Ljkc724JgdyIBAczHLO7CsMrFQzCL5RePDSQYt7K2Y9vLcG4bhEeI5+LVDUkR1plKPIwWK4hD7mY3JyaODmHq6pTZgJl4eLAYbGZ1cx5s+4DbnFtYHsWinFF1fqV8Fg5UUZkL+3eZCSxkHXptG8fsMnuZk1iYBWBlF7qwks2DR17h2WZS0mFklqmRzwJmNtyS+cGuY8EsUwWzRBby2iYNC7l7GMG2v5jTq30HmMy1cDfDvFcLbHg+1aFTEvPflhGCYFOJJ1q3CHvxTFb3wehbzMXcubXiwd0RE7NtZReyBcHT2bTK69wVWYGrwRiY6Mof6kXg9AQEjJCdgMXoCQHYExaqWITMBytr6N0uMzWn6hpkdqsSFWuoTlvYki+3bZr38ATlUG+5/QLfzBPWv7jWzLMww6LuiAE89pbdJluXADsbG9Iio+7Omp6eiKU8d5iuCLvdbakym2KzpoVjkipCZdQiLjEiRDbpJfJKphSzzTCw/9KUSx7FqQYUGFjkRg93krY6M888VwipqecuzLb7iFIkPHKNSl5nsJm9zFXysjLXAn47GrXX5q1pa7xqQJd5OTTzkvxz1ccPVlSXBuJu1WZpylI0j83GMzHh9gemJMyky8PPpZ0b8TQgt/pFrTB4Jk9mX7y9f+bMQhMyGaQ9eziVMLEw2UYzXjcfx6u3i5qITLot9qkGEzxbYDDGWc9rrhJcMWXjWXzE5wmD55m6NjiPI2Lfac0smhzDm24VScNg8JZ5NrYdOtuRxAzBBZCbHstXD9LSZXEjxyQeiSFpFqcBV4H0hS2eBFqgt8hLraCGvrrQOMw9YteyxeaFtSPBzGE7adkAoYJpofw17D7jMkIcEVnCJyG5rzpOWVyzYvUL8Lo7uXYKGJnhyOp8ykaLeWZ1ETg2t6mZcx4kn0ViSqXHVHHZcTR3MXBorjbC3z35mD81iCwcvxlsa6s8usOG4HxncSN7HSBtbVH28DBfTZ6ezt5tJ/dsQTKmDMkSyG7AEVZbFgh0hrG2IpcQScoH5lwY9653U74pgiqTDQ34zW0cnNmuojB765PUg2M+WIiKcMhjJjzGXDVCotqNZ6YeA748jofrNwVLq8boa+e0B7flCsMR0bl+7SwynSQJbtTSURhIL0PB4XjOyIOiS415FufDRyU3xTynTTesfKl9IDGzalxhC6wWotWtGHz/9GXQyOc40mVdAsxz3erVxWG8zHNyOLiNFEdaln3LyhjGc8Xo6ox47pI5I/GAxnPNELwqb0qiNm1Y2ECYRrA9pRqvmW/KQwtul4wK9TK1Mz15RAFPW0VkXmq2LNnnnZQZyZSrMpa5hr6LdKjwaHCAsbXggG3rMTbMNxdfdcnzlJXezilmSOquy1yjML+0uTpAsWltbAdDsJa05z4bLE8+m95zQtjVXSplzb4jVCThNswIRb2QiNS8ieXYUTG8t8gncaMOPLPaFKOhE4wNc66S4+nkGuLekAZsJPBcXRstHZbmDnDFOg78c83i8pLPpuHlPkTwdnu/LxQ/5pTZWI/JzS6Lpykv7t/1ZgO/wSXtuBg8KAOXLGDyVGbnWPjWOzYaU/RZ9SL8MuEvtW5ms0vicezNfCmnN3UJ6ArURMgntA4oP5TYYEGEbDfmGBQitl1mAo9EJDb+O+BjFouL2XbWLoe0mNTjWD/msKlH3nouHBAJGY46AaZ1zhUsgv3ECcEAvjpsNu5S25pizrTImhDV8bLaRXCpaXRJ4TW245ylSGBTvcYGFtJQVAa2E+F7qAUEMLuozVzIvqweAPTrFK94gu9dVUDo44kojtnqiOfxvBB2E/Yr5WuZuGEYpO6md+vQqEiaa7QWmID2NumcZxStQi8j1e0hsN71CGTss8q99pRZUuwQl7N1XEi7ilRsP1CZTpBcisBS48VcTrpK015L4EJuJKfDWcVmq8wtZ7n0TWsMFvJibm0IwTP5Z1LXUjh1KSiNdM9NlTerGvTiz2xIExA+78oceFAoJ11Mkkh3Xb3VSu3s70wnSRuM1TS3z+Q3n64QS7utGNhdjfQeWoR80AqppOGK50MDorPOwUMVKYuZJbkSGZg+YdeX4CFVYhhDiRcKbBu7ih3GiFtqklWQ3ppcKit3gGdxj3ZvtmBdelRYvdVoFUpCYm+viAPTEVFyov8DUoLEIg0OhdC8H+YH/yYJmseCMpGrrD/LJcDLLhbSSl8KEo1p7WzbsoJ+x9BqQTF6ZkmS97RDp6PrmtzDgXaHRTb9ZXcim/JYa3OL0kyLXetFrgWJsWo2kOhqDMkdVCm0LpZl6x72gAvZULeS/gajqRYP2I3pZ3kXTBae3A59DRUNi7CaUy7obVStWtm6RzW5F6kYHYQrsJDYopLRaifKHDZ50OxQL8dBscdI4E7JYvU2bp8lkHC3DvZcYtD3sqhSmJK4xE2qZFVTZN29VXRIqrimHa3Bdov8l8p2qTLFpaCxrQtJHUlWt9O8lABj2qdkaXAho5yHNZcsAavaglfMWMBiSdoC1lIjvhulVu9ALZr23cg6K5LqeW8QbE674V6LPqBJ266k7ZXAGhIAFn2e5DVZu3pMqLwSUemDhmiS13aQYM0ppW2dCuQmT4vgvjrQ4WCpERrInVAB00ZrLXYn2FlMhWQPQ3dDLXLZxTBla4mCtPNXTBuY5rnvVVx22M8thVpVeKOqNMG0QdIdF0kfckiXUJ0Kmh7JLZOa6SYdIAnShtFWOiqXlnZpPhPhXJoKP3W/lNQLdwtKGgtTA3allxUCry5e2s9D7L7aNTQ91ESjGNCNtXT5YOELJ1sfBotU3ab0OZb1oI4lYraXi0jziNIlEpQed3cDg35G1cnWT1SCWVZNmG7WGlGLIqkjJ3W1D1i8vQ7QyVB5R3XpsOOiDMu6CzoY5LNwGzCdkTBH6iXhfMwtd5uI3Wte0jMWAEcy0bG6t5EYpp2EWWdho2uxHeA5mZeiCszzRApYqNpSlkT/NKsRVojme3ajPaESwjbsNjIaElVy9t3TB88kh2Wfm91dTvaHOvnRlshS0ljbN6EvYaF2PX1UrDzLYHhtqKlCU0Ktfte4WE9cZlhkQcmQSxcCrDFOdRh7uHK9lQ/A0v7yrexRkHQWcaHVC0jgDQ0cvFuDQj20mbTrmmBpOgOnIXVF1H4snYEN2b4FfQukMxZoov/oapyKYJniY+GcdOXC75SLR0W7QhW47pQp6FBoXMauYm9nkAaFSEK7zaZslRl1Po9wC1oXml7RsOmItgVJIKxeGD2L6fswpiCH7sRwf7v7dGVVyXCQ9Uyjef2D1nnB1xcLGn3uoyehwvKiOZYHTQmSwGjPVFRzltd3dS2t7lkPimCqj++cQSSpQqCRp/PTR3SJXQJoUtGuCBB2dcmNNbjoVZW209iKLsPyyrevenAhrOSaziqSJbAB3Q0V8CzNwVYfshlS0XoYkgQbTRp/imWZy1iti2+ty4Vr9jCJrKqxLFUgzbYlNaioTKnMfZymbpVeg57dzw6dCtswxdvNdlhLo1sUJPRRAjfMldulKmGzG1pP4sBt5pI2K+8kx9wPWCZ5Lyd8w961oQEyxyh7DLLspsBgDiNND7ZK28lVdBmGpL6KAtoLqsQgdUoVnQW1SIgf3FjUjDqllyqy3gy9QTGtuRs9zNeUk8JUtBamrP/d6QfP8pU0Nc+oSAKHVCclbwIt+cs8Tq+iy2AOs58ZCWtV+0n7apFdKrj1hheNBBEfm8X0XmTSisETqaRjoGtiGG1SMhSyRiryxrbT5mIsCHrtgVf0CprrZ7JP6cTk+3aPitRIo5WZjUaWgCAYc0g2H1Uvl2LG7DmJ5kER9y/CIpjsnproVqAqhlKWgl5RTHjY3zGNZQlNKTv7regXtB2rjMPVzgVW6tEAtk4VQ+PS/WKVZoHOo3yqjmCzfkUqNX7fLhvrNL/3UgS4Q3cceQW5ok+ghp18+ySzoCKacXqKl5Ekqd1rBh0CUzPtHXa1eisGFS9pw1VKmhs1m+N40HAzuWccSXKP8EL3kqElMLxRIJs+wBoWiNpWuYoGgWXf6VRTwPb2c9sZWbUdhlnCUa+pgDvVarEIuzFSEV9rr2YYqQGCJNmOHjoDVdIBT3ErymlFZrcJPSVlwp5V96bgmSJIB2RoaekOu0uSDZ6Vy+t16mLVk1T2t6VCwd9M7DohD9gqNLygtGgr6v1q83lyLu99VpT8h87OfNSTor+GTFl7zFUtk4Qo1Whrl+RLCFCbbAlC4XcvAJT5SVquO5UBD+kI9txtd4ESv7ra7BZCwjvVjTYKsq8RtSq71TJZpe27fV7Plm8gNtB9h1K31FimnmnQfeuBOO9iLGR2xaptFcl22cWpaizZizFPRFFRs89ailpnk2dF3b6LO/fgHyxPOCyOr9icYqnJ7pcqu+vet52gV1TxVTX442WsMbUtLaMNN6pKdbrEB3D3Q1bRHuq+TDcJD7qDsjw7SVbZrdjsadq1swGloupPbgd9twm4lhcO25ZSUevXLoLGEnDY6uGw48QnNKyW9dXcsqDWrxKS7rFVxzRkMx4Mshr7IbV0KaJNo1WF+95N7OXWLRGq1XDxsfHUOJxgMRi7plmH7caVGhfp05ZLzwBf0FieqaR0tmhXVPuLlynyHkhU+dUu1YshmbL/ftgunYrqlQYLXtYDq5nEunNVNi9jcuoSQdXQ0qhxdllU7ErTnH/31cBTgVG+yHq3cemaHOuD+r8Z0eFyzJ1p7IuXS1uK9uDkTQmTJr90HqIlUC/xiexx1AXWtBBQ0RIo2srvRlvWhP3le3GhopbP1g/Q1gUia4BW9AOWO/NRjbW0ZbAnHnoB6r/o0nKoYmxllu21gW6AVUYvNae6uvZeyu5ug+VJYfEOPtjDchSJCvfwoEGgHjlbvaIiQdShSOsUIsC23JDKJbBG32B5KaAYB6khGly6Szl5ntXpTAzSTtitJgKeZTlF97MaW7pfAFd39XJqUXaRfurdyIUex8yCiwwG4ArZPFOBq+h+Ujf5UAh0B0KYb9nd4a56gm0SzuMRKYljRUwrRp+wz8MSL3S9lGMbHFVe9AB21ucc6YaRzkVCMjU/tGQIsmjbqJ5qBnGOYDKOov1fsJCY5Hn2RRE6F2mb7mKsbrWyi84sim2d5WjbAxlwLV3Blm5XGYX3nX6tYixNWaRXYxOPssQmmB0+mcFaljxYmEZ5erZ49qJzoGOpF18sgQtYUK9c9sAQGgmqS1m7Q00la9/FXrEArVpg4DwiJnQRppail010KtWly2v3xwgvRKhlX8kmNjJoSw2x989YjXzZKyoavMO0+n5wsCxzKVkzT0L9cEoqrHgUD1Yl+HdE0Diwtyym0UvLa3sM8VqEZVhZK7uEKk/Pp0BE6B+o2x/jSIVXJLQRsJ+HroKlPHqKd1fkZaC9dx9V++pFYZ2HaCx0j8yrcUyj2gxA9AvUpMAjCoBV91W4eSH0CsihOkpOzblO5xisrrujdpJK28HtrdxgWVKiIqCf0N1uSAUarKnP81SGkAApqHjvbBnLujUj2YpFR0HEWevy2hfZG00f2vMUVnWlEHSSP4Q8U0El2zMfomapiTQE98sV0jXF6tXpTd1Tk7Vcjy56pKqZFsHuN/d3ey2ioWBhfzsJCaGvQNIsn8Noy7Tapc9A6DNYsruHTF48WZZh6xpAb0GtJlKOvXKbvckkJSvx24T+gupR6+VNuVY8OZlLnT7hNQqdPKhsFJcIwbLaJUWhiZNGRrRLR+BZejXcYqPtoI3UNqz/RM3fpULwITsqSXd5YD/sbiRRG9rnKbs8RG2/wbSbw+CZCugRlI3WkkQFlXlPxcDzJHGcbVkkDQhP5KSmTLuSLFvJNlzShVBj1XZ1l9CIGNvnOEvzGMRL29+i59CkBnyuJUtjZJuPRxWEnoNu4yQVsbuIvZ8X7Ei0U8X3uui+rWQnFISWQ9eNRtNoywhR9VbN1s5Ykm+1U7ZtP+cz1aJK90ExOB0QcE2P1Xelk4aEEYgKJEYm9BgsP8kaEYMlKqSzbZFgMrKvYw+lSWtzYLVptOVdRTAboq7sUNHzu2dWJR/PhL7CuO/mpjF3Sphcy+k5U6/7pRAOVzxtwpvf8tSZPOfAGzZu2Ka3ZdHnnHpi9t4Om+fz2hZ6DerW9J0v2dmma2iagUGPYcplO0ClWb2tw04nOQuaSQ4oNEmfKtsuaNCeBs5jgqe8DEX17DoldBdor4dhLLy1lefZWkFSHveEpznLMqahjXua3hmVEfcWNElzwQ2/moAlJX7rnihtKQpd5tnCm5KnQQNO2UmKVRTBato00Fm8ZCfWrX8OXt8+TG39Iu3v5JNh0pK94ZIl7Qc270zhgXvdSb9B2LlcDD56DuaL83mHbw1PUPql+0N4BYIcUn2fUBoU6kdIX8VbS7Wpp1JD8oKPBwFexmvoUxRAaoTlXEgdzaI2dnSsX9X34tCYsDYV7Ti1peKKrRO3gWtZl75Fh7aEaoS9W8oiyUTgHz1EAs/zrXKmXNN4VZrWZLQlW1hf8qpd6p6cXDqv4HqeNTS5bNLA0GAqXR8x9pbCut10S94jkUzRc/yWlucuSBb9dULZoWgTJB2eJS48TbcLbsj6iu5BHEZjkxzVs3m5YRtP1tdVxnkXHuyh7yfuFx3Rw9Csl6woBNYkfe9KX0hqqJgtHz1vgzVpZHjUMPVuTRKvqZvJBJysJqnIJoUub1Pmsftg5ErgLSh9C8Uqhw0JUfISAU1jQf5xlX9JjUrf6tv7qcFWHWChvYbc0O+Y0k0pPtnQ8thNm+Kpc0Po2uVVj9G01dJYClVk2z2wkNv063zjKWSpW7Y9B2DhvSh9T6PoleTKpXFmvvRHdEVeNjU39EhER6QR4rUbeiL65lNeRqNqqvtOi54yXIV5Xj5sZVoGJD0v4zTd3b/Tg1b0NaipVca9xNCZaP7CigJdxSei45h8VaNJYiXVtY1pQ69k6isVffchwMVTdQNk1xOLNqWG+kvQqhqscNZTqrh03eno+WPDdprsOY0u9uq1RvTQ97cZ0CZR7bSMqCxrtaVp440WiezzNgLbD6bcaC9xNEdEp9v7rK2Kb9M83eiVZHKjH+DbFfDNHExtD9j+9E98tOf2TRCWmzMkzk5G/mABmI0PazyY5+M9v/7uyy9/jy80fHz3ly9Zv1aUP37Byz9ztsLGm9PEj+++//IrFrD+68d3//3ld9999es+nyVFRhhUOYejqxgws/Vr4ty+EPRt5Rk/Rp7zlaFvK8z6UcLcvlT0bQX69Y8RKH7t6JNEQubCnpmTJvt8Ba9NFet3v2WR+ldEun4y6eeRqH1Fott3l34ekeiHRbp9Q+iTJMKmMs4gMI+CRF+bRddPSX17Yb4Cze1bVN9emq/MHfuY1beX4yur6vY1rG8vzTjS+Fer0v5i1Y/9Hh6nIx/nD4h459y+hYdvbn0vB1LxmuVyIJ/jkp/Iz8l+zj4gOydNO0eiLPx0DqafU/ScKlEN/7QPSL9dgJ+6n1P9nH3Q/RyTuU4T9Rwsk7lO8nOyn7MPTOY6TOY6TNTLwfRzXObuMu+D4TJ3l7m7qOfAZe4uc3NR90F3mZvL3FzUc+Ayk8tMLuo5cJnJZa4u6j4gl7m6zNVFPQcuc3WZi4u6D6rLXFzm4qKeA5c5u8zZRT0HLnN2mZOLug+yy5xc5uSingOXOZnMZZmo+6Amk7ks8nOyn7MPTOYyTeYyTdTLwfRzTOYyTNRzME3mMrqfU/2cfdD9HJe5u8z7YLjM3WXuLuo5cJmby9xc1HPgMjeXmVzUfdBcZnKZyUU9By4zuczVRd0H5DJXl7m6qOfAZS4uc3FRz4HLXFzm7KLug+IyZ5c5u6jnwGXOLnNyUfdBdpmTy5xc1HNgMnNGpefkZaJeDqafYzLnaaKeg2Uy59n9nOrn7IPu55jMeZio52CazHmQn5P9nH3gMneXubuo58Bl7i5zc1H3QXeZm8vcXNRz4DI3l5lc1H3QXGZymclFPQcuc3WZq4t6Dlzm6jIXF3UfVJe5uMzFRT0HLrP7wezu7xy4H8zuB7O7v8uBy+x+MLv7uxy4zO4Hs1qkcj2AzH/5mfy/bBWXUpOGARc6647w8Y4WTK7nU7g+h+sjTffrBbYr3e7nP+gZri+36zWwOOdHWuON6/k9XF/D9ZHu4fo7fhqQXM6P9Lrjp+HKlc7h+kjf8dNQ5krf8XrSM1wf8OsBv0iPgF8P+PWA14MO+PWAXwt4RboH/FrArwW8HnTAjwJ+FPB60AE/CvjVgFekKeBXA3414PWgA3414FcCXpGuAb8S8CsBrwcd8MsBvxzwetABvxzwSwGvSOeAXwr4pYDXgw74pTt+Zd3xirTGktfzKVyfw/WRvuOn4eaVvuP1pGe4/o6fBqKX8yM97/hpmHqla7g+0j1cH/DrAb9Ij4BfD/j1gNeDDvi1gF8LeD3ogF8L+FHAK9It4EcBPwp4PeiAHwX8asAr0hTwqwG/GvB60AG/EvArAa8HHfArAb8c8Ip0CfjlgF8OeD3ogF8O+KWAV6RzwC8F/FLA60Hf8dOU4Erf8XrSM1x/x0+Thcv5kV53/DSVuNI1XB/pHq6/46dJxuX8SM87fpqCXOkcro90wK8H/HrA60EH/HrArwW8It0Dfi3g1wJeDzrg1wJ+FPCKdAv4UcCPAl4POuBXA3414PWgA3414FcCXpGuAb8S8CsBrwcd8Av5Rw75xoMO+UcO+UcO+caTDviF/COHfONJB/xC/pEtPhhv6Z8zz8P2Qd3go3nehbZ9jusdLThfz6dwfQ7XR5ru1wvOV7rdz3/QM1xfbtfXvcHxH9Nkm0DP+T1cX8P1ke7h+jt+mtddzo/0uuOned6VzuH6SN/x0zzvSt/xetIzXB/w6wG/SI+AXw/49YDXgw749YBfC3hFugf8WsCvBbwedMCPAn4U8HrQAT8K+NWAV6Qp4FcDfjXg9aADfjXgVwJeka4BvxLwKwGvBx3wywG/HPB60AG/HPBLAa9I54BfCvilgNeDDvilO36a153zI6153vV8CtfncH2k7/hpnnel73g96Rmuv+Oned3l/EjPO36a513pGq6PdA/XB/x6wC/SI+DXA3494PWgA34t4NcCXg864NcCfhTwinQL+FHAjwJeDzrgRwG/GvCKNAX8asCvBrwedMCvBPxKwOtBB/xKwC8HvCJdAn454JcDXg864JcDfingFekc8EsBvxTwetB3/DTPu9J3vJ70DNff8dO87nJ+pNcdP83zrnQN10e6h+vv+Gledzk/0vOOn+Z5VzqH6yMd8OsBvx7wetABvx7wawGvSPeAXwv4tYDXgw74tYAfBbwi3QJ+FPCjgNeDDvjVgF8NeD3ogF8N+JWAV6RrwK8E/ErA60EH/EL+kUO+8aBD/pFD/pFDvvGkA34h/8gh33jSAb+Qf2SLD9Zb+prn/aSNsvJ7tY2hn7f7CF/KHrLrjKHRbUf4tyrwISrs2Kff8HH+4b2q42cTbJlQv1fB8CER0NiALIKWrwmb8R7k+Fbisnx4H/SKI96UaB0i3rdy/ZShd9Hx8QDbj7eQ1O8/IPCdc/+HVRF1cCAv/7bpq02OSa5/SqUgMs8/7ciiveTTrh/6z6P+SW6ZcJkeBGTwnVz9VwTSHaF1kCm/FzTwRYs5kNOnj+/+/PErjKD8YPvr69o/kG5XxL/YlTmouvww3l3xG/kBH6bttytshvyDK/7tzQ+p2q1ke14/P9TfyQ9475gjxesPSX6Q9+lZ3ouGbxWxGfKUl379RqzyW3v6wq36jwCrvbsVpTeK5PJOqvlTn/Fewbe3ejdSrb/T/O2gv5tYP/0ZbyH5WQb9Bx7y02Gcb37I+c2Ep9++w/eycfaPX/4fw40dywplbmRzdHJlYW0KZW5kb2JqCjIgMCBvYmoKPDwvVHlwZSAvUGFnZQovUmVzb3VyY2VzIDw8L1Byb2NTZXQgWy9QREYgL1RleHQgL0ltYWdlQiAvSW1hZ2VDIC9JbWFnZUldCi9FeHRHU3RhdGUgPDwvRzMgMyAwIFIKL0c0IDQgMCBSCi9HNSA1IDAgUgovRzYgNiAwIFI+PgovRm9udCA8PC9GNyA3IDAgUgovRjggOCAwIFI+Pj4+Ci9NZWRpYUJveCBbMCAwIDUyNS4xMiAzNzUuMTJdCi9Db250ZW50cyA5IDAgUgovU3RydWN0UGFyZW50cyAwCi9QYXJlbnQgMTAgMCBSPj4KZW5kb2JqCjEwIDAgb2JqCjw8L1R5cGUgL1BhZ2VzCi9Db3VudCAxCi9LaWRzIFsyIDAgUl0+PgplbmRvYmoKMTEgMCBvYmoKPDwvVHlwZSAvQ2F0YWxvZwovUGFnZXMgMTAgMCBSPj4KZW5kb2JqCjEyIDAgb2JqCjw8L0xlbmd0aDEgMTkwNDQKL0ZpbHRlciAvRmxhdGVEZWNvZGUKL0xlbmd0aCA4MTc0Pj4gc3RyZWFtCnic7Vx5fFNV9j9vyb6nSZomtEmaLrRpm7ZpUgqFPLqwFShLiy0Y2kKRgkArICIwFkeRRWVRR9FhGNxHnd8YS8WCdURRxnUUcXTcURHXIiqjDNK837k36eIU++H3+/D5wB9zXt83595373v3nHvOueeGPIABAD0CD1A53ZtfMawzD4BRY239jLJJNcu/W7MYy4sAJEfmLm5oGZvyyfcAsol4/fq5K5Y7J94zmsXy69hm+2Ut8xfvuuWRYwCKJgB2+PyGZS0QDwoA1X3kKfMXXX3ZjmXxHgDNKwDx6qbGxSuP3DWlHiDlnwCJ1qZ5DY1vxo3Mx+u3YftAE1bo/qxcDjD6BJZTmhYvX9mYqgoBlJgAuI5FzXMbTD9ry/H+7fj8Dxc3rGzhlrB473I8wbmkYfE8m7tgDpa/weszW5qXLRcrYSXA2HHkesvSeS3ylm8FLJPxngGWNzBbQQJyyV0SH/ZIjX5yu2Al+6AcWJWU5yQ8z6KugOgNe0Zp0nSnE0u5yUZpUqQWXpKrmL84gfkjucaHJIfI02gPBhhCoIZTchHkIBcjqB8lopKiClSIalAjakAjdoMWtIg60CHqKRrAgGgEo3gG4iAO0QRmRDNFC1gQ4yFe/BmsYEVMABuiDeyIdopDYIh4GhIhETEJkhAd4ER0UnSBS/w3JEMyohvciCmQipgKaYhpiKcgHdIRh8JQxAzIQMwED6IH8SfIgizEbMhGzIEcRC/kIuZCnvgj5FHMh3xEH/gQC6AA0Q8B8V8QoFgIhYjDYBhiERQhDocR4kkYAcWIxTAScSTFUTAKMQhB8QecgdGIoymWQAliKZQilkGZ+D2UwxjEMTAWcSzFcTAOcTyMF7+DCTABsQImIk6ESYiTKE6GyeIJqIRKxCkwFXEqTEOchvgtTIfpiFVQhVgN1Ygz4BLES6BGPA41FGuhFnEmzEScBZciXgoh8RsIUZwNsxHroA6xHuoRG2CO+DXMoTgX5iI2QiPiPJiHeBnMF7+C+dCE2ERxASxAXAgLES+Hy8UvYREsRlxMcQksQWyGZsQWaBG/gCtgKeJSistgGeJyWI54JVwpfg4rYAXiVbAScSXFq+FqxFWwSjwGq2E14hr4DeJvKF4D1yC2Qqv4GayFtYjXwm8RfwvXIV5H8Xq4XjwK62Ad4g1wA+J62IC4geJG2Ch+CptgE+KNcCPiTXAz4s2wGXEz4iewBbYgboWtiNtgG+ItcCvirYgfw21wG+Lv4HeIt8PtiHfAdsTtcKd4BO6keBf8HvH3FHfADsQ/wE7xI9hJ8Y+wC3EXxbvhbsR74F7xQ7gX7kO8j+L98ADiAxQfhAfFD+BP8BDiQxQfhkcQH6H4Z/iz+D78D/wF8S/wKOKjEEYMU3wMHhPfgzZoQ9wN7Yjt8Dji47AHcQ/iu/AEPIHYAXsR98I+xH3wJOKTiO9AJ3QiPgVPIf4VnkZ8GvYj7odnxH/CMxSfhWcRD8BziM/B84jPI74NB+Eg4t/gb4gvwAuIL8JLiC/By+Jb8DK8gvgKxVfhVcS/w2uIr8Hr4j/gdYqH4BDiG/AG4mE4jPgm/EPEk+Jb8Dbi2xT/Cf9EfAfeFQ/Du/Ae4nvwPuL7FD+ADxA/hA/FN+AjOIJ4hOLH8AniJxQ/hU/FQ3AUPkP8DI4hHoPPET+n+AV8Ib4OX8KXiF/B14hfU/wGvkHsgi7xNTgOxxG/hROIJ+A7xO/ge8TvEf8OP8APiCfhJOK/4EfEH+EnxJ8QX4VTcArx3/BvxNPwM+LPcEZ8Bc5AN2I3RBAjFEUQxVdofOdonFfjeorrDEZdPdYoMcIFMJpVYXRoQD9egB7aDMuTjaKIbXL7XWuk15bAUnJN/PRsx4fv0Sf8CkmTpCbJCckhfg0f4j7Ap4P4ufhxZGWkMVLL3YZxHtBDHkabOogz20OdaC2EVqBV7kcb6E/Xonc9gBbxLuqwh7aj1zyC1tyfttLa+9Ab/oJWvQ8tD9C/t2Ht/egPfdSMvr8F/XAXHGYSY3UHWBMTHcGXoGYPMcuYzai5LIzbl2KEugZjRhu8wEzEupFYNwVrl6J2b8HavWjDA2kk6jKEEXEJ+tpe9AdCmVhbhfpdSOuidAVGtY3o7w+iXzUjvx7He9dZ7nct62JdGCU/w54vMb9jD6JED8I6qQlnFnB1d5BVnuoWMOpApBHXK+DmsCfZe9ht8Ci7ECYK5uqqwkC+Nyc7Ky3VYYozGjRqCc9mOcNcarm73N3QtMlZ3uTc5C6rL8vOqphWU15md7lqs7OcWF3mDDP1zvLwmBVN1k3lpEHY6AmzqeXkXBgWbqxHxl3mcrnwSlzflQ5x/039LjkXhIWGMNzofCxr/6abOvQwp96jbnQ3NlxaE+Ya8FmPAQ6mqaqGjImc9U3OMI+9KdixJjZEcq2pHtFdhr3OWo/VitKa9a799rARP8vDBk94LLYYu+qondtUbl3gJMVNm9Y7w7um1vS/6iJYW1tr/YUaxrjH1G/aNMbtHLOpflNDh7h2jtupd296rKJiU0t5vTMMU2rCDNbvu9EeHnNTbVhf38QMR5GJHGOm1QTtLgPexeUi8t7YIcAcLITXTq2Jlp0wx94GgtdTG2bryZX9PVfM1eTK2p4rvd3r3VTXpTWcncUbV0x3V0ydWeMs31QfG3CsZli09BgLJY+5mQ1THxOYDdNn1uxFx3RuqKppYxm2tL6klqiRLa2q6d8LT9KXWiCHuSKL3sxgxOCw7Din426GZR5gZ7JfsF9wG7mN/Nz/5xHmwxL12Q6plh4HZKHY8Sw55Bo8Diqa6XFceVS14L/HOR83QHRvIWG3hK7+/o06XfG/wC6nRvDwNWUZ5PPZA498cUbVfavqVjlpqUDLiBJLijKQEnuRgekJKe5UyOl99YNXKeTlugwuQyoCg61Or5XggoafgAz2xjzsY36L5FvchbhhvZAcYIpUBeoRxhHWgqRyZryqTF1hrLCWJanN4xWsazyn1HWIJ/eo1Wy1zgUd4ol2nY6tRuakYFepkLOSS7AzVZfqSGXtalKyu6TYUIgjLaV6hQJRTdpKt6fof/R4PF2eUOwTgl3BrrzcEKNnXU7WoDe6nEYmEPAXpKWnpbmTpTKp1GyyxFssvvwAv+XnyKnIyZ9OMwpG/VPk3+6EhBT31XWzV6ckJ1hSXFc3zl7Dfhlpjmxk1jCbmJuZ1ZHWM49Pfe+u7UcmT5o8uXLC8c073pg+edpk1DxjwVheLHkLd1wbBL9kjFSq5rTcOEauMzgMrIR16BidTq2lwmg1arW0Wutkg1wz18JxnFqvZ6u5DvGIoCICchYiIEcUkkiE5JJIL06q0SDqNRopIrkD5/XEKOTr8niK8r0hry8Ewe78oM+LOnC5/Dhj/vxAYSBQ6DO4+OIz7zKByEvBrak5fv73TO527tgGsylh0ujTz6Lt3I0SbJOcwN3cx8LUKY56ByvhpAYLZzakGEZIhmn82mBiMKnIUSEZpynXViZWJo131HEh3KfOUsww1CXMtoeG1CXWJS3kGqXzDHPMzUkt7HJDq611SGtSKkrzRTsZNIuMECQc6PS6bLl3SK5O0El1ArUHQY3S6XSqCXEs65jAyB2s3GVRE6VY1EQpFp4oxEJUk0A6WCzkThaLc2eyLtmRzKIi73Tpf0RNEKC66TIWUZV0+bAcystFYEKomgBRC5oFsQk3lnz5vNlEzIP8ufhtZ/QLDs/av/nOjbPenKcc29X8GcN7MtMXVFx+dC7nOjSzvXbfe63LrxNK3nAP/+Cp6ltLRq0cv+D5KtTjg+gNa1CPI6FD2KxSSbw2ldmboUrzZhQXq/ymvOQC7wRVuak0udQ7g6mV1KqqvQtVl3kXFq9UrfAu968uthUMLxvOjhiO+mWyDdlsdnbGBIcij9VpHBpWozFMUCjdrkJqSoU8MYpCKdFCYVKOxcXlJA0v5NWcjZqMmprJrqAu6Aiy6rtG6Y+F9Mc8HkN8kb7L6yX66QKimFDQWEQ+vN1FRSHiPBZLVBfu5LR0v486S2GvE7n9WOxzqKjyiEuRPmaLhdfmjppQWvHy1WtOTNJVH7s8uDkrJ9uXnb12wswx2x/PyfDMGVX3Vh3R6eIHSsdNePSq3DXsq57fzr/s4eCY0hHuQ8MmZGZkLZw6ZUGSI/6B1lWBqTabqWzUIfeIoVm5G2at2WvVyn0YdSahve7GLEoJGjgiuHiNSZOiKdCUaVo0UrWVSK7WjMO5VEtlCs14RoJZDTEaabVEwsk4Th5UVipZpU7n0LEyNY8m1U50hswPgpY0451KhUZaKWWYDvGooCKGxyhJEyyfbid6R+a4kE/aMoxO6pAGpZw0jfiylKWBytovUNHpktJhSb09XkuZkLHIR/23KORF78Wp8HqKu/ONRUV5ucx6fTe/38OEGLfBjb7M+Aw+l4Hhd3+wv7uQPdTxQWRu99PMvZEQc+8xbtyZpeyu7vqeiPygpAuSoRB+JwyTaiyaolRfnq9wfGpJXmlhHTNDM8U5xTXPdWWe1sZljE+Mi4ufkMjpWD+GZ1uW1+h2gVGBMfl4X3CmGgAqB5a/EXREBbCjSFfkKGK9LgUJ6qSxYvswjMVd1NLQ1oipoSwkLhuLuvO9XnRIYmImIMaVxvoLjIWBFGJAZjcxKJD1mJPsrDH7wcg/3lnSXj4jVB2qYSx7R0zJUA65YsTbIpir7r28btvEmtqXC4M5LSOrb5nEsqOLci4PbnuA+fTTyMdlpdMZ4zMHmfyrrmhVap7W2SM/fObzu/0j990cWpXtNA3NtGQ4dj7hz8rAfBZWiR/yOyQ/QAIMhUJGvhfS0EA0KF5qR4xJ6WHcPUwyUdMKwmV7Csy+5IL0Al+ZeXRyWXq5b4p5VsJM+0xHVXKdpzarLq/KV1VYL5+jnWOck1Dvrk9foV1hXJ11gzFRyj6U9oCXTbMovTyXOFbP+sfhlDghjomLA69Sk+ECS5oTLHQe/hDVvtOloTNE1K/R5Lukd+AUkICHs3AUpwDnAMHg817RRddHY3xRCLNGIak2a2MWm5GVz/m9Gd4A7idmuBvdd6ZJbU43l5ZoIO0o1OKMUZul05biLwgU+tPS/AUpsaiJXs/RUBqdp/hAII5OXjqdOTJtOyKHj34f+XjrdSuXMaZ/fMQor1l1021d96+95u6p01JvLJk70TF1hbclNHPxvi23PMr88RkRTh9Y8+IIqbB96Z+OvHX/vAOF0uIwW3l568rLxi3IMA6PK9ncvezS5mGWtOS8Py1cH749urvlj2NEkMEyIYHh/VL0cp3CoahUcDCLYYk3MiZ08B8FJbFdflalhISFrwQVcVqJnBg4KbeTlsh8TyMCrSHtkRHpGibpceCTnm7PUeKz3fnoqy7qoi7+ePc3B7u/wZG4Tn8kcYVJXmbDxGw2jkwKNwmXjWXGsayEl8ikl0hvwJBhwhYSGX8JfwPP8SaO5eRMGVPB1rDLmDWsFDO6KzmG41h5OUzgWJbheEiB4TATt6TL8YZL5Do5g38qzsP5uWpuHreak3KNMoz1IVwFQzjxZIShaDwJYUAJ7Scg349RhXExPoaRzO7+JHKq+5M3mcPMYcmh0148P5EkYRxpwjiSyK+ENPAxC4RatZJ3JyjNbt5jJHrIophNsVY7NenSrAXa+sTm7NXKVaaWxNVZSlY+dGSuQTCwBoNTXjmEGTLEGnTyeaPlSkyMEplEQ7pfILpmiQf1MkTphBHo4s7aIFEFUjJDYKQhqEM8JhhoWKIBFmw0EHWIZ9pjsYnmUZhg0IHR2GVWKEjCQXIn2ObX+R3+oJ/L6RBP0YnNIU00pEuOnHTJsaswxAuF5JkqGr5VctJONYQ8T6WmvJQ8TGUhN1bR9VelJLdXrSugmWiUuoiVRANhlDAcdpPP/Hwa67vo6mvAkB+KhkXiYiGX2y+Nrb7E0wIphWddbTmDNBYaiYMlPplQPdS7atodbyyedxmTdF925tCWkRP2NCgLX5+34lEhWPLkjC/LpjYuv2rufVcZRhrjHS/8vvUP2dlOeaJQZY3Xp6c+rUtJ9+bcsiiSyBRKTHHxDdX1DZPQBhahDZSikcaBk2GF1GJb7pBhzkpbyZBxzhppk7RFrzAyrEFiHa3lGXlSiURpMP3KfGqi85ksxNaUHwU3nVbqeKCntTTNg0w6k8rYxB4Xsul86qJpI53FWzDdCyb3bA9oPmy3y63kTvIOMSJ4yN3k9G5yumGQ05ZymjDJaWIkl5M7yde5+iasyxPbSMSom04ViZkYNIuKgjhDdHLcyayBzAydCoOPM6TFgh+ZidLOqeH5L3w9tbzs8YaaDRWdnRNXjt0Z3nD7lPuuHDOZKWAMmz+cPHFKajpz9LTIXptse/+lv702lqzaC8VjfD2/Bqy4B39BSE/jPZpcfoSmOKmUr9BUJM3UTLEs1NTHr9SsStIyxQ6HbshIM68iCTXNa1QqWVCnUKtd1KdcNKNOIFrWUM4Gzph/nBTKqA63uHQuhyvo4hwMVQ5JbzCXsRupGo1UbUY5uWKkajPS60aWdDauc/YoCpWUH9KfjFq7z0szSg/Rl5duxFw9S3ehz4yac4JBD758ozlm0Hz9mRdHBQq2zFj6eZ6y7uDiyFeRFxjPyU/+9QRz6+137Faz9vl35uXmzsp6dWiAyWbMjJEpiZz6IfO2e9quR509isHzOsl7dOd6rxDHlLGCSlPIclKJRN6qYBS3kMAgZFHJ63lqDzwVlpcS1+WpJfA2hmZsTH0rXRE+bKcLQu+OTKKOrQjHexaCH3uWhjPt5DZkadhDl4YN8l77CR2l9uM56jlGfD3oQXUwDGbPnNvgY6578011Z6fEeuB0Kh8ia8STCFehn3HwGyGdZRg5GcstMYeIpl1yGsbokMHWypDMNDpUpneoDG3P9AyVIfOvopPLk85YPrWHMhv4voHSYdJBkmWMjO6qzk66LpHvPPk6tEkLkyHEcWaL+Uoz7kHlJXG8VsJo5Gf19FNUJ2x0l08jOFlCqauTyYin7s5Td5dT6ZJjhhlpj3n8ERLgUUgaMYAGVqw9JQylCthmdVjrraxeRbWiohKrqG5UVDcqm6ZHMcgcoSmspkcjml6NaGhHDU0AyNM09BZY/o6u8oTZQ56s2RDfLyZEw/cvogSxew8Ei2mQoCHC0BuvMSfwmWmcMPN1nUZrwuyKSX+a1NlZ0zn38b+yayatT8vMmDjizF/50Jrx0959lUaBj/krUOMqiIfTgm2EtkBfYBphqdCW6ctMFRa5LqjgzUFOqY4qmq1W96geme+jQVZtTxBiOj3THls0j0TTnNjXKx3iu+1UxUQvVKtRo6bMaWEkVfnWBF2CIyGY0JzAG3kaDajGjVTLRrvUQrc20W0OjRNSGiekJAAnkLuT72oQebrt4ck9peusvwi3/eNtF1Uj/f4GcxM9ZprRWAG9uSUJr1dEvvi6K/IlE9/1NWN99uE77nzo4e23P8LmRL6NPMcUMwY8RkYORL595/Dhd9545+2oDXNL0cmM0CmYQKPXODWcWqFDyy5V6iQKOckoevY5J4Sh1AbBJJhaTKxaRo1ERuWW0ZAho9LLbIoeG1P0Op+CNlb0hAcFWboM5HaKFKINhZL0V5B5I7dA5t/UwBQb4gYamIHsDtEjcSvoNUS3TO7/NKl4bqkyszJwyT24yLQ8UpuXlcVtVSomjTzzOR+6f2aFREY8eIn4Gfc25nA+ZrpwiZRV2M1sgj1NkZmSryhOKVFMTJktCVmmu2Z4q/KbJYss9c5G77x80ypJq2G58+qhyz2bmA2adbb1Q29j7rKrQGvN4JO4tclMskAmPzk5bVQSLyN7a5ooyWSqUZzCpSU25CHKyKCay6A6y7D7qVVa6cpipZtpK3U6K6rscdLEqu0xZi3d0dBvyuzgsspoDImZcm8wwRY0gJhiNt1ryqd6TPmUkE5NeXMs66vzt/olMmq4Mpq8yWx0Om8ooGlaX7JGd00ej7fXMnsXNgS6KyJTgvvY/l+S+AvS6bYnLZq4Bfq2tWi98XRrhAf3dvd7a14bo6x9t3HNTWlpi4Ze6791ddHwYf9zeeOrZcpxf587f7Mnc3bBtZ7rxo5lSu58boT7cGnllBklyclWhVWbfseS8lW53sI894v+8ZWTy91ui9qqTBo/Aed6lPgV2y3ZCXZoE0rUEpvEI+FUetkojUopsdvjg5yiMrE1kdXCTYlyjZ5aq55OkJ6uDno6TXqbUi4TNPpCnNYPBQNRtcxJzDvmCz3mLes1b9kQYt4yeg+s/S4ahGTxRPOyDUP6x8r8/Kh9e/U/5tPvKr1Bnw8RlZkazXgNuEIafAaX2WXoyxzYbv9v8h5pa23tZK6PrJFbLZMqcxotSqXW2PEyO20nMzry9M4IVzPXMzTVriBW/z5bLAmz7+NqmiQYoErHYu4qYXIlgoTFy17MukOASTdZ7/wuSfjnLP5NtngX0H8jATihUCgG/nuejBCQ49dJBvK+ghT/pPSfYfCPcLyUH6TvhSOZUqk8S+05ySvrX8A+EJOXcBervLjjUA2s/T/P7wB5JRepvLgrUA+slRMivyYbpOcv5JWTPhCTl3ASmeR8D/W8kEKj0QysPRd5FdDP8c8ir/R8D/W8kEKr1Z6lltAvJRrYBvo5Pkqo6JWXRECp/OKUF7Mt3cBaJSHyi8hBev5CXgVQKWPyKi9eedV6vX5g7bnIqwRV/wLQOC8hf4STKgaLdReONAaDYWCtihD5resgPZWg7l8AVa+8hJNdpPJqjUbjwNpzkVfVX14V6QM98iInv0jl1cXFxQ2sVRMiv2IepKca+gV2lFBN5CV5FpAVTq68OOXVm0ymgbUaQuT32oP0VIO2f4FKGZVXg5xCOdhaduFIbzabB9aei7ya/vJqSB/okRc5herilNdgsVgG1moJkV/iD9JTC/0WMpRQ2yuvlso72Np94cgYHx8/sFZHiLxzMEhPLej7F4DmLVReHXJK9cUpb5zVah1Yey7y6v5DXl2fvNhNqbk45TXZ7faBtQZC5D2SQXoaoN9ChqIbiPhkn0Q5tXawtezCkSUxMXFgrZEQeWNmkJ5G6BfYUTFGohySVwJZ0dW6i1Neq9PpHFhrIgQmOMtS1dcG+gU6XMNNZB2n8hJOaxgstl84srlcroG1ZkLk/adBepogvn8BzEQ5VF7CXazy2lNTUwfWWgmRt7sG6RkPCX0FnOp4Mt1k30A5fdxgse7CUVJmZubAWjsh8u7aID1t0M/xUXQbEZ/kWWBHzmgZLNZdOErOyckZWJtIiLyfN0jPIdH3DXoKkEiUQ+VNxJLJOlisu3CUlp+fP7DWSYi8fThITwck9xWSsIwnWbB14ETObBss1l04yggEAgNrkwmRNywH6emCfo6PikkmyqHyJmMEjB8yWKy7cJQ1fPjwgbWphCAVzhLKeikFhvYV3FjGMypvKnIJSWdJUy8C8paWlg6spf9AQt6FHaRnBvRzfBQ9k4hvJH+ZGejNbtv5Hup5ocKKioqBtbmEgBy/Tjng6ytko+bIiy1m8udFRTjTk873UM8LjZw+ffrAWj8hIMevkw+K+goY8wry8NNK/vxYcnvOksZcBFR26aWXDqwdTgjI8etUBMG+QiGW8YzKO3wYQHpuyvke6nmhisbGxoG1AiEQ+t7vPwuNgrK+QjGW8SQJih2CIzECFKSf76GeF5pGfl0rV0WmYaKQdUYlylS3Dnib9Lh8sBdM/48kscBGiYWx4OfdeD6I56Se+tjnqvP2sHMg/nhsXCvhnCMs/3do6uXPwCL+OVjY/zqbT3691ss/Se+vh738e33tuIVY9sASLh0t57/0XzrPJL0J3qduexzmgwwuBwl9X9QLM9AmlcwLsffSZTCTcDz5tqoRdsR4BrSwOcazyK+N8Rxchl4S5fl+bSTUd6K8lNbPgHmwFJbBAmiGJZiu+nG9z4U8WInevgDm4rVmvNqM91uOq0i0dSM0YNsGbD0Ny/PhSliEpaW91892NyemSgPvmPEfd/jl/R/CXvk0OwkgN7C3E0qRWwotFBuwJvrcHLwyGu+4iI5wAfk/N/Dasth4l9FnrEBspJkcF50HcSJ9738A7YUqcb+Q1JaRH9C3OduEtiltLW1r23a1hdtebzvSptzfdqKNJb++ank83hpwlDG6GY4ZbGV1XTXbXMX8serRKnbq9Hh+2nQLP32amZ8wfho/ZnwhP3Z8Pj8Oz/H+Ir44mM+PDI7kRwVdfGkwkS8JTuNH4yngGfTn8/m+Rt7nL+D9BVV8gT+Jf73gSMGJAq5DPL67PXVcoEM8srtd7w6QHwNp2hW6QLttHL9i9w27cVgndu+mLU4L4m5FSmC3aRy/cUMc37KoZSWr2/HRTlb4gyUhIOyw2APCHfHI3R5vD9ywLs6hu163TrdZt0W31XG9Y7Nji3fz2nVrN2zZtnXd1vVbN+iE3yr0Ad1Sx1JWuEKhDugWM84XGOffmODBbw+yzueF51mYw8Ac/RxWaNjVwOpmMdkmA59lSuU9piI+0xTHZ5jMvMOUxLucpbzTVMy/aCvnbfaxvN1WzNtM5KWWIj4Oh2s02XgDni0mRjCNLg3otJkOkDKaAxUO9bMVDuX+CocCT0lnhYN/qsLB7a1wsPsqHMyeCgc8UeE48GymY//TmY6nhBmdLse+vS7HE3tcjmcPPKd5ev8zms6n/qreu+9J9Z4nOtT6zrWdrLB37V5Wtye4p3JP6x5et8eLbDOyT+95bY+4R65UFPJqDSvhWfIeCLBTJEwHIzJhYwVUVJWE4xj8nF7ymCLfUxFunFay7uabE8O3V0yrCa9NrO2QY5uaMBNmNteG5RXTY2x0z7Fs+bJlnrNQmCsPS8ubGsJSd9kyUtCSgtZdhkxYR3idu8zDhE3lTWETcgNusqyHPMtiF6MPogBXnu2ZZCzLET2e/wUhU9cICmVuZHN0cmVhbQplbmRvYmoKMTMgMCBvYmoKPDwvVHlwZSAvRm9udERlc2NyaXB0b3IKL0ZvbnROYW1lIC9WZXJkYW5hCi9GbGFncyAxMgovQXNjZW50IDEwMDUuMzcxMDkKL0Rlc2NlbnQgMjA5Ljk2MDk0Ci9TdGVtViAxMDMuNTE1NjI1Ci9DYXBIZWlnaHQgNzI3LjA1MDc4Ci9JdGFsaWNBbmdsZSAwCi9Gb250QkJveCBbLTQ5NC42Mjg5MSAtMzAzLjIyMjY2IDE0NDYuNzc3MzQgMTAwMC40ODgyOF0KL0ZvbnRGaWxlMiAxMiAwIFI+PgplbmRvYmoKMTQgMCBvYmoKPDwvVHlwZSAvRm9udAovRm9udERlc2NyaXB0b3IgMTMgMCBSCi9CYXNlRm9udCAvVmVyZGFuYQovU3VidHlwZSAvQ0lERm9udFR5cGUyCi9DSURUb0dJRE1hcCAvSWRlbnRpdHkKL0NJRFN5c3RlbUluZm8gPDwvUmVnaXN0cnkgKEFkb2JlKQovT3JkZXJpbmcgKElkZW50aXR5KQovU3VwcGxlbWVudCAwPj4KL1cgWzAgWzEwMDBdIDE5IDI3IDYzNS43NDIxOSA1NSBbNjE2LjIxMDk0IDAgNjgzLjU5Mzc1XSA2OCBbNjAwLjU4NTk0IDAgMCA2MjMuMDQ2ODggNTk1LjcwMzEzXSA3NiA3OSAyNzQuNDE0MDYgODEgWzYzMi44MTI1IDYwNi45MzM1OSAwIDAgNDI2Ljc1NzgxIDUyMC45OTYwOSAzOTQuMDQyOTddIDIzNyBbODE4LjM1OTM4XV0KL0RXIDA+PgplbmRvYmoKMTUgMCBvYmoKPDwvRmlsdGVyIC9GbGF0ZURlY29kZQovTGVuZ3RoIDMwND4+IHN0cmVhbQp4nF2R22rDMAyG7/0UuuwuSuIceoAQ2NIWcrEDS/cAia10hsUxjnuRt59jtR3MkMAn6Zd+pKiqD7VWDqIPO4oGHfRKS4vTeLUCocOL0ownIJVwNwp/MbSGRV7czJPDodb9yIoCIPr02cnZGVbPcuzwiUXvVqJV+gKrr6rx3FyN+cEBtYOYlSVI7H2n19a8tQNCFGTrWvq8cvPaa/4qzrNBSAJzciNGiZNpBdpWX5AVsX8lFCf/SoZa/svvSNX14ru1SzXf++o4TjdloBeiXaB0GyjPiKgyp8osC7ThRBXRnuhEVAU6HjwlCU+Cn9vk7O7jYZunQcRpZhpTJ6JsRw3JSM7JSELBIwVzCpJgex9G7Zc9LPd6LFlcrfX7DUcNi11WqjQ+7m5Gs6iW7xdil5wlCmVuZHN0cmVhbQplbmRvYmoKNyAwIG9iago8PC9UeXBlIC9Gb250Ci9TdWJ0eXBlIC9UeXBlMAovQmFzZUZvbnQgL1ZlcmRhbmEKL0VuY29kaW5nIC9JZGVudGl0eS1ICi9EZXNjZW5kYW50Rm9udHMgWzE0IDAgUl0KL1RvVW5pY29kZSAxNSAwIFI+PgplbmRvYmoKMTYgMCBvYmoKPDwvTGVuZ3RoMSAyODg5NgovRmlsdGVyIC9GbGF0ZURlY29kZQovTGVuZ3RoIDE3Njc1Pj4gc3RyZWFtCnic7b15YFTV2T/+nHvv7Nudmcw+k7mTmclkMklmskzIhGhuSMIWlihbAkbCJotYQlhcKhKrFgErabUqtRW6uLRqGQJicKnRohURwaWIVgUVd9NSi762Qub7nDMTJLb29/b72/74vvfO+Zxzz74853Oec+5kAgQARAQBYOq0eEWXfq8GgOjRt3Nm0+S2KcEl38Pn5QDmWxdcNq+L/6XwHoAVg+HWBWtXS0OJt07i860Aqtcv6Vp82YYT9yoBPF0Aip2L563qAidgfoEQLWXx8isv4a/8Xj9AQRFAxcklCy+7YmHH+38EmOEE0KiXLJq38OjN767E+JgnVC9BD8tfNNcCXCzhc2jJZauvmPyMMIDPTVinruUrFsz7+OXjmHegCsMfuWzeFV3KQeWDAHN347P0nXmXLQr01nL4/ArG/0XXilWrMyFYCDDvChre1b2oK/X+swZ8vgPA1Aw8nyS9oAC14ieKSkwRztr8driEsxAFxyl5haDgeOwr4OGca/rkRglkkGC74qahsaRSFSCPykAymQxGvFUxiZYG2VQ8oZeC5wlHCDgVn+oG4Et1BtSgzgxhX2kRtQx1oMucAT3oEQ0MjWBANCGeBhFMiGaGFhARrYhfQR6YEW1gQbRDHqID8R84DjZEFzgQ3Qw94Mz8HbzgRvQxzAcPoh+8iBLilxAAH2IB+BGDICGGEP8LwhBALIQCxAjDIghlvoAohBGLoRAxBhHEEijKfA6lEEUsg2LEOMMExDKnoBxKECugFLGSYRXEM3+DJCQQqxmOgnLEGqjIfAYpqESshSTiaIZ1UI14HuJf4XwYhVgPNYgy1CI2IJ6EMTAasRHqEJvgPMRmxL/AWKhHHAcy4niGE6Ah82eYCGMQW6ARcRI0IU6G5swgTIGxiFNhHGIrwwtgfOZTuBAmIk5jOB1aEGfApMwnMBMmI85i2AZTEduhFXE2XJD5GOYwvAguROyAaYgXw/TMRzAXZiB2wkzEeTALcT7ih7AA2hAXwmzERTAH8RLED2AxXIS4BDoQlzJcBnMz78Ol0Im4HOYhXsbwOzA/8x6sgAWIXbAQcSUsQuyGSzInYBUsRlzNcA0sQVwLSxEvh0sz78IVDK+E5YhXwWWI34XvZN6Bqxmugy7Ea2Al4nrEt6EHuhGvhVWI34PViNfBmsxxuB7WIt4AlyN+H65A3IB4DG6EKxE3wncRNzHcDFdn3oKbYB3iD+AaxJsZboGezJvQC9ci/hC+h/gjhrfAdYi3wvWZN+DHcAPibfB9xNthA6a6A27E0K0MfwIbEe+EzYg/hZswzs8Y3gU/QNwGNyNuR/wT/Bx6EX8BP0T8JfwI8VeIr8PdcAviPXAr4r1wG+J9iK/Br+F2xN/AHYj3w1b0f4Dhg3An+vwWfoq4g2Eafoa4E+7KHIU+2Ia4C7Yj7oafIz4Ev8i8Cnvgl4gPM+yHXyHuhXsyR+ARho/CvYiPwX2Ij8OvM3+E3zF8Au5HHIAHEJ+EBzOvwFMMfw+/RdwHacSnEV+GZ2An4h9gF+KzsBtxP8Pn4KHMS3AA9iA+Dw8jHoR+xBdgb+ZFOASPIB5m+CI8ivgSPJY5DC/D7xBfYYi1QDwCA5lD8Co8iXiU4Wvwe8TXYV/mBfgTwzfgacQ34RnEt+APmYNwDJ5FPA77Ed+G5xDfgQOZ5+FdhifgecT34AXE9xl+AIcyB+BDOIz4EbyI+DHDT+DlzHPwKbyCOAh/RPwzw7/AEcST8CriX+Eo4mfwGuLf4PXMfjgFf0L8nOEX8Abif8FbmWfhSziG+HeG/4DjiF/B25k/wGmGZ+BdxCE4gZiB9zLP/A+n/x/O6Z8wTv+EcfrHjNM/Zpz+MeP0jxmnf8Q4/SPG6R8xTv+IcfpHjNM/Ypz+EeP0jxinf8g4/UPG6R8yTv+QcfoHjNM/YJz+AeP0Dxinv884/X3G6e8zTn+fcfr7jNPfY5z+HuP09xinv8c4/QTj9BOM008wTj/BOP1dxunvMk5/l3H6u4zT32Gc/g7j9HcYp7/DOP1txulvM05/m3H624zTjzNOP844/Tjj9OOM048xTj/GOP0Y4/RjjNOPMU5/i3H6W4zT3/r/kdPvyHH6a/9bnH6UcfpRxulHGacfZZx+lHH6UcbpRxmnv8o4/VXG6a8yTn+VcfqrjNOPME4/wjj9COP0I4zT/8g4/RXG6a8wTn+FcforjNNfZpz+MuP0lxmnv8w4/SXG6S8xTn+JcfpLjNNfZJz+IuP0Fxmnv8Q4/UXG6S8yTn+RcfqLjNMPM04/zDj9MOP0w4zTDzFOP8Q4/RDj9EOM019gnP4C4/QXGKe/wDj9BcbpBxmnH2ScfpBx+vOM0w8wTj/AOP0A4/QDjNMPME4/wDj9AOP05xmnH2CcfoBx+gHG6QcYpz/HOP05xunPMU5/jnH6fsbp+xmn72ecvp9x+rP/B3F67H84/X84/f8YTt/6f4vTX/1/idN3/A+n/3/A6QBc7jQnD5EwW8BZAci4IvrokWHjyDSTkQc6cJ4vwlm7AufdFSgFGXauU4ahk3KhC3GWfwdnKAvNvPst9wJWzrdeipvRTAI/Gi9/K/I/4CwDnLGQ+XBoYua04lIIDi3LHOfpMdyDOQPI9bfhnAjBSVKOkjSAtboHebUVZ9o4lIUduCpdSQ5g24LIrfdBmPix5WPBQRQ4215DfuvG0TqO60MLvEUsmE8zco8dUshTdvS7MbMXY2mRnX8Lj5DlZBr2SiOM50pIDEvekhnA9asocxAlPYyz9D0SyuxErv4Zjr0ZV571yAAW7LnncP0DzHs+3EuuJh/hutUJm4UqYVPmUlwnHoI/khZ0TYYrFUc1DyEn/hB+SRxkIHMM2e93AsHeX48sdSPWuA8GuDK+UbEdR6AQ15UpbGy+C68RKynn5UwkMyazFX3vhc+4GPcMr8J6xHDdmIsc9XPsjSMooZ8THUmSn5H78X6R/FlxFOvWgmN7FY7/z7D37kVW2EvKSTnn4BzYWw5cN2dg2BbklT7kgcOkhbSTAfIkf7ciMVSfycvYMh+gVBTjKrIVx+JJLOMUSWAcLIEv4FcL+cJqRcWZa7GFC5HRDuO8PIKz6T2U4y9JMd5vc9dw6zOzMvchbwPqGn5cTy/AdWgFcvzlyG8DOLL74K/kK06DMQ8JTyuuUpzM/Aj7thBXzxZc8y7A9W0hcvJvsYb9eB/BVpqJhK2oIVPIhWQx2UJuI/3kNfIap+QC3EruYz7NH+DfEKoVikwt5mRH/cKPUjIL16rluFbciLx9N0rM07Cf2EghKcUWHcH0X3CjuSa8f8kd4t7ib+C3CKcV3x86PvTJ0FeZTaBCKRuH/bAGWfYE/IXYsQ5RsoysIu9izXu53byRF/kgn+Qb+Ol8O38jfyv/LP+C0C3cL7yumKCYp7hfNW/oO0MvZloy12NfEFBivSKop1ShpjEf19RluHIuRxntQsm9GlewTbju/BDruh0ZvR/ZdT+y25vIK6cIkADWeSmWfhlK3Q3kZry3kgfIk+Rpsp+8Tb6gN1eAdxFXzdVzjdxYbjF3A963coe5I9yHvJdfwK/ne/C+i9/DvyaAIAgZRQXe4xWbFfcqD6iKVONV89XPnx48U3ym/cxbQzDkHpozdNvQk0MfZGZmrsT6h1G7KsOabsBabkUZvBvv36Ak7kF+fx7Zl9b1M8IRBUq8kwRRGkpw1OrJODIB78nkArxn4D2LzMZ7HplPluC9nvSQ75HryPXkB+TH7L4D23Y3+TXZg/fD5BG8/0iOkffJx+QzDoWY41Gaw1yEi3MpbGkjN46byl2I92JuBd5dXDe3FkfoXm4Xt5c7wlv5MF/Kz+NX8lv53/JP8a/wfxc4oUSIC3XCTGGxcJ1wSHhROCp8pfArmhVLFHcpnlJ6lFXKGcplyjuUO5QfKk+rlKpW1XzV1apXVBl1GNnqD9juh0ZQXlx5iKxS5AlXcMdwXjj5LsUGMgN7TMlN55fzN/MvKS4hJ3mJvE428Uv5SzO/5MdyX/IryEzuCVLA+xW1/CWogWTI/dzb3CnuA8FGpnMfkSLhh+RhbgXfyCkZr74s2ITrFB8i5b8Ktdw6MsA9zV/HX5d5HGoVd5Fjiru4F0ESjnNWOIazegN3OyZ6gVvKbYY2oUrxFSzFfv+14grs7/O5G0kx/4pwF7zHB7m/kZPkNmSNg2SiEOIu5lLkfmTcMyQfBslK6CI/Bpk8St4k/UDIffy9ZBKnx9FKcwYyCheCg3yAvMJrUeekYl7I2Ugrd5KbwT+mPMwnCUGWeAmuIjxJoOwMX0O4ylwCt3IR5LRmZJOXSQXuHG5Hvj819BhlbMVRxWaUs5/zJaj1JqCDO4Da+I+Qad7DOfl91OQfoToWJLg7UHvrIQuR9ycjf3LQT5ZBnOiQLR1Yt/W4Xti5AuTCuVjql8j/zyHrt5A/w+VEwpk1AEUCDblJaEZm6kT+3Yz3QlwLn8Jx/JHyIcXLMJU4AARp6C6U8jdQdx6LGkIF7m3qsH6z4edCCdZaQmZeiSl+OoT6Pd7fhwOEQ221FvcKy6BVGI/Me1tmGbZwKa5Rk3BN3I867+2o+T+Oevl1mc2oSf88cxGuvtMy9yH/rs304a5kg6Kdm6mICVXIsfvJPlyP/kQ2I2+Ph9eRj8LEiRrIx8iUAOcrHoVNwqvInfWZm1DjsmF/FGAPzcdV9ARq5X/GfhvPD0Dl0BRuZ2Ys34Ur1DHcF9yb8RMt6uDLkXkfg7tVCuSeHshX3I2yu1m4hEtgfaNgJ3H0vUixDUAeM2O6XH/+eXWja1M1o6qTVZUV5Yl4WWlJrDhaFCkMh4IFAcmf7/N63C6nw55ntZhFk9Gg12k1apVSIfAcgZLm4NhOKV3YmRYKg+PHl9Ln4Dz0mHeOR2daQq+xI+OkpU4WTRoZU8aYl3wjppyNKZ+NSUSpDupKS6TmoJQ+2BSU+snsC9rQ/YOmYLuUHmTuyczdy9wGdAcCmEBqdi5pktKkU2pOj127ZFNzZxNmt1OnbQw2LtKWlsBOrQ6dOnSlHcGuncRxPmEOztFcu5MDtQErlXYHm5rTrmATrUGaDzfPW5huvaCtuckTCLSXlqRJ44Lg/DQEx6RNMRYFGlkxaWVjWsWKkZbS1sBmaWfJwKab+kWY3xnTLwwunHdRW5qf107LMMew3Ka046oTzq8fMXNLY9uGc0M9/KZm51KJPm7atEFKb7+g7dzQAMX2dswjzYXHdm4aiwXfhF3YMk3Csrgb2tvS5AYsUKLtoG3Ktm5RsJn6dC6T0prgmOCSTcs6cWDcm9Jw4ZWBPrdb3ou7KneztGl6WzCQrvcE2+c1eXfmwaYLr9zlkiXXyJDSkp2iOdutO42mnENvONex6GwYc7Ho1NVy4dl+JbRGwQkoDmlpgYQ1aQtim2ooLKqBTQtqMBpe7QRTpRfieCxNaxo7N4m16C/S9GlFWAxKmz4HHP/g4KcjfeblfJRh8XOgTiolZwUNw4fd6VgsXVxMBUTViCOKdTyfPSdLS9b2c+lglyihhd0Hrdi389pr49j5gQAd3s39MszHh3TPBW3ZZwnme/pAjsfa01wnDRkYDrHNoCE9wyFnk3cGUY53M63dllYXnv2YRLu1eUltmtj/TfCibHjLtGDLBbPbpOZNnbm+bZk+4ikbXnM2LOci2QDs8LQQxp6aEETRu3B2G/XAjyI8Nti8tHM8TjWsY9ra2MZ7uPasi/PwLCuU34vO5kwf2vQ0LyGsZPK/sF+lRgFmPkQamxY7x2exXRsI/DcT9WdO0lTM+jpZrk3p2tjI59EjnkdUT7+JxwoLhVzL9NmbNmlHhI1Fstq0aWxQGrupc9O8/kzP/KAkBjft5dv4tk1dzZ3Dw9+feWSzJz32pnZsxBJSi6LNwZidQXLjBTtlcuO02W17Rdy43Ti9rY8jXGPnmHbaQq5xetu5Y8AEu700u97yqItzuCYS1O7pXnH0/+W9GPXQ/42bTMT7j/y/u2bh/UD2Vvya3iqLBrcDuin6940NpvnZ22y3TMreeb+1veaI0dt1BdOjURHitrxee9OJuaa6z9UuNWvgL971PUXt36uuuPGr1WduEkFtxEfN2Z0qR7yY0KugfaGCyTs58ij3O9TJVdwTfaAQ+rnf7eZBq6KOhwi41ErFExjOAU+ioCGXkovBGRO/qDtTN0U8VTf5TB3Uo1s8jVCeCJgD5jAC8QpwWuIHTssK3LVLwgCW/sPMCbICtQkdxGQvyEodL2vk2qRGrk/O1ZBtmh3Y9hv0y66iua/sjsUGoX6wPBGusNvylMGCwmRVNYG43FBW1tDwFMOyuEx7gc+c4M7HnTYPF8oaUBzwL65G7ayfj8gGjs/jOJ6nbdahPuSX8yQ+wXfyXfx2/jiv5B8lD3IHhH6yYucxWurgqQ4stK6+boOiLLZO3FeeiBFU37nzh2yt5BPFzf+YqfgNLbE48zZvxj19ED6SRzdbyFzr3DxuoaPLcYP+ftNAWGFxkkRYDnNutdrv4QIFPr+HBIJ2p1e0u1BOE3lyHteaR/L6ee1DriKDxuftz/xjt9XKzUDHqd0mU9YhBwwGdBVoNAm1rN6i3qbeoVY8oT6mzqh5NUejq/szH8t5ooguO42rdoePiUQ8Hgr3c+W7Asd/4YzFppzoEL+IxWIdK+smi2fQgQM2ONixsr7OnCJmSyoVi5UnGq+URbdHq3frvaOJTuvRuUZDjIh1sWuvJSu7O6BjpTUZsAULVEqbOU+ZHY5R1ZUVdoe9sqI6aa6KFEYKg89zzeXTCp2Nv1p98XJXoESqjDhCnrhBK8USikg4XC5ddWbp1t/9oKOu3OUvnlM9Zjp/1+KAy+KkfRpFzfJh7FMJ0rJHBBGVUonIBbNwM3M5t0naKv1a2ivpSUE/uVmuNC6snsFdlM9p/B4+UGAf5TGfV6D1e8RAUPJLqCTLKAwfeM0i5w1yvBoeIMu5fm6fHLc7lLTbHHraxQ497TIHdq9WT7tQy3y1buqrvSswr8MZQwmnHZbrt1OnqHQM1teJJzpot2G/ke4Y6SAOPpCsrBiV7YdgEHuqUEk7ymG3V2L3VAu3BVZ/9X7lzLDNG5lcyV2yfJYk6iuuW/DTa5aQy1VDveEaaTV/6XqpJBwmxfKVpx+Y5rflla3BXikAUH6GvZIg++UPTU5iBLXD6DIUmaKmYiGhspxHzou3O1eQJc7L4lc6byc/iR9wvu78kHziNBicROtQJsYm+GpndWKck7cnIs7CBK90KhIOBx+DKD6NhlpHypl0JRP1FVMrluDOZ63zStfqxCbY6LwhsRVuT/wa7klsr0hXPO/Y7xyoeMPxmvNwxaDjY+fHruMVX8A/HP+VCI8nExxj47NJu2NmfJnjCtczzqcTR5xHEu8530sYTX6PJlAg+T3uQEGZ31MUKOD8HnUgKPo99kAw4PdEAkGH01kAJA+cLiAup7Of2y+fn4jnJZyORNwZJ3Gsu8Ptcjk4jRo5LpGIFKkTc3BSu+JlBZIU2B5IBwYChwPHA8rAXXIFqSAczcIgmiSTmZthuqt83hvZsaR0NVns+KKDOlD+40M4oHUiu+sZOnBOpDaoy2IKnP9oO5kDp1EsO94dHSvxgpUduIrKnriYp68nWRBTTqc55RQtKVA7U47+zOGHHClHIi9FMCVkTTvBqRQgVDIqK23nCE0hCg0hZ2fYiGDCjz1zyhNuTQwVJWaG7HnGlmmkh3xKTpCe+KyQ3RtujZ8ZSMwK2s98Lqw5vXadvzgcrpK6+bWzi3yR8Fd/Etjj6U1nAzZ9tZnOuPuGlnGdiktxDbhWdsoaAioNLygKeU5UKQuBWDQOh5vvzwz0yUlm1VKrRw6OSoq8hBTawws9fC/PbecJv0GhTBPc7XZyHOdSa/oJss9Lsyn7nGK0U3eqg1J6bErzoqb3sc+x++mqwfiH9irBNcOGhuscGk/6h94iBUPLVGTq33+K9WwZWsrxrJ7XyyFZs13DdWoI1lSpKiQgKlDB4C31GkKrSwiXViqylaWWnI+VVUiKLkWPQuhR9Cq47Qqi2JCAHbieYT0fI+UQgOm4MrKqdkzOVpOtbbSmHedUNVvTlR1WrGYSTQvWczzW8y3FpV8OTVUuxBwnZAb5jfwO3BOfx0/YyVE9RJbqZUoo9TIlHptHVRZW63TcjDAjnzDoK1HRknUWCzej0k6j4PNbuykdVdIVwEYpqZLFrUypmK0qLaMtkzSYpKwS8oVoSaJKL2swU73s81E0Y5C+P/OKnE8j6fXCeidxMl8ni+EUw/mquhIB4oP1g/twabCk4lS+D8bP0AF5JXaQxPGByfzAwJux2D7xlYO4GMY88gqdd1MlZ5lWTSySP9VTf59mj5a3xCzrYF3l92GzbnNS6bPYa8X6nnpB452kmKRslpoLJtXK9Rt9aq1RJUHBBNKinaCbkGwZ1Vg74bxZusW6GzTXa6/Xmabbr7Nz/vq59VynuhKq6sqipVWPEg97ITuwR5PSF+lSetp2d21S1LfqORmhU89LzFqrF/R1zv7MUTmqS011znWucPJx53on57zGj2sitjhRJ9dx2Oyu0p5SrjSJ/dbPj5XNgq5soJSUdoah0qDXV1Vhx5/GEVDOqHyULIYQhGmJxhSE/eGecG9YkMMnw1xPmIRFGin8KNeIomlDmfOnbP1ksZzviafKVbIxJalaVT0qXlSRkyrSqiKqxvMbv8OICKWsOzZ58NRgDFcWKnJ1Z2I5GhKRnKD+1BlctQdX1g92n+lYGTOnsrMnvlNJZaqP1xPoaB/EscrOH1y9xyVHe4MK66ia6hpOqVFr1ZwSWbeAUyZ1KQnMPqsXLFaT3+AlBcHRipQXatRVEklW6Sxe0UuMBQi1yjov5SmsRIzEEPATKy4uvhZ1gG6CnIeaAHQ0tvXVW0gHMlkMupEEd5djS1Eij/eJzNpjTI2SsO39mQ/79NQ6Lut0KaekSznQeKm0u3UpLQ7lqCJqa9HWoq1BW5OC2MirHdsZVqqGFY7qUcmqQsaRjmGdsLLCgUoIciautUiXo2zUP2LGNEpbHnpx434Qqj5v7nfzowc+nTWtPlzIxQvD8fS2q6aM9lq0DpOot9V1XVJeS24vmdo0s2bS9ZeZXd9b1ljedMXM0MZLCgpKassqqkpn9kb9Y2I3DO2/bnSeylBXc1vTLaSjzlXSmRo/l753asqcEBSog/qhlGvJzfzCuEzncVTppNNWqaZTWck0DSVIPruW+tp1Ep3mZjr/JT2d/xKLjb5fykwfkZw0heR9hH8HfHQa4JPPb+nn35FFq6wxcjOseRAOa1QlJTybz/VvxgbjaEhu/r6Js3eAuukM9mQlSL7QgqlA0vE8Tert8hHZ1+njfH4dZqOzI9EoZ9gFKt9YwzxqS4LJhMjREEmKl0VZHNY45QylMl5mpiRyMGbOcsnAQVzwaGU6Og7WD1ocqfo3sXzPXohnBnaNG1cVp/N4TKysqjN+tXC1YpPQE98RH4ir5HhPnIO4vdgWm6GYoZ4eu02lGq8iUnyUdpx2pvYO4d7i7XHVQPxkjJNQQww8kjkOOpSx5jppqnSxdIl2uXSVtA22Sb9R7VU9U6wrVFsj+gZLvrXJ5ovYG7z5viY/JtMJJTbWa/4SUlLi53V+0AX0Ep2+Flunvce+w8777b12zv5JtFWJdd1VVFZF7YfHJZWNZY3rc7rh5MEz3R24OtCL6obd2GSzIyV+PniafA5Zi81Pd2FMUEfCheqoBDEBoUgVlkixokQClHmqIlx7LXTU4IVLDE617pUdKP0o+1kxt6CYo+hT2Y+EK3PC7lAEk+Yyjs0HJup/aOyZeNvxL39/5VST5HTHDMRcagrYPaW6oZNlyroF8bbmOenlcxaPPe+rp58m4yb/+mfj3WKw66s3fz7Oaw6u3E+ONnWlpi559rlXUaInZU7w0/g05IGPX5eT6CK1Pc8GehOKIBiZZWRLktGWkIFQxZsDEOnRc2ZgtzUPY9FRNptRCQPQecJmFahEFaeiwTQ1dTxE4+FmM3OEpUDHcw/T2SCU63QoQLj24PqEEkSlqqOjg4n1m7GB+MEBFKecNPtsPbjjTgM/rPuzSmRLVNNC5BAVYVElqdIq3PR2Ii1vVwmqHwm/EPoEnhalwqbRmVhIxTkvz5+P7aRObC2KPW0tWkY79TIa/flZKceVcSAr9ocPYl079nV0xCpYXbGmVNxll2Wus8PVCZ15R3iFS/IiCXpTdtmb8tNaaRsnVqn9jYaOaj8TsaIq5j2tuKzKo3Rp2qwX2+c6ZjvnuFWE1yhVGrVeYZug3MjdpNyg3yTe4Psld7/zIesr3Gum18VT3N94q6VT1anuwtZt1DypetZ0UqUWiMpwPcdr6DxR4jyZWK0Zy43TTPVP56Zr5nPd3EbrRtdW6680v9L2qx/SpLV/4D7gjutPafPUh1WoEh5WcSupTfuuFzstrVKq1gl5kLDbaFWtlpRlrm29bZvtmE2w2TwvCwRH8HBfXkqgC4CVWkfl8ZYU7eOLPISOiOp5tb3IkzLZyQr7evsWO28/lZfXoyYJda+aS+A+95iaF3HDiy1Rp9XH1Ur1b4w2ATZSueJLZEvCKBtbjTwYRaNk5E8aiZHWRIN9aWzMb2zJzkxcYCefWVkn4vKJG18R97sxkR4odFORinWj6k9XshU2XMmouodLMi6xTBWFmhpU70lj224lEI5b2c6WXnqx9W4vqLA0XTCll0tTBjRqqm4WpVRZi3JEnyf75MmG5Z602Sdt9knDnmSjJmUTXSmXZE4Z0DAqGLEGtre3W5Vskz3KQbmAY1xgt4UDhXTXUKB8nSxcuGH2DaV+23N33P3JX/f85JkzG8h9CtG1oHraddzo51evXnBF3sa3CXntE6I68JvatlCNfC1OkfOGxvJ/Ql11NEyAdv52+XsWe+vthVureSgV53Bri9dO46BYWaa8cLMk1I+aOmfFqDWFXXO2CFsU1zmud25Jbjr/uuYtLd+f+mPHj51bp/YLexW7Hbud+6v2twzMOTzn+JyTczxuyVYpJvOq/XMU96onVtd7wM5XByZ6wNX49bsQjdWap1GjOmUJU83XghwQppMB91TURtVYV78tvCP8RJgP95O7HmqL9QRIAKPKBhrXsi2wI/BEgA/k0jAbkwQwruzsnUgmyug7UUaviSWUVyaygxeilq0r1GS9Gh1mzEadVG5tJI39fLmsd03Uxl2k1dXj4lyPcy+BEjT8ZKjDIK1S5bqAXFBSYpr8Oz6BXJOPmILJfEL2iwmyIrElsS3BJ5yU2xJ6SjmJZKqM75lOptO2GXA5R8dzu8U85niLaZnTqUqkNSC9TA/7i0gRbTRud6u2FJGpRV1FA0WHi4QiI41ZNHw4hI4/yxaqFxStkeYk5shztmOfK+bQpF6dvmqOccttY8lYpp+OLZfsxGTvsh/Cidaf+Uw203R2PSVlO6ujvZ97XLZurSf15Qm+ledaeQK8yHN007fL5atiNubK0+KpikIdD9M28ktnz3mEXAEBot25EXdQ9JiJqrOotTLHYKz7hBhbmT19inXTmRdbKZ7AdbOje1AczE3IM+/T6VkvDnbjvEWG7xZpfIyMM3T3ocCxAIdztPvUIC6IMeoTPhZGn26qLJtRsaAqMBq2lRzWhq9qmVXbHEp6fQ4nURSGK8ory6vKeWVD4dTCsnBx4czwdC/xjs73QktysgRjSL0E5ynqvdBaOtkLF8amS6TJOdZLZkRmecnMWb5aD0b3jIZJ5RMl0jIxWS1zjRLuTM8X6rxkSvwCL0yLXiBBs6PRC2z2MuX5a2Dr+9mrGJf6a5lS3UGJZiWjFVlbJqKMJkUL1aJP7rQwVbidFOZ0XHbUZstDrTYYzB6IRpiC62A3C0EvpiTjzVKRAoyQPZ+rihQS5blP+JycPvvg9us6n4oZeaWCN8Uur9l3d9O4En8g4e164byOFct++tWTN7TozEnV3KpYitgmLmyqap00v7ly6Mt4onbh47vvr6z6ydtkSvSW9hv3yQqlxuHWKpTju3r25BWm8sySSuAVGkPXhSsX/GhWRbXTGR6jWeAv9wcv5jasvequWWO6r9o2e8zpayvbwonQ+evHV9ntAhIuGAD4v6EmXc1tyWkdvhqZTlxRa9aq2dmcM0SfneygDjd8X7I54aQ7DaZdO41USJ2F9GzUTz0KA1XJSCkJCHo9NyPA8giUOmkepfTclfqi44vdNKB0eI6h41PZRJOXsvxKCWrADVrUwi1owmiK0ESgChVxU1LWYNpkNUTMvhJBhWIdj1M9XBwc/PRTFMqcLs4UBnHfMxXivljW5yAq5/vO0cvbqix0SiYZYomRKsyUZmmOaDnqp1VSRUTLdBOtk3k5mZeTeTmdNaNIgHkHmHeAeQewNScZ26Djs900AB2nH6ZhpaU1o3JK+5uxYYWG1gwXPGwFqvAHc6c0dP8fr5GLk9qaTtRZTGFTYU9Nb42QrhmoOVzDx5Sktaazpot6yTVEUjuj+eZ+3iSbC0qj+ZGJBdpovjgxGIjmF/bzRrksmIyUNVTlJ5uIFKkG1kpc0sxmUetyhjS9WpLWEpO2S7tNe0graClJhUshECrzl7aWdpZ2lQo9pb2lXLqU4IpVOlB6uFQo7Rx1z3p6kE8Xc7qqn8nakD3bw7bUmVMpppRnj/OQKvLcXoVaGfYUehUuL1Gp3Sqfl7Cj71j28Bs6CJIXLsTEXJ098c6d7LIDump2gMdWYhVTy9EXt6HDnqitk8krvtcwpctjNWoT8tD5NrlCy/ubEuXLJtpSY4dqzwvmOU1+ty1uJBbFzWfmX9U88yL5N0OPzZKc3lAoUihOIU23XRyvmjrkvbjMHwpZtTUz+fOymjvdedYhqHC+6KCAy5057YUQLgQ+Ks4WAxN3Q4DtIgNOKtkBq5PX4ArCuBwdx5nga6gGToPR8cIeGltjcA4zPjre2Z2bbseHp9uRh9hsk+hW1DE1sCKwHpfhghU4hzuVRCmz7S7dMdEMlAVKK8TrjyCpH+wQ3+zI7U6zZ0wHcUogZ8b2URkbngkGic2BAEOaz+6WlpyjoSHrkF2jRilnyEoCyu1KjhaKW9pAgcpKm/eF7KUpNZpQ0MDmg4GjYm9g84G2LDsfnHTis/mDPg9np1AoeM4cyOr3WPc3D9YfzB7D5KaCqzdEOkNdod7Q9tDJkEIKtYY4mUKILpgVFVXMrqnN2qWJrB0MM1suc7mrcIJYJxYYovkWnBYRV4OUH2jSu/TWXmxKCqBAr7JatL0aokmxA9hGdg4rm+qT/KV6vcFlCDnlWMrJTsSqa6t6naTVSTqdXc5e53bnSafC2Rfs+yWbDux1Gp0DuPQOdrNXXLjyYtPE3GRgTcILRb2DdKOsn/PWzXpWrquHD6uZXEeLR48uLq4bfY2rvGGosbHMo1Hlu71FRpKnuJkG1BUXjx4KnJFmplCQ3XUzyLwfl0guU6gLuMyCobFki2ILSm2U7MvxvK7Iyg5MrH46fqd2U4Jmjpx4Hh8Wz6OyNSufWdnWUm8D7pyGWBJ0fMqSoOMNlsRPk2hoEj8ooxEqr/oimR6kFEXtnhdEiA8epCcm4pGDObGMxYYFM/YMbuP2/NRNlC4Soz1dPyppiPUh/cmx1lhv7D7jfb7tMaWEDz0xXkSfwzHerS6KSA2R/KImF22ScobVrSl2eaSoXmXvJ0bZIALoVViyaZuVWOmhQ11xdpjlcUm+LOZwuHF8s1LLjl1oSxFDfn+vREwS6ZS2SyclXpLYyUx/5nPZwM5l+opjLwbomMemnGKa2PCrq+xx9uRTOPqobNGDmfrsPEsrD3p2M3kb7G4XkSBT2beCllgKvj69EL35RpMv7DX5vSTf6KFaDmH0yI4pUIv5psCcczhHVY4RclMUq6uLoXj0PLt9Tlt5wO0xzws4y+xfS88WFlwcqxuSTl/yyYkxwWCFQTUrPOuH3E23xwJMggjoUU/4L9y/VHIv5+THkWR6QoIpAeUMjWqTPUj1gDL6FPSFomomM2qByoVaSZd+tZ2pE3amTtjZGZx9WAmwDx/G26nGXUij28HHEvtYRj6WhS/KtIkoUxSilFrZwR/lGBo1OqxcoOMfspamiIKXCyWoJGrKmSSWVxh+h/qEiKYgq1/ImpApVKFyl3BUn6iPx5kyIaKcmkdqFLGBnJvSlYj6BAN6XH+WTC+O29luhOn75czNKlCezd8UUjNaVDORUzPFQW1nR3125mVXUy+7PVkFPhbTxzx8LNDHGspOA4dZFR2fPUxjRKPJqv+ucoGUWptE7UKdpNpFItma7Ex2JXuTilKByMzdg0/ppDKdPJzk0knSiR4DSd6ntkfzTVlFIxrND00sUEfzjRODvmh+MKtolEeKGxL55U1eCFZUshaHgkGTyah12EOqXjVJq4lJ3aXepj6kFtRU0fBEK32hYn+0NdoZ7YoKPdHeaDrKQ1SMclF22JBnr4p2VmWVjdh/X9mwOF28Ugi7eIeXKJROhXtY1cCp1LESP6hsdDNd41s1DZxD53p+rWdUkpaf/6hluWQ36srHDI22ypVaoWHy5Wt1xvKWodF5Y8tRy/BGTCQvxg0+1TKz7uqhK2f5XUzHME0ll69b+b0hX4fd5wmFxi0k0+8e72ZMDc2ZE/xenGcm8HH63Ezz5umVVML17IRaz84A9SJ9raV3C3Tu0EDqkK3UU2DRBEdYrRPDwKQ5u/7nlv+vD/I0NJzGc9PEHipTbiGPSVyeXqQCpRfpg15gb82oUxDy9frsgZwZZUukwiUeZGfPg/QErtnSYyP32vfYnyb7Nft8r2mUlg+0ZLym2T7LdgO5SbPR9JpH5ZcrkgI7iNvmJ8/Y9rs52U8mqIdrYxHooMdwfzYVRVEghym2Cp1Cl9ArpAWl8KmeHjDI+m16Tn/2DIq+4aGKaKwlXTStJd16weyd+vwJO/3ChAtntz1O32mBgMafGaipqWlvbHsM3HwFCJDHV3wkfuQ55xH3Ee25BqEQVROfJWws5MLeQm1YWWg25UngI26J2DXocqrQZTWIEvHwCDadQwKXAoEt71/vQtk7HZQ1lDrS2Cab13BrlFdprzJeZbnCvsa5xqvuaO8A9pZb4xXNKQ8aG92Y6rIbU6oi0A2pMrftrK52FNAdpiW3weTg8DWXrj20/tBVi9c9Py156Zht35t3zdJx/I67Nuz47umeuzc/eM3fL2+ov+vqZ4fe2v77Uzd10jfSCzMnuD+irJULVTlJi1Sy96aVMpUjjjAtljAtlpg8bnVET/0jARPVDmiYicpNBQ03lavUEVNAsMQU5EoFWa4ginCcEFKscl2eTxbkk/yw5Cad7i4357booH5fRweOVhxttDroCwsqoiihB185KL6SfXtylk8rAqaIWii251vKFFxxuSqbjcvSoiCXKr6r4BThYlVTPlmYvzqfyw9bdITW8DPZTQXWZKqscKuNjG8jFmpFIpUVubcn+7L2Pnqa3EGNuG9fR724j73pw0pRiY5qSlwlnMVSJutSJUW6lDOvXT+78E7x1pBCq9IWaaOdlV2VPZVKU2U/keQNKNQHDAeM+0L7wq8Gj4ReK3lfeD/4fuijEp2lvqSj5Dul60q2kC3cFr7H1uPu8fR4N5ZuKTOYiInT8hq90qstebZgf1Dt5e15Fq/d54p6SrZqtmrvlG4J3hLSWWKGopKJJVMr51ZeEb2i5PvG+4I7Kj/k3/fqo+ryfHicyyd+Eicc6SexPni8rJ+4ZXOxM9/1uCff7XcT0S1hz9FA1+N2GlhgsaDGrhNMEWYp8skfoCxeXA5AO9V9jcvlpG9t8+xx2rHc8xZCLPSQ6C/0DJDPk3VdJtJp6jL1mnhTP6mWXRG3q8yvJuqSbRHSGemK9ER4KZKIcJFHiAQVRNrZMvxKdvJg9ylG42fo2XAmQDraU3GcAX0Zgk56WHUCw3EaUoI/IQ7S0ydCAeePFleUkEGXZzDoNhjLYsZ14r52J4ifnhrs6Cbi4KnBrJs5s0K0u0zSGKog1s4mtbco6pdEs1LlNwe8RBlVe0ES872gKlJ4SfYNETszwprJmq9UX4hfmL8qElDv6oaV9KWs7NpGtnHb+G26nxh6bb3uXk+vd2vB7cFtpXqcyDF6ykRPz2RdPBgPbS65M3RniaKjnU5vc5HkSmmKXCkia1McGk/2mNrNdljaVBl6lTCjSenFfEu9UaKAXNDnSTHLlQplD/uDWUuP1h5rqsRpzeZlyeZlsmARFizCkiqRLDTNSdwkYjRTihcNWI6BZnBSthiwHAPGQeM0M/PN18IjL5J9T4wb9CDbiNNzLocjd0pGF8egudKePfkqDEWG9VK6onK9gcLLLxo7U/LP/dGBx9dMXx6wOQyBgPeu+c2z5g29VVp653erJ1eaRYue3zH07C3LJpbWFEXLxi34xbqt+Vo3GXfTzRekmi/urU3NWnmHw2R0IoflZf7K1QlPgoecyXFY2CdbkMN8bHOj0zNVUW+zEoWVOa1Ma7QOn2NZh3c8VtoXTIu16tQlJnue0E88fYCb3PqDZw4fjA/uy+mAbw6Iz8RH8pPLkT3ZZWg7x43j8SHT0NzDDhc6ZPaGt0tHdCYPsS3NIxPyCCtORlHEsnUeomCqnoKpfQq2ICusWUVXyWrK9tDo+AfbQ1utPu85ah97O1Z/5nBHx4CIe6qO4d0mDqtnLxiwAg361Fwyl+PqfVvNW11P2J6w97s+dKm2+chGN5mqn2qYq59r+NyJOpPNGXHydpvT5eYJhTzPdsLbErna8gmOI0p9klbafsh2zPYXG29blOd5HnT95FO5RNITfVncl/ZxPiBEEBShvFYr6bESsIrWtHXAeth63Kq0dnrv35jbOFPNjt4dpzrokfUp+u2MMydQx8MnDDpBzI4UoLEgN7Pj3O4OnGpUGCttQXMeE7NK9ha3MGkOJqvp8SyZeORIZVHgfHMk2NNU1lb8w1GrSh1R4cmhl8ee+W37+dGi+Qsq5y7glgTsS8cXLqIrI4da2Bn+VghziZxU2SNst4PERoWF6KQi9h2C/sxpWce+N5Cf+x7BiexuWXKziG6Ll8azDIubhZ6AspMilDt2oGMJ0a8aOHADYnSGlTrJ6FT6Sow6FX1f9RDdqqi1gLvlgziiqLnXi4OfDm+amUW/b3DOgeYsVfZFHq/W6iSd0xgKOzDXbJY6ombHnFoqO4QJFZHcbMPrZt89cGuZBmhRqwslJnmSMvv1g0ILPcakUSzD5zfUwWTPYokU5mSPKoQURLYzojDAtr4ohGzbUf9m9i1tkkTolkOK0PUhHRGqdKP8tdJ4/3hJ4VZbp+Y7I8HA1PxwJKiOkAZVvrpJ0oV96n7SLFu1EA7jkkTbY9TqtDpdgH2JwAhpQkyki2wjh4hA2OGlxeXGnWartdfK9SCkrTwVOikndih0hU+tH16K2Hfm6FJEv1sgsj3FYHZfIbLt39ljG7o593hNZq/J7QXR7BF93uEv7tKDSyaIX39bYFgOcc+gSgZy0olPkSS/wBSw+yPGoT+Xrr26efLKEu+o8aShvT52WUtqNn/rmT9uY98ReKpnTPtNPWRrQ4WHhM/c2dNaPYlTTRnFhVFGPbgj/wBltIb/LCej+kKts6pQKAWvvySOm93dpVaRq0HHHijNNysBqYzua88cPjzAgC2ocToiGyzNWrLFsMW4xbyhcEPVEd0Rx+uR1ys1pjLUeXUhfbd2je79CpW3tsw0u1ooq1fUi/XmmsL6olRVonaCbqo41Tw2f0LhpKKWKrl2pmtmuLV2jWq9br243rzevt7xY9U2cZv5XuejhflGhUk0mU0lftFv9pdEtVFHvFYr1s7QzK5urRVyUhzCel9ZQ2poQ9bGSbyssMqpFaCMtiG/zOdLlZXVpnJbELqvractEd/soA1jSNv0i0Kn04U7t0hVVVKr0+srnVqNSuUqrEpWVSbDli32uJmYkzgN7HrfOlcraqjx8Irg+iAX3BIkQVe4rCxVWfpZNBqpbMXeXpckSYVCFXapVKFkOC+ZDOvtkUiiUp9XWanHhc6p0TsqI2GXriZe6NTy+ipV0uQlXj+ORLyMDkM+WMxmQkBZJpSS0tL8fJ9WjyL90Ao7sZeF+4lxl+QiLrpw68Wk7Eq7jrtOugTqsctkqXI9ylVDJajI4r5kWaSfqHdBJal8lHsSUlDLTd4VOMheCHagukO/4hZbmftuPWXS3FdtRfq1GZHJdwc9cmJEiv1G9acNxnX70HYyB3FaUuvizk/FEx20j0+wjrakOuId6COyR/HqT9GlUot1xroNRrFu3b591Nqn3qdCS42+7fTL2h0dMaBv3FayF/k61F20KR1S4cOalINqNej+cBfaNrooarzmeoPsEeud1BcfqC1bHcZ6Bd3tqZwI1dRVS0+50Y4WmWhuJ/eYUmHJlNL2Z472mejr/uNoVdDvxhkwwMB8qDZUKFFjRj8zTXe0T0fTHEd9iVlmZuEuOCViB5jROFB1EkVTyoymRLal6MLbZ0vZs5aF6lo2qmudlK22VLXalipK5KWiaMxqe0rDMrOnorIZjS1VQQ2W7KClo6HJd5pT5F8oWNml+ps61zkB7e3WgG1Y8aJ/C0m/z2xTqpQqldVud2TfieC2MMK+qUSf6TI4ih4JesiOaCCosze0jC8oJNXlofIZ605MH58aai11WeXv39JUWjr0x5CncPbAbydecB5/a9jrcFaIBUuWLHDbfOEw7yzovneo/8pyPhTKMzocHfv2zTE7I1wopMjzXZ45vXwUADjpb6DqtJpv/NYn8CMfR1wCqLTf8KA/+6nAjwIUSpZUSf8YGZUIdAHo9f9R/gpQ6f91/sqR+SsEJfM26LX/lL/wH+ePeamUoFKx/FUq6iOoWP4mg579duy5Sf5N/krQGL5RoIJmyXL9p/zxIxr/0/yN/zp/NcufJlWpz8nfbDL8U/6Kb89fBVrTt+Svxo+CPqg11Eehpr/fgGu1ifXTuUn+bf468RsNoqOJGWnVoNGwpmuohKkVGvrXWWCziP+Uv/Lb81eD3vKNAmlvY0Yo51otEx2tjkZUImJBTpuVDf+5VVJ9e/4aMNm+USDtbcxLrwOdnuWvpxKmoXKGH4/Txrrv3Cqpvz1/LYjObxRIexszQjnRG5noGKkEaOmfr+HQ+tyO/yR/HZjd35K/AQxG+ock2fx1NH/8SF4XG55zm6z59vwNYPV+o0Da20Yq6GAyaWhSE5UAnQblBj8Bn/s/yz/P9y/yN7H8RZHlL9L89Roz/b4jhAM+NvznNnkkg424TGAPjPDQ076hGaEcWqwsfyuVMKMW5QYdxeEAG/5zqzSSYUZcIrjCIzyMtG/o703bLGCz62lO9jwaUY9yg5+yaIgNz7lVGskwIy4LeKPfaBCdz5iR3Qp2OxNNu51GNKDc4KeiJMLk6JzLMJJhRlxWyC8Z4WHGG7MEcNnB5WT5O6mEWU0utsJUJ4rZ8J/b5JEMM+KygZT4RoNobzvpRAK3x0STejw0ogkRP7VVpWz4z23ySIYZcTmgoOobDaI/MuSmEwm8XpbUSyXMIXrpLyRBY10VsCae02Trt+fvhkjdNwrEToZ8gAIfBAqsNGkBlTC3tQCFH6ClsTb3c+NfV2kkw4y4fFDa+I0CaW9jRoUBCBfaaNLCQhrRVkh/MQmmTWxgw3/OZXN8e/4BqJg4wsNLO4FmVByGaNRBySmKIwqSA+UMPxddOJ7J0blNHskwI64w1Fw4wsOPN8uoLAqlZW46tGVlCCE3In4Wtk9B2RqRxDWSYUZcRTC6fYRHAf1jQSihgg7lFV6atKICIeJFrAT298KqwFAzzBLhq9X/OCbCP/121UXKFDlbJPftZf/bC9P9kEvBv1F9/p+9eB/QYQLhXYiqfKwT/uOL+w3cl7NbRuT9A5gw7MYFuwmfJ+Xc56ExYDvruFRmwblp0F+PpvkbdVyIcfOEc7pVoLOajsBFQH9T8We4tnHImnGYiQv/O8InqAvQuCqYTX/NTKB8vAzeyrkJTrSBnJtD1unLuXnoZl+Ap27hnDgKdBfk3ErWR9NhKVwGi2AVTEG8HC6EFfQ3C+E70ArTYDKGz0T/bgxfiiHfAQmSKKUJKEeshCswBvVdAavhSujCmLXn5Cjl8pTOyZW6F8FiWEN/HxHzrf3W/CX2CzZLYQGGrsDwFXAJlhL9Rvp/X9qv8akC6Fd0q9E1HZZgDOmf6ixBIz51o5viPPTP1qUMQxqwnOUsz6VY6hIMW5VrwypW77WIC+m8HZb0TID+P4J/vvbCdP7TXXyxv77Bxp+ATv4j2Ma/B8fQCCCij4iuejRd6M6gUWQG+Ld3NTdXyP1ox8qY3VcUrdhLA/rc3orH+be5ByBCXx3yx/rsHhbyVt+YMTlHdU3Wsau4tOJYg5Z/C/6ChuPf4o9h37JUu4rKKk42GNCD8NeAiRBkp+38m5BGw4HMv74rVFix7Qn+eQx/jt+PTaPJ9vcZzBWY4R/4h3G18vN7+IdyIQ/tMporoGEVzhACA4iH0RxHcxKNACv4e2E9mi1odqARwIToRxNHM5X68Pfz92M978b0JsQ4mhVotqARsAt/g/6XUuTv45fR30flb+JvRb7385v5W5j9K7TdaP8C/fPR/jk+U3tb7vlOtGn4T3L+W/HZjvYdOft29PegfRv7pT4//+Pc81p+DUu3Omdv51f15fvFhnwMl9Ak0PDouhVdt2LX3UolApHw1/HLWUk70a5A+7Ksjd21ri8QZGO0bpfDVbEdu3Qddv067Ll12HPr6Ith/urhOFdn45TyV2OcqzHO1RjnauyVBL8Ky1tFeQJRRCOh4bHfV2G/U/804gCaw8z/esReNNvpE3859mMUa7WRX9ZX5EchW7wrJVfUP8pfgl0t85fscvkqtnz9pNFSQUTbmLNNNO4iFrpol0ZPfRftcvuyNsa6tMHIL4DvouEgDzGEpgpNExqBX9AXivsf4afAZWqQjf713Hp+vbBeISSaiOUJvgJa1XTJtPClUIcRov65dWRUp6ZL06PhRY2kSWhkTatGsYJfz2/heT8f5+v5qfxcnv3xr6q2kp5bjVPWVvbqtuvSugHdYZ0irRxQHlYeV55UKiRlQikrW5Wdyi5lj7JXuV2p6VX2qrhOXZeuR8eLOkmX0Mm6Vp3CryLbG27g51OmRhTRdKHpRSNgH89Ff4m/GM1cHI252BUXU2JHBHwS0RxG93G0FfhkwngmjGdCXxP6muh+D5GGtKLpRNOVC1WeDRlOQ+OfpCFoUJXljehrxL49jniSutBMxCcDPhnwyYCxDnOnsYYiooSmFQ3P/I6jQalBHA5L5MI70ShZ+EkWZzhMpmm50/K8yECUpKNke5T0RolcV99QIRcgWCyWucG54blFc+8WVgRXhFcUrbhbmBqcGp5aNPVuoT5YH64vqr9biAfj4XhR/G7BH/SH/UX+u4Utk3ZMemLSoUnC3EkrJq2fxI+iJ4x9sUQFswvC1H6oz+WuGGVqGM3twObMRdyG5hgaHvyIcTT1aFagEbgdiH7uQfR9EH0fhKlo5qJRYIoHKb0g+nNh1H8bC6MuGs6NCOex4Q/01VZObZiIlDsXzTY0POb9AIY/wGJnXTuYfxrxOPOfmou/nfn7EYfT8EhwsxnNzcbpNxvJfzbMRdOFRgGH+Fm4OMyiOSP60XSh2YFG4GfjPYufxT2I9wPcA3yJbCi3+XP7HLNabBA5PcqAgdzH8A6GGxnWMwzJxomGLyYafjfR8P2Jhgg6uCJc6gzkVoYBWddg2N1gmNpgiDYYMDcH6skGzsZQSZF8wnAKwxI5L2D4e8Dwt4DhrwHDzwKGlQHDeQGazotz18DlMdRRJLcxnMiwUNb5Dc/4DbP8hlF+Q4OB3EWwdBjDMJ+hhyL5bLepyQSaR8ln0IQ5kb66qL+fA2aRTF9dA1pDfXXj0DrTV3cXWv/oq7vF/xj5O2FLGvmiL3TC32Ajp8gEgT7/LWf/lUyA+9E+ifZitO+BOhJG+1d9ddfS+L/E9D/B519AgZrG/zm0snTbyATm/7Ncup/2lczHUu/sK7kSS/0JlLBSb+8rOYG+t/SVbETrR30ly9Ha0hemFVzWV1fsbzDTvyznaNwFEOZoTSblShyPOS9He1w2cXNfCU3VRAvoJ419wXK0IrSWj5EgtLLi/H1B1kgfBFkWXgiySnsgzGwjMbHKG6CA2eq+4LWYi3J3+IT/v+oepQ2Hz4mp7y7/u49h+2bi4ztkQt/9/hf30u7q8x8q6SfhPf4Xgo/6nw71k5l9/oGSfjUGPFHSz5GH/Duxk9MYlyN7/DtKFvsfDLLQu4MYikO9ra7Uf2dwtn9rGJ/7/NeWPEarAZdhi2dicHvJ+f5Jdff7x4b7CQbLdViYrPXXBrv9KfSu6ScTdt3vLw/106okMI/79/iLscTCIKvKjFGPcElQkTVyiWq1ar5qpuoC1WhVpapUJal8Kq8qT21Ri2qjWq/WqtVqpVpQc2pQ59HT8BjdAuUp2U5IKVAUmFvk2DtXYDskjqg5nDtpK9/CtUwbQ9KWFmiZPiY9KtbSr8pcmK6JtaTVrXPadhJyczs+pbkb+wlMb0MBpV43eOhvzu0FQuI3/MBD7atv+EF7O2lJDyyAlvlS+otp2A7tBbPTiuAYJ9jX1jvrLeebU2Ob/gV05vCcg3jniGN5py99W8u0tvRvfO3pCurI+Npb0uPor9Xt5VZyK5qb9nJd1Gpv20uu4lY2X0j9yVVN7WejQQHXhdFwY9OVjbYLCmg0KCC7WLRJLBqKaUFz086Cgmykp8gEGgnF5ykWaXE2rxAWgXm1UgujcfkQYnmFuHwaDeUhm5np3Mz0QEwsM5MeWGZeGmlnOIxRSsI0ys5RYYywMzyKBd//dXAwnK1OO4RZOWHSzsoh5Os4Rdk4KAW5OJwa4/zbb5j8p9eiMf9BZLJr3hsLF9DfDOwMNi9C05nevHaJM90zX5J2Lnwj92OChZ3zFyyh9rxF6TeCi5rSC4NN0s55C/5F8AIaPC/YtBMWNE9v27lAXtTUN0+e1xyc19S+6571jS0jytp4tqzG9f8is/U0s0Za1j0t/yK4hQbfQ8tqoWW10LLuke9hZbVcOIa0tLbtVMMY+k0jZu/idFqcD52eQPsYu9h1PpscowPOazyPCIDLli7WntYHx6QNaGhQaUNpAw3C2UmDjPRXIXNBzmtGBzyPkPtyQSJ6m4NjIAbO5qVNZz+rVq1aTc2aNTHE1WuczG81TtrAtJb0WPobdnXpuua03NnUzl5qrcldjW2y+ETdoTpuRd36ui112+p21CnWrGlHb8sTBYcKuLkFKwrWF2wp2Fawo0BJAy5q2yPXbSv4SwG/BqWJrMaruYmVuQZt/NDH1WtW0QuwgFVossXF1sQa2xoKYAFquwQ181KwogmiqUQzDY0Cfo/4Mpp30fwNjQDXId6C5pdodlEfvpQvbXYubaIltsco6Tj5il2JZEVNP9rzLsna02Zn7eYpWbuuocKJdl99pbbBhIo3gUcQn0PzOpqP0fwDjYKv4CtY5muyUtu+ClbFCFafvgBcTWFVbDX742VCu3v1qlgMVmVfDxIcAfrC8BuvFoGsWgPYFTggaGEk5ruKJltD7eGLBiAV/y/EuqTuCmVuZHN0cmVhbQplbmRvYmoKMTcgMCBvYmoKPDwvVHlwZSAvRm9udERlc2NyaXB0b3IKL0ZvbnROYW1lIC9UaW1lc05ld1JvbWFuUFNNVAovRmxhZ3MgNgovQXNjZW50IDg5MS4xMTMyOAovRGVzY2VudCAyMTYuMzA4NTkKL1N0ZW1WIDExMC4zNTE1NjMKL0NhcEhlaWdodCA2NjIuMTA5MzgKL0l0YWxpY0FuZ2xlIDAKL0ZvbnRCQm94IFstNTY4LjM1OTM4IC0zMDYuNjQwNjMgMjAwMCAxMDA2LjgzNTk0XQovRm9udEZpbGUyIDE2IDAgUj4+CmVuZG9iagoxOCAwIG9iago8PC9UeXBlIC9Gb250Ci9Gb250RGVzY3JpcHRvciAxNyAwIFIKL0Jhc2VGb250IC9UaW1lc05ld1JvbWFuUFNNVAovU3VidHlwZSAvQ0lERm9udFR5cGUyCi9DSURUb0dJRE1hcCAvSWRlbnRpdHkKL0NJRFN5c3RlbUluZm8gPDwvUmVnaXN0cnkgKEFkb2JlKQovT3JkZXJpbmcgKElkZW50aXR5KQovU3VwcGxlbWVudCAwPj4KL1cgWzAgWzc3Ny44MzIwM10gMyAxNyAyNTAgMTggWzI3Ny44MzIwM10gNDUgWzM4OS4xNjAxNiAwIDYxMC44Mzk4NCA4ODkuMTYwMTZdIDYyIDY0IDMzMy4wMDc4MSA2OCBbNDQzLjg0NzY2IDAgMCA1MDAgNDQzLjg0NzY2IDAgNTAwIDUwMCAyNzcuODMyMDMgMjc3LjgzMjAzIDAgMCAwIDUwMCA1MDAgMCAwIDAgMzg5LjE2MDE2IDI3Ny44MzIwMyA1MDAgMCAwIDUwMF1dCi9EVyAwPj4KZW5kb2JqCjE5IDAgb2JqCjw8L0ZpbHRlciAvRmxhdGVEZWNvZGUKL0xlbmd0aCAzMTA+PiBzdHJlYW0KeJxdkk1rwzAMhu/+FT52h5LvpIcQ6JoWctgHy/YDUlvpDItjHPeQfz9bKhnM4MAj6X0l5ESnru20cjx6t7PowfFRaWlhme9WAL/CTWmWpFwq4R6EXzENhkVe3K+Lg6nT48zqmvPow2cXZ1e+O8r5Ck8serMSrNI3vvs69Z77uzE/MIF2PGZNwyWM3ullMK/DBDxC2b6TPq/cuveav4rP1QBPkROaRswSFjMIsIO+AatjfxpeX/xpGGj5L1+S6jqK78Fidear4ziNm0Bpi5QfkbIzUvGMlMdELVGOVCZIviRQdcCeD/et1zZakmBZklLPM/W8IGVkn5/IviI6UJecgkcK0pBlRa3JsyDPkjyLkoIkr7LHWDRI2Ep4vW3l4m6t3zY+Ma45LFhp2P4CM5ugCvcX5kyfEwplbmRzdHJlYW0KZW5kb2JqCjggMCBvYmoKPDwvVHlwZSAvRm9udAovU3VidHlwZSAvVHlwZTAKL0Jhc2VGb250IC9UaW1lc05ld1JvbWFuUFNNVAovRW5jb2RpbmcgL0lkZW50aXR5LUgKL0Rlc2NlbmRhbnRGb250cyBbMTggMCBSXQovVG9Vbmljb2RlIDE5IDAgUj4+CmVuZG9iagp4cmVmCjAgMjAKMDAwMDAwMDAwMCA2NTUzNSBmIAowMDAwMDAwMDE1IDAwMDAwIG4gCjAwMDAwMDkyNDcgMDAwMDAgbiAKMDAwMDAwMDE1NCAwMDAwMCBuIAowMDAwMDAwMTkxIDAwMDAwIG4gCjAwMDAwMDAyNjcgMDAwMDAgbiAKMDAwMDAwMDM0MyAwMDAwMCBuIAowMDAwMDE4ODY0IDAwMDAwIG4gCjAwMDAwMzc3OTggMDAwMDAgbiAKMDAwMDAwMDQyMSAwMDAwMCBuIAowMDAwMDA5NTAyIDAwMDAwIG4gCjAwMDAwMDk1NTggMDAwMDAgbiAKMDAwMDAwOTYwNyAwMDAwMCBuIAowMDAwMDE3ODY4IDAwMDAwIG4gCjAwMDAwMTgxMDUgMDAwMDAgbiAKMDAwMDAxODQ4OSAwMDAwMCBuIAowMDAwMDE4OTk2IDAwMDAwIG4gCjAwMDAwMzY3NTkgMDAwMDAgbiAKMDAwMDAzNjk5OCAwMDAwMCBuIAowMDAwMDM3NDE3IDAwMDAwIG4gCnRyYWlsZXIKPDwvU2l6ZSAyMAovUm9vdCAxMSAwIFIKL0luZm8gMSAwIFI+PgpzdGFydHhyZWYKMzc5NDAKJSVFT0Y=”

