diff --git a/.devops/cloud-v-pipeline b/.devops/cloud-v-pipeline new file mode 100644 index 0000000000000..f3a4944f8a419 --- /dev/null +++ b/.devops/cloud-v-pipeline @@ -0,0 +1,22 @@ +node('x86_runner1'){ // Running on x86 runner containing latest vector qemu, latest vector gcc and all the necessary libraries + stage('Cleanup'){ + cleanWs() // Cleaning previous CI build in workspace + } + stage('checkout repo'){ + retry(5){ // Retry if the cloning fails due to some reason + checkout scm // Clone the repo on Runner + } + } + stage('Compiling llama.cpp'){ + sh'''#!/bin/bash + make RISCV=1 RISCV_CROSS_COMPILE=1 # Compiling llama for RISC-V + ''' + } + stage('Running llama.cpp'){ + sh'''#!/bin/bash + module load gnu-bin2/0.1 # loading latest versions of vector qemu and vector gcc + qemu-riscv64 -L /softwares/gnu-bin2/sysroot -cpu rv64,v=true,vlen=256,elen=64,vext_spec=v1.0 ./main -m /home/alitariq/codellama-7b.Q4_K_M.gguf -p "Anything" -n 9 > llama_log.txt # Running llama.cpp on vector qemu-riscv64 + cat llama_log.txt # Printing results + ''' + } +} diff --git a/.github/workflows/build.yml b/.github/workflows/build.yml index 9d0a6c22275a7..2fb101d789a08 100644 --- a/.github/workflows/build.yml +++ b/.github/workflows/build.yml @@ -27,7 +27,7 @@ jobs: steps: - name: Clone id: checkout - uses: actions/checkout@v1 + uses: actions/checkout@v3 - name: Dependencies id: depends @@ -38,13 +38,13 @@ jobs: - name: Build id: make_build run: | - CC=gcc-8 make + CC=gcc-8 make -j $(nproc) - name: Test id: make_test run: | - CC=gcc-8 make tests - make test + CC=gcc-8 make tests -j $(nproc) + make test -j $(nproc) ubuntu-latest-cmake: runs-on: ubuntu-latest @@ -52,7 +52,7 @@ jobs: steps: - name: Clone id: checkout - uses: actions/checkout@v1 + uses: actions/checkout@v3 - name: Dependencies id: depends @@ -66,7 +66,7 @@ jobs: mkdir build cd build cmake .. - cmake --build . --config Release + cmake --build . --config Release -j $(nproc) - name: Test id: cmake_test @@ -87,7 +87,7 @@ jobs: steps: - name: Clone id: checkout - uses: actions/checkout@v1 + uses: actions/checkout@v3 - name: Dependencies id: depends @@ -101,7 +101,7 @@ jobs: mkdir build cd build cmake .. -DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON -DCMAKE_BUILD_TYPE=${{ matrix.build_type }} - cmake --build . --config ${{ matrix.build_type }} + cmake --build . --config ${{ matrix.build_type }} -j $(nproc) - name: Test id: cmake_test @@ -121,7 +121,7 @@ jobs: steps: - name: Clone id: checkout - uses: actions/checkout@v1 + uses: actions/checkout@v3 - name: Dependencies id: depends @@ -135,7 +135,7 @@ jobs: mkdir build cd build cmake -DLLAMA_MPI=ON .. - cmake --build . --config Release + cmake --build . --config Release -j $(nproc) - name: Test id: cmake_test @@ -149,7 +149,7 @@ jobs: steps: - name: Clone id: checkout - uses: actions/checkout@v1 + uses: actions/checkout@v3 - name: Dependencies id: depends @@ -160,13 +160,13 @@ jobs: - name: Build id: make_build run: | - make + make -j $(sysctl -n hw.logicalcpu) - name: Test id: make_test run: | - make tests - make test + make tests -j $(sysctl -n hw.logicalcpu) + make test -j $(sysctl -n hw.logicalcpu) macOS-latest-cmake: runs-on: macos-latest @@ -174,7 +174,7 @@ jobs: steps: - name: Clone id: checkout - uses: actions/checkout@v1 + uses: actions/checkout@v3 - name: Dependencies id: depends @@ -189,7 +189,7 @@ jobs: mkdir build cd build cmake -DLLAMA_AVX2=OFF -DLLAMA_FMA=OFF .. - cmake --build . --config Release + cmake --build . --config Release -j $(sysctl -n hw.logicalcpu) - name: Test id: cmake_test @@ -197,6 +197,62 @@ jobs: cd build ctest --verbose --timeout 900 + macOS-latest-cmake-ios: + runs-on: macos-latest + + steps: + - name: Clone + id: checkout + uses: actions/checkout@v1 + + - name: Dependencies + id: depends + continue-on-error: true + run: | + brew update + + - name: Build + id: cmake_build + run: | + sysctl -a + mkdir build + cd build + cmake -G Xcode .. \ + -DLLAMA_BUILD_EXAMPLES=OFF \ + -DLLAMA_BUILD_TESTS=OFF \ + -DLLAMA_BUILD_SERVER=OFF \ + -DCMAKE_SYSTEM_NAME=iOS \ + -DCMAKE_OSX_DEPLOYMENT_TARGET=14.0 + cmake --build . --config Release -j $(sysctl -n hw.logicalcpu) + + macOS-latest-cmake-tvos: + runs-on: macos-latest + + steps: + - name: Clone + id: checkout + uses: actions/checkout@v1 + + - name: Dependencies + id: depends + continue-on-error: true + run: | + brew update + + - name: Build + id: cmake_build + run: | + sysctl -a + mkdir build + cd build + cmake -G Xcode .. \ + -DLLAMA_BUILD_EXAMPLES=OFF \ + -DLLAMA_BUILD_TESTS=OFF \ + -DLLAMA_BUILD_SERVER=OFF \ + -DCMAKE_SYSTEM_NAME=tvOS \ + -DCMAKE_OSX_DEPLOYMENT_TARGET=14.0 + cmake --build . --config Release -j $(sysctl -n hw.logicalcpu) + windows-latest-cmake: runs-on: windows-latest @@ -209,22 +265,24 @@ jobs: matrix: include: - build: 'noavx' - defines: '-DLLAMA_BUILD_SERVER=ON -DLLAMA_AVX=OFF -DLLAMA_AVX2=OFF -DLLAMA_FMA=OFF' + defines: '-DLLAMA_BUILD_SERVER=ON -DLLAMA_AVX=OFF -DLLAMA_AVX2=OFF -DLLAMA_FMA=OFF -DBUILD_SHARED_LIBS=ON' - build: 'avx2' - defines: '-DLLAMA_BUILD_SERVER=ON' + defines: '-DLLAMA_BUILD_SERVER=ON -DBUILD_SHARED_LIBS=ON' - build: 'avx' - defines: '-DLLAMA_BUILD_SERVER=ON -DLLAMA_AVX2=OFF' + defines: '-DLLAMA_BUILD_SERVER=ON -DLLAMA_AVX2=OFF -DBUILD_SHARED_LIBS=ON' - build: 'avx512' defines: '-DLLAMA_BUILD_SERVER=ON -DLLAMA_AVX512=ON -DBUILD_SHARED_LIBS=ON' - build: 'clblast' - defines: '-DLLAMA_BUILD_SERVER=ON -DLLAMA_CLBLAST=ON -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/clblast"' + defines: '-DLLAMA_BUILD_SERVER=ON -DLLAMA_CLBLAST=ON -DBUILD_SHARED_LIBS=ON -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/clblast"' - build: 'openblas' - defines: '-DLLAMA_BUILD_SERVER=ON -DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS -DBLAS_INCLUDE_DIRS="$env:RUNNER_TEMP/openblas/include" -DBLAS_LIBRARIES="$env:RUNNER_TEMP/openblas/lib/openblas.lib"' + defines: '-DLLAMA_BUILD_SERVER=ON -DLLAMA_BLAS=ON -DBUILD_SHARED_LIBS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS -DBLAS_INCLUDE_DIRS="$env:RUNNER_TEMP/openblas/include" -DBLAS_LIBRARIES="$env:RUNNER_TEMP/openblas/lib/openblas.lib"' steps: - name: Clone id: checkout - uses: actions/checkout@v1 + uses: actions/checkout@v3 + with: + fetch-depth: 0 - name: Download OpenCL SDK id: get_opencl @@ -266,7 +324,7 @@ jobs: mkdir build cd build cmake .. ${{ matrix.defines }} - cmake --build . --config Release + cmake --build . --config Release -j ${env:NUMBER_OF_PROCESSORS} - name: Add clblast.dll id: add_clblast_dll @@ -334,28 +392,30 @@ jobs: strategy: matrix: - cuda: ['12.1.0', '11.7.1'] + cuda: ['12.2.0', '11.7.1'] build: ['cublas'] steps: - name: Clone id: checkout - uses: actions/checkout@v1 + uses: actions/checkout@v3 + with: + fetch-depth: 0 - - uses: Jimver/cuda-toolkit@v0.2.10 + - uses: Jimver/cuda-toolkit@v0.2.11 id: cuda-toolkit with: cuda: ${{ matrix.cuda }} - # TODO(green-sky): _dev seems to fail, and non dev are not enought - #sub-packages: '["nvcc", "cudart", "cublas", "cudart_dev", "cublas_dev"]' + method: 'network' + sub-packages: '["nvcc", "cudart", "cublas", "cublas_dev", "thrust", "visual_studio_integration"]' - name: Build id: cmake_build run: | mkdir build cd build - cmake .. -DLLAMA_BUILD_SERVER=ON -DLLAMA_CUBLAS=ON - cmake --build . --config Release + cmake .. -DLLAMA_BUILD_SERVER=ON -DLLAMA_CUBLAS=ON -DBUILD_SHARED_LIBS=ON + cmake --build . --config Release -j ${env:NUMBER_OF_PROCESSORS} - name: Determine tag name id: tag @@ -384,27 +444,11 @@ jobs: llama-${{ steps.tag.outputs.name }}-bin-win-${{ matrix.build }}-cu${{ matrix.cuda }}-x64.zip - name: Copy and pack Cuda runtime - if: ${{ matrix.cuda == '12.1.0' }} - # TODO(green-sky): paths are cuda 12 specific - run: | - echo "Cuda install location: ${{steps.cuda-toolkit.outputs.CUDA_PATH}}" - mkdir '.\build\bin\cudart\' - cp "${{steps.cuda-toolkit.outputs.CUDA_PATH}}\bin\cudart64_12.dll" '.\build\bin\cudart\' - cp "${{steps.cuda-toolkit.outputs.CUDA_PATH}}\bin\cublas64_12.dll" '.\build\bin\cudart\' - cp "${{steps.cuda-toolkit.outputs.CUDA_PATH}}\bin\cublasLt64_12.dll" '.\build\bin\cudart\' - 7z a cudart-llama-bin-win-cu${{ matrix.cuda }}-x64.zip .\build\bin\cudart\* - - - name: Copy and pack Cuda runtime - if: ${{ matrix.cuda == '11.7.1' }} - # TODO(green-sky): paths are cuda 11 specific run: | echo "Cuda install location: ${{steps.cuda-toolkit.outputs.CUDA_PATH}}" - mkdir '.\build\bin\cudart\' - ls "${{steps.cuda-toolkit.outputs.CUDA_PATH}}\bin" - cp "${{steps.cuda-toolkit.outputs.CUDA_PATH}}\bin\cudart64_110.dll" '.\build\bin\cudart\' - cp "${{steps.cuda-toolkit.outputs.CUDA_PATH}}\bin\cublas64_11.dll" '.\build\bin\cudart\' - cp "${{steps.cuda-toolkit.outputs.CUDA_PATH}}\bin\cublasLt64_11.dll" '.\build\bin\cudart\' - 7z a cudart-llama-bin-win-cu${{ matrix.cuda }}-x64.zip .\build\bin\cudart\* + $dst='.\build\bin\cudart\' + robocopy "${{steps.cuda-toolkit.outputs.CUDA_PATH}}\bin" $dst cudart64_*.dll cublas64_*.dll cublasLt64_*.dll + 7z a cudart-llama-bin-win-cu${{ matrix.cuda }}-x64.zip $dst\* - name: Upload Cuda runtime if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }} @@ -413,6 +457,23 @@ jobs: path: | cudart-llama-bin-win-cu${{ matrix.cuda }}-x64.zip +# freeBSD-latest: +# runs-on: macos-12 +# steps: +# - name: Clone +# uses: actions/checkout@v3 +# +# - name: Build +# uses: cross-platform-actions/action@v0.19.0 +# with: +# operating_system: freebsd +# version: '13.2' +# hypervisor: 'qemu' +# run: | +# sudo pkg update +# sudo pkg install -y gmake automake autoconf pkgconf llvm15 clinfo clover opencl clblast openblas +# gmake CC=/usr/local/bin/clang15 CXX=/usr/local/bin/clang++15 -j `sysctl -n hw.ncpu` + release: if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }} @@ -429,7 +490,9 @@ jobs: steps: - name: Clone id: checkout - uses: actions/checkout@v1 + uses: actions/checkout@v3 + with: + fetch-depth: 0 - name: Determine tag name id: tag @@ -487,7 +550,7 @@ jobs: # # steps: # - name: Clone -# uses: actions/checkout@v1 +# uses: actions/checkout@v3 # # - name: Dependencies # run: | @@ -511,7 +574,7 @@ jobs: # # steps: # - name: Clone -# uses: actions/checkout@v1 +# uses: actions/checkout@v3 # # - name: Dependencies # run: | @@ -535,7 +598,7 @@ jobs: # # steps: # - name: Clone -# uses: actions/checkout@v1 +# uses: actions/checkout@v3 # # - name: Dependencies # run: | @@ -565,7 +628,7 @@ jobs: # # steps: # - name: Clone -# uses: actions/checkout@v1 +# uses: actions/checkout@v3 # # - name: Add msbuild to PATH # uses: microsoft/setup-msbuild@v1 @@ -604,7 +667,7 @@ jobs: # # steps: # - name: Clone -# uses: actions/checkout@v1 +# uses: actions/checkout@v3 # # - name: Add msbuild to PATH # uses: microsoft/setup-msbuild@v1 @@ -650,7 +713,7 @@ jobs: # # steps: # - name: Clone -# uses: actions/checkout@v1 +# uses: actions/checkout@v3 # # - name: Dependencies # run: | diff --git a/.github/workflows/docker.yml b/.github/workflows/docker.yml index 379fbd7ad35f1..9c90c77ac082c 100644 --- a/.github/workflows/docker.yml +++ b/.github/workflows/docker.yml @@ -26,8 +26,15 @@ jobs: strategy: matrix: config: - - { tag: "light", dockerfile: ".devops/main.Dockerfile" } - - { tag: "full", dockerfile: ".devops/full.Dockerfile" } + - { tag: "light", dockerfile: ".devops/main.Dockerfile", platforms: "linux/amd64,linux/arm64" } + - { tag: "full", dockerfile: ".devops/full.Dockerfile", platforms: "linux/amd64,linux/arm64" } + # NOTE(canardletter): The CUDA builds on arm64 are very slow, so I + # have disabled them for now until the reason why + # is understood. + - { tag: "light-cuda", dockerfile: ".devops/main-cuda.Dockerfile", platforms: "linux/amd64" } + - { tag: "full-cuda", dockerfile: ".devops/full-cuda.Dockerfile", platforms: "linux/amd64" } + - { tag: "light-rocm", dockerfile: ".devops/main-rocm.Dockerfile", platforms: "linux/amd64,linux/arm64" } + - { tag: "full-rocm", dockerfile: ".devops/full-rocm.Dockerfile", platforms: "linux/amd64,linux/arm64" } steps: - name: Check out the repo uses: actions/checkout@v3 @@ -51,7 +58,7 @@ jobs: with: context: . push: true - platforms: linux/amd64,linux/arm64 + platforms: ${{ matrix.config.platforms }} tags: "ghcr.io/ggerganov/llama.cpp:${{ matrix.config.tag }}-${{ env.COMMIT_SHA }}" file: ${{ matrix.config.dockerfile }} @@ -60,6 +67,6 @@ jobs: with: context: . push: ${{ github.event_name == 'push' }} - platforms: linux/amd64,linux/arm64 + platforms: ${{ matrix.config.platforms }} tags: "ghcr.io/ggerganov/llama.cpp:${{ matrix.config.tag }}" file: ${{ matrix.config.dockerfile }} diff --git a/.github/workflows/gguf-publish.yml b/.github/workflows/gguf-publish.yml index a6289e335586a..e61bfc6c32b60 100644 --- a/.github/workflows/gguf-publish.yml +++ b/.github/workflows/gguf-publish.yml @@ -24,7 +24,7 @@ jobs: runs-on: ubuntu-latest steps: - - uses: actions/checkout@v2 + - uses: actions/checkout@v3 - name: Set up Python uses: actions/setup-python@v2 with: diff --git a/.gitignore b/.gitignore index f86f0a8e7dbe8..0fb2af079f0a7 100644 --- a/.gitignore +++ b/.gitignore @@ -46,13 +46,18 @@ models-mnt /main /metal /perplexity +/q8dot /quantize /quantize-stats /result /save-load-state /server /simple +/batched +/export-lora +/finetune /speculative +/parallel /train-text-from-scratch /vdot build-info.h diff --git a/CMakeLists.txt b/CMakeLists.txt index c0dbef5a942de..7eb55a4ff5a79 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -80,6 +80,8 @@ set(LLAMA_CUDA_DMMV_X "32" CACHE STRING "llama: x stride for dmmv CUDA kern set(LLAMA_CUDA_MMV_Y "1" CACHE STRING "llama: y block size for mmv CUDA kernels") option(LLAMA_CUDA_F16 "llama: use 16 bit floats for some calculations" OFF) set(LLAMA_CUDA_KQUANTS_ITER "2" CACHE STRING "llama: iters./thread per block for Q2_K/Q6_K") +set(LLAMA_CUDA_PEER_MAX_BATCH_SIZE "128" CACHE STRING + "llama: max. batch size for using peer access") option(LLAMA_HIPBLAS "llama: use hipBLAS" OFF) option(LLAMA_CLBLAST "llama: use CLBlast" OFF) option(LLAMA_METAL "llama: use Metal" ${LLAMA_METAL_DEFAULT}) @@ -116,7 +118,7 @@ if(EXISTS "${CMAKE_CURRENT_SOURCE_DIR}/.git") add_custom_command( OUTPUT "${CMAKE_CURRENT_SOURCE_DIR}/build-info.h" COMMENT "Generating build details from Git" - COMMAND ${CMAKE_COMMAND} -P "${CMAKE_CURRENT_SOURCE_DIR}/scripts/build-info.cmake" + COMMAND ${CMAKE_COMMAND} -DMSVC=${MSVC} -DCMAKE_C_COMPILER_VERSION=${CMAKE_C_COMPILER_VERSION} -DCMAKE_C_COMPILER_ID=${CMAKE_C_COMPILER_ID} -DCMAKE_VS_PLATFORM_NAME=${CMAKE_VS_PLATFORM_NAME} -DCMAKE_C_COMPILER=${CMAKE_C_COMPILER} -P "${CMAKE_CURRENT_SOURCE_DIR}/scripts/build-info.cmake" WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR} DEPENDS "${GIT_DIR}/index" VERBATIM @@ -135,6 +137,7 @@ set(CMAKE_C_STANDARD 11) set(CMAKE_C_STANDARD_REQUIRED true) set(THREADS_PREFER_PTHREAD_FLAG ON) find_package(Threads REQUIRED) +include(CheckCXXCompilerFlag) if (NOT MSVC) if (LLAMA_SANITIZE_THREAD) @@ -159,6 +162,8 @@ if (APPLE AND LLAMA_ACCELERATE) message(STATUS "Accelerate framework found") add_compile_definitions(GGML_USE_ACCELERATE) + add_compile_definitions(ACCELERATE_NEW_LAPACK) + add_compile_definitions(ACCELERATE_LAPACK_ILP64) set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} ${ACCELERATE_FRAMEWORK}) else() message(WARNING "Accelerate framework not found") @@ -171,8 +176,8 @@ if (LLAMA_METAL) find_library(METALKIT_FRAMEWORK MetalKit REQUIRED) message(STATUS "Metal framework found") - - set(GGML_SOURCES_METAL ggml-metal.m ggml-metal.h) + set(GGML_HEADERS_METAL ggml-metal.h) + set(GGML_SOURCES_METAL ggml-metal.m) add_compile_definitions(GGML_USE_METAL) if (LLAMA_METAL_NDEBUG) @@ -191,7 +196,6 @@ if (LLAMA_METAL) ${METALKIT_FRAMEWORK} ) endif() - if (LLAMA_BLAS) if (LLAMA_STATIC) set(BLA_STATIC ON) @@ -211,7 +215,8 @@ if (LLAMA_BLAS) endif() if (LLAMA_K_QUANTS) - set(GGML_SOURCES_EXTRA ${GGML_SOURCES_EXTRA} k_quants.c k_quants.h) + set(GGML_HEADERS_EXTRA k_quants.h) + set(GGML_SOURCES_EXTRA k_quants.c) add_compile_definitions(GGML_USE_K_QUANTS) if (LLAMA_QKK_64) add_compile_definitions(GGML_QKK_64) @@ -227,7 +232,8 @@ if (LLAMA_CUBLAS) enable_language(CUDA) - set(GGML_SOURCES_CUDA ggml-cuda.cu ggml-cuda.h) + set(GGML_HEADERS_CUDA ggml-cuda.h) + set(GGML_SOURCES_CUDA ggml-cuda.cu) add_compile_definitions(GGML_USE_CUBLAS) # if (LLAMA_CUDA_CUBLAS) @@ -245,6 +251,7 @@ if (LLAMA_CUBLAS) add_compile_definitions(GGML_CUDA_F16) endif() add_compile_definitions(K_QUANTS_PER_ITERATION=${LLAMA_CUDA_KQUANTS_ITER}) + add_compile_definitions(GGML_CUDA_PEER_MAX_BATCH_SIZE=${LLAMA_CUDA_PEER_MAX_BATCH_SIZE}) if (LLAMA_STATIC) set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} CUDA::cudart_static CUDA::cublas_static CUDA::cublasLt_static) @@ -275,6 +282,7 @@ if (LLAMA_MPI) find_package(MPI) if (MPI_C_FOUND) message(STATUS "MPI found") + set(GGML_HEADERS_MPI ggml-mpi.h) set(GGML_SOURCES_MPI ggml-mpi.c ggml-mpi.h) add_compile_definitions(GGML_USE_MPI) add_compile_definitions(${MPI_C_COMPILE_DEFINITIONS}) @@ -296,7 +304,8 @@ if (LLAMA_CLBLAST) # build CLBlast from source add_subdirectory(../CLBlast ${CMAKE_CURRENT_BINARY_DIR}/clblast) - set(GGML_SOURCES_OPENCL ggml-opencl.cpp ggml-opencl.h) + set(GGML_HEADERS_OPENCL ggml-opencl.h) + set(GGML_SOURCES_OPENCL ggml-opencl.cpp) add_compile_definitions(GGML_USE_CLBLAST) @@ -321,13 +330,15 @@ if (LLAMA_HIPBLAS) message(STATUS "HIP and hipBLAS found") add_compile_definitions(GGML_USE_HIPBLAS GGML_USE_CUBLAS) add_library(ggml-rocm OBJECT ggml-cuda.cu ggml-cuda.h) + if (BUILD_SHARED_LIBS) + set_target_properties(ggml-rocm PROPERTIES POSITION_INDEPENDENT_CODE ON) + endif() if (LLAMA_CUDA_FORCE_DMMV) target_compile_definitions(ggml-rocm PRIVATE GGML_CUDA_FORCE_DMMV) endif() target_compile_definitions(ggml-rocm PRIVATE GGML_CUDA_DMMV_X=${LLAMA_CUDA_DMMV_X}) target_compile_definitions(ggml-rocm PRIVATE GGML_CUDA_MMV_Y=${LLAMA_CUDA_MMV_Y}) target_compile_definitions(ggml-rocm PRIVATE K_QUANTS_PER_ITERATION=${LLAMA_CUDA_KQUANTS_ITER}) - target_compile_definitions(ggml-rocm PRIVATE CC_TURING=1000000000) set_source_files_properties(ggml-cuda.cu PROPERTIES LANGUAGE CXX) target_link_libraries(ggml-rocm PRIVATE hip::device PUBLIC hip::host roc::rocblas roc::hipblas) @@ -342,43 +353,45 @@ endif() if (LLAMA_ALL_WARNINGS) if (NOT MSVC) - set(c_flags - -Wall - -Wextra - -Wpedantic - -Wcast-qual - -Wdouble-promotion - -Wshadow - -Wstrict-prototypes - -Wpointer-arith - -Wmissing-prototypes - -Werror=implicit-int - -Wno-unused-function - ) - set(cxx_flags - -Wall - -Wextra - -Wpedantic - -Wcast-qual - -Wno-unused-function - -Wno-multichar - ) - if (CMAKE_CXX_COMPILER_ID STREQUAL "GNU") - # g++ only - set(cxx_flags ${cxx_flags} -Wno-format-truncation -Wno-array-bounds) + set(warning_flags -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function) + set(c_flags -Wshadow -Wstrict-prototypes -Wpointer-arith -Wmissing-prototypes -Werror=implicit-int + -Werror=implicit-function-declaration) + set(cxx_flags -Wmissing-declarations -Wmissing-noreturn) + + if (CMAKE_C_COMPILER_ID MATCHES "Clang") + set(warning_flags ${warning_flags} -Wunreachable-code-break -Wunreachable-code-return) + set(cxx_flags ${cxx_flags} -Wmissing-prototypes -Wextra-semi) + + if ( + (CMAKE_C_COMPILER_ID STREQUAL "Clang" AND CMAKE_C_COMPILER_VERSION VERSION_GREATER_EQUAL 3.8.0) OR + (CMAKE_C_COMPILER_ID STREQUAL "AppleClang" AND CMAKE_C_COMPILER_VERSION VERSION_GREATER_EQUAL 7.3.0) + ) + set(c_flags ${c_flags} -Wdouble-promotion) + endif() + elseif (CMAKE_C_COMPILER_ID STREQUAL "GNU") + set(c_flags ${c_flags} -Wdouble-promotion) + set(cxx_flags ${cxx_flags} -Wno-array-bounds) + + if (CMAKE_CXX_COMPILER_VERSION VERSION_GREATER_EQUAL 7.1.0) + set(cxx_flags ${cxx_flags} -Wno-format-truncation) + endif() + if (CMAKE_CXX_COMPILER_VERSION VERSION_GREATER_EQUAL 8.1.0) + set(cxx_flags ${cxx_flags} -Wextra-semi) + endif() endif() else() # todo : msvc endif() add_compile_options( + ${warning_flags} "$<$:${c_flags}>" "$<$:${cxx_flags}>" ) endif() -if (MSVC) +if (WIN32) add_compile_definitions(_CRT_SECURE_NO_WARNINGS) if (BUILD_SHARED_LIBS) @@ -400,6 +413,13 @@ endif() # TODO: probably these flags need to be tweaked on some architectures # feel free to update the Makefile for your architecture and send a pull request or issue message(STATUS "CMAKE_SYSTEM_PROCESSOR: ${CMAKE_SYSTEM_PROCESSOR}") +if (MSVC) + string(TOLOWER "${CMAKE_GENERATOR_PLATFORM}" CMAKE_GENERATOR_PLATFORM_LWR) + message(STATUS "CMAKE_GENERATOR_PLATFORM: ${CMAKE_GENERATOR_PLATFORM}") +else () + set(CMAKE_GENERATOR_PLATFORM_LWR "") +endif () + if (NOT MSVC) if (LLAMA_STATIC) add_link_options(-static) @@ -415,25 +435,33 @@ if (NOT MSVC) endif() endif() -if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "arm" OR ${CMAKE_SYSTEM_PROCESSOR} MATCHES "aarch64") +if ((${CMAKE_SYSTEM_PROCESSOR} MATCHES "arm") OR (${CMAKE_SYSTEM_PROCESSOR} MATCHES "aarch64") OR ("${CMAKE_GENERATOR_PLATFORM_LWR}" MATCHES "arm64")) message(STATUS "ARM detected") if (MSVC) - # TODO: arm msvc? + add_compile_definitions(__ARM_NEON) + add_compile_definitions(__ARM_FEATURE_FMA) + add_compile_definitions(__ARM_FEATURE_DOTPROD) + # add_compile_definitions(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) # MSVC doesn't support vdupq_n_f16, vld1q_f16, vst1q_f16 + add_compile_definitions(__aarch64__) # MSVC defines _M_ARM64 instead else() + check_cxx_compiler_flag(-mfp16-format=ieee COMPILER_SUPPORTS_FP16_FORMAT_I3E) + if (NOT "${COMPILER_SUPPORTS_FP16_FORMAT_I3E}" STREQUAL "") + add_compile_options(-mfp16-format=ieee) + endif() if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "armv6") # Raspberry Pi 1, Zero - add_compile_options(-mfpu=neon-fp-armv8 -mfp16-format=ieee -mno-unaligned-access) + add_compile_options(-mfpu=neon-fp-armv8 -mno-unaligned-access) endif() if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "armv7") # Raspberry Pi 2 - add_compile_options(-mfpu=neon-fp-armv8 -mfp16-format=ieee -mno-unaligned-access -funsafe-math-optimizations) + add_compile_options(-mfpu=neon-fp-armv8 -mno-unaligned-access -funsafe-math-optimizations) endif() if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "armv8") # Raspberry Pi 3, 4, Zero 2 (32-bit) - add_compile_options(-mfp16-format=ieee -mno-unaligned-access) + add_compile_options(-mno-unaligned-access) endif() endif() -elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "^(x86_64|i686|AMD64)$") +elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "^(x86_64|i686|AMD64)$" OR "${CMAKE_GENERATOR_PLATFORM_LWR}" MATCHES "^(x86_64|i686|amd64|x64)$" ) message(STATUS "x86 detected") if (MSVC) if (LLAMA_AVX512) @@ -517,10 +545,12 @@ endif() # RLIMIT_MEMLOCK came in BSD, is not specified in POSIX.1, # and on macOS its availability depends on enabling Darwin extensions # similarly on DragonFly, enabling BSD extensions is necessary -if (CMAKE_SYSTEM_NAME MATCHES "Darwin") - add_compile_definitions(_DARWIN_C_SOURCE) -endif() -if (CMAKE_SYSTEM_NAME MATCHES "DragonFly") +if ( + CMAKE_SYSTEM_NAME MATCHES "Darwin" OR + CMAKE_SYSTEM_NAME MATCHES "iOS" OR + CMAKE_SYSTEM_NAME MATCHES "tvOS" OR + CMAKE_SYSTEM_NAME MATCHES "DragonFly" +) add_compile_definitions(_DARWIN_C_SOURCE) endif() @@ -553,11 +583,11 @@ add_library(ggml OBJECT ggml.h ggml-alloc.c ggml-alloc.h - ${GGML_SOURCES_CUDA} - ${GGML_SOURCES_OPENCL} - ${GGML_SOURCES_METAL} - ${GGML_SOURCES_MPI} - ${GGML_SOURCES_EXTRA} + ${GGML_SOURCES_CUDA} ${GGML_HEADERS_CUDA} + ${GGML_SOURCES_OPENCL} ${GGML_HEADERS_OPENCL} + ${GGML_SOURCES_METAL} ${GGML_HEADERS_METAL} + ${GGML_SOURCES_MPI} ${GGML_HEADERS_MPI} + ${GGML_SOURCES_EXTRA} ${GGML_HEADERS_EXTRA} ) target_include_directories(ggml PUBLIC . ${LLAMA_EXTRA_INCLUDES}) @@ -595,14 +625,53 @@ if (BUILD_SHARED_LIBS) if (LLAMA_METAL) set_target_properties(llama PROPERTIES RESOURCE "${CMAKE_CURRENT_SOURCE_DIR}/ggml-metal.metal") endif() - install(TARGETS llama LIBRARY) endif() + # # install # include(GNUInstallDirs) +include(CMakePackageConfigHelpers) + +set(LLAMA_INCLUDE_INSTALL_DIR ${CMAKE_INSTALL_INCLUDEDIR} + CACHE PATH "Location of header files") +set(LLAMA_LIB_INSTALL_DIR ${CMAKE_INSTALL_LIBDIR} + CACHE PATH "Location of library files") +set(LLAMA_BIN_INSTALL_DIR ${CMAKE_INSTALL_BINDIR} + CACHE PATH "Location of binary files") +set(LLAMA_BUILD_NUMBER ${BUILD_NUMBER}) +set(LLAMA_BUILD_COMMIT ${BUILD_COMMIT}) +set(LLAMA_INSTALL_VERSION 0.0.${BUILD_NUMBER}) + +configure_package_config_file( + ${CMAKE_CURRENT_SOURCE_DIR}/scripts/LlamaConfig.cmake.in + ${CMAKE_CURRENT_BINARY_DIR}/LlamaConfig.cmake + INSTALL_DESTINATION ${CMAKE_INSTALL_LIBDIR}/cmake/Llama + PATH_VARS LLAMA_INCLUDE_INSTALL_DIR + LLAMA_LIB_INSTALL_DIR + LLAMA_BIN_INSTALL_DIR ) + +write_basic_package_version_file( + ${CMAKE_CURRENT_BINARY_DIR}/LlamaConfigVersion.cmake + VERSION ${LLAMA_INSTALL_VERSION} + COMPATIBILITY SameMajorVersion) + +install(FILES ${CMAKE_CURRENT_BINARY_DIR}/LlamaConfig.cmake + ${CMAKE_CURRENT_BINARY_DIR}/LlamaConfigVersion.cmake + DESTINATION ${CMAKE_INSTALL_LIBDIR}/cmake/Llama) + +set(GGML_PUBLIC_HEADERS "ggml.h" + "${GGML_HEADERS_CUDA}" "${GGML_HEADERS_OPENCL}" + "${GGML_HEADERS_METAL}" "${GGML_HEADERS_MPI}" "${GGML_HEADERS_EXTRA}") + +set_target_properties(ggml PROPERTIES PUBLIC_HEADER "${GGML_PUBLIC_HEADERS}") +install(TARGETS ggml PUBLIC_HEADER) + +set_target_properties(llama PROPERTIES PUBLIC_HEADER ${CMAKE_CURRENT_SOURCE_DIR}/llama.h) +install(TARGETS llama LIBRARY PUBLIC_HEADER) + install( FILES convert.py PERMISSIONS diff --git a/Makefile b/Makefile index a774dc50f372d..08b83ca7e30d6 100644 --- a/Makefile +++ b/Makefile @@ -1,8 +1,8 @@ # Define the default target now so that it is always the first target -BUILD_TARGETS = main quantize quantize-stats perplexity embedding vdot train-text-from-scratch convert-llama2c-to-ggml simple save-load-state server embd-input-test gguf llama-bench baby-llama beam-search speculative tests/test-c.o +BUILD_TARGETS = main quantize quantize-stats perplexity embedding vdot q8dot train-text-from-scratch convert-llama2c-to-ggml simple batched save-load-state server embd-input-test gguf llama-bench baby-llama beam-search speculative benchmark-matmult parallel finetune export-lora tests/test-c.o # Binaries only useful for tests -TEST_TARGETS = tests/test-llama-grammar tests/test-grammar-parser tests/test-double-float tests/test-grad0 tests/test-opt tests/test-quantize-fns tests/test-quantize-perf tests/test-sampling tests/test-tokenizer-0-llama tests/test-tokenizer-0-falcon tests/test-tokenizer-1 +TEST_TARGETS = tests/test-llama-grammar tests/test-grammar-parser tests/test-double-float tests/test-grad0 tests/test-opt tests/test-quantize-fns tests/test-quantize-perf tests/test-sampling tests/test-tokenizer-0-llama tests/test-tokenizer-0-falcon tests/test-tokenizer-1-llama # Code coverage output files COV_TARGETS = *.gcno tests/*.gcno *.gcda tests/*.gcda *.gcov tests/*.gcov lcov-report gcovr-report @@ -19,6 +19,20 @@ ifndef UNAME_M UNAME_M := $(shell uname -m) endif +ifeq '' '$(findstring clang,$(shell $(CC) --version))' + CC_IS_GCC=1 + CC_VER := $(shell $(CC) -dumpfullversion -dumpversion | awk -F. '{ printf("%02d%02d%02d", $$1, $$2, $$3) }') +else + CC_IS_CLANG=1 + ifeq '' '$(findstring Apple LLVM,$(shell $(CC) --version))' + CC_IS_LLVM_CLANG=1 + else + CC_IS_APPLE_CLANG=1 + endif + CC_VER := $(shell $(CC) --version | sed -n 's/^.* version \([0-9.]*\).*$$/\1/p' \ + | awk -F. '{ printf("%02d%02d%02d", $$1, $$2, $$3) }') +endif + # Mac OS + Arm can report x86_64 # ref: https://github.com/ggerganov/whisper.cpp/issues/66#issuecomment-1282546789 ifeq ($(UNAME_S),Darwin) @@ -49,7 +63,7 @@ test: $(TEST_TARGETS) ./$$test_target $(CURDIR)/models/ggml-vocab-llama.gguf; \ elif [ "$$test_target" = "tests/test-tokenizer-0-falcon" ]; then \ continue; \ - elif [ "$$test_target" = "tests/test-tokenizer-1" ]; then \ + elif [ "$$test_target" = "tests/test-tokenizer-1-llama" ]; then \ continue; \ else \ echo "Running test $$test_target..."; \ @@ -87,73 +101,65 @@ CC := riscv64-unknown-linux-gnu-gcc CXX := riscv64-unknown-linux-gnu-g++ endif -CCV := $(shell $(CC) --version | head -n 1) -CXXV := $(shell $(CXX) --version | head -n 1) - # # Compile flags # # keep standard at C11 and C++11 +MK_CPPFLAGS = -I. -Icommon +MK_CFLAGS = -std=c11 -fPIC +MK_CXXFLAGS = -std=c++11 -fPIC + # -Ofast tends to produce faster code, but may not be available for some compilers. ifdef LLAMA_FAST -OPT = -Ofast +MK_CFLAGS += -Ofast +MK_HOST_CXXFLAGS += -Ofast +MK_CUDA_CXXFLAGS += -O3 else -OPT = -O3 +MK_CFLAGS += -O3 +MK_CXXFLAGS += -O3 endif -MK_CPPFLAGS = -I. -Icommon -MK_CFLAGS = $(OPT) -std=c11 -fPIC -MK_CXXFLAGS = $(OPT) -std=c++11 -fPIC -MK_LDFLAGS = # clock_gettime came in POSIX.1b (1993) # CLOCK_MONOTONIC came in POSIX.1-2001 / SUSv3 as optional # posix_memalign came in POSIX.1-2001 / SUSv3 # M_PI is an XSI extension since POSIX.1-2001 / SUSv3, came in XPG1 (1985) -MK_CFLAGS += -D_XOPEN_SOURCE=600 -MK_CXXFLAGS += -D_XOPEN_SOURCE=600 +MK_CPPFLAGS += -D_XOPEN_SOURCE=600 # Somehow in OpenBSD whenever POSIX conformance is specified # some string functions rely on locale_t availability, # which was introduced in POSIX.1-2008, forcing us to go higher ifeq ($(UNAME_S),OpenBSD) - MK_CFLAGS += -U_XOPEN_SOURCE -D_XOPEN_SOURCE=700 - MK_CXXFLAGS += -U_XOPEN_SOURCE -D_XOPEN_SOURCE=700 + MK_CPPFLAGS += -U_XOPEN_SOURCE -D_XOPEN_SOURCE=700 endif # Data types, macros and functions related to controlling CPU affinity and # some memory allocation are available on Linux through GNU extensions in libc ifeq ($(UNAME_S),Linux) - MK_CFLAGS += -D_GNU_SOURCE - MK_CXXFLAGS += -D_GNU_SOURCE + MK_CPPFLAGS += -D_GNU_SOURCE endif # RLIMIT_MEMLOCK came in BSD, is not specified in POSIX.1, # and on macOS its availability depends on enabling Darwin extensions # similarly on DragonFly, enabling BSD extensions is necessary ifeq ($(UNAME_S),Darwin) - MK_CFLAGS += -D_DARWIN_C_SOURCE - MK_CXXFLAGS += -D_DARWIN_C_SOURCE + MK_CPPFLAGS += -D_DARWIN_C_SOURCE endif ifeq ($(UNAME_S),DragonFly) - MK_CFLAGS += -D__BSD_VISIBLE - MK_CXXFLAGS += -D__BSD_VISIBLE + MK_CPPFLAGS += -D__BSD_VISIBLE endif # alloca is a non-standard interface that is not visible on BSDs when # POSIX conformance is specified, but not all of them provide a clean way # to enable it in such cases ifeq ($(UNAME_S),FreeBSD) - MK_CFLAGS += -D__BSD_VISIBLE - MK_CXXFLAGS += -D__BSD_VISIBLE + MK_CPPFLAGS += -D__BSD_VISIBLE endif ifeq ($(UNAME_S),NetBSD) - MK_CFLAGS += -D_NETBSD_SOURCE - MK_CXXFLAGS += -D_NETBSD_SOURCE + MK_CPPFLAGS += -D_NETBSD_SOURCE endif ifeq ($(UNAME_S),OpenBSD) - MK_CFLAGS += -D_BSD_SOURCE - MK_CXXFLAGS += -D_BSD_SOURCE + MK_CPPFLAGS += -D_BSD_SOURCE endif ifdef LLAMA_DEBUG @@ -178,13 +184,33 @@ ifdef LLAMA_DISABLE_LOGS endif # LLAMA_DISABLE_LOGS # warnings -MK_CFLAGS += -Wall -Wextra -Wpedantic -Wcast-qual -Wdouble-promotion -Wshadow -Wstrict-prototypes -Wpointer-arith \ - -Wmissing-prototypes -Werror=implicit-int -Wno-unused-function -MK_CXXFLAGS += -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wno-multichar +WARN_FLAGS = -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function +MK_CFLAGS += $(WARN_FLAGS) -Wshadow -Wstrict-prototypes -Wpointer-arith -Wmissing-prototypes -Werror=implicit-int \ + -Werror=implicit-function-declaration +MK_CXXFLAGS += $(WARN_FLAGS) -Wmissing-declarations -Wmissing-noreturn + +ifeq ($(CC_IS_CLANG), 1) + # clang options + MK_CFLAGS += -Wunreachable-code-break -Wunreachable-code-return + MK_HOST_CXXFLAGS += -Wunreachable-code-break -Wunreachable-code-return -Wmissing-prototypes -Wextra-semi + + ifneq '' '$(and $(CC_IS_LLVM_CLANG),$(filter 1,$(shell expr $(CC_VER) \>= 030800)))' + MK_CFLAGS += -Wdouble-promotion + endif + ifneq '' '$(and $(CC_IS_APPLE_CLANG),$(filter 1,$(shell expr $(CC_VER) \>= 070300)))' + MK_CFLAGS += -Wdouble-promotion + endif +else + # gcc options + MK_CFLAGS += -Wdouble-promotion + MK_HOST_CXXFLAGS += -Wno-array-bounds -ifeq '' '$(findstring clang++,$(CXX))' - # g++ only - MK_CXXFLAGS += -Wno-format-truncation -Wno-array-bounds + ifeq ($(shell expr $(CC_VER) \>= 070100), 1) + MK_HOST_CXXFLAGS += -Wno-format-truncation + endif + ifeq ($(shell expr $(CC_VER) \>= 080100), 1) + MK_HOST_CXXFLAGS += -Wextra-semi + endif endif # OS specific @@ -233,7 +259,7 @@ ifndef RISCV ifeq ($(UNAME_M),$(filter $(UNAME_M),x86_64 i686 amd64)) # Use all CPU extensions that are available: MK_CFLAGS += -march=native -mtune=native - MK_CXXFLAGS += -march=native -mtune=native + MK_HOST_CXXFLAGS += -march=native -mtune=native # Usage AVX-only #MK_CFLAGS += -mfma -mf16c -mavx @@ -303,6 +329,8 @@ ifndef LLAMA_NO_ACCELERATE # `-framework Accelerate` works both with Apple Silicon and Mac Intel ifeq ($(UNAME_S),Darwin) MK_CPPFLAGS += -DGGML_USE_ACCELERATE + MK_CPPFLAGS += -DACCELERATE_NEW_LAPACK + MK_CPPFLAGS += -DACCELERATE_LAPACK_ILP64 MK_LDFLAGS += -framework Accelerate endif endif # LLAMA_NO_ACCELERATE @@ -366,6 +394,11 @@ ifdef LLAMA_CUDA_KQUANTS_ITER else NVCCFLAGS += -DK_QUANTS_PER_ITERATION=2 endif +ifdef LLAMA_CUDA_PEER_MAX_BATCH_SIZE + NVCCFLAGS += -DGGML_CUDA_PEER_MAX_BATCH_SIZE=$(LLAMA_CUDA_PEER_MAX_BATCH_SIZE) +else + NVCCFLAGS += -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128 +endif # LLAMA_CUDA_PEER_MAX_BATCH_SIZE #ifdef LLAMA_CUDA_CUBLAS # NVCCFLAGS += -DGGML_CUDA_CUBLAS #endif # LLAMA_CUDA_CUBLAS @@ -373,7 +406,7 @@ ifdef LLAMA_CUDA_CCBIN NVCCFLAGS += -ccbin $(LLAMA_CUDA_CCBIN) endif ggml-cuda.o: ggml-cuda.cu ggml-cuda.h - $(NVCC) $(NVCCFLAGS) $(subst -Ofast,-O3,$(CXXFLAGS)) -Wno-pedantic -c $< -o $@ + $(NVCC) $(NVCCFLAGS) -c $< -o $@ endif # LLAMA_CUBLAS ifdef LLAMA_CLBLAST @@ -408,7 +441,6 @@ ifdef LLAMA_HIPBLAS HIPFLAGS += -DGGML_CUDA_DMMV_X=$(LLAMA_CUDA_DMMV_X) HIPFLAGS += -DGGML_CUDA_MMV_Y=$(LLAMA_CUDA_MMV_Y) HIPFLAGS += -DK_QUANTS_PER_ITERATION=$(LLAMA_CUDA_KQUANTS_ITER) - HIPFLAGS += -DCC_TURING=1000000000 ifdef LLAMA_CUDA_FORCE_DMMV HIPFLAGS += -DGGML_CUDA_FORCE_DMMV endif # LLAMA_CUDA_FORCE_DMMV @@ -442,23 +474,30 @@ k_quants.o: k_quants.c k_quants.h endif # LLAMA_NO_K_QUANTS # combine build flags with cmdline overrides -override CFLAGS := $(MK_CPPFLAGS) $(CPPFLAGS) $(MK_CFLAGS) $(CFLAGS) -override CXXFLAGS := $(MK_CPPFLAGS) $(CPPFLAGS) $(MK_CXXFLAGS) $(CXXFLAGS) -override LDFLAGS := $(MK_LDFLAGS) $(LDFLAGS) +override CFLAGS := $(MK_CPPFLAGS) $(CPPFLAGS) $(MK_CFLAGS) $(CFLAGS) +override CXXFLAGS := $(MK_CPPFLAGS) $(CPPFLAGS) $(MK_CXXFLAGS) $(CXXFLAGS) +override CUDA_CXXFLAGS := $(MK_CUDA_CXXFLAGS) $(CUDA_CXXFLAGS) +override HOST_CXXFLAGS := $(MK_HOST_CXXFLAGS) $(HOST_CXXFLAGS) +override LDFLAGS := $(MK_LDFLAGS) $(LDFLAGS) + +# save CXXFLAGS before we add host-only options +NVCCFLAGS := $(NVCCFLAGS) $(CXXFLAGS) $(CUDA_CXXFLAGS) -Wno-pedantic -Xcompiler "$(HOST_CXXFLAGS)" +override CXXFLAGS += $(HOST_CXXFLAGS) # # Print build information # $(info I llama.cpp build info: ) -$(info I UNAME_S: $(UNAME_S)) -$(info I UNAME_P: $(UNAME_P)) -$(info I UNAME_M: $(UNAME_M)) -$(info I CFLAGS: $(CFLAGS)) -$(info I CXXFLAGS: $(CXXFLAGS)) -$(info I LDFLAGS: $(LDFLAGS)) -$(info I CC: $(CCV)) -$(info I CXX: $(CXXV)) +$(info I UNAME_S: $(UNAME_S)) +$(info I UNAME_P: $(UNAME_P)) +$(info I UNAME_M: $(UNAME_M)) +$(info I CFLAGS: $(CFLAGS)) +$(info I CXXFLAGS: $(CXXFLAGS)) +$(info I NVCCFLAGS: $(NVCCFLAGS)) +$(info I LDFLAGS: $(LDFLAGS)) +$(info I CC: $(shell $(CC) --version | head -n 1)) +$(info I CXX: $(shell $(CXX) --version | head -n 1)) $(info ) # @@ -485,6 +524,9 @@ console.o: common/console.cpp common/console.h grammar-parser.o: common/grammar-parser.cpp common/grammar-parser.h $(CXX) $(CXXFLAGS) -c $< -o $@ +train.o: common/train.cpp common/train.h + $(CXX) $(CXXFLAGS) -c $< -o $@ + libllama.so: llama.o ggml.o $(OBJS) $(CXX) $(CXXFLAGS) -shared -fPIC -o $@ $^ $(LDFLAGS) @@ -504,6 +546,9 @@ main: examples/main/main.cpp build-info.h ggml. simple: examples/simple/simple.cpp build-info.h ggml.o llama.o common.o $(OBJS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) +batched: examples/batched/batched.cpp build-info.h ggml.o llama.o common.o $(OBJS) + $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) + quantize: examples/quantize/quantize.cpp build-info.h ggml.o llama.o $(OBJS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) @@ -532,7 +577,7 @@ embd-input-test: $(LIB_PRE)embdinput$(DSO_EXT) examples/embd-input/embd-input-te gguf: examples/gguf/gguf.cpp ggml.o llama.o $(OBJS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) -train-text-from-scratch: examples/train-text-from-scratch/train-text-from-scratch.cpp