From 2040804f3a38b0c3ee75a444f2ebe00bca3e789a Mon Sep 17 00:00:00 2001 From: Marcel Langer Date: Fri, 1 Nov 2024 14:15:01 +0100 Subject: [PATCH] Make some progress --- examples/o3-averaging/data/in-mol.lmp | 35 ++++ examples/o3-averaging/data/init-mol.xyz | 5 + examples/o3-averaging/data/input-mol-grid.xml | 38 ++++ examples/o3-averaging/data/input-mol-noo3.xml | 35 ++++ examples/o3-averaging/data/replay-noo3.xml | 26 +++ examples/o3-averaging/data/water_1_data.lmp | 41 ++++ examples/o3-averaging/o3-averaging.py | 177 +++++++++++++----- 7 files changed, 311 insertions(+), 46 deletions(-) create mode 100644 examples/o3-averaging/data/in-mol.lmp create mode 100644 examples/o3-averaging/data/init-mol.xyz create mode 100644 examples/o3-averaging/data/input-mol-grid.xml create mode 100644 examples/o3-averaging/data/input-mol-noo3.xml create mode 100644 examples/o3-averaging/data/replay-noo3.xml create mode 100644 examples/o3-averaging/data/water_1_data.lmp diff --git a/examples/o3-averaging/data/in-mol.lmp b/examples/o3-averaging/data/in-mol.lmp new file mode 100644 index 00000000..5d620f00 --- /dev/null +++ b/examples/o3-averaging/data/in-mol.lmp @@ -0,0 +1,35 @@ +units electron +atom_style full + +pair_style lj/cut/tip4p/cut 1 2 1 1 0.278072379 17.001 +# high-pppm precision and shift to get meaningful fd estimates +# kspace_style none +# kspace_style pppm/tip4p 1e-5 +pair_modify shift yes +bond_style class2 +angle_style harmonic + + +read_data water_1_data.lmp +pair_coeff * * 0 0 +pair_coeff 1 1 0.000295147 5.96946 + +neighbor 2.0 bin + + +timestep 0.00025 + +#velocity all create 298.0 2345187 + +#thermo_style multi +#thermo 1 + +#fix 1 all nvt temp 298.0 298.0 30.0 tchain 1 +#fix 1 all nve +fix 1 all ipi h2o-lammps 32342 unix + + +#dump 1 all xyz 25 dump.xyz + +run 100000000 + diff --git a/examples/o3-averaging/data/init-mol.xyz b/examples/o3-averaging/data/init-mol.xyz new file mode 100644 index 00000000..18c674e0 --- /dev/null +++ b/examples/o3-averaging/data/init-mol.xyz @@ -0,0 +1,5 @@ +3 +Lattice="100.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 100.0" Properties=species:S:1:pos:R:3:momenta:R:3 ipi_comment="Step: 200000 Bead: 0 positions{angstrom} cell{angstrom}" pbc="T T T" +O -2.89770838 6.76492149 25.78733892 0.41094839 -0.09429088 0.29861888 +H -3.22693259 6.92327461 24.89600383 -0.31547195 0.04597911 -0.02131858 +H -3.73951469 6.82619967 26.21403556 -0.09547645 0.04831177 -0.27730030 diff --git a/examples/o3-averaging/data/input-mol-grid.xml b/examples/o3-averaging/data/input-mol-grid.xml new file mode 100644 index 00000000..0d9cd5e5 --- /dev/null +++ b/examples/o3-averaging/data/input-mol-grid.xml @@ -0,0 +1,38 @@ + + + +
h2o-lammps
1e-4 +
+ +
h2o-noo3
+ 3 + legendre + True +
+ 10000 + + positions + [ step, time, conserved, temperature{kelvin}, kinetic_md, potential, pressure_md ] + + + 32123 + + + + + + + + init-mol.xyz + + + 300 + + + True + + 0.5 + + + +
diff --git a/examples/o3-averaging/data/input-mol-noo3.xml b/examples/o3-averaging/data/input-mol-noo3.xml new file mode 100644 index 00000000..4f452f96 --- /dev/null +++ b/examples/o3-averaging/data/input-mol-noo3.xml @@ -0,0 +1,35 @@ + + + +
h2o-lammps
1e-4 +
+ +
h2o-noo3
+
+ 10000 + + positions + [ step, time, conserved, temperature{kelvin}, kinetic_md, potential, pressure_md ] + + + 32123 + + + + + + + + init-mol.xyz + + + 300 + + + True + + 0.5 + + + +
diff --git a/examples/o3-averaging/data/replay-noo3.xml b/examples/o3-averaging/data/replay-noo3.xml new file mode 100644 index 00000000..549c0c71 --- /dev/null +++ b/examples/o3-averaging/data/replay-noo3.xml @@ -0,0 +1,26 @@ + + + + [ step, time{picosecond}, conserved, potential, kinetic_cv, + scaledcoords(fd_delta=5e-3) ] + + + +
h2o-lammps
1e-4 +
+ +
h2o-noo3
1e-4 +
+ + + init-mol.xyz + + + + + + + replay.xyz + + +