    }, -“mode”: “lines”, -“name”: “price”, -“type”: “scatter”, -“x”: [

    -
    -

    10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -20, -21, -22, -23, -24, -25, -26, -27, -28, -29, -30, -31, -32, -33, -34, -35, -36, -37, -38, -39, -40, -41, -42, -43, -44, -45, -46, -47, -48, -49, -50, -51, -52, -53, -54, -55, -56, -57, -58, -59, -60, -61, -62, -63, -64, -65, -66, -67, -68, -69, -70, -71, -72, -73, -74, -75, -76, -77, -78, -79, -80, -81, -82, -83, -84, -85, -86, -87, -88, -89, -90, -91, -92, -93, -94, -95, -96, -97, -98, -99, -100, -101, -102, -103, -104, -105, -106, -107, -108, -109, -110, -111, -112, -113, -114, -115, -116, -117, -118, -119, -120, -121, -122, -123, -124, -125, -126, -127, -128, -129, -130, -131, -132, -133, -134, -135, -136, -137, -138, -139, -140, -141, -142, -143, -144, -145, -146, -147, -148, -149, -150, -151, -152, -153, -154, -155, -156, -157, -158, -159, -160, -161, -162, -163, -164, -165, -166, -167, -168, -169, -170, -171, -172, -173, -174, -175, -176, -177, -178, -179, -180, -181, -182, -183, -184, -185, -186, -187, -188, -189, -190, -191, -192, -193, -194, -195, -196, -197, -198, -199, -200, -201, -202, -203, -204, -205, -206, -207, -208, -209, -210, -211, -212, -213, -214, -215, -216, -217, -218, -219, -220, -221, -222, -223, -224, -225, -226, -227, -228, -229, -230, -231, -232, -233, -234, -235, -236, -237, -238, -239, -240, -241, -242, -243, -244, -245, -246, -247, -248, -249, -250, -251, -252, -253, -254, -255, -256, -257, -258, -259, -260, -261, -262, -263, -264, -265, -266, -267, -268, -269, -270, -271, -272, -273, -274, -275, -276, -277, -278, -279, -280, -281, -282, -283, -284, -285, -286, -287, -288, -289, -290, -291, -292, -293, -294, -295, -296, -297, -298, -299, -300, -301, -302, -303, -304, -305, -306, -307, -308, -309, -310, -311, -312, -313, -314, -315, -316, -317, -318, -319, -320, -321, -322, -323, -324, -325, -326, -327, -328, -329, -330, -331, -332, -333, -334, -335, -336, -337, -338, -339, -340, -341, -342, -343, -344, -345, -346, -347, -348, -349, -350, -351, -352, -353, -354, -355, -356, -357, -358, -359, -360, -361, -362, -363, -364, -365, -366, -367, -368, -369, -370, -371, -372, -373, -374, -375, -376, -377, -378, -379, -380, -381, -382, -383, -384, -385, -386, -387, -388, -389, -390, -391, -392, -393, -394, -395, -396, -397, -398, -399, -400, -401, -402, -403, -404, -405, -406, -407, -408, -409, -410, -411, -412, -413, -414, -415, -416, -417, -418, -419, -420, -421, -422, -423, -424, -425, -426, -427, -428, -429, -430, -431, -432, -433, -434, -435, -436, -437, -438, -439, -440, -441, -442, -443, -444, -445, -446, -447, -448, -449, -450, -451, -452, -453, -454, -455, -456, -457, -458, -459, -460, -461, -462, -463, -464, -465, -466, -467, -468, -469, -470, -471, -472, -473, -474, -475, -476, -477, -478, -479, -480, -481, -482, -483, -484, -485, -486, -487, -488, -489, -490, -491, -492, -493, -494, -495, -496, -497, -498, -499, -500, -501, -502, -503, -504, -505, -506, -507, -508, -509, -510, -511, -512, -513, -514, -515, -516, -517, -518, -519, -520, -521, -522, -523, -524, -525, -526, -527, -528, -529, -530, -531, -532, -533, -534, -535, -536, -537, -538, -539, -540, -541, -542, -543, -544, -545, -546, -547, -548, -549, -550, -551, -552, -553, -554, -555, -556, -557, -558, -559, -560, -561, -562, -563, -564, -565, -566, -567, -568, -569, -570, -571, -572, -573, -574, -575, -576, -577, -578, -579, -580, -581, -582, -583, -584, -585, -586, -587, -588, -589, -590, -591, -592, -593, -594, -595, -596, -597, -598, -599, -600, -601, -602, -603, -604, -605, -606, -607, -608, -609, -610, -611, -612, -613, -614, -615, -616, -617, -618, -619, -620, -621, -622, -623, -624, -625, -626, -627, -628, -629, -630, -631, -632, -633, -634, -635, -636, -637, -638, -639, -640, -641, -642, -643, -644, -645, -646, -647, -648, -649, -650, -651, -652, -653, -654, -655, -656, -657, -658, -659, -660, -661, -662, -663, -664, -665, -666, -667, -668, -669, -670, -671, -672, -673, -674, -675, -676, -677, -678, -679, -680, -681, -682, -683, -684, -685, -686, -687, -688, -689, -690, -691, -692, -693, -694, -695, -696, -697, -698, -699, -700, -701, -702, -703, -704, -705, -706, -707, -708, -709, -710, -711, -712, -713, -714, -715, -716, -717, -718, -719, -720, -721, -722, -723, -724, -725, -726, -727, -728, -729, -730, -731, -732, -733, -734, -735, -736, -737, -738, -739, -740, -741, -742, -743, -744, -745, -746, -747, -748, -749, -750, -751, -752, -753, -754, -755, -756, -757, -758, -759, -760, -761, -762, -763, -764, -765, -766, -767, -768, -769, -770, -771, -772, -773, -774, -775, -776, -777, -778, -779, -780, -781, -782, -783, -784, -785, -786, -787, -788, -789, -790, -791, -792, -793, -794, -795, -796, -797, -798, -799, -800, -801, -802, -803, -804, -805, -806, -807, -808, -809, -810, -811, -812, -813, -814, -815, -816, -817, -818, -819, -820, -821, -822, -823, -824, -825, -826, -827, -828, -829, -830, -831, -832, -833, -834, -835, -836, -837, -838, -839, -840, -841, -842, -843, -844, -845, -846, -847, -848, -849, -850, -851, -852, -853, -854, -855, -856, -857, -858, -859, -860, -861, -862, -863, -864, -865, -866, -867, -868, -869, -870, -871, -872, -873, -874, -875, -876, -877, -878, -879, -880, -881, -882, -883, -884, -885, -886, -887, -888, -889, -890, -891, -892, -893, -894, -895, -896, -897, -898, -899, -900, -901, -902, -903, -904, -905, -906, -907, -908, -909, -910, -911, -912, -913, -914, -915, -916, -917, -918, -919, -920, -921, -922, -923, -924, -925, -926, -927, -928, -929, -930, -931, -932, -933, -934, -935, -936, -937, -938, -939, -940, -941, -942, -943, -944, -945, -946, -947, -948, -949, -950, -951, -952, -953, -954, -955, -956, -957, -958, -959, -960, -961, -962, -963, -964, -965, -966, -967, -968, -969, -970, -971, -972, -973, -974, -975, -976, -977, -978, -979, -980, -981, -982, -983, -984, -985, -986, -987, -988, -989, -990, -991, -992, -993, -994, -995, -996, -997, -998, -999

    -
    -

    ], -“y”: [

    -
    -

    0.06657949580650858, -0.7042071210339776, --1.2187134154182149, --2.0438159662107087, -0.9354952062579315, --0.14629480653093715, -1.4349731129940377, -1.0308995266205496, -1.0889189213097403, --0.30710724897540126, -1.0991149262428481, --0.5978842357200534, --0.7464901625452016, --0.38411327878418644, --0.058309614175752505, --0.10644452518776774, --1.8315634996455803, -1.363731126925096, --1.566941557704011, -1.1432476782923935, --0.5438997861199969, --0.41443731166352626, -0.6834270361981524, -1.2792723882229176, --0.5682993405240077, --0.02609951374932082, --1.4018465656017396, --0.7605177314702534, --0.275735422505185, --1.6551096049685572, --1.3247658618362472, -1.4715274899369837, --0.4984474052092241, -1.1376955741955783, --0.1589211395948154, --0.9545426943169023, -1.4499999018459975, -0.7145277774562966, --1.6603003508326633, -1.5634292008163986, -1.4974440278853725, --0.4060832929567913, -3.3974419740271804, --1.474586686552337, -1.6606196447362331, -0.4500880780132674, -0.12022103766541989, -1.1022128828550566, --0.8564926915691011, -0.0778712662320427, --0.09272682276561497, -1.0211598324657853, -0.8171274661362593, -1.886814115334868, -1.4433326967175908, -1.014596186154694, -1.6517451877130913, --0.7506509115512537, -1.0260613595761223, --1.4063132638813742, -1.0749348110252344, -0.1897580586999632, -0.3671860085829968, -0.33149342272485643, --1.5439584038782816, --0.22606541567181407, --0.12322035653621273, --0.9348937517930265, --0.7219486257319628, --0.6912560453560557, -0.13586844931610315, --1.6540655197092853, -1.1628618245895828, --0.1803346698747063, --1.3824828398342313, -0.5666969267698645, --0.20844608433716608, -0.04128384395168908, -1.3047373880992574, --0.8328301784481946, -0.1626387144823998, -0.1924258632946733, -0.09958002094867519, -0.021069740325564384, -0.4032449238135223, --0.42765772259366597, -0.1623813512691879, --0.6231818542538072, --1.4849178373306402, --0.7336363158704325, -0.3832795090845457, -0.47031752864388066, -0.48995444125295623, -0.27345713724262855, --0.0914161780568458, --0.3140319089109977, --1.0004679001320387, -0.593908003677212, --1.4974194699856576, --1.207794006144397, -0.0022405240324975297, -0.4726662094782263, --0.681124231490161, -0.6393643300531231, --0.5203900581142561, --0.25946296430900895, --1.4186120526229247, --0.12298583975763708, --0.9792565930551863, -1.0564443715751681, -0.8952269043159242, -0.9815171706466476, -1.0173702876488693, --1.6218391072120193, --1.3550792420732198, --1.4443280182918838, -0.09072837407970864, -0.7160525357145655, --2.42587790264626, --1.3632482289017114, -0.781163393693321, --0.49359685006786147, --0.8991199708960806, -0.5696644865897532, --0.334492715584694, --1.0369735120150199, --0.26163418924463205, --1.904160287346853, -1.1003199699820798, -0.42735829113580254, --0.19986774044920338, -1.206060686144269, -0.7235212988212015, --0.6634973708698573, -0.2423401591244117, --0.9004319987767728, --1.6648073390822695, -0.25927236884369254, --1.5366558376909945, --1.084606600679036, -0.2435352740109413, -0.5281844577617784, -0.7252372184225023, --1.5666059323295565, -0.4067562196486277, -0.44404299872864667, --0.17032038217482862, -0.5221632335993641, -0.5122490284309147, --0.10238397597121947, --0.5237556529041572, --0.5803870522439922, -0.3326739961418302, --0.529898471270117, --0.7425132619723852, --0.14851642495278988, -0.9796872034702306, -0.7949147173434337, -0.8593838024150303, --0.8394291531627852, --1.0422959210893497, -1.2102012708039764, -1.0177908650593928, -0.56099346051176, -0.33520451027596204, --1.3681384716347351, -1.9198785949061832, -0.7640114801435517, --0.45629223247403483, -0.7048600126392744, -0.9472825088617235, --1.6276601939380488, --0.36452223345702456, -0.41102510921097324, --0.4013850153943589, --1.459140329875622, --0.10102659762678608, -0.8646011928369576, -1.2761723500116484, -0.02024391550334601, --1.0158022276410426, -2.5471276759510846, -1.3663786228664883, -1.0368069011278525, -0.1275769356130981, -1.8844657348993814, --1.507183194872279, --1.1793344352462634, -0.4147793726882614, -1.1664981751308257, -0.010388817029583775, --0.38587473016874646, --0.7064216466506991, --1.2372643055941408, --0.9369845028619604, -0.4349020935054483, -2.346216698856833, --1.5571004712721115, -0.5952560980385858, -0.6028758149890263, -1.471673061422436, -1.357601167655102, --0.5966459641343468, --1.0208039807559803, -0.7872412271786862, -1.7887305976344459, --0.46563144842613424, -0.0369825250843871, -0.34877339501253246, -0.7828423072391619, -1.434784881410705, --1.1370740483114172, -0.42157775231221545, -0.8080488782516375, -0.3769091348912932, --0.7018416773116258, -1.3031070729854288, -0.2989670165522678, --0.5118937119799508, -0.5490693710181883, -1.1960766052934033, --0.45529048959799484, -1.3971329485531783, --0.21165597459900515, -0.7469464848502221, --0.06515438732525378, --0.5921709888018915, --0.5264578087189562, -1.4104432803825298, -0.574292300201689, --0.07549071412974467, --1.667833023209295, -0.9984741823702818, --1.58320941547157, --0.003341428250683831, --0.11109790876105918, --1.676908438114285, -0.4091091061120369, -0.43532764054689166, --1.1433994269053869, --1.7480599898474494, -0.8642259605407514, -0.6365601105336879, --0.1955222756647389, --1.2748004393694956, -0.06303302740857754, -1.2451436253223342, -0.37322839455652956, --1.5768929482992389, -0.694014296727232, --0.2570385210991602, -2.2142012538202502, --1.5005330087029989, -0.6060979474124115, -1.4184935989327954, --0.06274754674055728, --1.4867770853321085, -1.2571084130635521, --0.06957579578851479, --0.4188035188709695, -0.010733613958181438, -1.6768528696777663, -0.8864256260162515, -0.14707464622797067, -1.6779122755863654, -0.8559066904470817, -0.11193951149910018, --0.13187718604750776, -1.031054892495864, -0.034396655229725945, -0.4209851520385636, --0.8136597588178065, -1.3752464105246218, -1.0307386629054998, --0.5701354658313716, --0.07334729516618461, -0.5470673399553428, --2.17227879608845, --0.24879284139184463, --1.2217401816778282, -0.6030969351679943, --1.978855039521635, -2.2507482481107615, --1.1772752738651369, -0.38519987904452463, -1.344303457787504, --1.0559391019465418, --1.8247058780666288, --0.31515492029812997, --0.8870787756221162, --0.12077436701128975, --0.297237169824904, -0.38845984393728905, -1.3278191241901618, --0.3734303204313007, -0.8279180455876117, --1.4630044784790748, --0.05193095216977354, -0.05782713449793359, -0.8478127186396591, -0.05630777227836795, -0.39121863699731485, --1.4774313292429648, -0.3963143977097747, --1.4539647170174574, --0.9793810591681177, -0.7173368313212088, --0.236159065713707, --0.6155488713999003, -0.18560944657474385, -1.6476953472536133, --1.5484869807981119, -0.9377175139759644, -0.5518952539381832, -0.07356503462843031, --1.3264878950171721, -0.07535951097570871, -0.12264244220040958, --0.42537281954511785, --0.4998962229037484, -0.3330464358891232, -0.015432939420272901, -1.0797250519338277, -0.6963403566497599, -0.6889954608613271, -0.9166520525475822, -0.06483789225529443, -0.4177780910651974, --1.215176452044791, -0.7654715021674819, --0.07679809049501862, -1.4578075345197414, -2.522026606830127, -1.152726916389, --0.14866815699740818, --2.0662481096455436, --2.363842895085537, --0.27360047532321413, --1.8833479303941, --1.3172885006128272, -0.20452737107625082, -0.7700117962299484, --0.8283620640916174, -0.42240980289304214, -0.2480868023356565, -0.11827593074695252, -1.0494949533701485, -1.478474698787826, -0.1702414103593012, -0.6495999569907174, --0.49425570464728197, -0.837118005596032, --0.08372934101999836, -1.9217417801903969, -1.4752272423760706, -0.757461543957001, -1.2999922701245714, -1.3446422263123126, --1.2466610279144072, --1.9339723336579848, -1.8582538665763133, --0.513393208808119, --0.7894794954531047, -2.9543307450059375, --0.9724656965645276, -0.49843082295299834, -0.8285899792915569, -0.8457814294655845, -0.20830334868278944, --0.4107627045988226, --1.8881777898080343, --0.04723726105078013, --0.6065403480059925, -0.19277509089130404, --0.28080040161634906, -1.2603865119625535, --0.5108114146014595, -0.21830494680026882, -1.975475979246791, --1.2153189992023306, -0.45843891728524805, -0.4886428714272332, -1.9180627733438294, --0.22859341088945828, --1.7130249809570073, --2.559114724090455, --0.6312111039035885, --0.8905331514021997, --1.2150335600015143, -2.444667287809592, -0.17081156021541144, -0.5077726656503165, -1.038828873721946, --1.2678954631483663, -0.15492842328151213, -2.2915533478175347, -0.3439255049717159, --0.6389708910872062, --0.8103220568244995, --0.6285810606444399, -0.1618441666548604, --1.3708656980759784, --0.3165578985249459, --0.19636302034509892, --1.079960557998176, -0.6644272458777207, --0.9579594476226031, -0.7006907406657614, --0.982017507091568, -1.0734876037978682, -0.9083016548007746, --0.004555715249828847, -2.260508728767975, -1.249981403669253, -0.2877520373499534, --1.1282470225621457, -1.3845617640603873, -0.10015380197512547, --2.6082003686291793, -0.7772224585995919, --0.4616773490131915, -0.3677235029176946, -0.849003492250095, --1.7592209399401113, -0.14924669458554157, --1.5526771473685053, -0.060819073148988614, -1.6244828460205518, --0.7831810053626761, --0.6781845305983837, --1.206008233804651, --0.9840497252188918, --0.12680429610349458, --0.29687328225815435, --0.14202111512094318, --0.7583273823229567, --1.1262377731525384, -0.10095428309096748, -0.2814516423345005, -0.49312772317901665, --0.7710588327211317, -1.6605010014546286, -1.087596638483641, --0.4746249063994664, -0.7086531761170562, -0.34348745524378915, --1.4022018746629237, -0.37015897217242466, -0.0843301672463426, --0.4330492681534202, -1.7558782324465916, -0.7202618501955251, -1.2937594736948148, -1.9284573451574751, --2.0317157730642017, --0.849163874530413, -0.0810650741684899, -0.05186472267625962, --0.05791772507030962, --0.7023655559808043, --1.7999915698123228, -2.2968211242744716, --0.9467020953858171, -0.11745625303761016, -0.10265138797320832, --0.06053234888361561, --0.43331517309694545, --0.5962271862991214, -0.8280175575827052, -1.0575822952108735, -0.7454850822849407, -1.788183655047735, --0.5628622381358686, --0.2632912211030889, -0.15264668797834902, --0.48088396901577324, -0.9893468552770651, -1.0844072168913828, -0.27292278362486394, --0.35751861293518933, -1.472044898799596, -1.302014434589241, -0.3569287784903068, -1.4727981194791506, -0.6879250128779288, -1.6474207328610961, -0.475126194359889, -1.4780826976659418, --0.5954605354809445, -0.636678013689965, -0.7610959572342744, -1.1556814710813383, --0.635159422916024, --0.6349945345712154, --0.7585968648934003, -0.0567525880695433, --3.676899003049981, -1.6280886551817202, -0.5633434233896949, --0.5077018274792533, -0.4671489322471103, -0.4961860603931495, -0.3221646743723201, -0.9836289606797799, -0.14891999308668263, --0.5628304439697212, --1.6140944396048242, -0.13663979682976915, --1.0143493365903884, --1.6219935005423454, --0.3676566100104772, -0.2345217375551218, -0.008695102773521627, --0.803907102883379, -1.2914252266566233, --0.6848449450332177, --0.5873435258456958, -0.7606716419638716, -0.3667428984588238, -1.699465234068763, --0.708444640580674, -0.9547783067383621, -0.3259917484413387, -0.6457499765940556, -0.4509696100963814, -0.23045691989902006, --0.8264909446617337, -0.3586182471327589, --0.19862255406304857, -0.4712245388206714, -0.6485102089129624, -0.23017293221916107, -0.6040031328476771, --0.2596668858741633, --0.0270592522184338, --0.7213408198685287, -0.39372319745529455, --0.1274393494908997, --0.17956869544706822, --1.278704724524306, -0.005090959780293349, --0.41165956331476894, --0.6933415423438254, -1.1284434771958196, --1.378366484218425, --1.5890948719552205, --0.20618550638032176, --0.7471840459898258, -0.5435228402389166, --0.8322729376338954, -1.368394537477824, -1.3022023488861683, --0.16704949389743456, -0.8670305562900176, --1.3013181983944606, -1.345923103293542, -0.5279152388254413, -1.5094490503706453, --1.3183758784652577, --0.4878452712083802, --1.3048208906579541, --0.8961268294964213, --0.9636890911891638, -0.5859013064427213, -1.6615404049018438, -0.48102997084281823, -0.3809160572216325, -1.03746084265434, -0.050787280261992904, -0.8263024696999308, -1.4148844475357427, -0.6039432749045278, --0.9705504308170952, -1.228779551587697, -0.44254439422194014, -0.5228931258615774, -0.7277140108759714, -0.36038090072137646, -0.8469800429278125, -0.25681338821973276, --1.187781975505905, -0.28641978896405396, --2.0393977599899293, --1.248933148027633, --0.28981094744810104, -1.643697828287795, -0.05017782601859786, --0.3094547636877666, --0.6537385511576103, -0.8922458044682097, -0.2929186031472941, --0.49532930832412375, -1.1819368748793484, -0.6257022459898259, --0.44252210088020166, -0.6033762471895691, --0.9490013326350237, --0.5465250840433468, --0.3923133421893767, -1.4131053820375479, --0.5026007464560802, --1.5375472118999758, -1.2969314396076417, -0.20438257507964466, --1.1721021689648907, --1.6865137671603536, -1.2569870644356642, -0.17706040931876205, --2.2977895261400008, -2.0292681531550927, -0.9764452554756957, --0.6342359791622514, --0.18611550035544563, -0.8224806033146688, --0.7110876753132762, -0.5324347996258455, -0.6660837059808186, --0.4503886808563981, --0.9853439493484303, -0.21102421797127344, -1.0126891784456369, -0.28852151541324783, --0.8955512269003686, --1.3190611676604653, -0.5560156885242366, --0.7883064976646555, -1.5384059797216016, --0.9439983003124212, -0.5659984618843253, -1.1249041750839843, -0.6767410051956194, --0.49160500631529014, -0.1483107522447713, -0.5115365517804981, -2.8364191992492573, -0.791720003889648, -1.2383582091221652, --1.0829922825027016, --0.3867845414675819, --0.8724569614134565, -0.932469265746266, --1.30579430416661, -1.2247271989582578, --0.8445762098108233, -0.9470563586356399, -0.5683744265581336, -0.7849474221021006, --0.3890565615181326, --0.2829872999892831, -0.13071325909096526, --0.2987690218851445, -0.7898343244483973, -0.099431121274427, -0.38220618151309727, -0.711292525502263, -0.18986784101621773, -0.07917801452818249, --0.8367187300319635, -2.689090613860293, -1.0038363801506756, -1.0770133313127632, --0.6527518527291182, --0.016213968985555362, -0.17790609312219963, --1.2902284612020107, --0.3864594709380328, --0.10419507842331896, --0.4629164970066934, -0.6290267241957171, --1.4219864770863424, --0.5087187655938853, -1.5918962053482788, -0.6159827089282811, --2.0218861828670485, --1.0669468295055586, -0.5796910129453231, --2.6185300720128297, -0.619301673799856, -0.027236966486583403, --0.25981101306424137, -0.9298833692036681, --1.4328703171091501, -0.9048129929368183, --0.8271176057108441, --1.226864206922098, -0.9545406983245001, -1.5217169034527678, --0.23450897299224294, --1.1404018348617109, --0.13330023950008685, --2.0377825528315445, --0.8276926974682682, --2.585410056023325, --0.09078874513783124, -0.02150533512547358, -0.21869629089561635, -0.5739591192245197, --0.6493923761977408, -0.10920412084411836, --0.021853258780881277, --0.4118785228105728, --0.17603834662410878, -0.5746200257241932, -0.4284764185572442, --1.356394941061918, --1.4047943619185956, --0.3775051934190425, --1.518116740641315, -1.0465098035476301, -0.9548071965496485, -0.6272151262011754, --0.7801353062775259, -0.03175503021688545, --1.1892542750316375, -0.9800487151662681, --0.5332606437780166, --0.5889315089261001, -0.3341222783905038, -1.2299088471417146, --0.24430963789214738, --0.7255241075366841, --0.39838023518724286, --0.23406943821171475, --1.416781587008113, --1.2716274491600466, -0.38688774541045945, -0.2961387094763638, --1.2553783618897594, --0.7918407656657092, -0.562807847231258, --1.159987350506027, -0.33137006170866634, -0.5753633360391074, -0.31896377367007595, --0.9565786122433182, --0.9184190499708218, -1.7970834607596198, --0.6174578809972053, --0.1052529438517789, -1.0362633726581372, --0.4000538997749901, -1.0317284970330505, -1.564052513517503, --0.619409443378424, -0.4333162428097617, --0.09501065331939876, --1.6868460473559286, --0.5695762021708808, --1.1288462259920982, --0.3237414008072606, -0.538390259347078, --0.3676513767027326, -0.3171226231463222, --0.742318729702504, --0.8488053673672417, -0.6464525682939155, -0.5277279966880103, -0.28612057652333217, --0.8888052630719565, --0.6738331073374428, --0.20261571023405975, --0.6075833827611219, --0.386196408227281, --0.15779297886469587, --0.933176120466135, --1.0211070848645405, --0.12665521690509854, -0.224905263482172, --0.21253995315292754, -0.20912265039647612, -0.5099930469309428, -2.1408613451222664, -0.08544885103788852, --1.2262604179655698, --0.841819196292541, --0.8062533508123542, -0.18704118256347768, -2.3773726392264964, --0.2349774392131216, --2.039913145908034, --2.7708137301079883, --1.440217398163521, --0.5995072483161547, --1.3460989019197025, -1.5493884495085788, --0.236328651540529, -0.5993552435124827, --0.14161629589560548, -1.6134811689916744, --0.050178329458602206, --0.3133910483238147, -1.2099550023606331, --0.9425060014487805, -0.9185727965040605, -1.000222459438402, --0.11937397123433868, -0.21650740220793896, -1.2418460570286436, --0.8718766238608511, --0.3298867252883004, --0.6989785489238277, --0.7848546748769792, -0.9897501865351587, -0.4009637802799042, -0.7095179293735221, -1.4357945144332909, -1.8524967224316515, --0.09516989795444708, --0.7602792369008564, --0.3018343214794774, --0.40112471898845276, -0.19810350275903787, -0.6977198655482821, --1.0120174754096811, --2.3563508373876774, -0.730109704661283, -1.5268517999656577, -1.530442468900263, --0.807825605221895, -0.7517373190537666, -0.9076798976915479, -2.092099479103067, --0.341570378356104, --1.7360607634901148, -1.156861486312767, -1.4716621130397116, --0.4787507021180346, -0.023744766274670027, --1.5965671646546118, --0.37021700136574104, --0.27692514795255346, --0.3091858541866916, -0.2360271461002418, -0.13386749897360478, -0.14216632838163829, -1.023034711692979, --0.3987269319430655, -0.549096886152482, -0.017157699255227664, -1.109032785498506, -1.3640767107398544, --1.1194841090436989, -1.0410059169232033, -1.5132324131526251, -0.24305061815448895, --1.019736710580556, --0.42694250400633577, -0.7725295493015006, --1.1962384989413304, --0.2968853248057844, --0.7899434044364201, --1.4875618384527145, -0.6454219975119482, --2.141450470084665, -0.30572020678799694, --0.5810850793717385, -1.4798366749575191, -0.2216281878888918, -0.44350719177739745, -0.46312940435735894, --0.228796055110651, -1.1983047302744245, --0.6414700390386395, --1.4944820818354236, --1.9831451598419563, --0.6074887631998206, -0.5875200794644209, -0.5804227935603117, --0.3505862375410346, -0.2707720393460868, -0.8527609494649038, --1.0561006233332695, --0.41978349307565604, --0.9905285637543743, --0.11575923339532644, -0.2297320675136182, --0.8446240979853961, --1.2912444624542925, --0.013671109771068054, --1.6976157372771925, -1.6672974994072653, -0.1911224870939968, --1.0434563003332007, --0.07742690061167322, --2.840805497923274, --0.266360988625872, --0.08721675735493827, --1.0465666956964246, --0.7774518438463297, --0.3460338986256431, -1.9151057120404062, -3.3759014692957137, --1.5480194807442587, --1.3366470595503326, --0.7600936179851417, --0.17220086985832367, -1.731738706276745, -0.026914870923869346, --1.4478840651824056, -0.36259989002529047, -1.7708848275754603, -0.7668992710093536, --0.04329437017676449, -1.682531835957653, -0.10732293384394224, -2.8874749846000345, --0.41718876873283156, -2.026745790233367, --0.06759883909878223, -2.6195063533482457, -1.4116758268774359, -0.022090807021911824, --0.6851676503727415, -0.6127192810265865, -0.6307418088840328, --1.575436292667157, -0.2527314389303937, -0.45752087572222805, --0.4815994380530334, --0.4648053905953706, --2.27287699629857, -1.888136472192083, --0.11360387414467936, --0.5440883761927148, --0.06337640558062574, --1.0542972859312079, --1.7588372290926966, --1.280217588793815, -0.8110029325867991, -1.2273015846246085, --0.06821838237501232, -0.7556153918737457, --0.803697042045384, -0.45446859489121927, -0.3558252712548142, --0.4376453965858135, --1.1366424849142358, --0.6106611693024279, -0.7122948278684196, --0.9179374538544223, --2.0195381960480603, -1.6475267693584579, -1.4520589268265065, --0.2938528246125576, --1.5375554291303655, --0.8678354130795327, -0.734696867664772, -0.8384561025302392, --0.6660001571620074, --0.2511029723184456, -0.6341551452578051, -1.6403127129510906, -0.5037769462600085, --0.3806205436561784, -0.7324164140372157, -0.31475791491958705, -1.4019180508818652, -0.5661000670332557, -0.6946751345214279, --1.1224899056192206, --1.1983058796996087, -0.010783558676113978, --1.4547859532775687, --0.5199340156451744, --0.3305531442671791, --0.18245671697900454, --1.0060497733894083, -0.8734800168083692, -1.1669110302978631, -1.0750983128222298, -1.4805946996320283, -0.44666546796515416, -0.9011169104143123, --0.04973536655230685, -1.2295605084255754, -1.5065883493634915, --0.5154401089740808, -1.5135837536298204, -0.47700790256124664, -0.19417403893863705, --0.38842856627731853, -1.4745839430891494, -1.2697285235477471, --1.4257481619513133, -0.8551272859916781, -0.5069168721972422, --0.7196087477570158, -0.016820538269393392, -1.3337514856250758, -1.496649716258155