ggml.o llama.o common.o $(OBJS) +train-text-from-scratch: examples/train-text-from-scratch/train-text-from-scratch.cpp ggml.o llama.o common.o train.o $(OBJS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) convert-llama2c-to-ggml: examples/convert-llama2c-to-ggml/convert-llama2c-to-ggml.cpp ggml.o llama.o $(OBJS) @@ -541,22 +586,31 @@ convert-llama2c-to-ggml: examples/convert-llama2c-to-ggml/convert-llama2c-to-ggm llama-bench: examples/llama-bench/llama-bench.cpp build-info.h ggml.o llama.o common.o $(OBJS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) -baby-llama: examples/baby-llama/baby-llama.cpp ggml.o llama.o common.o $(OBJS) +baby-llama: examples/baby-llama/baby-llama.cpp ggml.o llama.o common.o train.o $(OBJS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) beam-search: examples/beam-search/beam-search.cpp build-info.h ggml.o llama.o common.o $(OBJS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) +finetune: examples/finetune/finetune.cpp build-info.h ggml.o llama.o common.o train.o $(OBJS) + $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) + +export-lora: examples/export-lora/export-lora.cpp build-info.h ggml.o llama.o common.o $(OBJS) + $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) + speculative: examples/speculative/speculative.cpp build-info.h ggml.o llama.o common.o grammar-parser.o $(OBJS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) +parallel: examples/parallel/parallel.cpp build-info.h ggml.o llama.o common.o $(OBJS) + $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) + ifdef LLAMA_METAL metal: examples/metal/metal.cpp ggml.o $(OBJS) $(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS) endif build-info.h: $(wildcard .git/index) scripts/build-info.sh - @sh scripts/build-info.sh > $@.tmp + @sh scripts/build-info.sh $(CC) > $@.tmp @if ! cmp -s $@.tmp $@; then \ mv $@.tmp $@; \ else \ @@ -571,11 +625,18 @@ tests: $(TEST_TARGETS) benchmark-matmult: examples/benchmark/benchmark-matmult.cpp build-info.h ggml.o $(OBJS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) + +run-benchmark-matmult: benchmark-matmult ./$@ +.PHONY: run-benchmark-matmult + vdot: pocs/vdot/vdot.cpp ggml.o $(OBJS) $(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS) +q8dot: pocs/vdot/q8dot.cpp ggml.o $(OBJS) + $(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS) + tests/test-llama-grammar: tests/test-llama-grammar.cpp build-info.h ggml.o common.o grammar-parser.o $(OBJS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) @@ -606,7 +667,7 @@ tests/test-tokenizer-0-falcon: tests/test-tokenizer-0-falcon.cpp build-info.h gg tests/test-tokenizer-0-llama: tests/test-tokenizer-0-llama.cpp build-info.h ggml.o llama.o common.o $(OBJS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) -tests/test-tokenizer-1: tests/test-tokenizer-1.cpp build-info.h ggml.o llama.o common.o $(OBJS) +tests/test-tokenizer-1-llama: tests/test-tokenizer-1-llama.cpp build-info.h ggml.o llama.o common.o $(OBJS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) tests/test-c.o: tests/test-c.c llama.h diff --git a/Package.swift b/Package.swift index fb95ef7ebc59f..5fbcdb9db9d42 100644 --- a/Package.swift +++ b/Package.swift @@ -10,7 +10,7 @@ let platforms: [SupportedPlatform]? = [ .tvOS(.v14) ] let exclude: [String] = [] -let additionalSources: [String] = ["ggml-metal.m"] +let additionalSources: [String] = ["ggml-metal.m", "ggml-metal.metal"] let additionalSettings: [CSetting] = [ .unsafeFlags(["-fno-objc-arc"]), .define("GGML_SWIFT"), @@ -44,7 +44,9 @@ let package = Package( cSettings: [ .unsafeFlags(["-Wno-shorten-64-to-32"]), .define("GGML_USE_K_QUANTS"), - .define("GGML_USE_ACCELERATE") + .define("GGML_USE_ACCELERATE"), + .define("ACCELERATE_NEW_LAPACK"), + .define("ACCELERATE_LAPACK_ILP64") ] + additionalSettings, linkerSettings: [ .linkedFramework("Accelerate") diff --git a/README.md b/README.md index fe7391e01d33b..ec7b5894327ed 100644 --- a/README.md +++ b/README.md @@ -11,6 +11,9 @@ Inference of [LLaMA](https://arxiv.org/abs/2302.13971) model in pure C/C++ ### Hot topics +- ‼️ Breaking change: `rope_freq_base` and `rope_freq_scale` must be set to zero to use the model default values: [#3401](https://github.com/ggerganov/llama.cpp/pull/3401) +- Parallel decoding + continuous batching support added: [#3228](https://github.com/ggerganov/llama.cpp/pull/3228) \ + **Devs should become familiar with the new API** - Local Falcon 180B inference on Mac Studio https://github.com/ggerganov/llama.cpp/assets/1991296/98abd4e8-7077-464c-ae89-aebabca7757e @@ -90,6 +93,8 @@ as the main playground for developing new features for the [ggml](https://github - [X] [WizardLM](https://github.com/nlpxucan/WizardLM) - [X] [Baichuan-7B](https://huggingface.co/baichuan-inc/baichuan-7B) and its derivations (such as [baichuan-7b-sft](https://huggingface.co/hiyouga/baichuan-7b-sft)) - [X] [Aquila-7B](https://huggingface.co/BAAI/Aquila-7B) / [AquilaChat-7B](https://huggingface.co/BAAI/AquilaChat-7B) +- [X] [Starcoder models](https://github.com/ggerganov/llama.cpp/pull/3187) +- [X] [Mistral AI v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) **Bindings:** @@ -391,13 +396,14 @@ Building the program with BLAS support may lead to some performance improvements - | Option | Legal values | Default | Description | - |-------------------------|------------------------|---------|-------------| - | LLAMA_CUDA_FORCE_DMMV | Boolean | false | Force the use of dequantization + matrix vector multiplication kernels instead of using kernels that do matrix vector multiplication on quantized data. By default the decision is made based on compute capability (MMVQ for 6.1/Pascal/GTX 1000 or higher). Does not affect k-quants. | - | LLAMA_CUDA_DMMV_X | Positive integer >= 32 | 32 | Number of values in x direction processed by the CUDA dequantization + matrix vector multiplication kernel per iteration. Increasing this value can improve performance on fast GPUs. Power of 2 heavily recommended. Does not affect k-quants. | - | LLAMA_CUDA_MMV_Y | Positive integer | 1 | Block size in y direction for the CUDA mul mat vec kernels. Increasing this value can improve performance on fast GPUs. Power of 2 recommended. | - | LLAMA_CUDA_F16 | Boolean | false | If enabled, use half-precision floating point arithmetic for the CUDA dequantization + mul mat vec kernels and for the q4_1 and q5_1 matrix matrix multiplication kernels. Can improve performance on relatively recent GPUs. | - | LLAMA_CUDA_KQUANTS_ITER | 1 or 2 | 2 | Number of values processed per iteration and per CUDA thread for Q2_K and Q6_K quantization formats. Setting this value to 1 can improve performance for slow GPUs. | + | Option | Legal values | Default | Description | + |--------------------------------|------------------------|---------|-------------| + | LLAMA_CUDA_FORCE_DMMV | Boolean | false | Force the use of dequantization + matrix vector multiplication kernels instead of using kernels that do matrix vector multiplication on quantized data. By default the decision is made based on compute capability (MMVQ for 6.1/Pascal/GTX 1000 or higher). Does not affect k-quants. | + | LLAMA_CUDA_DMMV_X | Positive integer >= 32 | 32 | Number of values in x direction processed by the CUDA dequantization + matrix vector multiplication kernel per iteration. Increasing this value can improve performance on fast GPUs. Power of 2 heavily recommended. Does not affect k-quants. | + | LLAMA_CUDA_MMV_Y | Positive integer | 1 | Block size in y direction for the CUDA mul mat vec kernels. Increasing this value can improve performance on fast GPUs. Power of 2 recommended. | + | LLAMA_CUDA_F16 | Boolean | false | If enabled, use half-precision floating point arithmetic for the CUDA dequantization + mul mat vec kernels and for the q4_1 and q5_1 matrix matrix multiplication kernels. Can improve performance on relatively recent GPUs. | + | LLAMA_CUDA_KQUANTS_ITER | 1 or 2 | 2 | Number of values processed per iteration and per CUDA thread for Q2_K and Q6_K quantization formats. Setting this value to 1 can improve performance for slow GPUs. | + | LLAMA_CUDA_PEER_MAX_BATCH_SIZE | Positive integer | 128 | Maximum batch size for which to enable peer access between multiple GPUs. Peer access requires either Linux or NVLink. When using NVLink enabling peer access for larger batch sizes is potentially beneficial. | - #### hipBLAS @@ -498,7 +504,7 @@ Building the program with BLAS support may lead to some performance improvements ```sh mkdir build cd build - cmake .. -DLLAMA_CLBLAST=ON -DCLBlast_dir=/some/path + cmake .. -DLLAMA_CLBLAST=ON -DCLBlast_DIR=/some/path cmake --build . --config Release ``` - CMake (Windows): @@ -554,6 +560,10 @@ python3 convert.py models/7B/ # quantize the model to 4-bits (using q4_0 method) ./quantize ./models/7B/ggml-model-f16.gguf ./models/7B/ggml-model-q4_0.gguf q4_0 +# update the gguf filetype to current if older version is unsupported by another application +./quantize ./models/7B/ggml-model-q4_0.gguf ./models/7B/ggml-model-q4_0-v2.gguf COPY + + # run the inference ./main -m ./models/7B/ggml-model-q4_0.gguf -n 128 ``` @@ -590,6 +600,11 @@ Several quantization methods are supported. They differ in the resulting model d | 13B | ms/tok @ 8th | - | 73 | 82 | 98 | 105 | 128 | | 13B | bits/weight | 16.0 | 4.5 | 5.0 | 5.5 | 6.0 | 8.5 | +- [k-quants](https://github.com/ggerganov/llama.cpp/pull/1684) +- recent k-quants improvements + - [#2707](https://github.com/ggerganov/llama.cpp/pull/2707) + - [#2807](https://github.com/ggerganov/llama.cpp/pull/2807) + ### Perplexity (measuring model quality) You can use the `perplexity` example to measure perplexity over a given prompt (lower perplexity is better). @@ -649,6 +664,8 @@ PROMPT_TEMPLATE=./prompts/chat-with-bob.txt PROMPT_CACHE_FILE=bob.prompt.bin \ The `grammars/` folder contains a handful of sample grammars. To write your own, check out the [GBNF Guide](./grammars/README.md). +For authoring more complex JSON grammars, you can also check out https://grammar.intrinsiclabs.ai/, a browser app that lets you write TypeScript interfaces which it compiles to GBNF grammars that you can save for local use. Note that the app is built and maintained by members of the community, please file any issues or FRs on [its repo](http://github.com/intrinsiclabsai/gbnfgen) and not this one. + ### Instruction mode with Alpaca 1. First, download the `ggml` Alpaca model into the `./models` folder @@ -844,8 +861,17 @@ Place your desired model into the `~/llama.cpp/models/` directory and execute th #### Images We have two Docker images available for this project: -1. `ghcr.io/ggerganov/llama.cpp:full`: This image includes both the main executable file and the tools to convert LLaMA models into ggml and convert into 4-bit quantization. -2. `ghcr.io/ggerganov/llama.cpp:light`: This image only includes the main executable file. +1. `ghcr.io/ggerganov/llama.cpp:full`: This image includes both the main executable file and the tools to convert LLaMA models into ggml and convert into 4-bit quantization. (platforms: `linux/amd64`, `linux/arm64`) +2. `ghcr.io/ggerganov/llama.cpp:light`: This image only includes the main executable file. (platforms: `linux/amd64`, `linux/arm64`) + +Additionally, there the following images, similar to the above: + +- `ghcr.io/ggerganov/llama.cpp:full-cuda`: Same as `full` but compiled with CUDA support. (platforms: `linux/amd64`) +- `ghcr.io/ggerganov/llama.cpp:light-cuda`: Same as `light` but compiled with CUDA support. (platforms: `linux/amd64`) +- `ghcr.io/ggerganov/llama.cpp:full-rocm`: Same as `full` but compiled with ROCm support. (platforms: `linux/amd64`, `linux/arm64`) +- `ghcr.io/ggerganov/llama.cpp:light-rocm`: Same as `light` but compiled with ROCm support. (platforms: `linux/amd64`, `linux/arm64`) + +The GPU enabled images are not currently tested by CI beyond being built. They are not built with any variation from the ones in the Dockerfiles defined in [.devops/](.devops/) and the Gitlab Action defined in [.github/workflows/docker.yml](.github/workflows/docker.yml). If you need different settings (for example, a different CUDA or ROCm library, you'll need to build the images locally for now). #### Usage diff --git a/build.zig b/build.zig index f2769ba8c2e7a..3a8978bc37fe2 100644 --- a/build.zig +++ b/build.zig @@ -36,17 +36,20 @@ const Maker = struct { } fn init(builder: *std.build.Builder) !Maker { - const commit_hash = @embedFile(".git/refs/heads/master"); + // const commit_hash = @embedFile(".git/refs/heads/master"); + const target = builder.standardTargetOptions(.{}); const config_header = builder.addConfigHeader( .{ .style = .blank, .include_path = "build-info.h" }, .{ .BUILD_NUMBER = 0, - .BUILD_COMMIT = commit_hash[0 .. commit_hash.len - 1], // omit newline + .BUILD_COMMIT = "12345", // omit newline + .BUILD_COMPILER = "Zig 0.11.0", + .BUILD_TARGET = try target.allocDescription(builder.allocator), }, ); var m = Maker{ .builder = builder, - .target = builder.standardTargetOptions(.{}), + .target = target, .optimize = builder.standardOptimizeOption(.{}), .config_header = config_header, .enable_lto = false, @@ -58,7 +61,7 @@ const Maker = struct { try m.addCFlag("-std=c11"); try m.addCxxFlag("-std=c++11"); try m.addProjectInclude(&.{}); - try m.addProjectInclude(&.{"examples"}); + try m.addProjectInclude(&.{"common"}); return m; } @@ -71,6 +74,7 @@ const Maker = struct { o.addCSourceFiles(&.{src}, m.cxxflags.items); o.linkLibCpp(); } + o.addConfigHeader(m.config_header); for (m.include_dirs.items) |i| o.addIncludePath(.{ .path = i }); o.want_lto = m.enable_lto; return o; @@ -104,15 +108,15 @@ pub fn build(b: *std.build.Builder) !void { const ggml = make.obj("ggml", "ggml.c"); const ggml_alloc = make.obj("ggml-alloc", "ggml-alloc.c"); const llama = make.obj("llama", "llama.cpp"); - const common = make.obj("common", "examples/common.cpp"); - const console = make.obj("common", "examples/console.cpp"); - const grammar_parser = make.obj("grammar-parser", "examples/grammar-parser.cpp"); + const common = make.obj("common", "common/common.cpp"); + const console = make.obj("common", "common/console.cpp"); + const grammar_parser = make.obj("grammar-parser", "common/grammar-parser.cpp"); _ = make.exe("main", "examples/main/main.cpp", &.{ ggml, ggml_alloc, llama, common, console, grammar_parser }); - _ = make.exe("quantize", "examples/quantize/quantize.cpp", &.{ ggml, ggml_alloc, llama }); + _ = make.exe("quantize", "examples/quantize/quantize.cpp", &.{ ggml, ggml_alloc, llama, common }); _ = make.exe("perplexity", "examples/perplexity/perplexity.cpp", &.{ ggml, ggml_alloc, llama, common }); _ = make.exe("embedding", "examples/embedding/embedding.cpp", &.{ ggml, ggml_alloc, llama, common }); - _ = make.exe("train-text-from-scratch", "examples/train-text-from-scratch/train-text-from-scratch.cpp", &.{ ggml, ggml_alloc, llama }); + _ = make.exe("train-text-from-scratch", "examples/train-text-from-scratch/train-text-from-scratch.cpp", &.{ ggml, ggml_alloc, llama, common }); const server = make.exe("server", "examples/server/server.cpp", &.{ ggml, ggml_alloc, llama, common, grammar_parser }); if (server.target.isWindows()) { diff --git a/common/CMakeLists.txt b/common/CMakeLists.txt index dead56118bac8..951aa8340c7e4 100644 --- a/common/CMakeLists.txt +++ b/common/CMakeLists.txt @@ -9,6 +9,8 @@ add_library(${TARGET} OBJECT console.cpp grammar-parser.h grammar-parser.cpp + train.h + train.cpp ) if (BUILD_SHARED_LIBS) diff --git a/common/common.cpp b/common/common.cpp index 6e5d5b4d50757..ec181c6b3b61a 100644 --- a/common/common.cpp +++ b/common/common.cpp @@ -129,6 +129,15 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) { if (params.n_threads <= 0) { params.n_threads = std::thread::hardware_concurrency(); } + } else if (arg == "-tb" || arg == "--threads-batch") { + if (++i >= argc) { + invalid_param = true; + break; + } + params.n_threads_batch = std::stoi(argv[i]); + if (params.n_threads_batch <= 0) { + params.n_threads_batch = std::thread::hardware_concurrency(); + } } else if (arg == "-p" || arg == "--prompt") { if (++i >= argc) { invalid_param = true; @@ -317,6 +326,18 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) { break; } params.n_chunks = std::stoi(argv[i]); + } else if (arg == "-np" || arg == "--parallel") { + if (++i >= argc) { + invalid_param = true; + break; + } + params.n_parallel = std::stoi(argv[i]); + } else if (arg == "-ns" || arg == "--sequences") { + if (++i >= argc) { + invalid_param = true; + break; + } + params.n_sequences = std::stoi(argv[i]); } else if (arg == "-m" || arg == "--model") { if (++i >= argc) { invalid_param = true; @@ -340,7 +361,19 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) { invalid_param = true; break; } - params.lora_adapter = argv[i]; + params.lora_adapter.push_back({argv[i], 1.0f}); + params.use_mmap = false; + } else if (arg == "--lora-scaled") { + if (++i >= argc) { + invalid_param = true; + break; + } + const char * lora_adapter = argv[i]; + if (++i >= argc) { + invalid_param = true; + break; + } + params.lora_adapter.push_back({lora_adapter, std::stof(argv[i])}); params.use_mmap = false; } else if (arg == "--lora-base") { if (++i >= argc) { @@ -360,6 +393,8 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) { params.multiline_input = true; } else if (arg == "--simple-io") { params.simple_io = true; + } else if (arg == "-cb" || arg == "--cont-batching") { + params.cont_batching = true; } else if (arg == "--color") { params.use_color = true; } else if (arg == "--mlock") { @@ -374,6 +409,17 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) { #else fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers option will be ignored\n"); fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n"); +#endif + } else if (arg == "--gpu-layers-draft" || arg == "-ngld" || arg == "--n-gpu-layers-draft") { + if (++i >= argc) { + invalid_param = true; + break; + } +#ifdef LLAMA_SUPPORTS_GPU_OFFLOAD + params.n_gpu_layers_draft = std::stoi(argv[i]); +#else + fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers-draft option will be ignored\n"); + fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n"); #endif } else if (arg == "--main-gpu" || arg == "-mg") { if (++i >= argc) { @@ -414,21 +460,11 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) { params.mul_mat_q = false; #else fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. Disabling mul_mat_q kernels has no effect.\n"); -#endif // GGML_USE_CUBLAS - } else if (arg == "--low-vram" || arg == "-lv") { -#ifdef GGML_USE_CUBLAS - params.low_vram = true; -#else - fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. It is not possible to set lower vram usage.\n"); #endif // GGML_USE_CUBLAS } else if (arg == "--no-mmap") { params.use_mmap = false; - } else if (arg == "--mtest") { - params.mem_test = true; } else if (arg == "--numa") { params.numa = true; - } else if (arg == "--export") { - params.export_cgraph = true; } else if (arg == "--verbose-prompt") { params.verbose_prompt = true; } else if (arg == "-r" || arg == "--reverse-prompt") { @@ -447,8 +483,8 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) { if (params.logdir.back() != DIRECTORY_SEPARATOR) { params.logdir += DIRECTORY_SEPARATOR; } - } else if (arg == "--perplexity") { - params.perplexity = true; + } else if (arg == "--perplexity" || arg == "--all-logits") { + params.logits_all = true; } else if (arg == "--ppl-stride") { if (++i >= argc) { invalid_param = true; @@ -597,7 +633,9 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) { printf(" (can be specified more than once for multiple prompts).\n"); printf(" --color colorise output to distinguish prompt and user input from generations\n"); printf(" -s SEED, --seed SEED RNG seed (default: -1, use random seed for < 0)\n"); - printf(" -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads); + printf(" -t N, --threads N number of threads to use during generation (default: %d)\n", params.n_threads); + printf(" -tb N, --threads-batch N\n"); + printf(" number of threads to use during batch and prompt processing (default: same as --threads)\n"); printf(" -p PROMPT, --prompt PROMPT\n"); printf(" prompt to start generation with (default: empty)\n"); printf(" -e, --escape process prompt escapes sequences (\\n, \\r, \\t, \\', \\\", \\\\)\n"); @@ -612,7 +650,7 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) { printf(" -f FNAME, --file FNAME\n"); printf(" prompt file to start generation.\n"); printf(" -n N, --n-predict N number of tokens to predict (default: %d, -1 = infinity, -2 = until context filled)\n", params.n_predict); - printf(" -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx); + printf(" -c N, --ctx-size N size of the prompt context (default: %d, 0 = loaded from model)\n", params.n_ctx); printf(" -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch); printf(" --top-k N top-k sampling (default: %d, 0 = disabled)\n", params.top_k); printf(" --top-p N top-p sampling (default: %.1f, 1.0 = disabled)\n", (double)params.top_p); @@ -638,20 +676,23 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) { printf(" --cfg-negative-prompt-file FNAME\n"); printf(" negative prompt file to use for guidance. (default: empty)\n"); printf(" --cfg-scale N strength of guidance (default: %f, 1.0 = disable)\n", params.cfg_scale); - printf(" --rope-scale N RoPE context linear scaling factor, inverse of --rope-freq-scale (default: %g)\n", 1.0f/params.rope_freq_scale); - printf(" --rope-freq-base N RoPE base frequency, used by NTK-aware scaling (default: %.1f)\n", params.rope_freq_base); - printf(" --rope-freq-scale N RoPE frequency linear scaling factor, inverse of --rope-scale (default: %g)\n", params.rope_freq_scale); + printf(" --rope-scale N RoPE context linear scaling factor, inverse of --rope-freq-scale\n"); + printf(" --rope-freq-base N RoPE base frequency, used by NTK-aware scaling (default: loaded from model)\n"); + printf(" --rope-freq-scale N RoPE frequency linear scaling factor (default: loaded from model)\n"); printf(" --ignore-eos ignore end of stream token and continue generating (implies --logit-bias 2-inf)\n"); printf(" --no-penalize-nl do not penalize newline token\n"); printf(" --memory-f32 use f32 instead of f16 for memory key+value (default: disabled)\n"); printf(" not recommended: doubles context memory required and no measurable increase in quality\n"); printf(" --temp N temperature (default: %.1f)\n", (double)params.temp); - printf(" --perplexity compute perplexity over each ctx window of the prompt\n"); + printf(" --logits-all return logits for all tokens in the batch (default: disabled)\n"); printf(" --hellaswag compute HellaSwag score over random tasks from datafile supplied with -f\n"); printf(" --hellaswag-tasks N number of tasks to use when computing the HellaSwag score (default: %zu)\n", params.hellaswag_tasks); printf(" --keep N number of tokens to keep from the initial prompt (default: %d, -1 = all)\n", params.n_keep); printf(" --draft N number of tokens to draft for speculative decoding (default: %d)\n", params.n_draft); printf(" --chunks N max number of chunks to process (default: %d, -1 = all)\n", params.n_chunks); + printf(" -np N, --parallel N number of parallel sequences to decode (default: %d)\n", params.n_parallel); + printf(" -ns N, --sequences N number of sequences to decode (default: %d)\n", params.n_sequences); + printf(" -cb, --cont-batching enable continuous batching (a.k.a dynamic batching) (default: disabled)\n"); if (llama_mlock_supported()) { printf(" --mlock force system to keep model in RAM rather than swapping or compressing\n"); } @@ -664,21 +705,21 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) { #ifdef LLAMA_SUPPORTS_GPU_OFFLOAD printf(" -ngl N, --n-gpu-layers N\n"); printf(" number of layers to store in VRAM\n"); + printf(" -ngld N, --n-gpu-layers-draft N\n"); + printf(" number of layers to store in VRAM for the draft model\n"); printf(" -ts SPLIT --tensor-split SPLIT\n"); printf(" how to split tensors across multiple GPUs, comma-separated list of proportions, e.g. 3,1\n"); printf(" -mg i, --main-gpu i the GPU to use for scratch and small tensors\n"); - printf(" -lv, --low-vram don't allocate VRAM scratch buffer\n"); #ifdef GGML_USE_CUBLAS printf(" -nommq, --no-mul-mat-q\n"); printf(" use " GGML_CUBLAS_NAME " instead of custom mul_mat_q " GGML_CUDA_NAME " kernels.\n"); printf(" Not recommended since this is both slower and uses more VRAM.\n"); #endif // GGML_USE_CUBLAS #endif - printf(" --mtest compute maximum memory usage\n"); - printf(" --export export the computation graph to 'llama.ggml'\n"); printf(" --verbose-prompt print prompt before generation\n"); fprintf(stderr, " --simple-io use basic IO for better compatibility in subprocesses and limited consoles\n"); printf(" --lora FNAME apply LoRA adapter (implies --no-mmap)\n"); + printf(" --lora-scaled FNAME S apply LoRA adapter with user defined scaling S (implies --no-mmap)\n"); printf(" --lora-base FNAME optional model to use as a base for the layers modified by the LoRA adapter\n"); printf(" -m FNAME, --model FNAME\n"); printf(" model path (default: %s)\n", params.model.c_str()); @@ -689,6 +730,18 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) { printf("\n"); } +std::string get_system_info(const gpt_params & params) { + std::ostringstream os; + + os << "system_info: n_threads = " << params.n_threads; + if (params.n_threads_batch != -1) { + os << " (n_threads_batch = " << params.n_threads_batch << ")"; + } + os << " / " << std::thread::hardware_concurrency() << " | " << llama_print_system_info(); + + return os.str(); +} + std::string gpt_random_prompt(std::mt19937 & rng) { const int r = rng() % 10; switch (r) { @@ -702,60 +755,74 @@ std::string gpt_random_prompt(std::mt19937 & rng) { case 7: return "He"; case 8: return "She"; case 9: return "They"; - default: return "To"; } - return "The"; + GGML_UNREACHABLE(); } // // Model utils // -struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params) { - auto lparams = llama_context_default_params(); +struct llama_model_params llama_model_params_from_gpt_params(const gpt_params & params) { + auto mparams = llama_model_default_params(); - lparams.n_ctx = params.n_ctx; - lparams.n_batch = params.n_batch; if (params.n_gpu_layers != -1) { - lparams.n_gpu_layers = params.n_gpu_layers; + mparams.n_gpu_layers = params.n_gpu_layers; } - lparams.main_gpu = params.main_gpu; - lparams.tensor_split = params.tensor_split; - lparams.low_vram = params.low_vram; - lparams.mul_mat_q = params.mul_mat_q; - lparams.seed = params.seed; - lparams.f16_kv = params.memory_f16; - lparams.use_mmap = params.use_mmap; - lparams.use_mlock = params.use_mlock; - lparams.logits_all = params.perplexity; - lparams.embedding = params.embedding; - lparams.rope_freq_base = params.rope_freq_base; - lparams.rope_freq_scale = params.rope_freq_scale; - - return lparams; + mparams.main_gpu = params.main_gpu; + mparams.tensor_split = params.tensor_split; + mparams.use_mmap = params.use_mmap; + mparams.use_mlock = params.use_mlock; + + return mparams; +} + +struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params) { + auto cparams = llama_context_default_params(); + + cparams.n_ctx = params.n_ctx; + cparams.n_batch = params.n_batch; + cparams.n_threads = params.n_threads; + cparams.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch; + cparams.mul_mat_q = params.mul_mat_q; + cparams.seed = params.seed; + cparams.f16_kv = params.memory_f16; + cparams.logits_all = params.logits_all; + cparams.embedding = params.embedding; + cparams.rope_freq_base = params.rope_freq_base; + cparams.rope_freq_scale = params.rope_freq_scale; + + return cparams; } std::tuple llama_init_from_gpt_params(gpt_params & params) { - auto lparams = llama_context_params_from_gpt_params(params); + auto mparams = llama_model_params_from_gpt_params(params); - llama_model * model = llama_load_model_from_file(params.model.c_str(), lparams); + llama_model * model = llama_load_model_from_file(params.model.c_str(), mparams); if (model == NULL) { fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, params.model.c_str()); return std::make_tuple(nullptr, nullptr); } - llama_context * lctx = llama_new_context_with_model(model, lparams); + auto cparams = llama_context_params_from_gpt_params(params); + + llama_context * lctx = llama_new_context_with_model(model, cparams); if (lctx == NULL) { fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, params.model.c_str()); llama_free_model(model); return std::make_tuple(nullptr, nullptr); } - if (!params.lora_adapter.empty()) { + for (unsigned int i = 0; i < params.lora_adapter.size(); ++i) { + const std::string& lora_adapter = std::get<0>(params.lora_adapter[i]); + float lora_scale = std::get<1>(params.lora_adapter[i]); int err = llama_model_apply_lora_from_file(model, - params.lora_adapter.c_str(), - params.lora_base.empty() ? NULL : params.lora_base.c_str(), + lora_adapter.c_str(), + lora_scale, + ((i > 0) || params.lora_base.empty()) + ? NULL + : params.lora_base.c_str(), params.n_threads); if (err != 0) { fprintf(stderr, "%s: error: failed to apply lora adapter\n", __func__); @@ -772,8 +839,9 @@ std::tuple llama_init_from_gpt_par { LOG("warming up the model with an empty run\n"); - const std::vector tmp = { llama_token_bos(lctx), llama_token_eos(lctx), }; - llama_eval(lctx, tmp.data(), std::min(tmp.size(), (size_t) params.n_batch), 0, params.n_threads); + std::vector tmp = { llama_token_bos(lctx), llama_token_eos(lctx), }; + llama_decode(lctx, llama_batch_get_one(tmp.data(), std::min(tmp.size(), (size_t) params.n_batch), 0, 0)); + llama_kv_cache_tokens_rm(lctx, -1, -1); llama_reset_timings(lctx); } @@ -785,16 +853,23 @@ std::tuple llama_init_from_gpt_par // std::vector llama_tokenize( - struct llama_context * ctx, + const struct llama_context * ctx, + const std::string & text, + bool add_bos) { + return llama_tokenize(llama_get_model(ctx), text, add_bos); +} + +std::vector llama_tokenize( + const struct llama_model * model, const std::string & text, bool add_bos) { // upper limit for the number of tokens int n_tokens = text.length() + add_bos; std::vector result(n_tokens); - n_tokens = llama_tokenize(ctx, text.c_str(), result.data(), result.size(), add_bos); + n_tokens = llama_tokenize(model, text.data(), text.length(), result.data(), result.size(), add_bos); if (n_tokens < 0) { result.resize(-n_tokens); - int check = llama_tokenize(ctx, text.c_str(), result.data(), result.size(), add_bos); + int check = llama_tokenize(model, text.data(), text.length(), result.data(), result.size(), add_bos); GGML_ASSERT(check == -n_tokens); } else { result.resize(n_tokens); @@ -804,10 +879,10 @@ std::vector llama_tokenize( std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token) { std::vector result(8, 0); - const int n_tokens = llama_token_to_piece(ctx, token, result.data(), result.size()); + const int n_tokens = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size()); if (n_tokens < 0) { result.resize(-n_tokens); - int check = llama_token_to_piece(ctx, token, result.data(), result.size()); + int check = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size()); GGML_ASSERT(check == -n_tokens); } else { result.resize(n_tokens); @@ -862,7 +937,7 @@ llama_token llama_sample_token( std::vector & candidates, int idx) { const int n_ctx = llama_n_ctx(ctx); - const int n_vocab = llama_n_vocab(ctx); + const int n_vocab = llama_n_vocab(llama_get_model(ctx)); const float temp = params.temp; const int32_t top_k = params.top_k <= 0 ? n_vocab : params.top_k; @@ -880,7 +955,7 @@ llama_token llama_sample_token( llama_token id = 0; - float * logits = llama_get_logits(ctx) + idx * n_vocab; + float * logits = llama_get_logits_ith(ctx, idx); // Apply params.logit_bias map for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++) { @@ -931,11 +1006,11 @@ llama_token llama_sample_token( if (mirostat == 1) { static float mirostat_mu = 2.0f * mirostat_tau; const int mirostat_m = 100; - llama_sample_temperature(ctx, &cur_p, temp); + llama_sample_temp(ctx, &cur_p, temp); id = llama_sample_token_mirostat(ctx, &cur_p, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu); } else if (mirostat == 2) { static float mirostat_mu = 2.0f * mirostat_tau; - llama_sample_temperature(ctx, &cur_p, temp); + llama_sample_temp(ctx, &cur_p, temp); id = llama_sample_token_mirostat_v2(ctx, &cur_p, mirostat_tau, mirostat_eta, &mirostat_mu); } else { // Temperature sampling @@ -943,7 +1018,7 @@ llama_token llama_sample_token( llama_sample_tail_free (ctx, &cur_p, tfs_z, 1); llama_sample_typical (ctx, &cur_p, typical_p, 1); llama_sample_top_p (ctx, &cur_p, top_p, 1); - llama_sample_temperature(ctx, &cur_p, temp); + llama_sample_temp(ctx, &cur_p, temp); { const int n_top = 10; @@ -1148,7 +1223,7 @@ void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const l #endif // NDEBUG fprintf(stream, "model_desc: %s\n", model_desc); - fprintf(stream, "n_vocab: %d # output size of the final layer, 32001 for some models\n", llama_n_vocab(lctx)); + fprintf(stream, "n_vocab: %d # output size of the final layer, 32001 for some models\n", llama_n_vocab(llama_get_model(lctx))); #ifdef __OPTIMIZE__ fprintf(stream, "optimize: true\n"); @@ -1172,7 +1247,6 @@ void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const l fprintf(stream, "color: %s # default: false\n", params.use_color ? "true" : "false"); fprintf(stream, "ctx_size: %d # default: 512\n", params.n_ctx); fprintf(stream, "escape: %s # default: false\n", params.escape ? "true" : "false"); - fprintf(stream, "export: %s # default: false\n", params.export_cgraph ? "true" : "false"); fprintf(stream, "file: # never logged, see prompt instead. Can still be specified for input.