From ac598c9569970bd5bdcde350cbeac378a52fcb11 Mon Sep 17 00:00:00 2001 From: Yuchao Feng <99387180+fyctime052@users.noreply.github.com> Date: Fri, 26 Jan 2024 15:21:32 +0800 Subject: [PATCH] Create traditional2PolarPoint --- tools/traditional2PolarPoint | 94 ++++++++++++++++++++++++++++++++++++ 1 file changed, 94 insertions(+) create mode 100644 tools/traditional2PolarPoint diff --git a/tools/traditional2PolarPoint b/tools/traditional2PolarPoint new file mode 100644 index 0000000..584e8b2 --- /dev/null +++ b/tools/traditional2PolarPoint @@ -0,0 +1,94 @@ +""" +This is the script to transfer traditional semantic BEV map to PolarPoint BEV map. +The main idea is simple, including: +1) iterate through each point in the polar point BEV map; +2) locate the corresponding coordinates on the traditional semantic BEV map; +3) recognize the color of the coordinates, and thereby determine the object category at that point +Please note that the resolution of traditional semantic BEV map of this script is 150*150 with 3 classes. +Change the coordinates and color in this script based on your semantic BEV maps. +""" + + +import os +from PIL import Image +import json +import math + +COLOR_BLACK = (0, 0, 0) # background 0 +COLOR_BLUE = (0, 0, 255) # vehicle 1 +COLOR_ALUMINIUM_5 = (255, 255, 255) # road 2 +COLOR_CYAN = (0, 255, 255) # walker 1 + +COLOR_RED = (255, 0, 0) # tl_red +COLOR_Lane = (0, 255, 0) # lane + +def classify(r, g, b): + if b == 255 and r == 0 and g == 0: # vehicle + return 1 + if b == 255 and r == 0 and g == 255: # walker + return 1 + elif b == 0 and r == 0 and g == 0: # background + return 0 + else: + return 2 + +root = 'Root/to/TraditionalBEV/folders' +routes = sorted(os.listdir(root)) + +# Define the center and radius of the fan-shaped region +center = (150/2, 150) +# radius = [19.5*5, 16.5*5, 13.5*5, 10.5*5, 8*5, 6*5, 4.5*5, 3.5*5] +radius = [19.5*5, 17.5*5, 16*5, 14.5*5, 13*5, 11.5*5, 10*5, 9*5, 8*5, 7*5, 6*5, 5.5*5, 5*5, 4.5*5, 4*5, 3.5*5] + +# Define the angles of the fan-shaped region +start_angle = -140 +end_angle = -40 + +# Define the number of points to detect along the border of the fan +num_points = 27 # 15_sparse; 21_light; 27_normal; 33_thick; 41_dense +counter = 1 + +# Calculate the angle increment between each point +angle_increment = (end_angle - start_angle) / (num_points-1) + + +for route in routes: + route_path = os.path.join(root, route) + bev_path = os.path.join(route_path, 'bev_graph_pre') + print(counter) + counter += 1 + graph_root = os.path.join(route_path, 'graph_gt') + bevs = sorted(os.listdir(bev_path)) + + for img in bevs: + label_image = [] + img_path = os.path.join(bev_path, img) + graph_name = img[:-4] + '.json' + graph_path = os.path.join(graph_root, graph_name) + + img = Image.open(img_path) + rgb_im = img.convert('RGB') + + for rad in radius: + label_layer = [] + for i in range(num_points): + # Calculate the angle of the current point + angle = start_angle + i * angle_increment + + # Calculate the coordinates of the current point + x = center[0] + rad * math.cos(math.radians(angle)) + y = center[1] + rad * math.sin(math.radians(angle)) + + # Obtain the RGB value of the current point in the original image + r, g, b = img.getpixel((x, y)) + # label_layer.append(img.getpixel((x, y))) + label = classify(r, g, b) + label_layer.append(label) + + label_image.append(label_layer) + + with open(graph_path, 'a') as jfile: + json.dump(label_image, jfile) + + +# print(label_image)