    -
    -

    ]

    +“metadata”: {}, +“output_type”: “display_data”

    }

    ], -“layout”: {

    -
    -
    -
    “annotations”: [
    -
    {

    “showarrow”: false, -“text”: “Train”, -“x”: 10, -“xshift”: 20, -“y”: 3.3974419740271804

    -
    -
    -

    }, -{

    -
    -

    “showarrow”: false, -“text”: “Validation”, -“x”: 722, -“xshift”: 35, -“y”: 3.3974419740271804

    -
    -

    }, -{

    +“source”: [

    -

    “showarrow”: false, -“text”: “Test”, -“x”: 901, -“xshift”: 18, -“y”: 3.3974419740271804

    +

    “# Plot the target.n”, +“y.plot()”

    -

    }

    -
    -
    -

    ], -“shapes”: [

    -
    -
    -
    {
    -
    “line”: {

    “color”: “gray”, -“dash”: “dot”

    -
    -
    -

    }, -“opacity”: 1, -“type”: “line”, -“x0”: 10, -“x1”: 10, -“xref”: “x”, -“y0”: 0, -“y1”: 1, -“yref”: “y domain”

    -
    -
    -

    }, -{

    -
    -
    -
    “line”: {

    “color”: “gray”, -“dash”: “dot”

    -
    -
    -

    }, -“opacity”: 1, -“type”: “line”, -“x0”: 722, -“x1”: 722, -“xref”: “x”, -“y0”: 0, -“y1”: 1, -“yref”: “y domain”

    +

    ]

    }, {

    -
    -
    “line”: {

    “color”: “gray”, -“dash”: “dot”

    -
    -
    -

    }, -“opacity”: 1, -“type”: “line”, -“x0”: 901, -“x1”: 901, -“xref”: “x”, -“y0”: 0, -“y1”: 1, -“yref”: “y domain”

    -
    -

    }

    -
    -

    ], -“template”: {

    -
    -
    -
    “data”: {
    -
    “bar”: [
    -
    {
    -
    “error_x”: {

    “color”: “#2a3f5f”

    -
    -
    -

    }, -“error_y”: {

    -
    -

    “color”: “#2a3f5f”

    -
    -

    }, -“marker”: {

    -
    -
    -
    “line”: {

    “color”: “#E5ECF6”, -“width”: 0.5

    -
    -
    -

    }, -“pattern”: {

    -
    -

    “fillmode”: “overlay”, -“size”: 10, -“solidity”: 0.2

    -
    -

    }

    -
    -

    }, -“type”: “bar”

    -
    -
    -

    }

    -
    -
    -

    ], -“barpolar”: [

    -
    -
    -
    {
    -
    “marker”: {
    -
    “line”: {

    “color”: “#E5ECF6”, -“width”: 0.5

    -
    -
    -

    }, -“pattern”: {

    -
    -

    “fillmode”: “overlay”, -“size”: 10, -“solidity”: 0.2

    -
    -

    }

    -
    -
    -

    }, -“type”: “barpolar”

    -
    -
    -

    }

    -
    -

    ], -“carpet”: [

    -
    -
    -
    {
    -
    “aaxis”: {

    “endlinecolor”: “#2a3f5f”, -“gridcolor”: “white”, -“linecolor”: “white”, -“minorgridcolor”: “white”, -“startlinecolor”: “#2a3f5f”

    -
    -
    -

    }, -“baxis”: {

    -
    -

    “endlinecolor”: “#2a3f5f”, -“gridcolor”: “white”, -“linecolor”: “white”, -“minorgridcolor”: “white”, -“startlinecolor”: “#2a3f5f”

    -
    -

    }, -“type”: “carpet”

    -
    -
    -

    }

    -
    -

    ], -“choropleth”: [

    -
    -
    -
    {
    -
    “colorbar”: {

    “outlinewidth”: 0, -“ticks”: “”

    -
    -
    -

    }, -“type”: “choropleth”

    -
    -
    -

    }

    -
    -

    ], -“contour”: [

    +

    “cell_type”: “code”, +“execution_count”: 7, +“metadata”: {}, +“outputs”: [

    -
    {
    -
    “colorbar”: {

    “outlinewidth”: 0, -“ticks”: “”

    -
    -
    -

    }, -“colorscale”: [

    -
    -
    -
    [

    0, -“#0d0887”

    -
    -
    -

    ], -[

    -
    -

    0.1111111111111111, -“#46039f”

    -
    -

    ], -[

    -
    -

    0.2222222222222222, -“#7201a8”

    -
    -

    ], -[

    -
    -

    0.3333333333333333, -“#9c179e”

    -
    -

    ], -[

    -
    -

    0.4444444444444444, -“#bd3786”

    -
    -

    ], -[

    -
    -

    0.5555555555555556, -“#d8576b”

    -
    -

    ], -[

    -
    -

    0.6666666666666666, -“#ed7953”

    -
    -

    ], -[

    -
    -

    0.7777777777777778, -“#fb9f3a”

    -
    -

    ], -[

    -
    -

    0.8888888888888888, -“#fdca26”

    -
    -

    ], -[

    +
    {

    “name”: “stdout”, +“output_type”: “stream”, +“text”: [

    -

    1, -“#f0f921”

    +

    “(3960, 1) (396, 1)n”

    ]

    -
    -

    ], -“type”: “contour”

    -
    -
    -

    }

    -
    -

    ], -“contourcarpet”: [

    -
    -
    -
    {
    -
    “colorbar”: {

    “outlinewidth”: 0, -“ticks”: “”

    -
    -
    -

    }, -“type”: “contourcarpet”

    }

    ], -“heatmap”: [

    -
    -
    -
    {
    -
    “colorbar”: {

    “outlinewidth”: 0, -“ticks”: “”

    -
    -
    -

    }, -“colorscale”: [

    -
    -
    -
    [

    0, -“#0d0887”

    -
    -
    -

    ], -[

    -
    -

    0.1111111111111111, -“#46039f”

    -
    -

    ], -[

    -
    -

    0.2222222222222222, -“#7201a8”

    -
    -

    ], -[

    -
    -

    0.3333333333333333, -“#9c179e”

    -
    -

    ], -[

    -
    -

    0.4444444444444444, -“#bd3786”

    -
    -

    ], -[

    -
    -

    0.5555555555555556, -“#d8576b”

    -
    -

    ], -[

    -
    -

    0.6666666666666666, -“#ed7953”

    -
    -

    ], -[

    -
    -

    0.7777777777777778, -“#fb9f3a”

    -
    -

    ], -[

    -
    -

    0.8888888888888888, -“#fdca26”

    -
    -

    ], -[

    +“source”: [

    -

    1, -“#f0f921”

    +

    “# Convert to numpy arraysn”, +“x_train, y_train = x.train.values, y.train.valuesn”, +“x_test, y_test = x.test.values, y.test.valuesn”, +“print(x_train.shape, y_train.shape)”

    ]

    -

    ], -“type”: “heatmap”

    -
    -
    -

    }

    -
    -

    ], -“heatmapgl”: [

    -
    -
    -
    {
    -
    “colorbar”: {

    “outlinewidth”: 0, -“ticks”: “”

    -
    -

    }, -“colorscale”: [

    -
    -
    -
    [

    0, -“#0d0887”

    -
    -
    -

    ], -[

    -
    -

    0.1111111111111111, -“#46039f”

    -
    -

    ], -[

    -
    -

    0.2222222222222222, -“#7201a8”

    -
    -

    ], -[

    -
    -

    0.3333333333333333, -“#9c179e”

    -
    -

    ], -[

    -
    -

    0.4444444444444444, -“#bd3786”

    -
    -

    ], -[

    -
    -

    0.5555555555555556, -“#d8576b”

    -
    -

    ], -[

    -
    -

    0.6666666666666666, -“#ed7953”

    -
    -

    ], -[

    -
    -

    0.7777777777777778, -“#fb9f3a”

    -
    -

    ], -[

    -
    -

    0.8888888888888888, -“#fdca26”

    -
    -

    ], -[

    -
    -

    1, -“#f0f921”

    -
    -

    ]

    -
    -

    ], -“type”: “heatmapgl”

    -
    -
    -

    }

    -
    -

    ], -“histogram”: [

    -
    -
    -
    {
    -
    “marker”: {
    -
    “pattern”: {

    “fillmode”: “overlay”, -“size”: 10, -“solidity”: 0.2

    -
    -
    -

    }

    -
    -
    -

    }, -“type”: “histogram”

    -
    -
    -

    }

    -
    -

    ], -“histogram2d”: [

    -
    -
    -
    {
    -
    “colorbar”: {

    “outlinewidth”: 0, -“ticks”: “”

    -
    -
    -

    }, -“colorscale”: [

    -
    -
    -
    [

    0, -“#0d0887”

    -
    -
    -

    ], -[

    -
    -

    0.1111111111111111, -“#46039f”

    -
    -

    ], -[

    -
    -

    0.2222222222222222, -“#7201a8”

    -
    -

    ], -[

    -
    -

    0.3333333333333333, -“#9c179e”

    -
    -

    ], -[

    -
    -

    0.4444444444444444, -“#bd3786”

    -
    -

    ], -[

    -
    -

    0.5555555555555556, -“#d8576b”

    -
    -

    ], -[

    -
    -

    0.6666666666666666, -“#ed7953”

    -
    -

    ], -[

    -
    -

    0.7777777777777778, -“#fb9f3a”

    -
    -

    ], -[

    -
    -

    0.8888888888888888, -“#fdca26”

    -
    -

    ], -[

    -
    -

    1, -“#f0f921”

    -
    -

    ]

    -
    -

    ], -“type”: “histogram2d”

    -
    -
    -

    }

    -
    -

    ], -“histogram2dcontour”: [

    -
    -
    -
    {
    -
    “colorbar”: {

    “outlinewidth”: 0, -“ticks”: “”

    -
    -
    -

    }, -“colorscale”: [

    -
    -
    -
    [

    0, -“#0d0887”

    -
    -
    -

    ], -[

    -
    -

    0.1111111111111111, -“#46039f”

    -
    -

    ], -[

    -
    -

    0.2222222222222222, -“#7201a8”

    -
    -

    ], -[

    -
    -

    0.3333333333333333, -“#9c179e”

    -
    -

    ], -[

    -
    -

    0.4444444444444444, -“#bd3786”

    -
    -

    ], -[

    -
    -

    0.5555555555555556, -“#d8576b”

    -
    -

    ], -[

    -
    -

    0.6666666666666666, -“#ed7953”

    -
    -

    ], -[

    -
    -

    0.7777777777777778, -“#fb9f3a”

    -
    -

    ], -[

    -
    -

    0.8888888888888888, -“#fdca26”

    -
    -

    ], -[

    -
    -

    1, -“#f0f921”

    -
    -

    ]

    -
    -

    ], -“type”: “histogram2dcontour”

    -
    -
    -

    }

    -
    -

    ], -“mesh3d”: [

    -
    -
    -
    {
    -
    “colorbar”: {

    “outlinewidth”: 0, -“ticks”: “”

    -
    -
    -

    }, -“type”: “mesh3d”

    -
    -
    -

    }

    -
    -

    ], -“parcoords”: [

    -
    -
    -
    {
    -
    “line”: {
    -
    “colorbar”: {

    “outlinewidth”: 0, -“ticks”: “”

    -
    -
    -

    }

    -
    -
    -

    }, -“type”: “parcoords”

    -
    -
    -

    }

    -
    -

    ], -“pie”: [

    -
    -
    -
    {

    “automargin”: true, -“type”: “pie”

    -
    -
    -

    }

    -
    -

    ], -“scatter”: [

    -
    -
    -
    {
    -
    “fillpattern”: {

    “fillmode”: “overlay”, -“size”: 10, -“solidity”: 0.2

    -
    -
    -

    }, -“type”: “scatter”

    -
    -
    -

    }

    -
    -

    ], -“scatter3d”: [

    -
    -
    -
    {
    -
    “line”: {
    -
    “colorbar”: {

    “outlinewidth”: 0, -“ticks”: “”

    -
    -
    -

    }

    -
    -
    -

    }, -“marker”: {

    -
    -
    -
    “colorbar”: {

    “outlinewidth”: 0, -“ticks”: “”

    -
    -
    -

    }

    -
    -

    }, -“type”: “scatter3d”

    -
    -
    -

    }

    -
    -

    ], -“scattercarpet”: [

    -
    -
    -
    {
    -
    “marker”: {
    -
    “colorbar”: {

    “outlinewidth”: 0, -“ticks”: “”

    -
    -
    -

    }

    -
    -
    -

    }, -“type”: “scattercarpet”

    -
    -
    -

    }

    -
    -

    ], -“scattergeo”: [

    -
    -
    -
    {
    -
    “marker”: {
    -
    “colorbar”: {

    “outlinewidth”: 0, -“ticks”: “”

    -
    -
    -

    }

    -
    -
    -

    }, -“type”: “scattergeo”

    -
    -
    -

    }

    -
    -

    ], -“scattergl”: [

    -
    -
    -
    {
    -
    “marker”: {
    -
    “colorbar”: {

    “outlinewidth”: 0, -“ticks”: “”

    -
    -
    -

    }

    -
    -
    -

    }, -“type”: “scattergl”

    -
    -
    -

    }

    -
    -

    ], -“scattermapbox”: [

    -
    -
    -
    {
    -
    “marker”: {
    -
    “colorbar”: {

    “outlinewidth”: 0, -“ticks”: “”

    -
    -
    -

    }

    -
    -
    -

    }, -“type”: “scattermapbox”

    -
    -
    -

    }

    -
    -

    ], -“scatterpolar”: [

    -
    -
    -
    {
    -
    “marker”: {
    -
    “colorbar”: {

    “outlinewidth”: 0, -“ticks”: “”

    -
    -
    -

    }

    -
    -
    -

    }, -“type”: “scatterpolar”

    -
    -
    -

    }

    -
    -

    ], -“scatterpolargl”: [

    -
    -
    -
    {
    -
    “marker”: {
    -
    “colorbar”: {

    “outlinewidth”: 0, -“ticks”: “”

    -
    -
    -

    }

    -
    -
    -

    }, -“type”: “scatterpolargl”

    -
    -
    -

    }

    -
    -

    ], -“scatterternary”: [

    -
    -
    -
    {
    -
    “marker”: {
    -
    “colorbar”: {

    “outlinewidth”: 0, -“ticks”: “”

    -
    -
    -

    }

    -
    -
    -

    }, -“type”: “scatterternary”

    -
    -
    -

    }

    -
    -

    ], -“surface”: [

    -
    -
    -
    {
    -
    “colorbar”: {

    “outlinewidth”: 0, -“ticks”: “”

    -
    -
    -

    }, -“colorscale”: [

    -
    -
    -
    [

    0, -“#0d0887”

    -
    -
    -

    ], -[

    -
    -

    0.1111111111111111, -“#46039f”

    -
    -

    ], -[

    -
    -

    0.2222222222222222, -“#7201a8”

    -
    -

    ], -[

    -
    -

    0.3333333333333333, -“#9c179e”

    -
    -

    ], -[

    -
    -

    0.4444444444444444, -“#bd3786”

    -
    -

    ], -[

    -
    -

    0.5555555555555556, -“#d8576b”

    -
    -

    ], -[

    -
    -

    0.6666666666666666, -“#ed7953”

    -
    -

    ], -[

    -
    -

    0.7777777777777778, -“#fb9f3a”

    -
    -

    ], -[

    -
    -

    0.8888888888888888, -“#fdca26”

    -
    -

    ], -[

    -
    -

    1, -“#f0f921”

    -
    -

    ]

    -
    -

    ], -“type”: “surface”

    -
    -
    -

    }

    -
    -

    ], -“table”: [

    -
    -
    -
    {
    -
    “cells”: {
    -
    “fill”: {

    “color”: “#EBF0F8”

    -
    -
    -

    }, -“line”: {

    -
    -

    “color”: “white”

    -
    -

    }

    -
    -
    -

    }, -“header”: {

    -
    -
    -
    “fill”: {

    “color”: “#C8D4E3”

    -
    -
    -

    }, -“line”: {

    -
    -

    “color”: “white”

    -
    -

    }

    -
    -

    }, -“type”: “table”

    -
    -
    -

    }

    -
    -

    ]

    -
    -
    -

    }, -“layout”: {

    -
    -
    -
    “annotationdefaults”: {

    “arrowcolor”: “#2a3f5f”, -“arrowhead”: 0, -“arrowwidth”: 1

    -
    -
    -

    }, -“autotypenumbers”: “strict”, -“coloraxis”: {

    -
    -
    -
    “colorbar”: {

    “outlinewidth”: 0, -“ticks”: “”

    -
    -
    -

    }

    -
    -

    }, -“colorscale”: {

    -
    -
    -
    “diverging”: [
    -
    [

    0, -“#8e0152”

    -
    -
    -

    ], -[

    -
    -

    0.1, -“#c51b7d”

    -
    -

    ], -[

    -
    -

    0.2, -“#de77ae”

    -
    -

    ], -[

    -
    -

    0.3, -“#f1b6da”

    -
    -

    ], -[

    -
    -

    0.4, -“#fde0ef”

    -
    -

    ], -[

    -
    -

    0.5, -“#f7f7f7”

    -
    -

    ], -[

    -
    -

    0.6, -“#e6f5d0”

    -
    -

    ], -[

    -
    -

    0.7, -“#b8e186”

    -
    -

    ], -[

    -
    -

    0.8, -“#7fbc41”

    -
    -

    ], -[

    -
    -

    0.9, -“#4d9221”

    -
    -

    ], -[

    -
    -

    1, -“#276419”

    -
    -

    ]

    -
    -
    -

    ], -“sequential”: [

    -
    -
    -
    [

    0, -“#0d0887”

    -
    -
    -

    ], -[

    -
    -

    0.1111111111111111, -“#46039f”

    -
    -

    ], -[

    -
    -

    0.2222222222222222, -“#7201a8”

    -
    -

    ], -[

    -
    -

    0.3333333333333333, -“#9c179e”

    -
    -

    ], -[

    -
    -

    0.4444444444444444, -“#bd3786”

    -
    -

    ], -[

    -
    -

    0.5555555555555556, -“#d8576b”

    -
    -

    ], -[

    -
    -

    0.6666666666666666, -“#ed7953”

    -
    -

    ], -[

    -
    -

    0.7777777777777778, -“#fb9f3a”

    -
    -

    ], -[

    -
    -

    0.8888888888888888, -“#fdca26”

    -
    -

    ], -[

    -
    -

    1, -“#f0f921”

    -
    -

    ]

    -
    -

    ], -“sequentialminus”: [

    -
    -
    -
    [

    0, -“#0d0887”

    -
    -
    -

    ], -[

    -
    -

    0.1111111111111111, -“#46039f”

    -
    -

    ], -[

    -
    -

    0.2222222222222222, -“#7201a8”

    -
    -

    ], -[

    -
    -

    0.3333333333333333, -“#9c179e”

    -
    -

    ], -[

    -
    -

    0.4444444444444444, -“#bd3786”

    -
    -

    ], -[

    -
    -

    0.5555555555555556, -“#d8576b”

    -
    -

    ], -[

    -
    -

    0.6666666666666666, -“#ed7953”

    -
    -

    ], -[

    -
    -

    0.7777777777777778, -“#fb9f3a”

    -
    -

    ], -[

    -
    -

    0.8888888888888888, -“#fdca26”

    -
    -

    ], -[

    -
    -

    1, -“#f0f921”

    -
    -

    ]

    -
    -

    ]

    -
    -

    }, -“colorway”: [

    -
    -

    “#636efa”, -“#EF553B”, -“#00cc96”, -“#ab63fa”, -“#FFA15A”, -“#19d3f3”, -“#FF6692”, -“#B6E880”, -“#FF97FF”, -“#FECB52”

    -
    -

    ], -“font”: {

    -
    -

    “color”: “#2a3f5f”

    -
    -

    }, -“geo”: {

    -
    -

    “bgcolor”: “white”, -“lakecolor”: “white”, -“landcolor”: “#E5ECF6”, -“showlakes”: true, -“showland”: true, -“subunitcolor”: “white”

    -
    -

    }, -“hoverlabel”: {

    -
    -

    “align”: “left”

    -
    -

    }, -“hovermode”: “closest”, -“mapbox”: {

    -
    -

    “style”: “light”

    -
    -

    }, -“paper_bgcolor”: “white”, -“plot_bgcolor”: “#E5ECF6”, -“polar”: {

    -
    -
    -
    “angularaxis”: {

    “gridcolor”: “white”, -“linecolor”: “white”, -“ticks”: “”

    -
    -
    -

    }, -“bgcolor”: “#E5ECF6”, -“radialaxis”: {

    -
    -

    “gridcolor”: “white”, -“linecolor”: “white”, -“ticks”: “”

    -
    -

    }

    -
    -

    }, -“scene”: {

    -
    -
    -
    “xaxis”: {

    “backgroundcolor”: “#E5ECF6”, -“gridcolor”: “white”, -“gridwidth”: 2, -“linecolor”: “white”, -“showbackground”: true, -“ticks”: “”, -“zerolinecolor”: “white”

    -
    -
    -

    }, -“yaxis”: {

    -
    -

    “backgroundcolor”: “#E5ECF6”, -“gridcolor”: “white”, -“gridwidth”: 2, -“linecolor”: “white”, -“showbackground”: true, -“ticks”: “”, -“zerolinecolor”: “white”

    -
    -

    }, -“zaxis”: {

    -
    -

    “backgroundcolor”: “#E5ECF6”, -“gridcolor”: “white”, -“gridwidth”: 2, -“linecolor”: “white”, -“showbackground”: true, -“ticks”: “”, -“zerolinecolor”: “white”

    -
    -

    }

    -
    -

    }, -“shapedefaults”: {

    -
    -
    -
    “line”: {

    “color”: “#2a3f5f”

    -
    -
    -

    }

    -
    -

    }, -“ternary”: {

    -
    -
    -
    “aaxis”: {

    “gridcolor”: “white”, -“linecolor”: “white”, -“ticks”: “”

    -
    -
    -

    }, -“baxis”: {

    -
    -

    “gridcolor”: “white”, -“linecolor”: “white”, -“ticks”: “”

    -
    -

    }, -“bgcolor”: “#E5ECF6”, -“caxis”: {

    -
    -

    “gridcolor”: “white”, -“linecolor”: “white”, -“ticks”: “”

    -
    -

    }

    -
    -

    }, -“title”: {

    -
    -

    “x”: 0.05

    -
    -

    }, -“xaxis”: {

    -
    -

    “automargin”: true, -“gridcolor”: “white”, -“linecolor”: “white”, -“ticks”: “”, -“title”: {

    -
    -

    “standoff”: 15

    -
    -

    }, -“zerolinecolor”: “white”, -“zerolinewidth”: 2

    -
    -

    }, -“yaxis”: {

    -
    -

    “automargin”: true, -“gridcolor”: “white”, -“linecolor”: “white”, -“ticks”: “”, -“title”: {

    -
    -

    “standoff”: 15

    -
    -

    }, -“zerolinecolor”: “white”, -“zerolinewidth”: 2

    -
    -

    }

    -
    -

    }

    -
    -

    }

    -
    -

    }

    -
    -
    -

    }

    -
    -
    -

    }, -“metadata”: {}, -“output_type”: “display_data”

    -
    -
    -

    }

    -
    -

    ], -“source”: [

    -
    -

    “# Plot the target.n”, -“y.plot()”

    -
    -

    ]

    -

    -

    }, -{

    -
    -

    “cell_type”: “code”, -“execution_count”: 7, -“metadata”: {}, -“outputs”: [

    -
    -
    -
    {

    “name”: “stdout”, -“output_type”: “stream”, -“text”: [

    -
    -

    “(712, 10, 1) (712, 1, 1)n”

    -
    -

    ]

    -
    -
    -

    }

    -
    -

    ], -“source”: [

    -
    -

    “# Convert to numpy arrays. Panels contain a train-val-test split by default.n”, -“x_train, y_train = x.train.values, y.train.valuesn”, -“x_test, y_test = x.test.values, y.test.valuesn”, -“print(x_train.shape, y_train.shape)”

    -
    -

    ]

    -
    -

    }, -{

    +{

    “cell_type”: “code”, -“execution_count”: 9, -“metadata”: {}, -“outputs”: [

    -
    -
    -
    {
    -
    “data”: {
    -
    “text/html”: [

    “<div>n”, -“<style scoped>n”, -” .dataframe tbody tr th:only-of-type {n”, -” vertical-align: middle;n”, -” }n”, -“n”, -” .dataframe tbody tr th {n”, -” vertical-align: top;n”, -” }n”, -“n”, -” .dataframe thead th {n”, -” text-align: right;n”, -” }n”, -“</style>n”, -“<table border="1" class="dataframe">n”, -” <thead>n”, -” <tr style="text-align: right;">n”, -” <th></th>n”, -” <th>train</th>n”, -” <th>test</th>n”, -” <th>val</th>n”, -” </tr>n”, -” </thead>n”, -” <tbody>n”, -” <tr>n”, -” <th>MAE</th>n”, -” <td>1.398996</td>n”, -” <td>1.484263</td>n”, -” <td>1.412011</td>n”, -” </tr>n”, -” </tbody>n”, -“</table>n”, -“</div>”

    -
    -
    -

    ], -“text/plain”: [

    -
    -

    ” train test valn”, -“MAE 1.398996 1.484263 1.412011”

    -
    -

    ]

    -
    -
    -

    }, -“execution_count”: 9, +“execution_count”: null, “metadata”: {}, -“output_type”: “execute_result”

    -
    -
    -

    }

    -
    -

    ], +“outputs”: [], “source”: [

    “# Or just instantiate a model.n”, -“model = wavy.LinearRegression(x, y)n”, +“model = models.LinearRegression(x, y)n”, “model.score()”

    ]

    diff --git a/manual/models.html b/manual/models.html deleted file mode 100644 index 5032844..0000000 --- a/manual/models.html +++ /dev/null @@ -1,166 +0,0 @@ - - - - - - - Models — Wavy 0.1.9 documentation - - - - - - - - - - - - - - - - - - - -
    - - -
    - -
    -
    -
    - -
    -
    -
    -
    - - - -
    -

    Models

    -
    -

    BaselineShift

    -
    -
    -

    BaselineConstant

    -
    -
    -

    DenseModel

    -
    -
    -

    ConvModel

    -
    -
    -

    LinearRegression

    -
    -
    -

    LogisticRegression

    -
    -
    -

    ShallowModel

    -
    -
    - - -
    -
    - -
    -
    -
    -
    - - - - \ No newline at end of file diff --git a/manual/quickstart.html b/manual/quickstart.html index 04c5109..e4bfa4f 100644 --- a/manual/quickstart.html +++ b/manual/quickstart.html @@ -23,7 +23,7 @@ @@ -59,7 +59,6 @@
  • wavy.panel Module
  • wavy.models Module
  • wavy.plot Module
  • -
  • wavy.utils Module
  • diff --git a/manual/tutorials.html b/manual/tutorials.html index f0c54d9..ddb16df 100644 --- a/manual/tutorials.html +++ b/manual/tutorials.html @@ -25,7 +25,7 @@ @@ -64,7 +64,6 @@
  • wavy.panel Module
  • wavy.models Module
  • wavy.plot Module
  • -
  • wavy.utils Module
  • diff --git a/notebooks/quickstart2.html b/notebooks/quickstart2.html index f849acd..ee801ee 100644 --- a/notebooks/quickstart2.html +++ b/notebooks/quickstart2.html @@ -27,7 +27,7 @@ @@ -63,7 +63,6 @@
  • wavy.panel Module
  • wavy.models Module
  • wavy.plot Module
  • -
  • wavy.utils Module
  • @@ -372,18 +371,21 @@

    Quickstart

    This is a short introduction to wavy, geared mainly for new users.