\n"); fprintf(stream, "frequency_penalty: %f # default: 0.0 \n", params.frequency_penalty); dump_string_yaml_multiline(stream, "grammar", params.grammar.c_str()); @@ -1201,9 +1275,21 @@ void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const l fprintf(stream, " %d: %f", lb.first, lb.second); } - fprintf(stream, "lora: %s\n", params.lora_adapter.c_str()); + fprintf(stream, "lora:\n"); + for (std::tuple la : params.lora_adapter) { + if (std::get<1>(la) != 1.0f) { + continue; + } + fprintf(stream, " - %s\n", std::get<0>(la).c_str()); + } + fprintf(stream, "lora_scaled:\n"); + for (std::tuple la : params.lora_adapter) { + if (std::get<1>(la) == 1.0f) { + continue; + } + fprintf(stream, " - %s: %f\n", std::get<0>(la).c_str(), std::get<1>(la)); + } fprintf(stream, "lora_base: %s\n", params.lora_base.c_str()); - fprintf(stream, "low_vram: %s # default: false\n", params.low_vram ? "true" : "false"); fprintf(stream, "main_gpu: %d # default: 0\n", params.main_gpu); fprintf(stream, "memory_f32: %s # default: false\n", !params.memory_f16 ? "true" : "false"); fprintf(stream, "mirostat: %d # default: 0 (disabled)\n", params.mirostat); @@ -1212,7 +1298,6 @@ void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const l fprintf(stream, "mlock: %s # default: false\n", params.use_mlock ? "true" : "false"); fprintf(stream, "model: %s # default: models/7B/ggml-model.bin\n", params.model.c_str()); fprintf(stream, "model_draft: %s # default:\n", params.model_draft.c_str()); - fprintf(stream, "mtest: %s # default: false\n", params.mem_test ? "true" : "false"); fprintf(stream, "multiline_input: %s # default: false\n", params.multiline_input ? "true" : "false"); fprintf(stream, "n_gpu_layers: %d # default: -1\n", params.n_gpu_layers); fprintf(stream, "n_predict: %d # default: -1 (unlimited)\n", params.n_predict); @@ -1247,6 +1332,7 @@ void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const l fprintf(stream, "rope_freq_scale: %f # default: 1.0\n", params.rope_freq_scale); fprintf(stream, "seed: %d # default: -1 (random seed)\n", params.seed); fprintf(stream, "simple_io: %s # default: false\n", params.simple_io ? "true" : "false"); + fprintf(stream, "cont_batching: %s # default: false\n", params.cont_batching ? "true" : "false"); fprintf(stream, "temp: %f # default: 0.8\n", params.temp); const std::vector tensor_split_vector(params.tensor_split, params.tensor_split + LLAMA_MAX_DEVICES); diff --git a/common/common.h b/common/common.h index 012bf5e136f21..0e2d3fa6c07d9 100644 --- a/common/common.h +++ b/common/common.h @@ -20,8 +20,13 @@ #define DIRECTORY_SEPARATOR '/' #endif // _WIN32 -#define die(msg) do { fputs("error: " msg "\n", stderr); exit(1); } while (0) -#define die_fmt(fmt, ...) do { fprintf(stderr, "error: " fmt "\n", ##__VA_ARGS__); exit(1); } while (0) +#define die(msg) do { fputs("error: " msg "\n", stderr); exit(1); } while (0) +#define die_fmt(fmt, ...) do { fprintf(stderr, "error: " fmt "\n", __VA_ARGS__); exit(1); } while (0) + +#define print_build_info() do { \ + fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT); \ + fprintf(stderr, "%s: built with %s for %s\n", __func__, BUILD_COMPILER, BUILD_TARGET); \ +} while(0) // // CLI argument parsing @@ -31,19 +36,23 @@ int32_t get_num_physical_cores(); struct gpt_params { uint32_t seed = -1; // RNG seed int32_t n_threads = get_num_physical_cores(); + int32_t n_threads_batch = -1; // number of threads to use for batch processing (-1 = use n_threads) int32_t n_predict = -1; // new tokens to predict int32_t n_ctx = 512; // context size int32_t n_batch = 512; // batch size for prompt processing (must be >=32 to use BLAS) int32_t n_keep = 0; // number of tokens to keep from initial prompt int32_t n_draft = 16; // number of tokens to draft during speculative decoding int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited) + int32_t n_parallel = 1; // number of parallel sequences to decode + int32_t n_sequences = 1; // number of sequences to decode int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default) + int32_t n_gpu_layers_draft = -1; // number of layers to store in VRAM for the draft model (-1 - use default) int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors float tensor_split[LLAMA_MAX_DEVICES] = {0}; // how split tensors should be distributed across GPUs int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens. int32_t n_beams = 0; // if non-zero then use beam search of given width. - float rope_freq_base = 10000.0f; // RoPE base frequency - float rope_freq_scale = 1.0f; // RoPE frequency scaling factor + float rope_freq_base = 0.0f; // RoPE base frequency + float rope_freq_scale = 0.0f; // RoPE frequency scaling factor // sampling parameters int32_t top_k = 40; // <= 0 to use vocab size @@ -77,8 +86,8 @@ struct gpt_params { std::vector antiprompt; // string upon seeing which more user input is prompted std::string logdir = ""; // directory in which to save YAML log files - std::string lora_adapter = ""; // lora adapter path - std::string lora_base = ""; // base model path for the lora adapter + std::vector> lora_adapter; // lora adapter path with user defined scale + std::string lora_base = ""; // base model path for the lora adapter int ppl_stride = 0; // stride for perplexity calculations. If left at 0, the pre-existing approach will be used. int ppl_output_type = 0; // = 0 -> ppl output is as usual, = 1 -> ppl output is num_tokens, ppl, one per line @@ -87,7 +96,6 @@ struct gpt_params { bool hellaswag = false; // compute HellaSwag score over random tasks from datafile supplied in prompt size_t hellaswag_tasks = 400; // number of tasks to use when computing the HellaSwag score - bool low_vram = false; // if true, reduce VRAM usage at the cost of performance bool mul_mat_q = true; // if true, use mul_mat_q kernels instead of cuBLAS bool memory_f16 = true; // use f16 instead of f32 for memory kv bool random_prompt = false; // do not randomize prompt if none provided @@ -101,17 +109,16 @@ struct gpt_params { bool interactive_first = false; // wait for user input immediately bool multiline_input = false; // reverse the usage of `\` bool simple_io = false; // improves compatibility with subprocesses and limited consoles + bool cont_batching = false; // insert new sequences for decoding on-the-fly bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix bool ignore_eos = false; // ignore generated EOS tokens bool instruct = false; // instruction mode (used for Alpaca models) bool penalize_nl = true; // consider newlines as a repeatable token - bool perplexity = false; // compute perplexity over the prompt + bool logits_all = false; // return logits for all tokens in the batch bool use_mmap = true; // use mmap for faster loads bool use_mlock = false; // use mlock to keep model in memory - bool mem_test = false; // compute maximum memory usage bool numa = false; // attempt optimizations that help on some NUMA systems - bool export_cgraph = false; // export the computation graph bool verbose_prompt = false; // print prompt tokens before generation }; @@ -119,13 +126,18 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params); void gpt_print_usage(int argc, char ** argv, const gpt_params & params); +std::string get_system_info(const gpt_params & params); + std::string gpt_random_prompt(std::mt19937 & rng); +void process_escapes(std::string& input); + // // Model utils // std::tuple llama_init_from_gpt_params(gpt_params & params); +struct llama_model_params llama_model_params_from_gpt_params(const gpt_params & params); struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params); // @@ -135,7 +147,12 @@ struct llama_context_params llama_context_params_from_gpt_params(const gpt_param // tokenizes a string into a vector of tokens // should work similar to Python's `tokenizer.encode` std::vector llama_tokenize( - struct llama_context * ctx, + const struct llama_context * ctx, + const std::string & text, + bool add_bos); + +std::vector llama_tokenize( + const struct llama_model * model, const std::string & text, bool add_bos); @@ -176,7 +193,7 @@ std::string llama_detokenize_bpe( // - ctx_guidance: context to use for classifier-free guidance, ignore if NULL // - grammar: grammar to use for sampling, ignore if NULL // - last_tokens: needed for repetition penalty, ignore if empty -// - idx: sample from llama_get_logits(ctx) + idx * n_vocab +// - idx: sample from llama_get_logits_ith(ctx, idx) // // returns: // - token: sampled token diff --git a/common/console.cpp b/common/console.cpp index 23545e5be84dc..f65cbc6eda0b1 100644 --- a/common/console.cpp +++ b/common/console.cpp @@ -158,7 +158,7 @@ namespace console { } } - char32_t getchar32() { + static char32_t getchar32() { #if defined(_WIN32) HANDLE hConsole = GetStdHandle(STD_INPUT_HANDLE); wchar_t high_surrogate = 0; @@ -212,7 +212,7 @@ namespace console { #endif } - void pop_cursor() { + static void pop_cursor() { #if defined(_WIN32) if (hConsole != NULL) { CONSOLE_SCREEN_BUFFER_INFO bufferInfo; @@ -233,7 +233,7 @@ namespace console { putc('\b', out); } - int estimateWidth(char32_t codepoint) { + static int estimateWidth(char32_t codepoint) { #if defined(_WIN32) (void)codepoint; return 1; @@ -242,7 +242,7 @@ namespace console { #endif } - int put_codepoint(const char* utf8_codepoint, size_t length, int expectedWidth) { + static int put_codepoint(const char* utf8_codepoint, size_t length, int expectedWidth) { #if defined(_WIN32) CONSOLE_SCREEN_BUFFER_INFO bufferInfo; if (!GetConsoleScreenBufferInfo(hConsole, &bufferInfo)) { @@ -303,7 +303,7 @@ namespace console { #endif } - void replace_last(char ch) { + static void replace_last(char ch) { #if defined(_WIN32) pop_cursor(); put_codepoint(&ch, 1, 1); @@ -312,7 +312,7 @@ namespace console { #endif } - void append_utf8(char32_t ch, std::string & out) { + static void append_utf8(char32_t ch, std::string & out) { if (ch <= 0x7F) { out.push_back(static_cast(ch)); } else if (ch <= 0x7FF) { @@ -333,7 +333,7 @@ namespace console { } // Helper function to remove the last UTF-8 character from a string - void pop_back_utf8_char(std::string & line) { + static void pop_back_utf8_char(std::string & line) { if (line.empty()) { return; } @@ -349,7 +349,7 @@ namespace console { line.erase(pos); } - bool readline_advanced(std::string & line, bool multiline_input) { + static bool readline_advanced(std::string & line, bool multiline_input) { if (out != stdout) { fflush(stdout); } @@ -452,7 +452,7 @@ namespace console { return has_more; } - bool readline_simple(std::string & line, bool multiline_input) { + static bool readline_simple(std::string & line, bool multiline_input) { #if defined(_WIN32) std::wstring wline; if (!std::getline(std::wcin, wline)) { diff --git a/common/grammar-parser.cpp b/common/grammar-parser.cpp index 177d1e3a83480..5a545a8076460 100644 --- a/common/grammar-parser.cpp +++ b/common/grammar-parser.cpp @@ -9,7 +9,7 @@ namespace grammar_parser { // NOTE: assumes valid utf8 (but checks for overrun) // copied from llama.cpp - std::pair decode_utf8(const char * src) { + static std::pair decode_utf8(const char * src) { static const int lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 }; uint8_t first_byte = static_cast(*src); uint8_t highbits = first_byte >> 4; @@ -24,19 +24,19 @@ namespace grammar_parser { return std::make_pair(value, pos); } - uint32_t get_symbol_id(parse_state & state, const char * src, size_t len) { + static uint32_t get_symbol_id(parse_state & state, const char * src, size_t len) { uint32_t next_id = static_cast(state.symbol_ids.size()); auto result = state.symbol_ids.insert(std::make_pair(std::string(src, len), next_id)); return result.first->second; } - uint32_t generate_symbol_id(parse_state & state, const std::string & base_name) { + static uint32_t generate_symbol_id(parse_state & state, const std::string & base_name) { uint32_t next_id = static_cast(state.symbol_ids.size()); state.symbol_ids[base_name + '_' + std::to_string(next_id)] = next_id; return next_id; } - void add_rule( + static void add_rule( parse_state & state, uint32_t rule_id, const std::vector & rule) { @@ -46,11 +46,11 @@ namespace grammar_parser { state.rules[rule_id] = rule; } - bool is_word_char(char c) { + static bool is_word_char(char c) { return ('a' <= c && c <= 'z') || ('A' <= c && c <= 'Z') || c == '-' || ('0' <= c && c <= '9'); } - std::pair parse_hex(const char * src, int size) { + static std::pair parse_hex(const char * src, int size) { const char * pos = src; const char * end = src + size; uint32_t value = 0; @@ -73,7 +73,7 @@ namespace grammar_parser { return std::make_pair(value, pos); } - const char * parse_space(const char * src, bool newline_ok) { + static const char * parse_space(const char * src, bool newline_ok) { const char * pos = src; while (*pos == ' ' || *pos == '\t' || *pos == '#' || (newline_ok && (*pos == '\r' || *pos == '\n'))) { @@ -88,7 +88,7 @@ namespace grammar_parser { return pos; } - const char * parse_name(const char * src) { + static const char * parse_name(const char * src) { const char * pos = src; while (is_word_char(*pos)) { pos++; @@ -99,7 +99,7 @@ namespace grammar_parser { return pos; } - std::pair parse_char(const char * src) { + static std::pair parse_char(const char * src) { if (*src == '\\') { switch (src[1]) { case 'x': return parse_hex(src + 2, 2); @@ -129,7 +129,7 @@ namespace grammar_parser { uint32_t rule_id, bool is_nested); - const char * parse_sequence( + static const char * parse_sequence( parse_state & state, const char * src, const std::string & rule_name, @@ -247,7 +247,7 @@ namespace grammar_parser { return pos; } - const char * parse_rule(parse_state & state, const char * src) { + static const char * parse_rule(parse_state & state, const char * src) { const char * name_end = parse_name(src); const char * pos = parse_space(name_end, false); size_t name_len = name_end - src; @@ -285,7 +285,7 @@ namespace grammar_parser { } } - void print_grammar_char(FILE * file, uint32_t c) { + static void print_grammar_char(FILE * file, uint32_t c) { if (0x20 <= c && c <= 0x7f) { fprintf(file, "%c", static_cast(c)); } else { @@ -294,7 +294,7 @@ namespace grammar_parser { } } - bool is_char_element(llama_grammar_element elem) { + static bool is_char_element(llama_grammar_element elem) { switch (elem.type) { case LLAMA_GRETYPE_CHAR: return true; case LLAMA_GRETYPE_CHAR_NOT: return true; @@ -304,7 +304,7 @@ namespace grammar_parser { } } - void print_rule_binary(FILE * file, const std::vector & rule) { + static void print_rule_binary(FILE * file, const std::vector & rule) { for (auto elem : rule) { switch (elem.type) { case LLAMA_GRETYPE_END: fprintf(file, "END"); break; @@ -334,7 +334,7 @@ namespace grammar_parser { fprintf(file, "\n"); } - void print_rule( + static void print_rule( FILE * file, uint32_t rule_id, const std::vector & rule, diff --git a/common/log.h b/common/log.h index 18f3b9761a788..b8953fdcadae4 100644 --- a/common/log.h +++ b/common/log.h @@ -225,31 +225,31 @@ enum LogTriState // USE LOG() INSTEAD // #ifndef _MSC_VER - #define LOG_IMPL(str, ...) \ - { \ + #define LOG_IMPL(str, ...) \ + do { \ if (LOG_TARGET != nullptr) \ { \ fprintf(LOG_TARGET, LOG_TIMESTAMP_FMT LOG_FLF_FMT str "%s" LOG_TIMESTAMP_VAL LOG_FLF_VAL, __VA_ARGS__); \ fflush(LOG_TARGET); \ } \ - } + } while (0) #else - #define LOG_IMPL(str, ...) \ - { \ + #define LOG_IMPL(str, ...) \ + do { \ if (LOG_TARGET != nullptr) \ { \ fprintf(LOG_TARGET, LOG_TIMESTAMP_FMT LOG_FLF_FMT str "%s" LOG_TIMESTAMP_VAL LOG_FLF_VAL "", ##__VA_ARGS__); \ fflush(LOG_TARGET); \ } \ - } + } while (0) #endif // INTERNAL, DO NOT USE // USE LOG_TEE() INSTEAD // #ifndef _MSC_VER - #define LOG_TEE_IMPL(str, ...) \ - { \ + #define LOG_TEE_IMPL(str, ...) \ + do { \ if (LOG_TARGET != nullptr) \ { \ fprintf(LOG_TARGET, LOG_TIMESTAMP_FMT LOG_FLF_FMT str "%s" LOG_TIMESTAMP_VAL LOG_FLF_VAL, __VA_ARGS__); \ @@ -260,10 +260,10 @@ enum LogTriState fprintf(LOG_TEE_TARGET, LOG_TEE_TIMESTAMP_FMT LOG_TEE_FLF_FMT str "%s" LOG_TEE_TIMESTAMP_VAL LOG_TEE_FLF_VAL, __VA_ARGS__); \ fflush(LOG_TEE_TARGET); \ } \ - } + } while (0) #else - #define LOG_TEE_IMPL(str, ...) \ - { \ + #define LOG_TEE_IMPL(str, ...) \ + do { \ if (LOG_TARGET != nullptr) \ { \ fprintf(LOG_TARGET, LOG_TIMESTAMP_FMT LOG_FLF_FMT str "%s" LOG_TIMESTAMP_VAL LOG_FLF_VAL "", ##__VA_ARGS__); \ @@ -274,7 +274,7 @@ enum LogTriState fprintf(LOG_TEE_TARGET, LOG_TEE_TIMESTAMP_FMT LOG_TEE_FLF_FMT str "%s" LOG_TEE_TIMESTAMP_VAL LOG_TEE_FLF_VAL "", ##__VA_ARGS__); \ fflush(LOG_TEE_TARGET); \ } \ - } + } while (0) #endif // The '\0' as a last argument, is a trick to bypass the silly @@ -435,41 +435,41 @@ inline FILE *log_handler() { return log_handler1_impl(); } inline void log_test() { log_disable(); - LOG("01 Hello World to nobody, because logs are disabled!\n") + LOG("01 Hello World to nobody, because logs are disabled!\n"); log_enable(); - LOG("02 Hello World to default output, which is \"%s\" ( Yaaay, arguments! )!\n", LOG_STRINGIZE(LOG_TARGET)) - LOG_TEE("03 Hello World to **both** default output and " LOG_TEE_TARGET_STRING "!\n") + LOG("02 Hello World to default output, which is \"%s\" ( Yaaay, arguments! )!\n", LOG_STRINGIZE(LOG_TARGET)); + LOG_TEE("03 Hello World to **both** default output and " LOG_TEE_TARGET_STRING "!\n"); log_set_target(stderr); - LOG("04 Hello World to stderr!\n") - LOG_TEE("05 Hello World TEE with double printing to stderr prevented!\n") + LOG("04 Hello World to stderr!\n"); + LOG_TEE("05 Hello World TEE with double printing to stderr prevented!\n"); log_set_target(LOG_DEFAULT_FILE_NAME); - LOG("06 Hello World to default log file!\n") + LOG("06 Hello World to default log file!\n"); log_set_target(stdout); - LOG("07 Hello World to stdout!\n") + LOG("07 Hello World to stdout!\n"); log_set_target(LOG_DEFAULT_FILE_NAME); - LOG("08 Hello World to default log file again!\n") + LOG("08 Hello World to default log file again!\n"); log_disable(); - LOG("09 Hello World _1_ into the void!\n") + LOG("09 Hello World _1_ into the void!\n"); log_enable(); - LOG("10 Hello World back from the void ( you should not see _1_ in the log or the output )!\n") + LOG("10 Hello World back from the void ( you should not see _1_ in the log or the output )!\n"); log_disable(); log_set_target("llama.anotherlog.log"); - LOG("11 Hello World _2_ to nobody, new target was selected but logs are still disabled!\n") + LOG("11 Hello World _2_ to nobody, new target was selected but logs are still disabled!\n"); log_enable(); - LOG("12 Hello World this time in a new file ( you should not see _2_ in the log or the output )?\n") + LOG("12 Hello World this time in a new file ( you should not see _2_ in the log or the output )?\n"); log_set_target("llama.yetanotherlog.log"); - LOG("13 Hello World this time in yet new file?\n") + LOG("13 Hello World this time in yet new file?\n"); log_set_target(log_filename_generator("llama_autonamed", "log")); - LOG("14 Hello World in log with generated filename!\n") + LOG("14 Hello World in log with generated filename!\n"); #ifdef _MSC_VER - LOG_TEE("15 Hello msvc TEE without arguments\n") - LOG_TEE("16 Hello msvc TEE with (%d)(%s) arguments\n", 1, "test") - LOG_TEELN("17 Hello msvc TEELN without arguments\n") - LOG_TEELN("18 Hello msvc TEELN with (%d)(%s) arguments\n", 1, "test") - LOG("19 Hello msvc LOG without arguments\n") - LOG("20 Hello msvc LOG with (%d)(%s) arguments\n", 1, "test") - LOGLN("21 Hello msvc LOGLN without arguments\n") - LOGLN("22 Hello msvc LOGLN with (%d)(%s) arguments\n", 1, "test") + LOG_TEE("15 Hello msvc TEE without arguments\n"); + LOG_TEE("16 Hello msvc TEE with (%d)(%s) arguments\n", 1, "test"); + LOG_TEELN("17 Hello msvc TEELN without arguments\n"); + LOG_TEELN("18 Hello msvc TEELN with (%d)(%s) arguments\n", 1, "test"); + LOG("19 Hello msvc LOG without arguments\n"); + LOG("20 Hello msvc LOG with (%d)(%s) arguments\n", 1, "test"); + LOGLN("21 Hello msvc LOGLN without arguments\n"); + LOGLN("22 Hello msvc LOGLN with (%d)(%s) arguments\n", 1, "test"); #endif } @@ -542,7 +542,7 @@ inline void log_dump_cmdline_impl(int argc, char **argv) buf << " " << argv[i]; } } - LOGLN("Cmd:%s", buf.str().c_str()) + LOGLN("Cmd:%s", buf.str().c_str()); } #define log_tostr(var) log_var_to_string_impl(var).c_str() @@ -620,10 +620,10 @@ inline std::string log_var_to_string_impl(const std::vector & var) #define LOGLN(...) // dummy stub #undef LOG_TEE -#define LOG_TEE(...) fprintf(stderr, __VA_ARGS__); // convert to normal fprintf +#define LOG_TEE(...) fprintf(stderr, __VA_ARGS__) // convert to normal fprintf #undef LOG_TEELN -#define LOG_TEELN(...) fprintf(stderr, __VA_ARGS__); // convert to normal fprintf +#define LOG_TEELN(...) fprintf(stderr, __VA_ARGS__) // convert to normal fprintf #undef LOG_DISABLE #define LOG_DISABLE() // dummy stub diff --git a/common/train.cpp b/common/train.cpp new file mode 100644 index 0000000000000..35a4cf9e6cae3 --- /dev/null +++ b/common/train.cpp @@ -0,0 +1,1496 @@ +#include "train.h" +#include "common.h" + +#include +#include +#include + +struct random_normal_distribution { + std::mt19937 gen; + std::normal_distribution rd; + float min; + float max; +}; + +struct random_uniform_distribution { + std::mt19937 gen; + std::uniform_real_distribution rd; +}; + +struct train_state * init_train_state() { + struct train_state * state = new struct train_state; + state->train_its = 0; + state->train_samples = 0; + state->train_tokens = 0; + state->train_epochs = 0; + state->shuffle_samples_hash = 0; + state->shuffle_sample_count = 0; + state->shuffle_next_sample = 0; + state->shuffle_rng_state_current = ""; + state->shuffle_rng_state_next = ""; + + state->opt = new struct ggml_opt_context; + state->opt->ctx = NULL; + state->opt->params = ggml_opt_default_params(GGML_OPT_ADAM); + state->opt->loss_after = 0.0f; + + return state; +} + +void free_train_state(struct train_state * state) { + delete state->opt; + delete state; +} + +struct random_normal_distribution * init_random_normal_distribution( + int seed, float mean, float std, float min, float max +) { + struct random_normal_distribution * rnd = (struct random_normal_distribution *) malloc(sizeof(struct random_normal_distribution)); + rnd->gen = std::mt19937(seed); + rnd->rd = std::normal_distribution{mean, std}; + rnd->min = min; + rnd->max = max; + return rnd; +} + +struct random_uniform_distribution * init_random_uniform_distribution(int seed, float min, float max) { + struct random_uniform_distribution * rnd = (struct random_uniform_distribution *) malloc(sizeof(struct random_uniform_distribution)); + rnd->gen = std::mt19937(seed); + rnd->rd = std::uniform_real_distribution{min, max}; + return rnd; +} + +void free_random_normal_distribution (struct random_normal_distribution * rnd) { + free(rnd); +} + +void free_random_uniform_distribution(struct random_uniform_distribution * rnd) { + free(rnd); +} + +struct ggml_tensor * randomize_tensor_normal(struct ggml_tensor * tensor, struct random_normal_distribution * rnd) { + float scale = 1.0f; // xavier + switch (tensor->n_dims) { + case 1: + scale /= sqrtf((float) tensor->ne[0]); + for (int i0 = 0; i0 < tensor->ne[0]; i0++) { + float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0]); + *dst = scale * frand_normal(rnd); + } + break; + case 2: + scale /= sqrtf((float) tensor->ne[0]+tensor->ne[1]); + for (int i1 = 0; i1 < tensor->ne[1]; i1++) { + for (int i0 = 0; i0 < tensor->ne[0]; i0++) { + float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]); + *dst = scale * frand_normal(rnd); + } + } + break; + case 3: + scale /= sqrtf((float) tensor->ne[0]+tensor->ne[1]); + for (int i2 = 0; i2 < tensor->ne[2]; i2++) { + for (int i1 = 0; i1 < tensor->ne[1]; i1++) { + for (int i0 = 0; i0 < tensor->ne[0]; i0++) { + float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2]); + *dst = scale * frand_normal(rnd); + } + } + } + break; + case 4: + scale /= sqrtf((float) tensor->ne[0]+tensor->ne[1]); + for (int i3 = 0; i3 < tensor->ne[3]; i3++) { + for (int i2 = 0; i2 < tensor->ne[2]; i2++) { + for (int i1 = 0; i1 < tensor->ne[1]; i1++) { + for (int i0 = 0; i0 < tensor->ne[0]; i0++) { + float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3]); + *dst = scale * frand_normal(rnd); + } + } + } + } + break; + default: + die("Unsupported tensor->n_dims"); + }; + return tensor; +} + +struct ggml_tensor * randomize_tensor_uniform(struct ggml_tensor * tensor, struct random_uniform_distribution * rnd) { + switch (tensor->n_dims) { + case 1: + for (int i0 = 0; i0 < tensor->ne[0]; i0++) { + float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0]); + *dst = frand_uniform(rnd); + } + break; + case 2: + for (int i1 = 0; i1 < tensor->ne[1]; i1++) { + for (int i0 = 0; i0 < tensor->ne[0]; i0++) { + float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]); + *dst = frand_uniform(rnd); + } + } + break; + case 3: + for (int i2 = 0; i2 < tensor->ne[2]; i2++) { + for (int i1 = 0; i1 < tensor->ne[1]; i1++) { + for (int i0 = 0; i0 < tensor->ne[0]; i0++) { + float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2]); + *dst = frand_uniform(rnd); + } + } + } + break; + case 4: + for (int i3 = 0; i3 < tensor->ne[3]; i3++) { + for (int i2 = 0; i2 < tensor->ne[2]; i2++) { + for (int i1 = 0; i1 < tensor->ne[1]; i1++) { + for (int i0 = 0; i0 < tensor->ne[0]; i0++) { + float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3]); + *dst = frand_uniform(rnd); + } + } + } + } + break; + default: + die("Unsupported tensor->n_dims"); + }; + return tensor; +} + +float frand() { + return (float)rand()/((float)(RAND_MAX) + 1.0f); +} + +float frand_normal(struct random_normal_distribution * rnd) { + return fclamp(rnd->rd(rnd->gen), rnd->min, rnd->max); +} + +float frand_uniform(struct random_uniform_distribution * rnd) { + return rnd->rd(rnd->gen); +} + +int clamp(const int v, const int min, const int max) { + return ((v < min) ? (min) : (v > max) ? (max) : v); +} + +float fclamp(const float v, const float min, const float max) { + return ((v < min) ? (min) : (v > max) ? (max) : v); +} + +void assert_shape_1d(struct ggml_tensor * tensor, int64_t ne0) { + GGML_ASSERT(tensor->n_dims == 1); + GGML_ASSERT(tensor->ne[0] == ne0); +} + +void assert_shape_2d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1) { + GGML_ASSERT(tensor->n_dims == 2); + GGML_ASSERT(tensor->ne[0] == ne0); + GGML_ASSERT(tensor->ne[1] == ne1); +} + +void assert_shape_3d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1, int64_t ne2) { + GGML_ASSERT(tensor->n_dims == 3); + GGML_ASSERT(tensor->ne[0] == ne0); + GGML_ASSERT(tensor->ne[1] == ne1); + GGML_ASSERT(tensor->ne[2] == ne2); +} + +void assert_shape_4d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) { + GGML_ASSERT(tensor->n_dims == 4); + GGML_ASSERT(tensor->ne[0] == ne0); + GGML_ASSERT(tensor->ne[1] == ne1); + GGML_ASSERT(tensor->ne[2] == ne2); + GGML_ASSERT(tensor->ne[3] == ne3); +} + +int64_t get_example_targets_batch( + struct llama_context * lctx, + struct ggml_tensor * tokens_input, + struct ggml_tensor * target_probs, + int64_t example_id, + const size_t * samples_offs, + const size_t * samples_begin, + const size_t * samples_size, + size_t samples_count, + const llama_token * train_data, + size_t n_train_data, + bool separate_with_eos, + bool separate_with_bos, + bool fill_with_next_samples, + bool sample_random_offsets +) { + GGML_ASSERT(samples_count > 0); + GGML_ASSERT(tokens_input->n_dims == 2); + GGML_ASSERT(target_probs->n_dims == 3); + int64_t n_vocab = target_probs->ne[0]; + int64_t n_tokens = tokens_input->ne[0]; + int64_t n_batch = tokens_input->ne[1]; + GGML_ASSERT(n_vocab == target_probs->ne[0]); + GGML_ASSERT(n_tokens == target_probs->ne[1]); + GGML_ASSERT(n_batch == target_probs->ne[2]); + + int64_t used_samples = 0; + + ggml_set_f32(target_probs, 0.0f); + llama_token bos = llama_token_bos(lctx); + llama_token eos = llama_token_eos(lctx); + // printf("%s: example_id=%d n_batch=%d n_train_samples=%zu\n", __func__, example_id, n_batch, n_train_samples); + for (int k=0; k= sample_size && fill_with_next_samples) { + if (!sample_separation_eos) { + // insert eos token to separate samples + sample_separation_eos = true; + } else if (!sample_separation_bos) { + // insert bos token to separate samples + sample_separation_bos = true; + token = bos; + } else { + // sample separation is done, continue with next sample + sample_separation_eos = !separate_with_eos; + sample_separation_bos = !separate_with_bos; + sample_offs = 0; + sample_idx = (example_id + used_samples) % samples_count; + sample_begin = samples_begin[sample_idx]; + sample_size = samples_size[sample_idx]; + ++used_samples; + } + } + // note: no else-if here + if (sample_offs < sample_size) { + token = clamp(train_data[sample_begin+sample_offs], 0, (llama_token) (n_vocab - 1)); + ++sample_offs; + } + ggml_set_f32_nd(target_probs, token, (int) i, (int) k, 0, +1.0f); + if (i+1> rng; +} + +std::string mt19937_get_state(const std::mt19937& rng) { + std::stringstream s_rng_state; + s_rng_state.imbue(std::locale::classic()); + s_rng_state << rng; + return s_rng_state.str(); +} + +std::string mt19937_seed_to_state(unsigned seed) { + std::mt19937 rng(seed); + return mt19937_get_state(rng); +} + +std::string shuffle_samples( + const std::string & rng_state, + size_t * shuffled_offs, + size_t * shuffled_begins, + size_t * shuffled_sizes, + const size_t * begins, + const size_t * sizes, + size_t count) { + if (count == 0) return rng_state; + + std::mt19937 rng; + mt19937_set_state(rng, rng_state); + + // sort indices by random value for each index + std::vector idcs; + { + std::vector rnd; + idcs.resize(count); + rnd.resize(count); + for (unsigned i=0; i h_string; + std::hash h_ull; + size_t h = h_string(std::string(fn)); + h = hash_combine(h, h_ull((unsigned long long) sample_count)); + for (size_t i=0; i< sample_count; ++i) { + h = hash_combine(h, h_ull((unsigned long long) samples_begin[i])); + h = hash_combine(h, h_ull((unsigned long long) samples_size[i])); + } + return h; +} + +std::string replace_str(const char * s, const char * needle, const char * replacement) { + std::string str = s; + size_t pos = str.find(needle); + if (pos != std::string::npos) { + str.replace(pos, strlen(needle), replacement); + } + return str; +} + +void print_duration(double fmillis) { + if (fmillis < 1000.0f) { + printf("%.1fms", (float) fmillis); + return; + } + const int64_t one_sec = 1000; + const int64_t one_min = one_sec * 60; + const int64_t one_hour = one_min * 60; + const int64_t one_day = one_hour * 24; + + int64_t millis = (int64_t) fmillis; + int64_t days = millis/one_day; + int64_t hours = (millis - days*one_day)/one_hour; + int64_t minutes = (millis - days*one_day - hours*one_hour)/one_min; + int64_t seconds = (millis - days*one_day - hours*one_hour - minutes*one_min)/one_sec; + + // to print int64_t either cast to (long long int) or use macro PRId64 from + if (days > 0) { + printf("%lldd ", (long long int) days); + } + printf("%02lld:%02lld:%02lld", (long long int) hours, (long long int) minutes, (long long int) seconds); +} + +float cosine_decay(int64_t step, int64_t decay_steps, float minimum) { + if (step > decay_steps) { + step = decay_steps; + } + const float cosine_decay = 0.50f*(1.0f + cosf(3.14159265359f*step/decay_steps)); + const float decay = (1 - minimum)*cosine_decay + minimum; + return decay; +} + +float cosine_decay_restart(int64_t step, int64_t decay_steps, float minimum, float restart_step_mult) { + while (step > decay_steps) { + step -= decay_steps; + decay_steps = (int64_t) (restart_step_mult * decay_steps); + } + return cosine_decay(step, decay_steps, minimum); +} + +float learning_schedule( + int64_t step, + int64_t warmup_steps, + int64_t cos_decay_steps, + float learning_rate, + float overall_minimum, + float cos_decay_minimum, + float cos_decay_restart_step_mult, + bool enable_restart) { + + float result = + (step < warmup_steps) + ? (float) step / (float) warmup_steps + : enable_restart + ? cosine_decay_restart( + step - warmup_steps, + cos_decay_steps, + cos_decay_minimum, + cos_decay_restart_step_mult) + : cosine_decay( + step, + cos_decay_steps, + cos_decay_minimum); + + float min = overall_minimum / learning_rate; + result = min + result * (1.0f - min); + return result; +} + +static bool are_same_layout(struct ggml_tensor * a, struct ggml_tensor * b) { + GGML_ASSERT(a != NULL); + GGML_ASSERT(b != NULL); + GGML_ASSERT(a->type == b->type); + GGML_ASSERT(ggml_are_same_shape(a, b)); + GGML_ASSERT(ggml_is_contiguous(a) && ggml_is_contiguous(b)); + + return true; +} + +void copy_tensor_by_name(struct ggml_tensor * dst, struct ggml_context * ctx, const char * name) { + if (dst == NULL) { + return; + } + struct ggml_tensor * t = ggml_get_tensor(ctx, name); + GGML_ASSERT(are_same_layout(dst, t)); + memcpy(dst->data, t->data, ggml_nbytes(t)); + + if (strlen(ggml_get_name(dst)) == 0) { + ggml_set_name(dst, name); + } +} + +// gguf constants +static const char * LLM_KV_OPTIMIZER_TYPE = "optimizer.type"; +static const char * LLM_KV_OPTIMIZER_TYPE_ADAM = "adam"; +static const char * LLM_KV_OPTIMIZER_TYPE_LBFGS = "lbfgs"; +static const char * LLM_KV_OPTIMIZER_FILE_VERSION = "optimizer.file_version"; +static const char * LLM_KV_OPTIMIZER_CONVERGENCE_PAST_COUNT = "optimizer.convergence_past_count"; +static const char * LLM_KV_OPTIMIZER_PARAMETER_COUNT = "optimizer.parameter_count"; +static const char * LLM_KV_OPTIMIZER_ITERATION_COUNT = "optimizer.iteration_count"; +static const char * LLM_KV_OPTIMIZER_JUST_INITIALIZED = "optimizer.just_initialized"; +static const char * LLM_KV_OPTIMIZER_ADAM_BEST_LOSS = "optimizer.adam.best_loss"; +static const char * LLM_KV_OPTIMIZER_ADAM_PREVIOUS_LOSS = "optimizer.adam.previous_loss"; +static const char * LLM_KV_OPTIMIZER_ADAM_NO_IMPROVEMENT_COUNT = "optimizer.adam.no_improvement_count"; +static const char * LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT = "optimizer.lbfgs.approx_hessian_count"; +static const char * LLM_KV_OPTIMIZER_LBFGS_BEST_LOSS = "optimizer.lbfgs.best_loss"; +static const char * LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_STEP = "optimizer.lbfgs.line_search_step"; +static const char * LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_J = "optimizer.lbfgs.line_search_j"; +static const char * LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_K = "optimizer.lbfgs.line_search_k"; +static const char * LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_END = "optimizer.lbfgs.line_search_end"; +static const char * LLM_KV_OPTIMIZER_LBFGS_NO_IMPROVEMENT_COUNT = "optimizer.lbfgs.no_improvement_count"; + +static const char * LLM_TENSOR_OPTIMIZER_ADAM_FIRST_MOMENTS = "optimizer.adam.first_moments"; +static const char * LLM_TENSOR_OPTIMIZER_ADAM_SECOND_MOMENTS = "optimizer.adam.second_moments"; +static const char * LLM_TENSOR_OPTIMIZER_ADAM_PAST_LOSS_VALUES = "optimizer.adam.past_loss_values"; + +static const char * LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_PARAMETERS = "optimizer.lbfgs.current_parameters"; +static const char * LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_PARAMETERS = "optimizer.lbfgs.previous_parameters"; +static const char * LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_GRADIENTS = "optimizer.lbfgs.current_gradients"; +static const char * LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_GRADIENTS = "optimizer.lbfgs.previous_gradients"; +static const char * LLM_TENSOR_OPTIMIZER_LBFGS_SEARCH_DIRECTION = "optimizer.lbfgs.search_direction"; +static const char * LLM_TENSOR_OPTIMIZER_LBFGS_PAST_LOSS_VALUES = "optimizer.lbfgs.past_loss_values"; +static const char * LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_ALPHA = "optimizer.lbfgs.memory_alpha"; +static const char * LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_YS = "optimizer.lbfgs.memory_ys"; +static const char * LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_S = "optimizer.lbfgs.memory_s"; +static const char * LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_Y = "optimizer.lbfgs.memory_y"; + +static const char * LLM_KV_TRAINING_FILE_VERSION = "training.file_version"; +static const char * LLM_KV_TRAINING_ITERATION_COUNT = "training.iteration_count"; +static const char * LLM_KV_TRAINING_SAMPLE_COUNT = "training.sample_count"; +static const char * LLM_KV_TRAINING_TOKEN_COUNT = "training.token_count"; +static const char * LLM_KV_TRAINING_EPOCH_COUNT = "training.epoch_count"; +static const char * LLM_KV_TRAINING_SHUFFLE_SAMPLES_HASH = "training.shuffle.samples_hash"; +static const char * LLM_KV_TRAINING_SHUFFLE_RNG_STATE = "training.shuffle.rng_state"; +static const char * LLM_KV_TRAINING_SHUFFLE_SAMPLE_COUNT = "training.shuffle.sample_count"; +static const char * LLM_KV_TRAINING_SHUFFLE_NEXT_SAMPLE = "training.shuffle.next_sample"; + +#define GGUF_GET_KEY(ctx, dst, func, type, req, key) \ +{ \ + const std::string skey(key); \ + const int kid = gguf_find_key(ctx, skey.c_str()); \ + if (kid >= 0) { \ + enum gguf_type ktype = gguf_get_kv_type(ctx, kid); \ + if (ktype != (type)) { \ + die_fmt("key %s has wrong type: %s", skey.c_str(), gguf_type_name(ktype)); \ + } \ + (dst) = func(ctx, kid); \ + } else if (req) { \ + die_fmt("key not found in model: %s", skey.c_str()); \ + } \ +} + +void load_opt_context_gguf(struct gguf_context * fctx, struct ggml_context * f_ggml_ctx, struct ggml_opt_context * opt) { + // NOTE: gguf_context must be initialized with f_ggml_ctx and no_alloc=false, otherwise tensor data can not be read + + uint32_t file_version; + GGUF_GET_KEY(fctx, file_version, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_OPTIMIZER_FILE_VERSION); + GGML_ASSERT(file_version == 0); + + GGUF_GET_KEY(fctx, opt->params.past, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_OPTIMIZER_CONVERGENCE_PAST_COUNT); + GGUF_GET_KEY(fctx, opt->iter, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_OPTIMIZER_ITERATION_COUNT); + GGUF_GET_KEY(fctx, opt->just_initialized, gguf_get_val_bool, GGUF_TYPE_BOOL, true, LLM_KV_OPTIMIZER_JUST_INITIALIZED); + + uint64_t nx; + GGUF_GET_KEY(fctx, nx, gguf_get_val_u64, GGUF_TYPE_UINT64, true, LLM_KV_OPTIMIZER_PARAMETER_COUNT); + opt->nx = (size_t) nx; + + // don't call ggml_opt_init until optimizer type and optimizer specific parameters are know + + std::string opt_type; + GGUF_GET_KEY(fctx, opt_type, gguf_get_val_str, GGUF_TYPE_STRING, true, LLM_KV_OPTIMIZER_TYPE); + if (opt_type == LLM_KV_OPTIMIZER_TYPE_ADAM) { + opt->params.type = GGML_OPT_ADAM; + + GGUF_GET_KEY(fctx, opt->adam.fx_best, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, LLM_KV_OPTIMIZER_ADAM_BEST_LOSS); + GGUF_GET_KEY(fctx, opt->adam.fx_prev, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, LLM_KV_OPTIMIZER_ADAM_PREVIOUS_LOSS); + GGUF_GET_KEY(fctx, opt->adam.n_no_improvement, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_OPTIMIZER_ADAM_NO_IMPROVEMENT_COUNT); + + ggml_opt_init(opt->ctx, opt, opt->params, opt->nx); + + copy_tensor_by_name(opt->adam.m, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_ADAM_FIRST_MOMENTS); + copy_tensor_by_name(opt->adam.v, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_ADAM_SECOND_MOMENTS); + copy_tensor_by_name(opt->adam.pf, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_ADAM_PAST_LOSS_VALUES); + } else if (opt_type == LLM_KV_OPTIMIZER_TYPE_LBFGS) { + opt->params.type = GGML_OPT_LBFGS; + + GGUF_GET_KEY(fctx, opt->params.lbfgs.m, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT); + GGUF_GET_KEY(fctx, opt->lbfgs.fx_best, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, LLM_KV_OPTIMIZER_LBFGS_BEST_LOSS); + GGUF_GET_KEY(fctx, opt->lbfgs.step, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_STEP); + GGUF_GET_KEY(fctx, opt->lbfgs.j, gguf_get_val_i32, GGUF_TYPE_INT32, true, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_J); + GGUF_GET_KEY(fctx, opt->lbfgs.k, gguf_get_val_i32, GGUF_TYPE_INT32, true, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_K); + GGUF_GET_KEY(fctx, opt->lbfgs.end, gguf_get_val_i32, GGUF_TYPE_INT32, true, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_END); + GGUF_GET_KEY(fctx, opt->lbfgs.n_no_improvement, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_OPTIMIZER_LBFGS_NO_IMPROVEMENT_COUNT); + + ggml_opt_init(opt->ctx, opt, opt->params, opt->nx); + + copy_tensor_by_name(opt->lbfgs.x, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_PARAMETERS); + copy_tensor_by_name(opt->lbfgs.xp, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_PARAMETERS); + copy_tensor_by_name(opt->lbfgs.g, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_GRADIENTS); + copy_tensor_by_name(opt->lbfgs.gp, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_GRADIENTS); + copy_tensor_by_name(opt->lbfgs.d, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_SEARCH_DIRECTION); + copy_tensor_by_name(opt->lbfgs.pf, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_PAST_LOSS_VALUES); + copy_tensor_by_name(opt->lbfgs.lmal, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_ALPHA); + copy_tensor_by_name(opt->lbfgs.lmys, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_YS); + copy_tensor_by_name(opt->lbfgs.lms, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_S); + copy_tensor_by_name(opt->lbfgs.lmy, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_Y); + } else { + die("unknown optimizer type\n"); + } +} + +void save_opt_context_gguf(struct gguf_context * fctx, struct ggml_opt_context * opt) { + gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_FILE_VERSION, 0); + gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_CONVERGENCE_PAST_COUNT, opt->params.past); + gguf_set_val_u64(fctx, LLM_KV_OPTIMIZER_PARAMETER_COUNT, (uint64_t) opt->nx); + gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_ITERATION_COUNT, opt->iter); + gguf_set_val_bool(fctx, LLM_KV_OPTIMIZER_JUST_INITIALIZED, opt->just_initialized); + + switch (opt->params.type) { + case GGML_OPT_ADAM: + { + gguf_set_val_str(fctx, LLM_KV_OPTIMIZER_TYPE, LLM_KV_OPTIMIZER_TYPE_ADAM); + gguf_set_val_f32(fctx, LLM_KV_OPTIMIZER_ADAM_BEST_LOSS, opt->adam.fx_best); + gguf_set_val_f32(fctx, LLM_KV_OPTIMIZER_ADAM_PREVIOUS_LOSS, opt->adam.fx_prev); + gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_ADAM_NO_IMPROVEMENT_COUNT, opt->adam.n_no_improvement); + + ggml_set_name(opt->adam.m, LLM_TENSOR_OPTIMIZER_ADAM_FIRST_MOMENTS); + ggml_set_name(opt->adam.v, LLM_TENSOR_OPTIMIZER_ADAM_SECOND_MOMENTS); + if (opt->adam.pf) { + ggml_set_name(opt->adam.pf, LLM_TENSOR_OPTIMIZER_ADAM_PAST_LOSS_VALUES); + } + + gguf_add_tensor(fctx, opt->adam.m); + gguf_add_tensor(fctx, opt->adam.v); + if (opt->adam.pf) { + gguf_add_tensor(fctx, opt->adam.pf); + } + } break; + case GGML_OPT_LBFGS: + { + gguf_set_val_str(fctx, LLM_KV_OPTIMIZER_TYPE, LLM_KV_OPTIMIZER_TYPE_LBFGS); + gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT, opt->params.lbfgs.m); + gguf_set_val_f32(fctx, LLM_KV_OPTIMIZER_LBFGS_BEST_LOSS, opt->lbfgs.fx_best); + gguf_set_val_f32(fctx, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_STEP, opt->lbfgs.step); + gguf_set_val_i32(fctx, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_J, opt->lbfgs.j); + gguf_set_val_i32(fctx, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_K, opt->lbfgs.k); + gguf_set_val_i32(fctx, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_END, opt->lbfgs.end); + gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_LBFGS_NO_IMPROVEMENT_COUNT, opt->lbfgs.n_no_improvement); + + ggml_set_name(opt->lbfgs.x, LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_PARAMETERS); + ggml_set_name(opt->lbfgs.xp, LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_PARAMETERS); + ggml_set_name(opt->lbfgs.g, LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_GRADIENTS); + ggml_set_name(opt->lbfgs.gp, LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_GRADIENTS); + ggml_set_name(opt->lbfgs.d, LLM_TENSOR_OPTIMIZER_LBFGS_SEARCH_DIRECTION); + if (opt->lbfgs.pf) { + ggml_set_name(opt->lbfgs.pf, LLM_TENSOR_OPTIMIZER_LBFGS_PAST_LOSS_VALUES); + } + ggml_set_name(opt->lbfgs.lmal, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_ALPHA); + ggml_set_name(opt->lbfgs.lmys, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_YS); + ggml_set_name(opt->lbfgs.lms, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_S); + ggml_set_name(opt->lbfgs.lmy, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_Y); + + gguf_add_tensor(fctx, opt->lbfgs.x); + gguf_add_tensor(fctx, opt->lbfgs.xp); + gguf_add_tensor(fctx, opt->lbfgs.g); + gguf_add_tensor(fctx, opt->lbfgs.gp); + gguf_add_tensor(fctx, opt->lbfgs.d); + if (opt->lbfgs.pf) { + gguf_add_tensor(fctx, opt->lbfgs.pf); + } + gguf_add_tensor(fctx, opt->lbfgs.lmal); + gguf_add_tensor(fctx, opt->lbfgs.lmys); + gguf_add_tensor(fctx, opt->lbfgs.lms); + gguf_add_tensor(fctx, opt->lbfgs.lmy); + } break; + } +} + +bool load_train_state_gguf(struct gguf_context * fctx, struct ggml_context * f_ggml_ctx, struct train_state * train) { + if (gguf_find_key(fctx, LLM_KV_TRAINING_FILE_VERSION) < 0) { + return false; + } + + uint32_t file_version; + GGUF_GET_KEY(fctx, file_version, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_FILE_VERSION); + GGML_ASSERT(file_version <= 1); + + if (file_version == 0) { + + GGUF_GET_KEY(fctx, train->train_its, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_ITERATION_COUNT); + GGUF_GET_KEY(fctx, train->train_samples, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_SAMPLE_COUNT); + GGUF_GET_KEY(fctx, train->train_tokens, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_TOKEN_COUNT); + + } else if (file_version == 1) { + + GGUF_GET_KEY(fctx, train->train_its, gguf_get_val_u64, GGUF_TYPE_UINT64, true, LLM_KV_TRAINING_ITERATION_COUNT); + GGUF_GET_KEY(fctx, train->train_samples, gguf_get_val_u64, GGUF_TYPE_UINT64, true, LLM_KV_TRAINING_SAMPLE_COUNT); + GGUF_GET_KEY(fctx, train->train_tokens, gguf_get_val_u64, GGUF_TYPE_UINT64, true, LLM_KV_TRAINING_TOKEN_COUNT); + GGUF_GET_KEY(fctx, train->train_epochs, gguf_get_val_u64, GGUF_TYPE_UINT64, true, LLM_KV_TRAINING_EPOCH_COUNT); + + GGUF_GET_KEY(fctx, train->shuffle_samples_hash, gguf_get_val_u64, GGUF_TYPE_UINT64, false, LLM_KV_TRAINING_SHUFFLE_SAMPLES_HASH); + GGUF_GET_KEY(fctx, train->shuffle_rng_state_current, gguf_get_val_str, GGUF_TYPE_STRING, false, LLM_KV_TRAINING_SHUFFLE_RNG_STATE); + GGUF_GET_KEY(fctx, train->shuffle_sample_count, gguf_get_val_u64, GGUF_TYPE_UINT64, false, LLM_KV_TRAINING_SHUFFLE_SAMPLE_COUNT); + GGUF_GET_KEY(fctx, train->shuffle_next_sample, gguf_get_val_u64, GGUF_TYPE_UINT64, false, LLM_KV_TRAINING_SHUFFLE_NEXT_SAMPLE); + } + + load_opt_context_gguf(fctx, f_ggml_ctx, train->opt); + return true; +} + +void save_train_state_gguf(struct gguf_context * fctx, struct train_state * train) { + gguf_set_val_u32(fctx, LLM_KV_TRAINING_FILE_VERSION, 1); + gguf_set_val_u64(fctx, LLM_KV_TRAINING_ITERATION_COUNT, train->train_its); + gguf_set_val_u64(fctx, LLM_KV_TRAINING_SAMPLE_COUNT, train->train_samples); + gguf_set_val_u64(fctx, LLM_KV_TRAINING_TOKEN_COUNT, train->train_tokens); + gguf_set_val_u64(fctx, LLM_KV_TRAINING_EPOCH_COUNT, train->train_epochs); + + gguf_set_val_u64(fctx, LLM_KV_TRAINING_SHUFFLE_SAMPLES_HASH, (uint64_t) train->shuffle_samples_hash); + gguf_set_val_str(fctx, LLM_KV_TRAINING_SHUFFLE_RNG_STATE, train->shuffle_rng_state_current.c_str()); + gguf_set_val_u64(fctx, LLM_KV_TRAINING_SHUFFLE_SAMPLE_COUNT, (uint64_t) train->shuffle_sample_count); + gguf_set_val_u64(fctx, LLM_KV_TRAINING_SHUFFLE_NEXT_SAMPLE, (uint64_t) train->shuffle_next_sample); + + save_opt_context_gguf(fctx, train->opt); +} + + +struct llama_file { + // use FILE * so we don't have to re-open the file to mmap + FILE * fp; + size_t size; + + llama_file(const char * fname, const char * mode) { + fp = std::fopen(fname, mode); + if (fp == NULL) { + size = 0; + } else { + seek(0, SEEK_END); + size = tell(); + seek(0, SEEK_SET); + } + } + + size_t tell() const { +#ifdef _WIN32 + __int64 ret = _ftelli64(fp); +#else + long ret = std::ftell(fp); +#endif + GGML_ASSERT(ret != -1); // this really shouldn't fail + return (size_t) ret; + } + + void seek(size_t offset, int whence) { +#ifdef _WIN32 + int ret = _fseeki64(fp, (__int64) offset, whence); +#else + int ret = std::fseek(fp, (long) offset, whence); +#endif + GGML_ASSERT(ret == 0); // same + } + + void read_raw(void * ptr, size_t size) { + if (size == 0) { + return; + } + errno = 0; + std::size_t ret = std::fread(ptr, size, 1, fp); + if (ferror(fp)) { + die_fmt("read error: %s", strerror(errno)); + } + if (ret != 1) { + die("unexpectedly reached end of file"); + } + } + + std::uint32_t read_u32() { + std::uint32_t ret; + read_raw(&ret, sizeof(ret)); + return ret; + } + + std::string read_string(std::uint32_t len) { + std::vector chars(len); + read_raw(chars.data(), len); + return std::string(chars.data(), len); + } + + void write_raw(const void * ptr, size_t size) { + if (size == 0) { + return; + } + errno = 0; + size_t ret = std::fwrite(ptr, size, 1, fp); + if (ret != 1) { + die_fmt("write error: %s", strerror(errno)); + } + } + + void write_u32(std::uint32_t val) { + write_raw(&val, sizeof(val)); + } + + ~llama_file() { + if (fp) { + std::fclose(fp); + } + } +}; + +static size_t utf8_len(char src) { + const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 }; + uint8_t highbits = static_cast(src) >> 4; + return lookup[highbits]; +} + +// mark each byte with its utf8 unit number. +// returns the number of utf8 characters. +// e.g. when bytes == '\x61\xD0\xB0\x62', +// then utf8_units will become [0,0,1,0] +// utf8_nunits will become [1,2,2,1] and 3 is returned. +// bytes where utf8_units is zero, are the begin of an utf8 character. +static size_t mark_utf8_units(const char* bytes, int * utf8_units, int * utf8_nunits, size_t count) { + size_t offs = 0; + size_t count_utf8 = 0; + while(offs < count) { + int len = (int) utf8_len(bytes[offs]); + for (int i=0; i & out_tokens, + std::vector & out_samples_begin, + std::vector & out_samples_size) { + struct llama_file f(filename, "rb"); + + if (f.size == 0) { + out_tokens.clear(); + out_samples_begin.clear(); + out_samples_size.clear(); + printf("%s: warning: empty or not existing training data file '%s'\n", + __func__, filename); + return out_tokens.size(); + } + + // account for possible leading whitespace that will be added by tokenizer + // e.g. '\t' will be tokenized by llama spm tokenizer to [29871, 12] + const int n_max_tokens_overhead = 1; + + std::vector buf; + buf.resize(f.size); + + f.read_raw(buf.data(), f.size); + + std::vector utf8_units; + std::vector utf8_nunits; + utf8_units.resize(buf.size()); + utf8_nunits.resize(buf.size()); + mark_utf8_units(buf.data(), utf8_units.data(), utf8_nunits.data(), buf.size()); + + if (sample_start.size() == 0) { + // tokenize all data at once + out_tokens.resize(buf.size() + n_max_tokens_overhead); + + int n_tokens = llama_tokenize( + llama_get_model(lctx), + buf.data(), + (int) buf.size(), + out_tokens.data(), + (int) out_tokens.size(), + false); + if (n_tokens < 0) { + out_tokens.resize(-n_tokens); + n_tokens = llama_tokenize( + llama_get_model(lctx), + buf.data(), + (int) buf.size(), + out_tokens.data(), + (int) out_tokens.size(), + false); + } + if (n_tokens >= 0) { + out_tokens.resize(n_tokens); + } + + // generate sample starts at all token positions + out_samples_begin.clear(); + out_samples_begin.push_back(0); + out_samples_size.push_back(std::min((size_t) context_length, out_tokens.size())); + size_t end = (out_tokens.size() >= context_length) ? (out_tokens.size() - context_length) : 0; + for (size_t sample_begin = 1; sample_begin < end; ++sample_begin) { + out_samples_begin.push_back(sample_begin); + out_samples_size.push_back(context_length); + } + } else { + // split data into samples and tokenize each sample + std::string data_str(buf.data(), buf.size()); + out_samples_begin.clear(); + out_samples_size.clear(); + out_tokens.clear(); + + // find all positions of pattern sample_start + size_t sample_begin = data_str.find(sample_start, 0); + while (sample_begin != std::string::npos) { + out_samples_begin.push_back(sample_begin); + const size_t search_start = sample_begin + sample_start.size(); + sample_begin = data_str.find(sample_start, search_start); + } + if (out_samples_begin.size() == 0) { + printf("%s: warning: sample start pattern '%s' not found. inserting single sample at data begin\n", + __func__, sample_start.c_str()); + out_samples_begin.push_back(0); + } + + out_samples_size.resize(out_samples_begin.size(), 0); + + std::vector buf_sample; + std::vector tok_sample; + + const size_t sample_begin_offset = (include_sample_start ? 0 : sample_start.size()); + size_t found_too_big_sample = 0; + size_t found_too_small_sample = 0; + size_t found_empty_sample = 0; + size_t found_min_sample_size = SIZE_MAX; + size_t found_max_sample_size = 0; + + size_t max_token_text_size = 0; + int n_vocab = llama_n_vocab(llama_get_model(lctx)); + for (llama_token token=0; token < n_vocab; ++token) { + max_token_text_size = std::max( + max_token_text_size, + strlen(llama_token_get_text(lctx, token))); + } + + // upper bound of context byte length. + // strings with this byte length should always tokenize to at least context_length tokens. + size_t context_byte_len = max_token_text_size*context_length; + + for (unsigned i=0; i 0) { + // sample end is in the middle of an utf8 character. + // advance sample_end to the begin of the next utf8 character. + sample_end += utf8_nunits[sample_end] - utf8_units[sample_end]; + } + size_t sample_size = sample_end - sample_begin; + if (sample_size == 0) { + ++found_empty_sample; + } + + if (sample_size > 0) { + // llama_tokenize expects zero terminated string, + // copy sample into buffer and zero terminate it. + buf_sample.resize(sample_size); + memcpy(buf_sample.data(), data_str.data() + sample_begin, sample_size); + + // printf("sample: '%s'\n", buf_sample.data()); + + // tokenize the sample + tok_sample.resize(buf_sample.size() + n_max_tokens_overhead); + int n_tokens = llama_tokenize(llama_get_model(lctx), + buf_sample.data(), + (int) buf_sample.size(), + tok_sample.data(), + (int) tok_sample.size(), + false); + if (n_tokens < 0) { + tok_sample.resize(-n_tokens); + n_tokens = llama_tokenize(llama_get_model(lctx), + buf_sample.data(), + (int) buf_sample.size(), + tok_sample.data(), + (int) tok_sample.size(), + false); + GGML_ASSERT(n_tokens >= 0); + } + GGML_ASSERT(n_tokens <= (int) tok_sample.size()); + + if ((size_t) n_tokens > context_length) { + ++found_too_big_sample; + } else if ((size_t) n_tokens < context_length) { + ++found_too_small_sample; + } + found_max_sample_size = std::max(found_max_sample_size, (size_t) n_tokens); + found_min_sample_size = std::min(found_min_sample_size, (size_t) n_tokens); + + // write out tokens, start and size of sample + // overwrite the string start position with the token start position + out_samples_begin[i] = out_tokens.size(); + out_samples_size[i] = (size_t) n_tokens; + out_tokens.insert(out_tokens.end(), tok_sample.begin(), tok_sample.begin() + n_tokens); + } else { + out_samples_begin[i] = out_tokens.size(); + out_samples_size[i] = 0; + } + + } + if (found_too_big_sample > 0) { + printf("%s: warning: found %zu samples (max length %zu) that exceed context length of %u. samples will be cut off.\n", + __func__, found_too_big_sample, found_max_sample_size, context_length); + } + + if (found_too_small_sample > 0) { + printf("%s: warning: found %zu samples (min length %zu) that are shorter than context length of %u.\n", + __func__, found_too_small_sample, found_min_sample_size, context_length); + } + + if (found_empty_sample) { + printf("%s: warning: found %zu empty samples.\n", + __func__, found_empty_sample); + } + } + printf("%s: total number of samples: %zu\n", + __func__, out_samples_begin.size()); + + GGML_ASSERT(out_samples_begin.size() == out_samples_size.size()); + + return out_tokens.size(); +} + +std::string get_train_filename(const char * filename, const char * pattern_it, const char * latest, int64_t iteration) { + std::string sit = (iteration >= 0) ? std::to_string(iteration) : std::string(latest); + return replace_str(filename, pattern_it, sit.c_str()); +} + +struct train_params_common get_default_train_params_common() { + struct train_params_common params; + params.fn_train_data = "shakespeare.txt"; + params.fn_checkpoint_in = "checkpoint.gguf"; + params.fn_checkpoint_out = "checkpoint-ITERATION.gguf"; + params.pattern_fn_it = "ITERATION"; + params.fn_latest = "LATEST"; + + params.print_usage = false; + + params.save_every = 10; + + params.seed = -1; + + params.n_ctx = 128; + params.n_threads = 6; + params.n_batch = 8; + params.n_gradient_accumulation = 1; + params.n_epochs = -1; + + params.custom_n_ctx = false; + + params.use_flash = true; + params.use_checkpointing = true; + + params.sample_start = ""; + params.include_sample_start = false; + params.escape = false; + params.overlapping_samples = false; + params.fill_with_next_samples = false; + params.separate_with_eos = false; + params.separate_with_bos = true; + params.sample_random_offsets = false; + params.force_reshuffle = false; + + params.opt_past = 0; + params.opt_delta = 1e-5f; + params.opt_max_no_improvement = 0; + + params.warmup = 100; + params.cos_decay_steps = 1000; + params.cos_decay_restart = 1.1f; + params.cos_decay_min = 0.1f; + params.enable_restart = false; + + params.adam_n_iter = 256; + params.adam_alpha = 1e-3f; + params.adam_min_alpha = 0; + params.adam_decay = 1e-1f; + params.adam_decay_min_ndim = 2; + params.adam_beta1 = 0.9f; + params.adam_beta2 = 0.999f; + params.adam_gclip = 1.0f; + params.adam_eps_f = 0.0f; + return params; +} + +void print_common_train_usage(int /*argc*/, char ** /*argv*/, const struct train_params_common * params) { + // fprintf(stderr, "usage: %s [options]\n", argv[0]); + // fprintf(stderr, "\n"); + // fprintf(stderr, "options:\n"); + // fprintf(stderr, " -h, --help show this help message and exit\n"); + fprintf(stderr, " --train-data FNAME path from which to load training data (default '%s')\n", params->fn_train_data); + fprintf(stderr, " --checkpoint-in FNAME path from which to load training checkpoint (default '%s')\n", params->fn_checkpoint_in); + fprintf(stderr, " --checkpoint-out FNAME path to save training checkpoint (default '%s')\n", params->fn_checkpoint_out); + fprintf(stderr, " --pattern-fn-it STR pattern in output filenames to be replaced by iteration number (default '%s')\n", params->pattern_fn_it); + fprintf(stderr, " --fn-latest STR string to use instead of iteration number for saving latest output (default '%s')\n", params->fn_latest); + fprintf(stderr, " --save-every N save checkpoint and lora every N iterations. Disabled when N <= 0. (default '%d')\n", params->save_every); + fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1, use random seed for -1)\n"); + fprintf(stderr, " -c N, --ctx N Context size used during training (default %d)\n", params->n_ctx); + fprintf(stderr, " -t N, --threads N Number of threads (default %d)\n", params->n_threads); + fprintf(stderr, " -b N, --batch N Parallel batch size (default %d)\n", params->n_batch); + fprintf(stderr, " --grad-acc N Number of gradient accumulation steps (simulates larger batch size of batch*gradacc) (default %d)\n", params->n_gradient_accumulation); + fprintf(stderr, " --sample-start STR Sets the starting point for samples after the specified pattern. If empty use every token position as sample start. (default '%s')\n", params->sample_start.c_str()); + fprintf(stderr, " --include-sample-start Include the sample start in the samples. (default off)\n"); + fprintf(stderr, " --escape process sample start escapes sequences (\\n, \\r, \\t, \\', \\\", \\\\)\n"); + fprintf(stderr, " --overlapping-samples Samples my overlap, will include sample-start of second and following samples. When off, samples will end at begin of next sample. (default off)\n"); + fprintf(stderr, " --fill-with-next-samples Samples shorter than context length will be followed by the next (shuffled) samples. (default off)\n"); + fprintf(stderr, " --separate-with-eos When fill-with-next-samples, insert end-of-sequence token between samples.%s\n", params->separate_with_eos ? " (default)" : ""); + fprintf(stderr, " --separate-with-bos When fill-with-next-samples, insert begin-of-sequence token between samples.%s\n", params->separate_with_bos ? " (default)" : ""); + fprintf(stderr, " --no-separate-with-eos When fill-with-next-samples, don't insert end-of-sequence token between samples.%s\n", !params->separate_with_eos ? " (default)" : ""); + fprintf(stderr, " --no-separate-with-bos When fill-with-next-samples, don't insert begin-of-sequence token between samples.%s\n", !params->separate_with_bos ? " (default)" : ""); + fprintf(stderr, " --sample-random-offsets Use samples beginning at random offsets. Together with fill-with-next-samples this may help for training endless text generation.%s\n", params->sample_random_offsets ? " (default)" : ""); + fprintf(stderr, " --force-reshuffle Force a reshuffling of data at program start, otherwise the shuffling of loaded checkpoint is resumed.\n"); + fprintf(stderr, " --no-flash Don't use flash attention \n"); + fprintf(stderr, " --use-flash Use flash attention (default)\n"); + fprintf(stderr, " --no-checkpointing Don't use gradient checkpointing\n"); + fprintf(stderr, " --use-checkpointing Use gradient checkpointing (default)\n"); + fprintf(stderr, " --warmup N Only for Adam optimizer. Number of warmup steps (default %d)\n", params->warmup); + fprintf(stderr, " --cos-decay-steps N Only for Adam optimizer. Number of cosine decay steps (default %d)\n", params->cos_decay_steps); + fprintf(stderr, " --cos-decay-restart N Only for Adam optimizer. Increase of cosine decay steps after restart (default %f)\n", params->cos_decay_restart); + fprintf(stderr, " --cos-decay-min N Only for Adam optimizer. Cosine decay minimum (default %f)\n", params->cos_decay_min); + fprintf(stderr, " --enable-restart N Only for Adam optimizer. Enable restarts of cos-decay %s\n", params->enable_restart ? "(default)" : ""); + fprintf(stderr, " --disable-restart N Only for Adam optimizer. Disable restarts of cos-decay %s\n", !params->enable_restart ? "(default)" : ""); + fprintf(stderr, " --opt-past N Number of optimization iterations to track for delta convergence test. Disabled when zero. (default %d)\n", params->opt_past); + fprintf(stderr, " --opt-delta N Maximum delta for delta convergence test. Disabled when <= zero. (default %f)\n", params->opt_delta); + fprintf(stderr, " --opt-max-no-improvement N Maximum number of optimization iterations with no improvement. Disabled when <= zero. (default %d)\n", params->opt_max_no_improvement); + fprintf(stderr, " --epochs N Maximum number epochs to process. (default %d)\n", params->n_epochs); + fprintf(stderr, " --adam-iter N Maximum number of Adam optimization iterations for each batch (default %d)\n", params->adam_n_iter); + fprintf(stderr, " --adam-alpha N Adam learning rate alpha (default %f)\n", params->adam_alpha); + fprintf(stderr, " --adam-min-alpha N Adam minimum learning rate alpha - including warmup phase (default %f)\n", params->adam_min_alpha); + fprintf(stderr, " --adam-decay N AdamW weight decay. Values greater zero enable AdamW instead of regular Adam. (default %f)\n", params->adam_decay); + fprintf(stderr, " --adam-decay-min-ndim N Minimum number of tensor dimensions to apply AdamW weight decay. Weight decay is not applied to tensors with less n_dims. (default %d)\n", params->adam_decay_min_ndim); + fprintf(stderr, " --adam-beta1 N AdamW beta1 in interval [0,1). How much to smooth the first moment of gradients. (default %f)\n", params->adam_beta1); + fprintf(stderr, " --adam-beta2 N AdamW beta2 in interval [0,1). How much to smooth the second moment of gradients. (default %f)\n", params->adam_beta2); + fprintf(stderr, " --adam-gclip N AdamW gradient clipping. Disabled when zero. (default %f)\n", params->adam_gclip); + fprintf(stderr, " --adam-epsf N AdamW epsilon for convergence test. Disabled when <= zero. (default %f)\n", params->adam_eps_f); + fprintf(stderr, "\n"); +} + +bool consume_common_train_arg( + int argc, char ** argv, int * idx, struct train_params_common * params, bool * invalid_param +) { + int& i = *idx; + std::string arg = argv[i]; + const std::string arg_prefix = "--"; + if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) { + std::replace(arg.begin(), arg.end(), '_', '-'); + } + if (arg == "--train-data") { + if (++i >= argc) { + *invalid_param = true; + return true; + } + params->fn_train_data = argv[i]; + } else if (arg == "--checkpoint-in") { + if (++i >= argc) { + *invalid_param = true; + return true; + } + params->fn_checkpoint_in = argv[i]; + } else if (arg == "--checkpoint-out") { + if (++i >= argc) { + *invalid_param = true; + return true; + } + params->fn_checkpoint_out = argv[i]; + } else if (arg == "--pattern-fn-it") { + if (++i >= argc) { + *invalid_param = true; + return true; + } + params->pattern_fn_it = argv[i]; + } else if (arg == "--fn-latest") { + if (++i >= argc) { + *invalid_param = true; + return true; + } + params->fn_latest = argv[i]; + } else if (arg == "--save-every") { + if (++i >= argc) { + *invalid_param = true; + return true; + } + params->save_every = std::stoi(argv[i]); + } else if (arg == "-s" || arg == "--seed") { + if (++i >= argc) { + *invalid_param = true; + return true; + } + params->seed = std::stoi(argv[i]); + } else if (arg == "-c" || arg == "--ctx") { + if (++i >= argc) { + *invalid_param = true; + return true; + } + params->n_ctx = std::stoi(argv[i]); + params->custom_n_ctx = true; + } else if (arg == "-t" || arg == "--threads") { + if (++i >= argc) { + *invalid_param = true; + return true; + } + params->n_threads = std::stoi(argv[i]); + } else if (arg == "-b" || arg == "--batch") { + if (++i >= argc) { + *invalid_param = true; + return true; + } + params->n_batch = std::stoi(argv[i]); + } else if (arg == "--grad-acc") { + if (++i >= argc) { + *invalid_param = true; + return true; + } + params->n_gradient_accumulation = std::max(1, std::stoi(argv[i])); + } else if (arg == "--sample-start") { + if (++i >= argc) { + *invalid_param = true; + return true; + } + params->sample_start = std::string(argv[i]); + } else if (arg == "--escape") { + params->escape = true; + } else if (arg == "--include-sample-start") { + params->include_sample_start = true; + } else if (arg == "--overlapping-samples") { + params->overlapping_samples = true; + } else if (arg == "--fill-with-next-samples") { + params->fill_with_next_samples = true; + } else if (arg == "--separate-with-eos") { + params->separate_with_eos = true; + } else if (arg == "--separate-with-bos") { + params->separate_with_bos = true; + } else if (arg == "--no-separate-with-eos") { + params->separate_with_eos = false; + } else if (arg == "--no-separate-with-bos") { + params->separate_with_bos = false; + } else if (arg == "--sample-random-offsets") { + params->sample_random_offsets = true; + } else if (arg == "--force-reshuffle") { + params->force_reshuffle = true; + } else if (arg == "--no-flash") { + params->use_flash = false; + } else if (arg == "--use-flash") { + params->use_flash = true; + } else if (arg == "--no-checkpointing") { + params->use_checkpointing = false; + } else if (arg == "--use-checkpointing") { + params->use_checkpointing = true; + } else if (arg == "--warmup") { + if (++i >= argc) { + *invalid_param = true; + return true; + } + params->warmup = std::stoi(argv[i]); + } else if (arg == "--cos-decay-steps") { + if (++i >= argc) { + *invalid_param = true; + return true; + } + params->cos_decay_steps = std::stoi(argv[i]); + } else if (arg == "--cos-decay-restart") { + if (++i >= argc) { + *invalid_param = true; + return true; + } + params->cos_decay_restart = std::stof(argv[i]); + } else if (arg == "--cos-decay-min") { + if (++i >= argc) { + *invalid_param = true; + return true; + } + params->cos_decay_min = std::stof(argv[i]); + } else if (arg == "--enable-restart") { + params->enable_restart = true; + } else if (arg == "--disable-restart") { + params->enable_restart = false; + } else if (arg == "--opt-past") { + if (++i >= argc) { + *invalid_param = true; + return true; + } + params->opt_past = std::stoi(argv[i]); + } else if (arg == "--opt-delta") { + if (++i >= argc) { + *invalid_param = true; + return true; + } + params->opt_delta = std::stof(argv[i]); + } else if (arg == "--opt-max-no-improvement") { + if (++i >= argc) { + *invalid_param = true; + return true; + } + params->opt_max_no_improvement = std::stoi(argv[i]); + } else if (arg == "--adam-epsf") { + if (++i >= argc) { + *invalid_param = true; + return true; + } + params->adam_eps_f = std::stof(argv[i]); + } else if (arg == "--epochs") { + if (++i >= argc) { + *invalid_param = true; + return true; + } + params->n_epochs = std::stoi(argv[i]); + } else if (arg == "--adam-iter") { + if (++i >= argc) { + *invalid_param = true; + return true; + } + params->adam_n_iter = std::stoi(argv[i]); + } else if (arg == "--adam-alpha") { + if (++i >= argc) { + *invalid_param = true; + return true; + } + params->adam_alpha = std::stof(argv[i]); + } else if (arg == "--adam-min-alpha") { + if (++i >= argc) { + *invalid_param = true; + return true; + } + params->adam_min_alpha = std::stof(argv[i]); + } else if (arg == "--adam-decay") { + if (++i >= argc) { + *invalid_param = true; + return true; + } + params->adam_decay = std::stof(argv[i]); + } else if (arg == "--adam-decay-min-ndim") { + if (++i >= argc) { + *invalid_param = true; + return true; + } + params->adam_decay_min_ndim = std::stoi(argv[i]); + } else if (arg == "--adam-beta1") { + if (++i >= argc) { + *invalid_param = true; + return true; + } + params->adam_beta1 = std::stof(argv[i]); + } else if (arg == "--adam-beta2") { + if (++i >= argc) { + *invalid_param = true; + return true; + } + params->adam_beta2 = std::stof(argv[i]); + } else if (arg == "--adam-gclip") { + if (++i >= argc) { + *invalid_param = true; + return true; + } + params->adam_gclip = std::stof(argv[i]); + } else if (arg == "-h" || arg == "--help") { + params->print_usage = true; + return true; + } else { + return false; + } + return true; +} + +void finish_processing_train_args(struct train_params_common * params) { + if (params->escape) { + process_escapes(params->sample_start); + } +} + +void train_opt_callback(void * vdata, int accum_step, float * sched, bool * cancel) { + struct train_opt_callback_data * data = (struct train_opt_callback_data *) vdata; + struct train_params_common * params = data->params; + struct train_state * train = data->train; + struct ggml_opt_context * opt = train->opt; + int n_batch = params->n_batch; + int n_ctx = params->n_ctx; + + if (accum_step == 0) { + // time measurement + int64_t now = ggml_time_ms(); + if (now > data->last_time && opt->iter > data->first_iter) { + double dt = (double) (now - data->last_time); + if (data->millis_per_iter == 0.0) { + data->millis_per_iter = dt; + } else { + const double gain = 0.7; + data->millis_per_iter = data->millis_per_iter*(1.0-gain) + dt*gain; + } + } + + double remaining_millis = 0.0; + if (data->millis_per_iter > 0.0) { + const int n_iter = params->adam_n_iter; + const int done_iter = opt->iter - data->first_iter; + const int remaining_iter = n_iter - done_iter; + remaining_millis = remaining_iter * data->millis_per_iter; + } + + // file saving + const bool save_now = (params->save_every > 0) && (opt->iter - data->last_save_iter >= params->save_every); + if (save_now) { + int new_iters = opt->iter - data->last_save_iter; + train->train_its += new_iters; + train->train_tokens += new_iters * opt->params.n_gradient_accumulation * n_batch * n_ctx; + + if (data->save_cb) { + data->save_cb(data->save_data, train); + } + + data->last_save_iter = opt->iter; + } + + // exclude file saving from time measurement, by measuring last_time after saving + data->last_time = ggml_time_ms(); + + *sched = learning_schedule( + opt->iter, + params->warmup, + params->cos_decay_steps, + params->adam_alpha, + params->adam_min_alpha, + params->cos_decay_min, + params->cos_decay_restart, + params->enable_restart); + + int impr_plot = -(int)(1 + (opt->loss_before - opt->loss_after) * 10.0f + 0.5f); + if (impr_plot > 0) impr_plot = 0; + if (std::isnan(opt->loss_before) || std::isnan(opt->loss_before)) impr_plot = 0; + printf("%s: iter=%6d sample=%zu/%zu sched=%f loss=%f", + __func__, opt->iter, std::min(1+train->shuffle_next_sample, train->shuffle_sample_count), train->shuffle_sample_count, + *sched, opt->loss_after); + + + if (data->millis_per_iter > 0) { + printf(" dt="); + print_duration(data->millis_per_iter); + printf(" eta="); + print_duration(remaining_millis); + } + + float improvement = opt->loss_before - opt->loss_after; + const float plot_scale = 10.0f; + int bar_len = (int)(1 + improvement*plot_scale + 0.5); + printf(" |"); + for (int i=0; i"); + printf("\n"); + } + + int64_t used_samples = get_example_targets_batch( + data->lctx, + data->tokens_input, + data->target_probs, + train->shuffle_next_sample, + data->shuffled_samples_offs, + data->shuffled_samples_begin, + data->shuffled_samples_size, + data->samples_count, + data->tokens_data, + data->tokens_size, + params->separate_with_eos, + params->separate_with_bos, + params->fill_with_next_samples, + params->sample_random_offsets); + + train->train_samples += used_samples; + train->shuffle_next_sample += used_samples; + + if (train->shuffle_next_sample >= train->shuffle_sample_count) { + ++train->train_epochs; + printf("%s: reshuffle samples. completed epochs: %llu\n", __func__, (long long unsigned) train->train_epochs); + // note: we may have used some samples from the current shuffling more than once + train->shuffle_rng_state_current = train->shuffle_rng_state_next; + train->shuffle_rng_state_next = shuffle_samples( + train->shuffle_rng_state_current, + data->shuffled_samples_offs, + data->shuffled_samples_begin, + data->shuffled_samples_size, + data->samples_begin, + data->samples_size, + data->samples_count); + train->shuffle_next_sample = 0; + } + + const bool last_epoch_reached = (params->n_epochs > 0 && (int64_t) train->train_epochs - data->first_epoch >= params->n_epochs); + if (last_epoch_reached) { + // allow optimization iteration at last epoch to be completed before canceling + if (data->iter_at_last_epoch < 0) { + data->iter_at_last_epoch = opt->iter; + } else if (opt->iter > data->iter_at_last_epoch) { + *cancel = true; + } + } +} diff --git a/common/train.h b/common/train.h new file mode 100644 index 0000000000000..42fa704b897ae --- /dev/null +++ b/common/train.h @@ -0,0 +1,230 @@ +// Various helper functions and utilities for training + +#pragma once + +#include +#include +#include + +#include "ggml.h" +#include "llama.h" + +typedef std::string mt19937_state; + +struct train_state { + struct ggml_opt_context * opt; + + uint64_t