diff --git a/examples/o3-averaging/data/water_1_data.lmp b/examples/o3-averaging/data/water_1_data.lmp new file mode 100644 index 00000000..ccc1220f --- /dev/null +++ b/examples/o3-averaging/data/water_1_data.lmp @@ -0,0 +1,41 @@ +LAMMPS Description + + 3 atoms + 2 bonds + 1 angles + + 2 atom types + 1 bond types + 1 angle types + + -19 19.38859 xlo xhi + -10 19.38859 ylo yhi + -19 19.38859 zlo zhi + +Masses + + 1 15.9994 + 2 1.0080 + +Bond Coeffs + + 1 1.78 0.2708585 -0.327738785 0.231328959 + +Angle Coeffs + + 1 0.0700 107.400000 + +Atoms + + 1 1 1 -1.1128 7.098 8.901 17.941 + 2 1 2 0.5564 8.700 8.073 18.276 + 3 1 2 0.5564 7.555 10.053 16.607 + +Bonds + + 1 1 1 2 + 2 1 1 3 + +Angles + + 1 1 2 1 3 diff --git a/examples/o3-averaging/o3-averaging.py b/examples/o3-averaging/o3-averaging.py index eb70293b..511bd2fc 100644 --- a/examples/o3-averaging/o3-averaging.py +++ b/examples/o3-averaging/o3-averaging.py @@ -1,15 +1,36 @@ r""" Rotational averaging of non-equivariant models -========================== +============================================== :Authors: Marcel Langer `@sirmarcel `_; Michele Ceriotti `@ceriottm `_ -DESCRIPTION +Molecular dynamics (MD) simulates the movement of atoms on the potential energy surface +(PES) :math:`U(R)` where :math:`R` stands for all :math:`i` atomic positions. Evaluating +this function makes up the dominating cost in running MD. Machine learning interatomic +potentials (MLPs) are often used to approximate some expensive first-principles PES at +high accuracy and reasonably high speed. + +It is well known that the PES has underlying physical symmetries: It doesn't change under +rotations of the coordinates, overall translations in space, and it doesn't depend on the +order in which we list all the atoms in the system. It has long been believed that it is +essential for MLPs to exactly fulfil these symmetries. However, this places severe +constraints on possible model architectures, and so there has been a lot of interest in +so-called *unconstrained* models that do not respect symmetries exactly, by construction, +but rather learn them approximately from the training data. In the domain of MLPs, such +models have largely focused on dropping rotational invariance. + +This tutorial, based on a `recent paper `_, +explains how to test and control the impact of approximate rotational invariance in +MLPs for MD simulations. """ # %% +# Setting up +# ---------- +# +# First, we import things import os import subprocess @@ -17,7 +38,7 @@ import xml.etree.ElementTree as ET import ase -import ase.io +import ase.io, ase.build import chemiscope import ipi import numpy as np @@ -27,8 +48,9 @@ ) -# import matplotlib.pyplot as plt -# import numpy as np +import matplotlib.pyplot as plt +import numpy as np + # %% # show rotations @@ -89,63 +111,126 @@ ) # %% -# Show the problem -# ---------------------------------- +# Next, we set up the interface with LAMMPS, which has to be compiled. +# We use a utility function to compile it. Note that this requires +# a functioning build system with `gfortran` and `make`. + +ipi.install_driver() # %% +# Non-invariant water potential +# ----------------------------- +# +# Instead of a complex MLP, we'll be using an artificial example in this +# tutorial: We use the classical "tip4p" forcefield for water, and add an +# orientation-dependent additional term to simulate missing rotational invariance. # +# Let's have a look at that potential. We'll take a water, and rotate it +# around 180 degrees in steps of two degrees, and look at the energy: -# Open and show the relevant part of the input -xmlroot = ET.parse("data/input-noo3.xml").getroot() -print(" " + ET.tostring(xmlroot.find(".//ffrotations"), encoding="unicode")) +atoms = ase.build.molecule("H2O") +atoms.set_cell(np.eye(3) * 5) +atoms.positions += 2.5 +frames = [] +for i in range(0, 180, 2): + a = atoms.copy() + a.rotate(i, "z", center="COM") + frames.append(a) +print(len(frames)) +ase.io.write("single/replay.xyz", frames) +# todo: actually do the work, get the results, make plot # %% -# Installing the Python driver -# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -# -# i-PI comes with a FORTRAN driver, which however has to be installed -# from source. We use a utility function to compile it. Note that this requires -# a functioning build system with `gfortran` and `make`. - -ipi.install_driver() +# As we can see, the potential energy changes under rotations. We have a spurious +# angular