    -
  • residuals() (ShallowModel method) +
  • residuals() (BaselineConstant method) + +
  • +
    - - - - - - - - - - - - - - - - -
    traintestval
    MAE1.3989961.4842631.412011
    -
    -
    diff --git a/notebooks/quickstart2.ipynb b/notebooks/quickstart2.ipynb index 2df12dd..08f9401 100644 --- a/notebooks/quickstart2.ipynb +++ b/notebooks/quickstart2.ipynb @@ -16,19 +16,22 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "# Import libraries\n", "import numpy as np\n", "import pandas as pd\n", - "import wavy" + "import wavy\n", + "from wavy import models\n", + "import plotly.io as pio\n", + "pio.renderers.default = 'pdf'" ] }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -38,7 +41,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -46,6 +49,16 @@ "x, y = wavy.create_panels(df, lookback=10, horizon=1)" ] }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# Set training split\n", + "wavy.set_training_split(x, y, train_size=0.4, val_size=0.3, test_size=0.3)" + ] + }, { "cell_type": "code", "execution_count": 5, @@ -62,7 +75,7 @@ "source": [ "# x and y are contain the past and corresponding future data.\n", "# lookback and horizon are the number of timesteps.\n", - "print(\"Lookback:\", len(x[0]), \"Horizon:\", len(y[0]))" + "print(\"Lookback:\", x.num_timesteps, \"Horizon:\", y.num_timesteps)" ] }, { @@ -72,2891 +85,7 @@ "outputs": [ { "data": { - "application/vnd.plotly.v1+json": { - "config": { - "plotlyServerURL": "https://plot.ly" - }, - "data": [ - { - "line": { - "color": "#636EFA", - "width": 1.5 - }, - "mode": "lines", - "name": "price", - "type": "scatter", - "x": [ - 10, - 11, - 12, - 13, - 14, - 15, - 16, - 17, - 18, - 19, - 20, - 21, - 22, - 23, - 24, - 25, - 26, - 27, - 28, - 29, - 30, - 31, - 32, - 33, - 34, - 35, - 36, - 37, - 38, - 39, - 40, - 41, - 42, - 43, - 44, - 45, - 46, - 47, - 48, - 49, - 50, - 51, - 52, - 53, - 54, - 55, - 56, - 57, - 58, - 59, - 60, - 61, - 62, - 63, - 64, - 65, - 66, - 67, - 68, - 69, - 70, - 71, - 72, - 73, - 74, - 75, - 76, - 77, - 78, - 79, - 80, - 81, - 82, - 83, - 84, - 85, - 86, - 87, - 88, - 89, - 90, - 91, - 92, - 93, - 94, - 95, - 96, - 97, - 98, - 99, - 100, - 101, - 102, - 103, - 104, - 105, - 106, - 107, - 108, - 109, - 110, - 111, - 112, - 113, - 114, - 115, - 116, - 117, - 118, - 119, - 120, - 121, - 122, - 123, - 124, - 125, - 126, - 127, - 128, - 129, - 130, - 131, - 132, - 133, - 134, - 135, - 136, - 137, - 138, - 139, - 140, - 141, - 142, - 143, - 144, - 145, - 146, - 147, - 148, - 149, - 150, - 151, - 152, - 153, - 154, - 155, - 156, - 157, - 158, - 159, - 160, - 161, - 162, - 163, - 164, - 165, - 166, - 167, - 168, - 169, - 170, - 171, - 172, - 173, - 174, - 175, - 176, - 177, - 178, - 179, - 180, - 181, - 182, - 183, - 184, - 185, - 186, - 187, - 188, - 189, - 190, - 191, - 192, - 193, - 194, - 195, - 196, - 197, - 198, - 199, - 200, - 201, - 202, - 203, - 204, - 205, - 206, - 207, - 208, - 209, - 210, - 211, - 212, - 213, - 214, - 215, - 216, - 217, - 218, - 219, - 220, - 221, - 222, - 223, - 224, - 225, - 226, - 227, - 228, - 229, - 230, - 231, - 232, - 233, - 234, - 235, - 236, - 237, - 238, - 239, - 240, - 241, - 242, - 243, - 244, - 245, - 246, - 247, - 248, - 249, - 250, - 251, - 252, - 253, - 254, - 255, - 256, - 257, - 258, - 259, - 260, - 261, - 262, - 263, - 264, - 265, - 266, - 267, - 268, - 269, - 270, - 271, - 272, - 273, - 274, - 275, - 276, - 277, - 278, - 279, - 280, - 281, - 282, - 283, - 284, - 285, - 286, - 287, - 288, - 289, - 290, - 291, - 292, - 293, - 294, - 295, - 296, - 297, - 298, - 299, - 300, - 301, - 302, - 303, - 304, - 305, - 306, - 307, - 308, - 309, - 310, - 311, - 312, - 313, - 314, - 315, - 316, - 317, - 318, - 319, - 320, - 321, - 322, - 323, - 324, - 325, - 326, - 327, - 328, - 329, - 330, - 331, - 332, - 333, - 334, - 335, - 336, - 337, - 338, - 339, - 340, - 341, - 342, - 343, - 344, - 345, - 346, - 347, - 348, - 349, - 350, - 351, - 352, - 353, - 354, - 355, - 356, - 357, - 358, - 359, - 360, - 361, - 362, - 363, - 364, - 365, - 366, - 367, - 368, - 369, - 370, - 371, - 372, - 373, - 374, - 375, - 376, - 377, - 378, - 379, - 380, - 381, - 382, - 383, - 384, - 385, - 386, - 387, - 388, - 389, - 390, - 391, - 392, - 393, - 394, - 395, - 396, - 397, - 398, - 399, - 400, - 401, - 402, - 403, - 404, - 405, - 406, - 407, - 408, - 409, - 410, - 411, - 412, - 413, - 414, - 415, - 416, - 417, - 418, - 419, - 420, - 421, - 422, - 423, - 424, - 425, - 426, - 427, - 428, - 429, - 430, - 431, - 432, - 433, - 434, - 435, - 436, - 437, - 438, - 439, - 440, - 441, - 442, - 443, - 444, - 445, - 446, - 447, - 448, - 449, - 450, - 451, - 452, - 453, - 454, - 455, - 456, - 457, - 458, - 459, - 460, - 461, - 462, - 463, - 464, - 465, - 466, - 467, - 468, - 469, - 470, - 471, - 472, - 473, - 474, - 475, - 476, - 477, - 478, - 479, - 480, - 481, - 482, - 483, - 484, - 485, - 486, - 487, - 488, - 489, - 490, - 491, - 492, - 493, - 494, - 495, - 496, - 497, - 498, - 499, - 500, - 501, - 502, - 503, - 504, - 505, - 506, - 507, - 508, - 509, - 510, - 511, - 512, - 513, - 514, - 515, - 516, - 517, - 518, - 519, - 520, - 521, - 522, - 523, - 524, - 525, - 526, - 527, - 528, - 529, - 530, - 531, - 532, - 533, - 534, - 535, - 536, - 537, - 538, - 539, - 540, - 541, - 542, - 543, - 544, - 545, - 546, - 547, - 548, - 549, - 550, - 551, - 552, - 553, - 554, - 555, - 556, - 557, - 558, - 559, - 560, - 561, - 562, - 563, - 564, - 565, - 566, - 567, - 568, - 569, - 570, - 571, - 572, - 573, - 574, - 575, - 576, - 577, - 578, - 579, - 580, - 581, - 582, - 583, - 584, - 585, - 586, - 587, - 588, - 589, - 590, - 591, - 592, - 593, - 594, - 595, - 596, - 597, - 598, - 599, - 600, - 601, - 602, - 603, - 604, - 605, - 606, - 607, - 608, - 609, - 610, - 611, - 612, - 613, - 614, - 615, - 616, - 617, - 618, - 619, - 620, - 621, - 622, - 623, - 624, - 625, - 626, - 627, - 628, - 629, - 630, - 631, - 632, - 633, - 634, - 635, - 636, - 637, - 638, - 639, - 640, - 641, - 642, - 643, - 644, - 645, - 646, - 647, - 648, - 649, - 650, - 651, - 652, - 653, - 654, - 655, - 656, - 657, - 658, - 659, - 660, - 661, - 662, - 663, - 664, - 665, - 666, - 667, - 668, - 669, - 670, - 671, - 672, - 673, - 674, - 675, - 676, - 677, - 678, - 679, - 680, - 681, - 682, - 683, - 684, - 685, - 686, - 687, - 688, - 689, - 690, - 691, - 692, - 693, - 694, - 695, - 696, - 697, - 698, - 699, - 700, - 701, - 702, - 703, - 704, - 705, - 706, - 707, - 708, - 709, - 710, - 711, - 712, - 713, - 714, - 715, - 716, - 717, - 718, - 719, - 720, - 721, - 722, - 723, - 724, - 725, - 726, - 727, - 728, - 729, - 730, - 731, - 732, - 733, - 734, - 735, - 736, - 737, - 738, - 739, - 740, - 741, - 742, - 743, - 744, - 745, - 746, - 747, - 748, - 749, - 750, - 751, - 752, - 753, - 754, - 755, - 756, - 757, - 758, - 759, - 760, - 761, - 762, - 763, - 764, - 765, - 766, - 767, - 768, - 769, - 770, - 771, - 772, - 773, - 774, - 775, - 776, - 777, - 778, - 779, - 780, - 781, - 782, - 783, - 784, - 785, - 786, - 787, - 788, - 789, - 790, - 791, - 792, - 793, - 794, - 795, - 796, - 797, - 798, - 799, - 800, - 801, - 802, - 803, - 804, - 805, - 806, - 807, - 808, - 809, - 810, - 811, - 812, - 813, - 814, - 815, - 816, - 817, - 818, - 819, - 820, - 821, - 822, - 823, - 824, - 825, - 826, - 827, - 828, - 829, - 830, - 831, - 832, - 833, - 834, - 835, - 836, - 837, - 838, - 839, - 840, - 841, - 842, - 843, - 844, - 845, - 846, - 847, - 848, - 849, - 850, - 851, - 852, - 853, - 854, - 855, - 856, - 857, - 858, - 859, - 860, - 861, - 862, - 863, - 864, - 865, - 866, - 867, - 868, - 869, - 870, - 871, - 872, - 873, - 874, - 875, - 876, - 877, - 878, - 879, - 880, - 881, - 882, - 883, - 884, - 885, - 886, - 887, - 888, - 889, - 890, - 891, - 892, - 893, - 894, - 895, - 896, - 897, - 898, - 899, - 900, - 901, - 902, - 903, - 904, - 905, - 906, - 907, - 908, - 909, - 910, - 911, - 912, - 913, - 914, - 915, - 916, - 917, - 918, - 919, - 920, - 921, - 922, - 923, - 924, - 925, - 926, - 927, - 928, - 929, - 930, - 931, - 932, - 933, - 934, - 935, - 936, - 937, - 938, - 939, - 940, - 941, - 942, - 943, - 944, - 945, - 946, - 947, - 948, - 949, - 950, - 951, - 952, - 953, - 954, - 955, - 956, - 957, - 958, - 959, - 960, - 961, - 962, - 963, - 964, - 965, - 966, - 967, - 968, - 969, - 970, - 971, - 972, - 973, - 974, - 975, - 976, - 977, - 978, - 979, - 980, - 981, - 982, - 983, - 984, - 985, - 986, - 987, - 988, - 989, - 990, - 991, - 992, - 993, - 994, - 995, - 996, - 997, - 998, - 999 - ], - "y": [ - 0.06657949580650858, - 0.7042071210339776, - -1.2187134154182149, - -2.0438159662107087, - 0.9354952062579315, - -0.14629480653093715, - 1.4349731129940377, - 1.0308995266205496, - 1.0889189213097403, - -0.30710724897540126, - 1.0991149262428481, - -0.5978842357200534, - -0.7464901625452016, - -0.38411327878418644, - -0.058309614175752505, - -0.10644452518776774, - -1.8315634996455803, - 1.363731126925096, - -1.566941557704011, - 1.1432476782923935, - -0.5438997861199969, - -0.41443731166352626, - 0.6834270361981524, - 1.2792723882229176, - -0.5682993405240077, - -0.02609951374932082, - -1.4018465656017396, - -0.7605177314702534, - -0.275735422505185, - -1.6551096049685572, - -1.3247658618362472, - 1.4715274899369837, - -0.4984474052092241, - 1.1376955741955783, - -0.1589211395948154, - -0.9545426943169023, - 1.4499999018459975, - 0.7145277774562966, - -1.6603003508326633, - 1.5634292008163986, - 1.4974440278853725, - -0.4060832929567913, - 3.3974419740271804, - -1.474586686552337, - 1.6606196447362331, - 0.4500880780132674, - 0.12022103766541989, - 1.1022128828550566, - -0.8564926915691011, - 0.0778712662320427, - -0.09272682276561497, - 1.0211598324657853, - 0.8171274661362593, - 1.886814115334868, - 1.4433326967175908, - 1.014596186154694, - 1.6517451877130913, - -0.7506509115512537, - 1.0260613595761223, - -1.4063132638813742, - 1.0749348110252344, - 0.1897580586999632, - 0.3671860085829968, - 0.33149342272485643, - -1.5439584038782816, - -0.22606541567181407, - -0.12322035653621273, - -0.9348937517930265, - -0.7219486257319628, - -0.6912560453560557, - 0.13586844931610315, - -1.6540655197092853, - 1.1628618245895828, - -0.1803346698747063, - -1.3824828398342313, - 0.5666969267698645, - -0.20844608433716608, - 0.04128384395168908, - 1.3047373880992574, - -0.8328301784481946, - 0.1626387144823998, - 0.1924258632946733, - 0.09958002094867519, - 0.021069740325564384, - 0.4032449238135223, - -0.42765772259366597, - 0.1623813512691879, - -0.6231818542538072, - -1.4849178373306402, - -0.7336363158704325, - 0.3832795090845457, - 0.47031752864388066, - 0.48995444125295623, - 0.27345713724262855, - -0.0914161780568458, - -0.3140319089109977, - -1.0004679001320387, - 0.593908003677212, - -1.4974194699856576, - -1.207794006144397, - 0.0022405240324975297, - 0.4726662094782263, - -0.681124231490161, - 0.6393643300531231, - -0.5203900581142561, - -0.25946296430900895, - -1.4186120526229247, - -0.12298583975763708, - -0.9792565930551863, - 1.0564443715751681, - 0.8952269043159242, - 0.9815171706466476, - 1.0173702876488693, - -1.6218391072120193, - -1.3550792420732198, - -1.4443280182918838, - 0.09072837407970864, - 0.7160525357145655, - -2.42587790264626, - -1.3632482289017114, - 0.781163393693321, - -0.49359685006786147, - -0.8991199708960806, - 0.5696644865897532, - -0.334492715584694, - -1.0369735120150199, - -0.26163418924463205, - -1.904160287346853, - 1.1003199699820798, - 0.42735829113580254, - -0.19986774044920338, - 1.206060686144269, - 0.7235212988212015, - -0.6634973708698573, - 0.2423401591244117, - -0.9004319987767728, - -1.6648073390822695, - 0.25927236884369254, - -1.5366558376909945, - -1.084606600679036, - 0.2435352740109413, - 0.5281844577617784, - 0.7252372184225023, - -1.5666059323295565, - 0.4067562196486277, - 0.44404299872864667, - -0.17032038217482862, - 0.5221632335993641, - 0.5122490284309147, - -0.10238397597121947, - -0.5237556529041572, - -0.5803870522439922, - 0.3326739961418302, - -0.529898471270117, - -0.7425132619723852, - -0.14851642495278988, - 0.9796872034702306, - 0.7949147173434337, - 0.8593838024150303, - -0.8394291531627852, - -1.0422959210893497, - 1.2102012708039764, - 1.0177908650593928, - 0.56099346051176, - 0.33520451027596204, - -1.3681384716347351, - 1.9198785949061832, - 0.7640114801435517, - -0.45629223247403483, - 0.7048600126392744, - 0.9472825088617235, - -1.6276601939380488, - -0.36452223345702456, - 0.41102510921097324, - -0.4013850153943589, - -1.459140329875622, - -0.10102659762678608, - 0.8646011928369576, - 1.2761723500116484, - 0.02024391550334601, - -1.0158022276410426, - 2.5471276759510846, - 1.3663786228664883, - 1.0368069011278525, - 0.1275769356130981, - 1.8844657348993814, - -1.507183194872279, - -1.1793344352462634, - 0.4147793726882614, - 1.1664981751308257, - 0.010388817029583775, - -0.38587473016874646, - -0.7064216466506991, - -1.2372643055941408, - -0.9369845028619604, - 0.4349020935054483, - 2.346216698856833, - -1.5571004712721115, - 0.5952560980385858, - 0.6028758149890263, - 1.471673061422436, - 1.357601167655102, - -0.5966459641343468, - -1.0208039807559803, - 0.7872412271786862, - 1.7887305976344459, - -0.46563144842613424, - 0.0369825250843871, - 0.34877339501253246, - 0.7828423072391619, - 1.434784881410705, - -1.1370740483114172, - 0.42157775231221545, - 0.8080488782516375, - 0.3769091348912932, - -0.7018416773116258, - 1.3031070729854288, - 0.2989670165522678, - -0.5118937119799508, - 0.5490693710181883, - 1.1960766052934033, - -0.45529048959799484, - 1.3971329485531783, - -0.21165597459900515, - 0.7469464848502221, - -0.06515438732525378, - -0.5921709888018915, - -0.5264578087189562, - 1.4104432803825298, - 0.574292300201689, - -0.07549071412974467, - -1.667833023209295, - 0.9984741823702818, - -1.58320941547157, - -0.003341428250683831, - -0.11109790876105918, - -1.676908438114285, - 0.4091091061120369, - 0.43532764054689166, - -1.1433994269053869, - -1.7480599898474494, - 0.8642259605407514, - 0.6365601105336879, - -0.1955222756647389, - -1.2748004393694956, - 0.06303302740857754, - 1.2451436253223342, - 0.37322839455652956, - -1.5768929482992389, - 0.694014296727232, - -0.2570385210991602, - 2.2142012538202502, - -1.5005330087029989, - 0.6060979474124115, - 1.4184935989327954, - -0.06274754674055728, - -1.4867770853321085, - 1.2571084130635521, - -0.06957579578851479, - -0.4188035188709695, - 0.010733613958181438, - 1.6768528696777663, - 0.8864256260162515, - 0.14707464622797067, - 1.6779122755863654, - 0.8559066904470817, - 0.11193951149910018, - -0.13187718604750776, - 1.031054892495864, - 0.034396655229725945, - 0.4209851520385636, - -0.8136597588178065, - 1.3752464105246218, - 1.0307386629054998, - -0.5701354658313716, - -0.07334729516618461, - 0.5470673399553428, - -2.17227879608845, - -0.24879284139184463, - -1.2217401816778282, - 0.6030969351679943, - -1.978855039521635, - 2.2507482481107615, - -1.1772752738651369, - 0.38519987904452463, - 1.344303457787504, - -1.0559391019465418, - -1.8247058780666288, - -0.31515492029812997, - -0.8870787756221162, - -0.12077436701128975, - -0.297237169824904, - 0.38845984393728905, - 1.3278191241901618, - -0.3734303204313007, - 0.8279180455876117, - -1.4630044784790748, - -0.05193095216977354, - 0.05782713449793359, - 0.8478127186396591, - 0.05630777227836795, - 0.39121863699731485, - -1.4774313292429648, - 0.3963143977097747, - -1.4539647170174574, - -0.9793810591681177, - 0.7173368313212088, - -0.236159065713707, - -0.6155488713999003, - 0.18560944657474385, - 1.6476953472536133, - -1.5484869807981119, - 0.9377175139759644, - 0.5518952539381832, - 0.07356503462843031, - -1.3264878950171721, - 0.07535951097570871, - 0.12264244220040958, - -0.42537281954511785, - -0.4998962229037484, - 0.3330464358891232, - 0.015432939420272901, - 1.0797250519338277, - 0.6963403566497599, - 0.6889954608613271, - 0.9166520525475822, - 0.06483789225529443, - 0.4177780910651974, - -1.215176452044791, - 0.7654715021674819, - -0.07679809049501862, - 1.4578075345197414, - 2.522026606830127, - 1.152726916389, - -0.14866815699740818, - -2.0662481096455436, - -2.363842895085537, - -0.27360047532321413, - -1.8833479303941, - -1.3172885006128272, - 0.20452737107625082, - 0.7700117962299484, - -0.8283620640916174, - 0.42240980289304214, - 0.2480868023356565, - 0.11827593074695252, - 1.0494949533701485, - 1.478474698787826, - 0.1702414103593012, - 0.6495999569907174, - -0.49425570464728197, - 0.837118005596032, - -0.08372934101999836, - 1.9217417801903969, - 1.4752272423760706, - 0.757461543957001, - 1.2999922701245714, - 1.3446422263123126, - -1.2466610279144072, - -1.9339723336579848, - 1.8582538665763133, - -0.513393208808119, - -0.7894794954531047, - 2.9543307450059375, - -0.9724656965645276, - 0.49843082295299834, - 0.8285899792915569, - 0.8457814294655845, - 0.20830334868278944, - -0.4107627045988226, - -1.8881777898080343, - -0.04723726105078013, - -0.6065403480059925, - 0.19277509089130404, - -0.28080040161634906, - 1.2603865119625535, - -0.5108114146014595, - 0.21830494680026882, - 1.975475979246791, - -1.2153189992023306, - 0.45843891728524805, - 0.4886428714272332, - 1.9180627733438294, - -0.22859341088945828, - -1.7130249809570073, - -2.559114724090455, - -0.6312111039035885, - -0.8905331514021997, - -1.2150335600015143, - 2.444667287809592, - 0.17081156021541144, - 0.5077726656503165, - 1.038828873721946, - -1.2678954631483663, - 0.15492842328151213, - 2.2915533478175347, - 0.3439255049717159, - -0.6389708910872062, - -0.8103220568244995, - -0.6285810606444399, - 0.1618441666548604, - -1.3708656980759784, - -0.3165578985249459, - -0.19636302034509892, - -1.079960557998176, - 0.6644272458777207, - -0.9579594476226031, - 0.7006907406657614, - -0.982017507091568, - 1.0734876037978682, - 0.9083016548007746, - -0.004555715249828847, - 2.260508728767975, - 1.249981403669253, - 0.2877520373499534, - -1.1282470225621457, - 1.3845617640603873, - 0.10015380197512547, - -2.6082003686291793, - 0.7772224585995919, - -0.4616773490131915, - 0.3677235029176946, - 0.849003492250095, - -1.7592209399401113, - 0.14924669458554157, - -1.5526771473685053, - 0.060819073148988614, - 1.6244828460205518, - -0.7831810053626761, - -0.6781845305983837, - -1.206008233804651, - -0.9840497252188918, - -0.12680429610349458, - -0.29687328225815435, - -0.14202111512094318, - -0.7583273823229567, - -1.1262377731525384, - 0.10095428309096748, - 0.2814516423345005, - 0.49312772317901665, - -0.7710588327211317, - 1.6605010014546286, - 1.087596638483641, - -0.4746249063994664, - 0.7086531761170562, - 0.34348745524378915, - -1.4022018746629237, - 0.37015897217242466, - 0.0843301672463426, - -0.4330492681534202, - 1.7558782324465916, - 0.7202618501955251, - 1.2937594736948148, - 1.9284573451574751, - -2.0317157730642017, - -0.849163874530413, - 0.0810650741684899, - 0.05186472267625962, - -0.05791772507030962, - -0.7023655559808043, - -1.7999915698123228, - 2.2968211242744716, - -0.9467020953858171, - 0.11745625303761016, - 0.10265138797320832, - -0.06053234888361561, - -0.43331517309694545, - -0.5962271862991214, - 0.8280175575827052, - 1.0575822952108735, - 0.7454850822849407, - 1.788183655047735, - -0.5628622381358686, - -0.2632912211030889, - 0.15264668797834902, - -0.48088396901577324, - 0.9893468552770651, - 1.0844072168913828, - 0.27292278362486394, - -0.35751861293518933, - 1.472044898799596, - 1.302014434589241, - 0.3569287784903068, - 1.4727981194791506, - 0.6879250128779288, - 1.6474207328610961, - 0.475126194359889, - 1.4780826976659418, - -0.5954605354809445, - 0.636678013689965, - 0.7610959572342744, - 1.1556814710813383, - -0.635159422916024, - -0.6349945345712154, - -0.7585968648934003, - 0.0567525880695433, - -3.676899003049981, - 1.6280886551817202, - 0.5633434233896949, - -0.5077018274792533, - 0.4671489322471103, - 0.4961860603931495, - 0.3221646743723201, - 0.9836289606797799, - 0.14891999308668263, - -0.5628304439697212, - -1.6140944396048242, - 0.13663979682976915, - -1.0143493365903884, - -1.6219935005423454, - -0.3676566100104772, - 0.2345217375551218, - 0.008695102773521627, - -0.803907102883379, - 1.2914252266566233, - -0.6848449450332177, - -0.5873435258456958, - 0.7606716419638716, - 0.3667428984588238, - 1.699465234068763, - -0.708444640580674, - 0.9547783067383621, - 0.3259917484413387, - 0.6457499765940556, - 0.4509696100963814, - 0.23045691989902006, - -0.8264909446617337, - 0.3586182471327589, - -0.19862255406304857, - 0.4712245388206714, - 0.6485102089129624, - 0.23017293221916107, - 0.6040031328476771, - -0.2596668858741633, - -0.0270592522184338, - -0.7213408198685287, - 0.39372319745529455, - -0.1274393494908997, - -0.17956869544706822, - -1.278704724524306, - 0.005090959780293349, - -0.41165956331476894, - -0.6933415423438254, - 1.1284434771958196, - -1.378366484218425, - -1.5890948719552205, - -0.20618550638032176, - -0.7471840459898258, - 0.5435228402389166, - -0.8322729376338954, - 1.368394537477824, - 1.3022023488861683, - -0.16704949389743456, - 0.8670305562900176, - -1.3013181983944606, - 1.345923103293542, - 0.5279152388254413, - 1.5094490503706453, - -1.3183758784652577, - -0.4878452712083802, - -1.3048208906579541, - -0.8961268294964213, - -0.9636890911891638, - 0.5859013064427213, - 1.6615404049018438, - 0.48102997084281823, - 0.3809160572216325, - 1.03746084265434, - 0.050787280261992904, - 0.8263024696999308, - 1.4148844475357427, - 0.6039432749045278, - -0.9705504308170952, - 1.228779551587697, - 0.44254439422194014, - 0.5228931258615774, - 0.7277140108759714, - 0.36038090072137646, - 0.8469800429278125, - 0.25681338821973276, - -1.187781975505905, - 0.28641978896405396, - -2.0393977599899293, - -1.248933148027633, - -0.28981094744810104, - 1.643697828287795, - 0.05017782601859786, - -0.3094547636877666, - -0.6537385511576103, - 0.8922458044682097, - 0.2929186031472941, - -0.49532930832412375, - 1.1819368748793484, - 0.6257022459898259, - -0.44252210088020166, - 0.6033762471895691, - -0.9490013326350237, - -0.5465250840433468, - -0.3923133421893767, - 1.4131053820375479, - -0.5026007464560802, - -1.5375472118999758, - 1.2969314396076417, - 0.20438257507964466, - -1.1721021689648907, - -1.6865137671603536, - 1.2569870644356642, - 0.17706040931876205, - -2.2977895261400008, - 2.0292681531550927, - 0.9764452554756957, - -0.6342359791622514, - -0.18611550035544563, - 0.8224806033146688, - -0.7110876753132762, - 0.5324347996258455, - 0.6660837059808186, - -0.4503886808563981, - -0.9853439493484303, - 0.21102421797127344, - 1.0126891784456369, - 0.28852151541324783, - -0.8955512269003686, - -1.3190611676604653, - 0.5560156885242366, - -0.7883064976646555, - 1.5384059797216016, - -0.9439983003124212, - 0.5659984618843253, - 1.1249041750839843, - 0.6767410051956194, - -0.49160500631529014, - 0.1483107522447713, - 0.5115365517804981, - 2.8364191992492573, - 0.791720003889648, - 1.2383582091221652, - -1.0829922825027016, - -0.3867845414675819, - -0.8724569614134565, - 0.932469265746266, - -1.30579430416661, - 1.2247271989582578, - -0.8445762098108233, - 0.9470563586356399, - 0.5683744265581336, - 0.7849474221021006, - -0.3890565615181326, - -0.2829872999892831, - 0.13071325909096526, - -0.2987690218851445, - 0.7898343244483973, - 0.099431121274427, - 0.38220618151309727, - 0.711292525502263, - 0.18986784101621773, - 0.07917801452818249, - -0.8367187300319635, - 2.689090613860293, - 1.0038363801506756, - 1.0770133313127632, - -0.6527518527291182, - -0.016213968985555362, - 0.17790609312219963, - -1.2902284612020107, - -0.3864594709380328, - -0.10419507842331896, - -0.4629164970066934, - 0.6290267241957171, - -1.4219864770863424, - -0.5087187655938853, - 1.5918962053482788, - 0.6159827089282811, - -2.0218861828670485, - -1.0669468295055586, - 0.5796910129453231, - -2.6185300720128297, - 0.619301673799856, - 0.027236966486583403, - -0.25981101306424137, - 0.9298833692036681, - -1.4328703171091501, - 0.9048129929368183, - -0.8271176057108441, - -1.226864206922098, - 0.9545406983245001, - 1.5217169034527678, - -0.23450897299224294, - -1.1404018348617109, - -0.13330023950008685, - -2.0377825528315445, - -0.8276926974682682, - -2.585410056023325, - -0.09078874513783124, - 0.02150533512547358, - 0.21869629089561635, - 0.5739591192245197, - -0.6493923761977408, - 0.10920412084411836, - -0.021853258780881277, - -0.4118785228105728, - -0.17603834662410878, - 0.5746200257241932, - 0.4284764185572442, - -1.356394941061918, - -1.4047943619185956, - -0.3775051934190425, - -1.518116740641315, - 1.0465098035476301, - 0.9548071965496485, - 0.6272151262011754, - -0.7801353062775259, - 0.03175503021688545, - -1.1892542750316375, - 0.9800487151662681, - -0.5332606437780166, - -0.5889315089261001, - 0.3341222783905038, - 1.2299088471417146, - -0.24430963789214738, - -0.7255241075366841, - -0.39838023518724286, - -0.23406943821171475, - -1.416781587008113, - -1.2716274491600466, - 0.38688774541045945, - 0.2961387094763638, - -1.2553783618897594, - -0.7918407656657092, - 0.562807847231258, - -1.159987350506027, - 0.33137006170866634, - 0.5753633360391074, - 0.31896377367007595, - -0.9565786122433182, - -0.9184190499708218, - 1.7970834607596198, - -0.6174578809972053, - -0.1052529438517789, - 1.0362633726581372, - -0.4000538997749901, - 1.0317284970330505, - 1.564052513517503, - -0.619409443378424, - 0.4333162428097617, - -0.09501065331939876, - -1.6868460473559286, - -0.5695762021708808, - -1.1288462259920982, - -0.3237414008072606, - 0.538390259347078, - -0.3676513767027326, - 0.3171226231463222, - -0.742318729702504, - -0.8488053673672417, - 0.6464525682939155, - 0.5277279966880103, - 0.28612057652333217, - -0.8888052630719565, - -0.6738331073374428, - -0.20261571023405975, - -0.6075833827611219, - -0.386196408227281, - -0.15779297886469587, - -0.933176120466135, - -1.0211070848645405, - -0.12665521690509854, - 0.224905263482172, - -0.21253995315292754, - 0.20912265039647612, - 0.5099930469309428, - 2.1408613451222664, - 0.08544885103788852, - -1.2262604179655698, - -0.841819196292541, - -0.8062533508123542, - 0.18704118256347768, - 2.3773726392264964, - -0.2349774392131216, - -2.039913145908034, - -2.7708137301079883, - -1.440217398163521, - -0.5995072483161547, - -1.3460989019197025, - 1.5493884495085788, - -0.236328651540529, - 0.5993552435124827, - -0.14161629589560548, - 1.6134811689916744, - -0.050178329458602206, - -0.3133910483238147, - 1.2099550023606331, - -0.9425060014487805, - 0.9185727965040605, - 1.000222459438402, - -0.11937397123433868, - 0.21650740220793896, - 1.2418460570286436, - -0.8718766238608511, - -0.3298867252883004, - -0.6989785489238277, - -0.7848546748769792, - 0.9897501865351587, - 0.4009637802799042, - 0.7095179293735221, - 1.4357945144332909, - 1.8524967224316515, - -0.09516989795444708, - -0.7602792369008564, - -0.3018343214794774, - -0.40112471898845276, - 0.19810350275903787, - 0.6977198655482821, - -1.0120174754096811, - -2.3563508373876774, - 0.730109704661283, - 1.5268517999656577, - 1.530442468900263, - -0.807825605221895, - 0.7517373190537666, - 0.9076798976915479, - 2.092099479103067, - -0.341570378356104, - -1.7360607634901148, - 1.156861486312767, - 1.4716621130397116, - -0.4787507021180346, - 0.023744766274670027, - -1.5965671646546118, - -0.37021700136574104, - -0.27692514795255346, - -0.3091858541866916, - 0.2360271461002418, - 0.13386749897360478, - 0.14216632838163829, - 1.023034711692979, - -0.3987269319430655, - 0.549096886152482, - 0.017157699255227664, - 1.109032785498506, - 1.3640767107398544, - -1.1194841090436989, - 1.0410059169232033, - 1.5132324131526251, - 0.24305061815448895, - -1.019736710580556, - -0.42694250400633577, - 0.7725295493015006, - -1.1962384989413304, - -0.2968853248057844, - -0.7899434044364201, - -1.4875618384527145, - 0.6454219975119482, - -2.141450470084665, - 0.30572020678799694, - -0.5810850793717385, - 1.4798366749575191, - 0.2216281878888918, - 0.44350719177739745, - 0.46312940435735894, - -0.228796055110651, - 1.1983047302744245, - -0.6414700390386395, - -1.4944820818354236, - -1.9831451598419563, - -0.6074887631998206, - 0.5875200794644209, - 0.5804227935603117, - -0.3505862375410346, - 0.2707720393460868, - 0.8527609494649038, - -1.0561006233332695, - -0.41978349307565604, - -0.9905285637543743, - -0.11575923339532644, - 0.2297320675136182, - -0.8446240979853961, - -1.2912444624542925, - -0.013671109771068054, - -1.6976157372771925, - 1.6672974994072653, - 0.1911224870939968, - -1.0434563003332007, - -0.07742690061167322, - -2.840805497923274, - -0.266360988625872, - -0.08721675735493827, - -1.0465666956964246, - -0.7774518438463297, - -0.3460338986256431, - 1.9151057120404062, - 3.3759014692957137, - -1.5480194807442587, - -1.3366470595503326, - -0.7600936179851417, - -0.17220086985832367, - 1.731738706276745, - 0.026914870923869346, - -1.4478840651824056, - 0.36259989002529047, - 1.7708848275754603, - 0.7668992710093536, - -0.04329437017676449, - 1.682531835957653, - 0.10732293384394224, - 2.8874749846000345, - -0.41718876873283156, - 2.026745790233367, - -0.06759883909878223, - 2.6195063533482457, - 1.4116758268774359, - 0.022090807021911824, - -0.6851676503727415, - 0.6127192810265865, - 0.6307418088840328, - -1.575436292667157, - 0.2527314389303937, - 0.45752087572222805, - -0.4815994380530334, - -0.4648053905953706, - -2.27287699629857, - 1.888136472192083, - -0.11360387414467936, - -0.5440883761927148, - -0.06337640558062574, - -1.0542972859312079, - -1.7588372290926966, - -1.280217588793815, - 0.8110029325867991, - 1.2273015846246085, - -0.06821838237501232, - 0.7556153918737457, - -0.803697042045384, - 0.45446859489121927, - 0.3558252712548142, - -0.4376453965858135, - -1.1366424849142358, - -0.6106611693024279, - 0.7122948278684196, - -0.9179374538544223, - -2.0195381960480603, - 1.6475267693584579, - 1.4520589268265065, - -0.2938528246125576, - -1.5375554291303655, - -0.8678354130795327, - 0.734696867664772, - 0.8384561025302392, - -0.6660001571620074, - -0.2511029723184456, - 0.6341551452578051, - 1.6403127129510906, - 0.5037769462600085, - -0.3806205436561784, - 0.7324164140372157, - 0.31475791491958705, - 1.4019180508818652, - 0.5661000670332557, - 0.6946751345214279, - -1.1224899056192206, - -1.1983058796996087, - 0.010783558676113978, - -1.4547859532775687, - -0.5199340156451744, - -0.3305531442671791, - -0.18245671697900454, - -1.0060497733894083, - 0.8734800168083692, - 1.1669110302978631, - 1.0750983128222298, - 1.4805946996320283, - 0.44666546796515416, - 0.9011169104143123, - -0.04973536655230685, - 1.2295605084255754, - 1.5065883493634915, - -0.5154401089740808, - 1.5135837536298204, - 0.47700790256124664, - 0.19417403893863705, - -0.38842856627731853, - 1.4745839430891494, - 1.2697285235477471, - -1.4257481619513133, - 0.8551272859916781, - 0.5069168721972422, - -0.7196087477570158, - 0.016820538269393392, - 1.3337514856250758, - 1.496649716258155 - ] - } - ], - "layout": { - "annotations": [ - { - "showarrow": false, - "text": "Train", - "x": 10, - "xshift": 20, - "y": 3.3974419740271804 - }, - { - "showarrow": false, - "text": "Validation", - "x": 722, - "xshift": 35, - "y": 3.3974419740271804 - }, - { - "showarrow": false, - "text": "Test", - "x": 901, - "xshift": 18, - "y": 3.3974419740271804 - } - ], - "shapes": [ - { - "line": { - "color": "gray", - "dash": "dot" - }, - "opacity": 1, - "type": "line", - "x0": 10, - "x1": 10, - "xref": "x", - "y0": 0, - "y1": 1, - "yref": "y domain" - }, - { - "line": { - "color": "gray", - "dash": "dot" - }, - "opacity": 1, - "type": "line", - "x0": 722, - "x1": 722, - "xref": "x", - "y0": 0, - "y1": 1, - "yref": "y domain" - }, - { - "line": { - "color": "gray", - "dash": "dot" - }, - "opacity": 1, - "type": "line", - "x0": 901, - "x1": 901, - "xref": "x", - "y0": 0, - "y1": 1, - "yref": "y domain" - } - ], - "template": { - "data": { - "bar": [ - { - "error_x": { - "color": "#2a3f5f" - }, - "error_y": { - "color": "#2a3f5f" - }, - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "bar" - } - ], - "barpolar": [ - { - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "barpolar" - } - ], - "carpet": [ - { - "aaxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "baxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "type": "carpet" - } - ], - "choropleth": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "choropleth" - } - ], - "contour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "contour" - } - ], - "contourcarpet": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "contourcarpet" - } - ], - "heatmap": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmap" - } - ], - "heatmapgl": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmapgl" - } - ], - "histogram": [ - { - "marker": { - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "histogram" - } - ], - "histogram2d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2d" - } - ], - "histogram2dcontour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2dcontour" - } - ], - "mesh3d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "mesh3d" - } - ], - "parcoords": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "parcoords" - } - ], - "pie": [ - { - "automargin": true, - "type": "pie" - } - ], - "scatter": [ - { - "fillpattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - }, - "type": "scatter" - } - ], - "scatter3d": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter3d" - } - ], - "scattercarpet": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattercarpet" - } - ], - "scattergeo": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergeo" - } - ], - "scattergl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergl" - } - ], - "scattermapbox": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattermapbox" - } - ], - "scatterpolar": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolar" - } - ], - "scatterpolargl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolargl" - } - ], - "scatterternary": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterternary" - } - ], - "surface": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "surface" - } - ], - "table": [ - { - "cells": { - "fill": { - "color": "#EBF0F8" - }, - "line": { - "color": "white" - } - }, - "header": { - "fill": { - "color": "#C8D4E3" - }, - "line": { - "color": "white" - } - }, - "type": "table" - } - ] - }, - "layout": { - "annotationdefaults": { - "arrowcolor": "#2a3f5f", - "arrowhead": 0, - "arrowwidth": 1 - }, - "autotypenumbers": "strict", - "coloraxis": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "colorscale": { - "diverging": [ - [ - 0, - "#8e0152" - ], - [ - 0.1, - "#c51b7d" - ], - [ - 0.2, - "#de77ae" - ], - [ - 0.3, - "#f1b6da" - ], - [ - 0.4, - "#fde0ef" - ], - [ - 0.5, - "#f7f7f7" - ], - [ - 0.6, - "#e6f5d0" - ], - [ - 0.7, - "#b8e186" - ], - [ - 0.8, - "#7fbc41" - ], - [ - 0.9, - "#4d9221" - ], - [ - 1, - "#276419" - ] - ], - "sequential": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "sequentialminus": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ] - }, - "colorway": [ - "#636efa", - "#EF553B", - "#00cc96", - "#ab63fa", - "#FFA15A", - "#19d3f3", - "#FF6692", - "#B6E880", - "#FF97FF", - "#FECB52" - ], - "font": { - "color": "#2a3f5f" - }, - "geo": { - "bgcolor": "white", - "lakecolor": "white", - "landcolor": "#E5ECF6", - "showlakes": true, - "showland": true, - "subunitcolor": "white" - }, - "hoverlabel": { - "align": "left" - }, - "hovermode": "closest", - "mapbox": { - "style": "light" - }, - "paper_bgcolor": "white", - "plot_bgcolor": "#E5ECF6", - "polar": { - "angularaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "radialaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "scene": { - "xaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "yaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "zaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - } - }, - "shapedefaults": { - "line": { - "color": "#2a3f5f" - } - }, - "ternary": { - "aaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "baxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "caxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "title": { - "x": 0.05 - }, - "xaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - }, - "yaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - } - } - } - } - } + "application/pdf": "JVBERi0xLjQKJdPr6eEKMSAwIG9iago8PC9DcmVhdG9yIChDaHJvbWl1bSkKL1Byb2R1Y2VyIChTa2lhL1BERiBtODgpCi9DcmVhdGlvbkRhdGUgKEQ6MjAyMjA4MTkwMzIzMDYrMDAnMDAnKQovTW9kRGF0ZSAoRDoyMDIyMDgxOTAzMjMwNiswMCcwMCcpPj4KZW5kb2JqCjMgMCBvYmoKPDwvY2EgMQovQk0gL05vcm1hbD4+CmVuZG9iago0IDAgb2JqCjw8L0NBIDEKL2NhIDEKL0xDIDAKL0xKIDAKL0xXIDEKL01MIDQKL1NBIHRydWUKL0JNIC9Ob3JtYWw+PgplbmRvYmoKNSAwIG9iago8PC9DQSAxCi9jYSAxCi9MQyAwCi9MSiAwCi9MVyAyCi9NTCA0Ci9TQSB0cnVlCi9CTSAvTm9ybWFsPj4KZW5kb2JqCjYgMCBvYmoKPDwvQ0EgMQovY2EgMQovTEMgMAovTEogMAovTFcgMS41Ci9NTCAyCi9TQSB0cnVlCi9CTSAvTm9ybWFsPj4KZW5kb2JqCjkgMCBvYmoKPDwvRmlsdGVyIC9GbGF0ZURlY29kZQovTGVuZ3RoIDg3NTU+PiBzdHJlYW0KeJy9XdnKJclxvu+n+K8NOsolcgNhsNZrWQN+AMsSGI3B8vuD44slsypKZ3pG/D0a1F0Rp5aILzNjzap+lbrkfx+J//vF60LW0V65fPzn91/+9wt+LHmOV/vIrRf+6+//9eU//uXjf/i3ymc1ufwc8UX5A//9+x8+9ODvf/3yyz/Uj7/+n9xrpPTR+P98l798+SP/90894jXX/Hit0hr/2WngaQ/eefBMHxnPJb5N2c9+3r2t+hrtvRakWuBe3/PfxPf625c//cNbrUqv+kn3yuWzbtRze/XyOTfjs8rML+qTpfuh201c8/2XXvD3D9wtN3olSPcZN0ulv3r7pLuNkV8zf869OtGLPkvNlsdn3KbO9eK5/xnjWJpz3tyq/ZQZNtd6wTS8Fay9EQy3K41vlGFPclfrktTwvLEt53xYmDpn+XhRzcTmZCYSE/NgihAdQrBInecv27ZUWZj8ampQ+0cePBWZnVm28kpTzWym/kqJj5qwe01ySuYlxTf4G6SbxqrlNdhu8uPAHgWKvBp+LcyhVxkwnGz6+G5VODPpQxg7NuzMaq/a7W4sjYgm3JWUW/j6PJTbX0S4egK318rCWtNYtPRWYDOoxCeV16wmzDyKLFzErMU39keznqQPWaxHEqwy8fV+x5xeRQRlJVd6UVPexNCx/nmVFy07Nb9qU3Zp89WGsfmMasD39RKxle0qlMZsSJbrqwGzxfiVpALJLXgch41S7wdp5vfso8fIQNABfjsq8uoWqbryRxYQB9md+1GvYShFTuHvByaeZS70YEGVvXhQm91k8gDp09hi0nCpeQ1Xg55eGaPOSrGApU497qpgYT1E/5JfufPP/AspOZI+bfINfMaWF9YGz5o0NseFrTzNi83MUl8VQ0EvndJ1y155Vgybm4Ul5jEfPLakJEaEx1KuaXw7uevIhm3pokJZL4EUVl0lK4lhkDMGtMjsb7OOpbB8PHj8KsZPbj+hSubhLz7UzBrLJievKVl4CRKWMvR4dV1JqWPlMQsqs8Q85rIeeUV3Q52lB6y1vi6zoZA9vdoxKzj4UO7Fy1JXTu8uh3Dn1OuLTh29nldb0gnMT+o2GIytP594AIrBxuxmsx2TSPTihdhs6vEE6GZ6mN11nAovF4GP0pGU1VzKGkPPamnPBMouf2Gl01LWVMRyIR8rZvOqzGZTlFxNzxoy5syqrl7mKKwASEYvka2Kudc9c5ubp/ZKPv2IJa0234qLJWxXj0UbctsOm5hn1ylFg2FjTFgXfb6wXAkMKjj8fMy5ZMLOLT8v41ltGbNt5PnFvqZMM7DpaGDgMqvhMj7J5zg/2kVfCDSU1adYpVLFSjKrqNhr29AGv8AIsgKQumH8eSSOiZS1aJODVUp+pyZi8iSQpzMOtGfQXnjMZjnL5HOz3W2oTFhohi7bXVtK7Dxek5QFoXoWKWTm8oKr2dYI25qhLLP5MHimPfsZXntmHns9C5fZWw+Wp5ke/owiPmibYz42hQoPiGOBxEINObyFG01+Sq52boN1EFbvOr8qHLrNiU6uKq8N9rVgNZ8ysCnNnTmzJ+2ZLF4Z3O6qlbR0wJi1bJ2x1++i0njR3I52+nLm6Z/Kdkjino1tOsH/H1x4pRf1rXy/vsFdWzEYSDc3bPeKmv3Ch9PE5cPRTbamy3Fghcht2aOokUdcrKrCePhiZzdvLgwrdDTDhdlb3arGdFRWV2/Jc0/Gmm2jq7oseGFWYx+QGJtuT2iuIbjLuX1rAtc+lcXBI1senXZYKhZ1cHgiwz2Gr988jqPmQ1dBHKcBzuwF30CqFTjLNYAlEz86edFnuQD2QqBjFmuA2S9Ljkc724JgdyIBAczHLO7CsMrFQzCL5RePDSQYt7K2Y9vLcG4bhEeI5+LVDUkR1plKPIwWK4hD7mY3JyaODmHq6pTZgJl4eLAYbGZ1cx5s+4DbnFtYHsWinFF1fqV8Fg5UUZkL+3eZCSxkHXptG8fsMnuZk1iYBWBlF7qwks2DR17h2WZS0mFklqmRzwJmNtyS+cGuY8EsUwWzRBby2iYNC7l7GMG2v5jTq30HmMy1cDfDvFcLbHg+1aFTEvPflhGCYFOJJ1q3CHvxTFb3wehbzMXcubXiwd0RE7NtZReyBcHT2bTK69wVWYGrwRiY6Mof6kXg9AQEjJCdgMXoCQHYExaqWITMBytr6N0uMzWn6hpkdqsSFWuoTlvYki+3bZr38ATlUG+5/QLfzBPWv7jWzLMww6LuiAE89pbdJluXADsbG9Iio+7Omp6eiKU8d5iuCLvdbakym2KzpoVjkipCZdQiLjEiRDbpJfJKphSzzTCw/9KUSx7FqQYUGFjkRg93krY6M888VwipqecuzLb7iFIkPHKNSl5nsJm9zFXysjLXAn47GrXX5q1pa7xqQJd5OTTzkvxz1ccPVlSXBuJu1WZpylI0j83GMzHh9gemJMyky8PPpZ0b8TQgt/pFrTB4Jk9mX7y9f+bMQhMyGaQ9eziVMLEw2UYzXjcfx6u3i5qITLot9qkGEzxbYDDGWc9rrhJcMWXjWXzE5wmD55m6NjiPI2Lfac0smhzDm24VScNg8JZ5NrYdOtuRxAzBBZCbHstXD9LSZXEjxyQeiSFpFqcBV4H0hS2eBFqgt8hLraCGvrrQOMw9YteyxeaFtSPBzGE7adkAoYJpofw17D7jMkIcEVnCJyG5rzpOWVyzYvUL8Lo7uXYKGJnhyOp8ykaLeWZ1ETg2t6mZcx4kn0ViSqXHVHHZcTR3MXBorjbC3z35mD81iCwcvxlsa6s8usOG4HxncSN7HSBtbVH28DBfTZ6ezt5tJ/dsQTKmDMkSyG7AEVZbFgh0hrG2IpcQScoH5lwY9653U74pgiqTDQ34zW0cnNmuojB765PUg2M+WIiKcMhjJjzGXDVCotqNZ6YeA748jofrNwVLq8boa+e0B7flCsMR0bl+7SwynSQJbtTSURhIL0PB4XjOyIOiS415FufDRyU3xTynTTesfKl9IDGzalxhC6wWotWtGHz/9GXQyOc40mVdAsxz3erVxWG8zHNyOLiNFEdaln3LyhjGc8Xo6ox47pI5I/GAxnPNELwqb0qiNm1Y2ECYRrA9pRqvmW/KQwtul4wK9TK1Mz15RAFPW0VkXmq2LNnnnZQZyZSrMpa5hr6LdKjwaHCAsbXggG3rMTbMNxdfdcnzlJXezilmSOquy1yjML+0uTpAsWltbAdDsJa05z4bLE8+m95zQtjVXSplzb4jVCThNswIRb2QiNS8ieXYUTG8t8gncaMOPLPaFKOhE4wNc66S4+nkGuLekAZsJPBcXRstHZbmDnDFOg78c83i8pLPpuHlPkTwdnu/LxQ/5pTZWI/JzS6Lpykv7t/1ZgO/wSXtuBg8KAOXLGDyVGbnWPjWOzYaU/RZ9SL8MuEvtW5ms0vicezNfCmnN3UJ6ArURMgntA4oP5TYYEGEbDfmGBQitl1mAo9EJDb+O+BjFouL2XbWLoe0mNTjWD/msKlH3nouHBAJGY46AaZ1zhUsgv3ECcEAvjpsNu5S25pizrTImhDV8bLaRXCpaXRJ4TW245ylSGBTvcYGFtJQVAa2E+F7qAUEMLuozVzIvqweAPTrFK94gu9dVUDo44kojtnqiOfxvBB2E/Yr5WuZuGEYpO6md+vQqEiaa7QWmID2NumcZxStQi8j1e0hsN71CGTss8q99pRZUuwQl7N1XEi7ilRsP1CZTpBcisBS48VcTrpK015L4EJuJKfDWcVmq8wtZ7n0TWsMFvJibm0IwTP5Z1LXUjh1KSiNdM9NlTerGvTiz2xIExA+78oceFAoJ11Mkkh3Xb3VSu3s70wnSRuM1TS3z+Q3n64QS7utGNhdjfQeWoR80AqppOGK50MDorPOwUMVKYuZJbkSGZg+YdeX4CFVYhhDiRcKbBu7ih3GiFtqklWQ3ppcKit3gGdxj3ZvtmBdelRYvdVoFUpCYm+viAPTEVFyov8DUoLEIg0OhdC8H+YH/yYJmseCMpGrrD/LJcDLLhbSSl8KEo1p7WzbsoJ+x9BqQTF6ZkmS97RDp6PrmtzDgXaHRTb9ZXcim/JYa3OL0kyLXetFrgWJsWo2kOhqDMkdVCm0LpZl6x72gAvZULeS/gajqRYP2I3pZ3kXTBae3A59DRUNi7CaUy7obVStWtm6RzW5F6kYHYQrsJDYopLRaifKHDZ50OxQL8dBscdI4E7JYvU2bp8lkHC3DvZcYtD3sqhSmJK4xE2qZFVTZN29VXRIqrimHa3Bdov8l8p2qTLFpaCxrQtJHUlWt9O8lABj2qdkaXAho5yHNZcsAavaglfMWMBiSdoC1lIjvhulVu9ALZr23cg6K5LqeW8QbE674V6LPqBJ266k7ZXAGhIAFn2e5DVZu3pMqLwSUemDhmiS13aQYM0ppW2dCuQmT4vgvjrQ4WCpERrInVAB00ZrLXYn2FlMhWQPQ3dDLXLZxTBla4mCtPNXTBuY5rnvVVx22M8thVpVeKOqNMG0QdIdF0kfckiXUJ0Kmh7JLZOa6SYdIAnShtFWOiqXlnZpPhPhXJoKP3W/lNQLdwtKGgtTA3allxUCry5e2s9D7L7aNTQ91ESjGNCNtXT5YOELJ1sfBotU3ab0OZb1oI4lYraXi0jziNIlEpQed3cDg35G1cnWT1SCWVZNmG7WGlGLIqkjJ3W1D1i8vQ7QyVB5R3XpsOOiDMu6CzoY5LNwGzCdkTBH6iXhfMwtd5uI3Wte0jMWAEcy0bG6t5EYpp2EWWdho2uxHeA5mZeiCszzRApYqNpSlkT/NKsRVojme3ajPaESwjbsNjIaElVy9t3TB88kh2Wfm91dTvaHOvnRlshS0ljbN6EvYaF2PX1UrDzLYHhtqKlCU0Ktfte4WE9cZlhkQcmQSxcCrDFOdRh7uHK9lQ/A0v7yrexRkHQWcaHVC0jgDQ0cvFuDQj20mbTrmmBpOgOnIXVF1H4snYEN2b4FfQukMxZoov/oapyKYJniY+GcdOXC75SLR0W7QhW47pQp6FBoXMauYm9nkAaFSEK7zaZslRl1Po9wC1oXml7RsOmItgVJIKxeGD2L6fswpiCH7sRwf7v7dGVVyXCQ9Uyjef2D1nnB1xcLGn3uoyehwvKiOZYHTQmSwGjPVFRzltd3dS2t7lkPimCqj++cQSSpQqCRp/PTR3SJXQJoUtGuCBB2dcmNNbjoVZW209iKLsPyyrevenAhrOSaziqSJbAB3Q0V8CzNwVYfshlS0XoYkgQbTRp/imWZy1iti2+ty4Vr9jCJrKqxLFUgzbYlNaioTKnMfZymbpVeg57dzw6dCtswxdvNdlhLo1sUJPRRAjfMldulKmGzG1pP4sBt5pI2K+8kx9wPWCZ5Lyd8w961oQEyxyh7DLLspsBgDiNND7ZK28lVdBmGpL6KAtoLqsQgdUoVnQW1SIgf3FjUjDqllyqy3gy9QTGtuRs9zNeUk8JUtBamrP/d6QfP8pU0Nc+oSAKHVCclbwIt+cs8Tq+iy2AOs58ZCWtV+0n7apFdKrj1hheNBBEfm8X0XmTSisETqaRjoGtiGG1SMhSyRiryxrbT5mIsCHrtgVf0CprrZ7JP6cTk+3aPitRIo5WZjUaWgCAYc0g2H1Uvl2LG7DmJ5kER9y/CIpjsnproVqAqhlKWgl5RTHjY3zGNZQlNKTv7regXtB2rjMPVzgVW6tEAtk4VQ+PS/WKVZoHOo3yqjmCzfkUqNX7fLhvrNL/3UgS4Q3cceQW5ok+ghp18+ySzoCKacXqKl5Ekqd1rBh0CUzPtHXa1eisGFS9pw1VKmhs1m+N40HAzuWccSXKP8EL3kqElMLxRIJs+wBoWiNpWuYoGgWXf6VRTwPb2c9sZWbUdhlnCUa+pgDvVarEIuzFSEV9rr2YYqQGCJNmOHjoDVdIBT3ErymlFZrcJPSVlwp5V96bgmSJIB2RoaekOu0uSDZ6Vy+t16mLVk1T2t6VCwd9M7DohD9gqNLygtGgr6v1q83lyLu99VpT8h87OfNSTor+GTFl7zFUtk4Qo1Whrl+RLCFCbbAlC4XcvAJT5SVquO5UBD+kI9txtd4ESv7ra7BZCwjvVjTYKsq8RtSq71TJZpe27fV7Plm8gNtB9h1K31FimnmnQfeuBOO9iLGR2xaptFcl22cWpaizZizFPRFFRs89ailpnk2dF3b6LO/fgHyxPOCyOr9icYqnJ7pcqu+vet52gV1TxVTX442WsMbUtLaMNN6pKdbrEB3D3Q1bRHuq+TDcJD7qDsjw7SVbZrdjsadq1swGloupPbgd9twm4lhcO25ZSUevXLoLGEnDY6uGw48QnNKyW9dXcsqDWrxKS7rFVxzRkMx4Mshr7IbV0KaJNo1WF+95N7OXWLRGq1XDxsfHUOJxgMRi7plmH7caVGhfp05ZLzwBf0FieqaR0tmhXVPuLlynyHkhU+dUu1YshmbL/ftgunYrqlQYLXtYDq5nEunNVNi9jcuoSQdXQ0qhxdllU7ErTnH/31cBTgVG+yHq3cemaHOuD+r8Z0eFyzJ1p7IuXS1uK9uDkTQmTJr90HqIlUC/xiexx1AXWtBBQ0RIo2srvRlvWhP3le3GhopbP1g/Q1gUia4BW9AOWO/NRjbW0ZbAnHnoB6r/o0nKoYmxllu21gW6AVUYvNae6uvZeyu5ug+VJYfEOPtjDchSJCvfwoEGgHjlbvaIiQdShSOsUIsC23JDKJbBG32B5KaAYB6khGly6Szl5ntXpTAzSTtitJgKeZTlF97MaW7pfAFd39XJqUXaRfurdyIUex8yCiwwG4ArZPFOBq+h+Ujf5UAh0B0KYb9nd4a56gm0SzuMRKYljRUwrRp+wz8MSL3S9lGMbHFVe9AB21ucc6YaRzkVCMjU/tGQIsmjbqJ5qBnGOYDKOov1fsJCY5Hn2RRE6F2mb7mKsbrWyi84sim2d5WjbAxlwLV3Blm5XGYX3nX6tYixNWaRXYxOPssQmmB0+mcFaljxYmEZ5erZ49qJzoGOpF18sgQtYUK9c9sAQGgmqS1m7Q00la9/FXrEArVpg4DwiJnQRppail010KtWly2v3xwgvRKhlX8kmNjJoSw2x989YjXzZKyoavMO0+n5wsCxzKVkzT0L9cEoqrHgUD1Yl+HdE0Diwtyym0UvLa3sM8VqEZVhZK7uEKk/Pp0BE6B+o2x/jSIVXJLQRsJ+HroKlPHqKd1fkZaC9dx9V++pFYZ2HaCx0j8yrcUyj2gxA9AvUpMAjCoBV91W4eSH0CsihOkpOzblO5xisrrujdpJK28HtrdxgWVKiIqCf0N1uSAUarKnP81SGkAApqHjvbBnLujUj2YpFR0HEWevy2hfZG00f2vMUVnWlEHSSP4Q8U0El2zMfomapiTQE98sV0jXF6tXpTd1Tk7Vcjy56pKqZFsHuN/d3ey2ioWBhfzsJCaGvQNIsn8Noy7Tapc9A6DNYsruHTF48WZZh6xpAb0GtJlKOvXKbvckkJSvx24T+gupR6+VNuVY8OZlLnT7hNQqdPKhsFJcIwbLaJUWhiZNGRrRLR+BZejXcYqPtoI3UNqz/RM3fpULwITsqSXd5YD/sbiRRG9rnKbs8RG2/wbSbw+CZCugRlI3WkkQFlXlPxcDzJHGcbVkkDQhP5KSmTLuSLFvJNlzShVBj1XZ1l9CIGNvnOEvzGMRL29+i59CkBnyuJUtjZJuPRxWEnoNu4yQVsbuIvZ8X7Ei0U8X3uui+rWQnFISWQ9eNRtNoywhR9VbN1s5Ykm+1U7ZtP+cz1aJK90ExOB0QcE2P1Xelk4aEEYgKJEYm9BgsP8kaEYMlKqSzbZFgMrKvYw+lSWtzYLVptOVdRTAboq7sUNHzu2dWJR/PhL7CuO/mpjF3Sphcy+k5U6/7pRAOVzxtwpvf8tSZPOfAGzZu2Ka3ZdHnnHpi9t4Om+fz2hZ6DerW9J0v2dmma2iagUGPYcplO0ClWb2tw04nOQuaSQ4oNEmfKtsuaNCeBs5jgqe8DEX17DoldBdor4dhLLy1lefZWkFSHveEpznLMqahjXua3hmVEfcWNElzwQ2/moAlJX7rnihtKQpd5tnCm5KnQQNO2UmKVRTBato00Fm8ZCfWrX8OXt8+TG39Iu3v5JNh0pK94ZIl7Qc270zhgXvdSb9B2LlcDD56DuaL83mHbw1PUPql+0N4BYIcUn2fUBoU6kdIX8VbS7Wpp1JD8oKPBwFexmvoUxRAaoTlXEgdzaI2dnSsX9X34tCYsDYV7Ti1peKKrRO3gWtZl75Fh7aEaoS9W8oiyUTgHz1EAs/zrXKmXNN4VZrWZLQlW1hf8qpd6p6cXDqv4HqeNTS5bNLA0GAqXR8x9pbCut10S94jkUzRc/yWlucuSBb9dULZoWgTJB2eJS48TbcLbsj6iu5BHEZjkxzVs3m5YRtP1tdVxnkXHuyh7yfuFx3Rw9Csl6woBNYkfe9KX0hqqJgtHz1vgzVpZHjUMPVuTRKvqZvJBJysJqnIJoUub1Pmsftg5ErgLSh9C8Uqhw0JUfISAU1jQf5xlX9JjUrf6tv7qcFWHWChvYbc0O+Y0k0pPtnQ8thNm+Kpc0Po2uVVj9G01dJYClVk2z2wkNv063zjKWSpW7Y9B2DhvSh9T6PoleTKpXFmvvRHdEVeNjU39EhER6QR4rUbeiL65lNeRqNqqvtOi54yXIV5Xj5sZVoGJD0v4zTd3b/Tg1b0NaipVca9xNCZaP7CigJdxSei45h8VaNJYiXVtY1pQ69k6isVffchwMVTdQNk1xOLNqWG+kvQqhqscNZTqrh03eno+WPDdprsOY0u9uq1RvTQ97cZ0CZR7bSMqCxrtaVp440WiezzNgLbD6bcaC9xNEdEp9v7rK2Kb9M83eiVZHKjH+DbFfDNHExtD9j+9E98tOf2TRCWmzMkzk5G/mABmI0PazyY5+M9v/7uyy9/jy80fHz3ly9Zv1aUP37Byz9ztsLGm9PEj+++//IrFrD+68d3//3ld9999es+nyVFRhhUOYejqxgws/Vr4ty+EPRt5Rk/Rp7zlaFvK8z6UcLcvlT0bQX69Y8RKH7t6JNEQubCnpmTJvt8Ba9NFet3v2WR+ldEun4y6eeRqH1Fott3l34ekeiHRbp9Q+iTJMKmMs4gMI+CRF+bRddPSX17Yb4Cze1bVN9emq/MHfuY1beX4yur6vY1rG8vzTjS+Fer0v5i1Y/9Hh6nIx/nD4h459y+hYdvbn0vB1LxmuVyIJ/jkp/Iz8l+zj4gOydNO0eiLPx0DqafU/ScKlEN/7QPSL9dgJ+6n1P9nH3Q/RyTuU4T9Rwsk7lO8nOyn7MPTOY6TOY6TNTLwfRzXObuMu+D4TJ3l7m7qOfAZe4uc3NR90F3mZvL3FzUc+Ayk8tMLuo5cJnJZa4u6j4gl7m6zNVFPQcuc3WZi4u6D6rLXFzm4qKeA5c5u8zZRT0HLnN2mZOLug+yy5xc5uSingOXOZnMZZmo+6Amk7ks8nOyn7MPTOYyTeYyTdTLwfRzTOYyTNRzME3mMrqfU/2cfdD9HJe5u8z7YLjM3WXuLuo5cJmby9xc1HPgMjeXmVzUfdBcZnKZyUU9By4zuczVRd0H5DJXl7m6qOfAZS4uc3FRz4HLXFzm7KLug+IyZ5c5u6jnwGXOLnNyUfdBdpmTy5xc1HNgMnNGpefkZaJeDqafYzLnaaKeg2Uy59n9nOrn7IPu55jMeZio52CazHmQn5P9nH3gMneXubuo58Bl7i5zc1H3QXeZm8vcXNRz4DI3l5lc1H3QXGZymclFPQcuc3WZq4t6Dlzm6jIXF3UfVJe5uMzFRT0HLrP7wezu7xy4H8zuB7O7v8uBy+x+MLv7uxy4zO4Hs1qkcj2AzH/5mfy/bBWXUpOGARc6647w8Y4WTK7nU7g+h+sjTffrBbYr3e7nP+gZri+36zWwOOdHWuON6/k9XF/D9ZHu4fo7fhqQXM6P9Lrjp+HKlc7h+kjf8dNQ5krf8XrSM1wf8OsBv0iPgF8P+PWA14MO+PWAXwt4RboH/FrArwW8HnTAjwJ+FPB60AE/CvjVgFekKeBXA3414PWgA3414FcCXpGuAb8S8CsBrwcd8MsBvxzwetABvxzwSwGvSOeAXwr4pYDXgw74pTt+Zd3xirTGktfzKVyfw/WRvuOn4eaVvuP1pGe4/o6fBqKX8yM97/hpmHqla7