train_its; + uint64_t train_samples; + uint64_t train_tokens; + uint64_t train_epochs; + + size_t shuffle_samples_hash; // fn, sample_count, *zip(sample_begins, sample_sizes) + mt19937_state shuffle_rng_state_current; + mt19937_state shuffle_rng_state_next; + size_t shuffle_sample_count; + size_t shuffle_next_sample; +}; + +struct train_params_common { + const char * fn_train_data; + const char * fn_checkpoint_in; + const char * fn_checkpoint_out; + const char * pattern_fn_it; + const char * fn_latest; + + bool print_usage; + + int save_every; + + uint32_t seed; + + int n_ctx; + int n_threads; + int n_batch; + int n_gradient_accumulation; + int n_epochs; + + bool custom_n_ctx; + + bool use_flash; + bool use_checkpointing; + + std::string sample_start; + bool include_sample_start; + bool escape; + bool overlapping_samples; + bool fill_with_next_samples; + bool separate_with_eos; + bool separate_with_bos; + bool sample_random_offsets; + + bool force_reshuffle; + + int warmup; + int cos_decay_steps; + float cos_decay_restart; + float cos_decay_min; + bool enable_restart; + + int opt_past; + float opt_delta; + int opt_max_no_improvement; + + int adam_n_iter; + float adam_alpha; + float adam_min_alpha; + float adam_decay; + int adam_decay_min_ndim; + float adam_beta1; + float adam_beta2; + float adam_gclip; + float adam_eps_f; +}; + +typedef void (*save_train_files_callback)(void * data, struct train_state * train); + +struct train_opt_callback_data { + struct train_params_common * params; + struct train_state * train; + save_train_files_callback save_cb; + void * save_data; + struct llama_context * lctx; + int last_save_iter; + llama_token * tokens_data; + size_t tokens_size; + size_t * samples_begin; + size_t * samples_size; + size_t * shuffled_samples_offs; + size_t * shuffled_samples_begin; + size_t * shuffled_samples_size; + size_t samples_count; + struct ggml_tensor * tokens_input; + struct ggml_tensor * target_probs; + int first_iter; + int first_epoch; + int iter_at_last_epoch; + int64_t last_time; + double millis_per_iter; +}; + +struct train_state * init_train_state(); +void free_train_state(struct train_state * state); + +struct train_params_common get_default_train_params_common(); +void print_common_train_usage(int /*argc*/, char ** argv, const struct train_params_common * params); + +bool consume_common_train_arg(int argc, char ** argv, int * idx, struct train_params_common * params, bool * invalid_param); +void finish_processing_train_args(struct train_params_common * params); + +struct random_normal_distribution; +struct random_uniform_distribution; + +struct random_normal_distribution * init_random_normal_distribution (int seed, float mean, float std, float min, float max); +struct random_uniform_distribution * init_random_uniform_distribution(int seed, float min, float max); + +void free_random_normal_distribution (struct random_normal_distribution * rnd); +void free_random_uniform_distribution(struct random_uniform_distribution * rnd); + +struct ggml_tensor * randomize_tensor_normal (struct ggml_tensor * tensor, struct random_normal_distribution * rnd); +struct ggml_tensor * randomize_tensor_uniform(struct ggml_tensor * tensor, struct random_uniform_distribution * rnd); + +// generate random float in interval [0,1) +float frand(); +float frand_normal (struct random_normal_distribution * rnd); +float frand_uniform(struct random_uniform_distribution * rnd); + +int clamp (const int v, const int min, const int max); +float fclamp(const float v, const float min, const float max); + +void assert_shape_1d(struct ggml_tensor * tensor, int64_t ne0); +void assert_shape_2d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1); +void assert_shape_3d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1, int64_t ne2); +void assert_shape_4d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3); + +size_t tokenize_file( + struct llama_context * lctx, + const char * filename, + const std::string & sample_start, + bool include_sample_start, + bool overlapping_samples, + unsigned context_length, + std::vector & out_tokens, + std::vector & out_samples_begin, + std::vector & out_samples_size); + +int64_t get_example_targets_batch( + struct llama_context * lctx, + struct ggml_tensor * tokens_input, + struct ggml_tensor * target_probs, + int64_t example_id, + const size_t * samples_offs, + const size_t * samples_begin, + const size_t * samples_size, + size_t samples_count, + const llama_token * train_data, + size_t n_train_data, + bool separate_with_eos, + bool separate_with_bos, + bool fill_with_next_samples, + bool sample_random_offsets); + + +void mt19937_set_state(std::mt19937& rng, const mt19937_state& rng_state); +mt19937_state mt19937_get_state(const std::mt19937& rng); +mt19937_state mt19937_seed_to_state(unsigned seed); + +mt19937_state shuffle_samples( + const mt19937_state & rng_state, + size_t * shuffled_offs, + size_t * shuffled_begins, + size_t * shuffled_sizes, + const size_t * begins, + const size_t * sizes, + size_t count); + +size_t hash_combine(size_t h1, size_t h2); + +size_t compute_samples_hash( + const char* fn, + const size_t* samples_begin, + const size_t* samples_size, + size_t sample_count); + + +std::string replace_str(const char * s, const char * needle, const char * replacement); + +void print_duration(double milliseconds); + +float cosine_decay( + int64_t step, + int64_t decay_steps, + float minimum); + +float cosine_decay_restart( + int64_t step, + int64_t decay_steps, + float minimum, + float restart_step_mult); + +float learning_schedule( + int64_t step, + int64_t warmup_steps, + int64_t decay_steps, + float learning_rate, + float overall_minimum, + float cos_decay_minimum, + float cos_decay_restart_step_mult, + bool enable_restart); + +void copy_tensor_by_name(struct ggml_tensor * dst, struct ggml_context * ctx, const char * name); + +void load_opt_context_gguf(struct gguf_context * fctx, struct ggml_context * f_ggml_ctx, struct ggml_opt_context * opt); +void save_opt_context_gguf(struct gguf_context * fctx, struct ggml_opt_context * opt); + +bool load_train_state_gguf(struct gguf_context * fctx, struct ggml_context * f_ggml_ctx, struct train_state * train); +void save_train_state_gguf(struct gguf_context * fctx, struct train_state * train); + +std::string get_train_filename(const char * filename, const char * pattern_it, const char * latest, int64_t iteration); + +void train_opt_callback(void * vdata, int accum_step, float * sched, bool * cancel); diff --git a/convert-baichuan-hf-to-gguf.py b/convert-baichuan-hf-to-gguf.py new file mode 100755 index 0000000000000..8bd34dc440769 --- /dev/null +++ b/convert-baichuan-hf-to-gguf.py @@ -0,0 +1,304 @@ +#!/usr/bin/env python3 +# HF baichuan --> gguf conversion + +from __future__ import annotations + +import argparse +import json +import os +import struct +import sys +from pathlib import Path +from typing import TYPE_CHECKING, Any +import itertools +import gguf +import numpy as np +import torch +from sentencepiece import SentencePieceProcessor # type: ignore[import] + + +if TYPE_CHECKING: + from typing import TypeAlias + +NDArray: TypeAlias = 'np.ndarray[Any, Any]' + +# reverse HF permute back to original pth layout + + +def reverse_hf_permute(weights: NDArray, n_head: int, n_kv_head: int | None = None) -> NDArray: + if n_kv_head is not None and n_head != n_kv_head: + n_head //= n_kv_head + + return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:]) + .swapaxes(1, 2) + .reshape(weights.shape)) + +def reverse_hf_permute_part(weights: NDArray, n_part: int, n_head: int, n_head_kv: int| None = None) -> NDArray: + r = weights.shape[0] // 3 + return (reverse_hf_permute(weights[r * n_part : r * n_part + r, ...], n_head, n_head_kv)) + +def reverse_hf_part(weights: NDArray, n_part: int) -> NDArray: + r = weights.shape[0] // 3 + return weights[r * n_part : r * n_part + r, ...] + +def count_model_parts(dir_model: str) -> int: + num_parts = 0 + + for filename in os.listdir(dir_model): + if filename.startswith("pytorch_model-"): + num_parts += 1 + + if num_parts > 0: + print("gguf: found " + str(num_parts) + " model parts") + + return num_parts + + + +def parse_args() -> argparse.Namespace: + parser = argparse.ArgumentParser(description="Convert a HuggingFace LLaMA model to a GGML compatible file") + parser.add_argument( + "--vocab-only", action="store_true", + help="extract only the vocab", + ) + parser.add_argument( + "--outfile", type=Path, + help="path to write to; default: based on input", + ) + parser.add_argument( + "model", type=Path, + help="directory containing model file, or model file itself (*.bin)", + ) + parser.add_argument( + "ftype", type=int, choices=[0, 1], default=1, nargs='?', + help="output format - use 0 for float32, 1 for float16", + ) + return parser.parse_args() + +args = parse_args() + +dir_model = args.model +ftype = args.ftype +if not dir_model.is_dir(): + print(f'Error: {args.model} is not a directory', file = sys.stderr) + sys.exit(1) + +# possible tensor data types +# ftype == 0 -> float32 +# ftype == 1 -> float16 + +# map from ftype to string +ftype_str = ["f32", "f16"] + +if args.outfile is not None: + fname_out = args.outfile +else: + # output in the same directory as the model by default + fname_out = dir_model / f'ggml-model-{ftype_str[ftype]}.gguf' + +print("gguf: loading model "+dir_model.name) + +with open(dir_model / "config.json", "r", encoding="utf-8") as f: + hparams = json.load(f) +print("hello print: ",hparams["architectures"][0]) +if hparams["architectures"][0] != "BaichuanForCausalLM": + print("Model architecture not supported: " + hparams["architectures"][0]) + + sys.exit() + +# get number of model parts +num_parts = count_model_parts(dir_model) +print(f"num_parts:{num_parts}\n") +ARCH=gguf.MODEL_ARCH.BAICHUAN +gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH]) + +print("gguf: get model metadata") + +block_count = hparams["num_hidden_layers"] +head_count = hparams["num_attention_heads"] + +if "num_key_value_heads" in hparams: + head_count_kv = hparams["num_key_value_heads"] +else: + head_count_kv = head_count + +if "_name_or_path" in hparams: + hf_repo = hparams["_name_or_path"] +else: + hf_repo = "" + +if "max_sequence_length" in hparams: + ctx_length = hparams["max_sequence_length"] +elif "max_position_embeddings" in hparams: + ctx_length = hparams["max_position_embeddings"] +elif "model_max_length" in hparams: + ctx_length = hparams["model_max_length"] +else: + print("gguf: can not find ctx length parameter.") + + sys.exit() + + +gguf_writer.add_name(dir_model.name) +gguf_writer.add_source_hf_repo(hf_repo) +gguf_writer.add_tensor_data_layout("Meta AI original pth") +gguf_writer.add_context_length(ctx_length) +gguf_writer.add_embedding_length(hparams["hidden_size"]) +gguf_writer.add_block_count(block_count) +gguf_writer.add_feed_forward_length(hparams["intermediate_size"]) +gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"]) +gguf_writer.add_head_count(head_count) +gguf_writer.add_head_count_kv(head_count_kv) +gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"]) + +if "rope_scaling" in hparams and hparams["rope_scaling"] != None and "factor" in hparams["rope_scaling"]: + if "type" in hparams["rope_scaling"]: + if hparams["rope_scaling"]["type"] == "linear": + gguf_writer.add_rope_scale_linear(hparams["rope_scaling"]["factor"]) + + +# TOKENIZATION + +print("gguf: get tokenizer metadata") + +tokens: list[bytes] = [] +scores: list[float] = [] +toktypes: list[int] = [] + +tokenizer_model_file = dir_model / 'tokenizer.model' +if not tokenizer_model_file.is_file(): + print(f'Error: Missing {tokenizer_model_file}', file = sys.stderr) + sys.exit(1) + +# vocab type sentencepiece +print("gguf: get sentencepiece tokenizer vocab, scores and token types") + +tokenizer = SentencePieceProcessor(str(tokenizer_model_file)) + +for i in range(tokenizer.vocab_size()): + text: bytes + score: float + + piece = tokenizer.id_to_piece(i) + text = piece.encode("utf-8") + score = tokenizer.get_score(i) + + toktype = 1 # defualt to normal token type + if tokenizer.is_unknown(i): + toktype = 2 + if tokenizer.is_control(i): + toktype = 3 + + # toktype = 4 is user-defined = tokens from added_tokens.json + + if tokenizer.is_unused(i): + toktype = 5 + if tokenizer.is_byte(i): + toktype = 6 + + tokens.append(text) + scores.append(score) + toktypes.append(toktype) + +added_tokens_file = dir_model / 'added_tokens.json' +if added_tokens_file.is_file(): + with open(added_tokens_file, "r", encoding="utf-8") as f: + addtokens_json = json.load(f) + + print("gguf: get added tokens") + + for key in addtokens_json: + tokens.append( key.encode("utf-8") ) + scores.append(-1000.0) + toktypes.append(4) # user-defined token type + + +gguf_writer.add_tokenizer_model("llama") +gguf_writer.add_token_list(tokens) +gguf_writer.add_token_scores(scores) +gguf_writer.add_token_types(toktypes) + +special_vocab = gguf.SpecialVocab(dir_model) +special_vocab.add_to_gguf(gguf_writer) + +# TENSORS + +tensor_map = gguf.get_tensor_name_map(ARCH,block_count) + +# tensor info +print("gguf: get tensor metadata") + +if num_parts == 0: + part_names = iter(("pytorch_model.bin",)) +else: + part_names = ( + f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1) + ) + + +for part_name in part_names: + if args.vocab_only: + break + print("gguf: loading model part '" + part_name + "'") + model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu") + + tmp=model_part + for i in range(block_count): + if f"model.layers.{i}.self_attn.W_pack.weight" in model_part: + print(f"Unpacking and permuting layer {i}") + tmp[f"model.layers.{i}.self_attn.q_proj.weight"]=reverse_hf_permute_part(model_part[f"model.layers.{i}.self_attn.W_pack.weight"],0,head_count,head_count) + tmp[f"model.layers.{i}.self_attn.k_proj.weight"]=reverse_hf_permute_part(model_part[f"model.layers.{i}.self_attn.W_pack.weight"],1,head_count,head_count_kv) + tmp[f"model.layers.{i}.self_attn.v_proj.weight"]=reverse_hf_part(model_part[f"model.layers.{i}.self_attn.W_pack.weight"],2) + del tmp[f"model.layers.{i}.self_attn.W_pack.weight"] + + for name in model_part.keys(): + data = model_part[name] + # we don't need these + if name.endswith(".rotary_emb.inv_freq"): + continue + + old_dtype = data.dtype + + # convert any unsupported data types to float32 + if data.dtype != torch.float16 and data.dtype != torch.float32: + data = data.to(torch.float32) + + data = data.squeeze().numpy() + + # map tensor names + new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias")) + if new_name is None: + print("Can not map tensor '" + name + "'") + sys.exit() + + n_dims = len(data.shape) + data_dtype = data.dtype + + # if f32 desired, convert any float16 to float32 + if ftype == 0 and data_dtype == np.float16: + data = data.astype(np.float32) + + # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32 + if ftype == 1 and data_dtype == np.float16 and n_dims == 1: + data = data.astype(np.float32) + + # if f16 desired, convert any float32 2-dim weight tensors to float16 + if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2: + data = data.astype(np.float16) + + print(name + " -> " + new_name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype)) + gguf_writer.add_tensor(new_name, data) + + +print("gguf: write header") +gguf_writer.write_header_to_file() +print("gguf: write metadata") +gguf_writer.write_kv_data_to_file() +if not args.vocab_only: + print("gguf: write tensors") + gguf_writer.write_tensors_to_file() + +gguf_writer.close() + +print(f"gguf: model successfully exported to '{fname_out}'") +print("") diff --git a/convert-falcon-hf-to-gguf.py b/convert-falcon-hf-to-gguf.py index 6ed2b88c6712c..958358563ccdc 100755 --- a/convert-falcon-hf-to-gguf.py +++ b/convert-falcon-hf-to-gguf.py @@ -55,10 +55,22 @@ def count_model_parts(dir_model: Path) -> int: def parse_args() -> argparse.Namespace: parser = argparse.ArgumentParser(description="Convert a Falcon model to a GGML compatible file") - parser.add_argument("--vocab-only", action="store_true", help="extract only the vocab") - parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input") - parser.add_argument("model", type=Path, help="directory containing model file, or model file itself (*.bin)") - parser.add_argument("ftype", type=int, help="output format - use 0 for float32, 1 for float16", choices=[0, 1], default = 1) + parser.add_argument( + "--vocab-only", action="store_true", + help="extract only the vocab", + ) + parser.add_argument( + "--outfile", type=Path, + help="path to write to; default: based on input", + ) + parser.add_argument( + "model", type=Path, + help="directory containing model file, or model file itself (*.bin)", + ) + parser.add_argument( + "ftype", type=int, choices=[0, 1], default=1, nargs='?', + help="output format - use 0 for float32, 1 for float16", + ) return parser.parse_args() args = parse_args() @@ -121,8 +133,6 @@ def parse_args() -> argparse.Namespace: print("gguf: get tokenizer metadata") tokens: list[bytearray] = [] -scores: list[float] = [] -toktypes: list[int] = [] tokenizer_json_file = dir_model / 'tokenizer.json' if not tokenizer_json_file.is_file(): @@ -137,7 +147,9 @@ def parse_args() -> argparse.Namespace: print("gguf: get gpt2 tokenizer vocab") -vocab_size = len(tokenizer_json["model"]["vocab"]) +# The number of tokens in tokenizer.json can differ from the expected vocab size. +# This causes downstream issues with mismatched tensor sizes when running the inference +vocab_size = hparams["vocab_size"] if "vocab_size" in hparams else len(tokenizer_json["model"]["vocab"]) # ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py tokenizer = AutoTokenizer.from_pretrained(dir_model) @@ -163,12 +175,8 @@ def parse_args() -> argparse.Namespace: text = bytearray(pad_token) tokens.append(text) - scores.append(0.0) # dymmy - toktypes.append(gguf.TokenType.NORMAL) # dummy gguf_writer.add_token_list(tokens) -gguf_writer.add_token_scores(scores) -gguf_writer.add_token_types(toktypes) special_vocab = gguf.SpecialVocab(dir_model, load_merges = True) special_vocab.add_to_gguf(gguf_writer) diff --git a/convert-gptneox-hf-to-gguf.py b/convert-gptneox-hf-to-gguf.py index b9c8b4607e593..782410e44f2d1 100755 --- a/convert-gptneox-hf-to-gguf.py +++ b/convert-gptneox-hf-to-gguf.py @@ -56,10 +56,22 @@ def count_model_parts(dir_model: Path) -> int: def parse_args() -> argparse.Namespace: parser = argparse.ArgumentParser(description="Convert a GPT-NeoX model to a GGML compatible file") - parser.add_argument("--vocab-only", action="store_true", help="extract only the vocab") - parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input") - parser.add_argument("model", type=Path, help="directory containing model file, or model file itself (*.bin)") - parser.add_argument("ftype", type=int, choices=[0, 1], help="output format - use 0 for float32, 1 for float16", default = 1) + parser.add_argument( + "--vocab-only", action="store_true", + help="extract only the vocab", + ) + parser.add_argument( + "--outfile", type=Path, + help="path to write to; default: based on input", + ) + parser.add_argument( + "model", type=Path, + help="directory containing model file, or model file itself (*.bin)", + ) + parser.add_argument( + "ftype", type=int, choices=[0, 1], default=1, nargs='?', + help="output format - use 0 for float32, 1 for float16", + ) return parser.parse_args() args = parse_args() diff --git a/convert-starcoder-hf-to-gguf.py b/convert-starcoder-hf-to-gguf.py new file mode 100755 index 0000000000000..48e88a777fea1 --- /dev/null +++ b/convert-starcoder-hf-to-gguf.py @@ -0,0 +1,242 @@ +#!/usr/bin/env python3 +# HF starcoder --> gguf conversion + +from __future__ import annotations + +import argparse +import json +import os +import struct +import sys +from pathlib import Path +from typing import Any + +import numpy as np +import torch +from transformers import AutoTokenizer # type: ignore[import] + +if 'NO_LOCAL_GGUF' not in os.environ: + sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf')) +import gguf + + +def bytes_to_unicode(): + # ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py + """ + Returns list of utf-8 byte and a corresponding list of unicode strings. + The reversible bpe codes work on unicode strings. + This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. + When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. + This is a significant percentage of your normal, say, 32K bpe vocab. + To avoid that, we want lookup tables between utf-8 bytes and unicode strings. + And avoids mapping to whitespace/control characters the bpe code barfs on. + """ + bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1)) + cs = bs[:] + n = 0 + for b in range(2**8): + if b not in bs: + bs.append(b) + cs.append(2**8+n) + n += 1 + return dict(zip(bs, (chr(n) for n in cs))) + + +def count_model_parts(dir_model: Path) -> int: + num_parts = 0 + for filename in os.listdir(dir_model): + if filename.startswith("pytorch_model-"): + num_parts += 1 + + if num_parts > 0: + print("gguf: found " + str(num_parts) + " model parts") + return num_parts + + +def parse_args() -> argparse.Namespace: + parser = argparse.ArgumentParser(description="Convert a StarCoder model to a GGML compatible file") + parser.add_argument("--vocab-only", action="store_true", help="extract only the vocab") + parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input") + parser.add_argument("model", type=Path, help="directory containing model file, or model file itself (*.bin)") + parser.add_argument("ftype", type=int, help="output format - use 0 for float32, 1 for float16", choices=[0, 1], default = 1) + return parser.parse_args() + +args = parse_args() + +dir_model = args.model +ftype = args.ftype +if not dir_model.is_dir(): + print(f'Error: {args.model} is not a directory', file = sys.stderr) + sys.exit(1) + +# possible tensor data types +# ftype == 0 -> float32 +# ftype == 1 -> float16 + +# map from ftype to string +ftype_str = ["f32", "f16"] + +if args.outfile is not None: + fname_out = args.outfile +else: + # output in the same directory as the model by default + fname_out = dir_model / f'ggml-model-{ftype_str[ftype]}.gguf' + +print("gguf: loading model "+dir_model.name) + +with open(dir_model / "config.json", "r", encoding="utf-8") as f: + hparams = json.load(f) + +if hparams["architectures"][0] != "GPTBigCodeForCausalLM": + print("Model architecture not supported: " + hparams["architectures"][0]) + + sys.exit(1) + +# get number of model parts +num_parts = count_model_parts(dir_model) + +ARCH=gguf.MODEL_ARCH.STARCODER +gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH]) + +print("gguf: get model metadata") + +block_count = hparams["n_layer"] + +gguf_writer.add_name("StarCoder") +gguf_writer.add_context_length(hparams["n_positions"]) +gguf_writer.add_embedding_length(hparams["n_embd"]) +gguf_writer.add_feed_forward_length(4 * hparams["n_embd"]) +gguf_writer.add_block_count(block_count) +gguf_writer.add_head_count(hparams["n_head"]) +gguf_writer.add_head_count_kv(1) +gguf_writer.add_layer_norm_eps(hparams["layer_norm_epsilon"]) +gguf_writer.add_file_type(ftype) + +# TOKENIZATION + +print("gguf: get tokenizer metadata") + +tokens: list[bytearray] = [] + +tokenizer_json_file = dir_model / 'tokenizer.json' +if not tokenizer_json_file.is_file(): + print(f'Error: Missing {tokenizer_json_file}', file = sys.stderr) + sys.exit(1) + +# gpt2 tokenizer +gguf_writer.add_tokenizer_model("gpt2") + +with open(tokenizer_json_file, "r", encoding="utf-8") as f: + tokenizer_json = json.load(f) + +print("gguf: get gpt2 tokenizer vocab") + +# The number of tokens in tokenizer.json can differ from the expected vocab size. +# This causes downstream issues with mismatched tensor sizes when running the inference +vocab_size = hparams["vocab_size"] if "vocab_size" in hparams else len(tokenizer_json["model"]["vocab"]) + +# ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py +tokenizer = AutoTokenizer.from_pretrained(dir_model) + +reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()} +byte_encoder = bytes_to_unicode() +byte_decoder = {v: k for k, v in byte_encoder.items()} + +for i in range(vocab_size): + if i in reverse_vocab: + try: + text = bytearray([byte_decoder[c] for c in reverse_vocab[i]]) + except KeyError: + text = bytearray() + for c in reverse_vocab[i]: + if ord(c) < 256: # single byte character + text.append(byte_decoder[ord(c)]) + else: # multibyte special token character + text.extend(c.encode('utf-8')) + else: + print(f"Key {i} not in tokenizer vocabulary. Padding with an arbitrary token.") + pad_token = f"[PAD{i}]".encode("utf8") + text = bytearray(pad_token) + + tokens.append(text) + +gguf_writer.add_token_list(tokens) + +special_vocab = gguf.SpecialVocab(dir_model, load_merges = True) +special_vocab.add_to_gguf(gguf_writer) + +# TENSORS + +tensor_map = gguf.get_tensor_name_map(ARCH,block_count) + +# params for qkv transform +n_head = hparams["n_head"] +n_head_kv = hparams["n_head_kv"] if "n_head_kv" in hparams else 1 + +head_dim = hparams["n_embd"] // n_head + +# tensor info +print("gguf: get tensor metadata") + +if num_parts == 0: + part_names = iter(("pytorch_model.bin",)) +else: + part_names = ( + f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1) + ) + +for part_name in part_names: + if args.vocab_only: + break + print("gguf: loading model part '" + part_name + "'") + model_part = torch.load(dir_model / part_name, map_location="cpu") + + for name in model_part.keys(): + data = model_part[name] + + old_dtype = data.dtype + + # convert any unsupported data types to float32 + if data.dtype != torch.float16 and data.dtype != torch.float32: + data = data.to(torch.float32) + + data = data.squeeze().numpy() + + # map tensor names + new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias")) + if new_name is None: + print("Can not map tensor '" + name + "'") + sys.exit() + + n_dims = len(data.shape) + data_dtype = data.dtype + + # if f32 desired, convert any float16 to float32 + if ftype == 0 and data_dtype == np.float16: + data = data.astype(np.float32) + + # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32 + if ftype == 1 and data_dtype == np.float16 and n_dims == 1: + data = data.astype(np.float32) + + # if f16 desired, convert any float32 2-dim weight tensors to float16 + if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2: + data = data.astype(np.float16) + + print(name, "=>", new_name + ", shape = " + str(data.shape) + ", " + str(old_dtype) + " --> " + str(data.dtype)) + + gguf_writer.add_tensor(new_name, data) + + +print("gguf: write header") +gguf_writer.write_header_to_file() +print("gguf: write metadata") +gguf_writer.write_kv_data_to_file() +if not args.vocab_only: + print("gguf: write tensors") + gguf_writer.write_tensors_to_file() + +gguf_writer.close() + +print(f"gguf: model successfully exported to '{fname_out}'") +print("") diff --git a/convert.py b/convert.py index 79a7cd52b71a6..8bb6c7e410852 100755 --- a/convert.py +++ b/convert.py @@ -145,7 +145,6 @@ def type_for_tensor(self, name: str, tensor: LazyTensor) -> DataType: class Params: n_vocab: int n_embd: int - n_mult: int n_layer: int n_ctx: int n_ff: int @@ -161,15 +160,6 @@ class Params: # path to the directory containing the model files path_model: Path | None = None - @staticmethod - def find_n_mult(n_ff: int, n_embd: int) -> int: - # hardcoded magic range - for n_mult in range(8192, 1, -1): - calc_ff = (((8*n_embd) // 3 + n_mult - 1) // n_mult)*n_mult - if calc_ff == n_ff: - return n_mult - raise Exception(f"failed to find n_mult for (n_ff={n_ff}, n_embd={n_embd}).") - @staticmethod def guessed(model: LazyModel) -> Params: # try transformer naming first @@ -197,7 +187,6 @@ def guessed(model: LazyModel) -> Params: return Params( n_vocab = n_vocab, n_embd = n_embd, - n_mult = n_mult, n_layer = n_layer, n_ctx = -1, n_ff = n_ff, @@ -225,8 +214,6 @@ def loadHFTransformerJson(model: LazyModel, config_path: Path) -> Params: else: f_rope_scale = None - n_mult = Params.find_n_mult(n_ff, n_embd) - if "max_sequence_length" in config: n_ctx = config["max_sequence_length"] elif "max_position_embeddings" in config: @@ -238,7 +225,6 @@ def loadHFTransformerJson(model: LazyModel, config_path: Path) -> Params: return Params( n_vocab = n_vocab, n_embd = n_embd, - n_mult = n_mult, n_layer = n_layer, n_ctx = n_ctx, n_ff = n_ff, @@ -250,7 +236,7 @@ def loadHFTransformerJson(model: LazyModel, config_path: Path) -> Params: ) # LLaMA v2 70B params.json - # {"dim": 8192, "multiple_of": 4096, "ffn_dim_multiplier": 1.3, "n_heads": 64, "n_kv_heads": 8, "n_layers": 80, "norm_eps": 1e-05, "vocab_size": -1 + # {"dim": 8192, "multiple_of": 4096, "ffn_dim_multiplier": 1.3, "n_heads": 64, "n_kv_heads": 8, "n_layers": 80, "norm_eps": 1e-05, "vocab_size": -1} @staticmethod def loadOriginalParamsJson(model: LazyModel, config_path: Path) -> Params: config = json.load(open(config_path)) @@ -258,7 +244,6 @@ def loadOriginalParamsJson(model: LazyModel, config_path: Path) -> Params: n_vocab = config["vocab_size"] if "vocab_size" in config else -1 n_embd = config["dim"] n_layer = config["n_layers"] - n_mult = config["multiple_of"] n_ff = -1 n_head = config["n_heads"] n_head_kv = config["n_kv_heads"] if "n_kv_heads" in config else n_head @@ -285,7 +270,6 @@ def loadOriginalParamsJson(model: LazyModel, config_path: Path) -> Params: return Params( n_vocab = n_vocab, n_embd = n_embd, - n_mult = n_mult, n_layer = n_layer, n_ctx = n_ctx, n_ff = n_ff, @@ -455,7 +439,7 @@ def __repr__(self) -> str: def permute(weights: NDArray, n_head: int, n_head_kv: int) -> NDArray: #print( "permute debug " + str(weights.shape[0]) + " x " + str(weights.shape[1]) + " nhead " + str(n_head) + " nheadkv " + str(n_kv_head) ) if n_head_kv is not None and n_head != n_head_kv: - n_head //= n_head_kv + n_head = n_head_kv return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:]) .swapaxes(1, 2) .reshape(weights.shape)) diff --git a/docs/BLIS.md b/docs/BLIS.md index 9b3c3060515db..f3d2312b43c75 100644 --- a/docs/BLIS.md +++ b/docs/BLIS.md @@ -48,7 +48,7 @@ make -j According to the BLIS documentation, we could set the following environment variables to modify the behavior of openmp: -``` +```bash export GOMP_GPU_AFFINITY="0-19" export BLIS_NUM_THREADS=14 ``` diff --git a/examples/CMakeLists.txt b/examples/CMakeLists.txt index 884c4276422eb..de4cf7a691768 100644 --- a/examples/CMakeLists.txt +++ b/examples/CMakeLists.txt @@ -21,9 +21,12 @@ else() add_subdirectory(benchmark) add_subdirectory(baby-llama) add_subdirectory(train-text-from-scratch) + add_subdirectory(finetune) add_subdirectory(convert-llama2c-to-ggml) add_subdirectory(simple) + add_subdirectory(batched) add_subdirectory(speculative) + add_subdirectory(parallel) add_subdirectory(embd-input) add_subdirectory(llama-bench) add_subdirectory(beam-search) @@ -33,4 +36,5 @@ else() if (LLAMA_BUILD_SERVER) add_subdirectory(server) endif() + add_subdirectory(export-lora) endif() diff --git a/examples/baby-llama/baby-llama.cpp b/examples/baby-llama/baby-llama.cpp index a99ece9a66fd1..8155101d0ab93 100644 --- a/examples/baby-llama/baby-llama.cpp +++ b/examples/baby-llama/baby-llama.cpp @@ -1,43 +1,24 @@ #include "ggml.h" +#include "train.h" + #include #include -#include +#include #include +#include +#include #if defined(_MSC_VER) #pragma warning(disable: 4244 4267) // possible loss of data #endif #ifdef LLAMA_DEFAULT_RMS_EPS -static const float rms_norm_eps = LLAMA_DEFAULT_RMS_EPS; +constexpr float rms_norm_eps = LLAMA_DEFAULT_RMS_EPS; #else -static const float rms_norm_eps = 5e-6f; +constexpr float rms_norm_eps = 5e-6f; #endif -float frand() { - return (float)rand()/(float)RAND_MAX; -} - -struct random_normal_distribution { - std::mt19937 gen; - std::normal_distribution nd; - float min; - float max; -}; - -void init_random_normal_distribution(struct random_normal_distribution * rnd, int seed, float mean, float std, float min, float max) { - rnd->gen = std::mt19937(seed); - rnd->nd = std::normal_distribution{mean, std}; - rnd->min = min; - rnd->max = max; -} - -float frand_normal(struct random_normal_distribution * rnd) { - const float r = rnd->nd(rnd->gen); - return ((r < rnd->min) ? (rnd->min) : (r > rnd->max) ? (rnd->max) : r); -} - -void ggml_graph_compute_helper(std::vector & buf, ggml_cgraph * graph, int n_threads) { +static void ggml_graph_compute_helper(std::vector & buf, ggml_cgraph * graph, int n_threads) { struct ggml_cplan plan = ggml_graph_plan(graph, n_threads); if (plan.work_size > 0) { @@ -48,13 +29,9 @@ void ggml_graph_compute_helper(std::vector & buf, ggml_cgraph * graph, ggml_graph_compute(graph, &plan); } -struct ggml_tensor * randomize_tensor( - struct ggml_tensor * tensor, - int ndims, - const int64_t ne[], - float fmin, - float fmax) { - +static struct ggml_tensor * randomize_tensor( + struct ggml_tensor * tensor, int ndims, const int64_t ne[], float fmin, float fmax +) { switch (ndims) { case 1: for (int i0 = 0; i0 < ne[0]; i0++) { @@ -90,57 +67,7 @@ struct ggml_tensor * randomize_tensor( break; default: assert(false); - }; - - return tensor; -} - -struct ggml_tensor * randomize_tensor_normal( - struct ggml_tensor * tensor, - int ndims, - const int64_t ne[], - struct random_normal_distribution * rnd) { - float scale = 1.0; // xavier - switch (ndims) { - case 1: - scale /= sqrtf(ne[0]); - for (int i0 = 0; i0 < ne[0]; i0++) { - ((float *)tensor->data)[i0] = scale * frand_normal(rnd); - } - break; - case 2: - scale /= sqrtf(ne[0]+ne[1]); - for (int i1 = 0; i1 < ne[1]; i1++) { - for (int i0 = 0; i0 < ne[0]; i0++) { - ((float *)tensor->data)[i1*ne[0] + i0] = scale * frand_normal(rnd); - } - } - break; - case 3: - scale /= sqrtf(ne[0]+ne[1]); - for (int i2 = 0; i2 < ne[2]; i2++) { - for (int i1 = 0; i1 < ne[1]; i1++) { - for (int i0 = 0; i0 < ne[0]; i0++) { - ((float *)tensor->data)[i2*ne[1]*ne[0] + i1*ne[0] + i0] = scale * frand_normal(rnd); - } - } - } - break; - case 4: - scale /= sqrtf(ne[0]+ne[1]); - for (int i3 = 0; i3 < ne[3]; i3++) { - for (int i2 = 0; i2 < ne[2]; i2++) { - for (int i1 = 0; i1 < ne[1]; i1++) { - for (int i0 = 0; i0 < ne[0]; i0++) { - ((float *)tensor->data)[i3*ne[2]*ne[1]*ne[0] + i2*ne[1]*ne[0] + i1*ne[0] + i0] = scale * frand_normal(rnd); - } - } - } - } - break; - default: - assert(false); - }; + } return tensor; } @@ -159,7 +86,7 @@ struct llama_hparams { } }; -uint32_t get_n_ff(const struct llama_hparams* hparams) { +static uint32_t get_n_ff(const struct llama_hparams* hparams) { const uint32_t n_ff = ((2*(4*hparams->n_embd)/3 + hparams->n_mult - 1)/hparams->n_mult)*hparams->n_mult; return n_ff; } @@ -260,7 +187,7 @@ struct llama_model_lora { std::vector layers; }; -void init_model(struct llama_model * model) { +static void init_model(struct llama_model * model) { const auto & hparams = model->hparams; const uint32_t n_embd = hparams.n_embd; @@ -297,7 +224,7 @@ void init_model(struct llama_model * model) { } -void init_model_lora(struct llama_model_lora * model) { +static void init_model_lora(struct llama_model_lora * model) { const auto & hparams = model->hparams; const uint32_t n_embd = hparams.n_embd; @@ -340,7 +267,7 @@ void init_model_lora(struct llama_model_lora * model) { } } -void set_param_model(struct llama_model * model) { +static void set_param_model(struct llama_model * model) { const auto& hparams = model->hparams; const uint32_t n_layer = hparams.n_layer; @@ -366,7 +293,7 @@ void set_param_model(struct llama_model * model) { } } -void set_param_model_lora(struct llama_model_lora * model) { +static void set_param_model_lora(struct llama_model_lora * model) { const auto& hparams = model->hparams; const uint32_t n_layer = hparams.n_layer; @@ -397,69 +324,75 @@ void set_param_model_lora(struct llama_model_lora * model) { } } -void randomize_model(struct llama_model * model, int seed, float mean, float std, float min, float max) { +static void randomize_model(struct llama_model * model, int seed, float mean, float std, float min, float max) { const auto & hparams = model->hparams; const uint32_t n_layer = hparams.n_layer; - struct random_normal_distribution