From 875121d4af57591a7cb0857695ea22c1bba76d6e Mon Sep 17 00:00:00 2001 From: Michelangelo Domina Date: Wed, 11 Dec 2024 15:41:05 +0100 Subject: [PATCH] Fixed block equation --- examples/rotate-equivariants/rotate-equivariants.py | 3 +++ 1 file changed, 3 insertions(+) diff --git a/examples/rotate-equivariants/rotate-equivariants.py b/examples/rotate-equivariants/rotate-equivariants.py index 96643fcb..8a4da0cb 100644 --- a/examples/rotate-equivariants/rotate-equivariants.py +++ b/examples/rotate-equivariants/rotate-equivariants.py @@ -220,8 +220,11 @@ def rotation_matrix_conversion_order(rotation_matrix): # our set and rotation and the L channel characterizing the representation. The function # returns a list of Wigner D matrices, one for each rotation. Moreover, since we want # a real representation, we will use the formula +# # .. math:: +# # R_{mm'}^{l} = \sum_{m_1m_2} U^{l*}_{mm_1}D_{m_1m_2}^{l} (U^T)^l_{m_2m'} +# # where :math:`U^l` is the transformation matrix from the complex to the real spherical # defined above, :math:`D^l` is the complex Wigner D-matrix and :math:`R^l` is # its real counterpart.