g+0j1cH/DrAb9Ij4BfD/j1gNeDDvi1gF8LeD3ogF8L+FHAK9It4EcBPwp4PeiAHwX8asAr0hTwqwG/GvB60AG/EvArAa8HHfArAb8c8Ip0CfjlgF8OeD3ogF8O+KWAV6RzwC8F/FLA60Hf8dOU4Erf8XrSM1x/x0+Thcv5kV53/DSVuNI1XB/pHq6/46dJxuX8SM87fpqCXOkcro90wK8H/HrA60EH/HrArwW8It0Dfi3g1wJeDzrg1wJ+FPCKdAv4UcCPAl4POuBXA3414PWgA3414FcCXpGuAb8S8CsBrwcd8Av5Rw75xoMO+UcO+UcO+caTDviF/COHfONJB/xC/pEtPhhv6Z8zz8P2Qd3go3nehbZ9jusdLThfz6dwfQ7XR5ru1wvOV7rdz3/QM1xfbtfXvcHxH9Nkm0DP+T1cX8P1ke7h+jt+mtddzo/0uuOned6VzuH6SN/x0zzvSt/xetIzXB/w6wG/SI+AXw/49YDXgw749YBfC3hFugf8WsCvBbwedMCPAn4U8HrQAT8K+NWAV6Qp4FcDfjXg9aADfjXgVwJeka4BvxLwKwGvBx3wywG/HPB60AG/HPBLAa9I54BfCvilgNeDDvilO36a153zI6153vV8CtfncH2k7/hpnnel73g96Rmuv+Oned3l/EjPO36a513pGq6PdA/XB/x6wC/SI+DXA3494PWgA34t4NcCXg864NcCfhTwinQL+FHAjwJeDzrgRwG/GvCKNAX8asCvBrwedMCvBPxKwOtBB/xKwC8HvCJdAn454JcDXg864JcDfingFekc8EsBvxTwetB3/DTPu9J3vJ70DNff8dO87nJ+pNcdP83zrnQN10e6h+vv+Gledzk/0vOOn+Z5VzqH6yMd8OsBvx7wetABvx7wawGvSPeAXwv4tYDXgw74tYAfBbwi3QJ+FPCjgNeDDvjVgF8NeD3ogF8N+JWAV6RrwK8E/ErA60EH/EL+kUO+8aBD/pFD/pFDvvGkA34h/8gh33jSAb+Qf2SLD9Zb+prn/aSNsvJ7tY2hn7f7CF/KHrLrjKHRbUf4tyrwISrs2Kff8HH+4b2q42cTbJlQv1fB8CER0NiALIKWrwmb8R7k+Fbisnx4H/SKI96UaB0i3rdy/ZShd9Hx8QDbj7eQ1O8/IPCdc/+HVRF1cCAv/7bpq02OSa5/SqUgMs8/7ciiveTTrh/6z6P+SW6ZcJkeBGTwnVz9VwTSHaF1kCm/FzTwRYs5kNOnj+/+/PErjKD8YPvr69o/kG5XxL/YlTmouvww3l3xG/kBH6bttytshvyDK/7tzQ+p2q1ke14/P9TfyQ9475gjxesPSX6Q9+lZ3ouGbxWxGfKUl379RqzyW3v6wq36jwCrvbsVpTeK5PJOqvlTn/Fewbe3ejdSrb/T/O2gv5tYP/0ZbyH5WQb9Bx7y02Gcb37I+c2Ep9++w/eycfaPX/4fw40dywplbmRzdHJlYW0KZW5kb2JqCjIgMCBvYmoKPDwvVHlwZSAvUGFnZQovUmVzb3VyY2VzIDw8L1Byb2NTZXQgWy9QREYgL1RleHQgL0ltYWdlQiAvSW1hZ2VDIC9JbWFnZUldCi9FeHRHU3RhdGUgPDwvRzMgMyAwIFIKL0c0IDQgMCBSCi9HNSA1IDAgUgovRzYgNiAwIFI+PgovRm9udCA8PC9GNyA3IDAgUgovRjggOCAwIFI+Pj4+Ci9NZWRpYUJveCBbMCAwIDUyNS4xMiAzNzUuMTJdCi9Db250ZW50cyA5IDAgUgovU3RydWN0UGFyZW50cyAwCi9QYXJlbnQgMTAgMCBSPj4KZW5kb2JqCjEwIDAgb2JqCjw8L1R5cGUgL1BhZ2VzCi9Db3VudCAxCi9LaWRzIFsyIDAgUl0+PgplbmRvYmoKMTEgMCBvYmoKPDwvVHlwZSAvQ2F0YWxvZwovUGFnZXMgMTAgMCBSPj4KZW5kb2JqCjEyIDAgb2JqCjw8L0xlbmd0aDEgMTkwNDQKL0ZpbHRlciAvRmxhdGVEZWNvZGUKL0xlbmd0aCA4MTc0Pj4gc3RyZWFtCnic7Vx5fFNV9j9vyb6nSZomtEmaLrRpm7ZpUgqFPLqwFShLiy0Y2kKRgkArICIwFkeRRWVRR9FhGNxHnd8YS8WCdURRxnUUcXTcURHXIiqjDNK837k36eIU++H3+/D5wB9zXt83595373v3nHvOueeGPIABAD0CD1A53ZtfMawzD4BRY239jLJJNcu/W7MYy4sAJEfmLm5oGZvyyfcAsol4/fq5K5Y7J94zmsXy69hm+2Ut8xfvuuWRYwCKJgB2+PyGZS0QDwoA1X3kKfMXXX3ZjmXxHgDNKwDx6qbGxSuP3DWlHiDlnwCJ1qZ5DY1vxo3Mx+u3YftAE1bo/qxcDjD6BJZTmhYvX9mYqgoBlJgAuI5FzXMbTD9ry/H+7fj8Dxc3rGzhlrB473I8wbmkYfE8m7tgDpa/weszW5qXLRcrYSXA2HHkesvSeS3ylm8FLJPxngGWNzBbQQJyyV0SH/ZIjX5yu2Al+6AcWJWU5yQ8z6KugOgNe0Zp0nSnE0u5yUZpUqQWXpKrmL84gfkjucaHJIfI02gPBhhCoIZTchHkIBcjqB8lopKiClSIalAjakAjdoMWtIg60CHqKRrAgGgEo3gG4iAO0QRmRDNFC1gQ4yFe/BmsYEVMABuiDeyIdopDYIh4GhIhETEJkhAd4ER0UnSBS/w3JEMyohvciCmQipgKaYhpiKcgHdIRh8JQxAzIQMwED6IH8SfIgizEbMhGzIEcRC/kIuZCnvgj5FHMh3xEH/gQC6AA0Q8B8V8QoFgIhYjDYBhiERQhDocR4kkYAcWIxTAScSTFUTAKMQhB8QecgdGIoymWQAliKZQilkGZ+D2UwxjEMTAWcSzFcTAOcTyMF7+DCTABsQImIk6ESYiTKE6GyeIJqIRKxCkwFXEqTEOchvgtTIfpiFVQhVgN1Ygz4BLES6BGPA41FGuhFnEmzEScBZciXgoh8RsIUZwNsxHroA6xHuoRG2CO+DXMoTgX5iI2QiPiPJiHeBnMF7+C+dCE2ERxASxAXAgLES+Hy8UvYREsRlxMcQksQWyGZsQWaBG/gCtgKeJSistgGeJyWI54JVwpfg4rYAXiVbAScSXFq+FqxFWwSjwGq2E14hr4DeJvKF4D1yC2Qqv4GayFtYjXwm8RfwvXIV5H8Xq4XjwK62Ad4g1wA+J62IC4geJG2Ch+CptgE+KNcCPiTXAz4s2wGXEz4iewBbYgboWtiNtgG+ItcCvirYgfw21wG+Lv4HeIt8PtiHfAdsTtcKd4BO6keBf8HvH3FHfADsQ/wE7xI9hJ8Y+wC3EXxbvhbsR74F7xQ7gX7kO8j+L98ADiAxQfhAfFD+BP8BDiQxQfhkcQH6H4Z/iz+D78D/wF8S/wKOKjEEYMU3wMHhPfgzZoQ9wN7Yjt8Dji47AHcQ/iu/AEPIHYAXsR98I+xH3wJOKTiO9AJ3QiPgVPIf4VnkZ8GvYj7odnxH/CMxSfhWcRD8BziM/B84jPI74NB+Eg4t/gb4gvwAuIL8JLiC/By+Jb8DK8gvgKxVfhVcS/w2uIr8Hr4j/gdYqH4BDiG/AG4mE4jPgm/EPEk+Jb8Dbi2xT/Cf9EfAfeFQ/Du/Ae4nvwPuL7FD+ADxA/hA/FN+AjOIJ4hOLH8AniJxQ/hU/FQ3AUPkP8DI4hHoPPET+n+AV8Ib4OX8KXiF/B14hfU/wGvkHsgi7xNTgOxxG/hROIJ+A7xO/ge8TvEf8OP8APiCfhJOK/4EfEH+EnxJ8QX4VTcArx3/BvxNPwM+LPcEZ8Bc5AN2I3RBAjFEUQxVdofOdonFfjeorrDEZdPdYoMcIFMJpVYXRoQD9egB7aDMuTjaKIbXL7XWuk15bAUnJN/PRsx4fv0Sf8CkmTpCbJCckhfg0f4j7Ap4P4ufhxZGWkMVLL3YZxHtBDHkabOogz20OdaC2EVqBV7kcb6E/Xonc9gBbxLuqwh7aj1zyC1tyfttLa+9Ab/oJWvQ8tD9C/t2Ht/egPfdSMvr8F/XAXHGYSY3UHWBMTHcGXoGYPMcuYzai5LIzbl2KEugZjRhu8wEzEupFYNwVrl6J2b8HavWjDA2kk6jKEEXEJ+tpe9AdCmVhbhfpdSOuidAVGtY3o7w+iXzUjvx7He9dZ7nct62JdGCU/w54vMb9jD6JED8I6qQlnFnB1d5BVnuoWMOpApBHXK+DmsCfZe9ht8Ci7ECYK5uqqwkC+Nyc7Ky3VYYozGjRqCc9mOcNcarm73N3QtMlZ3uTc5C6rL8vOqphWU15md7lqs7OcWF3mDDP1zvLwmBVN1k3lpEHY6AmzqeXkXBgWbqxHxl3mcrnwSlzflQ5x/039LjkXhIWGMNzofCxr/6abOvQwp96jbnQ3NlxaE+Ya8FmPAQ6mqaqGjImc9U3OMI+9KdixJjZEcq2pHtFdhr3OWo/VitKa9a799rARP8vDBk94LLYYu+qondtUbl3gJMVNm9Y7w7um1vS/6iJYW1tr/YUaxrjH1G/aNMbtHLOpflNDh7h2jtupd296rKJiU0t5vTMMU2rCDNbvu9EeHnNTbVhf38QMR5GJHGOm1QTtLgPexeUi8t7YIcAcLITXTq2Jlp0wx94GgtdTG2bryZX9PVfM1eTK2p4rvd3r3VTXpTWcncUbV0x3V0ydWeMs31QfG3CsZli09BgLJY+5mQ1THxOYDdNn1uxFx3RuqKppYxm2tL6klqiRLa2q6d8LT9KXWiCHuSKL3sxgxOCw7Din426GZR5gZ7JfsF9wG7mN/Nz/5xHmwxL12Q6plh4HZKHY8Sw55Bo8Diqa6XFceVS14L/HOR83QHRvIWG3hK7+/o06XfG/wC6nRvDwNWUZ5PPZA498cUbVfavqVjlpqUDLiBJLijKQEnuRgekJKe5UyOl99YNXKeTlugwuQyoCg61Or5XggoafgAz2xjzsY36L5FvchbhhvZAcYIpUBeoRxhHWgqRyZryqTF1hrLCWJanN4xWsazyn1HWIJ/eo1Wy1zgUd4ol2nY6tRuakYFepkLOSS7AzVZfqSGXtalKyu6TYUIgjLaV6hQJRTdpKt6fof/R4PF2eUOwTgl3BrrzcEKNnXU7WoDe6nEYmEPAXpKWnpbmTpTKp1GyyxFssvvwAv+XnyKnIyZ9OMwpG/VPk3+6EhBT31XWzV6ckJ1hSXFc3zl7Dfhlpjmxk1jCbmJuZ1ZHWM49Pfe+u7UcmT5o8uXLC8c073pg+edpk1DxjwVheLHkLd1wbBL9kjFSq5rTcOEauMzgMrIR16BidTq2lwmg1arW0Wutkg1wz18JxnFqvZ6u5DvGIoCICchYiIEcUkkiE5JJIL06q0SDqNRopIrkD5/XEKOTr8niK8r0hry8Ewe78oM+LOnC5/Dhj/vxAYSBQ6DO4+OIz7zKByEvBrak5fv73TO527tgGsylh0ujTz6Lt3I0SbJOcwN3cx8LUKY56ByvhpAYLZzakGEZIhmn82mBiMKnIUSEZpynXViZWJo131HEh3KfOUsww1CXMtoeG1CXWJS3kGqXzDHPMzUkt7HJDq611SGtSKkrzRTsZNIuMECQc6PS6bLl3SK5O0El1ArUHQY3S6XSqCXEs65jAyB2s3GVRE6VY1EQpFp4oxEJUk0A6WCzkThaLc2eyLtmRzKIi73Tpf0RNEKC66TIWUZV0+bAcystFYEKomgBRC5oFsQk3lnz5vNlEzIP8ufhtZ/QLDs/av/nOjbPenKcc29X8GcN7MtMXVFx+dC7nOjSzvXbfe63LrxNK3nAP/+Cp6ltLRq0cv+D5KtTjg+gNa1CPI6FD2KxSSbw2ldmboUrzZhQXq/ymvOQC7wRVuak0udQ7g6mV1KqqvQtVl3kXFq9UrfAu968uthUMLxvOjhiO+mWyDdlsdnbGBIcij9VpHBpWozFMUCjdrkJqSoU8MYpCKdFCYVKOxcXlJA0v5NWcjZqMmprJrqAu6Aiy6rtG6Y+F9Mc8HkN8kb7L6yX66QKimFDQWEQ+vN1FRSHiPBZLVBfu5LR0v486S2GvE7n9WOxzqKjyiEuRPmaLhdfmjppQWvHy1WtOTNJVH7s8uDkrJ9uXnb12wswx2x/PyfDMGVX3Vh3R6eIHSsdNePSq3DXsq57fzr/s4eCY0hHuQ8MmZGZkLZw6ZUGSI/6B1lWBqTabqWzUIfeIoVm5G2at2WvVyn0YdSahve7GLEoJGjgiuHiNSZOiKdCUaVo0UrWVSK7WjMO5VEtlCs14RoJZDTEaabVEwsk4Th5UVipZpU7n0LEyNY8m1U50hswPgpY0451KhUZaKWWYDvGooCKGxyhJEyyfbid6R+a4kE/aMoxO6pAGpZw0jfiylKWBytovUNHpktJhSb09XkuZkLHIR/23KORF78Wp8HqKu/ONRUV5ucx6fTe/38OEGLfBjb7M+Aw+l4Hhd3+wv7uQPdTxQWRu99PMvZEQc+8xbtyZpeyu7vqeiPygpAuSoRB+JwyTaiyaolRfnq9wfGpJXmlhHTNDM8U5xTXPdWWe1sZljE+Mi4ufkMjpWD+GZ1uW1+h2gVGBMfl4X3CmGgAqB5a/EXREBbCjSFfkKGK9LgUJ6qSxYvswjMVd1NLQ1oipoSwkLhuLuvO9XnRIYmImIMaVxvoLjIWBFGJAZjcxKJD1mJPsrDH7wcg/3lnSXj4jVB2qYSx7R0zJUA65YsTbIpir7r28btvEmtqXC4M5LSOrb5nEsqOLci4PbnuA+fTTyMdlpdMZ4zMHmfyrrmhVap7W2SM/fObzu/0j990cWpXtNA3NtGQ4dj7hz8rAfBZWiR/yOyQ/QAIMhUJGvhfS0EA0KF5qR4xJ6WHcPUwyUdMKwmV7Csy+5IL0Al+ZeXRyWXq5b4p5VsJM+0xHVXKdpzarLq/KV1VYL5+jnWOck1Dvrk9foV1hXJ11gzFRyj6U9oCXTbMovTyXOFbP+sfhlDghjomLA69Sk+ECS5oTLHQe/hDVvtOloTNE1K/R5Lukd+AUkICHs3AUpwDnAMHg817RRddHY3xRCLNGIak2a2MWm5GVz/m9Gd4A7idmuBvdd6ZJbU43l5ZoIO0o1OKMUZul05biLwgU+tPS/AUpsaiJXs/RUBqdp/hAII5OXjqdOTJtOyKHj34f+XjrdSuXMaZ/fMQor1l1021d96+95u6p01JvLJk70TF1hbclNHPxvi23PMr88RkRTh9Y8+IIqbB96Z+OvHX/vAOF0uIwW3l568rLxi3IMA6PK9ncvezS5mGWtOS8Py1cH749urvlj2NEkMEyIYHh/VL0cp3CoahUcDCLYYk3MiZ08B8FJbFdflalhISFrwQVcVqJnBg4KbeTlsh8TyMCrSHtkRHpGibpceCTnm7PUeKz3fnoqy7qoi7+ePc3B7u/wZG4Tn8kcYVJXmbDxGw2jkwKNwmXjWXGsayEl8ikl0hvwJBhwhYSGX8JfwPP8SaO5eRMGVPB1rDLmDWsFDO6KzmG41h5OUzgWJbheEiB4TATt6TL8YZL5Do5g38qzsP5uWpuHreak3KNMoz1IVwFQzjxZIShaDwJYUAJ7Scg349RhXExPoaRzO7+JHKq+5M3mcPMYcmh0148P5EkYRxpwjiSyK+ENPAxC4RatZJ3JyjNbt5jJHrIophNsVY7NenSrAXa+sTm7NXKVaaWxNVZSlY+dGSuQTCwBoNTXjmEGTLEGnTyeaPlSkyMEplEQ7pfILpmiQf1MkTphBHo4s7aIFEFUjJDYKQhqEM8JhhoWKIBFmw0EHWIZ9pjsYnmUZhg0IHR2GVWKEjCQXIn2ObX+R3+oJ/L6RBP0YnNIU00pEuOnHTJsaswxAuF5JkqGr5VctJONYQ8T6WmvJQ8TGUhN1bR9VelJLdXrSugmWiUuoiVRANhlDAcdpPP/Hwa67vo6mvAkB+KhkXiYiGX2y+Nrb7E0wIphWddbTmDNBYaiYMlPplQPdS7atodbyyedxmTdF925tCWkRP2NCgLX5+34lEhWPLkjC/LpjYuv2rufVcZRhrjHS/8vvUP2dlOeaJQZY3Xp6c+rUtJ9+bcsiiSyBRKTHHxDdX1DZPQBhahDZSikcaBk2GF1GJb7pBhzkpbyZBxzhppk7RFrzAyrEFiHa3lGXlSiURpMP3KfGqi85ksxNaUHwU3nVbqeKCntTTNg0w6k8rYxB4Xsul86qJpI53FWzDdCyb3bA9oPmy3y63kTvIOMSJ4yN3k9G5yumGQ05ZymjDJaWIkl5M7yde5+iasyxPbSMSom04ViZkYNIuKgjhDdHLcyayBzAydCoOPM6TFgh+ZidLOqeH5L3w9tbzs8YaaDRWdnRNXjt0Z3nD7lPuuHDOZKWAMmz+cPHFKajpz9LTIXptse/+lv702lqzaC8VjfD2/Bqy4B39BSE/jPZpcfoSmOKmUr9BUJM3UTLEs1NTHr9SsStIyxQ6HbshIM68iCTXNa1QqWVCnUKtd1KdcNKNOIFrWUM4Gzph/nBTKqA63uHQuhyvo4hwMVQ5JbzCXsRupGo1UbUY5uWKkajPS60aWdDauc/YoCpWUH9KfjFq7z0szSg/Rl5duxFw9S3ehz4yac4JBD758ozlm0Hz9mRdHBQq2zFj6eZ6y7uDiyFeRFxjPyU/+9QRz6+137Faz9vl35uXmzsp6dWiAyWbMjJEpiZz6IfO2e9quR509isHzOsl7dOd6rxDHlLGCSlPIclKJRN6qYBS3kMAgZFHJ63lqDzwVlpcS1+WpJfA2hmZsTH0rXRE+bKcLQu+OTKKOrQjHexaCH3uWhjPt5DZkadhDl4YN8l77CR2l9uM56jlGfD3oQXUwDGbPnNvgY6578011Z6fEeuB0Kh8ia8STCFehn3HwGyGdZRg5GcstMYeIpl1yGsbokMHWypDMNDpUpneoDG3P9AyVIfOvopPLk85YPrWHMhv4voHSYdJBkmWMjO6qzk66LpHvPPk6tEkLkyHEcWaL+Uoz7kHlJXG8VsJo5Gf19FNUJ2x0l08jOFlCqauTyYin7s5Td5dT6ZJjhhlpj3n8ERLgUUgaMYAGVqw9JQylCthmdVjrraxeRbWiohKrqG5UVDcqm6ZHMcgcoSmspkcjml6NaGhHDU0AyNM09BZY/o6u8oTZQ56s2RDfLyZEw/cvogSxew8Ei2mQoCHC0BuvMSfwmWmcMPN1nUZrwuyKSX+a1NlZ0zn38b+yayatT8vMmDjizF/50Jrx0959lUaBj/krUOMqiIfTgm2EtkBfYBphqdCW6ctMFRa5LqjgzUFOqY4qmq1W96geme+jQVZtTxBiOj3THls0j0TTnNjXKx3iu+1UxUQvVKtRo6bMaWEkVfnWBF2CIyGY0JzAG3kaDajGjVTLRrvUQrc20W0OjRNSGiekJAAnkLuT72oQebrt4ck9peusvwi3/eNtF1Uj/f4GcxM9ZprRWAG9uSUJr1dEvvi6K/IlE9/1NWN99uE77nzo4e23P8LmRL6NPMcUMwY8RkYORL595/Dhd9545+2oDXNL0cmM0CmYQKPXODWcWqFDyy5V6iQKOckoevY5J4Sh1AbBJJhaTKxaRo1ERuWW0ZAho9LLbIoeG1P0Op+CNlb0hAcFWboM5HaKFKINhZL0V5B5I7dA5t/UwBQb4gYamIHsDtEjcSvoNUS3TO7/NKl4bqkyszJwyT24yLQ8UpuXlcVtVSomjTzzOR+6f2aFREY8eIn4Gfc25nA+ZrpwiZRV2M1sgj1NkZmSryhOKVFMTJktCVmmu2Z4q/KbJYss9c5G77x80ypJq2G58+qhyz2bmA2adbb1Q29j7rKrQGvN4JO4tclMskAmPzk5bVQSLyN7a5ooyWSqUZzCpSU25CHKyKCay6A6y7D7qVVa6cpipZtpK3U6K6rscdLEqu0xZi3d0dBvyuzgsspoDImZcm8wwRY0gJhiNt1ryqd6TPmUkE5NeXMs66vzt/olMmq4Mpq8yWx0Om8ooGlaX7JGd00ej7fXMnsXNgS6KyJTgvvY/l+S+AvS6bYnLZq4Bfq2tWi98XRrhAf3dvd7a14bo6x9t3HNTWlpi4Ze6791ddHwYf9zeeOrZcpxf587f7Mnc3bBtZ7rxo5lSu58boT7cGnllBklyclWhVWbfseS8lW53sI894v+8ZWTy91ui9qqTBo/Aed6lPgV2y3ZCXZoE0rUEpvEI+FUetkojUopsdvjg5yiMrE1kdXCTYlyjZ5aq55OkJ6uDno6TXqbUi4TNPpCnNYPBQNRtcxJzDvmCz3mLes1b9kQYt4yeg+s/S4ahGTxRPOyDUP6x8r8/Kh9e/U/5tPvKr1Bnw8RlZkazXgNuEIafAaX2WXoyxzYbv9v8h5pa23tZK6PrJFbLZMqcxotSqXW2PEyO20nMzry9M4IVzPXMzTVriBW/z5bLAmz7+NqmiQYoErHYu4qYXIlgoTFy17MukOASTdZ7/wuSfjnLP5NtngX0H8jATihUCgG/nuejBCQ49dJBvK+ghT/pPSfYfCPcLyUH6TvhSOZUqk8S+05ySvrX8A+EJOXcBervLjjUA2s/T/P7wB5JRepvLgrUA+slRMivyYbpOcv5JWTPhCTl3ASmeR8D/W8kEKj0QysPRd5FdDP8c8ir/R8D/W8kEKr1Z6lltAvJRrYBvo5Pkqo6JWXRECp/OKUF7Mt3cBaJSHyi8hBev5CXgVQKWPyKi9eedV6vX5g7bnIqwRV/wLQOC8hf4STKgaLdReONAaDYWCtihD5resgPZWg7l8AVa+8hJNdpPJqjUbjwNpzkVfVX14V6QM98iInv0jl1cXFxQ2sVRMiv2IepKca+gV2lFBN5CV5FpAVTq68OOXVm0ymgbUaQuT32oP0VIO2f4FKGZVXg5xCOdhaduFIbzabB9aei7ya/vJqSB/okRc5herilNdgsVgG1moJkV/iD9JTC/0WMpRQ2yuvlso72Np94cgYHx8/sFZHiLxzMEhPLej7F4DmLVReHXJK9cUpb5zVah1Yey7y6v5DXl2fvNhNqbk45TXZ7faBtQZC5D2SQXoaoN9ChqIbiPhkn0Q5tXawtezCkSUxMXFgrZEQeWNmkJ5G6BfYUTFGohySVwJZ0dW6i1Neq9PpHFhrIgQmOMtS1dcG+gU6XMNNZB2n8hJOaxgstl84srlcroG1ZkLk/adBepogvn8BzEQ5VF7CXazy2lNTUwfWWgmRt7sG6RkPCX0FnOp4Mt1k30A5fdxgse7CUVJmZubAWjsh8u7aID1t0M/xUXQbEZ/kWWBHzmgZLNZdOErOyckZWJtIiLyfN0jPIdH3DXoKkEiUQ+VNxJLJOlisu3CUlp+fP7DWSYi8fThITwck9xWSsIwnWbB14ETObBss1l04yggEAgNrkwmRNywH6emCfo6PikkmyqHyJmMEjB8yWKy7cJQ1fPjwgbWphCAVzhLKeikFhvYV3FjGMypvKnIJSWdJUy8C8paWlg6spf9AQt6FHaRnBvRzfBQ9k4hvJH+ZGejNbtv5Hup5ocKKioqBtbmEgBy/Tjng6ytko+bIiy1m8udFRTjTk873UM8LjZw+ffrAWj8hIMevkw+K+goY8wry8NNK/vxYcnvOksZcBFR26aWXDqwdTgjI8etUBMG+QiGW8YzKO3wYQHpuyvke6nmhisbGxoG1AiEQ+t7vPwuNgrK+QjGW8SQJih2CIzECFKSf76GeF5pGfl0rV0WmYaKQdUYlylS3Dnib9Lh8sBdM/48kscBGiYWx4OfdeD6I56Se+tjnqvP2sHMg/nhsXCvhnCMs/3do6uXPwCL+OVjY/zqbT3691ss/Se+vh738e33tuIVY9sASLh0t57/0XzrPJL0J3qduexzmgwwuBwl9X9QLM9AmlcwLsffSZTCTcDz5tqoRdsR4BrSwOcazyK+N8Rxchl4S5fl+bSTUd6K8lNbPgHmwFJbBAmiGJZiu+nG9z4U8WInevgDm4rVmvNqM91uOq0i0dSM0YNsGbD0Ny/PhSliEpaW91892NyemSgPvmPEfd/jl/R/CXvk0OwkgN7C3E0qRWwotFBuwJvrcHLwyGu+4iI5wAfk/N/Dasth4l9FnrEBspJkcF50HcSJ9738A7YUqcb+Q1JaRH9C3OduEtiltLW1r23a1hdtebzvSptzfdqKNJb++ank83hpwlDG6GY4ZbGV1XTXbXMX8serRKnbq9Hh+2nQLP32amZ8wfho/ZnwhP3Z8Pj8Oz/H+Ir44mM+PDI7kRwVdfGkwkS8JTuNH4yngGfTn8/m+Rt7nL+D9BVV8gT+Jf73gSMGJAq5DPL67PXVcoEM8srtd7w6QHwNp2hW6QLttHL9i9w27cVgndu+mLU4L4m5FSmC3aRy/cUMc37KoZSWr2/HRTlb4gyUhIOyw2APCHfHI3R5vD9ywLs6hu163TrdZt0W31XG9Y7Nji3fz2nVrN2zZtnXd1vVbN+iE3yr0Ad1Sx1JWuEKhDugWM84XGOffmODBbw+yzueF51mYw8Ac/RxWaNjVwOpmMdkmA59lSuU9piI+0xTHZ5jMvMOUxLucpbzTVMy/aCvnbfaxvN1WzNtM5KWWIj4Oh2s02XgDni0mRjCNLg3otJkOkDKaAxUO9bMVDuX+CocCT0lnhYN/qsLB7a1wsPsqHMyeCgc8UeE48GymY//TmY6nhBmdLse+vS7HE3tcjmcPPKd5ev8zms6n/qreu+9J9Z4nOtT6zrWdrLB37V5Wtye4p3JP6x5et8eLbDOyT+95bY+4R65UFPJqDSvhWfIeCLBTJEwHIzJhYwVUVJWE4xj8nF7ymCLfUxFunFay7uabE8O3V0yrCa9NrO2QY5uaMBNmNteG5RXTY2x0z7Fs+bJlnrNQmCsPS8ubGsJSd9kyUtCSgtZdhkxYR3idu8zDhE3lTWETcgNusqyHPMtiF6MPogBXnu2ZZCzLET2e/wUhU9cICmVuZHN0cmVhbQplbmRvYmoKMTMgMCBvYmoKPDwvVHlwZSAvRm9udERlc2NyaXB0b3IKL0ZvbnROYW1lIC9WZXJkYW5hCi9GbGFncyAxMgovQXNjZW50IDEwMDUuMzcxMDkKL0Rlc2NlbnQgMjA5Ljk2MDk0Ci9TdGVtViAxMDMuNTE1NjI1Ci9DYXBIZWlnaHQgNzI3LjA1MDc4Ci9JdGFsaWNBbmdsZSAwCi9Gb250QkJveCBbLTQ5NC42Mjg5MSAtMzAzLjIyMjY2IDE0NDYuNzc3MzQgMTAwMC40ODgyOF0KL0ZvbnRGaWxlMiAxMiAwIFI+PgplbmRvYmoKMTQgMCBvYmoKPDwvVHlwZSAvRm9udAovRm9udERlc2NyaXB0b3IgMTMgMCBSCi9CYXNlRm9udCAvVmVyZGFuYQovU3VidHlwZSAvQ0lERm9udFR5cGUyCi9DSURUb0dJRE1hcCAvSWRlbnRpdHkKL0NJRFN5c3RlbUluZm8gPDwvUmVnaXN0cnkgKEFkb2JlKQovT3JkZXJpbmcgKElkZW50aXR5KQovU3VwcGxlbWVudCAwPj4KL1cgWzAgWzEwMDBdIDE5IDI3IDYzNS43NDIxOSA1NSBbNjE2LjIxMDk0IDAgNjgzLjU5Mzc1XSA2OCBbNjAwLjU4NTk0IDAgMCA2MjMuMDQ2ODggNTk1LjcwMzEzXSA3NiA3OSAyNzQuNDE0MDYgODEgWzYzMi44MTI1IDYwNi45MzM1OSAwIDAgNDI2Ljc1NzgxIDUyMC45OTYwOSAzOTQuMDQyOTddIDIzNyBbODE4LjM1OTM4XV0KL0RXIDA+PgplbmRvYmoKMTUgMCBvYmoKPDwvRmlsdGVyIC9GbGF0ZURlY29kZQovTGVuZ3RoIDMwND4+IHN0cmVhbQp4nF2R22rDMAyG7/0UuuwuSuIceoAQ2NIWcrEDS/cAia10hsUxjnuRt59jtR3MkMAn6Zd+pKiqD7VWDqIPO4oGHfRKS4vTeLUCocOL0ownIJVwNwp/MbSGRV7czJPDodb9yIoCIPr02cnZGVbPcuzwiUXvVqJV+gKrr6rx3FyN+cEBtYOYlSVI7H2n19a8tQNCFGTrWvq8cvPaa/4qzrNBSAJzciNGiZNpBdpWX5AVsX8lFCf/SoZa/svvSNX14ru1SzXf++o4TjdloBeiXaB0GyjPiKgyp8osC7ThRBXRnuhEVAU6HjwlCU+Cn9vk7O7jYZunQcRpZhpTJ6JsRw3JSM7JSELBIwVzCpJgex9G7Zc9LPd6LFlcrfX7DUcNi11WqjQ+7m5Gs6iW7xdil5wlCmVuZHN0cmVhbQplbmRvYmoKNyAwIG9iago8PC9UeXBlIC9Gb250Ci9TdWJ0eXBlIC9UeXBlMAovQmFzZUZvbnQgL1ZlcmRhbmEKL0VuY29kaW5nIC9JZGVudGl0eS1ICi9EZXNjZW5kYW50Rm9udHMgWzE0IDAgUl0KL1RvVW5pY29kZSAxNSAwIFI+PgplbmRvYmoKMTYgMCBvYmoKPDwvTGVuZ3RoMSAyODg5NgovRmlsdGVyIC9GbGF0ZURlY29kZQovTGVuZ3RoIDE3Njc1Pj4gc3RyZWFtCnic7b15YFTV2T/+nHvv7Nudmcw+k7mTmclkMklmskzIhGhuSMIWlihbAkbCJotYQlhcKhKrFgErabUqtRW6uLRqGQJicKnRohURwaWIVgUVd9NSi762Qub7nDMTJLb29/b72/74vvfO+Zxzz74853Oec+5kAgQARAQBYOq0eEWXfq8GgOjRt3Nm0+S2KcEl38Pn5QDmWxdcNq+L/6XwHoAVg+HWBWtXS0OJt07i860Aqtcv6Vp82YYT9yoBPF0Aip2L563qAidgfoEQLWXx8isv4a/8Xj9AQRFAxcklCy+7YmHH+38EmOEE0KiXLJq38OjN767E+JgnVC9BD8tfNNcCXCzhc2jJZauvmPyMMIDPTVinruUrFsz7+OXjmHegCsMfuWzeFV3KQeWDAHN347P0nXmXLQr01nL4/ArG/0XXilWrMyFYCDDvChre1b2oK/X+swZ8vgPA1Aw8nyS9oAC14ieKSkwRztr8driEsxAFxyl5haDgeOwr4OGca/rkRglkkGC74qahsaRSFSCPykAymQxGvFUxiZYG2VQ8oZeC5wlHCDgVn+oG4Et1BtSgzgxhX2kRtQx1oMucAT3oEQ0MjWBANCGeBhFMiGaGFhARrYhfQR6YEW1gQbRDHqID8R84DjZEFzgQ3Qw94Mz8HbzgRvQxzAcPoh+8iBLilxAAH2IB+BGDICGGEP8LwhBALIQCxAjDIghlvoAohBGLoRAxBhHEEijKfA6lEEUsg2LEOMMExDKnoBxKECugFLGSYRXEM3+DJCQQqxmOgnLEGqjIfAYpqESshSTiaIZ1UI14HuJf4XwYhVgPNYgy1CI2IJ6EMTAasRHqEJvgPMRmxL/AWKhHHAcy4niGE6Ah82eYCGMQW6ARcRI0IU6G5swgTIGxiFNhHGIrwwtgfOZTuBAmIk5jOB1aEGfApMwnMBMmI85i2AZTEduhFXE2XJD5GOYwvAguROyAaYgXw/TMRzAXZiB2wkzEeTALcT7ih7AA2hAXwmzERTAH8RLED2AxXIS4BDoQlzJcBnMz78Ol0Im4HOYhXsbwOzA/8x6sgAWIXbAQcSUsQuyGSzInYBUsRlzNcA0sQVwLSxEvh0sz78IVDK+E5YhXwWWI34XvZN6Bqxmugy7Ea2Al4nrEt6EHuhGvhVWI34PViNfBmsxxuB7WIt4AlyN+H65A3IB4DG6EKxE3wncRNzHcDFdn3oKbYB3iD+AaxJsZboGezJvQC9ci/hC+h/gjhrfAdYi3wvWZN+DHcAPibfB9xNthA6a6A27E0K0MfwIbEe+EzYg/hZswzs8Y3gU/QNwGNyNuR/wT/Bx6EX8BP0T8JfwI8VeIr8PdcAviPXAr4r1wG+J9iK/Br+F2xN/AHYj3w1b0f4Dhg3An+vwWfoq4g2Eafoa4E+7KHIU+2Ia4C7Yj7oafIz4Ev8i8Cnvgl4gPM+yHXyHuhXsyR+ARho/CvYiPwX2Ij8OvM3+E3zF8Au5HHIAHEJ+EBzOvwFMMfw+/RdwHacSnEV+GZ2An4h9gF+KzsBtxP8Pn4KHMS3AA9iA+Dw8jHoR+xBdgb+ZFOASPIB5m+CI8ivgSPJY5DC/D7xBfYYi1QDwCA5lD8Co8iXiU4Wvwe8TXYV/mBfgTwzfgacQ34RnEt+APmYNwDJ5FPA77Ed+G5xDfgQOZ5+FdhifgecT34AXE9xl+AIcyB+BDOIz4EbyI+DHDT+DlzHPwKbyCOAh/RPwzw7/AEcST8CriX+Eo4mfwGuLf4PXMfjgFf0L8nOEX8Abif8FbmWfhSziG+HeG/4DjiF/B25k/wGmGZ+BdxCE4gZiB9zLP/A+n/x/O6Z8wTv+EcfrHjNM/Zpz+MeP0jxmnf8Q4/SPG6R8xTv+IcfpHjNM/Ypz+EeP0jxinf8g4/UPG6R8yTv+QcfoHjNM/YJz+AeP0Dxinv884/X3G6e8zTn+fcfr7jNPfY5z+HuP09xinv8c4/QTj9BOM008wTj/BOP1dxunvMk5/l3H6u4zT32Gc/g7j9HcYp7/DOP1txulvM05/m3H624zTjzNOP844/Tjj9OOM048xTj/GOP0Y4/RjjNOPMU5/i3H6W4zT3/r/kdPvyHH6a/9bnH6UcfpRxulHGacfZZx+lHH6UcbpRxmnv8o4/VXG6a8yTn+VcfqrjNOPME4/wjj9COP0I4zT/8g4/RXG6a8wTn+FcforjNNfZpz+MuP0lxmnv8w4/SXG6S8xTn+JcfpLjNNfZJz+IuP0Fxmnv8Q4/UXG6S8yTn+RcfqLjNMPM04/zDj9MOP0w4zTDzFOP8Q4/RDj9EOM019gnP4C4/QXGKe/wDj9BcbpBxmnH2ScfpBx+vOM0w8wTj/AOP0A4/QDjNMPME4/wDj9AOP05xmnH2CcfoBx+gHG6QcYpz/HOP05xunPMU5/jnH6fsbp+xmn72ecvp9x+rP/B3F67H84/X84/f8YTt/6f4vTX/1/idN3/A+n/3/A6QBc7jQnD5EwW8BZAci4IvrokWHjyDSTkQc6cJ4vwlm7AufdFSgFGXauU4ahk3KhC3GWfwdnKAvNvPst9wJWzrdeipvRTAI/Gi9/K/I/4CwDnLGQ+XBoYua04lIIDi3LHOfpMdyDOQPI9bfhnAjBSVKOkjSAtboHebUVZ9o4lIUduCpdSQ5g24LIrfdBmPix5WPBQRQ4215DfuvG0TqO60MLvEUsmE8zco8dUshTdvS7MbMXY2mRnX8Lj5DlZBr2SiOM50pIDEvekhnA9asocxAlPYyz9D0SyuxErv4Zjr0ZV571yAAW7LnncP0DzHs+3EuuJh/hutUJm4UqYVPmUlwnHoI/khZ0TYYrFUc1DyEn/hB+SRxkIHMM2e93AsHeX48sdSPWuA8GuDK+UbEdR6AQ15UpbGy+C68RKynn5UwkMyazFX3vhc+4GPcMr8J6xHDdmIsc9XPsjSMooZ8THUmSn5H78X6R/FlxFOvWgmN7FY7/z7D37kVW2EvKSTnn4BzYWw5cN2dg2BbklT7kgcOkhbSTAfIkf7ciMVSfycvYMh+gVBTjKrIVx+JJLOMUSWAcLIEv4FcL+cJqRcWZa7GFC5HRDuO8PIKz6T2U4y9JMd5vc9dw6zOzMvchbwPqGn5cTy/AdWgFcvzlyG8DOLL74K/kK06DMQ8JTyuuUpzM/Aj7thBXzxZc8y7A9W0hcvJvsYb9eB/BVpqJhK2oIVPIhWQx2UJuI/3kNfIap+QC3EruYz7NH+DfEKoVikwt5mRH/cKPUjIL16rluFbciLx9N0rM07Cf2EghKcUWHcH0X3CjuSa8f8kd4t7ib+C3CKcV3x86PvTJ0FeZTaBCKRuH/bAGWfYE/IXYsQ5RsoysIu9izXu53byRF/kgn+Qb+Ol8O38jfyv/LP+C0C3cL7yumKCYp7hfNW/oO0MvZloy12NfEFBivSKop1ShpjEf19RluHIuRxntQsm9GlewTbju/BDruh0ZvR/ZdT+y25vIK6cIkADWeSmWfhlK3Q3kZry3kgfIk+Rpsp+8Tb6gN1eAdxFXzdVzjdxYbjF3A963coe5I9yHvJdfwK/ne/C+i9/DvyaAIAgZRQXe4xWbFfcqD6iKVONV89XPnx48U3ym/cxbQzDkHpozdNvQk0MfZGZmrsT6h1G7KsOabsBabkUZvBvv36Ak7kF+fx7Zl9b1M8IRBUq8kwRRGkpw1OrJODIB78nkArxn4D2LzMZ7HplPluC9nvSQ75HryPXkB+TH7L4D23Y3+TXZg/fD5BG8/0iOkffJx+QzDoWY41Gaw1yEi3MpbGkjN46byl2I92JuBd5dXDe3FkfoXm4Xt5c7wlv5MF/Kz+NX8lv53/JP8a/wfxc4oUSIC3XCTGGxcJ1wSHhROCp8pfArmhVLFHcpnlJ6lFXKGcplyjuUO5QfKk+rlKpW1XzV1apXVBl1GNnqD9juh0ZQXlx5iKxS5AlXcMdwXjj5LsUGMgN7TMlN55fzN/MvKS4hJ3mJvE428Uv5SzO/5MdyX/IryEzuCVLA+xW1/CWogWTI/dzb3CnuA8FGpnMfkSLhh+RhbgXfyCkZr74s2ITrFB8i5b8Ktdw6MsA9zV/HX5d5HGoVd5Fjiru4F0ESjnNWOIazegN3OyZ6gVvKbYY2oUrxFSzFfv+14grs7/O5G0kx/4pwF7zHB7m/kZPkNmSNg2SiEOIu5lLkfmTcMyQfBslK6CI/Bpk8St4k/UDIffy9ZBKnx9FKcwYyCheCg3yAvMJrUeekYl7I2Ugrd5KbwT+mPMwnCUGWeAmuIjxJoOwMX0O4ylwCt3IR5LRmZJOXSQXuHG5Hvj819BhlbMVRxWaUs5/zJaj1JqCDO4Da+I+Qad7DOfl91OQfoToWJLg7UHvrIQuR9ycjf3LQT5ZBnOiQLR1Yt/W4Xti5AuTCuVjql8j/zyHrt5A/w+VEwpk1AEUCDblJaEZm6kT+3Yz3QlwLn8Jx/JHyIcXLMJU4AARp6C6U8jdQdx6LGkIF7m3qsH6z4edCCdZaQmZeiSl+OoT6Pd7fhwOEQ221FvcKy6BVGI/Me1tmGbZwKa5Rk3BN3I867+2o+T+Oevl1mc2oSf88cxGuvtMy9yH/rs304a5kg6Kdm6mICVXIsfvJPlyP/kQ2I2+Ph9eRj8LEiRrIx8iUAOcrHoVNwqvInfWZm1DjsmF/FGAPzcdV9ARq5X/GfhvPD0Dl0BRuZ2Ys34Ur1DHcF9yb8RMt6uDLkXkfg7tVCuSeHshX3I2yu1m4hEtgfaNgJ3H0vUixDUAeM2O6XH/+eXWja1M1o6qTVZUV5Yl4WWlJrDhaFCkMh4IFAcmf7/N63C6nw55ntZhFk9Gg12k1apVSIfAcgZLm4NhOKV3YmRYKg+PHl9Ln4Dz0mHeOR2daQq+xI+OkpU4WTRoZU8aYl3wjppyNKZ+NSUSpDupKS6TmoJQ+2BSU+snsC9rQ/YOmYLuUHmTuyczdy9wGdAcCmEBqdi5pktKkU2pOj127ZFNzZxNmt1OnbQw2LtKWlsBOrQ6dOnSlHcGuncRxPmEOztFcu5MDtQErlXYHm5rTrmATrUGaDzfPW5huvaCtuckTCLSXlqRJ44Lg/DQEx6RNMRYFGlkxaWVjWsWKkZbS1sBmaWfJwKab+kWY3xnTLwwunHdRW5qf107LMMew3Ka046oTzq8fMXNLY9uGc0M9/KZm51KJPm7atEFKb7+g7dzQAMX2dswjzYXHdm4aiwXfhF3YMk3Csrgb2tvS5AYsUKLtoG3Ktm5RsJn6dC6T0prgmOCSTcs6cWDcm9Jw4ZWBPrdb3ou7KneztGl6WzCQrvcE2+c1eXfmwaYLr9zlkiXXyJDSkp2iOdutO42mnENvONex6GwYc7Ho1NVy4dl+JbRGwQkoDmlpgYQ1aQtim2ooLKqBTQtqMBpe7QRTpRfieCxNaxo7N4m16C/S9GlFWAxKmz4HHP/g4KcjfeblfJRh8XOgTiolZwUNw4fd6VgsXVxMBUTViCOKdTyfPSdLS9b2c+lglyihhd0Hrdi389pr49j5gQAd3s39MszHh3TPBW3ZZwnme/pAjsfa01wnDRkYDrHNoCE9wyFnk3cGUY53M63dllYXnv2YRLu1eUltmtj/TfCibHjLtGDLBbPbpOZNnbm+bZk+4ikbXnM2LOci2QDs8LQQxp6aEETRu3B2G/XAjyI8Nti8tHM8TjWsY9ra2MZ7uPasi/PwLCuU34vO5kwf2vQ0LyGsZPK/sF+lRgFmPkQamxY7x2exXRsI/DcT9WdO0lTM+jpZrk3p2tjI59EjnkdUT7+JxwoLhVzL9NmbNmlHhI1Fstq0aWxQGrupc9O8/kzP/KAkBjft5dv4tk1dzZ3Dw9+feWSzJz32pnZsxBJSi6LNwZidQXLjBTtlcuO02W17Rdy43Ti9rY8jXGPnmHbaQq5xetu5Y8AEu700u97yqItzuCYS1O7pXnH0/+W9GPXQ/42bTMT7j/y/u2bh/UD2Vvya3iqLBrcDuin6940NpvnZ22y3TMreeb+1veaI0dt1BdOjURHitrxee9OJuaa6z9UuNWvgL971PUXt36uuuPGr1WduEkFtxEfN2Z0qR7yY0KugfaGCyTs58ij3O9TJVdwTfaAQ+rnf7eZBq6KOhwi41ErFExjOAU+ioCGXkovBGRO/qDtTN0U8VTf5TB3Uo1s8jVCeCJgD5jAC8QpwWuIHTssK3LVLwgCW/sPMCbICtQkdxGQvyEodL2vk2qRGrk/O1ZBtmh3Y9hv0y66iua/sjsUGoX6wPBGusNvylMGCwmRVNYG43FBW1tDwFMOyuEx7gc+c4M7HnTYPF8oaUBzwL65G7ayfj8gGjs/jOJ6nbdahPuSX8yQ+wXfyXfx2/jiv5B8lD3IHhH6yYucxWurgqQ4stK6+boOiLLZO3FeeiBFU37nzh2yt5BPFzf+YqfgNLbE48zZvxj19ED6SRzdbyFzr3DxuoaPLcYP+ftNAWGFxkkRYDnNutdrv4QIFPr+HBIJ2p1e0u1BOE3lyHteaR/L6ee1DriKDxuftz/xjt9XKzUDHqd0mU9YhBwwGdBVoNAm1rN6i3qbeoVY8oT6mzqh5NUejq/szH8t5ooguO42rdoePiUQ8Hgr3c+W7Asd/4YzFppzoEL+IxWIdK+smi2fQgQM2ONixsr7OnCJmSyoVi5UnGq+URbdHq3frvaOJTuvRuUZDjIh1sWuvJSu7O6BjpTUZsAULVEqbOU+ZHY5R1ZUVdoe9sqI6aa6KFEYKg89zzeXTCp2Nv1p98XJXoESqjDhCnrhBK8USikg4XC5ddWbp1t/9oKOu3OUvnlM9Zjp/1+KAy+KkfRpFzfJh7FMJ0rJHBBGVUonIBbNwM3M5t0naKv1a2ivpSUE/uVmuNC6snsFdlM9p/B4+UGAf5TGfV6D1e8RAUPJLqCTLKAwfeM0i5w1yvBoeIMu5fm6fHLc7lLTbHHraxQ497TIHdq9WT7tQy3y1buqrvSswr8MZQwmnHZbrt1OnqHQM1teJJzpot2G/ke4Y6SAOPpCsrBiV7YdgEHuqUEk7ymG3V2L3VAu3BVZ/9X7lzLDNG5lcyV2yfJYk6iuuW/DTa5aQy1VDveEaaTV/6XqpJBwmxfKVpx+Y5rflla3BXikAUH6GvZIg++UPTU5iBLXD6DIUmaKmYiGhspxHzou3O1eQJc7L4lc6byc/iR9wvu78kHziNBicROtQJsYm+GpndWKck7cnIs7CBK90KhIOBx+DKD6NhlpHypl0JRP1FVMrluDOZ63zStfqxCbY6LwhsRVuT/wa7klsr0hXPO/Y7xyoeMPxmvNwxaDjY+fHruMVX8A/HP+VCI8nExxj47NJu2NmfJnjCtczzqcTR5xHEu8530sYTX6PJlAg+T3uQEGZ31MUKOD8HnUgKPo99kAw4PdEAkGH01kAJA+cLiAup7Of2y+fn4jnJZyORNwZJ3Gsu8Ptcjk4jRo5LpGIFKkTc3BSu+JlBZIU2B5IBwYChwPHA8rAXXIFqSAczcIgmiSTmZthuqt83hvZsaR0NVns+KKDOlD+40M4oHUiu+sZOnBOpDaoy2IKnP9oO5kDp1EsO94dHSvxgpUduIrKnriYp68nWRBTTqc55RQtKVA7U47+zOGHHClHIi9FMCVkTTvBqRQgVDIqK23nCE0hCg0hZ2fYiGDCjz1zyhNuTQwVJWaG7HnGlmmkh3xKTpCe+KyQ3RtujZ8ZSMwK2s98Lqw5vXadvzgcrpK6+bWzi3yR8Fd/Etjj6U1nAzZ9tZnOuPuGlnGdiktxDbhWdsoaAioNLygKeU5UKQuBWDQOh5vvzwz0yUlm1VKrRw6OSoq8hBTawws9fC/PbecJv0GhTBPc7XZyHOdSa/oJss9Lsyn7nGK0U3eqg1J6bErzoqb3sc+x++mqwfiH9irBNcOGhuscGk/6h94iBUPLVGTq33+K9WwZWsrxrJ7XyyFZs13DdWoI1lSpKiQgKlDB4C31GkKrSwiXViqylaWWnI+VVUiKLkWPQuhR9Cq47Qqi2JCAHbieYT0fI+UQgOm4MrKqdkzOVpOtbbSmHedUNVvTlR1WrGYSTQvWczzW8y3FpV8OTVUuxBwnZAb5jfwO3BOfx0/YyVE9RJbqZUoo9TIlHptHVRZW63TcjDAjnzDoK1HRknUWCzej0k6j4PNbuykdVdIVwEYpqZLFrUypmK0qLaMtkzSYpKwS8oVoSaJKL2swU73s81E0Y5C+P/OKnE8j6fXCeidxMl8ni+EUw/mquhIB4oP1g/twabCk4lS+D8bP0AF5JXaQxPGByfzAwJux2D7xlYO4GMY88gqdd1MlZ5lWTSySP9VTf59mj5a3xCzrYF3l92GzbnNS6bPYa8X6nnpB452kmKRslpoLJtXK9Rt9aq1RJUHBBNKinaCbkGwZ1Vg74bxZusW6GzTXa6/Xmabbr7Nz/vq59VynuhKq6sqipVWPEg97ITuwR5PSF+lSetp2d21S1LfqORmhU89LzFqrF/R1zv7MUTmqS011znWucPJx53on57zGj2sitjhRJ9dx2Oyu0p5SrjSJ/dbPj5XNgq5soJSUdoah0qDXV1Vhx5/GEVDOqHyULIYQhGmJxhSE/eGecG9YkMMnw1xPmIRFGin8KNeIomlDmfOnbP1ksZzviafKVbIxJalaVT0qXlSRkyrSqiKqxvMbv8OICKWsOzZ58NRgDFcWKnJ1Z2I5GhKRnKD+1BlctQdX1g92n+lYGTOnsrMnvlNJZaqP1xPoaB/EscrOH1y9xyVHe4MK66ia6hpOqVFr1ZwSWbeAUyZ1KQnMPqsXLFaT3+AlBcHRipQXatRVEklW6Sxe0UuMBQi1yjov5SmsRIzEEPATKy4uvhZ1gG6CnIeaAHQ0tvXVW0gHMlkMupEEd5djS1Eij/eJzNpjTI2SsO39mQ/79NQ6Lut0KaekSznQeKm0u3UpLQ7lqCJqa9HWoq1BW5OC2MirHdsZVqqGFY7qUcmqQsaRjmGdsLLCgUoIciautUiXo2zUP2LGNEpbHnpx434Qqj5v7nfzowc+nTWtPlzIxQvD8fS2q6aM9lq0DpOot9V1XVJeS24vmdo0s2bS9ZeZXd9b1ljedMXM0MZLCgpKassqqkpn9kb9Y2I3DO2/bnSeylBXc1vTLaSjzlXSmRo/l753asqcEBSog/qhlGvJzfzCuEzncVTppNNWqaZTWck0DSVIPruW+tp1Ep3mZjr/JT2d/xKLjb5fykwfkZw0heR9hH8HfHQa4JPPb+nn35FFq6wxcjOseRAOa1QlJTybz/VvxgbjaEhu/r6Js3eAuukM9mQlSL7QgqlA0vE8Tert8hHZ1+njfH4dZqOzI9EoZ9gFKt9YwzxqS4LJhMjREEmKl0VZHNY45QylMl5mpiRyMGbOcsnAQVzwaGU6Og7WD1ocqfo3sXzPXohnBnaNG1cVp/N4TKysqjN+tXC1YpPQE98RH4ir5HhPnIO4vdgWm6GYoZ4eu02lGq8iUnyUdpx2pvYO4d7i7XHVQPxkjJNQQww8kjkOOpSx5jppqnSxdIl2uXSVtA22Sb9R7VU9U6wrVFsj+gZLvrXJ5ovYG7z5viY/JtMJJTbWa/4SUlLi53V+0AX0Ep2+Flunvce+w8777b12zv5JtFWJdd1VVFZF7YfHJZWNZY3rc7rh5MEz3R24OtCL6obd2GSzIyV+PniafA5Zi81Pd2FMUEfCheqoBDEBoUgVlkixokQClHmqIlx7LXTU4IVLDE617pUdKP0o+1kxt6CYo+hT2Y+EK3PC7lAEk+Yyjs0HJup/aOyZeNvxL39/5VST5HTHDMRcagrYPaW6oZNlyroF8bbmOenlcxaPPe+rp58m4yb/+mfj3WKw66s3fz7Oaw6u3E+ONnWlpi559rlXUaInZU7w0/g05IGPX5eT6CK1Pc8GehOKIBiZZWRLktGWkIFQxZsDEOnRc2ZgtzUPY9FRNptRCQPQecJmFahEFaeiwTQ1dTxE4+FmM3OEpUDHcw/T2SCU63QoQLj24PqEEkSlqqOjg4n1m7GB+MEBFKecNPtsPbjjTgM/rPuzSmRLVNNC5BAVYVElqdIq3PR2Ii1vVwmqHwm/EPoEnhalwqbRmVhIxTkvz5+P7aRObC2KPW0tWkY79TIa/flZKceVcSAr9ocPYl079nV0xCpYXbGmVNxll2Wus8PVCZ15R3iFS/IiCXpTdtmb8tNaaRsnVqn9jYaOaj8TsaIq5j2tuKzKo3Rp2qwX2+c6ZjvnuFWE1yhVGrVeYZug3MjdpNyg3yTe4Psld7/zIesr3Gum18VT3N94q6VT1anuwtZt1DypetZ0UqUWiMpwPcdr6DxR4jyZWK0Zy43TTPVP56Zr5nPd3EbrRtdW6680v9L2qx/SpLV/4D7gjutPafPUh1WoEh5WcSupTfuuFzstrVKq1gl5kLDbaFWtlpRlrm29bZvtmE2w2TwvCwRH8HBfXkqgC4CVWkfl8ZYU7eOLPISOiOp5tb3IkzLZyQr7evsWO28/lZfXoyYJda+aS+A+95iaF3HDiy1Rp9XH1Ur1b4w2ATZSueJLZEvCKBtbjTwYRaNk5E8aiZHWRIN9aWzMb2zJzkxcYCefWVkn4vKJG18R97sxkR4odFORinWj6k9XshU2XMmouodLMi6xTBWFmhpU70lj224lEI5b2c6WXnqx9W4vqLA0XTCll0tTBjRqqm4WpVRZi3JEnyf75MmG5Z602Sdt9knDnmSjJmUTXSmXZE4Z0DAqGLEGtre3W5Vskz3KQbmAY1xgt4UDhXTXUKB8nSxcuGH2DaV+23N33P3JX/f85JkzG8h9CtG1oHraddzo51evXnBF3sa3CXntE6I68JvatlCNfC1OkfOGxvJ/Ql11NEyAdv52+XsWe+vthVureSgV53Bri9dO46BYWaa8cLMk1I+aOmfFqDWFXXO2CFsU1zmud25Jbjr/uuYtLd+f+mPHj51bp/YLexW7Hbud+6v2twzMOTzn+JyTczxuyVYpJvOq/XMU96onVtd7wM5XByZ6wNX49bsQjdWap1GjOmUJU83XghwQppMB91TURtVYV78tvCP8RJgP95O7HmqL9QRIAKPKBhrXsi2wI/BEgA/k0jAbkwQwruzsnUgmyug7UUaviSWUVyaygxeilq0r1GS9Gh1mzEadVG5tJI39fLmsd03Uxl2k1dXj4lyPcy+BEjT8ZKjDIK1S5bqAXFBSYpr8Oz6BXJOPmILJfEL2iwmyIrElsS3BJ5yU2xJ6SjmJZKqM75lOptO2GXA5R8dzu8U85niLaZnTqUqkNSC9TA/7i0gRbTRud6u2FJGpRV1FA0WHi4QiI41ZNHw4hI4/yxaqFxStkeYk5shztmOfK+bQpF6dvmqOccttY8lYpp+OLZfsxGTvsh/Cidaf+Uw203R2PSVlO6ujvZ97XLZurSf15Qm+ledaeQK8yHN007fL5atiNubK0+KpikIdD9M28ktnz3mEXAEBot25EXdQ9JiJqrOotTLHYKz7hBhbmT19inXTmRdbKZ7AdbOje1AczE3IM+/T6VkvDnbjvEWG7xZpfIyMM3T3ocCxAIdztPvUIC6IMeoTPhZGn26qLJtRsaAqMBq2lRzWhq9qmVXbHEp6fQ4nURSGK8ory6vKeWVD4dTCsnBx4czwdC/xjs73QktysgRjSL0E5ynqvdBaOtkLF8amS6TJOdZLZkRmecnMWb5aD0b3jIZJ5RMl0jIxWS1zjRLuTM8X6rxkSvwCL0yLXiBBs6PRC2z2MuX5a2Dr+9mrGJf6a5lS3UGJZiWjFVlbJqKMJkUL1aJP7rQwVbidFOZ0XHbUZstDrTYYzB6IRpiC62A3C0EvpiTjzVKRAoyQPZ+rihQS5blP+JycPvvg9us6n4oZeaWCN8Uur9l3d9O4En8g4e164byOFct++tWTN7TozEnV3KpYitgmLmyqap00v7ly6Mt4onbh47vvr6z6ydtkSvSW9hv3yQqlxuHWKpTju3r25BWm8sySSuAVGkPXhSsX/GhWRbXTGR6jWeAv9wcv5jasvequWWO6r9o2e8zpayvbwonQ+evHV9ntAhIuGAD4v6EmXc1tyWkdvhqZTlxRa9aq2dmcM0SfneygDjd8X7I54aQ7DaZdO41USJ2F9GzUTz0KA1XJSCkJCHo9NyPA8giUOmkepfTclfqi44vdNKB0eI6h41PZRJOXsvxKCWrADVrUwi1owmiK0ESgChVxU1LWYNpkNUTMvhJBhWIdj1M9XBwc/PRTFMqcLs4UBnHfMxXivljW5yAq5/vO0cvbqix0SiYZYomRKsyUZmmOaDnqp1VSRUTLdBOtk3k5mZeTeTmdNaNIgHkHmHeAeQewNScZ26Djs900AB2nH6ZhpaU1o3JK+5uxYYWG1gwXPGwFqvAHc6c0dP8fr5GLk9qaTtRZTGFTYU9Nb42QrhmoOVzDx5Sktaazpot6yTVEUjuj+eZ+3iSbC0qj+ZGJBdpovjgxGIjmF/bzRrksmIyUNVTlJ5uIFKkG1kpc0sxmUetyhjS9WpLWEpO2S7tNe0graClJhUshECrzl7aWdpZ2lQo9pb2lXLqU4IpVOlB6uFQo7Rx1z3p6kE8Xc7qqn8nakD3bw7bUmVMpppRnj/OQKvLcXoVaGfYUehUuL1Gp3Sqfl7Cj71j28Bs6CJIXLsTEXJ098c6d7LIDump2gMdWYhVTy9EXt6HDnqitk8krvtcwpctjNWoT8tD5NrlCy/ubEuXLJtpSY4dqzwvmOU1+ty1uJBbFzWfmX9U88yL5N0OPzZKc3lAoUihOIU23XRyvmjrkvbjMHwpZtTUz+fOymjvdedYhqHC+6KCAy5057YUQLgQ+Ks4WAxN3Q4DtIgNOKtkBq5PX4ArCuBwdx5nga6gGToPR8cIeGltjcA4zPjre2Z2bbseHp9uRh9hsk+hW1DE1sCKwHpfhghU4hzuVRCmz7S7dMdEMlAVKK8TrjyCpH+wQ3+zI7U6zZ0wHcUogZ8b2URkbngkGic2BAEOaz+6WlpyjoSHrkF2jRilnyEoCyu1KjhaKW9pAgcpKm/eF7KUpNZpQ0MDmg4GjYm9g84G2LDsfnHTis/mDPg9np1AoeM4cyOr3WPc3D9YfzB7D5KaCqzdEOkNdod7Q9tDJkEIKtYY4mUKILpgVFVXMrqnN2qWJrB0MM1suc7mrcIJYJxYYovkWnBYRV4OUH2jSu/TWXmxKCqBAr7JatL0aokmxA9hGdg4rm+qT/KV6vcFlCDnlWMrJTsSqa6t6naTVSTqdXc5e53bnSafC2Rfs+yWbDux1Gp0DuPQOdrNXXLjyYtPE3GRgTcILRb2DdKOsn/PWzXpWrquHD6uZXEeLR48uLq4bfY2rvGGosbHMo1Hlu71FRpKnuJkG1BUXjx4KnJFmplCQ3XUzyLwfl0guU6gLuMyCobFki2ILSm2U7MvxvK7Iyg5MrH46fqd2U4Jmjpx4Hh8Wz6OyNSufWdnWUm8D7pyGWBJ0fMqSoOMNlsRPk2hoEj8ooxEqr/oimR6kFEXtnhdEiA8epCcm4pGDObGMxYYFM/YMbuP2/NRNlC4Soz1dPyppiPUh/cmx1lhv7D7jfb7tMaWEDz0xXkSfwzHerS6KSA2R/KImF22ScobVrSl2eaSoXmXvJ0bZIALoVViyaZuVWOmhQ11xdpjlcUm+LOZwuHF8s1LLjl1oSxFDfn+vREwS6ZS2SyclXpLYyUx/5nPZwM5l+opjLwbomMemnGKa2PCrq+xx9uRTOPqobNGDmfrsPEsrD3p2M3kb7G4XkSBT2beCllgKvj69EL35RpMv7DX5vSTf6KFaDmH0yI4pUIv5psCcczhHVY4RclMUq6uLoXj0PLt9Tlt5wO0xzws4y+xfS88WFlwcqxuSTl/yyYkxwWCFQTUrPOuH3E23xwJMggjoUU/4L9y/VHIv5+THkWR6QoIpAeUMjWqTPUj1gDL6FPSFomomM2qByoVaSZd+tZ2pE3amTtjZGZx9WAmwDx/G26nGXUij28HHEvtYRj6WhS/KtIkoUxSilFrZwR/lGBo1OqxcoOMfspamiIKXCyWoJGrKmSSWVxh+h/qEiKYgq1/ImpApVKFyl3BUn6iPx5kyIaKcmkdqFLGBnJvSlYj6BAN6XH+WTC+O29luhOn75czNKlCezd8UUjNaVDORUzPFQW1nR3125mVXUy+7PVkFPhbTxzx8LNDHGspOA4dZFR2fPUxjRKPJqv+ucoGUWptE7UKdpNpFItma7Ex2JXuTilKByMzdg0/ppDKdPJzk0knSiR4DSd6ntkfzTVlFIxrND00sUEfzjRODvmh+MKtolEeKGxL55U1eCFZUshaHgkGTyah12EOqXjVJq4lJ3aXepj6kFtRU0fBEK32hYn+0NdoZ7YoKPdHeaDrKQ1SMclF22JBnr4p2VmWVjdh/X9mwOF28Ugi7eIeXKJROhXtY1cCp1LESP6hsdDNd41s1DZxD53p+rWdUkpaf/6hluWQ36srHDI22ypVaoWHy5Wt1xvKWodF5Y8tRy/BGTCQvxg0+1TKz7uqhK2f5XUzHME0ll69b+b0hX4fd5wmFxi0k0+8e72ZMDc2ZE/xenGcm8HH63Ezz5umVVML17IRaz84A9SJ9raV3C3Tu0EDqkK3UU2DRBEdYrRPDwKQ5u/7nlv+vD/I0NJzGc9PEHipTbiGPSVyeXqQCpRfpg15gb82oUxDy9frsgZwZZUukwiUeZGfPg/QErtnSYyP32vfYnyb7Nft8r2mUlg+0ZLym2T7LdgO5SbPR9JpH5ZcrkgI7iNvmJ8/Y9rs52U8mqIdrYxHooMdwfzYVRVEghym2Cp1Cl9ArpAWl8KmeHjDI+m16Tn/2DIq+4aGKaKwlXTStJd16weyd+vwJO/3ChAtntz1O32mBgMafGaipqWlvbHsM3HwFCJDHV3wkfuQ55xH3Ee25BqEQVROfJWws5MLeQm1YWWg25UngI26J2DXocqrQZTWIEvHwCDadQwKXAoEt71/vQtk7HZQ1lDrS2Cab13BrlFdprzJeZbnCvsa5xqvuaO8A9pZb4xXNKQ8aG92Y6rIbU6oi0A2pMrftrK52FNAdpiW3weTg8DWXrj20/tBVi9c9Py156Zht35t3zdJx/I67Nuz47umeuzc/eM3fL2+ov+vqZ4fe2v77Uzd10jfSCzMnuD+irJULVTlJi1Sy96aVMpUjjjAtljAtlpg8bnVET/0jARPVDmiYicpNBQ03lavUEVNAsMQU5EoFWa4ginCcEFKscl2eTxbkk/yw5Cad7i4357booH5fRweOVhxttDroCwsqoiihB185KL6SfXtylk8rAqaIWii251vKFFxxuSqbjcvSoiCXKr6r4BThYlVTPlmYvzqfyw9bdITW8DPZTQXWZKqscKuNjG8jFmpFIpUVubcn+7L2Pnqa3EGNuG9fR724j73pw0pRiY5qSlwlnMVSJutSJUW6lDOvXT+78E7x1pBCq9IWaaOdlV2VPZVKU2U/keQNKNQHDAeM+0L7wq8Gj4ReK3lfeD/4fuijEp2lvqSj5Dul60q2kC3cFr7H1uPu8fR4N5ZuKTOYiInT8hq90qstebZgf1Dt5e15Fq/d54p6SrZqtmrvlG4J3hLSWWKGopKJJVMr51ZeEb2i5PvG+4I7Kj/k3/fqo+ryfHicyyd+Eicc6SexPni8rJ+4ZXOxM9/1uCff7XcT0S1hz9FA1+N2GlhgsaDGrhNMEWYp8skfoCxeXA5AO9V9jcvlpG9t8+xx2rHc8xZCLPSQ6C/0DJDPk3VdJtJp6jL1mnhTP6mWXRG3q8yvJuqSbRHSGemK9ER4KZKIcJFHiAQVRNrZMvxKdvJg9ylG42fo2XAmQDraU3GcAX0Zgk56WHUCw3EaUoI/IQ7S0ydCAeePFleUkEGXZzDoNhjLYsZ14r52J4ifnhrs6Cbi4KnBrJs5s0K0u0zSGKog1s4mtbco6pdEs1LlNwe8RBlVe0ES872gKlJ4SfYNETszwprJmq9UX4hfmL8qElDv6oaV9KWs7NpGtnHb+G26nxh6bb3uXk+vd2vB7cFtpXqcyDF6ykRPz2RdPBgPbS65M3RniaKjnU5vc5HkSmmKXCkia1McGk/2mNrNdljaVBl6lTCjSenFfEu9UaKAXNDnSTHLlQplD/uDWUuP1h5rqsRpzeZlyeZlsmARFizCkiqRLDTNSdwkYjRTihcNWI6BZnBSthiwHAPGQeM0M/PN18IjL5J9T4wb9CDbiNNzLocjd0pGF8egudKePfkqDEWG9VK6onK9gcLLLxo7U/LP/dGBx9dMXx6wOQyBgPeu+c2z5g29VVp653erJ1eaRYue3zH07C3LJpbWFEXLxi34xbqt+Vo3GXfTzRekmi/urU3NWnmHw2R0IoflZf7K1QlPgoecyXFY2CdbkMN8bHOj0zNVUW+zEoWVOa1Ma7QOn2NZh3c8VtoXTIu16tQlJnue0E88fYCb3PqDZw4fjA/uy+mAbw6Iz8RH8pPLkT3ZZWg7x43j8SHT0NzDDhc6ZPaGt0tHdCYPsS3NIxPyCCtORlHEsnUeomCqnoKpfQq2ICusWUVXyWrK9tDo+AfbQ1utPu85ah97O1Z/5nBHx4CIe6qO4d0mDqtnLxiwAg361Fwyl+PqfVvNW11P2J6w97s+dKm2+chGN5mqn2qYq59r+NyJOpPNGXHydpvT5eYJhTzPdsLbErna8gmOI0p9klbafsh2zPYXG29blOd5HnT95FO5RNITfVncl/ZxPiBEEBShvFYr6bESsIrWtHXAeth63Kq0dnrv35jbOFPNjt4dpzrokfUp+u2MMydQx8MnDDpBzI4UoLEgN7Pj3O4OnGpUGCttQXMeE7NK9ha3MGkOJqvp8SyZeORIZVHgfHMk2NNU1lb8w1GrSh1R4cmhl8ee+W37+dGi+Qsq5y7glgTsS8cXLqIrI4da2Bn+VghziZxU2SNst4PERoWF6KQi9h2C/sxpWce+N5Cf+x7BiexuWXKziG6Ll8azDIubhZ6AspMilDt2oGMJ0a8aOHADYnSGlTrJ6FT6Sow6FX1f9RDdqqi1gLvlgziiqLnXi4OfDm+amUW/b3DOgeYsVfZFHq/W6iSd0xgKOzDXbJY6ombHnFoqO4QJFZHcbMPrZt89cGuZBmhRqwslJnmSMvv1g0ILPcakUSzD5zfUwWTPYokU5mSPKoQURLYzojDAtr4ohGzbUf9m9i1tkkTolkOK0PUhHRGqdKP8tdJ4/3hJ4VZbp+Y7I8HA1PxwJKiOkAZVvrpJ0oV96n7SLFu1EA7jkkTbY9TqtDpdgH2JwAhpQkyki2wjh4hA2OGlxeXGnWartdfK9SCkrTwVOikndih0hU+tH16K2Hfm6FJEv1sgsj3FYHZfIbLt39ljG7o593hNZq/J7QXR7BF93uEv7tKDSyaIX39bYFgOcc+gSgZy0olPkSS/wBSw+yPGoT+Xrr26efLKEu+o8aShvT52WUtqNn/rmT9uY98ReKpnTPtNPWRrQ4WHhM/c2dNaPYlTTRnFhVFGPbgj/wBltIb/LCej+kKts6pQKAWvvySOm93dpVaRq0HHHijNNysBqYzua88cPjzAgC2ocToiGyzNWrLFsMW4xbyhcEPVEd0Rx+uR1ys1pjLUeXUhfbd2je79CpW3tsw0u1ooq1fUi/XmmsL6olRVonaCbqo41Tw2f0LhpKKWKrl2pmtmuLV2jWq9br243rzevt7xY9U2cZv5XuejhflGhUk0mU0lftFv9pdEtVFHvFYr1s7QzK5urRVyUhzCel9ZQ2poQ9bGSbyssMqpFaCMtiG/zOdLlZXVpnJbELqvractEd/soA1jSNv0i0Kn04U7t0hVVVKr0+srnVqNSuUqrEpWVSbDli32uJmYkzgN7HrfOlcraqjx8Irg+iAX3BIkQVe4rCxVWfpZNBqpbMXeXpckSYVCFXapVKFkOC+ZDOvtkUiiUp9XWanHhc6p0TsqI2GXriZe6NTy+ipV0uQlXj+ORLyMDkM+WMxmQkBZJpSS0tL8fJ9WjyL90Ao7sZeF+4lxl+QiLrpw68Wk7Eq7jrtOugTqsctkqXI9ylVDJajI4r5kWaSfqHdBJal8lHsSUlDLTd4VOMheCHagukO/4hZbmftuPWXS3FdtRfq1GZHJdwc9cmJEiv1G9acNxnX70HYyB3FaUuvizk/FEx20j0+wjrakOuId6COyR/HqT9GlUot1xroNRrFu3b591Nqn3qdCS42+7fTL2h0dMaBv3FayF/k61F20KR1S4cOalINqNej+cBfaNrooarzmeoPsEeud1BcfqC1bHcZ6Bd3tqZwI1dRVS0+50Y4WmWhuJ/eYUmHJlNL2Z472mejr/uNoVdDvxhkwwMB8qDZUKFFjRj8zTXe0T0fTHEd9iVlmZuEuOCViB5jROFB1EkVTyoymRLal6MLbZ0vZs5aF6lo2qmudlK22VLXalipK5KWiaMxqe0rDMrOnorIZjS1VQQ2W7KClo6HJd5pT5F8oWNml+ps61zkB7e3WgG1Y8aJ/C0m/z2xTqpQqldVud2TfieC2MMK+qUSf6TI4ih4JesiOaCCosze0jC8oJNXlofIZ605MH58aai11WeXv39JUWjr0x5CncPbAbydecB5/a9jrcFaIBUuWLHDbfOEw7yzovneo/8pyPhTKMzocHfv2zTE7I1wopMjzXZ45vXwUADjpb6DqtJpv/NYn8CMfR1wCqLTf8KA/+6nAjwIUSpZUSf8YGZUIdAHo9f9R/gpQ6f91/sqR+SsEJfM26LX/lL/wH+ePeamUoFKx/FUq6iOoWP4mg579duy5Sf5N/krQGL5RoIJmyXL9p/zxIxr/0/yN/zp/NcufJlWpz8nfbDL8U/6Kb89fBVrTt+Svxo+CPqg11Eehpr/fgGu1ifXTuUn+bf468RsNoqOJGWnVoNGwpmuohKkVGvrXWWCziP+Uv/Lb81eD3vKNAmlvY0Yo51otEx2tjkZUImJBTpuVDf+5VVJ9e/4aMNm+USDtbcxLrwOdnuWvpxKmoXKGH4/Txrrv3Cqpvz1/LYjObxRIexszQjnRG5noGKkEaOmfr+HQ+tyO/yR/HZjd35K/AQxG+ock2fx1NH/8SF4XG55zm6z59vwNYPV+o0Da20Yq6GAyaWhSE5UAnQblBj8Bn/s/yz/P9y/yN7H8RZHlL9L89Roz/b4jhAM+NvznNnkkg424TGAPjPDQ076hGaEcWqwsfyuVMKMW5QYdxeEAG/5zqzSSYUZcIrjCIzyMtG/o703bLGCz62lO9jwaUY9yg5+yaIgNz7lVGskwIy4LeKPfaBCdz5iR3Qp2OxNNu51GNKDc4KeiJMLk6JzLMJJhRlxWyC8Z4WHGG7MEcNnB5WT5O6mEWU0utsJUJ4rZ8J/b5JEMM+KygZT4RoNobzvpRAK3x0STejw0ogkRP7VVpWz4z23ySIYZcTmgoOobDaI/MuSmEwm8XpbUSyXMIXrpLyRBY10VsCae02Trt+fvhkjdNwrEToZ8gAIfBAqsNGkBlTC3tQCFH6ClsTb3c+NfV2kkw4y4fFDa+I0CaW9jRoUBCBfaaNLCQhrRVkh/MQmmTWxgw3/OZXN8e/4BqJg4wsNLO4FmVByGaNRBySmKIwqSA+UMPxddOJ7J0blNHskwI64w1Fw4wsOPN8uoLAqlZW46tGVlCCE3In4Wtk9B2RqRxDWSYUZcRTC6fYRHAf1jQSihgg7lFV6atKICIeJFrAT298KqwFAzzBLhq9X/OCbCP/121UXKFDlbJPftZf/bC9P9kEvBv1F9/p+9eB/QYQLhXYiqfKwT/uOL+w3cl7NbRuT9A5gw7MYFuwmfJ+Xc56ExYDvruFRmwblp0F+PpvkbdVyIcfOEc7pVoLOajsBFQH9T8We4tnHImnGYiQv/O8InqAvQuCqYTX/NTKB8vAzeyrkJTrSBnJtD1unLuXnoZl+Ap27hnDgKdBfk3ErWR9NhKVwGi2AVTEG8HC6EFfQ3C+E70ArTYDKGz0T/bgxfiiHfAQmSKKUJKEeshCswBvVdAavhSujCmLXn5Cjl8pTOyZW6F8FiWEN/HxHzrf3W/CX2CzZLYQGGrsDwFXAJlhL9Rvp/X9qv8akC6Fd0q9E1HZZgDOmf6ixBIz51o5viPPTP1qUMQxqwnOUsz6VY6hIMW5VrwypW77WIC+m8HZb0TID+P4J/vvbCdP7TXXyxv77Bxp+ATv4j2Ma/B8fQCCCij4iuejRd6M6gUWQG+Ld3NTdXyP1ox8qY3VcUrdhLA/rc3orH+be5ByBCXx3yx/rsHhbyVt+YMTlHdU3Wsau4tOJYg5Z/C/6ChuPf4o9h37JUu4rKKk42GNCD8NeAiRBkp+38m5BGw4HMv74rVFix7Qn+eQx/jt+PTaPJ9vcZzBWY4R/4h3G18vN7+IdyIQ/tMporoGEVzhACA4iH0RxHcxKNACv4e2E9mi1odqARwIToRxNHM5X68Pfz92M978b0JsQ4mhVotqARsAt/g/6XUuTv45fR30flb+JvRb7385v5W5j9K7TdaP8C/fPR/jk+U3tb7vlOtGn4T3L+W/HZjvYdOft29PegfRv7pT4//+Pc81p+DUu3Omdv51f15fvFhnwMl9Ak0PDouhVdt2LX3UolApHw1/HLWUk70a5A+7Ksjd21ri8QZGO0bpfDVbEdu3Qddv067Ll12HPr6Ith/urhOFdn45TyV2OcqzHO1RjnauyVBL8Ky1tFeQJRRCOh4bHfV2G/U/804gCaw8z/esReNNvpE3859mMUa7WRX9ZX5EchW7wrJVfUP8pfgl0t85fscvkqtnz9pNFSQUTbmLNNNO4iFrpol0ZPfRftcvuyNsa6tMHIL4DvouEgDzGEpgpNExqBX9AXivsf4afAZWqQjf713Hp+vbBeISSaiOUJvgJa1XTJtPClUIcRov65dWRUp6ZL06PhRY2kSWhkTatGsYJfz2/heT8f5+v5qfxcnv3xr6q2kp5bjVPWVvbqtuvSugHdYZ0irRxQHlYeV55UKiRlQikrW5Wdyi5lj7JXuV2p6VX2qrhOXZeuR8eLOkmX0Mm6Vp3CryLbG27g51OmRhTRdKHpRSNgH89Ff4m/GM1cHI252BUXU2JHBHwS0RxG93G0FfhkwngmjGdCXxP6muh+D5GGtKLpRNOVC1WeDRlOQ+OfpCFoUJXljehrxL49jniSutBMxCcDPhnwyYCxDnOnsYYiooSmFQ3P/I6jQalBHA5L5MI70ShZ+EkWZzhMpmm50/K8yECUpKNke5T0RolcV99QIRcgWCyWucG54blFc+8WVgRXhFcUrbhbmBqcGp5aNPVuoT5YH64vqr9biAfj4XhR/G7BH/SH/UX+u4Utk3ZMemLSoUnC3EkrJq2fxI+iJ4x9sUQFswvC1H6oz+WuGGVqGM3twObMRdyG5hgaHvyIcTT1aFagEbgdiH7uQfR9EH0fhKlo5qJRYIoHKb0g+nNh1H8bC6MuGs6NCOex4Q/01VZObZiIlDsXzTY0POb9AIY/wGJnXTuYfxrxOPOfmou/nfn7EYfT8EhwsxnNzcbpNxvJfzbMRdOFRgGH+Fm4OMyiOSP60XSh2YFG4GfjPYufxT2I9wPcA3yJbCi3+XP7HLNabBA5PcqAgdzH8A6GGxnWMwzJxomGLyYafjfR8P2Jhgg6uCJc6gzkVoYBWddg2N1gmNpgiDYYMDcH6skGzsZQSZF8wnAKwxI5L2D4e8Dwt4DhrwHDzwKGlQHDeQGazotz18DlMdRRJLcxnMiwUNb5Dc/4DbP8hlF+Q4OB3EWwdBjDMJ+hhyL5bLepyQSaR8ln0IQ5kb66qL+fA2aRTF9dA1pDfXXj0DrTV3cXWv/oq7vF/xj5O2FLGvmiL3TC32Ajp8gEgT7/LWf/lUyA+9E+ifZitO+BOhJG+1d9ddfS+L/E9D/B519AgZrG/zm0snTbyATm/7Ncup/2lczHUu/sK7kSS/0JlLBSb+8rOYG+t/SVbETrR30ly9Ha0hemFVzWV1fsbzDTvyznaNwFEOZoTSblShyPOS9He1w2cXNfCU3VRAvoJ419wXK0IrSWj5EgtLLi/H1B1kgfBFkWXgiySnsgzGwjMbHKG6CA2eq+4LWYi3J3+IT/v+oepQ2Hz4mp7y7/u49h+2bi4ztkQt/9/hf30u7q8x8q6SfhPf4Xgo/6nw71k5l9/oGSfjUGPFHSz5GH/Duxk9MYlyN7/DtKFvsfDLLQu4MYikO9ra7Uf2dwtn9rGJ/7/NeWPEarAZdhi2dicHvJ+f5Jdff7x4b7CQbLdViYrPXXBrv9KfSu6ScTdt3vLw/106okMI/79/iLscTCIKvKjFGPcElQkTVyiWq1ar5qpuoC1WhVpapUJal8Kq8qT21Ri2qjWq/WqtVqpVpQc2pQ59HT8BjdAuUp2U5IKVAUmFvk2DtXYDskjqg5nDtpK9/CtUwbQ9KWFmiZPiY9KtbSr8pcmK6JtaTVrXPadhJyczs+pbkb+wlMb0MBpV43eOhvzu0FQuI3/MBD7atv+EF7O2lJDyyAlvlS+otp2A7tBbPTiuAYJ9jX1jvrLeebU2Ob/gV05vCcg3jniGN5py99W8u0tvRvfO3pCurI+Npb0uPor9Xt5VZyK5qb9nJd1Gpv20uu4lY2X0j9yVVN7WejQQHXhdFwY9OVjbYLCmg0KCC7WLRJLBqKaUFz086Cgmykp8gEGgnF5ykWaXE2rxAWgXm1UgujcfkQYnmFuHwaDeUhm5np3Mz0QEwsM5MeWGZeGmlnOIxRSsI0ys5RYYywMzyKBd//dXAwnK1OO4RZOWHSzsoh5Os4Rdk4KAW5OJwa4/zbb5j8p9eiMf9BZLJr3hsLF9DfDOwMNi9C05nevHaJM90zX5J2Lnwj92OChZ3zFyyh9rxF6TeCi5rSC4NN0s55C/5F8AIaPC/YtBMWNE9v27lAXtTUN0+e1xyc19S+6571jS0jytp4tqzG9f8is/U0s0Za1j0t/yK4hQbfQ8tqoWW10LLuke9hZbVcOIa0tLbtVMMY+k0jZu/idFqcD52eQPsYu9h1PpscowPOazyPCIDLli7WntYHx6QNaGhQaUNpAw3C2UmDjPRXIXNBzmtGBzyPkPtyQSJ6m4NjIAbO5qVNZz+rVq1aTc2aNTHE1WuczG81TtrAtJb0WPobdnXpuua03NnUzl5qrcldjW2y+ETdoTpuRd36ui112+p21CnWrGlHb8sTBYcKuLkFKwrWF2wp2Fawo0BJAy5q2yPXbSv4SwG/BqWJrMaruYmVuQZt/NDH1WtW0QuwgFVossXF1sQa2xoKYAFquwQ181KwogmiqUQzDY0Cfo/4Mpp30fwNjQDXId6C5pdodlEfvpQvbXYubaIltsco6Tj5il2JZEVNP9rzLsna02Zn7eYpWbuuocKJdl99pbbBhIo3gUcQn0PzOpqP0fwDjYKv4CtY5muyUtu+ClbFCFafvgBcTWFVbDX742VCu3v1qlgMVmVfDxIcAfrC8BuvFoGsWgPYFTggaGEk5ruKJltD7eGLBiAV/y/EuqTuCmVuZHN0cmVhbQplbmRvYmoKMTcgMCBvYmoKPDwvVHlwZSAvRm9udERlc2NyaXB0b3IKL0ZvbnROYW1lIC9UaW1lc05ld1JvbWFuUFNNVAovRmxhZ3MgNgovQXNjZW50IDg5MS4xMTMyOAovRGVzY2VudCAyMTYuMzA4NTkKL1N0ZW1WIDExMC4zNTE1NjMKL0NhcEhlaWdodCA2NjIuMTA5MzgKL0l0YWxpY0FuZ2xlIDAKL0ZvbnRCQm94IFstNTY4LjM1OTM4IC0zMDYuNjQwNjMgMjAwMCAxMDA2LjgzNTk0XQovRm9udEZpbGUyIDE2IDAgUj4+CmVuZG9iagoxOCAwIG9iago8PC9UeXBlIC9Gb250Ci9Gb250RGVzY3JpcHRvciAxNyAwIFIKL0Jhc2VGb250IC9UaW1lc05ld1JvbWFuUFNNVAovU3VidHlwZSAvQ0lERm9udFR5cGUyCi9DSURUb0dJRE1hcCAvSWRlbnRpdHkKL0NJRFN5c3RlbUluZm8gPDwvUmVnaXN0cnkgKEFkb2JlKQovT3JkZXJpbmcgKElkZW50aXR5KQovU3VwcGxlbWVudCAwPj4KL1cgWzAgWzc3Ny44MzIwM10gMyAxNyAyNTAgMTggWzI3Ny44MzIwM10gNDUgWzM4OS4xNjAxNiAwIDYxMC44Mzk4NCA4ODkuMTYwMTZdIDYyIDY0IDMzMy4wMDc4MSA2OCBbNDQzLjg0NzY2IDAgMCA1MDAgNDQzLjg0NzY2IDAgNTAwIDUwMCAyNzcuODMyMDMgMjc3LjgzMjAzIDAgMCAwIDUwMCA1MDAgMCAwIDAgMzg5LjE2MDE2IDI3Ny44MzIwMyA1MDAgMCAwIDUwMF1dCi9EVyAwPj4KZW5kb2JqCjE5IDAgb2JqCjw8L0ZpbHRlciAvRmxhdGVEZWNvZGUKL0xlbmd0aCAzMTA+PiBzdHJlYW0KeJxdkk1rwzAMhu/+FT52h5LvpIcQ6JoWctgHy/YDUlvpDItjHPeQfz9bKhnM4MAj6X0l5ESnru20cjx6t7PowfFRaWlhme9WAL/CTWmWpFwq4R6EXzENhkVe3K+Lg6nT48zqmvPow2cXZ1e+O8r5Ck8serMSrNI3vvs69Z77uzE/MIF2PGZNwyWM3ullMK/DBDxC2b6TPq/cuveav4rP1QBPkROaRswSFjMIsIO+AatjfxpeX/xpGGj5L1+S6jqK78Fidear4ziNm0Bpi5QfkbIzUvGMlMdELVGOVCZIviRQdcCeD/et1zZakmBZklLPM/W8IGVkn5/IviI6UJecgkcK0pBlRa3JsyDPkjyLkoIkr7LHWDRI2Ep4vW3l4m6t3zY+Ma45LFhp2P4CM5ugCvcX5kyfEwplbmRzdHJlYW0KZW5kb2JqCjggMCBvYmoKPDwvVHlwZSAvRm9udAovU3VidHlwZSAvVHlwZTAKL0Jhc2VGb250IC9UaW1lc05ld1JvbWFuUFNNVAovRW5jb2RpbmcgL0lkZW50aXR5LUgKL0Rlc2NlbmRhbnRGb250cyBbMTggMCBSXQovVG9Vbmljb2RlIDE5IDAgUj4+CmVuZG9iagp4cmVmCjAgMjAKMDAwMDAwMDAwMCA2NTUzNSBmIAowMDAwMDAwMDE1IDAwMDAwIG4gCjAwMDAwMDkyNDcgMDAwMDAgbiAKMDAwMDAwMDE1NCAwMDAwMCBuIAowMDAwMDAwMTkxIDAwMDAwIG4gCjAwMDAwMDAyNjcgMDAwMDAgbiAKMDAwMDAwMDM0MyAwMDAwMCBuIAowMDAwMDE4ODY0IDAwMDAwIG4gCjAwMDAwMzc3OTggMDAwMDAgbiAKMDAwMDAwMDQyMSAwMDAwMCBuIAowMDAwMDA5NTAyIDAwMDAwIG4gCjAwMDAwMDk1NTggMDAwMDAgbiAKMDAwMDAwOTYwNyAwMDAwMCBuIAowMDAwMDE3ODY4IDAwMDAwIG4gCjAwMDAwMTgxMDUgMDAwMDAgbiAKMDAwMDAxODQ4OSAwMDAwMCBuIAowMDAwMDE4OTk2IDAwMDAwIG4gCjAwMDAwMzY3NTkgMDAwMDAgbiAKMDAwMDAzNjk5OCAwMDAwMCBuIAowMDAwMDM3NDE3IDAwMDAwIG4gCnRyYWlsZXIKPDwvU2l6ZSAyMAovUm9vdCAxMSAwIFIKL0luZm8gMSAwIFI+PgpzdGFydHhyZWYKMzc5NDAKJSVFT0Y=" }, "metadata": {}, "output_type": "display_data" @@ -2976,12 +105,12 @@ "name": "stdout", "output_type": "stream", "text": [ - "(712, 10, 1) (712, 1, 1)\n" + "(3960, 1) (396, 1)\n" ] } ], "source": [ - "# Convert to numpy arrays. Panels contain a train-val-test split by default.\n", + "# Convert to numpy arrays\n", "x_train, y_train = x.train.values, y.train.values\n", "x_test, y_test = x.test.values, y.test.values\n", "print(x_train.shape, y_train.shape)" @@ -2989,59 +118,12 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
    \n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    traintestval
    MAE1.3989961.4842631.412011
    \n", - "
    " - ], - "text/plain": [ - " train test val\n", - "MAE 1.398996 1.484263 1.412011" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "# Or just instantiate a model.\n", - "model = wavy.LinearRegression(x, y)\n", + "model = models.LinearRegression(x, y)\n", "model.score()" ] } diff --git a/objects.inv b/objects.inv index 035a6ed404b33336eb26b464463a3f4628df4eb4..583f108106a273e39912da0c36414f7479d0faaf 100644 GIT binary patch delta 3534 zcmV;<4KebB7o;4Jcz<0@kK?!zz4xyWAYVO`$#HMV1`8~Z1!l7Wax~Pox?32vF-5X{x<$Qc0Sid*JWR(zNFF&#bSJVzJFKsWuj5`Z|x-p>fF9x ztHF{aU@ujl2I#fyPsRP52JCt(FV(qE3U<2Q+UFt-y(6jb0~Ftp6IU|8I#a7dXu zd2k0$`yR~a9!dcWz<*#U#BX4*kiWn{h@Ze~%3jz(bV4h_@)AL!P6AMZ8D}jd)ZXG~ivz0WeQff``3M3ygUnh~B6fMycKob z{s?B0rhi@-DR_qq;gGvp2#MUuI!NH|6#`>-tPnJOmr4P#J2Q+rK7H?fdAgJ@#l7xN z6VnOw<=&k8F{Ze%bSM7+lg{Z{-cIl9{SS<=>$Mx=S~N3~_3hNuN`E;ui@vVi90xSy z)KH7$a%-=r>cUJtj?omSms{~(MghH4%_R*`U4Qg_*_^gX)dD@J41l-ldAN>pknt(h zR|8I8UZc!L>oNh(=n1!?YO3b-)LrW;YJR%6;%bnJxKiEQ{pBTzf$go2 zM}O&ys!o71+{BUdlFAeM_H-%wV)D=^lg4`|lFRp^jz_qcUF3~-Zkuzl+$(I3La5SU zx3cI<49rv|!Ip47J>>mZrX~qxJ;8XKhZ+e&KQwqWSAP$?K9{XbYiMK=tx+;v$X}}0 z`<(l_+15^p7}63Km&>VWnzk?cb57_t|ZDQg{93r@D9^9x2B!`<-c-v7X3&o9@qj|9rY7hy2Hf^HBPE z{_B9O+ygM1+Ar&W4%FgCCUY+)q0d>pJT<6E+ZIfjv8*CH^D}0wy2uIJAUyMBfPb*l zwE>yd&zyaLt~O`vc+1ffwcd=`_DrODdS>ZyJJXZ20{G_W0l`nv3S-$kvh|=jy0nev zD*bucH*kJzI-+JRxN#@jw_+pZ`$omkE{2kePeH@WyPwb}Ou%<}-=CQEf*MvyVZr*P zLTVdUTtq2_9pk&*)HaNmA%zs&*MAqusrj$Ch*AnW*0YZi1| zHHBr{JNwjDZOE8f3Tx&s3sPG$qlQ(ISg?INk=%?88r0(r>gL^?XwI_jj?AnkV1V3e zkq)=(Egqbeiiz;Mt651DK}jZp(DdXWhCGh4DD{9y`;rbzBaS$nYe1yAEPvx6jUy{c zE+E3bw8GMeBQDA&AmY9}!qP}WT#`OW=z9_eLNCq~VZH#F;m;IyI&t&`2?9i&PYn!t zBxPYnfbsU{0(&Lef_Yy7lmu+sD6+@L0BHXBB!M@2!2^*J(V+Ctcga>288n!OC^13Y zkm=~bfjdZ$3)q%aM-mFsL4Sf&aDGU1#NdD&B*z6}OR6IY2j3t`F6dg)D3WNPMX53Y zmeA4B76jEGWj>hhj;vJ_bPZ$0rHA(F-1kl!ykUe*{gos>mQ&F+z#Rigz*{ zJt!-N2vS+GBh`@%X2lS}eO7Eqbi|;n7$Qey#g0@*63U7pl2lggNTWz1S+RsFkrgvK zI@(}X3{j@DVnVK?3V&q95KT8L-pQ2oz^oYKNN2^Ag3IA&Bwk{?h={otYB@qd6J$w+O;@aC8jPGE%YE#$MOt=H_yieJ z0n`<1nL;rXWJ*O*R~*R{38XTBvfIxRmRu@WIXa0eL9ElBE)|eJeInzHd|v?P4go_!Km}ycJx0!UTMgpe<)j1aMj< zg#}PZSJ*&>cTOpV9l?OFuwftkDTNf=p>#mOpGpllr4)8R$%4WTDskYH654^J5_)Th zw8F2N!ZI+?P=8oOCmp<63TuEgL}7`WlF%wiEC7=fjTv;p;?W}vS}MSZ5*NB^Oy;(u zRmC02Oz5%cjDV?oQZVaal#V?kyv&;Bu+1V(5v51{j8(7WGLh*}5>>?+Pn=SD) z*+q-Bd~6iISi;Vzgsi1zKzL*lQZdg5^3foCDp+NiwL~lsuT(Kkl$RwnUvg%q= z282f@B2{+!+kfgzwu&f3#~M$ZQN=3_V$;41r5FltWzlLs{P{D@wuNqQ<;P2Br^cAX`;r_UAQ3bK3(VN)gP*Qy~&@9-;hVJFIa^JfW`$UlW z@DLx??w}C}b=SxK`1HAIF6IARQ-9~?$-4gxJq*1GkW-$8bC36;xfk`&vFnSvo}OOr zIF!;f>aRu%i`~5LCW?#p~>~Bls)8`>!D4*N* zTW3t$Uq4mXkLKAPiB@#3m>ULE!IW>ynQw@|c4MqMpKky~VMMSf95Sk?G9UF)iX4R5@Z#HQ=D`W>!t-sW^5KT| znRzx2d0+!Oskk>$9z^!#Tky?^2UPGHid{U=@WIz6Zl28p?Uo2B4u8@*xR3a_GcXRj z$GWcA_Q8m1z-e)Z$2oDStB5kSPmfROD^_yFHpj6dcC6a_W+yO3oyUU_Tcfse+8aub zPugNy2QxTF?02*_TppjGlLZgPiGr_XGp$!`{k3&n$_@WMZEA~i?-#|2)#t%paw=AX z2YU&aqLj+PO>KZh;eTOX5vKYH^nprzhzU}+P<5M^I?Ed*Vw=K#3EdN@(mPb#CzQ-cIW*c}!{2=gP zFG;319NF}SBl~mSjM!ckfIS$V<$dpYm?MJuYGOHBJi&p-#+wTcRCqA(_FjVp6da`c If64*t&Vwq(s{jB1 delta 2857 zcmV+^3)b|c9E2B;cz;|=kL0)wzSplX;JUgev&X$98!WIu7MRTh$g!ZdU0p`I>{{E^ zlm7Ry<%eD*_1sf;k<`ael3$`o{a_!TFZaHx+cA55{yhKpZ0qcA8GAHeR`JViy0`hN zD9%}N`XQRU{DX~k+jR9WeK$_5n-+|+W#gEAqN! z-*3&;i7YpCz7OR=LGINC?CHs|59B(j4T)qU9~{{v+l;)%12n)P#hT9 z!2UH4ARGQ&zYX;`Hho7C(`^yN{;e6OrgX$KtYOseH`ccO59{E`c6OwfYcr9<=Lz?= zT)EFOCFEnMtAD1P{sPF$W9VO5O5k}0o9fBhF(v3&_CuW%(CzVJM=ksN<2lurs=l&k zJ6$+a4tjld<+NP+CM?{DcED{ek9xS=_v_!mgVsuO@nGGGq`dmL6n^uqs&9KU;|7%U zkgH8o4gKTNRLIb~V|46t9oW5&0=hO`l?JF~(^PjCF@LC`KnIl>aA;oVdGrTao!ocQ%!`1k=<#@0YS~pZ6}7(Snp@t`;C=t|G7=Z9l~f&-@&k zubjx6bLfA>Uos=RKiWD0&T=OVtm&HW?J_>vCTe`f8+%BkB4%p5J+Id!9qflG9%W)p zn*e3Lh<_u;CDolU^_PlGjNhSAU0SZ4NG>0&jYoLaW8{Tb_Fc)gYX$vA0Zd`Ap=ML< z1}2+=VB71QKjdjF*%E|Oo?tl6VFrT04-Fj6wAW$x=d$vpH4BjstwqBp^4I3=xqkba zUt5|H;8Ibus=BbQ>nApCD>C4o2*I4EHyzq58-LP)RsFPt2hstiMH|cIn=w&;n;D5s zeFWNmk%HIxZlE=MP7M$~<5Kw2UR6W=Q4iz11Zu8V%%y1w`92ID^K!PlvF@#Q0~GcG z_KOtz8|GKpI8{Hl>~((T7GL$aU?wfNvfp_x_4YZxXXg(@3g|L?I2(w@J z|9=dqZ8Bu$Bqm^w^?G}(LW3q&l$o^d1RLWcCM`?B0TU3!cu64Wa0wu}_bX=#(6q)n zyWBu%2CF|)MaQ#JG?_9-#l@?=EPo0ridII~$lv2T17Mdhrt>`wZ6k_|7*~v8jq}8zGbuhL?b;!{$dYYkvo9 zy9wSKeKW*)(xF|H3{iTyKjw++idk2zyF0Xk2%7qf}lG1c0y=qByaGYu_Eg}=YZMeDk>E%Lh z=iv=j`FTcCP+)N&BbSMH;{{B;u75N+wmdau5J@D~D*#Mp$#kikr(72XxHd5Yxljfn zyvS@JN(u1Yl6}192~H5oOu4JS+!O~&pkyh71tflW)Q=9&%sN@d4I>V86@Dm zCHW<0zM;CA#q>gC6sGEdK(w30FkjOaQ?XvrXmu1@$AFCwWjI`e*hu7|Bn13rgQYBF zipUP1uaaWRY4CHVHTHFlrfGPxKyfgI$xX@Du#UQs+mR_EJAA%MoJQSDBvBjtx<>O^ zJXxSPn8M(ueGa)TDJPYotfW&B?p zCP#LL;f$=+*aoQ!UD1ssZC&8uQ>1AJIu`(_#+Qyr)Q;gKP-wLeJ2j0wl%0w~tG(DM zx#_{|6ck$R#V&Htu+j1!CN*h3l#hx+t9{r>nfRg9BnU$1Ln`L^0DnFjJf8|mSwJWe z1%%Z4P?IYSLYc`Jl+u@1>=&}tucaB7nyDJj=Ullo8)Y0aTL1Ol$| zVsun_1T#7iaFq`urDP5E$tbki zi=C*$38p3>2%Qfpseh~|l#~QP=)6ePWBBFI8-r3W3eoQx;yn}ej#28Bf=S6Bq}GcX zFM$f?#9PB+9~MgyRVat0EhO~xFG{c?hzJl;YfuvvOSa&JTHBQ2Z+8VU=f4WuCx%uy zB^tT90c*89Jc8{Zp}_;F(y|RDQrML_ykKE(`7&I)xUhc-V1Jcm5KJ&9y7DcA9*sz9 zWzxLpXtBGlMN7nVLG?|UB(T8d(r+IZN;?mCpvKEFTqp=igUIOhg3;V`Ko_G3=1Wy# zBF+mGtq$k8)H|l3xge3+aFTl+Wg4P8n$;qla6+~gs&PE`3eYrEcQmU-7~!MBG@k7N zMXL>-Xz3hKq<@;}F%}sir(!y4t?ODAOJQjxv`(m68}+B;38;d_2LLIV&18ucJKqEa zFV6LHq&D^Qid6^u5x`IoIZ8{a4t5=Gt)MtF<&NHtQJlraR?-|m0D=kUL|0sg(4!Ga z?deO?RrUYOsaeH*`2RZtNOs&EX1prb7I)S?SvxlzCx6zq{42!t0~v9zzey4lE0+as zz-kl3%QW=Wv$Qalj5fwXf@0;ezztY!0(zO>o$n}9uG}-S-;Fj)vh+LMa5Yg{W3~ON zntSExNh8qGQZQ>mxm3sEUVsus!Ub3xX@VoABLFa1qhbPLg$V#6QUzgR(y8kJvP1qn z;Kh%@Vn!W<2Qnm zi=QrlvN?b~J?F2%h7q@}u;Bduv;Tx4@}~Og0K?5}P~+5>@5N(i%DP}3Yd^xX&#^5tAFYVHZ*38z(eN^htB^1=T00Z!hx#3 zbUa1nI9Nk(M;;`ypEhAM!VlFr4sX!gkS9&p%J+4!fP)*zB54h4I<^3~~scoY&Y%zykRUeGdWSBM-D&NDUYw z5QL0!Nj(J`Yk?=Fdw@9*GcuOAKr>=NtuGgW*63>2F~V>@sP+|bXFNWOU2$}5Ie*=A zy+^>6piI(j73!5qbKXAaLU+s0%IARlHqCM>s5BauVfywt-R28Y8LedN>7Z;Gk)KnX zBDPhOeI0=mxdQ-fP!y+eeopCch*h>NhF1MIHhj)C6tclUJ&#ir0UZ?3f2(u2Wyp7i;D Hh29!)Od))@ diff --git a/py-modindex.html b/py-modindex.html index b47744c..a64d960 100644 --- a/py-modindex.html +++ b/py-modindex.html @@ -23,7 +23,7 @@ @@ -61,7 +61,6 @@
  • wavy.panel Module
  • wavy.models Module
  • wavy.plot Module
  • -
  • wavy.utils Module
  • @@ -119,11 +118,6 @@