rnd; - init_random_normal_distribution(&rnd, seed, mean, std, min, max); - randomize_tensor_normal(model->tok_embeddings, model->tok_embeddings->n_dims, model->tok_embeddings->ne, &rnd); - randomize_tensor_normal(model->norm, model->norm->n_dims, model->norm->ne, &rnd); - randomize_tensor_normal(model->output, model->output->n_dims, model->output->ne, &rnd); + struct random_normal_distribution * rnd = init_random_normal_distribution(seed, mean, std, min, max); + + randomize_tensor_normal(model->tok_embeddings , rnd); + randomize_tensor_normal(model->norm , rnd); + randomize_tensor_normal(model->output , rnd); for (uint32_t i = 0; i < n_layer; ++i) { auto & layer = model->layers[i]; - randomize_tensor_normal(layer.attention_norm, layer.attention_norm->n_dims, layer.attention_norm->ne, &rnd); + randomize_tensor_normal(layer.attention_norm, rnd); - randomize_tensor_normal(layer.wq, layer.wq->n_dims, layer.wq->ne, &rnd); - randomize_tensor_normal(layer.wk, layer.wk->n_dims, layer.wk->ne, &rnd); - randomize_tensor_normal(layer.wv, layer.wv->n_dims, layer.wv->ne, &rnd); - randomize_tensor_normal(layer.wo, layer.wo->n_dims, layer.wo->ne, &rnd); + randomize_tensor_normal(layer.wq, rnd); + randomize_tensor_normal(layer.wk, rnd); + randomize_tensor_normal(layer.wv, rnd); + randomize_tensor_normal(layer.wo, rnd); - randomize_tensor_normal(layer.ffn_norm, layer.ffn_norm->n_dims, layer.ffn_norm->ne, &rnd); + randomize_tensor_normal(layer.ffn_norm, rnd); - randomize_tensor_normal(layer.w1, layer.w1->n_dims, layer.w1->ne, &rnd); - randomize_tensor_normal(layer.w2, layer.w2->n_dims, layer.w2->ne, &rnd); - randomize_tensor_normal(layer.w3, layer.w3->n_dims, layer.w3->ne, &rnd); + randomize_tensor_normal(layer.w1, rnd); + randomize_tensor_normal(layer.w2, rnd); + randomize_tensor_normal(layer.w3, rnd); } + + free_random_normal_distribution(rnd); } -void randomize_model_lora(struct llama_model_lora * model, int seed, float mean, float std, float min, float max) { +static void randomize_model_lora( + struct llama_model_lora * model, int seed, float mean, float std, float min, float max +) { const auto & hparams = model->hparams; const uint32_t n_layer = hparams.n_layer; - struct random_normal_distribution rnd; - init_random_normal_distribution(&rnd, seed, mean, std, min, max); - randomize_tensor_normal(model->tok_embeddings, model->tok_embeddings->n_dims, model->tok_embeddings->ne, &rnd); - randomize_tensor_normal(model->norm, model->norm->n_dims, model->norm->ne, &rnd); - randomize_tensor_normal(model->outputa, model->outputa->n_dims, model->outputa->ne, &rnd); - randomize_tensor_normal(model->outputb, model->outputb->n_dims, model->outputb->ne, &rnd); + struct random_normal_distribution * rnd = init_random_normal_distribution(seed, mean, std, min, max); + + randomize_tensor_normal(model->tok_embeddings, rnd); + randomize_tensor_normal(model->norm , rnd); + randomize_tensor_normal(model->outputa , rnd); + randomize_tensor_normal(model->outputb , rnd); for (uint32_t i = 0; i < n_layer; ++i) { auto & layer = model->layers[i]; - randomize_tensor_normal(layer.attention_norm, layer.attention_norm->n_dims, layer.attention_norm->ne, &rnd); - - randomize_tensor_normal(layer.wqa, layer.wqa->n_dims, layer.wqa->ne, &rnd); - randomize_tensor_normal(layer.wqb, layer.wqb->n_dims, layer.wqb->ne, &rnd); - randomize_tensor_normal(layer.wka, layer.wka->n_dims, layer.wka->ne, &rnd); - randomize_tensor_normal(layer.wkb, layer.wkb->n_dims, layer.wkb->ne, &rnd); - randomize_tensor_normal(layer.wva, layer.wva->n_dims, layer.wva->ne, &rnd); - randomize_tensor_normal(layer.wvb, layer.wvb->n_dims, layer.wvb->ne, &rnd); - randomize_tensor_normal(layer.woa, layer.woa->n_dims, layer.woa->ne, &rnd); - randomize_tensor_normal(layer.wob, layer.wob->n_dims, layer.wob->ne, &rnd); - - randomize_tensor_normal(layer.ffn_norm, layer.ffn_norm->n_dims, layer.ffn_norm->ne, &rnd); - - randomize_tensor_normal(layer.w1, layer.w1->n_dims, layer.w1->ne, &rnd); - randomize_tensor_normal(layer.w2, layer.w2->n_dims, layer.w2->ne, &rnd); - randomize_tensor_normal(layer.w3, layer.w3->n_dims, layer.w3->ne, &rnd); + randomize_tensor_normal(layer.attention_norm, rnd); + + randomize_tensor_normal(layer.wqa, rnd); + randomize_tensor_normal(layer.wqb, rnd); + randomize_tensor_normal(layer.wka, rnd); + randomize_tensor_normal(layer.wkb, rnd); + randomize_tensor_normal(layer.wva, rnd); + randomize_tensor_normal(layer.wvb, rnd); + randomize_tensor_normal(layer.woa, rnd); + randomize_tensor_normal(layer.wob, rnd); + + randomize_tensor_normal(layer.ffn_norm, rnd); + + randomize_tensor_normal(layer.w1, rnd); + randomize_tensor_normal(layer.w2, rnd); + randomize_tensor_normal(layer.w3, rnd); } + + free_random_normal_distribution(rnd); } -bool init_kv_cache(struct llama_kv_cache* cache, struct llama_model * model, int n_batch) { +static void init_kv_cache(struct llama_kv_cache* cache, struct llama_model * model, int n_batch) { const auto & hparams = model->hparams; const uint32_t n_ctx = hparams.n_ctx; @@ -485,17 +418,15 @@ bool init_kv_cache(struct llama_kv_cache* cache, struct llama_model * model, int if (!cache->ctx) { fprintf(stderr, "%s: failed to allocate memory for kv cache\n", __func__); - return false; + exit(1); } } cache->k = ggml_new_tensor_1d(cache->ctx, GGML_TYPE_F32, n_elements); cache->v = ggml_new_tensor_1d(cache->ctx, GGML_TYPE_F32, n_elements); - - return true; } -bool init_kv_cache_lora(struct llama_kv_cache* cache, struct llama_model_lora * model, int n_batch) { +static bool init_kv_cache_lora(struct llama_kv_cache* cache, struct llama_model_lora * model, int n_batch) { const auto & hparams = model->hparams; const uint32_t n_ctx = hparams.n_ctx; @@ -531,15 +462,15 @@ bool init_kv_cache_lora(struct llama_kv_cache* cache, struct llama_model_lora * return true; } -struct ggml_tensor * forward( - struct llama_model * model, - struct llama_kv_cache * cache, - struct ggml_context * ctx0, - struct ggml_cgraph * gf, - struct ggml_tensor * tokens_input, - const int n_tokens, - const int n_past) { - +static struct ggml_tensor * forward( + struct llama_model * model, + struct llama_kv_cache * cache, + struct ggml_context * ctx0, + struct ggml_cgraph * gf, + struct ggml_tensor * tokens_input, + const int n_tokens, + const int n_past +) { const int N = n_tokens; struct llama_kv_cache& kv_self = *cache; @@ -556,6 +487,14 @@ struct ggml_tensor * forward( struct ggml_tensor * kc = kv_self.k; struct ggml_tensor * vc = kv_self.v; + struct ggml_tensor * KQ_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N); + { + int * data = (int *) KQ_pos->data; + for (int i = 0; i < N; ++i) { + data[i] = n_past + i; + } + } + // inpL shape [n_embd,N,1,1] struct ggml_tensor * inpL = ggml_get_rows(ctx0, model->tok_embeddings, tokens); for (int il = 0; il < n_layer; ++il) { @@ -583,8 +522,8 @@ struct ggml_tensor * forward( // wk shape [n_embd, n_embd, 1, 1] // Qcur shape [n_embd/n_head, n_head, N, 1] // Kcur shape [n_embd/n_head, n_head, N, 1] - struct ggml_tensor * Qcur = ggml_rope(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wq, cur), n_embd/n_head, n_head, N), n_past, n_rot, 0, 0); - struct ggml_tensor * Kcur = ggml_rope(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wk, cur), n_embd/n_head, n_head, N), n_past, n_rot, 0, 0); + struct ggml_tensor * Qcur = ggml_rope(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wq, cur), n_embd/n_head, n_head, N), KQ_pos, n_rot, 0, 0); + struct ggml_tensor * Kcur = ggml_rope(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wk, cur), n_embd/n_head, n_head, N), KQ_pos, n_rot, 0, 0); // store key and value to memory { @@ -756,42 +695,16 @@ struct ggml_tensor * forward( return inpL; } -void assert_shape_1d(struct ggml_tensor * tensor, int64_t ne0) { - GGML_ASSERT(tensor->n_dims == 1); - GGML_ASSERT(tensor->ne[0] == ne0); -} - -void assert_shape_2d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1) { - GGML_ASSERT(tensor->n_dims == 2); - GGML_ASSERT(tensor->ne[0] == ne0); - GGML_ASSERT(tensor->ne[1] == ne1); -} - -void assert_shape_3d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1, int64_t ne2) { - GGML_ASSERT(tensor->n_dims == 3); - GGML_ASSERT(tensor->ne[0] == ne0); - GGML_ASSERT(tensor->ne[1] == ne1); - GGML_ASSERT(tensor->ne[2] == ne2); -} - -void assert_shape_4d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) { - GGML_ASSERT(tensor->n_dims == 4); - GGML_ASSERT(tensor->ne[0] == ne0); - GGML_ASSERT(tensor->ne[1] == ne1); - GGML_ASSERT(tensor->ne[2] == ne2); - GGML_ASSERT(tensor->ne[3] == ne3); -} - -struct ggml_tensor * forward_batch( - struct llama_model * model, - struct llama_kv_cache * cache, - struct ggml_context * ctx0, - struct ggml_cgraph * gf, - struct ggml_tensor * tokens_input, - const int n_tokens, - const int n_past, - const int n_batch) { - +static struct ggml_tensor * forward_batch( + struct llama_model * model, + struct llama_kv_cache * cache, + struct ggml_context * ctx0, + struct ggml_cgraph * gf, + struct ggml_tensor * tokens_input, + const int n_tokens, + const int n_past, + const int n_batch +) { const int N = n_tokens; struct llama_kv_cache& kv_self = *cache; @@ -810,9 +723,18 @@ struct ggml_tensor * forward_batch( struct ggml_tensor * kc = kv_self.k; struct ggml_tensor * vc = kv_self.v; + struct ggml_tensor * KQ_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N); + { + int * data = (int *) KQ_pos->data; + for (int i = 0; i < N; ++i) { + data[i] = n_past + i; + } + } + // inpL shape [n_embd,N*n_batch,1] struct ggml_tensor * inpL = ggml_get_rows(ctx0, model->tok_embeddings, tokens); assert_shape_2d(inpL, n_embd, N*n_batch); + for (int il = 0; il < n_layer; ++il) { struct ggml_tensor * inpSA = inpL; @@ -840,8 +762,8 @@ struct ggml_tensor * forward_batch( // wk shape [n_embd, n_embd, 1, 1] // Qcur shape [n_embd/n_head, n_head, N, n_batch] // Kcur shape [n_embd/n_head, n_head, N, n_batch] - struct ggml_tensor * Qcur = ggml_rope(ctx0, ggml_reshape_4d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wq, cur), n_embd/n_head, n_head, N, n_batch), n_past, n_rot, 0, 0); - struct ggml_tensor * Kcur = ggml_rope(ctx0, ggml_reshape_4d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wk, cur), n_embd/n_head, n_head, N, n_batch), n_past, n_rot, 0, 0); + struct ggml_tensor * Qcur = ggml_rope(ctx0, ggml_reshape_4d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wq, cur), n_embd/n_head, n_head, N, n_batch), KQ_pos, n_rot, 0, 0); + struct ggml_tensor * Kcur = ggml_rope(ctx0, ggml_reshape_4d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wk, cur), n_embd/n_head, n_head, N, n_batch), KQ_pos, n_rot, 0, 0); assert_shape_4d(Qcur, n_embd/n_head, n_head, N, n_batch); assert_shape_4d(Kcur, n_embd/n_head, n_head, N, n_batch); @@ -1073,16 +995,15 @@ struct ggml_tensor * forward_batch( return inpL; } - -struct ggml_tensor * forward_lora( - struct llama_model_lora * model, - struct llama_kv_cache * cache, - struct ggml_context * ctx0, - struct ggml_cgraph * gf, - struct ggml_tensor * tokens_input, - const int n_tokens, - const int n_past) { - +static struct ggml_tensor * forward_lora( + struct llama_model_lora * model, + struct llama_kv_cache * cache, + struct ggml_context * ctx0, + struct ggml_cgraph * gf, + struct ggml_tensor * tokens_input, + const int n_tokens, + const int n_past +) { const int N = n_tokens; struct llama_kv_cache& kv_self = *cache; @@ -1100,6 +1021,14 @@ struct ggml_tensor * forward_lora( struct ggml_tensor * kc = kv_self.k; struct ggml_tensor * vc = kv_self.v; + struct ggml_tensor * KQ_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N); + { + int * data = (int *) KQ_pos->data; + for (int i = 0; i < N; ++i) { + data[i] = n_past + i; + } + } + // inpL shape [n_embd,N,1,1] struct ggml_tensor * inpL = ggml_get_rows(ctx0, model->tok_embeddings, tokens); for (int il = 0; il < n_layer; ++il) { @@ -1133,7 +1062,7 @@ struct ggml_tensor * forward_lora( model->layers[il].wqb, cur)), n_embd/n_head, n_head, N), - n_past, n_rot, 0, 0); + KQ_pos, n_rot, 0, 0); struct ggml_tensor * Kcur = ggml_rope(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, @@ -1142,7 +1071,7 @@ struct ggml_tensor * forward_lora( model->layers[il].wkb, cur)), n_embd/n_head, n_head, N), - n_past, n_rot, 0, 0); + KQ_pos, n_rot, 0, 0); // store key and value to memory { @@ -1328,7 +1257,7 @@ struct ggml_tensor * forward_lora( return inpL; } -void sample_softmax(struct ggml_tensor * logits, struct ggml_tensor * probs, struct ggml_tensor * best_samples) { +static void sample_softmax(struct ggml_tensor * logits, struct ggml_tensor * probs, struct ggml_tensor * best_samples) { assert(logits->n_dims == 2); assert(probs->n_dims == 2); assert(best_samples->n_dims == 1); @@ -1359,7 +1288,10 @@ void sample_softmax(struct ggml_tensor * logits, struct ggml_tensor * probs, str } } -void sample_softmax_batch(struct ggml_context * ctx, struct ggml_tensor * logits, struct ggml_tensor * probs, struct ggml_tensor * best_samples) { +static void sample_softmax_batch( + struct ggml_context * ctx, struct ggml_tensor * logits, struct ggml_tensor * probs, + struct ggml_tensor * best_samples +) { GGML_ASSERT(best_samples->n_dims == 2); GGML_ASSERT(logits->n_dims == 3); GGML_ASSERT(probs->n_dims == 3); @@ -1393,7 +1325,7 @@ void sample_softmax_batch(struct ggml_context * ctx, struct ggml_tensor * logits } } -void print_row(struct ggml_tensor * probs, int i) { +static void print_row(struct ggml_tensor * probs, int i) { for (int k = 0; k < probs->ne[0]; ++k) { float p = ggml_get_f32_1d(probs, i*probs->ne[0] + k); printf(" %.2f", p); @@ -1401,7 +1333,7 @@ void print_row(struct ggml_tensor * probs, int i) { printf("\n"); } -void print_matrix(struct ggml_tensor * probs) { +static void print_matrix(struct ggml_tensor * probs) { assert(probs->n_dims == 2); for (int i = 0; i < probs->ne[1]; ++i) { for (int k = 0; k < probs->ne[0]; ++k) { @@ -1412,7 +1344,7 @@ void print_matrix(struct ggml_tensor * probs) { } } -void print_token(int token, int n_vocab) { +static void print_token(int token, int n_vocab) { for (int k = 0; k < token; ++k) { printf(" "); } @@ -1423,14 +1355,14 @@ void print_token(int token, int n_vocab) { printf("\n"); } -void print_tokens(struct ggml_tensor * tokens, int n_vocab) { +static void print_tokens(struct ggml_tensor * tokens, int n_vocab) { for (int i=0; ine[0]; ++i) { int token = ggml_get_i32_1d(tokens, i); print_token(token, n_vocab); } } -void get_example_targets(int example_id, struct ggml_tensor * tokens_input, struct ggml_tensor * targets) { +static void get_example_targets(int example_id, struct ggml_tensor * tokens_input, struct ggml_tensor * targets) { int n_tokens = tokens_input->ne[0]; int n_vocab = targets->ne[0]; float randomness = 0.0f; @@ -1451,7 +1383,9 @@ void get_example_targets(int example_id, struct ggml_tensor * tokens_input, stru } } -void get_example_targets_batch(struct ggml_context * ctx, int example_id, struct ggml_tensor * tokens_input, struct ggml_tensor * targets) { +static void get_example_targets_batch( + struct ggml_context * ctx, int example_id, struct ggml_tensor * tokens_input, struct ggml_tensor * targets +) { GGML_ASSERT(tokens_input->n_dims == 2); GGML_ASSERT( targets->n_dims == 3); int n_tokens = tokens_input->ne[0]; @@ -1474,7 +1408,7 @@ void get_example_targets_batch(struct ggml_context * ctx, int example_id, struct } } -void lshift_examples(struct ggml_tensor * tokens_input, struct ggml_tensor * targets, int n_shift) { +static void lshift_examples(struct ggml_tensor * tokens_input, struct ggml_tensor * targets, int n_shift) { int n_tokens = tokens_input->ne[0]; int n_vocab = targets->ne[0]; for (int i=0; i +#include +#include +#include +#include + +int main(int argc, char ** argv) { + gpt_params params; + + if (argc == 1 || argv[1][0] == '-') { + printf("usage: %s MODEL_PATH [PROMPT] [PARALLEL]\n" , argv[0]); + return 1 ; + } + + int n_parallel = 1; + + if (argc >= 2) { + params.model = argv[1]; + } + + if (argc >= 3) { + params.prompt = argv[2]; + } + + if (argc >= 4) { + n_parallel = std::atoi(argv[3]); + } + + if (params.prompt.empty()) { + params.prompt = "Hello my name is"; + } + + // total length of the sequences including the prompt + const int n_len = 32; + + // init LLM + + llama_backend_init(params.numa); + + // initialize the model + + llama_model_params model_params = llama_model_default_params(); + + // model_params.n_gpu_layers = 99; // offload all layers to the GPU + + llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params); + + if (model == NULL) { + fprintf(stderr , "%s: error: unable to load model\n" , __func__); + return 1; + } + + // tokenize the prompt + + std::vector tokens_list; + tokens_list = ::llama_tokenize(model, params.prompt, true); + const int n_kv_req = tokens_list.size() + (n_len - tokens_list.size())*n_parallel; + + // initialize the context + + llama_context_params ctx_params = llama_context_default_params(); + + ctx_params.seed = 1234; + ctx_params.n_ctx = n_kv_req; + ctx_params.n_batch = std::max(n_len, n_parallel); + ctx_params.n_threads = params.n_threads; + ctx_params.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch; + + llama_context * ctx = llama_new_context_with_model(model, ctx_params); + + if (ctx == NULL) { + fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__); + return 1; + } + + const int n_ctx = llama_n_ctx(ctx); + + LOG_TEE("\n%s: n_len = %d, n_ctx = %d, n_batch = %d, n_parallel = %d, n_kv_req = %d\n", __func__, n_len, n_ctx, ctx_params.n_batch, n_parallel, n_kv_req); + + // make sure the KV cache is big enough to hold all the prompt and generated tokens + if (n_kv_req > n_ctx) { + LOG_TEE("%s: error: n_kv_req (%d) > n_ctx, the required KV cache size is not big enough\n", __func__, n_kv_req); + LOG_TEE("%s: either reduce n_parallel or increase n_ctx\n", __func__); + return 1; + } + + // print the prompt token-by-token + + fprintf(stderr, "\n"); + + for (auto id : tokens_list) { + fprintf(stderr, "%s", llama_token_to_piece(ctx, id).c_str()); + } + + fflush(stderr); + + // create a llama_batch with size 512 + // we use this object to submit token data for decoding + + llama_batch batch = llama_batch_init(std::max(tokens_list.size(), (size_t)n_parallel), 0); + + // evaluate the initial prompt + batch.n_tokens = tokens_list.size(); + + for (int32_t i = 0; i < batch.n_tokens; i++) { + batch.token[i] = tokens_list[i]; + batch.pos[i] = i; + batch.seq_id[i] = 0; + batch.logits[i] = false; + } + + // llama_decode will output logits only for the last token of the prompt + batch.logits[batch.n_tokens - 1] = true; + + if (llama_decode(ctx, batch) != 0) { + LOG_TEE("%s: llama_decode() failed\n", __func__); + return 1; + } + + // assign the system KV cache to all parallel sequences + // this way, the parallel sequences will "reuse" the prompt tokens without having to copy them + for (int32_t i = 1; i < n_parallel; ++i) { + llama_kv_cache_seq_cp(ctx, 0, i, 0, batch.n_tokens); + } + + if (n_parallel > 1) { + LOG_TEE("\n\n%s: generating %d sequences ...\n", __func__, n_parallel); + } + + // main loop + + // we will store the parallel decoded sequences in this vector + std::vector streams(n_parallel); + + // remember the batch index of the last token for each parallel sequence + // we need this to determine which logits to sample from + std::vector i_batch(n_parallel, batch.n_tokens - 1); + + int n_cur = batch.n_tokens; + int n_decode = 0; + + const auto t_main_start = ggml_time_us(); + + while (n_cur <= n_len) { + // prepare the next batch + batch.n_tokens = 0; + + // sample the next token for each parallel sequence / stream + for (int32_t i = 0; i < n_parallel; ++i) { + if (i_batch[i] < 0) { + // the stream has already finished + continue; + } + + auto n_vocab = llama_n_vocab(model); + auto * logits = llama_get_logits_ith(ctx, i_batch[i]); + + std::vector candidates; + candidates.reserve(n_vocab); + + for (llama_token token_id = 0; token_id < n_vocab; token_id++) { + candidates.emplace_back(llama_token_data{ token_id, logits[token_id], 0.0f }); + } + + llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false }; + + const int top_k = 40; + const float top_p = 0.9f; + const float temp = 0.4f; + + llama_sample_top_k(ctx, &candidates_p, top_k, 1); + llama_sample_top_p(ctx, &candidates_p, top_p, 1); + llama_sample_temp (ctx, &candidates_p, temp); + + const llama_token new_token_id = llama_sample_token(ctx, &candidates_p); + + //const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p); + + // is it an end of stream? -> mark the stream as finished + if (new_token_id == llama_token_eos(ctx) || n_cur == n_len) { + i_batch[i] = -1; + LOG_TEE("\n"); + if (n_parallel > 1) { + LOG_TEE("%s: stream %d finished at n_cur = %d", __func__, i, n_cur); + } + + continue; + } + + // if there is only one stream, we print immediately to stdout + if (n_parallel == 1) { + LOG_TEE("%s", llama_token_to_piece(ctx, new_token_id).c_str()); + fflush(stdout); + } + + streams[i] += llama_token_to_piece(ctx, new_token_id); + + // push this new token for next evaluation + batch.token [batch.n_tokens] = new_token_id; + batch.pos [batch.n_tokens] = n_cur; + batch.seq_id[batch.n_tokens] = i; + batch.logits[batch.n_tokens] = true; + + i_batch[i] = batch.n_tokens; + + batch.n_tokens += 1; + + n_decode += 1; + } + + // all streams are finished + if (batch.n_tokens == 0) { + break; + } + + n_cur += 1; + + // evaluate the current batch with the transformer model + if (llama_decode(ctx, batch)) { + fprintf(stderr, "%s : failed to eval, return code %d\n", __func__, 1); + return 1; + } + } + + LOG_TEE("\n"); + + if (n_parallel > 1) { + LOG_TEE("\n"); + + for (int32_t i = 0; i < n_parallel; ++i) { + LOG_TEE("sequence %d:\n\n%s%s\n\n", i, params.prompt.c_str(), streams[i].c_str()); + } + } + + const auto t_main_end = ggml_time_us(); + + LOG_TEE("%s: decoded %d tokens in %.2f s, speed: %.2f t/s\n", + __func__, n_decode, (t_main_end - t_main_start) / 1000000.0f, n_decode / ((t_main_end - t_main_start) / 1000000.0f)); + + llama_print_timings(ctx); + + fprintf(stderr, "\n"); + + llama_batch_free(batch); + + llama_free(ctx); + llama_free_model(model); + + llama_backend_free(); + + return 0; +} diff --git a/examples/beam-search/CMakeLists.txt b/examples/beam-search/CMakeLists.txt index e44a749759749..f0e37468b1030 100644 --- a/examples/beam-search/CMakeLists.txt +++ b/examples/beam-search/CMakeLists.txt @@ -3,6 +3,3 @@ add_executable(${TARGET} beam-search.cpp) install(TARGETS ${TARGET} RUNTIME) target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT}) target_compile_features(${TARGET} PRIVATE cxx_std_11) -if(TARGET BUILD_INFO) - add_dependencies(${TARGET} BUILD_INFO) -endif() diff --git a/examples/beam-search/beam-search.cpp b/examples/beam-search/beam-search.cpp index 6b31aea78823e..f078ab8a87fa5 100644 --- a/examples/beam-search/beam-search.cpp +++ b/examples/beam-search/beam-search.cpp @@ -1,6 +1,5 @@ #include "common.h" #include "llama.h" -#include "build-info.h" #include #include @@ -30,7 +29,8 @@ struct ostream_beam_view { llama_context * ctx; llama_beam_view beam_view; }; -std::ostream& operator<<(std::ostream& os, const ostream_beam_view & obv) { + +static std::ostream & operator<<(std::ostream & os, const ostream_beam_view & obv) { os << "p(" << obv.beam_view.p << ") eob(" << std::boolalpha << obv.beam_view.eob << ") tokens("; for (size_t i = 0 ; i < obv.beam_view.n_tokens ; ++i) { os << llama_token_to_piece(obv.ctx, obv.beam_view.tokens[i]); @@ -46,7 +46,7 @@ struct beam_search_callback_data { // In this case, end-of-beam (eob) is equivalent to end-of-sentence (eos) but this need not always be the same. // For example, eob can be flagged due to maximum token length, stop words, etc. -bool is_at_eob(const beam_search_callback_data & callback_data, const llama_token * tokens, const size_t n_tokens) { +static bool is_at_eob(const beam_search_callback_data & callback_data, const llama_token * tokens, size_t n_tokens) { return n_tokens && tokens[n_tokens-1] == llama_token_eos(callback_data.ctx); } @@ -56,7 +56,7 @@ bool is_at_eob(const beam_search_callback_data & callback_data, const llama_toke // * When all beams converge to a common prefix, they are made available in beams_state.beams[0]. // This is also called when the stop condition is met. // Collect tokens into std::vector response which is pointed to by callback_data. -void beam_search_callback(void * callback_data_ptr, llama_beams_state beams_state) { +static void beam_search_callback(void * callback_data_ptr, llama_beams_state beams_state) { auto& callback_data = *static_cast(callback_data_ptr); // Mark beams as EOS as needed. for (size_t i = 0 ; i < beams_state.n_beams ; ++i) { @@ -158,8 +158,9 @@ int main(int argc, char ** argv) } std::cout << std::flush; - int n_past = llama_get_kv_cache_token_count(ctx); - if (llama_eval(ctx, tokens_list.data(), tokens_list.size(), n_past, params.n_threads)) + int n_past = 0; + + if (llama_decode(ctx, llama_batch_get_one(tokens_list.data(), tokens_list.size(), n_past, 0))) { fprintf(stderr, "%s : failed to eval prompt.\n" , __func__ ); return 1; @@ -169,7 +170,7 @@ int main(int argc, char ** argv) beam_search_callback_data callback_data{ctx, {}}; size_t const beam_width = static_cast(params.n_beams); int const n_predict = 256; - llama_beam_search(ctx, beam_search_callback, &callback_data, beam_width, n_past, n_predict, params.n_threads); + llama_beam_search(ctx, beam_search_callback, &callback_data, beam_width, n_past, n_predict); std::cout << "\n\n"; for (llama_token const token_id : callback_data.response) { diff --git a/examples/benchmark/CMakeLists.txt b/examples/benchmark/CMakeLists.txt index 3f3415350919c..14916d8313463 100644 --- a/examples/benchmark/CMakeLists.txt +++ b/examples/benchmark/CMakeLists.txt @@ -1,7 +1,8 @@ set(TARGET benchmark) add_executable(${TARGET} benchmark-matmult.cpp) install(TARGETS ${TARGET} RUNTIME) -target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT}) +target_link_libraries(${TARGET} PRIVATE llama ${CMAKE_THREAD_LIBS_INIT}) +target_include_directories(${TARGET} PRIVATE ../../common) target_compile_features(${TARGET} PRIVATE cxx_std_11) if(TARGET BUILD_INFO) add_dependencies(${TARGET} BUILD_INFO) diff --git a/examples/benchmark/benchmark-matmult.cpp b/examples/benchmark/benchmark-matmult.cpp index f7215f43bb31c..f1c382aa9b955 100644 --- a/examples/benchmark/benchmark-matmult.cpp +++ b/examples/benchmark/benchmark-matmult.cpp @@ -1,5 +1,6 @@ -#include "ggml.h" #include "build-info.h" +#include "common.h" +#include "ggml.h" #include #include @@ -20,7 +21,7 @@ #pragma warning(disable: 4244 4267) // possible loss of data #endif -void ggml_graph_compute_helper(std::vector & buf, ggml_cgraph * graph, int n_threads) { +static void ggml_graph_compute_helper(std::vector & buf, ggml_cgraph * graph, int n_threads) { struct ggml_cplan plan = ggml_graph_plan(graph, n_threads); if (plan.work_size > 0) { @@ -31,19 +32,19 @@ void ggml_graph_compute_helper(std::vector & buf, ggml_cgraph * graph, ggml_graph_compute(graph, &plan); } -float tensor_sum_elements(const ggml_tensor * tensor) { - float sum = 0; - if (tensor->type==GGML_TYPE_F32) { +static float tensor_sum_elements(const ggml_tensor * tensor) { + double sum = 0; + if (tensor->type == GGML_TYPE_F32) { for (int j = 0; j < tensor->ne[1]; j++) { for (int k = 0; k < tensor->ne[0]; k++) { - sum += ((float *) tensor->data)[j*tensor->ne[0]+k]; + sum += ((float *) tensor->data)[j*tensor->ne[0] + k]; } } } return sum; } -void tensor_dump(const ggml_tensor * tensor, const char * name) { +static void tensor_dump(const ggml_tensor * tensor, const char * name) { printf("%15s: type = %i (%5s) ne = %5" PRIi64 " x %5" PRIi64 " x %5" PRIi64 ", nb = (%5zi, %5zi, %5zi) - ", name, tensor->type, ggml_type_name(tensor->type), tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->nb[0], tensor->nb[1], tensor->nb[2]); @@ -58,7 +59,7 @@ struct benchmark_params_struct { int32_t n_iterations = 10; }; -void print_usage(int /*argc*/, char ** argv, struct benchmark_params_struct params) { +static void print_usage(int /*argc*/, char ** argv, struct benchmark_params_struct params) { fprintf(stderr, "usage: %s [options]\n", argv[0]); fprintf(stderr, "\n"); fprintf(stderr, "options:\n"); @@ -99,7 +100,7 @@ int main(int argc, char ** argv) { exit(1); } - fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT); + print_build_info(); printf("Starting Test\n"); // create the ggml context @@ -125,12 +126,15 @@ int main(int argc, char ** argv) { //printf("Memsize required = %i\n", sizex*sizex); + // TODO: perform the bench for all types or for a user specified type + const ggml_type qtype = GGML_TYPE_Q4_1; + size_t ctx_size = 0; ctx_size += sizex*sizey*ggml_type_sizef(GGML_TYPE_F32); ctx_size += sizex*sizey*ggml_type_sizef(GGML_TYPE_F32); ctx_size += sizex*sizez*ggml_type_sizef(GGML_TYPE_F32); - ctx_size += sizex*sizey*ggml_type_sizef(GGML_TYPE_Q4_0); - ctx_size += sizex*sizey*ggml_type_sizef(GGML_TYPE_Q4_0); + ctx_size += sizex*sizey*ggml_type_sizef(qtype); + ctx_size += sizex*sizey*ggml_type_sizef(qtype); ctx_size += sizex*sizey*ggml_type_sizef(GGML_TYPE_F32); // BLAS ctx_size += sizex*sizey*ggml_type_sizef(GGML_TYPE_F32); // BLAS ctx_size += 1024*1024*16; @@ -163,7 +167,7 @@ int main(int argc, char ** argv) { struct ggml_tensor * m2 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, sizex, sizez); ggml_set_f32(m2, 2.0f); - printf("\n------ Test 1 - Matrix Mult via F32 code ------------------------------------------------------------------------------\n"); + printf("\n------ Test 1 - Matrix Mult via F32 code\n"); // printf("Creating new tensor m11xm2\n"); struct ggml_tensor * m11xm2 = ggml_mul_mat(ctx, m11, m2); @@ -181,17 +185,16 @@ int main(int argc, char ** argv) { TENSOR_DUMP(gf.nodes[0]); - printf("\n------ Test 2 - Matrix Mult via Q4_0 code ------------------------------------------------------------------------------\n"); + printf("\n------ Test 2 - Matrix Mult via %s code\n", ggml_type_name(qtype)); int32_t nelements = sizex*sizey; - int32_t ne[2] = { sizex, sizey }; std::vector hist_cur(1 << 4, 0); // Set up a the benchmark matrices // printf("Creating new tensor q11 & Running quantize\n"); - struct ggml_tensor * q11 = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, sizex, sizey); - ggml_quantize_q4_0((const float *) m11->data, q11->data, nelements, ne[0], hist_cur.data()); + struct ggml_tensor * q11 = ggml_new_tensor_2d(ctx, qtype, sizex, sizey); + ggml_quantize_chunk(qtype, (const float *) m11->data, q11->data, 0, nelements, hist_cur.data()); // Set up a the compute graph // printf("Creating new tensor q31\n"); @@ -202,8 +205,8 @@ int main(int argc, char ** argv) { // Set up a second graph computation to make sure we override the CPU cache lines // printf("Creating new tensor q12 & Running quantize\n"); - struct ggml_tensor * q12 = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, sizex, sizey); - ggml_quantize_q4_0((const float *) m12->data, q12->data, nelements, ne[0], hist_cur.data()); + struct ggml_tensor * q12 = ggml_new_tensor_2d(ctx, qtype, sizex, sizey); + ggml_quantize_chunk(qtype, (const float *) m12->data, q12->data, 0, nelements, hist_cur.data()); // printf("Creating new tensor q32\n"); struct ggml_tensor * q32 = ggml_mul_mat(ctx, q12, m2); @@ -220,7 +223,7 @@ int main(int argc, char ** argv) { printf("Matrix Multiplication of (%i,%i,%i) x (%i,%i,%i) - about %6.2f gFLOPS\n\n", sizex, sizey, 1, sizex, sizez, 1, 1.0f*flops_per_matrix / 1000 / 1000 / 1000); - // Let's use the F32 result from above as a reference for the q4_0 multiplication + // Let's use the F32 result from above as a reference for the quantized multiplication float sum_of_F32_reference = tensor_sum_elements(gf.nodes[0]); printf("Iteration;NThreads; SizeX; SizeY; SizeZ; Required_FLOPS; Elapsed_u_Seconds; gigaFLOPS\n"); @@ -250,7 +253,7 @@ int main(int argc, char ** argv) { // Check that the matrix multiplication result is in the right ballpark // We cannot use the exact value from the F32 multiplication because the quantizuation will be slightly different float sum_of_Q4_result = tensor_sum_elements(gf31.nodes[0]); - float delta = abs(sum_of_Q4_result - sum_of_F32_reference); + float delta = std::abs(sum_of_Q4_result - sum_of_F32_reference); float allowed_delta = (sum_of_F32_reference) / 1000 / 1000; // Let's accept an epsilon of 10^-6 if (delta > allowed_delta) { diff --git a/examples/convert-llama2c-to-ggml/convert-llama2c-to-ggml.cpp b/examples/convert-llama2c-to-ggml/convert-llama2c-to-ggml.cpp index 293b455d093c3..c291f0adf20e1 100644 --- a/examples/convert-llama2c-to-ggml/convert-llama2c-to-ggml.cpp +++ b/examples/convert-llama2c-to-ggml/convert-llama2c-to-ggml.cpp @@ -115,7 +115,7 @@ struct TransformerWeights { } }; -void malloc_weights(TransformerWeights* w, Config* p, bool shared_weights) { +static void malloc_weights(TransformerWeights* w, Config* p, bool shared_weights) { // we calloc instead of malloc to keep valgrind happy w->token_embedding_table = new float[p->vocab_size * p->dim](); printf("[%s:AK] Allocating [%d] x [%d] = [%d] float space for w->token_embedding_table\n",__func__,p->vocab_size , p->dim, p->vocab_size * p->dim); @@ -158,7 +158,7 @@ void malloc_weights(TransformerWeights* w, Config* p, bool shared_weights) { } } -int checkpoint_init_weights(TransformerWeights *w, Config* p, FILE* f, bool shared_weights) { +static int checkpoint_init_weights(TransformerWeights *w, Config* p, FILE* f, bool shared_weights) { if (fread(w->token_embedding_table, sizeof(float), p->vocab_size * p->dim, f) != static_cast(p->vocab_size * p->dim)) return 1; if (fread(w->rms_att_weight, sizeof(float), p->n_layers * p->dim, f) != static_cast(p->n_layers * p->dim)) return 1; if (fread(w->wq, sizeof(float), p->n_layers * p->dim * p->dim, f) != static_cast(p->n_layers * p->dim * p->dim)) return 1; @@ -189,7 +189,7 @@ int checkpoint_init_weights(TransformerWeights *w, Config* p, FILE* f, bool shar return 0; } -void print_sample_weights(TransformerWeights *w){ +static void print_sample_weights(TransformerWeights *w){ printf("----- Quick print of first of the weight vales of all the variables\n"); printf("%f\n", w->token_embedding_table[0]); printf("%f\n", w->rms_att_weight[0]); @@ -324,7 +324,7 @@ struct train_params { int mem_compute1_gb; }; -void print_params(struct my_llama_hparams * params) { +static void print_params(struct my_llama_hparams * params) { printf("%s: n_vocab: %d\n", __func__, params->n_vocab); printf("%s: n_ctx: %d\n", __func__, params->n_ctx); printf("%s: n_embd: %d\n", __func__, params->n_embd); @@ -335,7 +335,7 @@ void print_params(struct my_llama_hparams * params) { printf("%s: n_rot: %d\n", __func__, params->n_rot); } -void init_model(struct my_llama_model * model) { +static void init_model(struct my_llama_model * model) { const auto & hparams = model->hparams; const uint32_t n_embd = hparams.n_embd; @@ -408,17 +408,17 @@ void init_model(struct my_llama_model * model) { } } -float get_f32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1) { +static float get_f32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1) { float * ptr = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]); return *ptr; } -int32_t get_i32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1) { +static int32_t get_i32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1) { int32_t * ptr = (int32_t *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]); return *ptr; } -void print_row(struct ggml_tensor * probs, int i) { +static void print_row(struct ggml_tensor * probs, int i) { for (int k = 0; k < probs->ne[0]; ++k) { float p = get_f32_2d(probs, k, i); printf(" %f", p); @@ -426,7 +426,7 @@ void print_row(struct ggml_tensor * probs, int i) { printf("\n"); } -void print_matrix(struct ggml_tensor * probs) { +static void print_matrix(struct ggml_tensor * probs) { assert(probs->n_dims == 2); for (int i = 0; i < probs->ne[1]; ++i) { for (int k = 0; k < probs->ne[0]; ++k) { @@ -531,7 +531,7 @@ struct llama_file { } }; -bool is_ggml_file(const char *filename) { +static bool is_ggml_file(const char * filename) { llama_file file(filename, "rb"); if (file.size < 4) { return false; @@ -540,7 +540,7 @@ bool is_ggml_file(const char *filename) { return magic == GGUF_MAGIC; } -static std::string llama_escape_whitespaces(const std::string& text) { +static std::string llama_escape_whitespaces(const std::string & text) { std::ostringstream