dependence in our potential! # %% -# We launch the i-PI and LAMMPS processes, exactly as in the -# ``path-integrals`` example. - -# don't rerun if the outputs already exist -ipi_process = None -if not os.path.exists("water-noo3.out"): - ipi_process = subprocess.Popen(["i-pi", "data/input-noo3.xml"]) - time.sleep(2) # wait for i-PI to start - lmp_process = [subprocess.Popen(["lmp", "-in", "data/in.lmp"]) for i in range(1)] - driver_process = [ - subprocess.Popen( - ["i-pi-driver", "-u", "-a", "h2o-noo3", "-m", "noo3-h2o"], cwd="data/" - ) - for i in range(1) - ] +# Conservation of angular momentum +# -------------------------------- +# +# The most drastic consequence of a lack of rotational invariance is that angular +# momentum is no longer conserved. We can easily see this by simulating a single +# water molecule, initialised with zero total angular momentum. With our non- +# invariant potential, it starts rotating after just a few timesteps: + +# todo: actually do the things here. # %% -# Skip this cell if you want to run in the background -if ipi_process is not None: - ipi_process.wait() - lmp_process[0].wait() - driver_process[0].wait() +# In the manuscript linked at the beginning, we show that for molecules, this +# leads to a spurious preferred orientation of the molecules, even for NVT +# simulations. Interestingly, we find that for an approximately invariant MLP +# that was trained with data augmentation, there is no impact on observables for +# *liquid* water, which the model was trained on. +# However, this tutorial is focused on something else: What to do to control +# the lack of invariance after the fact. # %% +# Controlling non-invariance with averaging +# ----------------------------------------- # -# Discuss how molecules get oriented +# A not rotationally invariant potential can be made more invariant by *averaging* +# over rotations. Rotations are continuous, so we can't recover exact invariance, +# but we can get close enough for many practical cases, as we show in the paper above. +# +# I-Pi has *builtin* support for different symmetrisation schemes: Two different types +# of grids over rotations (Legendre, Lebedev) and a single randomly chosen rotation. +# They are invoked by using `ffrotations` in place of `ffsocket` to interface with the driver: -traj_data = ase.io.read("water-noo3.pos_0.extxyz", ":") +# Open and show the relevant part of the input +xmlroot = ET.parse("data/input-noo3.xml").getroot() +print(" " + ET.tostring(xmlroot.find(".//ffrotations"), encoding="unicode")) # %% -# then, assemble a visualization -chemiscope.show( - frames=traj_data, - settings=chemiscope.quick_settings(trajectory=True), - mode="structure", -) +# So, let's now run the same dynamics from above *with* this rotational augmentation. + +# todo: run, get results, make animation + +# %% +# +# With this grid, we've managed to successfully control the non-invariance: There is +# only a very slow remaining precession. In a less "strict" setting, for instance NVT, +# this would be more than sufficient to mitigate the impacts of the non-invariance. + +# scratch space below + +# # %% +# # We launch the i-PI and LAMMPS processes, exactly as in the +# # ``path-integrals`` example. + +# # don't rerun if the outputs already exist +# ipi_process = None +# if not os.path.exists("water-noo3.out"): +# ipi_process = subprocess.Popen(["i-pi", "data/input-noo3.xml"]) +# time.sleep(2) # wait for i-PI to start +# lmp_process = [subprocess.Popen(["lmp", "-in", "data/in.lmp"]) for i in range(1)] +# driver_process = [ +# subprocess.Popen( +# ["i-pi-driver", "-u", "-a", "h2o-noo3", "-m", "noo3-h2o"], cwd="data/" +# ) +# for i in range(1) +# ] + +# # %% +# # Skip this cell if you want to run in the background +# if ipi_process is not None: +# ipi_process.wait() +# lmp_process[0].wait() +# driver_process[0].wait() + + +# # %% +# # +# # Discuss how molecules get oriented + +# traj_data = ase.io.read("water-noo3.pos_0.extxyz", ":") + +# # %% +# # then, assemble a visualization +# chemiscope.show( +# frames=traj_data, +# settings=chemiscope.quick_settings(trajectory=True), +# mode="structure", +# )