    Python Module Index

        wavy.plot - - -     - wavy.utils - diff --git a/search.html b/search.html index 9540977..53766b0 100644 --- a/search.html +++ b/search.html @@ -25,7 +25,7 @@ @@ -61,7 +61,6 @@
  • wavy.panel Module
  • wavy.models Module
  • wavy.plot Module
  • -
  • wavy.utils Module
  • diff --git a/searchindex.js b/searchindex.js index 548d03e..223bbd5 100644 --- a/searchindex.js +++ b/searchindex.js @@ -1 +1 @@ -Search.setIndex({"docnames": ["api/models", "api/panel", "api/plot", "api/utils", "api/wavy.models.BaselineConstant", "api/wavy.models.BaselineShift", "api/wavy.models.ConvModel", "api/wavy.models.DenseModel", "api/wavy.models.LinearRegression", "api/wavy.models.LogisticRegression", "api/wavy.models.ShallowModel", "api/wavy.models.compute_default_scores", "api/wavy.models.compute_score_per_model", "api/wavy.panel.Panel", "api/wavy.panel.concat_panels", "api/wavy.panel.create_panels", "api/wavy.panel.dropna_match", "api/wavy.panel.reset_ids", "api/wavy.panel.set_training_split", "api/wavy.plot.PanelFigure", "api/wavy.plot.plot", "api/wavy.utils.reverse_diff", "api/wavy.utils.reverse_pct_change", "index", "manual/installation", "manual/introduction", "manual/link", "manual/models", "manual/quickstart", "manual/tutorials", "notebooks/quickstart2"], "filenames": ["api/models.rst", "api/panel.rst", "api/plot.rst", "api/utils.rst", "api/wavy.models.BaselineConstant.rst", "api/wavy.models.BaselineShift.rst", "api/wavy.models.ConvModel.rst", "api/wavy.models.DenseModel.rst", "api/wavy.models.LinearRegression.rst", "api/wavy.models.LogisticRegression.rst", "api/wavy.models.ShallowModel.rst", "api/wavy.models.compute_default_scores.rst", "api/wavy.models.compute_score_per_model.rst", "api/wavy.panel.Panel.rst", "api/wavy.panel.concat_panels.rst", "api/wavy.panel.create_panels.rst", "api/wavy.panel.dropna_match.rst", "api/wavy.panel.reset_ids.rst", "api/wavy.panel.set_training_split.rst", "api/wavy.plot.PanelFigure.rst", "api/wavy.plot.plot.rst", "api/wavy.utils.reverse_diff.rst", "api/wavy.utils.reverse_pct_change.rst", "index.rst", "manual/installation.rst", "manual/introduction.rst", "manual/link.rst", "manual/models.rst", "manual/quickstart.rst", "manual/tutorials.rst", "notebooks/quickstart2.ipynb"], "titles": ["wavy.models Module", "wavy.panel Module", "wavy.plot Module", "wavy.utils Module", "BaselineConstant", "BaselineShift", "ConvModel", "DenseModel", "LinearRegression", "LogisticRegression", "ShallowModel", "compute_default_scores", "compute_score_per_model", "Panel", "concat_panels", "create_panels", "dropna_match", "reset_ids", "set_training_split", "PanelFigure", "plot", "reverse_diff", "reverse_pct_change", "Wavy", "Installation", "Introduction", "Link", "Models", "Quickstart", "Tutorials", "Quickstart"], "terms": {"class": [4, 5, 6, 7, 8, 9, 10, 13, 19, 26], "x": [4, 5, 6, 7, 8, 9, 10, 11, 16, 18, 25, 26, 28, 29, 30], "y": [4, 5, 6, 7, 8, 9, 10, 11, 16, 18, 25, 26, 28, 29, 30], "model_typ": [4, 5, 6, 7, 11, 29], "option": [4, 5, 6, 7, 10, 11, 12, 13], "str": [4, 5, 6, 7, 10, 11, 12, 13, 19], "none": [4, 5, 6, 7, 10, 13, 18], "loss": [4, 5, 6, 7], "metric": [4, 5, 6, 7, 10], "list": [4, 5, 6, 7, 13, 14, 17, 26, 28, 30], "constant": 4, "float": [4, 13, 18, 19], "0": [4, 5, 11, 13, 15, 18, 26, 28, 29, 30], "sourc": [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 26], "base": [4, 5, 6, 7, 8, 9, 10, 13, 19, 29], "_baselin": [4, 5], "method": [4, 5, 6, 7, 10, 13, 19], "summari": [4, 5, 6, 7, 10, 13, 19], "document": [4, 5, 6, 7, 10, 13, 19], "set_arrai": [4, 5, 10], "set": [4, 5, 10, 13, 19, 29], "arrai": [4, 5, 10, 13, 26, 28, 30], "fillna": 5, "shift": 5, "1": [5, 6, 7, 13, 18, 19, 21, 22, 25, 26, 28, 29, 30], "build": [5, 6, 7], "model": [5, 6, 7, 10, 11, 12, 23, 26, 28, 29, 30], "conv_lay": 6, "int": [6, 7, 11, 13, 15, 18, 21, 22], "conv_filt": 6, "32": [6, 7, 26], "kernel_s": 6, "3": [6, 25, 26, 30], "dense_lay": [6, 7], "dense_unit": [6, 7], "activ": [6, 7], "relu": [6, 7], "optim": [6, 7], "last_activ": [6, 7], "_basemodel": [6, 7], "kwarg": [8, 9, 10, 11, 13, 19, 20], "densemodel": [8, 9, 29], "object": [10, 20, 25], "fit": [10, 29], "paramet": [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22], "keyword": [10, 11], "argument": [10, 11, 13], "return": [10, 11, 12, 13, 14, 15, 16, 17, 20, 21, 22], "The": [10, 13, 24, 25], "type": [10, 11, 12, 13, 14, 15, 16, 17, 20, 21, 22, 26, 30], "get_auc": 10, "get": [10, 24, 25, 29], "auc": 10, "score": [10, 11, 12, 26, 28, 29, 30], "predict": [10, 29], "data": [10, 11, 12, 13, 16, 18, 20, 25, 26, 28, 29, 30], "panel": [10, 11, 14, 15, 16, 17, 18, 19, 20, 23, 25, 26, 28, 29, 30], "default": [10, 11, 12, 13, 26, 28, 30], "predict_proba": 10, "probabl": 10, "residu": 10, "us": [10, 12, 13, 18, 20, 21, 22, 29], "pd": [10, 11, 12, 13, 15, 21, 22, 26, 28, 29, 30], "seri": [10, 25, 26, 28, 30], "train": [10, 13, 18, 20, 26, 28, 30], "test": [10, 13, 18, 20, 26, 28, 30], "valid": [10, 13, 18, 26, 29], "epoch": 11, "10": [11, 26, 28, 30], "verbos": 11, "comput": [11, 12], "number": [11, 13, 21, 22, 25, 26, 28, 30], "datafram": [11, 12, 13, 15, 21, 22, 25, 26, 28, 30], "val": [12, 13, 18, 20, 26, 28, 29, 30], "per": [12, 13], "arg": [13, 19], "kw": 13, "structur": 13, "attribut": 13, "frame": [13, 16, 25, 26, 28, 30], "id": [13, 14, 16, 17, 20], "without": 13, "duplic": 13, "num_column": 13, "column": [13, 25, 29], "num_fram": 13, "num_timestep": 13, "timestep": [13, 20, 26, 28, 30], "shape_panel": 13, "shape": [13, 26, 28, 30], "accord": 13, "given": 13, "set_training_split": 13, "function": [13, 21, 22], "values_panel": 13, "3d": 13, "matrix": 13, "valu": [13, 26, 28, 30], "exampl": [13, 18, 25, 28], "283": [13, 26], "95999146": 13, "284": [13, 26], "13000488": 13, "280": [13, 26], "1499939": 13, "281": [13, 26], "77999878": 13, "282": [13, 26], "58999634": 13, "290": [13, 26], "88000488": 13, "276": [13, 26], "73001099": 13, "289": [13, 26], "98001099": 13, "285": [13, 26], "54000854": 13, "286": [13, 26], "3500061": 13, "274": [13, 26], "33999634": 13, "277": [13, 26], "80999756": 13, "279": [13, 26], "25": [13, 26], "271": [13, 26], "26998901": 13, "270": [13, 26], "05999756": 13, "272": [13, 26], "35998535": 13, "263": [13, 26], "32000732": 13, "264": [13, 26], "57998657": 13, "drop_id": 13, "union": [13, 18], "inplac": [13, 17, 29], "bool": [13, 14, 17, 20], "fals": [13, 14, 17, 20, 26], "drop": [13, 16, 29], "whether": [13, 14, 17], "dropna_fram": 13, "miss": 13, "from": [13, 15, 24, 29], "findna_fram": 13, "int64index": 13, "find": 13, "nan": [13, 16, 29], "index": [13, 25, 26, 28, 30], "flatten_panel": 13, "flatten": 13, "get_timestep": 13, "n": [13, 26], "first": 13, "each": [13, 25, 26, 28, 30], "head_panel": 13, "5": [13, 25, 26, 29, 30], "result": 13, "head": 13, "match_fram": 13, "other": 13, "match": [13, 16], "thi": [13, 26, 28, 29, 30], "order": 13, "self": 13, "plot": [13, 23, 26, 28, 29, 30], "add_annot": [13, 19, 20], "true": [13, 20, 26, 29], "max": [13, 29], "10000": 13, "use_timestep": [13, 20], "panelfigur": [13, 20], "If": [13, 20, 29], "annot": [13, 26], "maximum": 13, "sampl": 13, "instead": [13, 20], "addit": 13, "pass": 13, "reset_id": [13, 14], "reset": [13, 14, 17], "row_panel": 13, "nth": 13, "row": [13, 29], "sample_panel": 13, "how": 13, "space": 13, "seed": 13, "42": [13, 26], "subset": 13, "percentag": 13, "random": [13, 26, 28, 30], "train_siz": [13, 18], "7": [13, 18, 26, 30], "val_siz": [13, 18], "2": [13, 18, 25, 26, 30], "test_siz": [13, 18], "split": [13, 18, 19, 26, 28, 30], "access": [13, 18], "properti": [13, 18], "fraction": [13, 18], "shuffle_panel": 13, "shuffl": 13, "sort_panel": 13, "ascend": 13, "kind": 13, "quicksort": 13, "kei": 13, "callabl": 13, "sort": [13, 14], "like": 13, "vs": 13, "descend": 13, "when": [13, 25], "multiindex": 13, "direct": 13, "can": [13, 28, 29], "control": 13, "level": [13, 25], "individu": 13, "perform": 13, "oper": [13, 21, 22], "place": 13, "mergesort": 13, "heapsort": 13, "stabl": 13, "choic": 13, "algorithm": 13, "see": [13, 28, 29], "also": [13, 29], "numpi": [13, 26, 28, 30], "more": [13, 28], "inform": [13, 29], "ar": [13, 25, 26, 28, 29, 30], "onli": [13, 26], "For": [13, 25, 29], "appli": 13, "singl": 13, "label": 13, "befor": 13, "similar": 13, "builtin": 13, "notabl": 13, "differ": [13, 25], "should": 13, "vector": 13, "It": [13, 25], "expect": 13, "an": 13, "same": 13, "input": 13, "origin": 13, "tail_panel": 13, "last": [13, 29], "tail": 13, "to_datafram": 13, "convert": [13, 26, 28, 29, 30], "concaten": 14, "df": [15, 26, 28, 30], "lookback": [15, 25, 26, 28, 29, 30], "horizon": [15, 25, 26, 28, 29, 30], "gap": [15, 25, 29], "tupl": 15, "creat": [15, 25, 26, 28, 29, 30], "size": [15, 26], "both": 16, "figur": 19, "color": [19, 26], "grai": [19, 26], "opac": [19, 26], "wavi": [19, 25, 26, 28, 29, 30], "add_area": 19, "add_bar": 19, "add_dotlin": 19, "add_lin": 19, "add_scatt": 19, "iter": 19, "vertic": [20, 26], "line": [20, 26], "show": 20, "period": [20, 21, 22, 29], "diff_df": 21, "original_df": [21, 22], "revers": [21, 22], "pct_diff": 21, "refer": [21, 22], "diff": 21, "change_df": 22, "pct_chang": [22, 29], "instal": 23, "introduct": [23, 26, 28, 30], "quickstart": [23, 26], "tutori": [23, 28], "modul": 23, "util": 23, "easiest": 24, "wai": 24, "pypi": 24, "pip": 24, "wavyt": 24, "librari": [25, 28, 29, 30], "time": [25, 26, 28, 30], "analysi": 25, "python": [25, 26], "wrapper": 25, "around": 25, "panda": [25, 26, 28, 29, 30], "packag": 25, "goal": 25, "provid": 25, "simpl": 25, "intuit": 25, "interfac": 25, "while": 25, "high": [25, 29], "flexibl": 25, "extens": 25, "process": [25, 29], "start": [25, 26, 28, 29, 30], "analyz": [25, 29], "where": 25, "variabl": 25, "user": [25, 26, 28, 30], "need": 25, "specifi": 25, "three": 25, "thing": 25, "step": 25, "look": 25, "back": 25, "skip": 25, "ahead": 25, "let": 25, "suppos": 25, "we": [25, 29], "have": 25, "12": [25, 26], "want": [25, 29], "At": 25, "end": 25, "cell": 26, "cell_typ": 26, "markdown": 26, "metadata": 26, "short": [26, 28, 30], "gear": [26, 28, 30], "mainli": [26, 28, 30], "new": [26, 28, 30], "code": 26, "execution_count": 26, "output": 26, "import": [26, 28, 29, 30], "librariesn": 26, "npn": 26, "pdn": 26, "ani": [26, 28, 30], "dataframen": 26, "price": [26, 28, 30], "np": [26, 28, 30], "randn": [26, 28, 30], "1000": [26, 28, 30], "rang": [26, 28, 30], "4": [26, 30], "compos": [26, 28, 30], "create_panel": [26, 28, 29, 30], "name": 26, "stdout": 26, "output_typ": 26, "stream": 26, "text": 26, "1n": 26, "contain": [26, 28, 30], "past": [26, 28, 30], "correspond": [26, 28, 30], "futur": [26, 28, 30], "print": [26, 28, 30], "len": [26, 28, 30], "6": [26, 30], "applic": [26, 30], "vnd": [26, 30], "plotli": [26, 30], "v1": [26, 30], "json": [26, 30], "config": 26, "plotlyserverurl": 26, "http": 26, "ly": 26, "636efa": 26, "width": 26, "mode": 26, "scatter": 26, "11": 26, "13": 26, "14": 26, "15": 26, "16": 26, "17": 26, "18": 26, "19": 26, "20": 26, "21": 26, "22": 26, "23": 26, "24": 26, "26": 26, "27": 26, "28": 26, "29": 26, "30": 26, "31": 26, "33": 26, "34": 26, "35": 26, "36": 26, "37": 26, "38": 26, "39": 26, "40": 26, "41": 26, "43": 26, "44": 26, "45": 26, "46": 26, "47": 26, "48": 26, "49": 26, "50": 26, "51": 26, "52": 26, "53": 26, "54": 26, "55": 26, "56": 26, "57": 26, "58": 26, "59": 26, "60": 26, "61": 26, "62": 26, "63": 26, "64": 26, "65": 26, "66": 26, "67": 26, "68": 26, "69": 26, "70": 26, "71": 26, "72": 26, "73": 26, "74": 26, "75": 26, "76": 26, "77": 26, "78": 26, "79": 26, "80": 26, "81": 26, "82": 26, "83": 26, "84": 26, "85": 26, "86": 26, "87": 26, "88": 26, "89": 26, "90": 26, "91": 26, "92": 26, "93": 26, "94": 26, "95": 26, "96": 26, "97": 26, "98": 26, "99": 26, "100": 26, "101": 26, "102": 26, "103": 26, "104": 26, "105": 26, "106": 26, "107": 26, "108": 26, "109": 26, "110": 26, "111": 26, "112": 26, "113": 26, "114": 26, "115": 26, "116": 26, "117": 26, "118": 26, "119": 26, "120": 26, "121": 26, "122": 26, "123": 26, "124": 26, "125": 26, "126": 26, "127": 26, "128": 26, "129": 26, "130": 26, "131": 26, "132": 26, "133": 26, "134": 26, "135": 26, "136": 26, "137": 26, "138": 26, "139": 26, "140": 26, "141": 26, "142": 26, "143": 26, "144": 26, "145": 26, "146": 26, "147": 26, "148": 26, "149": 26, "150": 26, "151": 26, "152": 26, "153": 26, "154": 26, "155": 26, "156": 26, "157": 26, "158": 26, "159": 26, "160": 26, "161": 26, "162": 26, "163": 26, "164": 26, "165": 26, "166": 26, "167": 26, "168": 26, "169": 26, "170": 26, "171": 26, "172": 26, "173": 26, "174": 26, "175": 26, "176": 26, "177": 26, "178": 26, "179": 26, "180": 26, "181": 26, "182": 26, "183": 26, "184": 26, "185": 26, "186": 26, "187": 26, "188": 26, "189": 26, "190": 26, "191": 26, "192": 26, "193": 26, "194": 26, "195": 26, "196": 26, "197": 26, "198": 26, "199": 26, "200": 26, "201": 26, "202": 26, "203": 26, "204": 26, "205": 26, "206": 26, "207": 26, "208": 26, "209": 26, "210": 26, "211": 26, "212": 26, "213": 26, "214": 26, "215": 26, "216": 26, "217": 26, "218": 26, "219": 26, "220": 26, "221": 26, "222": 26, "223": 26, "224": 26, "225": 26, "226": 26, "227": 26, "228": 26, "229": 26, "230": 26, "231": 26, "232": 26, "233": 26, "234": 26, "235": 26, "236": 26, "237": 26, "238": 26, "239": 26, "240": 26, "241": 26, "242": 26, "243": 26, "244": 26, "245": 26, "246": 26, "247": 26, "248": 26, "249": 26, "250": 26, "251": 26, "252": 26, "253": 26, "254": 26, "255": 26, "256": 26, "257": 26, "258": 26, "259": 26, "260": 26, "261": 26, "262": 26, "265": 26, "266": 26, "267": 26, "268": 26, "269": 26, "273": 26, "275": 26, "278": 26, "287": 26, "288": 26, "291": 26, "292": 26, "293": 26, "294": 26, "295": 26, "296": 26, "297": 26, "298": 26, "299": 26, "300": 26, "301": 26, "302": 26, "303": 26, "304": 26, "305": 26, "306": 26, "307": 26, "308": 26, "309": 26, "310": 26, "311": 26, "312": 26, "313": 26, "314": 26, "315": 26, "316": 26, "317": 26, "318": 26, "319": 26, "320": 26, "321": 26, "322": 26, "323": 26, "324": 26, "325": 26, "326": 26, "327": 26, "328": 26, "329": 26, "330": 26, "331": 26, "332": 26, "333": 26, "334": 26, "335": 26, "336": 26, "337": 26, "338": 26, "339": 26, "340": 26, "341": 26, "342": 26, "343": 26, "344": 26, "345": 26, "346": 26, "347": 26, "348": 26, "349": 26, "350": 26, "351": 26, "352": 26, "353": 26, "354": 26, "355": 26, "356": 26, "357": 26, "358": 26, "359": 26, "360": 26, "361": 26, "362": 26, "363": 26, "364": 26, "365": 26, "366": 26, "367": 26, "368": 26, "369": 26, "370": 26, "371": 26, "372": 26, "373": 26, "374": 26, "375": 26, "376": 26, "377": 26, "378": 26, "379": 26, "380": 26, "381": 26, "382": 26, "383": 26, "384": 26, "385": 26, "386": 26, "387": 26, "388": 26, "389": 26, "390": 26, "391": 26, "392": 26, "393": 26, "394": 26, "395": 26, "396": 26, "397": 26, "398": 26, "399": 26, "400": 26, "401": 26, "402": 26, "403": 26, "404": 26, "405": 26, "406": 26, "407": 26, "408": 26, "409": 26, "410": 26, "411": 26, "412": 26, "413": 26, "414": 26, "415": 26, "416": 26, "417": 26, "418": 26, "419": 26, "420": 26, "421": 26, "422": 26, "423": 26, "424": 26, "425": 26, "426": 26, "427": 26, "428": 26, "429": 26, "430": 26, "431": 26, "432": 26, "433": 26, "434": 26, "435": 26, "436": 26, "437": 26, "438": 26, "439": 26, "440": 26, "441": 26, "442": 26, "443": 26, "444": 26, "445": 26, "446": 26, "447": 26, "448": 26, "449": 26, "450": 26, "451": 26, "452": 26, "453": 26, "454": 26, "455": 26, "456": 26, "457": 26, "458": 26, "459": 26, "460": 26, "461": 26, "462": 26, "463": 26, "464": 26, "465": 26, "466": 26, "467": 26, "468": 26, "469": 26, "470": 26, "471": 26, "472": 26, "473": 26, "474": 26, "475": 26, "476": 26, "477": 26, "478": 26, "479": 26, "480": 26, "481": 26, "482": 26, "483": 26, "484": 26, "485": 26, "486": 26, "487": 26, "488": 26, "489": 26, "490": 26, "491": 26, "492": 26, "493": 26, "494": 26, "495": 26, "496": 26, "497": 26, "498": 26, "499": 26, "500": 26, "501": 26, "502": 26, "503": 26, "504": 26, "505": 26, "506": 26, "507": 26, "508": 26, "509": 26, "510": 26, "511": 26, "512": 26, "513": 26, "514": 26, "515": 26, "516": 26, "517": 26, "518": 26, "519": 26, "520": 26, "521": 26, "522": 26, "523": 26, "524": 26, "525": 26, "526": 26, "527": 26, "528": 26, "529": 26, "530": 26, "531": 26, "532": 26, "533": 26, "534": 26, "535": 26, "536": 26, "537": 26, "538": 26, "539": 26, "540": 26, "541": 26, "542": 26, "543": 26, "544": 26, "545": 26, "546": 26, "547": 26, "548": 26, "549": 26, "550": 26, "551": 26, "552": 26, "553": 26, "554": 26, "555": 26, "556": 26, "557": 26, "558": 26, "559": 26, "560": 26, "561": 26, "562": 26, "563": 26, "564": 26, "565": 26, "566": 26, "567": 26, "568": 26, "569": 26, "570": 26, "571": 26, "572": 26, "573": 26, "574": 26, "575": 26, "576": 26, "577": 26, "578": 26, "579": 26, "580": 26, "581": 26, "582": 26, "583": 26, "584": 26, "585": 26, "586": 26, "587": 26, "588": 26, "589": 26, "590": 26, "591": 26, "592": 26, "593": 26, "594": 26, "595": 26, "596": 26, "597": 26, "598": 26, "599": 26, "600": 26, "601": 26, "602": 26, "603": 26, "604": 26, "605": 26, "606": 26, "607": 26, "608": 26, "609": 26, "610": 26, "611": 26, "612": 26, "613": 26, "614": 26, "615": 26, "616": 26, "617": 26, "618": 26, "619": 26, "620": 26, "621": 26, "622": 26, "623": 26, "624": 26, "625": 26, "626": 26, "627": 26, "628": 26, "629": 26, "630": 26, "631": 26, "632": 26, "633": 26, "634": 26, "635": 26, "636": 26, "637": 26, "638": 26, "639": 26, "640": 26, "641": 26, "642": 26, "643": 26, "644": 26, "645": 26, "646": 26, "647": 26, "648": 26, "649": 26, "650": 26, "651": 26, "652": 26, "653": 26, "654": 26, "655": 26, "656": 26, "657": 26, "658": 26, "659": 26, "660": 26, "661": 26, "662": 26, "663": 26, "664": 26, "665": 26, "666": 26, "667": 26, "668": 26, "669": 26, "670": 26, "671": 26, "672": 26, "673": 26, "674": 26, "675": 26, "676": 26, "677": 26, "678": 26, "679": 26, "680": 26, "681": 26, "682": 26, "683": 26, "684": 26, "685": 26, "686": 26, "687": 26, "688": 26, "689": 26, "690": 26, "691": 26, "692": 26, "693": 26, "694": 26, "695": 26, "696": 26, "697": 26, "698": 26, "699": 26, "700": 26, "701": 26, "702": 26, "703": 26, "704": 26, "705": 26, "706": 26, "707": 26, "708": 26, "709": 26, "710": 26, "711": 26, "712": [26, 30], "713": 26, "714": 26, "715": 26, "716": 26, "717": 26, "718": 26, "719": 26, "720": 26, "721": 26, "722": 26, "723": 26, "724": 26, "725": 26, "726": 26, "727": 26, "728": 26, "729": 26, "730": 26, "731": 26, "732": 26, "733": 26, "734": 26, "735": 26, "736": 26, "737": 26, "738": 26, "739": 26, "740": 26, "741": 26, "742": 26, "743": 26, "744": 26, "745": 26, "746": 26, "747": 26, "748": 26, "749": 26, "750": 26, "751": 26, "752": 26, "753": 26, "754": 26, "755": 26, "756": 26, "757": 26, "758": 26, "759": 26, "760": 26, "761": 26, "762": 26, "763": 26, "764": 26, "765": 26, "766": 26, "767": 26, "768": 26, "769": 26, "770": 26, "771": 26, "772": 26, "773": 26, "774": 26, "775": 26, "776": 26, "777": 26, "778": 26, "779": 26, "780": 26, "781": 26, "782": 26, "783": 26, "784": 26, "785": 26, "786": 26, "787": 26, "788": 26, "789": 26, "790": 26, "791": 26, "792": 26, "793": 26, "794": 26, "795": 26, "796": 26, "797": 26, "798": 26, "799": 26, "800": 26, "801": 26, "802": 26, "803": 26, "804": 26, "805": 26, "806": 26, "807": 26, "808": 26, "809": 26, "810": 26, "811": 26, "812": 26, "813": 26, "814": 26, "815": 26, "816": 26, "817": 26, "818": 26, "819": 26, "820": 26, "821": 26, "822": 26, "823": 26, "824": 26, "825": 26, "826": 26, "827": 26, "828": 26, "829": 26, "830": 26, "831": 26, "832": 26, "833": 26, "834": 26, "835": 26, "836": 26, "837": 26, "838": 26, "839": 26, "840": 26, "841": 26, "842": 26, "843": 26, "844": 26, "845": 26, "846": 26, "847": 26, "848": 26, "849": 26, "850": 26, "851": 26, "852": 26, "853": 26, "854": 26, "855": 26, "856": 26, "857": 26, "858": 26, "859": 26, "860": 26, "861": 26, "862": 26, "863": 26, "864": 26, "865": 26, "866": 26, "867": 26, "868": 26, "869": 26, "870": 26, "871": 26, "872": 26, "873": 26, "874": 26, "875": 26, "876": 26, "877": 26, "878": 26, "879": 26, "880": 26, "881": 26, "882": 26, "883": 26, "884": 26, "885": 26, "886": 26, "887": 26, "888": 26, "889": 26, "890": 26, "891": 26, "892": 26, "893": 26, "894": 26, "895": 26, "896": 26, "897": 26, "898": 26, "899": 26, "900": 26, "901": 26, "902": 26, "903": 26, "904": 26, "905": 26, "906": 26, "907": 26, "908": 26, "909": 26, "910": 26, "911": 26, "912": 26, "913": 26, "914": 26, "915": 26, "916": 26, "917": 26, "918": 26, "919": 26, "920": 26, "921": 26, "922": 26, "923": 26, "924": 26, "925": 26, "926": 26, "927": 26, "928": 26, "929": 26, "930": 26, "931": 26, "932": 26, "933": 26, "934": 26, "935": 26, "936": 26, "937": 26, "938": 26, "939": 26, "940": 26, "941": 26, "942": 26, "943": 26, "944": 26, "945": 26, "946": 26, "947": 26, "948": 26, "949": 26, "950": 26, "951": 26, "952": 26, "953": 26, "954": 26, "955": 26, "956": 26, "957": 26, "958": 26, "959": 26, "960": 26, "961": 26, "962": 26, "963": 26, "964": 26, "965": 26, "966": 26, "967": 26, "968": 26, "969": 26, "970": 26, "971": 26, "972": 26, "973": 26, "974": 26, "975": 26, "976": 26, "977": 26, "978": 26, "979": 26, "980": 26, "981": 26, "982": 26, "983": 26, "984": 26, "985": 26, "986": 26, "987": 26, "988": 26, "989": 26, "990": 26, "991": 26, "992": 26, "993": 26, "994": 26, "995": 26, "996": 26, "997": 26, "998": 26, "999": 26, "06657949580650858": 26, "7042071210339776": 26, "2187134154182149": 26, "0438159662107087": 26, "9354952062579315": 26, "14629480653093715": 26, "4349731129940377": 26, "0308995266205496": 26, "0889189213097403": 26, "30710724897540126": 26, "0991149262428481": 26, "5978842357200534": 26, "7464901625452016": 26, "38411327878418644": 26, "058309614175752505": 26, "10644452518776774": 26, "8315634996455803": 26, "363731126925096": 26, "566941557704011": 26, "1432476782923935": 26, "5438997861199969": 26, "41443731166352626": 26, "6834270361981524": 26, "2792723882229176": 26, "5682993405240077": 26, "02609951374932082": 26, "4018465656017396": 26, "7605177314702534": 26, "275735422505185": 26, "6551096049685572": 26, "3247658618362472": 26, "4715274899369837": 26, "4984474052092241": 26, "1376955741955783": 26, "1589211395948154": 26, "9545426943169023": 26, "4499999018459975": 26, "7145277774562966": 26, "6603003508326633": 26, "5634292008163986": 26, "4974440278853725": 26, "4060832929567913": 26, "3974419740271804": 26, "474586686552337": 26, "6606196447362331": 26, "4500880780132674": 26, "12022103766541989": 26, "1022128828550566": 26, "8564926915691011": 26, "0778712662320427": 26, "09272682276561497": 26, "0211598324657853": 26, "8171274661362593": 26, "886814115334868": 26, "4433326967175908": 26, "014596186154694": 26, "6517451877130913": 26, "7506509115512537": 26, "0260613595761223": 26, "4063132638813742": 26, "0749348110252344": 26, "1897580586999632": 26, "3671860085829968": 26, "33149342272485643": 26, "5439584038782816": 26, "22606541567181407": 26, "12322035653621273": 26, "9348937517930265": 26, "7219486257319628": 26, "6912560453560557": 26, "13586844931610315": 26, "6540655197092853": 26, "1628618245895828": 26, "1803346698747063": 26, "3824828398342313": 26, "5666969267698645": 26, "20844608433716608": 26, "04128384395168908": 26, "3047373880992574": 26, "8328301784481946": 26, "1626387144823998": 26, "1924258632946733": 26, "09958002094867519": 26, "021069740325564384": 26, "4032449238135223": 26, "42765772259366597": 26, "1623813512691879": 26, "6231818542538072": 26, "4849178373306402": 26, "7336363158704325": 26, "3832795090845457": 26, "47031752864388066": 26, "48995444125295623": 26, "27345713724262855": 26, "0914161780568458": 26, "3140319089109977": 26, "0004679001320387": 26, "593908003677212": 26, "4974194699856576": 26, "207794006144397": 26, "0022405240324975297": 26, "4726662094782263": 26, "681124231490161": 26, "6393643300531231": 26, "5203900581142561": 26, "25946296430900895": 26, "4186120526229247": 26, "12298583975763708": 26, "9792565930551863": 26, "0564443715751681": 26, "8952269043159242": 26, "9815171706466476": 26, "0173702876488693": 26, "6218391072120193": 26, "3550792420732198": 26, "4443280182918838": 26, "09072837407970864": 26, "7160525357145655": 26, "42587790264626": 26, "3632482289017114": 26, "781163393693321": 26, "49359685006786147": 26, "8991199708960806": 26, "5696644865897532": 26, "334492715584694": 26, "0369735120150199": 26, "26163418924463205": 26, "904160287346853": 26, "1003199699820798": 26, "42735829113580254": 26, "19986774044920338": 26, "206060686144269": 26, "7235212988212015": 26, "6634973708698573": 26, "2423401591244117": 26, "9004319987767728": 26, "6648073390822695": 26, "25927236884369254": 26, "5366558376909945": 26, "084606600679036": 26, "2435352740109413": 26, "5281844577617784": 26, "7252372184225023": 26, "5666059323295565": 26, "4067562196486277": 26, "44404299872864667": 26, "17032038217482862": 26, "5221632335993641": 26, "5122490284309147": 26, "10238397597121947": 26, "5237556529041572": 26, "5803870522439922": 26, "3326739961418302": 26, "529898471270117": 26, "7425132619723852": 26, "14851642495278988": 26, "9796872034702306": 26, "7949147173434337": 26, "8593838024150303": 26, "8394291531627852": 26, "0422959210893497": 26, "2102012708039764": 26, "0177908650593928": 26, "56099346051176": 26, "33520451027596204": 26, "3681384716347351": 26, "9198785949061832": 26, "7640114801435517": 26, "45629223247403483": 26, "7048600126392744": 26, "9472825088617235": 26, "6276601939380488": 26, "36452223345702456": 26, "41102510921097324": 26, "4013850153943589": 26, "459140329875622": 26, "10102659762678608": 26, "8646011928369576": 26, "2761723500116484": 26, "02024391550334601": 26, "0158022276410426": 26, "5471276759510846": 26, "3663786228664883": 26, "0368069011278525": 26, "1275769356130981": 26, "8844657348993814": 26, "507183194872279": 26, "1793344352462634": 26, "4147793726882614": 26, "1664981751308257": 26, "010388817029583775": 26, "38587473016874646": 26, "7064216466506991": 26, "2372643055941408": 26, "9369845028619604": 26, "4349020935054483": 26, "346216698856833": 26, "5571004712721115": 26, "5952560980385858": 26, "6028758149890263": 26, "471673061422436": 26, "357601167655102": 26, "5966459641343468": 26, "0208039807559803": 26, "7872412271786862": 26, "7887305976344459": 26, "46563144842613424": 26, "0369825250843871": 26, "34877339501253246": 26, "7828423072391619": 26, "434784881410705": 26, "1370740483114172": 26, "42157775231221545": 26, "8080488782516375": 26, "3769091348912932": 26, "7018416773116258": 26, "3031070729854288": 26, "2989670165522678": 26, "5118937119799508": 26, "5490693710181883": 26, "1960766052934033": 26, "45529048959799484": 26, "3971329485531783": 26, "21165597459900515": 26, "7469464848502221": 26, "06515438732525378": 26, "5921709888018915": 26, "5264578087189562": 26, "4104432803825298": 26, "574292300201689": 26, "07549071412974467": 26, "667833023209295": 26, "9984741823702818": 26, "58320941547157": 26, "003341428250683831": 26, "11109790876105918": 26, "676908438114285": 26, "4091091061120369": 26, "43532764054689166": 26, "1433994269053869": 26, "7480599898474494": 26, "8642259605407514": 26, "6365601105336879": 26, "1955222756647389": 26, "2748004393694956": 26, "06303302740857754": 26, "2451436253223342": 26, "37322839455652956": 26, "5768929482992389": 26, "694014296727232": 26, "2570385210991602": 26, "2142012538202502": 26, "5005330087029989": 26, "6060979474124115": 26, "4184935989327954": 26, "06274754674055728": 26, "4867770853321085": 26, "2571084130635521": 26, "06957579578851479": 26, "4188035188709695": 26, "010733613958181438": 26, "6768528696777663": 26, "8864256260162515": 26, "14707464622797067": 26, "6779122755863654": 26, "8559066904470817": 26, "11193951149910018": 26, "13187718604750776": 26, "031054892495864": 26, "034396655229725945": 26, "4209851520385636": 26, "8136597588178065": 26, "3752464105246218": 26, "0307386629054998": 26, "5701354658313716": 26, "07334729516618461": 26, "5470673399553428": 26, "17227879608845": 26, "24879284139184463": 26, "2217401816778282": 26, "6030969351679943": 26, "978855039521635": 26, "2507482481107615": 26, "1772752738651369": 26, "38519987904452463": 26, "344303457787504": 26, "0559391019465418": 26, "8247058780666288": 26, "31515492029812997": 26, "8870787756221162": 26, "12077436701128975": 26, "297237169824904": 26, "38845984393728905": 26, "3278191241901618": 26, "3734303204313007": 26, "8279180455876117": 26, "4630044784790748": 26, "05193095216977354": 26, "05782713449793359": 26, "8478127186396591": 26, "05630777227836795": 26, "39121863699731485": 26, "4774313292429648": 26, "3963143977097747": 26, "4539647170174574": 26, "9793810591681177": 26, "7173368313212088": 26, "236159065713707": 26, "6155488713999003": 26, "18560944657474385": 26, "6476953472536133": 26, "5484869807981119": 26, "9377175139759644": 26, "5518952539381832": 26, "07356503462843031": 26, "3264878950171721": 26, "07535951097570871": 26, "12264244220040958": 26, "42537281954511785": 26, "4998962229037484": 26, "3330464358891232": 26, "015432939420272901": 26, "0797250519338277": 26, "6963403566497599": 26, "6889954608613271": 26, "9166520525475822": 26, "06483789225529443": 26, "4177780910651974": 26, "215176452044791": 26, "7654715021674819": 26, "07679809049501862": 26, "4578075345197414": 26, "522026606830127": 26, "152726916389": 26, "14866815699740818": 26, "0662481096455436": 26, "363842895085537": 26, "27360047532321413": 26, "8833479303941": 26, "3172885006128272": 26, "20452737107625082": 26, "7700117962299484": 26, "8283620640916174": 26, "42240980289304214": 26, "2480868023356565": 26, "11827593074695252": 26, "0494949533701485": 26, "478474698787826": 26, "1702414103593012": 26, "6495999569907174": 26, "49425570464728197": 26, "837118005596032": 26, "08372934101999836": 26, "9217417801903969": 26, "4752272423760706": 26, "757461543957001": 26, "2999922701245714": 26, "3446422263123126": 26, "2466610279144072": 26, "9339723336579848": 26, "8582538665763133": 26, "513393208808119": 26, "7894794954531047": 26, "9543307450059375": 26, "9724656965645276": 26, "49843082295299834": 26, "8285899792915569": 26, "8457814294655845": 26, "20830334868278944": 26, "4107627045988226": 26, "8881777898080343": 26, "04723726105078013": 26, "6065403480059925": 26, "19277509089130404": 26, "28080040161634906": 26, "2603865119625535": 26, "5108114146014595": 26, "21830494680026882": 26, "975475979246791": 26, "2153189992023306": 26, "45843891728524805": 26, "4886428714272332": 26, "9180627733438294": 26, "22859341088945828": 26, "7130249809570073": 26, "559114724090455": 26, "6312111039035885": 26, "8905331514021997": 26, "2150335600015143": 26, "444667287809592": 26, "17081156021541144": 26, "5077726656503165": 26, "038828873721946": 26, "2678954631483663": 26, "15492842328151213": 26, "2915533478175347": 26, "3439255049717159": 26, "6389708910872062": 26, "8103220568244995": 26, "6285810606444399": 26, "1618441666548604": 26, "3708656980759784": 26, "3165578985249459": 26, "19636302034509892": 26, "079960557998176": 26, "6644272458777207": 26, "9579594476226031": 26, "7006907406657614": 26, "982017507091568": 26, "0734876037978682": 26, "9083016548007746": 26, "004555715249828847": 26, "260508728767975": 26, "249981403669253": 26, "2877520373499534": 26, "1282470225621457": 26, "3845617640603873": 26, "10015380197512547": 26, "6082003686291793": 26, "7772224585995919": 26, "4616773490131915": 26, "3677235029176946": 26, "849003492250095": 26, "7592209399401113": 26, "14924669458554157": 26, "5526771473685053": 26, "060819073148988614": 26, "6244828460205518": 26, "7831810053626761": 26, "6781845305983837": 26, "206008233804651": 26, "9840497252188918": 26, "12680429610349458": 26, "29687328225815435": 26, "14202111512094318": 26, "7583273823229567": 26, "1262377731525384": 26, "10095428309096748": 26, "2814516423345005": 26, "49312772317901665": 26, "7710588327211317": 26, "6605010014546286": 26, "087596638483641": 26, "4746249063994664": 26, "7086531761170562": 26, "34348745524378915": 26, "4022018746629237": 26, "37015897217242466": 26, "0843301672463426": 26, "4330492681534202": 26, "7558782324465916": 26, "7202618501955251": 26, "2937594736948148": 26, "9284573451574751": 26, "0317157730642017": 26, "849163874530413": 26, "0810650741684899": 26, "05186472267625962": 26, "05791772507030962": 26, "7023655559808043": 26, "7999915698123228": 26, "2968211242744716": 26, "9467020953858171": 26, "11745625303761016": 26, "10265138797320832": 26, "06053234888361561": 26, "43331517309694545": 26, "5962271862991214": 26, "8280175575827052": 26, "0575822952108735": 26, "7454850822849407": 26, "788183655047735": 26, "5628622381358686": 26, "2632912211030889": 26, "15264668797834902": 26, "48088396901577324": 26, "9893468552770651": 26, "0844072168913828": 26, "27292278362486394": 26, "35751861293518933": 26, "472044898799596": 26, "302014434589241": 26, "3569287784903068": 26, "4727981194791506": 26, "6879250128779288": 26, "6474207328610961": 26, "475126194359889": 26, "4780826976659418": 26, "5954605354809445": 26, "636678013689965": 26, "7610959572342744": 26, "1556814710813383": 26, "635159422916024": 26, "6349945345712154": 26, "7585968648934003": 26, "0567525880695433": 26, "676899003049981": 26, "6280886551817202": 26, "5633434233896949": 26, "5077018274792533": 26, "4671489322471103": 26, "4961860603931495": 26, "3221646743723201": 26, "9836289606797799": 26, "14891999308668263": 26, "5628304439697212": 26, "6140944396048242": 26, "13663979682976915": 26, "0143493365903884": 26, "6219935005423454": 26, "3676566100104772": 26, "2345217375551218": 26, "008695102773521627": 26, "803907102883379": 26, "2914252266566233": 26, "6848449450332177": 26, "5873435258456958": 26, "7606716419638716": 26, "3667428984588238": 26, "699465234068763": 26, "708444640580674": 26, "9547783067383621": 26, "3259917484413387": 26, "6457499765940556": 26, "4509696100963814": 26, "23045691989902006": 26, "8264909446617337": 26, "3586182471327589": 26, "19862255406304857": 26, "4712245388206714": 26, "6485102089129624": 26, "23017293221916107": 26, "6040031328476771": 26, "2596668858741633": 26, "0270592522184338": 26, "7213408198685287": 26, "39372319745529455": 26, "1274393494908997": 26, "17956869544706822": 26, "278704724524306": 26, "005090959780293349": 26, "41165956331476894": 26, "6933415423438254": 26, "1284434771958196": 26, "378366484218425": 26, "5890948719552205": 26, "20618550638032176": 26, "7471840459898258": 26, "5435228402389166": 26, "8322729376338954": 26, "368394537477824": 26, "3022023488861683": 26, "16704949389743456": 26, "8670305562900176": 26, "3013181983944606": 26, "345923103293542": 26, "5279152388254413": 26, "5094490503706453": 26, "3183758784652577": 26, "4878452712083802": 26, "3048208906579541": 26, "8961268294964213": 26, "9636890911891638": 26, "5859013064427213": 26, "6615404049018438": 26, "48102997084281823": 26, "3809160572216325": 26, "03746084265434": 26, "050787280261992904": 26, "8263024696999308": 26, "4148844475357427": 26, "6039432749045278": 26, "9705504308170952": 26, "228779551587697": 26, "44254439422194014": 26, "5228931258615774": 26, "7277140108759714": 26, "36038090072137646": 26, "8469800429278125": 26, "25681338821973276": 26, "187781975505905": 26, "28641978896405396": 26, "0393977599899293": 26, "248933148027633": 26, "28981094744810104": 26, "643697828287795": 26, "05017782601859786": 26, "3094547636877666": 26, "6537385511576103": 26, "8922458044682097": 26, "2929186031472941": 26, "49532930832412375": 26, "1819368748793484": 26, "6257022459898259": 26, "44252210088020166": 26, "6033762471895691": 26, "9490013326350237": 26, "5465250840433468": 26, "3923133421893767": 26, "4131053820375479": 26, "5026007464560802": 26, "5375472118999758": 26, "2969314396076417": 26, "20438257507964466": 26, "1721021689648907": 26, "6865137671603536": 26, "2569870644356642": 26, "17706040931876205": 26, "2977895261400008": 26, "0292681531550927": 26, "9764452554756957": 26, "6342359791622514": 26, "18611550035544563": 26, "8224806033146688": 26, "7110876753132762": 26, "5324347996258455": 26, "6660837059808186": 26, "4503886808563981": 26, "9853439493484303": 26, "21102421797127344": 26, "0126891784456369": 26, "28852151541324783": 26, "8955512269003686": 26, "3190611676604653": 26, "5560156885242366": 26, "7883064976646555": 26, "5384059797216016": 26, "9439983003124212": 26, "5659984618843253": 26, "1249041750839843": 26, "6767410051956194": 26, "49160500631529014": 26, "1483107522447713": 26, "5115365517804981": 26, "8364191992492573": 26, "791720003889648": 26, "2383582091221652": 26, "0829922825027016": 26, "3867845414675819": 26, "8724569614134565": 26, "932469265746266": 26, "30579430416661": 26, "2247271989582578": 26, "8445762098108233": 26, "9470563586356399": 26, "5683744265581336": 26, "7849474221021006": 26, "3890565615181326": 26, "2829872999892831": 26, "13071325909096526": 26, "2987690218851445": 26, "7898343244483973": 26, "099431121274427": 26, "38220618151309727": 26, "711292525502263": 26, "18986784101621773": 26, "07917801452818249": 26, "8367187300319635": 26, "689090613860293": 26, "0038363801506756": 26, "0770133313127632": 26, "6527518527291182": 26, "016213968985555362": 26, "17790609312219963": 26, "2902284612020107": 26, "3864594709380328": 26, "10419507842331896": 26, "4629164970066934": 26, "6290267241957171": 26, "4219864770863424": 26, "5087187655938853": 26, "5918962053482788": 26, "6159827089282811": 26, "0218861828670485": 26, "0669468295055586": 26, "5796910129453231": 26, "6185300720128297": 26, "619301673799856": 26, "027236966486583403": 26, "25981101306424137": 26, "9298833692036681": 26, "4328703171091501": 26, "9048129929368183": 26, "8271176057108441": 26, "226864206922098": 26, "9545406983245001": 26, "5217169034527678": 26, "23450897299224294": 26, "1404018348617109": 26, "13330023950008685": 26, "0377825528315445": 26, "8276926974682682": 26, "585410056023325": 26, "09078874513783124": 26, "02150533512547358": 26, "21869629089561635": 26, "5739591192245197": 26, "6493923761977408": 26, "10920412084411836": 26, "021853258780881277": 26, "4118785228105728": 26, "17603834662410878": 26, "5746200257241932": 26, "4284764185572442": 26, "356394941061918": 26, "4047943619185956": 26, "3775051934190425": 26, "518116740641315": 26, "0465098035476301": 26, "9548071965496485": 26, "6272151262011754": 26, "7801353062775259": 26, "03175503021688545": 26, "1892542750316375": 26, "9800487151662681": 26, "5332606437780166": 26, "5889315089261001": 26, "3341222783905038": 26, "2299088471417146": 26, "24430963789214738": 26, "7255241075366841": 26, "39838023518724286": 26, "23406943821171475": 26, "416781587008113": 26, "2716274491600466": 26, "38688774541045945": 26, "2961387094763638": 26, "2553783618897594": 26, "7918407656657092": 26, "562807847231258": 26, "159987350506027": 26, "33137006170866634": 26, "5753633360391074": 26, "31896377367007595": 26, "9565786122433182": 26, "9184190499708218": 26, "7970834607596198": 26, "6174578809972053": 26, "1052529438517789": 26, "0362633726581372": 26, "4000538997749901": 26, "0317284970330505": 26, "564052513517503": 26, "619409443378424": 26, "4333162428097617": 26, "09501065331939876": 26, "6868460473559286": 26, "5695762021708808": 26, "1288462259920982": 26, "3237414008072606": 26, "538390259347078": 26, "3676513767027326": 26, "3171226231463222": 26, "742318729702504": 26, "8488053673672417": 26, "6464525682939155": 26, "5277279966880103": 26, "28612057652333217": 26, "8888052630719565": 26, "6738331073374428": 26, "20261571023405975": 26, "6075833827611219": 26, "386196408227281": 26, "15779297886469587": 26, "933176120466135": 26, "0211070848645405": 26, "12665521690509854": 26, "224905263482172": 26, "21253995315292754": 26, "20912265039647612": 26, "5099930469309428": 26, "1408613451222664": 26, "08544885103788852": 26, "2262604179655698": 26, "841819196292541": 26, "8062533508123542": 26, "18704118256347768": 26, "3773726392264964": 26, "2349774392131216": 26, "039913145908034": 26, "7708137301079883": 26, "440217398163521": 26, "5995072483161547": 26, "3460989019197025": 26, "5493884495085788": 26, "236328651540529": 26, "5993552435124827": 26, "14161629589560548": 26, "6134811689916744": 26, "050178329458602206": 26, "3133910483238147": 26, "2099550023606331": 26, "9425060014487805": 26, "9185727965040605": 26, "000222459438402": 26, "11937397123433868": 26, "21650740220793896": 26, "2418460570286436": 26, "8718766238608511": 26, "3298867252883004": 26, "6989785489238277": 26, "7848546748769792": 26, "9897501865351587": 26, "4009637802799042": 26, "7095179293735221": 26, "4357945144332909": 26, "8524967224316515": 26, "09516989795444708": 26, "7602792369008564": 26, "3018343214794774": 26, "40112471898845276": 26, "19810350275903787": 26, "6977198655482821": 26, "0120174754096811": 26, "3563508373876774": 26, "730109704661283": 26, "5268517999656577": 26, "530442468900263": 26, "807825605221895": 26, "7517373190537666": 26, "9076798976915479": 26, "092099479103067": 26, "341570378356104": 26, "7360607634901148": 26, "156861486312767": 26, "4716621130397116": 26, "4787507021180346": 26, "023744766274670027": 26, "5965671646546118": 26, "37021700136574104": 26, "27692514795255346": 26, "3091858541866916": 26, "2360271461002418": 26, "13386749897360478": 26, "14216632838163829": 26, "023034711692979": 26, "3987269319430655": 26, "549096886152482": 26, "017157699255227664": 26, "109032785498506": 26, "3640767107398544": 26, "1194841090436989": 26, "0410059169232033": 26, "5132324131526251": 26, "24305061815448895": 26, "019736710580556": 26, "42694250400633577": 26, "7725295493015006": 26, "1962384989413304": 26, "2968853248057844": 26, "7899434044364201": 26, "4875618384527145": 26, "6454219975119482": 26, "141450470084665": 26, "30572020678799694": 26, "5810850793717385": 26, "4798366749575191": 26, "2216281878888918": 26, "44350719177739745": 26, "46312940435735894": 26, "228796055110651": 26, "1983047302744245": 26, "6414700390386395": 26, "4944820818354236": 26, "9831451598419563": 26, "6074887631998206": 26, "5875200794644209": 26, "5804227935603117": 26, "3505862375410346": 26, "2707720393460868": 26, "8527609494649038": 26, "0561006233332695": 26, "41978349307565604": 26, "9905285637543743": 26, "11575923339532644": 26, "2297320675136182": 26, "8446240979853961": 26, "2912444624542925": 26, "013671109771068054": 26, "6976157372771925": 26, "6672974994072653": 26, "1911224870939968": 26, "0434563003332007": 26, "07742690061167322": 26, "840805497923274": 26, "266360988625872": 26, "08721675735493827": 26, "0465666956964246": 26, "7774518438463297": 26, "3460338986256431": 26, "9151057120404062": 26, "3759014692957137": 26, "5480194807442587": 26, "3366470595503326": 26, "7600936179851417": 26, "17220086985832367": 26, "731738706276745": 26, "026914870923869346": 26, "4478840651824056": 26, "36259989002529047": 26, "7708848275754603": 26, "7668992710093536": 26, "04329437017676449": 26, "682531835957653": 26, "10732293384394224": 26, "8874749846000345": 26, "41718876873283156": 26, "026745790233367": 26, "06759883909878223": 26, "6195063533482457": 26, "4116758268774359": 26, "022090807021911824": 26, "6851676503727415": 26, "6127192810265865": 26, "6307418088840328": 26, "575436292667157": 26, "2527314389303937": 26, "45752087572222805": 26, "4815994380530334": 26, "4648053905953706": 26, "27287699629857": 26, "888136472192083": 26, "11360387414467936": 26, "5440883761927148": 26, "06337640558062574": 26, "0542972859312079": 