out; for (char c : text) { if (c == ' ') out << "\xe2\x96\x81"; @@ -549,7 +549,7 @@ static std::string llama_escape_whitespaces(const std::string& text) { return out.str(); } -void load_vocab(const char *filename, Config *config, struct llama_vocab *vocab) { +static void load_vocab(const char *filename, Config *config, struct llama_vocab *vocab) { if (is_ggml_file(filename)) { struct ggml_context * ctx_data = NULL; @@ -637,7 +637,7 @@ void load_vocab(const char *filename, Config *config, struct llama_vocab *vocab) } } -void convert_weights_ak_to_gg(struct ggml_tensor * gg_weights, const float * karpathy_weights) { +static void convert_weights_ak_to_gg(struct ggml_tensor * gg_weights, const float * karpathy_weights) { int ct; switch (gg_weights->n_dims){ case 1: @@ -673,7 +673,9 @@ void convert_weights_ak_to_gg(struct ggml_tensor * gg_weights, const float * kar } } -void save_as_llama_model(struct llama_vocab * vocab, struct my_llama_model * model, TransformerWeights* w, const char * filename) { +static void save_as_llama_model( + struct llama_vocab * vocab, struct my_llama_model * model, TransformerWeights* w, const char * filename +) { // convert AK weights into GG weights one by one. // w->token_embedding_table -> model->tok_embeddings // float* -> struct ggml_tensor @@ -785,7 +787,7 @@ void save_as_llama_model(struct llama_vocab * vocab, struct my_llama_model * mod gguf_free(ctx); } -struct train_params get_default_train_params() { +static struct train_params get_default_train_params() { struct train_params params; params.fn_vocab_model = "models/7B/ggml-model-f16.gguf"; params.fn_llama2c_output_model = "ak_llama_model.bin"; @@ -835,7 +837,7 @@ struct train_params get_default_train_params() { return params; } -void print_usage(int /*argc*/, char ** argv, const struct train_params * params) { +static void print_usage(int /*argc*/, char ** argv, const struct train_params * params) { fprintf(stderr, "usage: %s [options]\n", argv[0]); fprintf(stderr, "\n"); fprintf(stderr, "options:\n"); @@ -846,7 +848,7 @@ void print_usage(int /*argc*/, char ** argv, const struct train_params * params) fprintf(stderr, "\n"); } -bool params_parse(int argc, char ** argv, struct train_params * params) { +static bool params_parse(int argc, char ** argv, struct train_params * params) { bool invalid_param = false; bool reqd_param_found = false; std::string arg; @@ -901,7 +903,7 @@ bool params_parse(int argc, char ** argv, struct train_params * params) { return true; } -std::string basename(const std::string &path) { +static std::string basename(const std::string &path) { size_t pos = path.find_last_of("/\\"); if (pos == std::string::npos) { return path; diff --git a/examples/embd-input/embd-input-lib.cpp b/examples/embd-input/embd-input-lib.cpp index ef12212ba7587..99e6bdad5ac45 100644 --- a/examples/embd-input/embd-input-lib.cpp +++ b/examples/embd-input/embd-input-lib.cpp @@ -1,3 +1,5 @@ +#include "build-info.h" +#include "common.h" #include "embd-input.h" #include @@ -22,7 +24,7 @@ struct MyModel* create_mymodel(int argc, char ** argv) { return nullptr; } - fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT); + print_build_info(); if (params.seed == LLAMA_DEFAULT_SEED) { params.seed = uint32_t(time(NULL)); @@ -46,8 +48,7 @@ struct MyModel* create_mymodel(int argc, char ** argv) { // print system information { fprintf(stderr, "\n"); - fprintf(stderr, "system_info: n_threads = %d / %d | %s\n", - params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info()); + fprintf(stderr, "%s\n", get_system_info(params).c_str()); } struct MyModel * ret = new MyModel(); ret->ctx = ctx; @@ -69,7 +70,7 @@ bool eval_float(void * model, float * input, int N){ MyModel * mymodel = (MyModel*)model; llama_context * ctx = mymodel->ctx; gpt_params params = mymodel->params; - int n_emb = llama_n_embd(ctx); + int n_emb = llama_n_embd(llama_get_model(ctx)); int n_past = mymodel->n_past; int n_batch = N; // params.n_batch; @@ -78,7 +79,8 @@ bool eval_float(void * model, float * input, int N){ if (n_eval > n_batch) { n_eval = n_batch; } - if (llama_eval_embd(ctx, (input+i*n_emb), n_eval, n_past, params.n_threads)) { + llama_batch batch = { int32_t(n_eval), nullptr, (input+i*n_emb), nullptr, nullptr, nullptr, n_past, 1, 0, }; + if (llama_decode(ctx, batch)) { fprintf(stderr, "%s : failed to eval\n", __func__); return false; } @@ -99,7 +101,7 @@ bool eval_tokens(void * model, std::vector tokens) { if (n_eval > params.n_batch) { n_eval = params.n_batch; } - if (llama_eval(ctx, &tokens[i], n_eval, n_past, params.n_threads)) { + if (llama_decode(ctx, llama_batch_get_one(&tokens[i], n_eval, n_past, 0))) { fprintf(stderr, "%s : failed to eval\n", __func__); return false; } @@ -130,7 +132,7 @@ llama_token sampling_id(struct MyModel* mymodel) { // out of user input, sample next token const float temp = params.temp; - const int32_t top_k = params.top_k <= 0 ? llama_n_vocab(ctx) : params.top_k; + const int32_t top_k = params.top_k <= 0 ? llama_n_vocab(llama_get_model(ctx)) : params.top_k; const float top_p = params.top_p; const float tfs_z = params.tfs_z; const float typical_p = params.typical_p; @@ -146,7 +148,7 @@ llama_token sampling_id(struct MyModel* mymodel) { llama_token id = 0; { auto logits = llama_get_logits(ctx); - auto n_vocab = llama_n_vocab(ctx); + auto n_vocab = llama_n_vocab(llama_get_model(ctx)); // Apply params.logit_bias map for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++) { @@ -181,11 +183,11 @@ llama_token sampling_id(struct MyModel* mymodel) { if (mirostat == 1) { static float mirostat_mu = 2.0f * mirostat_tau; const int mirostat_m = 100; - llama_sample_temperature(ctx, &candidates_p, temp); + llama_sample_temp(ctx, &candidates_p, temp); id = llama_sample_token_mirostat(ctx, &candidates_p, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu); } else if (mirostat == 2) { static float mirostat_mu = 2.0f * mirostat_tau; - llama_sample_temperature(ctx, &candidates_p, temp); + llama_sample_temp(ctx, &candidates_p, temp); id = llama_sample_token_mirostat_v2(ctx, &candidates_p, mirostat_tau, mirostat_eta, &mirostat_mu); } else { // Temperature sampling @@ -193,7 +195,7 @@ llama_token sampling_id(struct MyModel* mymodel) { llama_sample_tail_free(ctx, &candidates_p, tfs_z, 1); llama_sample_typical(ctx, &candidates_p, typical_p, 1); llama_sample_top_p(ctx, &candidates_p, top_p, 1); - llama_sample_temperature(ctx, &candidates_p, temp); + llama_sample_temp(ctx, &candidates_p, temp); id = llama_sample_token(ctx, &candidates_p); } } diff --git a/examples/embd-input/embd-input-test.cpp b/examples/embd-input/embd-input-test.cpp index e5e040f62a60a..dc4a0e48854ad 100644 --- a/examples/embd-input/embd-input-test.cpp +++ b/examples/embd-input/embd-input-test.cpp @@ -8,7 +8,7 @@ int main(int argc, char** argv) { auto mymodel = create_mymodel(argc, argv); int N = 10; int max_tgt_len = 500; - int n_embd = llama_n_embd(mymodel->ctx); + int n_embd = llama_n_embd(llama_get_model(mymodel->ctx)); // add random float embd to test evaluation float * data = new float[N*n_embd]; diff --git a/examples/embd-input/embd-input.h b/examples/embd-input/embd-input.h index efb5ba5e2af45..eff5e3b84e1e1 100644 --- a/examples/embd-input/embd-input.h +++ b/examples/embd-input/embd-input.h @@ -3,7 +3,6 @@ #include "common.h" #include "llama.h" -#include "build-info.h" extern "C" { diff --git a/examples/embedding/README.md b/examples/embedding/README.md index fe8f5dcc62ed9..6929454c5e549 100644 --- a/examples/embedding/README.md +++ b/examples/embedding/README.md @@ -1,3 +1,21 @@ -# embedding +# llama.cpp/example/embedding -TODO +This example demonstrates generate high-dimensional embedding vector of a given text with llama.cpp. + +## Quick Start + +To get started right away, run the following command, making sure to use the correct path for the model you have: + +### Unix-based systems (Linux, macOS, etc.): + +```bash +./embedding -m ./path/to/model --log-disable -p "Hello World!" 2>/dev/null +``` + +### Windows: + +```powershell +embedding.exe -m ./path/to/model --log-disable -p "Hello World!" 2>$null +``` + +The above command will output space-separated float values. diff --git a/examples/embedding/embedding.cpp b/examples/embedding/embedding.cpp index e4a0a38c83173..14075609ebfd9 100644 --- a/examples/embedding/embedding.cpp +++ b/examples/embedding/embedding.cpp @@ -1,6 +1,6 @@ +#include "build-info.h" #include "common.h" #include "llama.h" -#include "build-info.h" #include @@ -17,7 +17,7 @@ int main(int argc, char ** argv) { params.embedding = true; - fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT); + print_build_info(); if (params.seed == LLAMA_DEFAULT_SEED) { params.seed = time(NULL); @@ -42,17 +42,18 @@ int main(int argc, char ** argv) { return 1; } - const int n_ctx_train = llama_n_ctx_train(ctx); - if (params.n_ctx > n_ctx_train) { + const int n_ctx_train = llama_n_ctx_train(model); + const int n_ctx = llama_n_ctx(ctx); + + if (n_ctx > n_ctx_train) { fprintf(stderr, "%s: warning: model was trained on only %d context tokens (%d specified)\n", - __func__, n_ctx_train, params.n_ctx); + __func__, n_ctx_train, n_ctx); } // print system information { fprintf(stderr, "\n"); - fprintf(stderr, "system_info: n_threads = %d / %d | %s\n", - params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info()); + fprintf(stderr, "%s\n", get_system_info(params).c_str()); } int n_past = 0; @@ -70,15 +71,15 @@ int main(int argc, char ** argv) { fprintf(stderr, "\n"); } - if (embd_inp.size() > (size_t)params.n_ctx) { + if (embd_inp.size() > (size_t)n_ctx) { fprintf(stderr, "%s: error: prompt is longer than the context window (%zu tokens, n_ctx = %d)\n", - __func__, embd_inp.size(), params.n_ctx); + __func__, embd_inp.size(), n_ctx); return 1; } while (!embd_inp.empty()) { int n_tokens = std::min(params.n_batch, (int) embd_inp.size()); - if (llama_eval(ctx, embd_inp.data(), n_tokens, n_past, params.n_threads)) { + if (llama_decode(ctx, llama_batch_get_one(embd_inp.data(), n_tokens, n_past, 0))) { fprintf(stderr, "%s : failed to eval\n", __func__); return 1; } @@ -86,8 +87,8 @@ int main(int argc, char ** argv) { embd_inp.erase(embd_inp.begin(), embd_inp.begin() + n_tokens); } - const int n_embd = llama_n_embd(ctx); - const auto embeddings = llama_get_embeddings(ctx); + const int n_embd = llama_n_embd(model); + const auto * embeddings = llama_get_embeddings(ctx); for (int i = 0; i < n_embd; i++) { printf("%f ", embeddings[i]); diff --git a/examples/export-lora/CMakeLists.txt b/examples/export-lora/CMakeLists.txt new file mode 100644 index 0000000000000..cbbdaec67488d --- /dev/null +++ b/examples/export-lora/CMakeLists.txt @@ -0,0 +1,5 @@ +set(TARGET export-lora) +add_executable(${TARGET} export-lora.cpp) +install(TARGETS ${TARGET} RUNTIME) +target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT}) +target_compile_features(${TARGET} PRIVATE cxx_std_11) diff --git a/examples/export-lora/README.md b/examples/export-lora/README.md new file mode 100644 index 0000000000000..0cf3e8e4549bb --- /dev/null +++ b/examples/export-lora/README.md @@ -0,0 +1,26 @@ +# export-lora + +Apply LORA adapters to base model and export the resulting model. + +``` +usage: export-lora [options] + +options: + -h, --help show this help message and exit + -m FNAME, --model-base FNAME model path from which to load base model (default '') + -o FNAME, --model-out FNAME path to save exported model (default '') + -l FNAME, --lora FNAME apply LoRA adapter + -s FNAME S, --lora-scaled FNAME S apply LoRA adapter with user defined scaling S + -t N, --threads N number of threads to use during computation (default: 4) +``` + +For example: + +```bash +./bin/export-lora \ + -m open-llama-3b-v2-q8_0.gguf \ + -o open-llama-3b-v2-q8_0-english2tokipona-chat.gguf \ + -l lora-open-llama-3b-v2-q8_0-english2tokipona-chat-LATEST.bin +``` + +Multiple LORA adapters can be applied by passing multiple `-l FN` or `-s FN S` command line parameters. diff --git a/examples/export-lora/export-lora.cpp b/examples/export-lora/export-lora.cpp new file mode 100644 index 0000000000000..d803cfd5cb2d5 --- /dev/null +++ b/examples/export-lora/export-lora.cpp @@ -0,0 +1,474 @@ + +#include "common.h" +#include "ggml.h" +#include "ggml-alloc.h" + +#include +#include +#include + +static const size_t tensor_alignment = 32; + +struct lora_info { + std::string filename; + float scale; +}; + +struct export_lora_params { + std::string fn_model_base; + std::string fn_model_out; + std::vector lora; + int n_threads; +}; + +struct lora_data { + struct lora_info info; + std::vector data; + struct ggml_context * ctx; + + uint32_t lora_r; + uint32_t lora_alpha; +}; + +struct llama_file { + // use FILE * so we don't have to re-open the file to mmap + FILE * fp; + size_t size; + + llama_file(const char * fname, const char * mode) { + fp = std::fopen(fname, mode); + if (fp == NULL) { + size = 0; + } else { + seek(0, SEEK_END); + size = tell(); + seek(0, SEEK_SET); + } + } + + size_t tell() const { +#ifdef _WIN32 + __int64 ret = _ftelli64(fp); +#else + long ret = std::ftell(fp); +#endif + GGML_ASSERT(ret != -1); // this really shouldn't fail + return (size_t) ret; + } + + void seek(size_t offset, int whence) { +#ifdef _WIN32 + int ret = _fseeki64(fp, (__int64) offset, whence); +#else + int ret = std::fseek(fp, (long) offset, whence); +#endif + GGML_ASSERT(ret == 0); // same + } + + void read_raw(void * ptr, size_t size) { + if (size == 0) { + return; + } + errno = 0; + std::size_t ret = std::fread(ptr, size, 1, fp); + if (ferror(fp)) { + die_fmt("read error: %s", strerror(errno)); + } + if (ret != 1) { + die("unexpectedly reached end of file"); + } + } + + std::uint32_t read_u32() { + std::uint32_t ret; + read_raw(&ret, sizeof(ret)); + return ret; + } + + std::string read_string(std::uint32_t len) { + std::vector chars(len); + read_raw(chars.data(), len); + return std::string(chars.data(), len); + } + + void write_raw(const void * ptr, size_t size) { + if (size == 0) { + return; + } + errno = 0; + size_t ret = std::fwrite(ptr, size, 1, fp); + if (ret != 1) { + die_fmt("write error: %s", strerror(errno)); + } + } + + void write_u32(std::uint32_t val) { + write_raw(&val, sizeof(val)); + } + + bool eof() { + return tell() >= size; + } + + ~llama_file() { + if (fp) { + std::fclose(fp); + } + } +}; + +static struct export_lora_params get_default_export_lora_params() { + struct export_lora_params result; + result.fn_model_base = ""; + result.fn_model_out = ""; + result.n_threads = GGML_DEFAULT_N_THREADS; + return result; +} + +static void export_lora_print_usage(int /*argc*/, char ** argv, const struct export_lora_params * params) { + fprintf(stderr, "usage: %s [options]\n", argv[0]); + fprintf(stderr, "\n"); + fprintf(stderr, "options:\n"); + fprintf(stderr, " -h, --help show this help message and exit\n"); + fprintf(stderr, " -m FNAME, --model-base FNAME model path from which to load base model (default '%s')\n", params->fn_model_base.c_str()); + fprintf(stderr, " -o FNAME, --model-out FNAME path to save exported model (default '%s')\n", params->fn_model_out.c_str()); + fprintf(stderr, " -l FNAME, --lora FNAME apply LoRA adapter\n"); + fprintf(stderr, " -s FNAME S, --lora-scaled FNAME S apply LoRA adapter with user defined scaling S\n"); + fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params->n_threads); +} + +static bool export_lora_params_parse(int argc, char ** argv, struct export_lora_params * params) { + bool invalid_param = false; + std::string arg; + struct export_lora_params default_params = get_default_export_lora_params(); + const std::string arg_prefix = "--"; + + for (int i = 1; i < argc; i++) { + arg = argv[i]; + if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) { + std::replace(arg.begin(), arg.end(), '_', '-'); + } + + if (arg == "-m" || arg == "--model-base") { + if (++i >= argc) { + invalid_param = true; + break; + } + params->fn_model_base = argv[i]; + } else if (arg == "-o" || arg == "--model-out") { + if (++i >= argc) { + invalid_param = true; + break; + } + params->fn_model_out = argv[i]; + } else if (arg == "-l" || arg == "--lora") { + if (++i >= argc) { + invalid_param = true; + break; + } + struct lora_info lora; + lora.filename = argv[i]; + lora.scale = 1.0f; + params->lora.push_back(lora); + } else if (arg == "-s" || arg == "--lora-scaled") { + if (++i >= argc) { + invalid_param = true; + break; + } + struct lora_info lora; + lora.filename = argv[i]; + if (++i >= argc) { + invalid_param = true; + break; + } + lora.scale = std::stof(argv[i]); + params->lora.push_back(lora); + } else if (arg == "-t" || arg == "--threads") { + if (++i >= argc) { + invalid_param = true; + break; + } + params->n_threads = std::stoi(argv[i]); + if (params->n_threads <= 0) { + params->n_threads = std::thread::hardware_concurrency(); + } + } else { + fprintf(stderr, "error: unknown argument: '%s'\n", arg.c_str()); + export_lora_print_usage(argc, argv, &default_params); + exit(1); + } + } + + if (params->fn_model_base == default_params.fn_model_base) { + fprintf(stderr, "error: please specify a filename for model-base.\n"); + export_lora_print_usage(argc, argv, &default_params); + exit(1); + } + if (params->fn_model_out == default_params.fn_model_out) { + fprintf(stderr, "error: please specify a filename for model-out.\n"); + export_lora_print_usage(argc, argv, &default_params); + exit(1); + } + if (invalid_param) { + fprintf(stderr, "error: invalid parameter for argument: '%s'\n", arg.c_str()); + export_lora_print_usage(argc, argv, &default_params); + exit(1); + } + return true; +} + +static void free_lora(struct lora_data * lora) { + if (lora->ctx != NULL) { + ggml_free(lora->ctx); + } + delete lora; +} + +static struct lora_data * load_lora(struct lora_info * info) { + struct lora_data * result = new struct lora_data; + result->info = *info; + result->ctx = NULL; + result->lora_r = 1; + result->lora_alpha = 1; + + struct llama_file file(info->filename.c_str(), "rb"); + if (file.fp == NULL) { + fprintf(stderr, "warning: Could not open lora adapter '%s'. Ignoring this adapter.\n", + info->filename.c_str()); + free_lora(result); + return NULL; + } + + struct ggml_init_params params_ggml; + params_ggml.mem_size = ggml_tensor_overhead() * GGML_MAX_NODES; + params_ggml.mem_buffer = NULL; + params_ggml.no_alloc = true; + result->ctx = ggml_init(params_ggml); + + uint32_t LLAMA_FILE_MAGIC_LORA = 0x67676C61; // 'ggla' + uint32_t magic = file.read_u32(); + if (magic != LLAMA_FILE_MAGIC_LORA) { + die_fmt("unexpected lora header file magic in '%s'", info->filename.c_str()); + } + uint32_t version = file.read_u32(); + if (version != 1) { + die_fmt("unexpected lora file version '%u' in '%s'", (unsigned) version, info->filename.c_str()); + } + result->lora_r = file.read_u32(); + result->lora_alpha = file.read_u32(); + // read tensor infos from file + std::vector name_buf; + std::vector tensors; + std::vector tensors_offset; + size_t total_nbytes_pad = 0; + while(!file.eof()) { + int64_t ne[4] = {1,1,1,1}; + uint32_t n_dims = file.read_u32(); + uint32_t namelen = file.read_u32(); + uint32_t type = file.read_u32(); + for (uint32_t k = 0; k < n_dims; ++k) { + ne[k] = (int64_t)file.read_u32(); + } + name_buf.clear(); + name_buf.resize(namelen + 1, '\0'); + file.read_raw(name_buf.data(), namelen); + file.seek((0-file.tell()) & 31, SEEK_CUR); + size_t offset = file.tell(); + struct ggml_tensor * tensor = ggml_new_tensor(result->ctx, (enum ggml_type) type, n_dims, ne); + ggml_set_name(tensor, name_buf.data()); + size_t nbytes = ggml_nbytes(tensor); + size_t nbytes_pad = ggml_nbytes_pad(tensor); + total_nbytes_pad += nbytes_pad; + tensors.push_back(tensor); + tensors_offset.push_back(offset); + file.seek(nbytes, SEEK_CUR); + } + // read tensor data + result->data.resize(total_nbytes_pad); + size_t data_offset = 0; + for (size_t i = 0; i < tensors.size(); ++i) { + struct ggml_tensor * tensor = tensors[i]; + size_t offset = tensors_offset[i]; + size_t nbytes = ggml_nbytes(tensor); + size_t nbytes_pad = ggml_nbytes_pad(tensor); + file.seek(offset, SEEK_SET); + tensor->data = result->data.data() + data_offset; + file.read_raw(tensor->data, nbytes); + data_offset += nbytes_pad; + } + return result; +} + + +static struct ggml_cgraph * build_graph_lora( + struct ggml_context * ctx, + struct ggml_tensor * tensor, + struct ggml_tensor * lora_a, + struct ggml_tensor * lora_b, + float scaling +) { + struct ggml_tensor * ab = ggml_mul_mat(ctx, lora_a, lora_b); + if (scaling != 1.0f) { + ab = ggml_scale(ctx, ab, ggml_new_f32(ctx, scaling)); + } + struct ggml_tensor * res = ggml_add_inplace(ctx, tensor, ab); + + struct ggml_cgraph * gf = ggml_new_graph(ctx); + ggml_build_forward_expand (gf, res); + return gf; +} + +static bool apply_lora(struct ggml_tensor * tensor, struct lora_data * lora, int n_threads) { + if (lora->ctx == NULL) { + return false; + } + std::string name = ggml_get_name(tensor); + std::string name_a = name + std::string(".loraA"); + std::string name_b = name + std::string(".loraB"); + struct ggml_tensor * lora_a = ggml_get_tensor(lora->ctx, name_a.c_str()); + struct ggml_tensor * lora_b = ggml_get_tensor(lora->ctx, name_b.c_str()); + if (lora_a == NULL || lora_b == NULL) { + return false; + } + + float scaling = lora->info.scale * (float)lora->lora_alpha / (float)lora->lora_r; + + struct ggml_init_params params; + params.mem_size = GGML_OBJECT_SIZE + GGML_GRAPH_SIZE + ggml_tensor_overhead()*4 + GGML_MEM_ALIGN*5; + params.mem_buffer = NULL; + params.no_alloc = true; + struct ggml_context * ctx = NULL; + struct ggml_allocr * alloc = NULL; + struct ggml_cgraph * gf = NULL; + + ctx = ggml_init(params); + alloc = ggml_allocr_new_measure(tensor_alignment); + gf = build_graph_lora(ctx, tensor, lora_a, lora_b, scaling); + size_t alloc_size = ggml_allocr_alloc_graph(alloc, gf); + ggml_allocr_free(alloc); + ggml_free(ctx); + + static std::vector data_compute; + data_compute.resize(alloc_size + tensor_alignment); + + ctx = ggml_init(params); + alloc = ggml_allocr_new(data_compute.data(), data_compute.size(), tensor_alignment); + gf = build_graph_lora(ctx, tensor, lora_a, lora_b, scaling); + ggml_allocr_alloc_graph(alloc, gf); + ggml_allocr_free(alloc); + + struct ggml_cplan cplan = ggml_graph_plan(gf, n_threads); + static std::vector data_work; + data_work.resize(cplan.work_size); + cplan.work_data = data_work.data(); + + ggml_graph_compute(gf, &cplan); + + ggml_free(ctx); + return true; +} + +static void export_lora(struct export_lora_params * params) { + // load all loras + std::vector loras; + for (size_t i = 0; i < params->lora.size(); ++i) { + struct lora_data * lora = load_lora(¶ms->lora[i]); + if (lora != NULL) { + loras.push_back(lora); + } + } + if (loras.size() == 0) { + fprintf(stderr, "warning: no lora adapters will be applied.\n"); + } + + // open input file + struct llama_file fin(params->fn_model_base.c_str(), "rb"); + if (!fin.fp) { + die_fmt("Could not open file '%s'\n", params->fn_model_base.c_str()); + } + + // open base model gguf, read tensors without their data + struct ggml_context * ctx_in; + struct gguf_init_params params_gguf; + params_gguf.no_alloc = true; + params_gguf.ctx = &ctx_in; + struct gguf_context * gguf_in = gguf_init_from_file(params->fn_model_base.c_str(), params_gguf); + + // create new gguf + struct gguf_context * gguf_out = gguf_init_empty(); + + // copy meta data from base model: kv and tensors + gguf_set_kv(gguf_out, gguf_in); + int n_tensors = gguf_get_n_tensors(gguf_in); + for (int i=0; i < n_tensors; ++i) { + const char * name = gguf_get_tensor_name(gguf_in, i); + struct ggml_tensor * tensor = ggml_get_tensor(ctx_in, name); + gguf_add_tensor(gguf_out, tensor); + } + + // create output file + struct llama_file fout(params->fn_model_out.c_str(), "wb"); + if (!fout.fp) { + die_fmt("Could not create file '%s'\n", params->fn_model_out.c_str()); + } + + // write gguf meta data + std::vector meta; + meta.resize(gguf_get_meta_size(gguf_out)); + gguf_get_meta_data(gguf_out, meta.data()); + fout.write_raw(meta.data(), meta.size()); + + std::vector data; + std::vector padding; + for (int i=0; i < n_tensors; ++i) { + const char * name = gguf_get_tensor_name(gguf_in, i); + struct ggml_tensor * tensor = ggml_get_tensor(ctx_in, name); + + // read tensor data + data.resize(ggml_nbytes(tensor)); + tensor->data = data.data(); + size_t offset = gguf_get_tensor_offset(gguf_in, i); + fin.seek(offset + meta.size(), SEEK_SET); + fin.read_raw(data.data(), data.size()); + + // apply all loras + for (size_t k = 0; k < loras.size(); ++k) { + apply_lora(tensor, loras[k], params->n_threads); + } + + // write tensor data + padding + padding.clear(); + padding.resize(GGML_PAD(data.size(), gguf_get_alignment(gguf_out)) - data.size(), 0); + + GGML_ASSERT(fout.tell() == offset + meta.size()); + // fout.seek(offset + meta.size(), SEEK_SET); + fout.write_raw(data.data(), data.size()); + fout.write_raw(padding.data(), padding.size()); + + if (i % 2 == 0) { + printf("."); + } + } + printf("\n"); + + // close gguf + gguf_free(gguf_out); + gguf_free(gguf_in); + + // free loras + for (size_t i = 0; i < loras.size(); ++i) { + free_lora(loras[i]); + } +} + +int main(int argc, char ** argv) { + struct export_lora_params params = get_default_export_lora_params(); + + if (!export_lora_params_parse(argc, argv, ¶ms)) { + return 1; + } + + export_lora(¶ms); + + return 0; +} diff --git a/examples/finetune/CMakeLists.txt b/examples/finetune/CMakeLists.txt new file mode 100644 index 0000000000000..2b52d21cfb381 --- /dev/null +++ b/examples/finetune/CMakeLists.txt @@ -0,0 +1,5 @@ +set(TARGET finetune) +add_executable(${TARGET} finetune.cpp) +install(TARGETS ${TARGET} RUNTIME) +target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT}) +target_compile_features(${TARGET} PRIVATE cxx_std_11) diff --git a/examples/finetune/README.md b/examples/finetune/README.md new file mode 100644 index 0000000000000..b7347c20ca0ab --- /dev/null +++ b/examples/finetune/README.md @@ -0,0 +1,90 @@ +# finetune + +Basic usage instructions: + +```bash +# get training data +wget https://raw.githubusercontent.com/brunoklein99/deep-learning-notes/master/shakespeare.txt + +# finetune LORA adapter +./bin/finetune \ + --model-base open-llama-3b-v2-q8_0.gguf \ + --checkpoint-in chk-lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.gguf \ + --checkpoint-out chk-lora-open-llama-3b-v2-q8_0-shakespeare-ITERATION.gguf \ + --lora-out lora-open-llama-3b-v2-q8_0-shakespeare-ITERATION.bin \ + --train-data "shakespeare.txt" \ + --save-every 10 \ + --threads 6 --adam-iter 30 --batch 4 --ctx 64 \ + --use-checkpointing + +# predict +./bin/main -m open-llama-3b-v2-q8_0.gguf --lora lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.bin +``` + +Finetune output files will be saved every N iterations (config with `--save-every N`). +The pattern 'ITERATION' in the output filenames will be replaced with the iteration number and with 'LATEST' for the latest output. +So in above example after 10 iterations these files will be written: +- chk-lora-open-llama-3b-v2-q8_0-shakespeare-10.gguf +- chk-lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.gguf +- lora-open-llama-3b-v2-q8_0-shakespeare-10.bin +- lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.bin + +After 10 more iterations: +- chk-lora-open-llama-3b-v2-q8_0-shakespeare-20.gguf +- chk-lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.gguf +- lora-open-llama-3b-v2-q8_0-shakespeare-20.bin +- lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.bin + +Checkpoint files (`--checkpoint-in FN`, `--checkpoint-out FN`) store the training process. When the input checkpoint file does not exist, it will begin finetuning a new randomly initialized adapter. + +llama.cpp compatible LORA adapters will be saved with filename specified by `--lora-out FN`. +These LORA adapters can then be used by `main` together with the base model, like in the 'predict' example command above. + +In `main` you can also load multiple LORA adapters, which will then be mixed together. + +For example if you have two LORA adapters `lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.bin` and `lora-open-llama-3b-v2-q8_0-bible-LATEST.bin`, you can mix them together like this: + +```bash +./bin/main -m open-llama-3b-v2-q8_0.gguf \ + --lora lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.bin \ + --lora lora-open-llama-3b-v2-q8_0-bible-LATEST.bin +``` + +You can change how strong each LORA adapter is applied to the base model by using `--lora-scaled FN SCALE` instead of `--lora FN`. + +For example to apply 40% of the 'shakespeare' LORA adapter, 80% of the 'bible' LORA adapter and 100% of yet another one: + +```bash +./bin/main -m open-llama-3b-v2-q8_0.gguf \ + --lora-scaled lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.bin 0.4 \ + --lora-scaled lora-open-llama-3b-v2-q8_0-bible-LATEST.bin 0.8 \ + --lora lora-open-llama-3b-v2-q8_0-yet-another-one-LATEST.bin +``` + +The scale numbers don't need to add up to one, and you can also use numbers creater than 1 to further increase the influence of an adapter. But making the values to big will sometimes result in worse output. Play around to find good values. + +Gradient checkpointing reduces the memory requirements by ~50% but increases the runtime. +If you have enough RAM, you can make finetuning a bit faster by disabling checkpointing with `--no-checkpointing`. + +The default LORA rank can be specified with `--lora-r N`. +The LORA rank can be configured for each model tensor type separately with these command line options: + +```bash + --lora-r N LORA r: default rank. Also specifies resulting scaling together with lora-alpha. (default 4) + --rank-att-norm N LORA rank for attention norm tensor (default 1) + --rank-ffn-norm N LORA rank for feed-forward norm tensor (default 1) + --rank-out-norm N LORA rank for output norm tensor (default 1) + --rank-tok-embd N LORA rank for token embeddings tensor (default 4) + --rank-out N LORA rank for output tensor (default 4) + --rank-wq N LORA rank for wq tensor (default 4) + --rank-wk N LORA rank for wk tensor (default 4) + --rank-wv N LORA rank for wv tensor (default 4) + --rank-wo N LORA rank for wo tensor (default 4) + --rank-w1 N LORA rank for w1 tensor (default 4) + --rank-w2 N LORA rank for w2 tensor (default 4) + --rank-w3 N LORA rank for w3 tensor (default 4) +``` + +The LORA rank of 'norm' tensors should always be 1. + +To see all available options use `finetune --help`. diff --git a/examples/finetune/convert-finetune-checkpoint-to-gguf.py b/examples/finetune/convert-finetune-checkpoint-to-gguf.py new file mode 100644 index 0000000000000..96d6633ed7d5e --- /dev/null +++ b/examples/finetune/convert-finetune-checkpoint-to-gguf.py @@ -0,0 +1,489 @@ +#!/usr/bin/env python3 +# finetune checkpoint --> gguf conversion + +import argparse +import gguf +import os +import struct +import sys +import numpy as np +from pathlib import Path + +# gguf constants +LLM_KV_OPTIMIZER_TYPE = "optimizer.type" +LLM_KV_OPTIMIZER_TYPE_ADAM = "adam" +LLM_KV_OPTIMIZER_TYPE_LBFGS = "lbfgs" +LLM_KV_OPTIMIZER_FILE_VERSION = "optimizer.file_version" +LLM_KV_OPTIMIZER_CONVERGENCE_PAST_COUNT = "optimizer.convergence_past_count" +LLM_KV_OPTIMIZER_PARAMETER_COUNT = "optimizer.parameter_count" +LLM_KV_OPTIMIZER_ITERATION_COUNT = "optimizer.iteration_count" +LLM_KV_OPTIMIZER_JUST_INITIALIZED = "optimizer.just_initialized" +LLM_KV_OPTIMIZER_ADAM_BEST_LOSS = "optimizer.adam.best_loss" +LLM_KV_OPTIMIZER_ADAM_PREVIOUS_LOSS = "optimizer.adam.previous_loss" +LLM_KV_OPTIMIZER_ADAM_NO_IMPROVEMENT_COUNT = "optimizer.adam.no_improvement_count" +LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT = "optimizer.lbfgs.approx_hessian_count" +LLM_KV_OPTIMIZER_LBFGS_BEST_LOSS = "optimizer.lbfgs.best_loss" +LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_STEP = "optimizer.lbfgs.line_search_step" +LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_J = "optimizer.lbfgs.line_search_j" +LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_K = "optimizer.lbfgs.line_search_k" +LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_END = "optimizer.lbfgs.line_search_end" +LLM_KV_OPTIMIZER_LBFGS_NO_IMPROVEMENT_COUNT = "optimizer.lbfgs.no_improvement_count" + +LLM_TENSOR_OPTIMIZER_ADAM_FIRST_MOMENTS = "optimizer.adam.first_moments" +LLM_TENSOR_OPTIMIZER_ADAM_SECOND_MOMENTS = "optimizer.adam.second_moments" +LLM_TENSOR_OPTIMIZER_ADAM_PAST_LOSS_VALUES = "optimizer.adam.past_loss_values" + +LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_PARAMETERS = "optimizer.lbfgs.current_parameters" +LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_PARAMETERS = "optimizer.lbfgs.previous_parameters" +LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_GRADIENTS = "optimizer.lbfgs.current_gradients" +LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_GRADIENTS = "optimizer.lbfgs.previous_gradients" +LLM_TENSOR_OPTIMIZER_LBFGS_SEARCH_DIRECTION = "optimizer.lbfgs.search_direction" +LLM_TENSOR_OPTIMIZER_LBFGS_PAST_LOSS_VALUES = "optimizer.lbfgs.past_loss_values" +LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_ALPHA = "optimizer.lbfgs.memory_alpha" +LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_YS = "optimizer.lbfgs.memory_ys" +LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_S = "optimizer.lbfgs.memory_s" +LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_Y = "optimizer.lbfgs.memory_y" + +LLM_KV_TRAINING_TYPE_TRAIN_MODEL = "train_model" +LLM_KV_TRAINING_TYPE_FINETUNE_LORA = "finetune_lora" +LLM_KV_TRAINING_TYPE = "training.type" +LLM_KV_TRAINING_FILE_VERSION = "training.file_version" +LLM_KV_TRAINING_ITERATION_COUNT = "training.iteration_count" +LLM_KV_TRAINING_SAMPLE_COUNT = "training.sample_count" +LLM_KV_TRAINING_TOKEN_COUNT = "training.token_count" + +LLM_KV_TRAINING_LORA_RANK_TOKEN_EMBD = "training.lora.rank.token_embd" +LLM_KV_TRAINING_LORA_RANK_OUTPUT_NORM = "training.lora.rank.output_norm" +LLM_KV_TRAINING_LORA_RANK_OUTPUT = "training.lora.rank.output" +LLM_KV_TRAINING_LORA_RANK_ATTN_NORM = "training.lora.rank.attn_norm" +LLM_KV_TRAINING_LORA_RANK_ATTN_Q = "training.lora.rank.attn_q" +LLM_KV_TRAINING_LORA_RANK_ATTN_K = "training.lora.rank.attn_k" +LLM_KV_TRAINING_LORA_RANK_ATTN_V = "training.lora.rank.attn_v" +LLM_KV_TRAINING_LORA_RANK_ATTN_OUT = "training.lora.rank.attn_output" +LLM_KV_TRAINING_LORA_RANK_FFN_NORM = "training.lora.rank.ffn_norm" +LLM_KV_TRAINING_LORA_RANK_FFN_GATE = "training.lora.rank.ffn_gate" +LLM_KV_TRAINING_LORA_RANK_FFN_DOWN = "training.lora.rank.ffn_down" +LLM_KV_TRAINING_LORA_RANK_FFN_UP = "training.lora.rank.ffn_up" + +class Tensor: + def __init__(self, dtype='f', ne=None): + if ne is None: + ne = [] + self.dtype = dtype + self.ne = ne + self.nbytes = 0 + if self.dtype == 'f': + if len(self.ne) == 0: + self.nbytes = 0 + else: + self.nbytes = int(np.product(self.ne)) * 4 + else: + raise ValueError(f"Unhandled data type '{self.dtype}'") + + def load(self, data, offset): + nd = struct.unpack(' 0 else []) + + self.lbfgs_x = Tensor('f', [self.nx]) + self.lbfgs_xp = Tensor('f', [self.nx]) + self.lbfgs_g = Tensor('f', [self.nx]) + self.lbfgs_gp = Tensor('f', [self.nx]) + self.lbfgs_d = Tensor('f', [self.nx]) + self.lbfgs_pf = Tensor('f', [self.past] if self.past > 0 else []) + self.lbfgs_lmal = Tensor('f', [self.lbfgs_m]) + self.lbfgs_lmys = Tensor('f', [self.lbfgs_m]) + self.lbfgs_lms = Tensor('f', [self.nx, self.lbfgs_m]) + self.lbfgs_lmy = Tensor('f', [self.nx, self.lbfgs_m]) + + # forgot to save type in version 1: + # guess self.type from number of remaining bytes + size_type_0 = 12 + sum([t.max_storage_size() for t in + [self.adam_m, self.adam_v] + +([self.adam_pf] if (self.past > 0) else [])]) + size_type_1 = 24 + sum([t.max_storage_size() for t in + [self.lbfgs_x, self.lbfgs_xp, self.lbfgs_g, + self.lbfgs_gp, self.lbfgs_d, self.lbfgs_pf, + self.lbfgs_lmal, self.lbfgs_lmys, + self.lbfgs_lms, self.lbfgs_lmy] + +([self.lbfgs_pf] if (self.past > 0) else [])]) + # due to alignment padding the size might not by exact + # but the difference in size for both types is significant, + # so we can just use whichever is closest + remaining = len(data) - offset + if abs(remaining - size_type_0) < abs(remaining - size_type_1): + self.type = 0 + else: + self.type = 1 + + if self.type == 0: + offset = self.adam_m.load(data, offset) + offset = self.adam_v.load(data, offset) + offset = self.adam_pf.load(data,offset) + + self.adam_fx_best = struct.unpack(' 0: + self.adam_pf.