26, "7588372290926966": 26, "280217588793815": 26, "8110029325867991": 26, "2273015846246085": 26, "06821838237501232": 26, "7556153918737457": 26, "803697042045384": 26, "45446859489121927": 26, "3558252712548142": 26, "4376453965858135": 26, "1366424849142358": 26, "6106611693024279": 26, "7122948278684196": 26, "9179374538544223": 26, "0195381960480603": 26, "6475267693584579": 26, "4520589268265065": 26, "2938528246125576": 26, "5375554291303655": 26, "8678354130795327": 26, "734696867664772": 26, "8384561025302392": 26, "6660001571620074": 26, "2511029723184456": 26, "6341551452578051": 26, "6403127129510906": 26, "5037769462600085": 26, "3806205436561784": 26, "7324164140372157": 26, "31475791491958705": 26, "4019180508818652": 26, "5661000670332557": 26, "6946751345214279": 26, "1224899056192206": 26, "1983058796996087": 26, "010783558676113978": 26, "4547859532775687": 26, "5199340156451744": 26, "3305531442671791": 26, "18245671697900454": 26, "0060497733894083": 26, "8734800168083692": 26, "1669110302978631": 26, "0750983128222298": 26, "4805946996320283": 26, "44666546796515416": 26, "9011169104143123": 26, "04973536655230685": 26, "2295605084255754": 26, "5065883493634915": 26, "5154401089740808": 26, "5135837536298204": 26, "47700790256124664": 26, "19417403893863705": 26, "38842856627731853": 26, "4745839430891494": 26, "2697285235477471": 26, "4257481619513133": 26, "8551272859916781": 26, "5069168721972422": 26, "7196087477570158": 26, "016820538269393392": 26, "3337514856250758": 26, "496649716258155": 26, "layout": 26, "showarrow": 26, "xshift": 26, "dash": 26, "dot": 26, "x0": 26, "x1": 26, "xref": 26, "y0": 26, "y1": 26, "yref": 26, "domain": 26, "templat": 26, "bar": 26, "error_x": 26, "2a3f5f": 26, "error_i": 26, "marker": 26, "e5ecf6": 26, "pattern": 26, "fillmod": 26, "overlai": 26, "solid": 26, "barpolar": 26, "carpet": 26, "aaxi": 26, "endlinecolor": 26, "gridcolor": 26, "white": 26, "linecolor": 26, "minorgridcolor": 26, "startlinecolor": 26, "baxi": 26, "choropleth": 26, "colorbar": 26, "outlinewidth": 26, "tick": 26, "contour": 26, "colorscal": 26, "0d0887": 26, "1111111111111111": 26, "46039f": 26, "2222222222222222": 26, "7201a8": 26, "3333333333333333": 26, "9c179e": 26, "4444444444444444": 26, "bd3786": 26, "5555555555555556": 26, "d8576b": 26, "6666666666666666": 26, "ed7953": 26, "7777777777777778": 26, "fb9f3a": 26, "8888888888888888": 26, "fdca26": 26, "f0f921": 26, "contourcarpet": 26, "heatmap": 26, "heatmapgl": 26, "histogram": 26, "histogram2d": 26, "histogram2dcontour": 26, "mesh3d": 26, "parcoord": 26, "pie": 26, "automargin": 26, "fillpattern": 26, "scatter3d": 26, "scattercarpet": 26, "scattergeo": 26, "scattergl": 26, "scattermapbox": 26, "scatterpolar": 26, "scatterpolargl": 26, "scatterternari": 26, "surfac": 26, "tabl": 26, "fill": 26, "ebf0f8": 26, "header": 26, "c8d4e3": 26, "annotationdefault": 26, "arrowcolor": 26, "arrowhead": 26, "arrowwidth": 26, "autotypenumb": 26, "strict": 26, "coloraxi": 26, "diverg": 26, "8e0152": 26, "c51b7d": 26, "de77a": 26, "f1b6da": 26, "fde0ef": 26, "f7f7f7": 26, "e6f5d0": 26, "b8e186": 26, "8": 26, "7fbc41": 26, "9": [26, 30], "4d9221": 26, "276419": 26, "sequenti": 26, "sequentialminu": 26, "colorwai": 26, "ef553b": 26, "00cc96": 26, "ab63fa": 26, "ffa15a": 26, "19d3f3": 26, "ff6692": 26, "b6e880": 26, "ff97ff": 26, "fecb52": 26, "font": 26, "geo": 26, "bgcolor": 26, "lakecolor": 26, "landcolor": 26, "showlak": 26, "showland": 26, "subunitcolor": 26, "hoverlabel": 26, "align": 26, "left": 26, "hovermod": 26, "closest": 26, "mapbox": 26, "style": 26, "light": 26, "paper_bgcolor": 26, "plot_bgcolor": 26, "polar": 26, "angularaxi": 26, "radialaxi": 26, "scene": 26, "xaxi": 26, "backgroundcolor": 26, "gridwidth": 26, "showbackground": 26, "zerolinecolor": 26, "yaxi": 26, "zaxi": 26, "shapedefault": 26, "ternari": 26, "caxi": 26, "titl": 26, "05": 26, "standoff": 26, "zerolinewidth": 26, "display_data": 26, "target": [26, 28, 30], "x_train": [26, 28, 30], "y_train": [26, 28, 30], "valuesn": 26, "x_test": [26, 28, 30], "y_test": [26, 28, 30], "html": 26, "div": 26, "scope": 26, "tbodi": 26, "tr": 26, "th": 26, "middl": 26, "top": 26, "thead": 26, "right": 26, "border": 26, "mae": [26, 30], "td": 26, "398996": [26, 30], "484263": [26, 30], "412011": [26, 30], "plain": 26, "valn": 26, "execute_result": 26, "Or": [26, 28, 30], "just": [26, 28, 30], "instanti": [26, 28, 30], "linearregress": [26, 28, 30], "kernelspec": 26, "display_nam": 26, "venv": 26, "poetri": 26, "languag": 26, "python3": 26, "language_info": 26, "codemirror_mod": 26, "ipython": 26, "version": 26, "file_extens": 26, "py": 26, "mimetyp": 26, "nbconvert_export": 26, "pygments_lex": 26, "ipython3": 26, "orig_nbformat": 26, "vscode": 26, "interpret": 26, "hash": 26, "0123dfba8c593a15e2367f7801b8447e0567eb9b4e2888ec1d8b254d9f13f9cc": 26, "nbformat": 26, "nbformat_minor": 26, "you": 28, "complex": 28, "all": 29, "here": 29, "microsoft": 29, "2005": 29, "yfinanc": 29, "yf": 29, "read": 29, "msft": 29, "ticker": 29, "histor": 29, "market": 29, "hist": 29, "histori": 29, "01": 29, "With": 29, "filter": 29, "interest": 29, "select": 29, "open": 29, "low": 29, "close": 29, "calcul": 29, "percent": 29, "chang": 29, "dropna": 29, "next": 29, "dai": 29, "higher": 29, "lower": 29, "follow": 29, "configur": 29, "boolean": 29, "now": 29, "classif": 29, "anoth": 29, "dataset": 29, "cannot": 30, "displai": 30}, "objects": {"wavy": [[0, 0, 0, "-", "models"], [1, 0, 0, "-", "panel"], [2, 0, 0, "-", "plot"], [3, 0, 0, "-", "utils"]], "wavy.models": [[4, 1, 1, "", "BaselineConstant"], [5, 1, 1, "", "BaselineShift"], [6, 1, 1, "", "ConvModel"], [7, 1, 1, "", "DenseModel"], [8, 1, 1, "", "LinearRegression"], [9, 1, 1, "", "LogisticRegression"], [10, 1, 1, "", "ShallowModel"], [11, 3, 1, "", "compute_default_scores"], [12, 3, 1, "", "compute_score_per_model"]], "wavy.models.BaselineConstant": [[4, 2, 1, "", "set_arrays"]], "wavy.models.BaselineShift": [[5, 2, 1, "", "build"], [5, 2, 1, "", "set_arrays"]], "wavy.models.ConvModel": [[6, 2, 1, "", "build"]], "wavy.models.DenseModel": [[7, 2, 1, "", "build"]], "wavy.models.ShallowModel": [[10, 2, 1, "", "fit"], [10, 2, 1, "", "get_auc"], [10, 2, 1, "", "predict"], [10, 2, 1, "", "predict_proba"], [10, 2, 1, "", "residuals"], [10, 2, 1, "", "score"], [10, 2, 1, "", "set_arrays"]], "wavy.panel": [[13, 1, 1, "", "Panel"], [14, 3, 1, "", "concat_panels"], [15, 3, 1, "", "create_panels"], [16, 3, 1, "", "dropna_match"], [17, 3, 1, "", "reset_ids"], [18, 3, 1, "", "set_training_split"]], "wavy.panel.Panel": [[13, 2, 1, "", "drop_ids"], [13, 2, 1, "", "dropna_frames"], [13, 2, 1, "", "findna_frames"], [13, 2, 1, "", "flatten_panel"], [13, 4, 1, "", "frames"], [13, 2, 1, "", "get_timesteps"], [13, 2, 1, "", "head_panel"], [13, 4, 1, "", "ids"], [13, 2, 1, "", "match_frames"], [13, 4, 1, "", "num_columns"], [13, 4, 1, "", "num_frames"], [13, 4, 1, "", "num_timesteps"], [13, 2, 1, "", "plot"], [13, 2, 1, "", "reset_ids"], [13, 2, 1, "", "row_panel"], [13, 2, 1, "", "sample_panel"], [13, 2, 1, "", "set_training_split"], [13, 4, 1, "", "shape_panel"], [13, 2, 1, "", "shuffle_panel"], [13, 2, 1, "", "sort_panel"], [13, 2, 1, "", "tail_panel"], [13, 4, 1, "", "test"], [13, 4, 1, "", "timesteps"], [13, 2, 1, "", "to_dataframe"], [13, 4, 1, "", "train"], [13, 4, 1, "", "val"], [13, 4, 1, "", "values_panel"]], "wavy.plot": [[19, 1, 1, "", "PanelFigure"], [20, 3, 1, "", "plot"]], "wavy.plot.PanelFigure": [[19, 2, 1, "", "add_annotation"], [19, 2, 1, "", "add_area"], [19, 2, 1, "", "add_bar"], [19, 2, 1, "", "add_dotline"], [19, 2, 1, "", "add_line"], [19, 2, 1, "", "add_scatter"], [19, 2, 1, "", "iterator"]], "wavy.utils": [[21, 3, 1, "", "reverse_diff"], [22, 3, 1, "", "reverse_pct_change"]]}, "objtypes": {"0": "py:module", "1": "py:class", "2": "py:method", "3": "py:function", "4": "py:attribute"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "class", "Python class"], "2": ["py", "method", "Python method"], "3": ["py", "function", "Python function"], "4": ["py", "attribute", "Python attribute"]}, "titleterms": {"wavi": [0, 1, 2, 3, 23], "model": [0, 27], "modul": [0, 1, 2, 3], "function": [0, 1, 2, 3], "class": [0, 1, 2], "panel": [1, 13], "plot": [2, 20], "util": 3, "baselineconst": [4, 27], "baselineshift": [5, 27], "convmodel": [6, 27], "densemodel": [7, 27], "linearregress": [8, 27], "logisticregress": [9, 27], "shallowmodel": [10, 27], "compute_default_scor": 11, "compute_score_per_model": 12, "concat_panel": 14, "create_panel": 15, "dropna_match": 16, "reset_id": 17, "set_training_split": 18, "panelfigur": 19, "reverse_diff": 21, "reverse_pct_chang": 22, "us": 23, "api": 23, "instal": 24, "introduct": 25, "link": 26, "quickstart": [28, 30], "tutori": 29, "stock": 29, "price": 29, "analysi": 29}, "envversion": {"sphinx.domains.c": 2, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 6, "sphinx.domains.index": 1, "sphinx.domains.javascript": 2, "sphinx.domains.math": 2, "sphinx.domains.python": 3, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "nbsphinx": 4, "sphinx": 56}}) \ No newline at end of file +Search.setIndex({"docnames": ["api/models", "api/panel", "api/plot", "api/wavy.models.BaseModel", "api/wavy.models.BaselineConstant", "api/wavy.models.BaselineShift", "api/wavy.models.ConvModel", "api/wavy.models.DenseModel", "api/wavy.models.LinearRegression", "api/wavy.models.LogisticRegression", "api/wavy.models.ShallowModel", "api/wavy.models.compute_default_scores", "api/wavy.models.compute_score_per_model", "api/wavy.panel.Panel", "api/wavy.panel.concat_panels", "api/wavy.panel.create_panels", "api/wavy.panel.dropna_match", "api/wavy.panel.reset_ids", "api/wavy.panel.set_training_split", "api/wavy.plot.PanelFigure", "api/wavy.plot.plot", "index", "manual/installation", "manual/introduction", "manual/link", "manual/quickstart", "manual/tutorials", "notebooks/quickstart2"], "filenames": ["api/models.rst", "api/panel.rst", "api/plot.rst", "api/wavy.models.BaseModel.rst", "api/wavy.models.BaselineConstant.rst", "api/wavy.models.BaselineShift.rst", "api/wavy.models.ConvModel.rst", "api/wavy.models.DenseModel.rst", "api/wavy.models.LinearRegression.rst", "api/wavy.models.LogisticRegression.rst", "api/wavy.models.ShallowModel.rst", "api/wavy.models.compute_default_scores.rst", "api/wavy.models.compute_score_per_model.rst", "api/wavy.panel.Panel.rst", "api/wavy.panel.concat_panels.rst", "api/wavy.panel.create_panels.rst", "api/wavy.panel.dropna_match.rst", "api/wavy.panel.reset_ids.rst", "api/wavy.panel.set_training_split.rst", "api/wavy.plot.PanelFigure.rst", "api/wavy.plot.plot.rst", "index.rst", "manual/installation.rst", "manual/introduction.rst", "manual/link.rst", "manual/quickstart.rst", "manual/tutorials.rst", "notebooks/quickstart2.ipynb"], "titles": ["wavy.models Module", "wavy.panel Module", "wavy.plot Module", "BaseModel", "BaselineConstant", "BaselineShift", "ConvModel", "DenseModel", "LinearRegression", "LogisticRegression", "ShallowModel", "compute_default_scores", "compute_score_per_model", "Panel", "concat_panels", "create_panels", "dropna_match", "reset_ids", "set_training_split", "PanelFigure", "plot", "Wavy", "Installation", "Introduction", "Link", "Quickstart", "Tutorials", "Quickstart"], "terms": {"class": [3, 4, 5, 6, 7, 8, 9, 10, 13, 19], "x": [3, 4, 5, 6, 7, 8, 9, 10, 11, 16, 18, 23, 24, 25, 26, 27], "panel": [3, 4, 5, 6, 7, 8, 9, 10, 11, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27], "y": [3, 4, 5, 6, 7, 8, 9, 10, 11, 16, 18, 23, 24, 25, 26, 27], "model_typ": [3, 4, 5, 6, 7, 11, 26], "str": [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 19], "none": [3, 4, 5, 6, 7, 8, 9, 10, 13, 18, 19], "loss": [3, 4, 5, 6, 7], "optim": [3, 6, 7], "metric": [3, 4, 5, 6, 7, 10], "list": [3, 4, 5, 6, 7, 8, 9, 10, 13, 14, 17, 24, 25, 27], "last_activ": [3, 6, 7], "sourc": [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 24], "base": [3, 4, 5, 6, 7, 8, 9, 10, 13, 19, 26], "object": [3, 10, 20, 23], "model": [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 21, 24, 25, 26, 27], "method": [3, 4, 5, 6, 7, 8, 9, 10, 13, 19], "summari": [3, 4, 5, 6, 7, 8, 9, 10, 13, 19], "document": [3, 4, 5, 6, 7, 8, 9, 10, 13, 19], "build": [3, 4, 5, 6, 7, 8, 9], "compil": [3, 4, 5, 6, 7, 8, 9], "kwarg": [3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 19, 20], "paramet": [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20], "addit": [3, 4, 5, 6, 7, 8, 9, 13], "argument": [3, 4, 5, 6, 7, 8, 9, 10, 11, 13], "pass": [3, 4, 5, 6, 7, 8, 9, 13], "fit": [3, 4, 5, 6, 7, 8, 9, 10, 26], "get_auc": [3, 4, 5, 6, 7, 8, 9, 10], "float": [3, 4, 5, 6, 7, 8, 9, 10, 13, 18, 19], "get": [3, 4, 5, 6, 7, 8, 9, 10, 22, 23, 26], "auc": [3, 4, 5, 6, 7, 8, 9, 10], "score": [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 24, 25, 26, 27], "predict": [3, 4, 5, 6, 7, 8, 9, 10, 26], "data": [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16, 18, 20, 23, 24, 25, 26, 27], "option": [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], "return": [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 20], "valu": [3, 4, 5, 6, 7, 8, 9, 13, 24, 25, 27], "predict_proba": [3, 4, 5, 6, 7, 8, 9, 10], "probabl": [3, 4, 5, 6, 7, 8, 9, 10], "residu": [3, 4, 5, 6, 7, 8, 9, 10], "pd": [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 24, 25, 26, 27], "datafram": [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 23, 24, 25, 27], "column": [3, 4, 5, 6, 7, 8, 9, 13, 19, 23, 26], "set_arrai": [3, 4, 5, 6, 7, 8, 9, 10], "set": [3, 4, 5, 6, 7, 8, 9, 10, 13, 19, 24, 26, 27], "arrai": [3, 4, 5, 6, 7, 8, 9, 10, 13, 25, 27], "constant": 4, "0": [4, 5, 11, 13, 15, 18, 19, 24, 25, 26, 27], "_baselin": [4, 5], "baselin": [4, 5], "fillna": 5, "shift": 5, "1": [5, 6, 7, 13, 18, 19, 23, 24, 25, 26, 27], "conv_lay": 6, "int": [6, 7, 11, 13, 15, 18], "conv_filt": 6, "32": [6, 7], "kernel_s": 6, "3": [6, 23, 24, 27], "dense_lay": [6, 7], "dense_unit": [6, 7], "activ": [6, 7], "relu": [6, 7], "basemodel": [6, 7], "convolut": 6, "dens": 7, "densemodel": [8, 9, 26], "linear": 8, "regress": [8, 9], "logist": 9, "shallow": 10, "keyword": [10, 11], "default": [10, 11, 12, 13, 24, 25, 27], "type": [10, 11, 12, 13, 14, 15, 16, 17, 20], "The": [10, 13, 22, 23], "us": [10, 12, 13, 18, 20, 26], "seri": [10, 23, 24, 25, 27], "train": [10, 13, 18, 19, 20, 24, 25, 27], "test": [10, 13, 18, 19, 20, 24, 25, 27], "valid": [10, 13, 18, 26], "epoch": 11, "10": [11, 24, 25, 27], "verbos": 11, "comput": [11, 12], "number": [11, 13, 23, 24, 25, 27], "val": [12, 13, 19, 20, 25, 26], "per": [12, 13], "arg": [13, 19, 24], "kw": 13, "attribut": 13, "frame": [13, 16, 23, 24, 25, 27], "": [13, 24], "id": [13, 14, 16, 17, 20], "without": 13, "duplic": 13, "num_column": 13, "num_fram": 13, "num_timestep": [13, 24, 27], "timestep": [13, 20, 24, 25, 27], "shape_panel": 13, "tupl": [13, 15], "repres": 13, "dimension": 13, "values_panel": 13, "3d": 13, "matrix": 13, "exampl": [13, 18, 23, 25], "283": 13, "95999146": 13, "284": 13, "13000488": 13, "280": 13, "1499939": 13, "281": 13, "77999878": 13, "282": 13, "58999634": 13, "290": 13, "88000488": 13, "276": 13, "73001099": 13, "289": 13, "98001099": 13, "285": 13, "54000854": 13, "286": 13, "3500061": 13, "274": 13, "33999634": 13, "277": 13, "80999756": 13, "279": 13, "25": 13, "271": 13, "26998901": 13, "270": 13, "05999756": 13, "272": 13, "35998535": 13, "263": 13, "32000732": 13, "264": 13, "57998657": 13, "drop_id": 13, "inplac": [13, 17, 26], "bool": [13, 14, 17, 20], "fals": [13, 14, 17, 20], "drop": [13, 16, 26], "whether": [13, 14, 17], "dropna_fram": 13, "miss": 13, "from": [13, 15, 22, 24, 26, 27], "findna_fram": 13, "int64index": 13, "find": 13, "nan": [13, 16, 26], "index": [13, 23, 24, 25, 27], "flatten_panel": 13, "flatten": 13, "get_timestep": 13, "n": [13, 24], "first": 13, "each": [13, 23, 24, 25, 27], "head_panel": 13, "5": [13, 23, 24, 26, 27], "result": 13, "head": 13, "function": 13, "match_fram": 13, "other": 13, "match": [13, 16], "thi": [13, 24, 25, 26, 27], "order": 13, "self": 13, "plot": [13, 19, 21, 24, 25, 26, 27], "add_annot": [13, 19, 20], "true": [13, 20, 26], "max": [13, 26], "10000": 13, "use_timestep": [13, 20], "panelfigur": [13, 20], "If": [13, 20, 26], "annot": 13, "maximum": 13, "sampl": 13, "instead": [13, 20], "reset_id": [13, 14], "reset": [13, 14, 17], "row_panel": 13, "nth": 13, "row": [13, 26], "sample_panel": 13, "how": 13, "space": 13, "seed": 13, "42": 13, "subset": 13, "percentag": 13, "random": [13, 24, 25, 27], "set_training_split": [13, 24, 27], "train_siz": [13, 18, 24, 27], "7": [13, 18, 24, 27], "val_siz": [13, 18, 24, 27], "2": [13, 18, 23, 24, 27], "test_siz": [13, 18, 24, 27], "split": [13, 18, 19, 25, 27], "fraction": [13, 18], "8": [13, 18, 24], "shuffle_panel": 13, "shuffl": 13, "sort_panel": 13, "ascend": 13, "kind": 13, "quicksort": 13, "kei": 13, "callabl": 13, "sort": [13, 14], "like": 13, "v": [13, 24], "descend": 13, "when": [13, 23], "i": [13, 22, 23, 24, 25, 27], "multiindex": 13, "direct": 13, "can": [13, 25, 26], "control": 13, "level": [13, 23], "individu": 13, "perform": 13, "oper": 13, "place": 13, "mergesort": 13, "heapsort": 13, "stabl": 13, "choic": 13, "algorithm": 13, "see": [13, 25, 26], "also": [13, 26], "numpi": [13, 24, 25, 27], "more": [13, 25], "inform": [13, 26], "ar": [13, 23, 24, 25, 26, 27], "onli": 13, "For": [13, 23, 26], "appli": 13, "singl": 13, "label": 13, "befor": 13, "similar": 13, "builtin": 13, "notabl": 13, "differ": [13, 23], "should": 13, "vector": 13, "It": [13, 23], "expect": 13, "an": [13, 19], "same": 13, "shape": [13, 24, 25, 27], "input": 13, "origin": 13, "tail_panel": 13, "last": [13, 26], "tail": 13, "to_datafram": 13, "convert": [13, 24, 25, 26, 27], "concaten": 14, "df": [15, 24, 25, 27], "lookback": [15, 23, 24, 25, 26, 27], "horizon": [15, 23, 24, 25, 26, 27], "gap": [15, 23, 26], "creat": [15, 23, 24, 25, 26, 27], "size": 15, "figur": 19, "color": 19, "grai": 19, "opac": 19, "vertic": [19, 20], "line": [19, 20], "show": [19, 20], "period": [19, 20, 26], "add_area": 19, "col": 19, "add": 19, "area": 19, "add_bar": 19, "bar": 19, "add_dotlin": 19, "dotlin": 19, "add_lin": 19, "add_scatt": 19, "scatter": 19, "instal": 21, "introduct": [21, 24, 25, 27], "quickstart": [21, 24], "tutori": [21, 25], "modul": 21, "easiest": 22, "wai": 22, "pypi": 22, "pip": 22, "wavyt": 22, "wavi": [23, 24, 25, 26, 27], "librari": [23, 25, 26, 27], "time": [23, 24, 25, 27], "analysi": 23, "python": [23, 24], "wrapper": 23, "around": 23, "panda": [23, 24, 25, 26, 27], "packag": 23, "goal": 23, "provid": 23, "simpl": 23, "intuit": 23, "interfac": 23, "while": 23, "high": [23, 26], "flexibl": 23, "extens": 23, "process": [23, 26], "start": [23, 24, 25, 26, 27], "analyz": [23, 26], "where": 23, "variabl": 23, "user": [23, 24, 25, 27], "need": 23, "specifi": 23, "three": 23, "thing": 23, "step": 23, "look": 23, "back": 23, "skip": 23, "ahead": 23, "let": 23, "suppos": 23, "we": [23, 26], "have": 23, "12": 23, "want": [23, 26], "At": 23, "end": 23, "cell": 24, "cell_typ": 24, "markdown": 24, "metadata": 24, "short": [24, 25, 27], "gear": [24, 25, 27], "mainli": [24, 25, 27], "new": [24, 25, 27], "code": 24, "execution_count": 24, "output": 24, "import": [24, 25, 26, 27], "librariesn": 24, "npn": 24, "pdn": 24, "wavyn": 24, "modelsn": 24, "plotli": [24, 27], "io": [24, 27], "pion": 24, "pio": [24, 27], "render": [24, 27], "pdf": [24, 27], "ani": [24, 25, 27], "dataframen": 24, "price": [24, 25, 27], "np": [24, 25, 27], "randn": [24, 25, 27], "1000": [24, 25, 27], "rang": [24, 25, 27], "compos": [24, 25, 27], "create_panel": [24, 25, 26, 27], "4": [24, 27], "splitn": 24, "name": 24, "stdout": 24, "output_typ": 24, "stream": 24, "text": 24, "1n": 24, "contain": [24, 25, 27], "past": [24, 25, 27], "correspond": [24, 25, 27], "futur": [24, 25, 27], "print": [24, 25, 27], "6": [24, 27], "applic": 24, "jvberi0xljqkjdpr6eekmsawig9iago8pc9dcmvhdg9yichdahjvbwl1bskkl1byb2r1y2vyichta2lhl1beribtodgpci9dcmvhdglvbkrhdgugkeq6mjaymja4mtkwmzizmdyrmdanmdankqovtw9krgf0zsaordoymdiymdgxotazmjmwniswmccwmccppj4kzw5kb2jqcjmgmcbvymokpdwvy2egmqovqk0gl05vcm1hbd4": 24, "cmvuzg9iago0idagb2jqcjw8l0nbidekl2nhidekl0xdidakl0xkidakl0xxidekl01midqkl1nbihrydwukl0jnic9ob3jtyww": 24, "pgplbmrvymoknsawig9iago8pc9dqsaxci9jysaxci9mqyawci9msiawci9mvyayci9ntca0ci9tqsb0cnvlci9ctsavtm9ybwfspj4kzw5kb2jqcjygmcbvymokpdwvq0egmqovy2egmqovtemgmaovteogmaovtfcgms41ci9ntcayci9tqsb0cnvlci9ctsavtm9ybwfspj4kzw5kb2jqcjkgmcbvymokpdwvrmlsdgvyic9gbgf0zurly29kzqovtgvuz3roidg3ntu": 24, "pibzdhjlyw0kejy9xdnkjclxvu": 24, "k8nosolcgnhsnzrwqn": 24, "amssgi3b8vud44slsypkz3pg": 24, "d0a1f0rp5ailznjzap": 24, "lbrkfx": 24, "j": 24, "vf60lw0v65fpzn91": 24, "9wt": 24, "lhmov": 24, "virrf": 24, "9eu": 24, "uxjf": 24, "i3ymc1ufwc8ux5a": 24, "9": 24, "x8": 24, "9odvf": 24, "3yyz": 24, "uj7": 24, "n9xrpptr": 24, "p98l798": 24, "sp": 24, "90894jxx": 24, "hit0hr": 24, "2wngaq": 24, "eefbmhxnpjb5n2c9": 24, "3r2t": 24, "hrtvrakwube3": 24, "pfxpf625c": 24, "cnbruqv": 24, "kn3yuwzbtrz": 24, "xyotfjs8rml": 24, "qtpfuh201c8": 24, "2xxvd3d9wtn3olspczn0ulv3r7plunkv8zf869otglpkvnlsdn3kbo9ek5": 24, "xnjwjpz3tyq": 24, "zqzntd6wts8fay9eqy3k41vlgfpclfrkttwvlet53xymdpn": 24, "xhrzctmzcyse": 24, "ngihadqrbinecv27zuwzj8ampq": 24, "0cepbwznvm28kptzwym": 24, "kqjj5qwe01ysuylxtf4g6sbxqrlndhu8upahgwkvbp": 24, "lcyhvxkwngz6": 24, "g5vodppqxg7nuzmaq": 24, "a7w4sjygm3jwuw": 24, "j6pjtbx0s4egk318rcwtnytprwydooxcev16wmzdyklfzermu39keznqqpwaxheqwy8fv": 24, "x5xerqrljvd6uvpexncx": 24, "nmvfy07nb9qu3zp89wgsfmmasd39rkxle0qlmzssjbrqwgzxfivpaljlxgch41s7wdp5vfso8fiqnabfjsq8uowqbryrxyqb9md": 24, "1gvyshftuhvbyaezs70yegvvxhqm91k8gdp09hi0ncpeq1xg55egaposrgapu497qpgyt1": 24, "5jfufpp": 24, "aspozi": 24, "bfinfmawf9ygz5o0nsefrtzni83mul8vq0evndj1y155vgybm4ul5jefplakjeaex1kuaxw7uevihm3pokjzl4euvl0lk4lhkdmgtmjsb7oopbb8phj8kszpbj": 24, "hsubhlz7uzbrljievkvl4crkwmvr4dv1jqwplmqsqs8q85rieeuv3q52lb6y1vi6zoza9vdoxkzj4uo7fy1jxtu8uh3dn1oulth29nldb0gnmt": 24, "o2giytp594airbxuxmsx2tsptihdhs6vee6gz6mn11naovf4gp0pgu1vzkgkppamnpbmouf2gl01lwvmryir8rzvoqzgztlfxnzxoy5syqrl7mkkwaseyvka2kudc9c5ubp": 24, "zkpv2ija0234qljwxxj0ubctsom5hn1ylfg2fjtfgxfb6wxakmkjj8fmy5zmlolt8v41ltgbnt5pnfvqzmm7dpagdgmqvhmj7j5zg": 24, "2kvfcdsu1adypvlfsjkrqnhr29agv8aisgkqumh8essoizs1ajodvup": 24, "pyzi8isqpzmotgfqxnjmzjnl5hoz3w2otfhohi7bxvtk7dxek5qfoxowkwtm8okr2dyi25qhllp5mhimpfszxntmhns9c5fzww": 24, "wp5ke": 24, "owipmibyz42hqopigobxeinobyfg01": 24, "sq52bon1efbvor8qhlrniu6ukq8n9rvgnz8yscnnntmzj": 24, "2zlf4z3o6qlbr0wji1bj2x1": 24, "i0njr3i52": 24, "nlm6z": 24, "kdkjino1tosh": 24, "h1x4prf1rxy": 24, "vsfdwzeysdc3bpekmv3ch9pe5cprtbamy3fghcht2aookudcrkrcephizzdvlgwrddtdhdlb3argdfrwv2": 24, "jc0": 24, "gmm2jq7osegfwyx": 24, "qgjtut2iuibjlux1ratc": 24, "lcxbi1senxzykhz1chgiwz2gr988jqpmq1dbhkcbzuwf30cqftjlnyalez86edfnuqd2qqbjfmua2s9ljkc724jgdyibaczhlo7csmrfqzcl5repdsqyt7k2y9vlcg4bheei5": 24, "lvdukr1plkpiwwk4hd7my3jyaodmhq6ptzgjl4elaybgz1cx5": 24, "4dbnftyhswinff1fqv8fg5uuzkl": 24, "3ezcsxkhxptg8fsmnuzk1iybwblf7qwks2dr17h2wzs0mfklqmrzwjmnti": 24, "cguy8esuwwzrbby2iync7l7gmg2v5jtq30hmmy1cdfdvfclbhg": 24, "1aftevpflhgcyfojj1q3chvxtfb3wehbzmxcubxiwd0re7ntzreybcht2btk69wvwygrwriy6mof6kxg9aqejjcdgmxocqhyexaqwitmbytr6n0umzwn6hpkdqssfwuotlvyki": 24, "3bzr38atlug": 24, "qlfzbpwv7jwzlmww6luiae89pbdjluxadsbg9iio": 24, "7omp6eiku8d5iuclvdbakym2kzpovjkipczdqiljeirdbpjfjkphszztcw": 24, "9kusx7fqqyugfjkrg93kry6m888vwipqecuzlb7ifikphknsl5nsjm9zfxysjlxan47grxx5q1pa7xqqjd5ottzkvxz1ccpvlsxbuju1wzpyli0j83gmzhh9gemjmyky8pppz0b8tqgt": 24, "pfrtb4jk9mx7y9f": 24, "bmqhmygaq9ezivmlew2uyzxjcfx6u3i5qitlot9qkgezxbyddgwc9rrhjcmwxjwxze5wmd55m6njipi2lfac0smhzdm24vscng8jz5nrydoturxazbbzcbhstxd9lszxejxyqeisfpfqcbv4h0hs2ebfqgt8hlracgvrrqomw9yteyxeaftspbzge7adkaoyjpofw17d7jmkicevncjyg5rzpowvyzyvul8lo7uxykgjnhyop8ykalewz1etg2t6mzcx4kn0visqxhvhhzctr3mxborjbc3z35md81icwcvxlsa6s8usog4hxncsn7hsbtbvh28dbftz6ezt5tj": 24, "dsqtkmdmksyg7aevzbfgh0hrg2ipcqscoh5lwy9653u74pgiqtdq34zw0cnnmuojb765pug2m": 24, "wiikcmhjjjzgxdvcotqnz6yea748jofrnwvlq8boa": 24, "e0b7flcsmr0bl": 24, "7swynsqjbttsurhil0pb4xjoyiois415fufdryu3xtynttesfkl9idgzalxhc6wwotwtghz": 24, "9gxqyoc40mvdasxz3ervxwg8zhnyolinfedaln3lyhjgc8xo6ox47pi5i": 24, "gaxnpnelwqb0qinm1y2ecyrra9prqvmw": 24, "kqwtul4wk9tk1mz15rafpw0vkxmq2lnnnnzqzyzsrmpa5hr6ldkjwahcasbxggg3rmtbmnxdfdcnzljxezilmsoquy1yjml": 24, "0utpaswltbaddsja05z4ble8": 24, "m95zqtjvxsplzb4jvcthnswirb2qins8iexyutg8t8gncamoplpafkohe4wnc66s4": 24, "nkgulekazsjpbcxrsthzbmdndfog78c83i8plppuhlpktwdnu": 24, "lxq": 24, "5ptzwi": 24, "jzs6lpykv7t": 24, "1zgo": 24, "wsxtubg8kaoxlgdyvgbnwpjwozyau": 24, "rz9sl8muevtw5ms0viceznfcmnn3uj6arurmgnta4op5tyyegebdfmgbqitl1mao9ejdb": 24, "o": 24, "bjfoul2xbwloe0mntjwd": 24, "msklh3nouhbajgy46aaz1zhusgv3ecceavjpsnu5s25pizrtimhdv8blarxcpaxrj4tw245ylsgbtvcygftjqvaa2": 24, "f7qauemluozvzivqweaptrfk94gu9dvudo44kojtnqiofxvbb2": 24, "yr5wuzugeypo6md": 24, "vqqeiaa7qwmid2numczxstqi8j1e0hsn71cgtss8q99przuuwql7n1xei7ilrsp1cztpbcisbs48vctrpk015l4ejujkfdwcvmq8wtz7n0twsmfvjibm0iwtp5z1lxujh1ksindm9nltergvtiz2xiexa": 24, "78ocefaoj11mkkh3xb3vsu3s70wnsrum1ts3z": 24, "q3n64qs7utgnhdjfqewor80aqppogk50mdorpowumvkyuzjbksgzg": 24, "ydex4cfvyhhdirckbbu7ih3giftqklwq3ppckit3ggdxj3zvtmbdelryvdvofupcym": 24, "viaptevfyov8duoleig0ohdc8h": 24, "yh": 24, "yyjmsecmpgrrd": 24, "ljcdllhbssl8keo1p7wzbsoj": 24, "x9bqqtf6zkms97rdp6prmtzdgxahrtb9zxcim": 24, "jya3ol0kylxetfrgwjswo2kohqdmkdvcm0lpzl6x72gavzul": 24, "gajqryp2i3pz3kxtbae3a59druni7cauy7obvstwtm6rzw5f6kyhyqrsjdyoplraifkhdz50oxql8dbscdi4e7jyvu2bp8lkhc3dvzcytd3sqhsmjk4xe2qzfvtzn29vxriqrimha3bdov8l8p2qtlfpacxrqtjhulwt9o8labj2qdkaxaho5yhnzcsaavaglfmwmbisdoc1lijvhulvu9alzr23cg6k5lqew8qbe674v6lpqbj266k7zxaghiafn2e5dvzu3pmqlwsuemdhmis13aqym0ppw2dcuqmt4vgvjrq4wcperrinvab00zrlxyn2flmhwqpq3ddlxlzxtbla4mctpnxtbuy5rnvvvx22m8thvpvekoqnmg0qdidf0kfckixuj0kmh7jlzoa6sydianshtfwoiqxlnzpphphxjokp3w": 24, "lnqldwtkggtta3allxucry5e2s9d7l7antq91esjgncntxt5yoelj1sfbotu3ab0ozb1oi4lyraxi0jzinilepqed3cdg35g1cnwt1scwvznmg7wglgliqkjj3w1d1i8vq7qyvb5r3xpsooidmu6czoy5lnwgzcdktbh6ixhfmwtd5ui3wte0jmwaecy0bg6t5eypp2ewwdho2uxhea5mzeicszzrapyqnpslkt": 24, "nksrvojme3ajpaeswjbsnjiaelvy9t3tb88kh2wfm91dtvahovnrlshs0ljbn6evyaf2px1urdzlyhhtqklcu0ktfte4we9czlhkqcmqsxccrdfodrh7uhk9lq": 24, "a0v7yrexrkhqwcahvc0jgdq0cvfudqj20mbtrmmbpogonixvf1h4snyen2b4ffqukmxzoov": 24, "oapykyjnii": 24, "gcdoxc75slr0w7qhw47pqp6fboxmauym9nkaafsek7zazslrl1po9wc1oxml7rsomitgvjikxegd2l6fswpich7srwf7v7dgvvyxcq9uyjef2d1nnb1xclgn3uoyehwvkiozyhtqmswgjpvfrzltd3ds2t7lkpimcqj": 24, "cqsspqqcrp": 24, "ptr3sjxqjoutgucbb2dcmnnbjovzw209iklspyyrevenahrosaziqsjbab3q0v8cznwvyfshls0xoykgqbtrp": 24, "imwzy1iti2": 24, "ty4vr9jcjrkqxlfugzbylnaiotknmfzymbpveg57dzw6dctswxdvndlhlo1sujprrajfmldulkmgzg1pp4sbt5pi2k": 24, "8kx9wpwcz5lyd8w961oqeyxyh7dllspsbgdinnd7zk28lvdbmgpl6katolqsqgduovnqw1sigf3fjujdqllyqy3gy9qtgturs9zneuk8jutbamrp": 24, "d6qfp8pu0nc": 24, "osakhvcclbwit": 24, "cs8tq": 24, "iy2aos58zcwtv": 24, "0n7apfdkrj1hhenbbefm8x0xmtsisetqarjogtigg1smhsyriryxrbt5mischrtgvf0cprrz7jp6ctk": 24, "3apitrio5wzjuawgcayc0g2h1uvl2lg7dmj5ker9i": 24, "cipjsnprovqaqhlkwgl5rthjy3zgnzqlnktv7regxtb2rjmpvzgvw6teatk4vq": 24, "p": 24, "wkvzohoo3yqjmczfkuqnx7flhvrnl": 24, "3ugs4q3cceqw5ok": 24, "ghp18": 24, "yszockacxqkl5ekqd1rbh0cuzpthxa1eisgfs9pw1vkmhs1m": 24, "n40hazuwccsxkp8el3kqelmlxrij": 24, "wbowinpwuyoggwxf6vrtwpb2c9szwbudhlncua": 24, "pgdvvareiuzfsev9rr2yyqqgcjnmohjodvdibt3erymlfzrcjpsvlwp5v96bgmsjib2roaekou0usdz6vi": 24, "t16mlvk1t2t6vcwd9m7dohd9gqnlygtggr6v1q83lylu99vpt8h87ofnstor": 24, "gtfl7zfutk4qo1whrl": 24, "rlcfcbbalc4xcvajt5svquo5ubd": 24, "ki9txtd4esv7ra7bzcwjvvjtyksq8rtsq71tjzpe27fv7plm8gntb9h1k31fimnmnqfeuboo9ilgr2xaptfcl22cwpaizzizfprffrs89ailpnk2df3b6lo": 24, "fghyxpocyor9icyqnj7pcqu": 24, "vet52gv1txvtx442wsmbutlamnn6pkdbreb3d3q1brhuq": 24, "tdcjd7qdsjw7svbzrdjsadq1swglouppbgd9twm4lhco25zsuevxlolgendy6ugw48qnnkyw9dxcsqdwrxks7rfvxzrkmx4mshr7ibv0kajno1wf": 24, "95n7oxwlrgq1xdxsfhuojxgmri7plmh7cavghfp05zlzwbf0fieqar0tmhxvpullynyhkhu": 24, "duu1yshmbl": 24, "ftgunyrqlqylxtydq5neunnvni9jcuosqdxq0qhxdllu7ertnh": 24, "31cbtgvg": 24, "yhq3cemahoud": 24, "r8z0efyzj1p7iuxs1uk9udktqmtjr90hqiluc": 24, "xiexx1axwtbbq0rio2srvrlvwhp3le3ghopbp1g": 24, "q1guia4bw9aowo": 24, "nrjbw0zbanhnob6r": 24, "o0nkoymxllu21gw6avuyvnae6uvzeyu5ug": 24, "vjyfeoptjdchsjcvfwoegghjlbvaiiqdshsosuisc23jdkjbbg32b5kaayb6khgly6szl5ntxptazsttitjgkeztlf97maw7pfafd39xjquxarfurdyiuex8yciwwg4arzpfobq": 24, "h": 24, "ujf5uah0b0kyb9nd4a56gm0szumrkyljruwrrp": 24, "wz8msl3s9lgmbhfve9ab21ucc6yarzkvcmju": 24, "tgqismjbqj5qbngoydkoov1fsjcy5hn2rre6f2mb7mksbrwyi84sim2d5wjbaxlwlv3blm5xgyx3nx6tyixnwarxyxopssqmmb0": 24, "mcfaljxymez5erz49qjzogopf18sgqtyuk9c9saqggmqs1m7q00la9": 24, "fxrearvpg4dwijnqrppail010ktwly2v3xwgvrkhlx8kmnjjosw2x989yjxzzkyoavmo0": 24, "n5wscxzkvkzt0l9ceoqrhgud1yl": 24, "hde0diwtyym0uvla3sm8vqezvhzk7uekk": 24, "pp0be6b": 24, "o2x": 24, "jsivxjlqrsj": 24, "hroklphqkd1fkzac9dx9v": 24, "pfyz2hacx0j8yrcuyj2gxa9avupmajcobv91w4esh0csihokpozblo5xisrrujdpjk28htrdxgwvkiiqcf0n1usauarknp81sgkaapqhjvbbnlujuj2ypfr0hewevy2hfzg00f2vmuvnwlehssp4q8u0el2zmfomapitqe98sv0jxf6txptd1tk7vcjy56pkqzfshun": 24, "d3ey2iowbhfzsjcagvqnisn8noy7tapc9a6dnysruhtf48wzzh6xpab0gtjlkovxkbvckkjsvx24t": 24, "gupr6": 24, "vnuvy8ozllnt7hnqqdpkhsfjciwblajuwhizngrrrlr": 24, "bzejxcyqptoi3unqz": 24, "rm3fpulwitsqsxd5yd": 24, "sbirrg9rnkbs8rg2": 24, "wbsbw": 24, "czcugrli3wkkqflxlpxcdzjhgcbvkkdqhp5ksmtluslfvjnlzshvbj1xz1l9cignvnoevzgmrl29": 24, "i59ckbnyujutjzjuprxwenonu4yqvsbuivz8x7ei0u8x3uui": 24, "rwqnfiswq9enrtnoywhr9vbn1s5ykm": 24, "1u7ztp": 24, "cz1ajk90exob0qce2p1xelk4aeeygkjeym9bgsp8kaeymlkqszbzfgmrkvyw": 24, "lswtzylvptovdrtaboq7sunhzu2dwjr": 24, "phl7cuo": 24, "mpjf3sphcy": 24, "k5u6": 24, "7praovzxtwpvf8tszpofagzzu2ka3zdhnnhpi9t4om": 24, "fz2hz6derw9j0v2dmma2iagugpycplo0clwb2tw04noquasq4onemfktsuancebs5jgqe8dex17doldbdor4dhlly1lefzwkfshveepznlmqahjxua3hmvefcwnelzwq2": 24, "moaljx7rnihtkqpd5tncm5knqqno2umkvrtbato00fm8zcfwrx8oxt8": 24, "tg39iu3v5jnh0pk94zil7qc270zhgxvdsb9b2llcdd56dual83mhbw1pupql": 24, "0n4byicun2fubou6kdix8vbs7wpp1jd8okpbwfexmvouxraaotlxegdzai2dnssx9x34tcysdyv7ti1pekkrro3gwtzl75fh7aeaos9w8oiyutghz1ea": 24, "zrxkmxnn4vzrwzlqlw1hf8qpd6p6cxdqv4hqents5bnla0gaqxr8x9pbcut10s94jkuzrc": 24, "ywlucusbb9dulzowgtjb2ejs48tbclbsj6iu5bhezjkxzvs3m5yrtp1tdvxnkxhuyh7yfufx3rw9csl6wobnykfe9kx0hqqjgthz1vgzvpzhjumpvutrkvqzvjbjysjqnijouub1pmsftg5erglsh9c8uqhw0jufisau1jqf5xlx9jjurf6tv7qcfwhwchvybc0o": 24, "y0k0pptnq8thnm": 24, "kpc0po2uvvj9g01djyclvk2z2wknv063zjkwspw7y9b2dhvsh9t6poletkpxfmvvrhdevenju39eher6qr4rubeil65lnerqnqqvtoi54yxiv5xj5szvogjd0v4ztd3b": 24, "tg1b0naipvca9xnczap7cigjdxsei45h8vanjyixvty1pq69k6isvffchwmvtdqnk1xolnqwg": 24, "kvqqhqscnztqrh03eno": 24, "wpddprsoy0u9uq1rvtq97cz0czr7bsmqcxrtavp440wiezznglbd6bcac9xnedep9v7rk2kb9m83eivzhkjh": 24, "dbffdnhextd9j": 24, "9e98tof2trcwmzmkzk5g": 24, "mabmi0pazyy5": 24, "m9v": 24, "7uyy9": 24, "jy80fhz3ly9zv1aup37byz9ztslgm9pej": 24, "irfrd": 24, "68d3": 24, "3ld9999e": 24, "nyvfrhhuoyejqxgw": 24, "vr4ty": 24, "eprt5rk": 24, "rp7zlafvk8z6uclcvlt0bqx69y8rkh7t6jnequbcnpmtjvt8ba9nfet3v2wr": 24, "ldeun4y6eerqh1fott3l34ekeihrbp9q": 24, "itjmkmms4gmi": 24, "crf": 24, "brddpsx17yb4cze1bvn9emq": 24, "mhfuy1bex4yur6vy1rg8vztj": 24, "fer0v5i1i": 24, "9hh6nix": 24, "nd4h459y": 24, "hydvbn0vb1lxmuvyij": 24, "jkp": 24, "iz8l": 24, "zj4goydno0eilpx0dqafu": 24, "scklen": 24, "7qpsl9dgj": 24, "6n1p9nh3q": 24, "rytuu4t9rwsk7lo8noyn7mptoy6toy6tntlwfrzxobumu": 24, "d4tj3l7m7qofaze4uc3nr90f3mzvl3fzuc": 24, "ayk8tmluo5cjnjza4u6j4gl7m6znvfpqcuc3wzi4u6d6rlxfzm4qkea5c5u8zzrt0hlnn2mzolug": 24, "yy5xc5usingoxoznmzzmo": 24, "6amk7ks8noyn7mptoyyteyytdtlwfrztoyytnrzme3mmrqfu": 24, "2cfdd9hje5u8z7yljm3wxuluo5cjmby9xc1hpgmjexmvzufdbcznkzyuu9by4zuczvrd0h5djxl7m6qofazs4uc3frz4hlxfzm7klug": 24, "iyz5c5u6jnwgxolnnyufdbdpmty5xc1hngmnngpefkzajedqafyzlnaakeg2uy59n9norn7ipu55jmezio52cazhmqn5p9nh3gmnexubuo58bl7i5zc1h3qxezm8vcxnrz4di3l5lc1h3qxgzymclfpqcuc3wzq4t6dlzm6jixf3ufvje5umzfrt0hlrp7wezu7xy4h8zub7o7v8ubi": 24, "mlv7uxy4zo4hs1qkcj2azh": 24, "5mfy": 24, "bbwxupogarc6647w8y4wtk7nu7g": 24, "sjtffrbbyr3e7np": 24, "gzri": 24, "36zwwoodhwuon6": 24, "k9xf": 24, "d9zhu4fo7fhqqxm6p9lrjp": 24, "hklc7h": 24, "kjf8dnq5krf8xrsm1wf8osbv0ipgf8p": 24, "pwa14mo": 24, "pwaxwt4rboh": 24, "frarww8hntajwj": 24, "fpb60ae": 24, "cvjvgfekkebxa3414pwga3414fccxpguab8s8csbrwcd8msbvxzwetabvxzwswgvsoeaxwr4pydxgw74ptt": 24, "zd3xirtgktfzkvyfw": 24, "wrvuon4eavvup1pge4": 24, "o6fbqkx8ym97": 24, "hpmhqla7g": 24, "0j1ch": 24, "drab9ij4bfd": 24, "j1gneddvi1gf8led3ogf8l": 24, "fhak9it4ecbpwp4peiahwx8asar0htwqwg": 24, "gvb60ag": 24, "evaraa8hhfarab8c8ip0cfjlgf8oed3ogf8o": 24, "kwav6rzwc8f": 24, "fla60hf8dou4erf8xrsm1x": 24, "x0": 24, "thcv5kv53": 24, "dsvuni1xb": 24, "phq6": 24, "46djxux8sm87fpqcxokcro90wk8h": 24, "hra60eh": 24, "hrarww8it0dfi3g1wjedzrg1wj": 24, "fpckdav4uccpal4poubxa3414pwga3414fccxpguab8s8csbrwcd8av5rw75xomo": 24, "uco": 24, "catdvif": 24, "cohfonjb": 24, "xc": 24, "petphhv6z8zz8p2qd3go3nehbz9jusdlthfz6dwfq7xr5ru1wvov7rdz3": 24, "qm1xfbtfxvchxh9nkm0dp": 24, "t1cx8p1ke7h": 24, "jt": 24, "mtddzo": 24, "0uuoned6vzuh6sn": 24, "x0zzvst": 24, "xetizxb": 24, "w6wg": 24, "si": 24, "axw": 24, "49ydxgw749ybfc3hfugf8wscvbbwedmcpan4u8hrqat8k": 24, "nwav6qp4fcdfjxg9aadfjxgvwjeka4bvxlwkwgvbx3wywg": 24, "hpb60ag": 24, "hpblaa9i54bfcvilgneddvilo36a153zi6153vv8ctfnch2k7": 24, "hpnnel73g96rmuv": 24, "oned3l": 24, "ejpo36a513pgq6pda": 24, "xb": 24, "x6wc": 24, "dxa3494pwga34t4nccxg864nccfhtwinql": 24, "fhajwjedzrgrwg": 24, "gvcknax8ascvbrwedmcvbpxkwotbb": 24, "xkwc8hvcjdan454jcdxg864jcdfingfekc8esbvxtwetb3": 24, "dtpu9j3vj70dnff8do87nj": 24, "pncdp83zrnqn10e6h": 24, "vv": 24, "gledzk": 24, "0voon": 24, "z5vzqh6ymd8osbvx7wetabvx7wawgvspeaxwv4tydxgw74tyafbbwi3qj": 24, "fpcjgneddvjvgf8ned3ogf8n": 24, "jwav6rrwk8": 24, "era60eh": 24, "el": 24, "kuo": 24, "8abd": 24, "pfd": 24, "pfdvvgka34h": 24, "8gh33jsab": 24, "qf2sld9zb": 24, "prn": 24, "asnsvj7ty2hn7f7cf": 24, "khrlrjkhrbuf4tyrwisrs2kff8hh": 24, "4b2q42ctbjlqv1fb8cer0nialikwrwmb8r7k": 24, "fbisnx4h": 24, "ski96uab0i3rdi": 24, "zshd9hx8qdbj7eq1o8": 24, "ipcdc": 24, "hvrf1ccav": 24, "7bpq02osa5": 24, "squgms8": 24, "7ciivettrh": 24, "6z6p": 24, "sw6zcjkebgtwnvz9vwtshaf1kcm": 24, "fztwrys5knonj": 24, "perjkd8ypvr69o": 24, "kg5xxl": 24, "yltmouvww3l3xg": 24, "kbh6bttytshvydk": 24, "7tzq": 24, "p2q1ke14": 24, "p9tfyq9475gjxespsx6q9": 24, "lz3ougbxwxgfkul379rqzyw3v6wq36jwcrvbsvptek5pjoqvltn": 24, "fewbe3ejdsrb": 24, "t": 24, "o2gv5typ": 24, "0zbyh5wqb9bx7y02gcb37i": 24, "c2ep9": 24, "w": 24, "eycfapx": 24, "4fw40dywplbmrzdhjlyw0kzw5kb2jqcjigmcbvymokpdwvvhlwzsavugfnzqovumvzb3vyy2vzidw8l1byb2ntzxqgwy9qreygl1rlehqgl0ltywdlqiavsw1hz2vdic9jbwfnzuldci9fehrhu3rhdgugpdwvrzmgmyawifikl0c0idqgmcbsci9hnsa1idagugovrzygniawifi": 24, "pgovrm9udca8pc9gnya3idagugovrjggocawifi": 24, "pj4": 24, "ci9nzwrpyujvecbbmcawiduyns4xmiaznzuumtjdci9db250zw50cya5idagugovu3rydwn0ugfyzw50cyawci9qyxjlbnqgmtagmcbspj4kzw5kb2jqcjewidagb2jqcjw8l1r5cgugl1bhz2vzci9db3vudcaxci9lawrzifsyidagul0": 24, "pgplbmrvymokmtegmcbvymokpdwvvhlwzsavq2f0ywxvzwovugfnzxmgmtagmcbspj4kzw5kb2jqcjeyidagb2jqcjw8l0xlbmd0adegmtkwndqkl0zpbhrlciavrmxhdgvezwnvzgukl0xlbmd0aca4mtc0pj4gc3ryzwftcnic7vx5ffnv9j9vyb6nszomtemalrrpm7zpugqfplqwfshliy0y2kkrgkariciwfkerrwvrr9fhgnxhnd8ys8wcdurrxnuucxtcurhxiiqjdnk837k36eiu": 24, "h3": 24, "d5wb9zxt83595373v3nhvoueegpiabad0cd1a53ztfmawzd4bry239jljjncu": 24, "w7myy4sajefmlm5ogzvyyfcasol4": 24, "fq5k5y7j94zmsxy69hm": 24, "2ut8xfvuuwrywckjgb2": 24, "pygzs0qdwoa1x3kkfmxxx3zjmxxhgdnkwdx6qbgxsup3dwlhidlnwcj1qz5dy1vxo3mx": 24, "u3yftae1bo": 24, "qxcdjd6bjztmhyvx9myqgobljgaui5fzxmbtd9ri": 24, "7fj8dxc3rgzhlrb473i8wbmkyfe8m7tgdpa": 24, "weszw5qxlrcrysxa2hhkesvses3ylm8fljpxnggwnzbbqqjyyv0sh": 24, "zijx5yu2": 24, "6acwjwu5yq8z6kugogne0zp0nsne0u5yuzpuqqwxpkrml84gfkjucahjifi02gpbhhcoiztchhkibcjqb8lopkiclsialajakajdomwtig60chqkrragggeo3gg4iao0qrmrdnfc1gq4yf": 24, "bmsyevmabuideyidopdyih4ghihetejkhad4er0unsb": 24, "w3jemyohvcicmqipgkayhpikcghdirh8jqxaziqmwed6ih8sfigizebmhgziecrc": 24, "kiuzcnvgj5fhmh3xeh": 24, "gqc6aa0q8b8v8qofgihyjdybhierqhdocr4kkyacwixtascstfutakmqhb8qecgdgioymwqalikzqilkgz": 24, "d2uwxjemtawcszfctaoctymf7": 24, "dctabsqimik6esyitke6gyeijqirkxckwfxeqteochvgttifpifvqhvgn1ygz4bles6bgpa41fguhfnemzescbzcixgoh8rsiuzwnsxhroa6xhuorg2co": 24, "dxmotgx5ii2qipipjihebnmf7": 24, "c": 24, "dce2erxasxaxagl": 24, "hy8uvyresrlxmcqksqwygzsqwabg": 24, "gctgkejsistggejywi54jvwpfg4ryaxivbascsxfq": 24, "fqxfwwsjwgq2e14hr4dejvkf4d1yc2qqv4gayftyjxwm8rfwvxiv5h8xq4xjwk62ad4g1wa": 24, "j62ic4gejg2ch": 24, "cptge": 24, "knccpitxaz4s2wgxez4iewbbygbowtintgg": 24, "itccvirygfw21wg": 24, "lv4heit8ptihfadsttckd4bo6kebf8hvh3fhfadsq": 24, "we7xi9hj8i": 24, "wc3exxbvhbsr74f7xq7gx7ko8j": 24, "l98adiaxqfhaffd": 24, "bp8bdiqxqfhkcqh6h4z": 24, "iz": 24, "d78d": 24, "wf8": 24, "wkokjeeymu3wmhhpfgzzoq9wn7yjt8dji47ahcq": 24, "iu": 24, "aepihyaxsr98i": 24, "xh3wjoktio9aj3qipgvpif4vnkz8gvyj7odnxh": 24, "cmxsfhwcrd8bzim": 24, "b84jpi74nb": 24, "eg4t": 24, "gb4gvwauil8jlic": 24, "By": 24, "jb8dk8gvgkxvfhvc": 24, "w2uir8hr4j": 24, "gdyqh4bdig": 24, "ag4me4jpgm": 24, "epek": 24, "jb8dbi2xt": 24, "cf9efafefq": 24, "du": 24, "ae4nvwpul7fd": 24, "adxa": 24, "ha": 24, "fn": 24, "ajoij4holh8anijxq": 24, "hu": 24, "fq3aupkp8di4hhoppet": 24, "av8ib4ox8kxif": 24, "b14hfu": 24, "wgvkhsgi7xntgoxxg": 24, "hroij": 24, "a7xo": 24, "ge8tvef8op8apicfhjok": 24, "4efeh": 24, "enxj8qx4vtcarx3": 24, "bvxnpwm": 24, "lpcez8bc5an2i3rbajfeuqxvdofodonffjeorrdezdpdyomcifmjpvyxroqd9egb7admutjakibxl7xwuk15baunjn": 24, "prsx4fv0sf8ckmtpcbjcckhfg0f4j7ap4p4ufhxzgwkmvll3yzxhtbdhkaboogz20odac2evqbv7kcb6": 24, "xonc9gbbxluqwh7aj1zyc1tyfttla": 24, "9ab": 24, "ojwvq8td9c": 24, "t2ht": 24, "egpfdsmvr8f": 24, "xaxhgysy3uhwbmthcgxogypmcuyzai5lizbl2keugzjrhu8wezeupfynwvrl6j2b8havwjda2kk6jkeexej": 24, "tpe9adcmvhbhfpdsouidavgty3o7w": 24, "ixzujvx7he9dz7nct62jdgcu": 24, "w54vmb9jd6jed8i6qqlnfnb1d5bvnuowmopapbhxk": 24, "dmscfze9ht8ci7ecyk5uqqwkc": 24, "nyc7ky3vyyozgjrqcc9mocncarm73n3qtmlz3utc5c6rl8voqphwu15md7lqs7ocwf3mddp1zvlwmbvn1k3lpehy6amzqexkxbgwbqxhxl3mcrnwslzflq5x": 24, "039ljkxhiwgmnzofcxr": 24, "6abovqwp96jbnq3nlxa": 24, "ya8fmpaq6mqaqgjimc9u3omi": 24, "9kdixjjzecq2phtfdhr3owo": 24, "vitka9a799rarp8vdbk94llyyu": 24, "qondtubl3gjmvnm9y7w7um1v": 24, "6ijyw1tr": 24, "yuaxrjh1g": 24, "anmbthlopflndh7h2jtupd296rkjiu0t5vtmmu2rcdnbvu9eehnntbvhf38qmr5gjhgom1qttlgpexeui8t7yicaclitxtq2jlp0wx94ggtdtg2bryzx9pvfm1etk2p4rvd3r3vtxptwcncubv0x3v0ydwems31qfg3cszli09bglji": 24, "5mq1thxoyddnn1uxfx3ruqkppyxm2tl6klqirla2q6d8lt9kxwichuskl3sxgxocw7din426gzr5gz7jfsf9wg7mn": 24, "nz": 24, "5xhmwxl12q6plh4hzkhy8sw55bo8diqa6xfcevs14l": 24, "hor83qhrviwg3hk7": 24, "o06xfg": 24, "wc6nrvdwnwuz5ppza498cubvfavqvjlpqudlibjlijkqenurgekjke5uyol99ynxketlugwuqyocg61or5xggoafgaz2xjzsy36l5fvchbhhvzacyipubeorxhhwgqryzryqtf1hrlcwjann4xwsazyn1hwij": 24, "eo1wy1zgud4ol2ny6truakyfepkloss7azvzfqsgxtalkyu6tyuigjlav6hqjrtdpkt6fof": 24, "r4pf2euowtgl3brrzceknnxu7wode6neymepaxpkwnpbmtptkp1gyyxfssvvwav": 24, "xnykniyz9omwpg": 24, "vpk3": 24, "6ehbt31xwzv6ckj1hsxfc3zl7dfhlpjmxk1jcbmjuz1zhwm49pf": 24, "u7ucmt5o8uxlc8c073pg": 24, "edpk1dxjwvhelhkld1wbbl9kjfsq5rtcoeaumzgmrir16bidtq2lwmg1arw0wutkg1wz18jxnfqvz6u5dvgiocicchyiiecukkie5jjil06q0sdqnropirkd5": 24, "xekotr8nik8r0hry8ewe78om": 24, "lonc5": 24, "dhj": 24, "vxaysbq6do4": 24, "oiz7zkbyevbrak5fv73to527tggsylh0ujtz6lt3i0sbjocwn3cx8luky56byvhpaylzzakgezihmn82mbimkniusezpynxvizwjo131heh3kfousww1cxmtoeg1cxwjs3kgqxzdhpmzukt7hjdq611sgtskkrzrtszniumecqc6ps6bll3sk5o0el1aruhqy3s6xsqcxes65jayb2s3gvre6vy1eqpfp4oxejuk0a6wczkthalc2eyltmrzkii73tpf0rnekc66tiwuzv0": 24, "bacystfyekomgbrc5ofsqk3lnz5vnlezip8ufhtz": 24, "qld": 24, "av": 24, "nojbpenkcc29x8gcn7mtmxvfx": 24, "dc7nojszvxbfe63lrxnk3nap": 24, "cp6ltlrq0cv": 24, "d5kttjg": 24, "gna1cpi6fd2kxssbw2ldmbourzzhqxq": 24, "ymvoqc7wrvuak0udq7g6mv1kqqvqtvl3kxfq9urfau968uthumlxvojhio": 24, "mwyddlsdnbgbicij9vphbpwozfmucjdrkjqsou8mypckdfcyvkoxcxlja0v5nwcjzqmmprjrqau6aiy6rtg6i": 24, "f9mc8hkn8kb7l6yx66qkimfdqweq": 24, "vn1frshipbzlvbfu5lr0v486s2gve7n9woxzqkjyieurpmalhdfmjppqwvhy1wtotnjvh7s8udkrj9uxnb12wswx2x": 24, "pyfdmgvx3vh3r6eihssdnepsq3dxsq57fzr": 24, "s4ecy0hhuq8mmzgzklzw6zugsi": 24, "6b1lwbqtabqwzuifeiovm5g2at2wvvyn0ydsahve7gleojgjgiuhinszoikdcuavo0urwvsk7wjmo5vetlcs14rojzdteaabvewsk4th5uvipzpu7n0leyny8m1u50hswpgpy0451khuzakwwydvgoockgxyhjeyyfbid6r": 24, "a4k": 24, "amoxo6pagpzw0jfiylkwbytovunhpktjhsb09xkuzklhir": 24, "23korf78wp8hqku": 24, "onruv5ucx6ft": 24, "38oeglfbjb7m": 24, "aw": 24, "l4hhd3": 24, "wv7uqpdtxqwru99pmvzeqc": 24, "8xbtyzpeyu7vqeipygpausorb": 24, "jwytaiyaolrfnq9wfgpjxmlhhtndm8u5xtxpdwwe1szlj": 24, "mi4ufkmjpwd": 24, "gz1uw1": 24, "h2gvgbmfl4x3cmggaqb5a": 24, "exrebbcjsffkkgk9lguj6qsxyvswjmvd1nlq1oiposwklhuluvo9xnriymimimavxvoljiwbfgjazjcxkjd1mjpsrdh7wcg": 24, "3lnsxj4jvb2qysx7r0zjua65ystbipir7r28btvemtqxc4m5lsorb5nesqolci4pbnua": 24, "fttymdlpdmz4zmhmfyrrmhvap7w2sm": 24, "fobzu": 24, "0j990cwpxtna3ntgq4dj7hz8rafbzwir": 24, "yoyq": 24, "qaimhujgvhfs0ea0kf5qr4xj6whcpuwyudmkwmv7csi": 24, "5il0al": 24, "zexrywxq5b4p5vsjm": 24, "0xhvxkdpzarlq": 24, "kv1vyl5": 24, "jnwock1dvrk9fov1hxj11gzfryj6u9ocxtbmovtyxofbp": 24, "sfhldghjomla69sk": 24, "ecs5otlhq": 24, "hdvvtolotne1k": 24, "r5lukd": 24, "aukichs3aupwdnamhg817rrddhy3xrclngiak2a2mwm5gvz": 24, "m9gd4a7idmubvdd6zjbu43l5zoio0o1okmuzul05bilwgu": 24, "tp": 24, "aupsaijx": 24, "rubqdp": 24, "haii5oxjqdotjtoykhj34f": 24, "xjrdsuxmaz": 24, "fmqor1l1021d96": 24, "95u6p01jvljk70tf1hbclnhpxvi23pmr88rkrth9y8": 24, "iiqbb96z": 24, "ovhx": 24, "vaof0uiww3l568rlxi3ima6pk9ncvezs5mgwtos8py1ch749urvlj2nekmeyiyhh": 24, "vl0cp3coahucdclyyk3miz08b8fjbfdflalhisfrwqvcvqjnbg4kbetlsh8tymcrshtkrhpgibpcectnm7puekz3fnoqy7qoi7": 24, "epc3b7u": 24, "wzg4tn8kcyvjxmbdxgw2jkwknwmxjwxgsayel8ikl0hvwjbhwhysgx8jfwpp8sao5ermgvpb1rdlmdwsfdo6kzmg41h5ouzgwjbheeib4tatt6tl8yzl5do5g38qzsp5uwpuhreak3knmoz1ivwfqzjxzishadwjyuaj7scg349rhxexpoarzo7": 24, "jhkq": 24, "5m3mcpmycmh0148p5ekyrxpwjisyk": 24, "enpaxc4ratzj3jyjnbt5jjhriophnsvy7nensraxa": 24, "stm7nxkvaawxnvzsli": 24, "dgsuqtcwbontxjmegtlegntyeaplskymepleq7pfilpmiqf1mktphbho4s7aifefujjdykqhqem8jhhowkibfmw0ehwiz9pjsynmuzhg0ihr2gvwkejcqxin2obx": 24, "r3": 24, "oj": 24, "l6rbp0ynniu00peuonhtjsaswxauf5jkqgr5vctjonyq8t6wmvjq8tguhn1br9veljldxrsugmwiuuoivranhldacdppp": 24, "hwa67vo6mvakb": 24, "khkxiyigx2i": 24, "nrb7e0wiphwddbtmdnbyaiymlpplqpds7atodbyyedxmtdf925tcwkrp2ncglx5": 24, "34lehwplkjc": 24, "lpjyuv2rufvczrhrjh": 24, "8vvup2dloeajqzy3xp6c": 24, "rutj9": 24, "bcsiisybrkthhxddx1dzpqbhahdzsikcabk2gf1gjb7pbhzkpbyzbxzhppk7rfrzayrefiha3lgxlsiurpmp3kfgqi85ksxnauhwu3nvbqekcntttng0w6k8ryxb4xsul86qjpi53fwzddcyb3ba9opmy3y63ktviomsj4yn3k9g5yumgq05zymjdjawikl5m7yde5": 24, "iasyxpbsmsom04vizkyniukgjhddhlcyaybzaydcoopm6tfgh": 24, "zidloqeh5l3w9tbzs8yaadrwdnrnxjt0z3nd7lpuuhdozkwammz": 24, "cphfkajpz9ltixpts": 24, "lv702lqzac8vjfd2": 24, "bqy4b39bs": 24, "jpzpcfosmokmur9bujm3utles1nthr9ssstiyxq6hbshim68ictxna1qqwvcnuktd1kdcnknoifrwum4gzph": 24, "nbtkqa63uhquhyvo4hwmvq5jbzcxsrupgo1ubuy5uwkkajps60awddauc": 24, "yocpwuh9kfjfq7z0szsg": 24, "rl5duxfw9s3ehz4yac4jbd758ozlm0hz9mrdhbqq2zfj6ez6y7udiyferfxjpyu": 24, "9qrz6": 24, "137faz9vl35uxmzsp6dwiaywbmjjepizz6ifo2e9qur509ishzosl7dod6rxdhllgcslpiclkjrn6qybs3kmagzfhj63lqdzwvlpcs1": 24, "wpjfa2hmzsth0rxr": 24, "bkclqu": 24, "otkkorqjhexach3uwhjpt5dzkadhdl4yn8l77cr2l9um56jlgfd3oqxuwdgbpnnvgy6578011z6feeub0kh8ia8stcfehn3hwgygdzrg5gcstmyeipl1ygsbokmhwypdmndpupneodg3p9ayvifovopplk85yprwhmhv4vohsydjbkmwmjo6qzk66lphvppk6teklkyhecw": 24, "uoz7khljxg8vsjo5gf19fnuj2x0l08joflcqautyyin7s5td5dt6zjjhhlpj3n8erlguugamyagvqw9jqylcthmdvjrraxerbwiohkrqg5uvdcqm6zhmcgcosmspkcjml6naghhdu0aynm09bzi": 24, "o6u8otzq56s2rdflyzew": 24, "cvogsxew8ei2mqochc0buvmsfwmwmcmpn1nuzrwuyksx": 24, "a1nlz0zn38b": 24, "yayatt8vmmdjizf": 24, "50jrx0959luabj": 24, "kruomqiiftgm2etkbfybphqdcw6ctmfra5lqjgzufoqy4qmq1w96gem": 24, "jqvzttxbioj3thls0j0ttnnjxkx3iu": 24, "1uxuqvvktro6bmawekvfnwbf2ciygy0jzag3kadajgjvtlrrvuqrc20w0ojrnsgiekjaanklut72oqebrt4ck9peusvwi3": 24, "entf1uj": 24, "f4gcxm9zprrwag9usujr1devvi6k": 24, "ile9": 24, "1nwn99ue77nzo4e23p8lmrl6npmcumwy8rkyorl595": 24, "dhd9545": 24, "2odxnl0cmm0cmyqkpxodwcwqfdyy5v6iqkockoevy5j4sh1abbjjhatkxaro1eruww0zaho9llbioeg1p0op": 24, "cnlb0hacfwbom5hakfkinhzl0v5b5i7da5t": 24, "uwbqb4gyamihsdtejcsvonus3to7": 24, "nkl4bqkyszjwyt24ylq8upuxlcvtvsomjtzzor": 24, "6f2afrey8ein4gfc25na": 24, "zrpwizrv2m1sgj1nkzmsryhokvfmtjktcvmmu2z4q": 24, "kbjyss9c5g77x80ypjq2g58": 24, "qhyz2bma2adbb1q29j7rkrqgvn4jo4tclmskampzk5bvqslyn7a5ooywsquzzcpsu25chkykcay6a6y7d7qvva6cpipztpk3u6k6rscdlequ0xzi3d0dbvyuzgsspodimzcm8wwry0gjhint1ryqd6tpmuke5nexms66vzt": 24, "olmmq4mpq8ywx0om8ooglax7jgd00ej7fxmnsxngs6kyjtgvvi": 24, "l": 24, "avs6bynlzq4bfq2twi98xrrhaf3dvd7a14bo6x9t3hntwlpi4ze6791ddhwyf9zeeorzcpxf587f7mnc3bbtz7rxo5lsu58bot7cgnllbklyclwhvwbfses8lw53si894v": 24, "8zwty91ui9qqtbo": 24, "aed6lpgv2y3zcxzoe0ruepvei": 24, "fuetkojuopsdvjg5yimre1kdxctylyjz5aq55okj6udno6txqbui4tnppcnnypbqnrtcxjzdvmcz3mles1b9kqyt4yeg": 24, "s4ahgtxrpoydup6x8r8": 24, "kh9e": 24, "u": 24, "5tpvkr1bnw8rlzkazxgnueiafaax2wxoyxzybv9v8h5pa23tzk6prjfblzmqcxotsqxw2peyo20nmzry9m4ivzpxmztvribw": 24, "z5blamz7": 24, "nqmiqyoerhyu4qyxilgotfy17mukoastdz7": 24, "wusfjnlp5ntngx0h8jatihucgg": 24, "nuejbcq49djbvk": 24, "ght": 24, "ppsfyfcpclyuh6tvhsozuqk8": 24, "05ysvrx8a": 24, "ejoxcbervljjua2": 24, "p7wb5jrepvlgrua": 24, "slrmivyybpocv5jwtphctl3asmer8d": 24, "w8kekj0qysprd5fddp8c8ir": 24, "r8d": 24, "w8kekr1z6lltavjrrybvo5pkqo6jwxrecp": 24, "okuf7mt3cbajshyi8hbev5cxgvqkwpyki9eedv6vx5g7bniqwrv": 24, "wlqoc8hf4stkgaldreonaadywctihd5resgpzwg7l8ava": 24, "8hjndppjqjubjwnpzkvfvx14v6qm98iinv0jl1cxfxq2svrmiv2iepkca": 24, "gv2lfbn5cv5fpavtq68ooxvm0ymgbuaqut32op0vio2f4fkgzvxg5xcodhadufibzabb9aei7ya": 24, "vjqsb": 24, "okrc5herilndgsvgg1mojkv": 24, "id9jtc": 24, "0wmprq2yuvlso72np94cgyhx8": 24, "sfzhilxzmehplej7f4dmlvrehxjk9cupb5zvah1yey7y6v5dxl2fvnhnqbk45txz7fabtqzc5d2sqxoaon9chqibiphkn0q5txawtezcksuxmxfgrzeqewnmkj5g6bfyutfgohysvwjz0dw6i1neq9pphfhrigqmomts1dcg": 24, "gu6xmnnzb2n8hjoaxgstl84srlcrog1zklk": 24, "adbepogvn8bzeq5vf7cxazy2lntuwfwwgmrt7sg6rkpcx0fnop4mt1k30a5fdxgse7cuvjmzubawjsh8u7aid1t0m": 24, "xuxqbez": 24, "kwwbhzmgzlnzdoeroyckzwjtiilyfn0jpidh3dxokkeiuq": 24, "vnxjljolisu3culp": 24, "fp7dwsyi8fthitwck9xwssiwnwbb14etobbss1l04yggeagnrkwmrnywh6emcfo6pikkmyqhyjmmejb8ywky7cjq1fpjwgbwphcavzhlkeikfhvyv3fjgmypvknijswdjuy8c8pawlg6spf9aqt6fharnbvrzfbq9k4hvjh": 24, "zgejnbtv5hup5ockkioqbtbmegbi": 24, "tjng6ytko": 24, "biiy1m8udfrtjtk873um8ljzw": 24, "ffrawj8himevkw": 24, "k": 24, "goy8wry8nnk": 24, "vxycnvokszcbfr26awxdqwdtgji8etubmg": 24, "qigw8yzko3wyqhpuyvke6nmhisbgxog1aieq": 24, "t7vpwungrk": 24, "qjgw8sqjih2cizecfksf76gef5pgfl0rv0wmyakqduylyls3dnib9lh8sbdm": 24, "48kscbgiywx4ofded6i56s": 24, "tjnqvp2shmg": 24, "nhsxcvhncm": 24, "3do6uxpwcl": 24, "ovji": 24, "zqbt3691ss": 24, "se": 24, "vh738e33tuivy9saslh0t57": 24, "0xzrpjl0j3qduexzmgwwubwl9x9qlm9amlcwlsffsztctcdz5tqordsr4brswocazyk": 24, "n8rxchl4s5fl": 24, "bstud6k8lnbpghmwfjbbamigjziu": 24, "ng9z4u8winevgdm4rvmvnqm91uoq0i0dsm0ynsgbd0ni": 24, "phsliepaw91892nyemsgpvmpefd": 24, "jl": 24, "r": 24, "cxvk0owkgn7c3e0qrwwotfbuwjvrchlwygu": 24, "4ii5wafk": 24, "dasth4l9fnrebspjkcf50hcsj9738a7yuqcb": 24, "q1jarh9c3oduetiltlw1r23a1hdtebzvsptzfdqknjb": 24, "ank83hpwldg6gy4zbgv1xtxbxmx8serrknbq9hh": 24, "2nqlp32amz8wfho": 24, "znwhp3z8pj8oz": 24, "ir44mm": 24, "pdi7krwvdfgkwks8jtunh4ynggftn8": 24, "m": 24, "rt7nl": 24, "d9bvv8gt": 24, "jf73gsmgjaq5dpl67pxvcoem8srtd7w6qhwnp2hw6qltthl9i9w27cvgndu": 24, "mlu4l4m5fsmc3ari": 24, "cumc37kozswr2": 24, "hrtlb4gyuhioyw2apchfhi3r5vd9ywls6hu163trdzt0w31xg9y7nji3fz2nvrn2zztnxd1vvbn": 24, "ie3yr0ad1sx1jwuekhdugwm84xgoffmodbbw": 24, "yzuef51myw8ac": 24, "rxwanjvwopmmdkma59lsuu9pii": 24, "0xthz5jmvmouxlucpbztvmi": 24, "acvnbfaxvn1wzntm5kwwij4oh2s02xgdni0mrjcnlg3otjkokdkaaxuo9bmvdux": 24, "cocct0lnhyn": 24, "qslb7a1wspsqhmyecgc8uee48gymi": 24, "tmy6nhbmdls": 24, "vs7he3tcjmcppkd5ev8zms6n": 24, "qreu": 24, "9j9z4nott6zrwdrlb37v5wtye4p3jp6x5et8elbdoyt": 24, "95by": 24, "4r65ufpjqdsvhwfieclbtjewhizjhywvuvjwe4xj8nf7ymclfuxfunfay7uabe8o3v0yrca9nro2qy5uambnmnteg5rxty2x0z7f": 24, "bjlnrnqmcsps8ubgsjsd9kyutcsgtzdhkxyr3idu8zdhe3ltwetcgnusqyhpmtif6mpogbxnu2zzczlet2": 24, "wuhu9cicmvuzhn0cmvhbqplbmrvymokmtmgmcbvymokpdwvvhlwzsavrm9uderlc2nyaxb0b3ikl0zvbnroyw1lic9wzxjkyw5hci9gbgfncyaxmgovqxnjzw50idewmduumzcxmdkkl0rlc2nlbnqgmja5ljk2mdk0ci9tdgvtviaxmdmunte1nji1ci9dyxbizwlnahqgnzi3lja1mdc4ci9jdgfsawnbbmdszsawci9gb250qkjvecbbltq5nc42mjg5msatmzazljiymjy2ide0ndyunzc3mzqgmtawmc40odgyof0kl0zvbnrgawxlmiaxmiawifi": 24, "pgplbmrvymokmtqgmcbvymokpdwvvhlwzsavrm9udaovrm9uderlc2nyaxb0b3igmtmgmcbsci9cyxnlrm9udcavvmvyzgfuyqovu3vidhlwzsavq0lerm9udfr5cguyci9dsurub0djre1hccavswrlbnrpdhkkl0njrfn5c3rlbuluzm8gpdwvumvnaxn0cnkgkefkb2jlkqovt3jkzxjpbmcgkelkzw50axr5kqovu3vwcgxlbwvudcawpj4kl1cgwzagwzewmdbdide5idi3idyzns43ndixosa1nsbbnje2ljixmdk0idagnjgzlju5mzc1xsa2ocbbnjawlju4ntk0idagmca2mjmumdq2odggntk1ljcwmzezxsa3nia3osaynzqunde0mdygodegwzyzmi44mti1idywni45mzm1osawidagndi2ljc1nzgxiduymc45otywosazotqumdqyotddidiznybbode4ljm1otm4xv0kl0rxida": 24, "pgplbmrvymokmtugmcbvymokpdwvrmlsdgvyic9gbgf0zurly29kzqovtgvuz3roidmwnd4": 24, "ihn0cmvhbqp4nf2r22rdmayg7": 24, "0uuuwusuiceoaq2niwcr": 24, "caia10hsuxjnurt59jtr3mkman6zd": 24, "pkiqd7vwdqipo4oghfrks4vtelucocol0ownijvwnwp": 24, "mbsgrv7czjpdodb9yiocipr02cnzgvbpcuzwiuxvvqjv": 24, "gkrr6rx3fyn": 24, "cebtyoylsvi7h2n19a8tqncfgtrwvq8cvpaa": 24, "4qzrnbsajzcingiznpbdpwx5avsx8lfcf": 24, "soza": 24, "svvsnx14ru1szxf": 24, "o4tjdlobeixab0gyjpikgyp8osc7thrbxrnuhevau6hjwlcu": 24, "cn9vk7o7jyzunqcrpzhptj6jsrw3jsm7jselbiwvzcpjgex9g7zc9lpd6lflcrfx7ducni11wqjq": 24, "7m5gs6iw7xdil5wlcmvuzhn0cmvhbqplbmrvymoknyawig9iago8pc9uexblic9gb250ci9tdwj0exblic9uexblmaovqmfzzuzvbnqgl1zlcmrhbmekl0vuy29kaw5nic9jzgvudgl0es1ici9ezxnjzw5kyw50rm9udhmgwze0idagul0kl1rvvw5py29kzsaxnsawifi": 24, "pgplbmrvymokmtygmcbvymokpdwvtgvuz3romsayodg5ngovrmlsdgvyic9gbgf0zurly29kzqovtgvuz3roide3njc1pj4gc3ryzwftcnic7b15yftv2t": 24, "nhvv7nudmcw": 24, "k7mtmclkmklmskzihghusmiwlihbakbcjotyqlhckhkrfgerabuqtrw6ulrqgqjicknrohurwawivguvd9nsi762qub7ndmtjlb29": 24, "b72": 24, "74vvfo": 24, "zxzz74853oec": 24, "5kagqaraqbyoq0eewxfq8ggojrt3nm0": 24, "s2kcel38pn5qdmwxdcnq": 24, "6xwhoavg": 24, "hwbwtxs0ojt07i860aqtcv6vp82yyt9yobpf0aip2l563qaidgfoeqlwxx8isv4a": 24, "8xj9aqrfaxcklci": 24, "7ymhh": 24, "38emoee0kixljq38ojn767": 24, "jgnvc9bd8tfnnccxczhc2jjzauvmpymmidptvinruurfsz7": 24, "oxjmhegcsmfuwzefv3kqewdahn347p0nxmxlqr01nl4": 24, "0xxilwrmyfycddvchre1b2ok": 24, "swz8vgpa1aw8nys9oac14iekskwrztr8driesxafxyl5hadgeowr4ogca": 24, "rkrglkkgc74qahsarsfscpykaymqxgvfuxizyg2vq8ozec5wlhcdgvn": 24, "og4et1btsgzgxhx2krtqx1omucat3oeq0mjwbancgebhfmigagfharryhfqr6yew1gqbrdhqid8r84djzefzgq3qw94mz8hbzgrvqxzacpoh": 24, "8iblilxaah2ib": 24, "bgdicggep8lwhbaliqcxajdighlvoaohbgloraxbhheeijkfa6leeusg2leommexdknobxkecugflgsyrxem3": 24, "djcqqqxmognlegqjifaypqesshstiaiz1ui14hujf4xwyhvgpnygy1ci2ij6emtaasrhqejvgpmrmxl": 24, "awkhhhacy4nige6ah82eycgmqw6arcri0iu6g5swgtigxifnhhgirwwtgfoztubamik5job1aegfapmwnmbmmi85i2azteduhfxe2xjd5goywvaguroyaaygxw": 24, "tmrzaxzib2wkzeetalct7ih7aa2haxwmzertah8rled2axxis4bdoqlzjcbnmz78ol0im4hoyhxsbwoza": 24, "8x6sgawixbaqcsusquygszinybusrlznca0sqvwlsxevh0sz78ivdk": 24, "e5yhxwwwi34xvzn6bqxmugy7ea2al4nret6ehuhgvhvwi34pvinfbmsxxub7wit4alyn": 24, "h65a3ib4dg6ekxe3wncrnzhcdfdn3okbyb3id": 24, "aaxjszbogezjvqc9ci": 24, "hc": 24, "gjhrfadyi3wvwzn": 24, "dhcapibfb9xntha6a6a27e0k0mfwibe": 24, "ezyg": 24, "hzswzs8y3gu": 24, "qnwgnynur": 24, "wt": 24, "bx6ex8bp0t8jfwi8veir8pdcavipxar4r1wg": 24, "j9ik": 24, "br": 24, "f2xn": 24, "ahyj3w1b0f4dhg3an": 24, "vwwfoq4g2eafoa4": 24, "7khiu": 24, "2ia4c7yj7oafiz4ev8i8cnvgl4gpm": 24, "yhxyhuhxsyr": 24, "arho": 24, "cvyipwx2ij8ovm3": 24, "e3zf8au5hhiahej": 24, "ebzovwfmmfw": 24, "rdwhacsnev": 24, "gz2an4h9gf": 24, "kzsbtxp8pn4khms3aa9ia": 24, "dw8jhor": 24, "xbdgb": 24, "zfoaspib5m": 24, "ci8ivgspjy5dc": 24, "d7xbfyyi1qdwca5ld8co8ixiu4wvwe8txyv": 24, "mbfgtwzfgacq34rnet": 24, "apmynwdj5fpa77": 24, "g5xdfgqoz5": 24, "fdhifgect34axe9xl": 24, "aicyb": 24, "bdoiz4ebyi": 24, "dhdt": 24, "dlzhpwkbycoah": 24, "rpwzw7": 24, "aecst8crix": 24, "eo4mfwgulf4pxmfjgff0l8noex8abif8fbmwfhszig": 24, "heg": 24, "4djif": 24, "b25k": 24, "wgmgz": 24, "bdxce4gzib9zlp": 24, "A": 24, "o6z8wtv": 24, "ecfrhjnm": 24, "zpz": 24, "mep0jxmnf8q4": 24, "spg6r8xtv": 24, "icfphjnm": 24, "ypz": 24, "eep0jxinf8g4": 24, "upg6r8ytv": 24, "qcfohjnm": 24, "yjz": 24, "aep0dxinv884": 24, "x3g6e8ztn": 24, "fcfr7jnpfy5z": 24, "hup09xinv8c4": 24, "qtj9bom008wtj": 24, "bop1dxunvmk5": 24, "l3h6u4zt32gc": 24, "g7j9hcyp7": 24, "dop1txulvm05": 24, "m3h624ztjznop844": 24, "tjj9oom048xtj": 24, "gop0y4": 24, "rjjnopmu5": 24, "i3h6w4zt3": 24, "kdpvyhh6a": 24, "9bnh6ucfprxulhgacfzzx": 24, "lhh6ucbprxmnv8o4": 24, "vxg6a8ytn": 24, "vcfqrjnopme4": 24, "wjj9cop0i4zt": 24, "8g4": 24, "rxg6a8wtn": 24, "fcforjnnfzpz": 24, "mup0lxmnv8w4": 24, "sxg6s8xtn": 24, "jcfpljnnfzjz": 24, "iup0fxmnv8q4": 24, "uxg6s8ytn": 24, "rcfqljnmpm04": 24, "zdj9mop0w4ztdzfop8q4": 24, "rdj9eom019gnp4c4": 24, "qxgke": 24, "wdj9bcbpbxmnh2scfpbx": 24, "vom0w8wtj": 24, "aop0a4": 24, "qdjnmpme4": 24, "wdj9aop05xmnh2ccfobx": 24, "ghg6qcypz": 24, "hop05xunpmu5": 24, "jnh6fsbp": 24, "xmn72ecvp9x": 24, "rp": 24, "b3f67h84": 24, "x84": 24, "f8ytt": 24, "6f4vtx": 24, "idn3": 24, "a6qbc7jqnd5eww8bzaci4ivrokwhjydstkqc6cj4vwlm7aufdfsgfgxauu4ahk3khc3gwfwdnkavnvpst9wjwzrdeipvrtai": 24, "gi9": 24, "4cwdnlgq": 24, "xboyua04liidi3lhofpmdydoqpi9bfhnajbsvkokjsatbohebuvz9o4liuducpdsq5g24lirfdbmpix5wpbqrq4215dfuvg0tqo60mlveusme8zco8dushtdvs7mbmxy2mrnx8lj5dlzbr2siom50pidevekhna9asocxalpyyz9d0syuxerv4zjr0zv571yaaw7lnncp0dzh": 24, "3euujh": 24, "hutujm4uqyvpmulwnhoi": 24, "khz0tyyrfuc1dyen": 24, "hb": 24, "srxkihmm2e93ashex48sdspwua8gudk": 24, "ubedr6aq15upbgi": 24, "c68rkynn5uwkmyazfx3vhc": 24, "4gpcmr8j6xhddmisc9xpsjsmooz8thumsn5h78x6r": 24, "flxfovwgmn7fy7": 24, "z7d37kvw2evkstnn4bzyww5cn2dg2bbklt7kgcokhbstafikf7cimvsfycvymh": 24, "gvbtjkrivx": 24, "jjlomuswacliev4fcl": 24, "cjqrcwza7gfc5hrduo8pikz6t2u4y9jmd5vc9dw6zozmvchbwpqgn5cti": 24, "adwgfcvzlyg8doll74k": 24, "kk06dmq8jtyuuupzm": 24, "aj7thbxzxzc8y7a9w0hcvjvsyb9eb": 24, "bvpqjhk2oivpihwqx2ujui": 24, "3knfiap": 24, "qc3eruyz7nh": 24, "dfekovikwt5mrh": 24, "ckpujil16rlufbcilx9n0rm07cf2eghkcuwhch0x3cjusa8f8kd4t7ib": 24, "c3ckcv3x86pvtj0feztabckruh": 24, "bagwfy": 24, "ixysq5rsoysiu9izxu53byrf": 24, "kgn": 24, "qb": 24, "ol8o38jfyv": 24, "lp": 24, "c0c3cl7yumkcyp7hfnw": 24, "oo0mvzloy12nfefbivskop1shpjef19rluhiurxntqsm9glewtbju": 24, "bdruh0zvr": 24, "zdt": 24, "y25vik6cikadwesmwfhlk3q3kzry3kgfik": 24, "rpsp": 24, "8tb6gn1eadxfxzdvzjdxybjf3a963coe5i9yhvjdfwk": 24, "ne": 24, "i9": 24, "dvyaaiagzrqxe4xwbffcqd6ikvonv89xpnx48u3ym": 24, "cxbqzdkhpozdnvqk0mfzgzmrst6h1g7ksoabsbabkuzvbvv36ak7kf": 24, "fx7zl9b1m8irbuq8kwrrgkpw1orjodib78nkarxn4d2lzmz7hplpluc9nvsq75hrypxkb": 24, "th7l4d23y3": 24, "txzg": 24, "fd5bg8": 24, "0iokffjx": 24, "qzdowy41gaw1yei3mpbgkjn46byl2i92jubd5dxde3fkfoxm4xt5c7wlv5mf": 24, "kz": 24, "nx8lv53": 24, "jp8a": 24, "wfxc4ousic3xctggxcj1wshhrocp8pfarmhvlfhcpnlj6lfxkgcplyjuuo5qfkk": 24, "rlkpw1xzv1apxvbl1gnnqd9juh0zqxlx5ikxs5alxcmdwxjj5lsugmgn7tmln55fzn": 24, "mvks4hj3mjve428uv5szo": 24, "5mdyx": 24, "iryezucvla": 24, "xw1": 24, "cwogwti": 24, "dzb3cnua8fgpnmfkslhh": 24, "rhbgxfyckzr74s2itrfb8i5b8ktdw6msa9zv": 24, "hx5d5hgovd5fjiru4f0esjnnwoiazegn3oyz6gvvkbyy2ourxfszffv": 24, "14grs7": 24, "o5g0kx": 24, "4pwf7zhb7m": 24, "kzpknmsng2sieoiu5llkfmtcmyqfbslk6ci": 24, "bpk8st4k": 24, "udiffy9zbknx9fkcwyychecg3yavmjrueekyl7i2ugrd5kbwt": 24, "mpmwncugweamuijxjoowmx0o4ylwct3ir5lrmzjoxsqxuhg5hvj819bhlbmvrxwaus5": 24, "zjaj1jqcdo4da": 24, "qad7dofl91oqfotowjlg7uhvriqur9ycjf3lqt5zbnoiqlr1yt": 24, "w4xti5autcuvjql8j": 24, "zyhrt5a": 24, "vewpk1aeucdbljaezm6kt": 24, "3yz3qlwln8jx": 24, "jhyicxlmju4aarp6c6u8jdqdx6lgkif7m3qsh6z4edccdzaqmzeisl": 24, "oot6pd7fhwoeq221fvcky6bvgi": 24, "me1tmgbzwka5rk3bn3i867": 24, "2o": 24, "oevl1mc2osf88cxguvtmy9yh": 24, "rs304a5kg6kdm6micvxisfvjplyp": 24, "kq2i2": 24, "ph9erj8leirrix8iuaocrhovnwqvinfwzm1djsmf": 24, "fgapzcdv9arq5x": 24, "gfhvpd0dl0bruz2ys34ur1dhcf9yb8rmt6udlkxkfg7tvcusehshx3i2yu1m4hetgfangj3h0vuixduaem2o6xh": 24, "exwja1m1o6qtvzuv5yl4wwljrdhafckmh4ifacmf7": 24, "n63c6nw55ntzhfk9gg12k1apvsifacgzlm4nhokv3ymrykg": 24, "phl9ln4dz0mheor2daqq": 24, "xi": 24, "okpu4wtrozu8ayl3wjppynkz": 24, "nsuspdupks6tmojq": 24, "2bsu": 24, "snsc9rq": 24, "yomyluuhmtuyczdy9wgdaccmebqdi5pktkku2poj127zfnzzxnmt1onbqw2ltkwlsborq6donslhcguncrxpmeoztfcu5mdtqerlxyhm5rtrmatrugadzfpw5huvactucktclsxlqrj44lg": 24, "dqex6rnmryfglkxawvjwswkkzbs1sbmawfjwkab": 24, "kwy3xntlwwunhdrw5qf107lmmew3ka046otzq8fmxnly9ugc0m9": 24, "kzm51kjpm7atefkb7": 24, "g7dzqamx2dswjzyxhdm4aiwxfhf3ymk3csrgb2tvs5aysukltog3ktm5rsjn6dc6t0prgmocstcs6cwdcm9jw4zwbprdb3ou7kneztgl6wzcqrvce2": 24, "c1exfmwaylr9zlkixxyjdskp2ioduto42mnenvonex6gwyc7ho1nvy4dl": 24, "jbrgwqkodmlpgyq1aqtim2oolkqbtqtqmbpe7qrtprfiecxnaxo7n4m16c": 24, "s9glfwaxkmz4hhp": 24, "g4kcjfeblfjrh8xogtiolzwunw4fd6vgsxvxmbutvicokdtyfpsdls9b2c": 24, "lglyihhd0hrdi389pr49j5gqad3s39mszhh3tpbw3zzwnm": 24, "pajsfa01wndrkydrhnoce9wyfnk3cguy53m63dllyxnv2yrlu1eultmtj": 24, "tfcibhjltgdlbbpbpoznnbm": 24, "bzk": 24, "4ikbxnm2loci2qds8lqqxp6aeetru3b2g": 24, "xajyi8nti8thm8tjwsy9ra2mz7upasi": 24, "pwlcuu34vo5kwf2vq0lygszpk": 24, "sf": 24, "lrgfmpkqamxy7x2exxrsi": 24, "dct9wdo0ltm": 24, "jpzrk3p2tji59ejnkdut7": 24, "jxwolhvzl9nmbnmlhhi1fstq0awxqgrupc9o8": 24, "kzp": 24, "kakbjft5dv4tk1dzz3dw9": 24, "fewszjz32pnzsxbjsi6lnwzidqxljbttlcuo02w17rdy43ti9ry8jxgpnmhbaqq5xetu5y8aeu700u97yqitzucys1o7pxnh0": 24, "w9gpxq": 24, "42btmt7j": 24, "u2bh": 24, "ud2vvya3iqlbrcduin6940npvnz22y3tmreeb": 24, "1veai0dt1bdojurhitrxee9ojuaa6z9uunwvgl971puxt36uuupgr1wduekftxefn2z0qr7yy0kugfagcyts58ij3o9tjvdwtfaaq": 24, "rnf7ezbq6kohwi41erfexjoau": 24, "iocgxkovbgro": 24, "qdttn0u8vtf5tb3uo1s8jvcecjgd5jac8qpwwuihtssk3lvlwgcw": 24, "spmcbictqkdxgqvyeodl2vk2qrgrk": 24, "o1zbtmh3y9hv0y66iua": 24, "sjsugox6wpbgusnvylmgcwmrvnyg43fbw1tdwfmoyuex7gc": 24, "c4m7hntypf8oaubzwl65g7ayfj8ggj": 24, "joj6nbdahpusx8yq": 24, "wxfyxfx2": 24, "jiv5b8ld3ihhh6yyucxwurgqq4stk6": 24, "booillzo3feeibfu37nzh2yt5bpfzf": 24, "yqfgnlbe48zzvxj19ed6srzdbyfzr3dxuoaplcyp": 24, "ftnawgfxkkrydnnutdrv4qifpr": 24, "hbij2p1e0u1boe3lyhtear": 24, "l6ee1drikdxuftz": 24, "xjt9xkzudhqd0mu9yhbwwgdbvonam1rn6i3qbeovy8ot6mzqh5nuejq": 24, "szh8t5ooguo42rdoepiuq8hgr3c": 24, "w7asd": 24, "4yzfppzoel": 24, "ixwidk": 24, "smi2fqgqm2onixsr7oncjmsyovi5ungq": 24, "urbdhq3frvaojtuvruuzdjih1swuvjsu7o6bjptuzsaulveqb": 24, "zhy5r1zuvdoe9sqi6aa6kfeykg89zzextcp2nv1p98xjxoesqjdhcnrhbk8usikg4xc5ddwbp1t": 24, "9okou3ouvnlm9zjp": 24, "kai": 24, "kkfrpfzfjh7fmj0rjhbbgvuonibbnwm3m5t0nakv1a2ivpsu": 24, "uvmunc6snsfdlm9p": 24, "b4": 24, "ugaf5tgfv6d1e8raupjlqctlkawfem0i5w1yvboeimu5fm6fhlc7lltbhhraxq497tihdq9wt7tqy3y1buqrvsswr8mzqwmnhzbrt1onqhqm1tejjzpot2g": 24, "ke4y6saoppcsrbiv7ydgehuquek7ymg3v2l3vau3bvz": 24, "9x7lzldng5lcyv2yfjyk6iuuw": 24, "dta5aqy1vdveeaatv": 24, "6xqpjbwmxfkvpx": 24, "y5rflla3bxikauh6gvzig": 24, "uptu5iblxd6diumakmyighspxhzou3o1eqjc7l4lc6byc": 24, "ir9wvu78khzinbicrotqjsym": 24, "gpndwkck7cnis7cbk90khiobx": 24, "dkd6nhlphypl0jrp1fvmrludoz63zstfqxcby6lwhsrvut": 24, "wa7klsr0hxpo": 24, "y7xyoempxmvnwxadji": 24, "fhrumvx8a": 24, "hp": 24, "vci8nexxj47nju2nmfjnjctczzqctr5xheu8530sytx6pjlag": 24, "t3uqegz31mukod8hnugkpo99kaw4pdeakgh01kaja": 24, "cliaup7of2i": 24, "fn4jnjzyornwzj3gsu8ptcjk4jro5lpgifkktc3bsu": 24, "jlbziu2b5ibwychwpha8raxxifqsaczcigmistmzthuqt83hvzsar0nvn": 24, "kkdold": 24, "40m4ohuiu": 24, "szonbopdaoy2iknp9oo5kdp1eso94dhsvxgpuduirknriyp68nwrbttqc55rqtkva7u47": 24, "zoghhclhii9fmcvkttvbqrqgvdiqk23nce0hcg0hz2fyigdcjz1zyhnutqwvjwag7hnglmmkh3xktpc": 24, "kyq3rtujz8zsmwk2s98lqw5vxadvzgcrpk6": 24, "bwzi3yr8fd": 24, "etjj6u1nazz9tznoupuglngdiktxdbhwdsoaaionlygkeu5ukqubwdqoh5vvzwz0yulm1vkrrw6osoq8hbtawws9fc": 24, "pbecjv0ghtbpc7xzyhodsa": 24, "ojss9lsyn7ngk0u3eqg1j6berzoqb3sc": 24, "mqwfih9irbncoghuscgk": 24, "6h94ibuplvgtq33": 24, "k9wwzwsrxrj7xyyfzs13ddwoi1lspkiqgkldb4c31gkkrswixviqylawwni": 24, "vvuiklkwpquhr9cq47qqi2jcahbieyt0fi": 24, "uqgom4mrkqdkzovpotbbsmhedunvvtlr1wrgystqvwczzw8y3fpv8otvuuxbwnzab5jfwo3bofx0": 24, "yyve9rjbqzuoo9tilhpthvrzw63tcjdajnzdok1hrknuwczej0k6j4pnbuykdvdivweypqzlfruypmk0qlamtkzsypkws8ovosajkl2swu73s81e0y5c": 24, "okne8j6fxceidxml8ni": 24, "euw": 24, "mquhib4op1g": 24, "twabck4l": 24, "d8bp0af5jxaqxpgbyfzawjux2d7xlyo4gmy88gqdd1mlz5lwtsysp9vtf59mj5a3xczryf3l92gzbnns6bpya8x6nnpb452kmkrslpoljtxk9rt9aq1rjuhbbnkinacbkgwz1vg74bxzusw6gztxa6": 24, "xmabbr7nz": 24, "vq59vynuhkq6sqipvwpeg97ituwr5psf": 24, "lsetp2d21s1lfqormhu89lzfqrf": 24, "r1zv7mutmqs011znwucpjx53on57zgj2sitjhrj9dx2oyu0p5srjsj": 24, "dbpj5xngq5sojsudoah0qdxv1vhx5": 24, "gevdoqhyuliyqhgmjxhs": 24, "egecg9ykmmnw1xpmirfgin8kneiomldmfonbp1kszzviafkvbixjalavt0qxlsrkyrsqikqxvmbv8oickwsozz58nrgdfcwknj1z2i5ghkrnkd": 24, "1blctqdx1g92n": 24, "lygtonsrmnvlnjzaqp1xpoab": 24, "escroh1y9xyvhe4mk66ia6hpoqvfr1zwswbeauyz1kqnmpqsxlfat3": 24, "albchripqxatrveklw6sxe0uumbqi1yjov5smsrizeepatky4uvhz1gg6cnieaahq0tvxvw0ghmlkmupeed5djs1eij": 24, "ejznpjti2sso39mq": 24, "79nq6lut0kaeksznqekm0u3uplq7lqcjqa9hwoq1bw5oc2mirhdszvqqgfy7qucmqqsarjmgdsllcguoiciautuixo2zup2lgnepbhnpx434qqj5v7nfzowc": 24, "ntwtplzixqvd8fs2q6am9lq0dpoot9v1xvjes24vmdo0s2bs9zezxd9b1ljedmxm0mzlcgpkassqqkpn9kb9y2i3do2": 24, "bnseylbxc1vtlasjzlxsmro": 24, "l753asqcebsog": 24, "qhlgvjzfzcuezncvtppnnwqaztwck0dsvipruw": 24, "tp1ep3mzjr": 24, "jt2d": 24, "xkljb5fykwfkzw0her9hh8hfhqa4jppb": 24, "nn35ffq6wxcjoseraoa1qljtybz": 24, "vvxgbjaehu": 24, "r6js3eauukm9mqlsl7qgqla0ve8tert8hhz1": 24, "njfh4dzqozi9eoz9gfkt9ywzxqs4ljhmjreemkl0vzhny45qylml5mpirymgbocsnaqvzwagu6og7wd1ocqfo3sxzpxohnbnang1cvp": 24, "n4tkysqjn": 24, "txc1yppqe98rh4ir5hhpnio4vdgwm6gyoz4eu02lgq8iunyudpx2pvyo4d7i7xhvqpxkjjnqqww8kjkoopsx5jppqnsxdil2uxsvta22sb9r7vu9u6wrvfsj": 24, "gzlvrxj5ovyg7z5vii": 24, "jtmjjtbwa": 24, "4sulli53v": 24, "0ax0ep2": 24, "flunvc": 24, "w8777b12zv5jtfwjdd1vvfzf7yfhjzwnzy3rc7rh5mez3r24otcl6obd2gsziyv": 24, "pniafa5zi81pd2fmuefcheqobdebougvlkixokqclhmqilx7lxtu4ivlde617pudkp0o": 24, "1kxt6cyo": 24, "ht2y": 24, "ek3pc7laek": 24, "yyjs0hjup": 24, "aoyzenvxl39": 24, "5vst5hthdmrcagrypaw6oznlyrof8bbmoenlcxapp": 24, "rp58m4yb": 24, "mfj3wkw66s3fz7oaw6u3": 24, "onnwlpi559rlxuainzu7w0": 24, "g05igpx5et6ck1pc8gehokibizzwrlktgwkifqxzsdeonrc2zgtzupy9frnptrcqpqecjmfahefaeiwtq1dtxe4": 24, "fmm3oepudhcw": 24, "t2scu63qoqlj24pqeekslqqojg4n1m7gb": 24, "mebfkecnptspbjjtgm": 24, "rpuzsmrlvnnc5bavyvelqdiq3pr2ii1vvwmqhwm": 24, "epoenhalwqbrmvhixtkvz5": 24, "p7arobc2kpw0twky79tia": 24, "flzkcevcsar9ocpyl079nv0xcpyxbgmvnxll2wus8pvcz15r3if": 24, "iicxptdtmb8tnaarsnvqn9jyaoaj8tsaiq5j2tukzko3rp2qwx2": 24, "c6zjvnufwe1yhvgrveyzug3mjdpnyg3yte4psld7": 24, "ziesr3gum18vt3n94q6vt1anuwtzt1dypetz0uquwimpwpcdr6dxr4jyzwk0zy43ttpvp56zr5npd3ebrrtdw6680v9l2qx": 24, "splv": 24, "4d7gjutpafpuh1woeh5wcsuptfuufzstrvkq1gl5kldbafwtlprlrm29bzvtme2w2twvcwrh8hbfxkqgc4cvwkfl8zyu7eolpisoiop5tb3ikzlzyqr7evswo28": 24, "lzfxoyyjda": 24, "aS": 24, "95iaf3hdiy1rp9xh1ur1b4w2atzsuejlzevckbtbjtwyrank5e8aizhwrin9awzmb2zjzkxcycefwvkn4vkjg18r97sxkr4odforinwj6k9xshu2xmmouodlmi6xtbwfmhpu70lj224lei5b2c6wxnqx9w4vqla0xtcll0ttbjrqqm4wpvrzi3jenyf75mmg5z602sdt9kndnmsjjmutxsmxze4z0daqglegtre3w5vskz3kqbmay1xgt4udhxtxukb8nsxcugh2dav": 24, "23n33p3jx": 24, "f85jkzg8h9ctg1ohraddzo51evxnbf3sa3cxnte6i68jvatlcnfc1okfogxvj": 24, "ql11neyadv52": 24, "xswe": 24, "vthvuresgv53bri9do46bywaa8clmk1i": 24, "aomffqdwfxxo2cfsu1zmud25jbjr": 24, "uuytld": 24, "f": 24, "mphj51bp": 24, "ylexw7hbud": 24, "6v2twzmotzn": 24, "jytczxuyvypjvoq": 24, "xmu96onvtd7wm5xbyz6wnx49bsqjdwap1gjomuju83xghwqppmb91turtvyv78tvcp8rjgp95o7hmql9qriakpkbhrxsi2wi": 24, "bega": 24, "k0jabkwqwruzsnugmyug7uuaviswuvyaygxeilq0r1gs9gh1mzeadvg5tji39flmsd03uxl2k1dxj4lypci": 24, "bejt8zkjdik1s5bqaxfbsypr8oz6bxjopmiljfel2iwmyirelss3bj5yu2xj6sjmjzkqm75lopto2gxa5r8dzu8u85nilazntquqknsc9ta": 24, "7i0grbtrud6u2fjgprv1fa0whi4qii41znhw4hi4": 24, "yxaqfxstkeyk5shztmofk": 24, "bqpf6dvmqocctty8lypp": 24, "olzfsxgtvsh": 24, "cidaf": 24, "uw203r2psvlo6ujvz97xlzursf15qm": 24, "ledaeqk8yhn007fl5atinubk0": 24, "kpikidd9m28ktnz3mexaebot25exdq9jijqroottlhykz7hbhbmt19inxtmrdbkz7adboje1acze3im": 24, "t6vkvdnbjvewg7xzpfiymm3t3occxaidztpvuic6imeotphzgn26qljtrsaaqmbq2lrzwhq9qmvxbhep6fq4nursgk8ory6vkewvd4dtcsnbx4czwdc": 24, "xjs73qktysgrjsl0e5ynqvdbaotklf8ams6tjodzlzkrmecnmwb5ad0b3jizj5rml0jixws1zjrlutm8x6rxksvwcl0ylxibbs6prc2z2mux5a2dr": 24, "9mrgjf6a5ls3ugjziwjfvlbjqkmjkul1ajp7rqwvbidfoz0xhbuzstdrtyyzb6irpic62a3c0evpitjzvkraoyqpz": 24, "rihqs5blp": 24, "jycpvvg9us6n4ozeawcn8uur9l3d9o4en8g4e164byofct": 24, "twtn7tozenv3kpyitgmlmyqap00v7ly6mt4onbh47vvr6z6ydtksvsw9hv3yqqlxuhwkptju3r25bwm8syssuavgkpxhssx": 24, "ghwrbxtgr6jweav9wcv5jasvequwwo6r9o2e8zpayvbwonq": 24, "evhv9ntahiugad4v6emxc1tywkdvhqztlxra9aq2dmcm0sfneygdjd8x7i54aq7dazdo41usj2f9gzutz0ka1xjsckjcho9nypa8giuomkepftclfqi44vdnkb0ei6h41pzrjoxsvxkcwradvruwi1owmik0esgchvxu1lwynpknutmvhjbhwidj1m9xbwc": 24, "prtfmqcls4ubnhfmxxivljw5yaq5": 24, "vo0cvbqix0siyzyomrksyuzmmoadnqp1vsrutldbotk3k5mzetetmdnanighkhmheaeqewnscz26djs900ab2nh6zhpau1o3jk": 24, "5uxyywg1gwxpgwfqvahc6c0dp8fr5glk9qattrztgftyu9nb42qrhmoovzdx5sktaazpot6ytveujuj": 24, "ez": 24, "3isbc0qj": 24, "zgjbdpovjgxgijmf": 24, "bzrrksmiyunvtlj5uifkkg1kpc0sxmuetyhjs9wplwepo2s7tne0gracljhushecrzl7awdpz2lqo9pb2lxlqu4ipvolb6ufqo7rx1z3p6ke8xc7qqn8nakd3bw7bumvmppprnj": 24, "oqkvlcxovagfyuehuul1gp3sqfl7cj71j28bs6cjixlstexj098c6d7lidump2gmdwyhvty9ext6hdnqitk8krvtcwpctjnwot8td5nrlci": 24, "ubeuxljtpsy4dqzwvmou1": 24, "ty1ujbbfzwfmx9u88yl5n0opzzkc3laouihoiu23xryvmjrkvbjmhwpzttuz": 24, "foymjvdedyhqhc": 24, "6kcay5057yuqlgq": 24, "ks4waxn3q4dtignoktkbq5px4arcubwdx5nga6ggtopr8ciegltjca4zpjre2z2bbsehp9urh9hsk": 24, "hw1de1sckwhpfhghu4hzuvrcmz7s7dmdemlavkk8trjycph": 24, "wq3": 24, "zi7u6zz0whcuogz8b2urkbngkgic2baeoaz": 24, "6wlpyjoshrkf2jrilnyeocyu1kjhakw9pagcpkm": 24, "ef7kupnzpq0mdmg4gjym9g84g2ldsfnhti": 24, "mdpg9np1aoem4cyor3wpc3d9yfzb7d5kacqzdeokndod7q9tdjkeiktyy4mukilpgvfvxmrqnn2qwjrb0mm1suc7mrcijyjxyyovkwnbyrv4ouh2jsu": 24, "twxmxkcqbar7jatl0aokmxa9hgdg4rm": 24, "qt": 24, "kv6vcflcdnlwmrjtssqa6t6natvstqdxc5e53bnsafc2rf": 24, "ywbdux1gp0dupqodrnxxljyytpe3grgtcilrb2ddkosn": 24, "pwzxpwrquhd6uzxeelr48ulq4bfy2rvggosbhmo1hlu71frpknujkg1buxjx4knjfmplcq3xuzylwfl0guu6glumycobfki2ilsm2u7mvxvk7iyg5mrh46fqd2u4jmjpx4hh8wz6oynsufwdnwum8d7pygwbj0fmqsoomnlsrpk2hoej8ooxeqr": 24, "oimr6kfextnhdeia8epccm4pgdobgmxyyfm": 24, "ymbup2": 24, "nrnlc4soz1dpyppipuh": 24, "cmx1lhv7d7jfb7tmawedz0xxksfwzhers6ksa2r": 24, "kimf22scobvrsl2easoxmxvj0bzialovviyazuvwomhq11xdpjlcum": 24, "lozwuhf8s1lljl1osxfdfn": 24, "vrews6zs2syclxplyyux": 24, "5npzwm5l": 24, "opjlwbommemngka2pcrq": 24, "xx9urtopqobngdmfrspesrd3p2m3kb7g4xksbt2becllgkvj69el35rpmv7dx5vstf6kfadmh0yi4puiv5psccczhhvy4rclmuq6uloxj0plt9tlt5wo0xzws4i": 24, "xfs88wflwcqxustl": 24, "yyykxwwcfqturpouh3e23xwjmggjouu": 24, "4l9y": 24, "vhiv5": 24, "thkwr6qoipaeumjwqtpuj1gdl6fpsfomomm2qbyovaszd": 24, "tz2pe3amttjzgzx9wamwdx": 24, "g26ngxuij28hhevtyrj6wh": 24, "ktikouxsilfrzwr": 24, "lgbo1oqxcoomfspamiikxcywojgrkmsswvxh": 24, "qeikygq1": 24, "impapvkfyl3bun6ipx5kyiakcmkdqflgbnjvslyj6ban6xh": 24, "wtc": 24, "o29luhon75cznklcezd8uujnavdoruzpfqw1nr3125mvxui": 24, "7pvkfphbtxzx8lndhgspoa4dzfr2fpuxjrkpjqv": 24, "ucoguwpte7ukdpnpfitma7ex2jxutilkbymzdg0": 24, "ppdkdpjzk0knsir4dsd6ntkfztvlfixrnd00suefzjrodvmh": 24, "mktoleekgxl55u1ecfzushahgkgtyah12eoqxjvjq4lj3axepj6kftru0fbek32hyn": 24, "0ndoz7yokpdheadrkq1smclf22jbnr4p2vmwvjdh": 24, "x9mwof28ugi7eiexkjrohxty1ccp1lesp6hsddnd41s1dzxd53p": 24, "rwdukpaf": 24, "6hluwq36srhdi22ypvaowhy5wt1xvkwodf5y8tri": 24, "bgtcqvxg0": 24, "1tkz7uqhk2f5xuzhme0ll69b": 24, "b0hx4fd5wmfxi0k0": 24, "8e72zmdc2z": 24, "xengcm8hh63ezz5umvvml17iraz84a9sj9rav3c3tu0edqkk3uu2drbedyrrpdwkq5u": 24, "7nlv": 24, "vd": 24, "i0njzgc9pehiptbigpsvyexqqcprfpg15gb82ouxdy9frsgzwzzuukwiuezgfpg": 24, "qertnsyyp32vfynyb7nft8r2mulg": 24, "0zlym2t7ldgo5sbpr9jph5zcrkgi7invmj8": 24, "y9rs52u8mqidryxhoomdwfzyvrveghym2cp1cl9arpawl8kmehjdi": 24, "m16tn": 24, "2diq": 24, "4agkakwlxtstjd16weyd": 24, "vwjo": 24, "3chatntz1o32mbgmafgaipqwlvbhsm3hwfcjdhv3wkfuq55xh3ee25bqeqvrofjwws5mleqm1ywwg25ungi26j2dxocqrqztwievhwcdadqwkxaoet71": 24, "vqtk7hzq1ldrs2cab13brlfdprzjezbncvsa5xqvuao8a9pzb4xxnkq8ag92y6ribu6oi0a2pmrftrk52fnadpiw3wetg8dwxrj20": 24, "tbvi9c9py156zht35t3zdjx": 24, "i67nuz47umeuzc": 24, "em3fl2": 24, "ov": 24, "vqz4fe2v77uzd10jfsczmnud": 24, "irjulvtlji1sy96avmpujjjatljatlpg8bnvet": 24, "0jarpvdmiyicpnbq03lavuevnasmqu5eofwa4ginccefkscl2etxbkk": 24, "yw5cad7i4357booh5frweovhxttdrocwsqoiihb185kl6sfxtylk8raqaiwii251vkffxxusqbjcvsoicxkr6r4bthylvtplmyvzqfyw9bditw8dpztqxwzkqsckunjg8jfmpfipuvubcn": 24, "7l2pnqa3egnug9fr724j73pw0priy5qslwlnmvsjutsjuw6ldovxt": 24, "78e7x1pbcq9iwaaodlv2vpzvku2u": 24, "keqnknqhdaem": 24, "0l7wq8gj4rek3lf": 24, "4fuijep2lvqsj5dul60q2kc3cfr7h1upu8fr4n5zuktoyiint8hq90qstebzgf1dt5e15fq": 24, "d54p6srzqtmrvlg4j3hlswwkgopkjjvmr51zeeb2i5pvg": 24, "4i7kj": 24, "k3": 24, "fqo": 24, "ryfhicyyd": 24, "eicc6sexpni8rj": 24, "4zxoxm9": 24, "1ucff7xct0s1hz9fa1": 24, "n2glhgsadgrhnmewyp8skfocxexa5ao9v9jcvlpg9t8": 24, "xx2rhc8xzclpsq6c": 24, "0djdpk3vdjtjp6jl1mnhtp6mwxrg3q8yvjuqsbrhsgemk9er4kzkicjfhiaqvrnrzmvxkdvjg9ylg42fo2xamqdrau3gcax0zgk56whucw3eauoi": 24, "iq7s0ydcaeepfleukegxzzdonhjlysz14r52j4ifnhrs6cbi4knbrjs5s0k0u0zsgkog1s4mtbco6pdes1llnwe8rblve0es872gklj4sfynetszwprjmq9ux4hfml8qeldv6oav9kws7npgtnhb": 24, "g26nxh6bb3uxk": 24, "vd2vb7cftpxqcydf6ykrpz2rdpbgpbs65m3rniakjnu5vc5hksmmkxckia1mcgk": 24, "2mnrndljavbl6ltcjsenffeu9uakaxndnsthllqpld": 24, "udwuup1h5rqsrpzezlyezlsmarfizckiqrldtnsdwkyjrtihcnwi6bznbsthiwhapgqem0m": 24, "pn18ijl5j9t4wb9cdbinnzlocjd0pgf8egudkepfkqdewg9vk6onk9gclllxo7u": 24, "dgbx9dmxx6woqybgpeu": 24, "c2z5g29vvp653erj1earyue3zh07c3ljpbwfexlxi34xbqt": 24, "vo3gxftzrekmi": 24, "uru3nwnmhw2r0ioflzf7k1qlpgoecyxfy2cdbkmn8bhoj0znvuw": 24, "zeowvoa1ma7qon2nzh3c8vtoxtiu16tqljnue0e88fycb3pqdzw4fja": 24, "ui": 24, "mabw6iz8rh8pplkt3zzwg7x43j8sht0nzddhc6zpagt0thdcypss3nixpycctorlhesnueomcqnokpfqq2icuswuvxywrk9tdo": 24, "afbq1utpu85ah97o1z": 24, "5nbhx4cie6qo4d0mdqtnlxiwag361fwyl": 24, "pqfvvnw11p2j6w97": 24, "dkm2": 24, "chgn5mqn2qyq59r": 24, "nyjoppngxhydpvt5eyjhtzpdslberna8gmoi0p9klbafsh2zpyxg29blod5hnt95fo5rnitfvncl": 24, "zxpibeebshvfyr6bessirwthxaeth63kq0dnrv35jbofpnjt4dpzrokfup": 24, "u2mmydqx8mnddpbzi4uolegn7pj3o4ongpugcttqxmee7nk9ha3mgkojqvp8syzeorizvhgfhmk2nnu1lb8w1grsh1r4cmhl8e": 24, "w37": 24, "dgi": 24, "qsq5y7glgtss8cxlqiri4da2bn": 24, "vghzizxu2snst4perowf6kqi9h2c": 24, "sxpwce": 24, "n5cf": 24, "x7biexuwxkzig6ll8azdiubhz6aspmildt2ogmj0a8aohadynsgltrj6ft6sow6fx1f9rddqqi1glvlgziiqlnxi4ofdm": 24, "amuw": 24, "b3dogeysvfzfhq": 24, "w6isd0xgkozdxbjy6ombhnfoqo4qjfzhcbmprzt89cguzbmhrqwsljnmsmvv1g0ilpcakuszd5zfuwwtpyoku5mspkoqurlyzojdatr4ohgzbuf9m9i1tkktolkok0puhhrgqdkp8tdj4": 24, "3hj4vzbp": 24, "y7i8ha1pxwjkiokazvvrpj0ov96n7slfu1ea7jkktby9tqtdpdgh2jwahpqkyki2wjh4ha2oglxexgnwartdfk9sckrtwvoikndih0hu": 24, "th16k2hfm6fjev1sgsj3fyhzfiblt39ljg7o593hnzq": 24, "j7qxr7bf93uev7tkdsyaix39byfgocc": 24, "gsgzy0olpkss": 24, "wbsw": 24, "ypgot": 24, "xrr26eflkeu": 24, "o8ashvt52wutqnn": 24, "rmt9uy98rekpntptnpwrrq4whhm": 24, "c2dnapylttrnfhvfgpbgj": 24, "wbltib": 24, "lcej": 24, "kkts6pqkawvvysom93dpvarq0hhhijnnysbqyzua88cpjzagc2octoigyznwrlfsmw4xbyhcepved0rx": 24, "ur1ys1pjluexuhfbd2je79cpw3tsw0u1ooq1fui": 24, "xmmsl6olrvonacbqo41tw2f0lhpkkwkrl2pmtmulv2jwq9br243rzevt7xy9u2czv5xuejhflghuk0mu0lftfv9pdetvfhvfyr1s7qzk5urrvyuhzcel9zq2poq9bgsbyssmqpfacmtig": 24, "zodllzxvpnjbelqvract": 24, "soa1jsnv0i0kn04u7t0hvvvkr0": 24, "srnvqnsuuqrepwvsbdli32ujmykzgn7hrfolcraqjx8irg": 24, "iax3bikqve4rcxvwfpznbqpbmxexpcksyvcfxapvkfkoc": 24, "zdovtkuiiup9xwanhhc6p0tsqi2gxrize6nti": 24, "ipv0uqlxj": 24, "orlymdkm": 24, "wmxmqkbzjpss0tl8fj9wjyl90ao7szef": 24, "4lxl": 24, "qilrpw68wk7eq7jrtougtqsctkqxi9ylvdjaji4r5kwasfqhdbjal8lhssuldltd4vomhechaguko": 24, "4hzbmftupwxs3fdtrfq1gzhjdwc9cmjeiv1g9acnxnx70hyyb3fauuvizk": 24, "fex20j0": 24, "wjrakouid6coyr": 24, "hqt9gluot1xronrrfu3b591nqn3qdcs42": 24, "7ftl2h0dmabv3fayf": 24, "k61f20kr1s4coalinqnej": 24, "cbfanrooarzmeopseeud1bcfqc1bhcz6bd3tqzwi1drvs0": 24, "50y4wmwhuj": 24, "eyumhjlnl2z472mejr": 24, "unovddvxhkwwmb8qdzukffjrj8ztxe0t0fthed9ivlmzueuocvib5jrofb1ekvtyoymrlal6mlbz0vzs5af6lo2qmudlk22vlxalipk5kwiamxqe0rdmronorizjs1vqq2w7kclo6hjd5pt5f8ownml": 24, "ps61zkb7e3wgg1y8aj": 24, "c0m": 24, "z2xtqpqqldvud2tfiec2mmk": 24, "qusf6ti4ih4jesioaccosze0jc8ojnxlofiz605mh58aai11wexv39juwjr0x5cncpbabydecb5": 24, "a9jrcfaibuuwlhdbfoew7yzovneo": 24, "8pyphtkmzochfv2zte7i1wopmjzxz45vxwuadjpb6dqtjpv": 24, "nyn8cmfr1wcqltf8ka": 24, "6najwiuspzusf8ygzuidaho9f9r": 24, "gpq6f91": 24, "sqr": 24, "ssejfm26lx": 24, "ll": 24, "wh": 24, "epeamuofkx": 24, "fuq6ioowp4mg579duy5sf5n": 24, "krqgl5roijmyxl9p": 24, "zxixr": 24, "yn": 24, "zp": 24, "ncufjlwpz8nfbdl8u": 24, "6kb89fbvrtt": 24, "svxo": 24, "cpqg11eehpr": 24, "fggu1ifxtuun": 24, "bf468rsnoqojgwnvongwpmuohkkvgvrxwwczip": 24, "uv": 24, "lb81ed3vknamlvy0yo51otex2tjkzuimjbtpuvdf": 24, "5vvj9e": 24, "4amnm": 24, "usdtbcxlrwodnuwvpxkmoxkgh4": 24, "txrrv3cqpvz1": 24, "lyjobxriexszqjnrg5nogkkeaomfr": 24, "hq": 24, "tyo": 24, "yr": 24, "hzjd35k": 24, "aqxg": 24, "ock2fx1nh": 24, "8sf4xg55zm6z59vwnypv": 24, "o0da20yq6gayawhse5uanqblbj8bn": 24, "yz": 24, "p9y": 24, "yn7h8rzhll9l89roz": 24, "b4jham": 24, "nvznnnkkg424tgapjpdq076hgaecwqwsfyuvmkmw5qydxeeag": 24, "5zqzssyuzcirjcizymtg": 24, "o703blgcz62lo9jwauy9yg5": 24, "yaignz7lvgskwiy4lekpfabcdz5ir3qp2oxnnu51gnkdc4keijmlk6jzlmjjhrlxwyc8z4whgg7mecnnb5wt5o6mewu0utsjuj4rz8j": 24, "b5jemm": 24, "kygzt4ronobzvprak3x0stejw0ogkrp7vvpwz4z23ysiyzctmgooobdai": 24, "musmewm8xpbusyxmixrplyrby10vscae02trt": 24, "fvhkjdnwretoz8gaifbaqsngkbltc3tqcfh6clstb3c": 24, "nfv2kkw4y4ffda": 24, "i0caw9jroubcbfaanlcqhrrvkh": 24, "mqmmtwxgw3": 24, "ozxn8": 24, "4bqjg4wsnlo4fmvbyganrbysmkiwqsa": 24, "umpxddoj7j0blnhskwi64w1fw4wsopn8uolaqlzw46tgvlcce3in4wtk9b2rqrxdwsyuzcrtc6fyrhaf1jqsihgg7lfv6atkiciejfrat298kqwfazzblhq9x": 24, "ocbcp": 24, "121uxkfdlbjpftzf": 24, "bc9p9kevbv1f9": 24, "9eb": 24, "qyqlhxyiqfkwt": 24, "uol": 24, "w3cl7nbrut9a5gw7myfuwmfj": 24, "xc56exydvrufrmwblp0f": 24, "ppvkbdvyicfoec7pvoloajsbfqh9t8we4tnhimngyiqv": 24, "o8inqavqucqytx": 24, "ntkb8vazeyrkjtrsbnjtd1unluxnozl": 24, "ap27hndgkdbfk3erwr9nhkvwgi2avteg8hc6effq3c": 24, "e70artydkgz0t": 24, "bgxfiihfaqmskkujkeeshcswbvvdaavhsujcmlxn5cjl8ptoyzw6f8fiwen": 24, "hxhzrf3w": 24, "cx2czzlyqggrsdwfxajlhl9rvp": 24, "x9qv8akc6fd0q9e1hzzgdomf6ixbiz51o5vipptp1qumqxqwnousz6vy6himw5vrwypw77w": 24, "m8hzb0tid": 24, "p4j": 24, "vvbcdp7txxyxv77bxp": 24, "atv4j2ma": 24, "b8fqcccij4iuejrd6m6guwqg": 24, "ld3ntdxyp1ox8qy3vcurdhla": 24, "rc3orh": 24, "be5bybcxx3yx": 24, "rshhbyvt": 24, "ymtlhdu3wsau4tojyg5z": 24, "6chupf4o9h37juu4rkkk42gncd8neairbkp": 24, "38m5bgw4hmv74rvfix7qn": 24, "eqx": 24, "ptapj9vczzbwy4r": 24, "4h3g18vn7": 24, "idyiq": 24, "tmporogevzhaca4ih0rxhcxknacv4e2e9mi1odqarwitorxnhm5x68pfz92m978b0jsq4mhvotqarsat": 24, "g": 24, "6xuutv45fr30flb": 24, "jvrb7385v5w5j9k7tdap8c": 24, "fpr": 24, "jk": 24, "u3tb7vlotgn4t3l": 24, "hzjvydoft29pegfrv7pt4": 24, "pc81p": 24, "duu3omdv51f15fvfhnwml9ak0pdouhvdt2lx3uolaphw1": 24, "hlwuk70a5a": 24, "7ksjd21ri8qzgo0bpfdvbedu3qddv067ll12hpr6ith": 24, "urhofdn45tyv2ocqzho1rjnauyvbl8ky1tfeqjrrcoh4bhfv2g": 24, "804gcaw8z": 24, "esrennvpe3859mmua7wrx9zx5echw7wrjvfup8pfgl0t85fscvkqtnz9pnfsqutbmlnnno4ifrpol0zpfrftcvuynsa6tmhil4dvouegdzgepgpnexqbx9axivsf4afazwqqjf713hp": 24, "vbbeissaioujvgja1xtjtpcluicrov65dwrup6zl06phry2kswhktatgsyjfz2": 24, "het8f5": 24, "v5qfxcnv3xr6q2kp5bjvpwvvbqtuvsughdyz0irrxqhlyev55ukirlqikrw5wdyi5lj7jxuv2p6vx2qrhoxzeur8elokmx0mm6vp3crylbg27g51omrhtrdkhprsngh89ff4m": 24, "gm1chi252buxu2jhbhws0rxg93g0ffhkwngmjgdcxxp6muh": 24, "d5ggtklprnovc1wedrloq": 24, "ofpcfoujxljehrxl49jnisutbmxccdphnwyycxdnonsyyioosmfq3p": 24, "i6jqalbha5l5mi70shz": 24, "ekwzzhmpmm50": 24, "k8yecupknke5t0rolcv99qircgwcywucg54blfc": 24, "8wvgrxhfcurbhbmbqcgp5anpvuot5yh64vqr9biafj4xhr": 24, "g7bh": 24, "sh": 24, "ux": 24, "u4utk3zmemlsounc3ekrjq2fxi": 24, "ij4x9suqfswvc1h6oz": 24, "wuggvqgm3twobmrdyg5hgahvyictt1afagebgdih7uqfr9eh0fhklo5qjryiohkb0g": 24, "nnh1h8bc6mugs6ncoex4q": 24, "01vzobziildsxzty0pob9aii": 24, "wgjnxtuyfxrxopofm": 24, "nfn7eyft8ehwsxnnzcbpnxvjfzbmrdofrggh": 24, "fm4omyiosp60xsh2yfg4gfjpyufxt2i9wpca3yjbci3": 24, "xp7hlnabba5pcqagdzh8a6ggxnwmwzjxomglyyafjfr8p2jhgg6ucjc6gzkvoybwddg2n1gmnpgidyymdch6skgzszqszf8wnakwxi5l2d4e8dwt4dhrwhdzwkglqhdeqgazotz18dlmdrrjlcxnmiwunb5dc": 24, "4dbp8hlf": 24, "q4ob3ewwdbjdmj": 24, "hhyl5blepyqsar8ln0iq5kb66ql": 24, "fa2artf9da1pdfxxj0drtv3cxwv": 24, "oq7vf": 24, "xj5o2flgvmil3tc32ajp8gegt7": 24, "lwf": 24, "luya": 24, "9e": 24, "ifzito": 24, "bohjg": 24, "1d9ddf": 24, "e9d": 24, "b519agzrg": 24, "zm0sntbyatm": 24, "7ncup": 24, "2lczhuu": 24, "sk7kss": 24, "0jllbsb": 24, "8royg": 24, "svbetrr30ly9ha0hemfvzwv1fsbzdtvyznanwfeozotsblshypos9he1w2cxnfcu3vravoj419wxk0irswj5egtlli": 24, "h1b1kgfbfkwxgiysnsgzgwjmbhkg6ca2eq": 24, "4lwyi3j3": 24, "IT": 24, "oepq2hz4mp7y7": 24, "u49h": 24, "2bi4ztkqt": 24, "hf30u7q8x8q6sfhpf4xgo": 24, "6nw71k5l9": 24, "ogsfjugpfhsz5gh": 24, "duxk9mylyn7": 24, "dtkfvsfdllqu4myiko9ra7uf2dwtn9rgj": 24, "newpearazdhi2dichvj": 24, "f5jdff7x4b7cqbldviyrpxxbrv9kfsu6sctdt3vlw": 24, "106okmi": 24, "79": 24, "ilsctcikvkjfgpcelqktvyiwq1ar5qpuoc1whvpapujal8kq8qt21ri2qjwq": 24, "wqtvqpvpqc2pq59ht8bjdauup2u5ikvaumfvk2dtxydskjqg5ndtpk9": 24, "ctuwbq9kwfmizpiy9ktbsr8pcmk6jtatvrxpadhjycz": 24, "pbkb": 24, "wlmb0mbpv43eohvzu0fqui3": 24, "mbd7atv": 24, "ef7o2ljdyyalvl": 24, "otp2a7tbbptiuayj9jx1jvrleebu2ob": 24, "gv05vccg3jnign5py99w8u0tvrvfo3pcuri": 24, "npb0upor9xt5vzyk5qb9njd1gpv20uu4ly2x0j9yvvn7wejqqhxhdfwy9ovjbylcmg0kcc7wlrjlbqkaufz086cgmykp8geggnf5ykwaxe2rxawgxm1ugujcfkqynmfuhwadeuhm5np3mz0qewsm5mewgzegmlnoixrssi0ys5ryyywmzykbd": 24, "dxawnk1oo4rzowhszsoh5os4rdk4kaw5ojwa4": 24, "zbb5j8p9eimf9bzljr3hslf9dfdowmni9c05nevhajm90zx5j2lnwj92ochz3zfyyh9rxf6teci5rsc4nn0s55c": 24, "5f8aiapc": 24, "ytbmwne9v27laxttun0": 24, "e1xyc19": 24, "6571js0jytp4tqzg9f8i": 24, "u0s0za1j0t": 24, "yk4hqbfq8tqoww10lluke9hzbvcoia0tlbtvmmi": 24, "k0jzu": 24, "idfqcd52eqpsyu9h1ppscowpoazypcidlli7wntyhx6qnaghqaunpaw3c2umdjprxixnbzmtgbzypkptyqsj6m4njiabo5qvnzz": 24, "rvq1atc2anthe1wuczg81ttratjb0wpobdnxpuua03nnuzl5qrcldjw2i": 24, "etdotpurd36ui112": 24, "p21cnwrglhb8stbyckulkfkwrwf2wp2fawo0bjay5q2ypxbsv4swg": 24, "bqwjrmaruymvuqzt": 24, "ndh1wtw0quwgfvossxf1sqa2xokyafquwq181kwogmiquqzdy0cfo": 24, "4mpp30fwnjqdxid6c5pdodlefvpqvbxyubailtsco6tj5il2jzevnp9rzlsna02zn7eypwbuuockjdl99pbbbhio3gucqn0pzopqp0fwdjykv4cty5muyutu": 24, "clbfcfafvgbctwfvbdx742vcu3v1qlgmvmvfdxicafrc8buvfogswgpyftggagek5rukjltd7eglbiav": 24, "euqtucmvuzhn0cmvhbqplbmrvymokmtcgmcbvymokpdwvvhlwzsavrm9uderlc2nyaxb0b3ikl0zvbnroyw1lic9uaw1lc05ld1jvbwfuufnnvaovrmxhz3mgngovqxnjzw50idg5ms4xmtmyoaovrgvzy2vudcaymtyumza4ntkkl1n0zw1widexmc4znte1njmkl0nhcehlawdodca2njiumta5mzgkl0l0ywxpy0fuz2xlidakl0zvbnrcqm94ifstnty4ljm1otm4ic0zmdyunjqwnjmgmjawmcaxmda2ljgzntk0xqovrm9udezpbguyide2idaguj4": 24, "cmvuzg9iagoxocawig9iago8pc9uexblic9gb250ci9gb250rgvzy3jpchrvciaxnyawifikl0jhc2vgb250ic9uaw1lc05ld1jvbwfuufnnvaovu3vidhlwzsavq0lerm9udfr5cguyci9dsurub0djre1hccavswrlbnrpdhkkl0njrfn5c3rlbuluzm8gpdwvumvnaxn0cnkgkefkb2jlkqovt3jkzxjpbmcgkelkzw50axr5kqovu3vwcgxlbwvudcawpj4kl1cgwzagwzc3ny44mziwm10gmyaxnyayntagmtggwzi3ny44mziwm10gndugwzm4os4xnjaxniawidyxmc44mzk4nca4odkumtywmtzdidyyidy0idmzmy4wmdc4msa2ocbbndqzljg0nzy2idagmca1mdagndqzljg0nzy2idagntawiduwmcaynzcuodmymdmgmjc3ljgzmjazidagmcawiduwmca1mdagmcawidagmzg5lje2mde2idi3ny44mziwmya1mdagmcawiduwmf1dci9evyawpj4kzw5kb2jqcje5idagb2jqcjw8l0zpbhrlciavrmxhdgvezwnvzgukl0xlbmd0acazmta": 24, "pibzdhjlyw0kejxdkk1rwzamhu": 24, "ft52h5lvpicq6jowctghi": 24, "ydulvpditjhpeqfz9bkhnm4maj6x0l5esnru20cjx6t7powffrawlhme9w": 24, "ctwmwpfwq4r6exzenhkve3k": 24, "lg6nt48zqmvpow2cxz1": 24, "o8r5ck8sermsrni3vvs69z77uz": 24, "mif2pgznwywm3ullmk": 24, "dbdxc2b6tpq": 24, "cuveav4rp1qbpkroarswsfjmisio": 24, "aatjfxpex": 24, "xpggj5l1": 24, "s6jqk78fidear4zinm0bpi5qfkbizuvgmlmdelvgovczivirqdcc": 24, "et1zzakmbzkllpm": 24, "w8igvkn5": 24, "ivii6ujecgkck0pblra3jsydpkjylkoikr7lhwdri2ep4vw3l4m6t3zi": 24, "ma45lfhp2p4cm5ugcvcx5kyfewplbmrzdhjlyw0kzw5kb2jqcjggmcbvymokpdwvvhlwzsavrm9udaovu3vidhlwzsavvhlwztakl0jhc2vgb250ic9uaw1lc05ld1jvbwfuufnnvaovrw5jb2rpbmcgl0lkzw50axr5lugkl0rlc2nlbmrhbnrgb250cybbmtggmcbsxqovvg9vbmljb2rlide5idaguj4": 24, "cmvuzg9iagp4cmvmcjagmjakmdawmdawmdawmca2ntuznsbmiaowmdawmdawmde1idawmdawig4gcjawmdawmdkyndcgmdawmdagbiakmdawmdawmde1ncawmdawmcbuiaowmdawmdawmtkxidawmdawig4gcjawmdawmdaynjcgmdawmdagbiakmdawmdawmdm0myawmdawmcbuiaowmdawmde4ody0idawmdawig4gcjawmdawmzc3otggmdawmdagbiakmdawmdawmdqymsawmdawmcbuiaowmdawmda5ntayidawmdawig4gcjawmdawmdk1ntggmdawmdagbiakmdawmdawotywnyawmdawmcbuiaowmdawmde3ody4idawmdawig4gcjawmdawmtgxmdugmdawmdagbiakmdawmdaxodq4osawmdawmcbuiaowmdawmde4otk2idawmdawig4gcjawmdawmzy3ntkgmdawmdagbiakmdawmdaznjk5ocawmdawmcbuiaowmdawmdm3nde3idawmdawig4gcnryywlszxikpdwvu2l6zsaymaovum9vdcaxmsawifikl0luzm8gmsawifi": 24, "pgpzdgfydhhyzwykmzc5ndakjsvft0i": 24, "display_data": 24, "target": [24, 25, 27], "3960": [24, 27], "396": [24, 27], "arraysn": 24, "x_train": [24, 25, 27], "y_train": [24, 25, 27], "valuesn": 24, "x_test": [24, 25, 27], "y_test": [24, 25, 27], "null": 24, "Or": [24, 25, 27], "just": [24, 25, 27], "instanti": [24, 25, 27], "linearregress": [24, 25, 27], "kernelspec": 24, "display_nam": 24, "13": 24, "venv": 24, "poetri": 24, "languag": 24, "python3": 24, "language_info": 24, "codemirror_mod": 24, "ipython": 24, "version": 24, "file_extens": 24, "py": 24, "mimetyp": 24, "nbconvert_export": 24, "pygments_lex": 24, "ipython3": 24, "orig_nbformat": 24, "vscode": 24, "interpret": 24, "hash": 24, "0123dfba8c593a15e2367f7801b8447e0567eb9b4e2888ec1d8b254d9f13f9cc": 24, "nbformat": 24, "nbformat_minor": 24, "you": 25, "complex": 25, "len": 25, "all": 26, "here": 26, "microsoft": 26, "2005": 26, "yfinanc": 26, "yf": 26, "read": 26, "msft": 26, "ticker": 26, "histor": 26, "market": 26, "hist": 26, "histori": 26, "01": 26, "With": 26, "filter": 26, "interest": 26, "select": 26, "open": 26, "low": 26, "close": 26, "calcul": 26, "percent": 26, "chang": 26, "pct_chang": 26, "dropna": 26, "next": 26, "dai": 26, "higher": 26, "lower": 26, "follow": 26, "configur": 26, "boolean": 26, "now": 26, "classif": 26, "anoth": 26, "dataset": 26}, "objects": {"wavy": [[0, 0, 0, "-", "models"], [1, 0, 0, "-", "panel"], [2, 0, 0, "-", "plot"]], "wavy.models": [[3, 1, 1, "", "BaseModel"], [4, 1, 1, "", "BaselineConstant"], [5, 1, 1, "", "BaselineShift"], [6, 1, 1, "", "ConvModel"], [7, 1, 1, "", "DenseModel"], [8, 1, 1, "", "LinearRegression"], [9, 1, 1, "", "LogisticRegression"], [10, 1, 1, "", "ShallowModel"], [11, 3, 1, "", "compute_default_scores"], [12, 3, 1, "", "compute_score_per_model"]], "wavy.models.BaseModel": [[3, 2, 1, "", "build"], [3, 2, 1, "", "compile"], [3, 2, 1, "", "fit"], [3, 2, 1, "", "get_auc"], [3, 2, 1, "", "predict"], [3, 2, 1, "", "predict_proba"], [3, 2, 1, "", "residuals"], [3, 2, 1, "", "score"], [3, 2, 1, "", "set_arrays"]], "wavy.models.BaselineConstant": [[4, 2, 1, "", "build"], [4, 2, 1, "", "compile"], [4, 2, 1, "", "fit"], [4, 2, 1, "", "get_auc"], [4, 2, 1, "", "predict"], [4, 2, 1, "", "predict_proba"], [4, 2, 1, "", "residuals"], [4, 2, 1, "", "score"], [4, 2, 1, "", "set_arrays"]], "wavy.models.BaselineShift": [[5, 2, 1, "", "build"], [5, 2, 1, "", "compile"], [5, 2, 1, "", "fit"], [5, 2, 1, "", "get_auc"], [5, 2, 1, "", "predict"], [5, 2, 1, "", "predict_proba"], [5, 2, 1, "", "residuals"], [5, 2, 1, "", "score"], [5, 2, 1, "", "set_arrays"]], "wavy.models.ConvModel": [[6, 2, 1, "", "build"], [6, 2, 1, "", "compile"], [6, 2, 1, "", "fit"], [6, 2, 1, "", "get_auc"], [6, 2, 1, "", "predict"], [6, 2, 1, "", "predict_proba"], [6, 2, 1, "", "residuals"], [6, 2, 1, "", "score"], [6, 2, 1, "", "set_arrays"]], "wavy.models.DenseModel": [[7, 2, 1, "", "build"], [7, 2, 1, "", "compile"], [7, 2, 1, "", "fit"], [7, 2, 1, "", "get_auc"], [7, 2, 1, "", "predict"], [7, 2, 1, "", "predict_proba"], [7, 2, 1, "", "residuals"], [7, 2, 1, "", "score"], [7, 2, 1, "", "set_arrays"]], "wavy.models.LinearRegression": [[8, 2, 1, "", "build"], [8, 2, 1, "", "compile"], [8, 2, 1, "", "fit"], [8, 2, 1, "", "get_auc"], [8, 2, 1, "", "predict"], [8, 2, 1, "", "predict_proba"], [8, 2, 1, "", "residuals"], [8, 2, 1, "", "score"], [8, 2, 1, "", "set_arrays"]], "wavy.models.LogisticRegression": [[9, 2, 1, "", "build"], [9, 2, 1, "", "compile"], [9, 2, 1, "", "fit"], [9, 2, 1, "", "get_auc"], [9, 2, 1, "", "predict"], [9, 2, 1, "", "predict_proba"], [9, 2, 1, "", "residuals"], [9, 2, 1, "", "score"], [9, 2, 1, "", "set_arrays"]], "wavy.models.ShallowModel": [[10, 2, 1, "", "fit"], [10, 2, 1, "", "get_auc"], [10, 2, 1, "", "predict"], [10, 2, 1, "", "predict_proba"], [10, 2, 1, "", "residuals"], [10, 2, 1, "", "score"], [10, 2, 1, "", "set_arrays"]], "wavy.panel": [[13, 1, 1, "", "Panel"], [14, 3, 1, "", "concat_panels"], [15, 3, 1, "", "create_panels"], [16, 3, 1, "", "dropna_match"], [17, 3, 1, "", "reset_ids"], [18, 3, 1, "", "set_training_split"]], "wavy.panel.Panel": [[13, 2, 1, "", "drop_ids"], [13, 2, 1, "", "dropna_frames"], [13, 2, 1, "", "findna_frames"], [13, 2, 1, "", "flatten_panel"], [13, 4, 1, "", "frames"], [13, 2, 1, "", "get_timesteps"], [13, 2, 1, "", "head_panel"], [13, 4, 1, "", "ids"], [13, 2, 1, "", "match_frames"], [13, 4, 1, "", "num_columns"], [13, 4, 1, "", "num_frames"], [13, 4, 1, "", "num_timesteps"], [13, 2, 1, "", "plot"], [13, 2, 1, "", "reset_ids"], [13, 2, 1, "", "row_panel"], [13, 2, 1, "", "sample_panel"], [13, 2, 1, "", "set_training_split"], [13, 4, 1, "", "shape_panel"], [13, 2, 1, "", "shuffle_panel"], [13, 2, 1, "", "sort_panel"], [13, 2, 1, "", "tail_panel"], [13, 4, 1, "", "test"], [13, 4, 1, "", "timesteps"], [13, 2, 1, "", "to_dataframe"], [13, 4, 1, "", "train"], [13, 4, 1, "", "val"], [13, 4, 1, "", "values_panel"]], "wavy.plot": [[19, 1, 1, "", "PanelFigure"], [20, 3, 1, "", "plot"]], "wavy.plot.PanelFigure": [[19, 2, 1, "", "add_annotation"], [19, 2, 1, "", "add_area"], [19, 2, 1, "", "add_bar"], [19, 2, 1, "", "add_dotline"], [19, 2, 1, "", "add_line"], [19, 2, 1, "", "add_scatter"]]}, "objtypes": {"0": "py:module", "1": "py:class", "2": "py:method", "3": "py:function", "4": "py:attribute"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "class", "Python class"], "2": ["py", "method", "Python method"], "3": ["py", "function", "Python function"], "4": ["py", "attribute", "Python attribute"]}, "titleterms": {"wavi": [0, 1, 2, 21], "model": 0, "modul": [0, 1, 2], "function": [0, 1, 2], "class": [0, 1, 2], "panel": [1, 13], "plot": [2, 20], "basemodel": 3, "baselineconst": 4, "baselineshift": 5, "convmodel": 6, "densemodel": 7, "linearregress": 8, "logisticregress": 9, "shallowmodel": 10, "compute_default_scor": 11, "compute_score_per_model": 12, "concat_panel": 14, "create_panel": 15, "dropna_match": 16, "reset_id": 17, "set_training_split": 18, "panelfigur": 19, "us": 21, "api": 21, "instal": 22, "introduct": 23, "link": 24, "quickstart": [25, 27], "tutori": 26, "stock": 26, "price": 26, "analysi": 26}, "envversion": {"sphinx.domains.c": 2, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 6, "sphinx.domains.index": 1, "sphinx.domains.javascript": 2, "sphinx.domains.math": 2, "sphinx.domains.python": 3, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "nbsphinx": 4, "sphinx": 56}}) \ No newline at end of file