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_ADAM_PAST_LOSS_VALUES) + + elif self.type == 1: + gguf_writer.add_string(LLM_KV_OPTIMIZER_TYPE, LLM_KV_OPTIMIZER_TYPE_LBFGS) + gguf_writer.add_uint32(LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT, self.lbfgs_m) + gguf_writer.add_float32(LLM_KV_OPTIMIZER_LBFGS_BEST_LOSS, self.lbfgs_fx_best) + gguf_writer.add_float32(LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_STEP, self.lbfgs_step) + gguf_writer.add_int32(LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_J, self.lbfgs_j) + gguf_writer.add_int32(LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_K, self.lbfgs_k) + gguf_writer.add_int32(LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_END, self.lbfgs_end) + gguf_writer.add_uint32(LLM_KV_OPTIMIZER_LBFGS_NO_IMPROVEMENT_COUNT, self.lbfgs_n_no_improvement) + + self.lbfgs_x.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_PARAMETERS) + self.lbfgs_xp.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_PARAMETERS) + self.lbfgs_g.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_GRADIENTS) + self.lbfgs_gp.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_GRADIENTS) + self.lbfgs_d.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_SEARCH_DIRECTION) + if self.past > 0: + self.lbfgs_pf.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_PAST_LOSS_VALUES) + self.lbfgs_lmal.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_ALPHA) + self.lbfgs_lmys.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_YS) + self.lbfgs_lms.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_S) + self.lbfgs_lmy.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_Y) + else: + raise ValueError('Unknown optimizer type') + +class LoraParams: + def __init__(self): + pass + + def load(self, data, offset): + self.n_rank_attention_norm = struct.unpack(' +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#if defined(_MSC_VER) +#pragma warning(disable: 4244 4267) // possible loss of data +#endif + +static const size_t tensor_alignment = 32; + +struct my_llama_hparams { + uint32_t n_vocab = 32000; + uint32_t n_ctx = 512; + uint32_t n_embd = 4096; + uint32_t n_ff = 11008; + uint32_t n_head = 32; + uint32_t n_head_kv = 32; + uint32_t n_layer = 32; + + // float f_norm_eps = 1e-5f; // falcon + float f_norm_rms_eps = 1e-5f; // llama + + float rope_freq_base = 10000.0f; + float rope_freq_scale = 1.0f; + + uint32_t n_gqa() const { + return n_head/n_head_kv; + } + + uint32_t n_embd_head() const { + return n_embd/n_head; + } + + uint32_t n_embd_gqa() const { + return n_embd/n_gqa(); + } + + bool operator!=(const my_llama_hparams& other) const { + return memcmp(this, &other, sizeof(other)); + } +}; + +struct my_llama_layer { + // normalization + struct ggml_tensor * attention_norm; + + // attention + struct ggml_tensor * wq; + struct ggml_tensor * wk; + struct ggml_tensor * wv; + struct ggml_tensor * wo; + + // normalization + struct ggml_tensor * ffn_norm; + + // ff + struct ggml_tensor * w1; + struct ggml_tensor * w2; + struct ggml_tensor * w3; +}; + +struct my_llama_model { + struct my_llama_hparams hparams; + + struct ggml_tensor * tok_embeddings; + + struct ggml_tensor * norm; + struct ggml_tensor * output; + + std::vector layers; +}; + +struct my_llama_lora_hparams { + uint32_t lora_r = 1; + uint32_t lora_alpha = 1; + uint32_t n_rank_attention_norm = 1; + uint32_t n_rank_wq = 4; + uint32_t n_rank_wk = 4; + uint32_t n_rank_wv = 4; + uint32_t n_rank_wo = 4; + uint32_t n_rank_ffn_norm = 1; + uint32_t n_rank_w1 = 4; + uint32_t n_rank_w2 = 4; + uint32_t n_rank_w3 = 4; + uint32_t n_rank_tok_embeddings = 4; + uint32_t n_rank_norm = 1; + uint32_t n_rank_output = 4; + + bool operator!=(const my_llama_lora_hparams& other) const { + return memcmp(this, &other, sizeof(other)); + } +}; + +struct my_llama_lora_layer { + // normalization + struct ggml_tensor * attention_norm_a; + struct ggml_tensor * attention_norm_b; + + // attention + struct ggml_tensor * wq_a; + struct ggml_tensor * wq_b; + struct ggml_tensor * wk_a; + struct ggml_tensor * wk_b; + struct ggml_tensor * wv_a; + struct ggml_tensor * wv_b; + struct ggml_tensor * wo_a; + struct ggml_tensor * wo_b; + + // normalization + struct ggml_tensor * ffn_norm_a; + struct ggml_tensor * ffn_norm_b; + + // ff + struct ggml_tensor * w1_a; + struct ggml_tensor * w1_b; + struct ggml_tensor * w2_a; + struct ggml_tensor * w2_b; + struct ggml_tensor * w3_a; + struct ggml_tensor * w3_b; +}; + +struct my_llama_lora { + struct ggml_context * ctx = NULL; + std::vector data; + + my_llama_lora_hparams hparams; + + struct ggml_tensor * tok_embeddings_a; + struct ggml_tensor * tok_embeddings_b; + + struct ggml_tensor * norm_a; + struct ggml_tensor * norm_b; + struct ggml_tensor * output_a; + struct ggml_tensor * output_b; + + std::vector layers; +}; + +// gguf constants +static const char * LLM_KV_TRAINING_TYPE_FINETUNE_LORA = "finetune_lora"; +static const char * LLM_KV_TRAINING_TYPE = "training.type"; + +static const char * LLM_KV_TRAINING_LORA_RANK_TOKEN_EMBD = "training.lora.rank.token_embd"; +static const char * LLM_KV_TRAINING_LORA_RANK_OUTPUT_NORM = "training.lora.rank.output_norm"; +static const char * LLM_KV_TRAINING_LORA_RANK_OUTPUT = "training.lora.rank.output"; +static const char * LLM_KV_TRAINING_LORA_RANK_ATTN_NORM = "training.lora.rank.attn_norm"; +static const char * LLM_KV_TRAINING_LORA_RANK_ATTN_Q = "training.lora.rank.attn_q"; +static const char * LLM_KV_TRAINING_LORA_RANK_ATTN_K = "training.lora.rank.attn_k"; +static const char * LLM_KV_TRAINING_LORA_RANK_ATTN_V = "training.lora.rank.attn_v"; +static const char * LLM_KV_TRAINING_LORA_RANK_ATTN_OUT = "training.lora.rank.attn_output"; +static const char * LLM_KV_TRAINING_LORA_RANK_FFN_NORM = "training.lora.rank.ffn_norm"; +static const char * LLM_KV_TRAINING_LORA_RANK_FFN_GATE = "training.lora.rank.ffn_gate"; +static const char * LLM_KV_TRAINING_LORA_RANK_FFN_DOWN = "training.lora.rank.ffn_down"; +static const char * LLM_KV_TRAINING_LORA_RANK_FFN_UP = "training.lora.rank.ffn_up"; + +// gguf constants (sync with gguf.py) + +static const char * LLM_KV_GENERAL_ARCHITECTURE = "general.architecture"; +static const char * LLM_KV_GENERAL_FILE_TYPE = "general.file_type"; + +static const char * LLM_KV_CONTEXT_LENGTH = "%s.context_length"; +static const char * LLM_KV_EMBEDDING_LENGTH = "%s.embedding_length"; +static const char * LLM_KV_BLOCK_COUNT = "%s.block_count"; +static const char * LLM_KV_FEED_FORWARD_LENGTH = "%s.feed_forward_length"; +static const char * LLM_KV_ATTENTION_HEAD_COUNT = "%s.attention.head_count"; +static const char * LLM_KV_ATTENTION_HEAD_COUNT_KV = "%s.attention.head_count_kv"; +static const char * LLM_KV_ATTENTION_LAYERNORM_RMS_EPS = "%s.attention.layer_norm_rms_epsilon"; +static const char * LLM_KV_ROPE_DIMENSION_COUNT = "%s.rope.dimension_count"; +static const char * LLM_KV_ROPE_FREQ_BASE = "%s.rope.freq_base"; // TODO load in llama.cpp +static const char * LLM_KV_ROPE_SCALE_LINEAR = "%s.rope.scale_linear"; + +static const char * LLM_TENSOR_TOKEN_EMBD = "token_embd"; +static const char * LLM_TENSOR_OUTPUT_NORM = "output_norm"; +static const char * LLM_TENSOR_OUTPUT = "output"; +static const char * LLM_TENSOR_ATTN_NORM = "blk.%d.attn_norm"; +static const char * LLM_TENSOR_ATTN_Q = "blk.%d.attn_q"; +static const char * LLM_TENSOR_ATTN_K = "blk.%d.attn_k"; +static const char * LLM_TENSOR_ATTN_V = "blk.%d.attn_v"; +static const char * LLM_TENSOR_ATTN_OUT = "blk.%d.attn_output"; +static const char * LLM_TENSOR_FFN_NORM = "blk.%d.ffn_norm"; +static const char * LLM_TENSOR_FFN_GATE = "blk.%d.ffn_gate"; +static const char * LLM_TENSOR_FFN_DOWN = "blk.%d.ffn_down"; +static const char * LLM_TENSOR_FFN_UP = "blk.%d.ffn_up"; + +static void print_params(struct my_llama_hparams * params) { + printf("%s: n_vocab: %u\n", __func__, params->n_vocab); + printf("%s: n_ctx: %u\n", __func__, params->n_ctx); + printf("%s: n_embd: %u\n", __func__, params->n_embd); + printf("%s: n_ff: %u\n", __func__, params->n_ff); + printf("%s: n_head: %u\n", __func__, params->n_head); + printf("%s: n_head_kv: %u\n", __func__, params->n_head_kv); + printf("%s: n_layer: %u\n", __func__, params->n_layer); + printf("%s: norm_rms_eps : %f\n", __func__, params->f_norm_rms_eps); + printf("%s: rope_freq_base : %f\n", __func__, params->rope_freq_base); + printf("%s: rope_freq_scale : %f\n", __func__, params->rope_freq_scale); +} + +static void print_lora_params(struct my_llama_lora_hparams * params) { + printf("%s: n_rank_attention_norm : %u\n", __func__, params->n_rank_attention_norm); + printf("%s: n_rank_wq : %u\n", __func__, params->n_rank_wq); + printf("%s: n_rank_wk : %u\n", __func__, params->n_rank_wk); + printf("%s: n_rank_wv : %u\n", __func__, params->n_rank_wv); + printf("%s: n_rank_wo : %u\n", __func__, params->n_rank_wo); + printf("%s: n_rank_ffn_norm : %u\n", __func__, params->n_rank_ffn_norm); + printf("%s: n_rank_w1 : %u\n", __func__, params->n_rank_w1); + printf("%s: n_rank_w2 : %u\n", __func__, params->n_rank_w2); + printf("%s: n_rank_w3 : %u\n", __func__, params->n_rank_w3); + printf("%s: n_rank_tok_embeddings : %u\n", __func__, params->n_rank_tok_embeddings); + printf("%s: n_rank_norm : %u\n", __func__, params->n_rank_norm); + printf("%s: n_rank_output : %u\n", __func__, params->n_rank_output); +} + +#define GGUF_GET_KEY(ctx, dst, func, type, req, key) \ +{ \ + const std::string skey(key); \ + const int kid = gguf_find_key(ctx, skey.c_str()); \ + if (kid >= 0) { \ + enum gguf_type ktype = gguf_get_kv_type(ctx, kid); \ + if (ktype != (type)) { \ + die_fmt("key %s has wrong type: %s", skey.c_str(), gguf_type_name(ktype)); \ + } \ + (dst) = func(ctx, kid); \ + } else if (req) { \ + die_fmt("key not found in model: %s", skey.c_str()); \ + } \ +} + +static void load_model_hparams_gguf(struct gguf_context * ctx, struct my_llama_hparams * hparams, const char * expected_arch) { + std::string arch; + + GGUF_GET_KEY(ctx, arch, gguf_get_val_str, GGUF_TYPE_STRING, true, LLM_KV_GENERAL_ARCHITECTURE); + if (expected_arch != NULL) { + if (arch != expected_arch) { + printf("%s: arch=%s expected_arch=%s\n", __func__, arch.c_str(), expected_arch); + } + GGML_ASSERT(arch == expected_arch); + } + + std::vector keybuf; + keybuf.resize(512); + auto kv = [&arch, &keybuf](const char * key) -> const char * { + snprintf(keybuf.data(), keybuf.size(), key, arch.c_str()); + return keybuf.data(); + }; + + GGUF_GET_KEY(ctx, hparams->n_embd, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_EMBEDDING_LENGTH)); + GGUF_GET_KEY(ctx, hparams->n_ctx, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_CONTEXT_LENGTH)); + GGUF_GET_KEY(ctx, hparams->n_ff, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_FEED_FORWARD_LENGTH)); + GGUF_GET_KEY(ctx, hparams->n_head, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_ATTENTION_HEAD_COUNT)); + GGUF_GET_KEY(ctx, hparams->n_layer, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_BLOCK_COUNT)); + + // n_head_kv is optional, default to n_head + hparams->n_head_kv = hparams->n_head; + GGUF_GET_KEY(ctx, hparams->n_head_kv, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_ATTENTION_HEAD_COUNT_KV)); + + float rope_freq_scale = 1.0f; + GGUF_GET_KEY(ctx, hparams->f_norm_rms_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS)); + GGUF_GET_KEY(ctx, hparams->rope_freq_base, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_FREQ_BASE)); + GGUF_GET_KEY(ctx, rope_freq_scale, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_SCALE_LINEAR)); + if (rope_freq_scale != 1.0f) { + hparams->rope_freq_scale = 1.0f / rope_freq_scale; + } +} + +static void init_model(struct llama_model * input, struct my_llama_model * model, const char * fn_model, uint32_t n_ctx) { + auto & hparams = model->hparams; + + std::vector tn_buf; + tn_buf.resize(GGML_MAX_NAME); + auto tn = [&tn_buf](const char * key) -> const char * { + snprintf(tn_buf.data(), tn_buf.size(), "%s.weight", key); + return tn_buf.data(); + }; + auto tni = [&tn_buf](const char * key, int bid) -> const char * { + snprintf(tn_buf.data(), tn_buf.size(), key, bid); + std::string s = tn_buf.data(); + snprintf(tn_buf.data(), tn_buf.size(), "%s.weight", s.c_str()); + return tn_buf.data(); + }; + + + // get parameters directly from gguf file + { + struct gguf_init_params params = { + /*.no_alloc = */ false, + /*.ctx = */ NULL, + }; + struct gguf_context * mctx = gguf_init_from_file(fn_model, params); + + load_model_hparams_gguf(mctx, &hparams, "llama"); + + gguf_free(mctx); + } + hparams.n_vocab = llama_n_vocab(input); + hparams.n_ctx = n_ctx; + + // get tensors from llama_model (possibly mmapped) + model->tok_embeddings = llama_get_model_tensor(input, tn(LLM_TENSOR_TOKEN_EMBD)); + model->norm = llama_get_model_tensor(input, tn(LLM_TENSOR_OUTPUT_NORM)); + model->output = llama_get_model_tensor(input, tn(LLM_TENSOR_OUTPUT)); + + assert_shape_2d(model->tok_embeddings, hparams.n_embd, hparams.n_vocab); + assert_shape_1d(model->norm, hparams.n_embd); + assert_shape_2d(model->output, hparams.n_embd, hparams.n_vocab); + + model->layers.resize(hparams.n_layer); + for (uint32_t i = 0; i < hparams.n_layer; ++i) { + auto & layer = model->layers[i]; + + layer.attention_norm = llama_get_model_tensor(input, tni(LLM_TENSOR_ATTN_NORM, i)); + layer.wq = llama_get_model_tensor(input, tni(LLM_TENSOR_ATTN_Q, i)); + layer.wk = llama_get_model_tensor(input, tni(LLM_TENSOR_ATTN_K, i)); + layer.wv = llama_get_model_tensor(input, tni(LLM_TENSOR_ATTN_V, i)); + layer.wo = llama_get_model_tensor(input, tni(LLM_TENSOR_ATTN_OUT, i)); + layer.ffn_norm = llama_get_model_tensor(input, tni(LLM_TENSOR_FFN_NORM, i)); + layer.w1 = llama_get_model_tensor(input, tni(LLM_TENSOR_FFN_GATE, i)); + layer.w2 = llama_get_model_tensor(input, tni(LLM_TENSOR_FFN_DOWN, i)); + layer.w3 = llama_get_model_tensor(input, tni(LLM_TENSOR_FFN_UP, i)); + + assert_shape_1d(layer.attention_norm, hparams.n_embd); + assert_shape_2d(layer.wq, hparams.n_embd, hparams.n_embd); + assert_shape_2d(layer.wk, hparams.n_embd, hparams.n_embd); + assert_shape_2d(layer.wv, hparams.n_embd, hparams.n_embd); + assert_shape_2d(layer.wo, hparams.n_embd, hparams.n_embd); + assert_shape_1d(layer.ffn_norm, hparams.n_embd); + assert_shape_2d(layer.w1, hparams.n_embd, hparams.n_ff); + assert_shape_2d(layer.w2, hparams.n_ff, hparams.n_embd); + assert_shape_2d(layer.w3, hparams.n_embd, hparams.n_ff); + } +} + +static void set_param_lora(struct my_llama_lora * lora) { + const uint32_t n_layer = lora->layers.size(); + + struct ggml_context* ctx = lora->ctx; + + ggml_set_param(ctx, lora->tok_embeddings_a); + ggml_set_param(ctx, lora->tok_embeddings_b); + ggml_set_param(ctx, lora->norm_a); + ggml_set_param(ctx, lora->norm_b); + ggml_set_param(ctx, lora->output_a); + ggml_set_param(ctx, lora->output_b); + + for (uint32_t i = 0; i < n_layer; ++i) { + auto & layer = lora->layers[i]; + + ggml_set_param(ctx, layer.attention_norm_a); + ggml_set_param(ctx, layer.attention_norm_b); + ggml_set_param(ctx, layer.wq_a); + ggml_set_param(ctx, layer.wq_b); + ggml_set_param(ctx, layer.wk_a); + ggml_set_param(ctx, layer.wk_b); + ggml_set_param(ctx, layer.wv_a); + ggml_set_param(ctx, layer.wv_b); + ggml_set_param(ctx, layer.wo_a); + ggml_set_param(ctx, layer.wo_b); + ggml_set_param(ctx, layer.ffn_norm_a); + ggml_set_param(ctx, layer.ffn_norm_b); + ggml_set_param(ctx, layer.w1_a); + ggml_set_param(ctx, layer.w1_b); + ggml_set_param(ctx, layer.w2_a); + ggml_set_param(ctx, layer.w2_b); + ggml_set_param(ctx, layer.w3_a); + ggml_set_param(ctx, layer.w3_b); + } +} + +static void alloc_lora(struct ggml_allocr * alloc, struct my_llama_lora * lora) { + ggml_allocr_alloc(alloc, lora->tok_embeddings_a); + ggml_allocr_alloc(alloc, lora->tok_embeddings_b); + ggml_allocr_alloc(alloc, lora->norm_a); + ggml_allocr_alloc(alloc, lora->norm_b); + ggml_allocr_alloc(alloc, lora->output_a); + ggml_allocr_alloc(alloc, lora->output_b); + for (uint32_t i = 0; i < lora->layers.size(); ++i) { + auto & layer = lora->layers[i]; + ggml_allocr_alloc(alloc, layer.attention_norm_a); + ggml_allocr_alloc(alloc, layer.attention_norm_b); + ggml_allocr_alloc(alloc, layer.wq_a); + ggml_allocr_alloc(alloc, layer.wq_b); + ggml_allocr_alloc(alloc, layer.wk_a); + ggml_allocr_alloc(alloc, layer.wk_b); + ggml_allocr_alloc(alloc, layer.wv_a); + ggml_allocr_alloc(alloc, layer.wv_b); + ggml_allocr_alloc(alloc, layer.wo_a); + ggml_allocr_alloc(alloc, layer.wo_b); + ggml_allocr_alloc(alloc, layer.ffn_norm_a); + ggml_allocr_alloc(alloc, layer.ffn_norm_b); + ggml_allocr_alloc(alloc, layer.w1_a); + ggml_allocr_alloc(alloc, layer.w1_b); + ggml_allocr_alloc(alloc, layer.w2_a); + ggml_allocr_alloc(alloc, layer.w2_b); + ggml_allocr_alloc(alloc, layer.w3_a); + ggml_allocr_alloc(alloc, layer.w3_b); + } + ggml_allocr_alloc(alloc, lora->tok_embeddings_a->grad); + ggml_allocr_alloc(alloc, lora->tok_embeddings_b->grad); + ggml_allocr_alloc(alloc, lora->norm_a->grad); + ggml_allocr_alloc(alloc, lora->norm_b->grad); + ggml_allocr_alloc(alloc, lora->output_a->grad); + ggml_allocr_alloc(alloc, lora->output_b->grad); + for (uint32_t i = 0; i < lora->layers.size(); ++i) { + auto & layer = lora->layers[i]; + ggml_allocr_alloc(alloc, layer.attention_norm_a->grad); + ggml_allocr_alloc(alloc, layer.attention_norm_b->grad); + ggml_allocr_alloc(alloc, layer.wq_a->grad); + ggml_allocr_alloc(alloc, layer.wq_b->grad); + ggml_allocr_alloc(alloc, layer.wk_a->grad); + ggml_allocr_alloc(alloc, layer.wk_b->grad); + ggml_allocr_alloc(alloc, layer.wv_a->grad); + ggml_allocr_alloc(alloc, layer.wv_b->grad); + ggml_allocr_alloc(alloc, layer.wo_a->grad); + ggml_allocr_alloc(alloc, layer.wo_b->grad); + ggml_allocr_alloc(alloc, layer.ffn_norm_a->grad); + ggml_allocr_alloc(alloc, layer.ffn_norm_b->grad); + ggml_allocr_alloc(alloc, layer.w1_a->grad); + ggml_allocr_alloc(alloc, layer.w1_b->grad); + ggml_allocr_alloc(alloc, layer.w2_a->grad); + ggml_allocr_alloc(alloc, layer.w2_b->grad); + ggml_allocr_alloc(alloc, layer.w3_a->grad); + ggml_allocr_alloc(alloc, layer.w3_b->grad); + } +} + +static void init_lora(const struct my_llama_model * model, struct my_llama_lora * lora) { + const auto & lparams = lora->hparams; + + const uint32_t n_embd = model->hparams.n_embd; + const uint32_t n_embd_gqa = model->hparams.n_embd_gqa(); + const uint32_t n_layer = model->hparams.n_layer; + const uint32_t n_vocab = model->hparams.n_vocab; + const uint32_t n_ff = model->hparams.n_ff; + + std::vector tn_buf; + tn_buf.resize(GGML_MAX_NAME); + auto tn = [&tn_buf](const char * key, const char * suffix) -> const char * { + snprintf(tn_buf.data(), tn_buf.size(), "%s%s", key, suffix); + return tn_buf.data(); + }; + auto tni = [&tn_buf](const char * key, const char * suffix, int bid) -> const char * { + snprintf(tn_buf.data(), tn_buf.size(), key, bid); + std::string s = tn_buf.data(); + snprintf(tn_buf.data(), tn_buf.size(), "%s%s", s.c_str(), suffix); + return tn_buf.data(); + }; + + // context for lora tensors without their data + struct ggml_init_params ctx_lora_params; + ctx_lora_params.mem_size = ggml_tensor_overhead()*2*(6 + n_layer*18); + ctx_lora_params.mem_buffer = NULL; + ctx_lora_params.no_alloc = true; + + struct ggml_context * ctx = ggml_init(ctx_lora_params); + lora->ctx = ctx; + + lora->tok_embeddings_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_tok_embeddings, n_embd); + lora->tok_embeddings_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_tok_embeddings, n_vocab); + lora->norm_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_norm, n_embd); + lora->norm_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_norm, 1); + lora->output_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_output, n_embd); + lora->output_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_output, n_vocab); + + ggml_set_name(lora->tok_embeddings_a, tn(LLM_TENSOR_TOKEN_EMBD, ".weight.lora_a")); + ggml_set_name(lora->tok_embeddings_b, tn(LLM_TENSOR_TOKEN_EMBD, ".weight.lora_b")); + ggml_set_name(lora->norm_a, tn(LLM_TENSOR_OUTPUT_NORM, ".weight.lora_a")); + ggml_set_name(lora->norm_b, tn(LLM_TENSOR_OUTPUT_NORM, ".weight.lora_b")); + ggml_set_name(lora->output_a, tn(LLM_TENSOR_OUTPUT, ".weight.lora_a")); + ggml_set_name(lora->output_b, tn(LLM_TENSOR_OUTPUT, ".weight.lora_b")); + + lora->layers.resize(n_layer); + for (uint32_t i = 0; i < n_layer; ++i) { + auto & layer = lora->layers[i]; + + layer.attention_norm_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_attention_norm, n_embd); + layer.attention_norm_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_attention_norm, 1); + + layer.wq_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_wq, n_embd); + layer.wq_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_wq, n_embd); + layer.wk_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_wk, n_embd); + layer.wk_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_wk, n_embd_gqa); + layer.wv_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_wv, n_embd); + layer.wv_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_wv, n_embd_gqa); + layer.wo_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_wo, n_embd); + layer.wo_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_wo, n_embd); + + layer.ffn_norm_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_ffn_norm, n_embd); + layer.ffn_norm_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_ffn_norm, 1); + + layer.w1_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_w1, n_embd); + layer.w1_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_w1, n_ff); + layer.w2_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_w2, n_ff); + layer.w2_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_w2, n_embd); + layer.w3_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_w3, n_embd); + layer.w3_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_w3, n_ff); + + ggml_set_name(layer.attention_norm_a, tni(LLM_TENSOR_ATTN_NORM, ".weight.lora_a", i)); + ggml_set_name(layer.attention_norm_b, tni(LLM_TENSOR_ATTN_NORM, ".weight.lora_b", i)); + ggml_set_name(layer.wq_a, tni(LLM_TENSOR_ATTN_Q, ".weight.lora_a", i)); + ggml_set_name(layer.wq_b, tni(LLM_TENSOR_ATTN_Q, ".weight.lora_b", i)); + ggml_set_name(layer.wk_a, tni(LLM_TENSOR_ATTN_K, ".weight.lora_a", i)); + ggml_set_name(layer.wk_b, tni(LLM_TENSOR_ATTN_K, ".weight.lora_b", i)); + ggml_set_name(layer.wv_a, tni(LLM_TENSOR_ATTN_V, ".weight.lora_a", i)); + ggml_set_name(layer.wv_b, tni(LLM_TENSOR_ATTN_V, ".weight.lora_b", i)); + ggml_set_name(layer.wo_a, tni(LLM_TENSOR_ATTN_OUT, ".weight.lora_a", i)); + ggml_set_name(layer.wo_b, tni(LLM_TENSOR_ATTN_OUT, ".weight.lora_b", i)); + ggml_set_name(layer.ffn_norm_a, tni(LLM_TENSOR_FFN_NORM, ".weight.lora_a", i)); + ggml_set_name(layer.ffn_norm_b, tni(LLM_TENSOR_FFN_NORM, ".weight.lora_b", i)); + ggml_set_name(layer.w1_a, tni(LLM_TENSOR_FFN_GATE, ".weight.lora_a", i)); + ggml_set_name(layer.w1_b, tni(LLM_TENSOR_FFN_GATE, ".weight.lora_b", i)); + ggml_set_name(layer.w2_a, tni(LLM_TENSOR_FFN_DOWN, ".weight.lora_a", i)); + ggml_set_name(layer.w2_b, tni(LLM_TENSOR_FFN_DOWN, ".weight.lora_b", i)); + ggml_set_name(layer.w3_a, tni(LLM_TENSOR_FFN_UP, ".weight.lora_a", i)); + ggml_set_name(layer.w3_b, tni(LLM_TENSOR_FFN_UP, ".weight.lora_b", i)); + } + + set_param_lora(lora); + + // measure data size + struct ggml_allocr * alloc = NULL; + alloc = ggml_allocr_new_measure(tensor_alignment); + alloc_lora(alloc, lora); + + // allocate data + lora->data.resize(ggml_allocr_max_size(alloc) + tensor_alignment); + ggml_allocr_free(alloc); + alloc = ggml_allocr_new(lora->data.data(), lora->data.size(), tensor_alignment); + alloc_lora(alloc, lora); + ggml_allocr_free(alloc); +} + +static void randomize_lora(struct my_llama_lora * lora, int seed, float mean, float std, float min, float max) { + const uint32_t n_layer = lora->layers.size(); + + struct random_normal_distribution * rnd = init_random_normal_distribution(seed, mean, std, min, max); + + randomize_tensor_normal(lora->tok_embeddings_a, rnd); + randomize_tensor_normal(lora->tok_embeddings_b, rnd); + randomize_tensor_normal(lora->norm_a, rnd); + randomize_tensor_normal(lora->norm_b, rnd); + randomize_tensor_normal(lora->output_a, rnd); + randomize_tensor_normal(lora->output_b, rnd); + + for (uint32_t i = 0; i < n_layer; ++i) { + auto & layer = lora->layers[i]; + randomize_tensor_normal(layer.attention_norm_a, rnd); + randomize_tensor_normal(layer.attention_norm_b, rnd); + + randomize_tensor_normal(layer.wq_a, rnd); + randomize_tensor_normal(layer.wq_b, rnd); + randomize_tensor_normal(layer.wk_a, rnd); + randomize_tensor_normal(layer.wk_b, rnd); + randomize_tensor_normal(layer.wv_a, rnd); + randomize_tensor_normal(layer.wv_b, rnd); + randomize_tensor_normal(layer.wo_a, rnd); + randomize_tensor_normal(layer.wo_b, rnd); + + randomize_tensor_normal(layer.ffn_norm_a, rnd); + randomize_tensor_normal(layer.ffn_norm_b, rnd); + + randomize_tensor_normal(layer.w1_a, rnd); + randomize_tensor_normal(layer.w1_b, rnd); + randomize_tensor_normal(layer.w2_a, rnd); + randomize_tensor_normal(layer.w2_b, rnd); + randomize_tensor_normal(layer.w3_a, rnd); + randomize_tensor_normal(layer.w3_b, rnd); + } + + free_random_normal_distribution(rnd); +} + +static struct ggml_tensor * llama_build_lora_finetune_graphs( + struct my_llama_model * model, + struct my_llama_lora * lora, + struct ggml_allocr * alloc, + struct ggml_context * ctx, + struct ggml_cgraph * gf, + struct ggml_cgraph * gb, + struct ggml_cgraph * gb_tmp, + struct ggml_tensor * * logits, + struct ggml_tensor * tokens_input, + struct ggml_tensor * targets, + const int n_tokens, + const int n_batch, + const bool enable_flash_attn, + const bool enable_checkpointing) { + + ggml_set_scratch(ctx, { 0, 0, nullptr, }); + const int n_past = 0; + const int N = n_tokens; + const auto & hparams = model->hparams; + const int n_ctx = hparams.n_ctx; + const int n_vocab = hparams.n_vocab; + const int n_embd = hparams.n_embd; + const int n_layer = hparams.n_layer; + const int n_head = hparams.n_head; + const int n_head_kv = hparams.n_head_kv; + const int n_ff = hparams.n_ff; + const int n_rot = hparams.n_embd_head(); + const int n_embd_head = hparams.n_embd_head(); + const int n_embd_gqa = hparams.n_embd_gqa(); + const float rms_norm_eps = hparams.f_norm_rms_eps; + const float rope_freq_base = hparams.rope_freq_base; + const float rope_freq_scale = hparams.rope_freq_scale; + + GGML_ASSERT((size_t) n_layer == lora->layers.size()); + + auto set_name = [](struct ggml_tensor * t, const char * n) { + ggml_set_name(t, n); + if (t->grad) { + ggml_format_name(t->grad, "%s->grad", n); + } + }; + + // KQ_pos - contains the positions + struct ggml_tensor * KQ_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, N); + ggml_allocr_alloc(alloc, KQ_pos); + if (!ggml_allocr_is_measure(alloc)) { + int * data = (int *) KQ_pos->data; + for (int i = 0; i < N; ++i) { + data[i] = n_past + i; + } + } + + // rope has so much parameters that we make a custom function for it + auto rope = [ctx, KQ_pos, n_rot, n_ctx, rope_freq_base, rope_freq_scale] + (struct ggml_tensor * t) -> struct ggml_tensor * { + // not capturing these, to silcence warnings + const int rope_mode = 0; + + return ggml_rope_custom(ctx, + t, KQ_pos, n_rot, rope_mode, n_ctx, + rope_freq_base, rope_freq_scale); + }; + + set_name(tokens_input, "tokens_input"); + set_name(targets, "targets"); + + GGML_ASSERT(tokens_input->type == GGML_TYPE_I32); + + auto add_to_f32 = [] (struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b) { + if (ggml_is_quantized(a->type)) { + return ggml_add_cast(ctx, a, b, GGML_TYPE_F32); + } else if (a->type == GGML_TYPE_F32) { + return ggml_add(ctx, a, b); + } else { + die_fmt("%s: Finetuning on tensors with type '%s' is not yet supported.\n", + __func__, ggml_type_name(a->type)); + } + }; + + struct ggml_tensor * tok_embeddings = add_to_f32(ctx, model->tok_embeddings, ggml_mul_mat(ctx, lora->tok_embeddings_a, lora->tok_embeddings_b)); + struct ggml_tensor * norm = add_to_f32(ctx, model->norm, ggml_mul_mat(ctx, lora->norm_a, lora->norm_b)); + struct ggml_tensor * output = add_to_f32(ctx, model->output, ggml_mul_mat(ctx, lora->output_a, lora->output_b)); + + struct ggml_tensor * t00 = ggml_reshape_1d(ctx, tokens_input, N*n_batch); set_name(t00, "t00"); assert_shape_1d(t00, N*n_batch); + struct ggml_tensor * t01 = ggml_get_rows(ctx, tok_embeddings, t00); set_name(t01, "t01"); assert_shape_2d(t01, n_embd, N*n_batch); + + struct ggml_tensor * cur = t01; + + std::vector checkpoints; + if (enable_checkpointing) { + checkpoints.push_back(tokens_input); + checkpoints.push_back(targets); + checkpoints.push_back(t00); + checkpoints.push_back(t01); + } + + struct ggml_tensor * kv_scale = NULL; + if (!enable_flash_attn) { + kv_scale = ggml_new_f32(ctx, 1.0f/sqrtf(float(n_embd)/n_head)); + } + + for (int il = 0; il < n_layer; ++il) { + struct my_llama_layer & layer = model->layers[il]; + struct my_llama_lora_layer & llayer = lora->layers[il]; + + struct ggml_tensor * attention_norm = add_to_f32(ctx, layer.attention_norm, ggml_mul_mat(ctx, llayer.attention_norm_a, llayer.attention_norm_b)); + struct ggml_tensor * ffn_norm = add_to_f32(ctx, layer.ffn_norm, ggml_mul_mat(ctx, llayer.ffn_norm_a, llayer.ffn_norm_b)); + struct ggml_tensor * wq = add_to_f32(ctx, layer.wq, ggml_mul_mat(ctx, llayer.wq_a, llayer.wq_b)); + struct ggml_tensor * wk = add_to_f32(ctx, layer.wk, ggml_mul_mat(ctx, llayer.wk_a, llayer.wk_b)); + struct ggml_tensor * wv = add_to_f32(ctx, layer.wv, ggml_mul_mat(ctx, llayer.wv_a, llayer.wv_b)); + struct ggml_tensor * wo = add_to_f32(ctx, layer.wo, ggml_mul_mat(ctx, llayer.wo_a, llayer.wo_b)); + struct ggml_tensor * w1 = add_to_f32(ctx, layer.w1, ggml_mul_mat(ctx, llayer.w1_a, llayer.w1_b)); + struct ggml_tensor * w2 = add_to_f32(ctx, layer.w2, ggml_mul_mat(ctx, llayer.w2_a, llayer.w2_b)); + struct ggml_tensor * w3 = add_to_f32(ctx, layer.w3, ggml_mul_mat(ctx, llayer.w3_a, llayer.w3_b)); + + struct ggml_tensor * t02 = ggml_rms_norm (ctx, cur, rms_norm_eps); set_name(t02, "t02"); assert_shape_2d(t02, n_embd, N*n_batch); + struct ggml_tensor * t03 = ggml_repeat (ctx, attention_norm, t02); set_name(t03, "t03"); assert_shape_2d(t03, n_embd, N*n_batch); + struct ggml_tensor * t04 = ggml_mul (ctx, t03, t02); set_name(t04, "t04"); assert_shape_2d(t04, n_embd, N*n_batch); + struct ggml_tensor * t05 = ggml_mul_mat (ctx, wq, t04); set_name(t05, "t05"); assert_shape_2d(t05, n_embd, N*n_batch); + struct ggml_tensor * t06 = ggml_reshape_4d (ctx, t05, n_embd_head, n_head, N, n_batch); set_name(t06, "t06"); assert_shape_4d(t06, n_embd_head, n_head, N, n_batch); + struct ggml_tensor * t07 = rope (t06); set_name(t07, "t07"); assert_shape_4d(t07, n_embd_head, n_head, N, n_batch); + struct ggml_tensor * t08 = ggml_mul_mat (ctx, wk, t04); set_name(t08, "t08"); assert_shape_2d(t08, n_embd_gqa, N*n_batch); + struct ggml_tensor * t09 = ggml_reshape_4d (ctx, t08, n_embd_head, n_head_kv, N, n_batch); set_name(t09, "t09"); assert_shape_4d(t09, n_embd_head, n_head_kv, N, n_batch); + struct ggml_tensor * t10 = rope (t09); set_name(t10, "t10"); assert_shape_4d(t10, n_embd_head, n_head_kv, N, n_batch); + + struct ggml_tensor * t11; + if (ggml_is_quantized(wv->type)) { + struct ggml_tensor * t11_1 = ggml_mul_mat (ctx, wv, t04); set_name(t11_1, "t11_1"); assert_shape_2d(t11_1, n_embd_gqa, N*n_batch); + struct ggml_tensor * t11_2 = ggml_transpose(ctx, t11_1); set_name(t11_2, "t11_2"); assert_shape_2d(t11_2, N*n_batch, n_embd_gqa); + t11 = ggml_cont (ctx, t11_2); set_name(t11, "t11"); assert_shape_2d(t11, N*n_batch, n_embd_gqa); + } else { + t11 = ggml_mul_mat (ctx, t04, wv); set_name(t11, "t11"); assert_shape_2d(t11, N*n_batch, n_embd_gqa); + } + + struct ggml_tensor * t12 = ggml_reshape_4d (ctx, t11, N, n_batch, n_embd_head, n_head_kv); set_name(t12, "t12"); assert_shape_4d(t12, N, n_batch, n_embd_head, n_head_kv); + struct ggml_tensor * t13 = ggml_permute (ctx, t07, 0, 2, 1, 3); set_name(t13, "t13"); assert_shape_4d(t13, n_embd_head, N, n_head, n_batch); + struct ggml_tensor * t14 = ggml_permute (ctx, t10, 0, 2, 1, 3); set_name(t14, "t14"); assert_shape_4d(t14, n_embd_head, N, n_head_kv, n_batch); + struct ggml_tensor * t15 = ggml_permute (ctx, t12, 0, 3, 1, 2); set_name(t15, "t15"); assert_shape_4d(t15, N, n_embd_head, n_head_kv, n_batch); + struct ggml_tensor * t16; + if (enable_flash_attn) { + t16 = ggml_flash_attn(ctx, t13, t14, t15, true); set_name(t16, "t16"); assert_shape_4d(t16, n_embd_head, N, n_head, n_batch); + } else { + struct ggml_tensor * t16_0 = ggml_mul_mat (ctx, t14, t13); set_name(t16_0, "t16_0"); assert_shape_4d(t16_0, N, N, n_head, n_batch); + struct ggml_tensor * t16_1 = ggml_scale_inplace (ctx, t16_0, kv_scale); set_name(t16_1, "t16_1"); assert_shape_4d(t16_1, N, N, n_head, n_batch); + struct ggml_tensor * t16_2 = ggml_diag_mask_inf_inplace(ctx, t16_1, n_past); set_name(t16_2, "t16_2"); assert_shape_4d(t16_2, N, N, n_head, n_batch); + struct ggml_tensor * t16_3 = ggml_soft_max_inplace (ctx, t16_2); set_name(t16_3, "t16_3"); assert_shape_4d(t16_3, N, N, n_head, n_batch); + t16 = ggml_mul_mat(ctx, t15, t16_3); set_name(t16, "t16"); assert_shape_4d(t16, n_embd_head, N, n_head, n_batch); + } + struct ggml_tensor * t17 = ggml_permute (ctx, t16, 0, 2, 1, 3); set_name(t17, "t17"); assert_shape_4d(t17, n_embd_head, n_head, N, n_batch); + struct ggml_tensor * t18 = ggml_cont (ctx, t17); set_name(t18, "t18"); assert_shape_4d(t18, n_embd_head, n_head, N, n_batch); + struct ggml_tensor * t19 = ggml_reshape_2d (ctx, t18, n_embd, N*n_batch); set_name(t19, "t19"); assert_shape_2d(t19, n_embd, N*n_batch); + struct ggml_tensor * t20 = ggml_mul_mat (ctx, wo, t19); set_name(t20, "t20"); assert_shape_2d(t20, n_embd, N*n_batch); + struct ggml_tensor * t21 = ggml_add (ctx, t20, cur); set_name(t21, "t21"); assert_shape_2d(t21, n_embd, N*n_batch); + struct ggml_tensor * t22 = ggml_rms_norm (ctx, t21, rms_norm_eps); set_name(t22, "t22"); assert_shape_2d(t22, n_embd, N*n_batch); + struct ggml_tensor * t23 = ggml_repeat (ctx, ffn_norm, t22); set_name(t23, "t23"); assert_shape_2d(t23, n_embd, N*n_batch); + struct ggml_tensor * t24 = ggml_mul (ctx, t23, t22); set_name(t24, "t24"); assert_shape_2d(t24, n_embd, N*n_batch); + struct ggml_tensor * t25 = ggml_mul_mat (ctx, w3, t24); set_name(t25, "t25"); assert_shape_2d(t25, n_ff, N*n_batch); + struct ggml_tensor * t26 = ggml_mul_mat (ctx, w1, t24); set_name(t26, "t26"); assert_shape_2d(t26, n_ff, N*n_batch); + struct ggml_tensor * t27 = ggml_silu (ctx, t26); set_name(t27, "t27"); assert_shape_2d(t27, n_ff, N*n_batch); + struct ggml_tensor * t28 = ggml_mul (ctx, t27, t25); set_name(t28, "t28"); assert_shape_2d(t28, n_ff, N*n_batch); + struct ggml_tensor * t29 = ggml_mul_mat (ctx, w2, t28); set_name(t29, "t29"); assert_shape_2d(t29, n_embd, N*n_batch); + struct ggml_tensor * t30 = ggml_add (ctx, t29, t21); set_name(t30, "t30"); assert_shape_2d(t30, n_embd, N*n_batch); + cur = t30; + if (enable_checkpointing) { + checkpoints.push_back(cur); + } + } + struct ggml_tensor * t31 = ggml_rms_norm (ctx, cur, rms_norm_eps); set_name(t31, "t31"); assert_shape_2d(t31, n_embd, N*n_batch); + struct ggml_tensor * t32 = ggml_repeat (ctx, norm, t31); set_name(t32, "t32"); assert_shape_2d(t32, n_embd, N*n_batch); + struct ggml_tensor * t33 = ggml_mul (ctx, t32, t31); set_name(t33, "t33"); assert_shape_2d(t33, n_embd, N*n_batch); + struct ggml_tensor * t34 = ggml_mul_mat (ctx, output, t33); set_name(t34, "t34"); assert_shape_2d(t34, n_vocab, N*n_batch); + struct ggml_tensor * t35 = ggml_reshape_3d (ctx, t34, n_vocab, N, n_batch); set_name(t35, "t35"); assert_shape_3d(t35, n_vocab, N, n_batch); + struct ggml_tensor * t36 = ggml_cross_entropy_loss(ctx, t35, targets); set_name(t36, "t36"); assert_shape_1d(t36, 1); + + if (enable_checkpointing) { + checkpoints.push_back(t31); + checkpoints.push_back(t32); + checkpoints.push_back(t33); + checkpoints.push_back(t34); + checkpoints.push_back(t35); + checkpoints.push_back(t36); + } + + ggml_build_forward_expand(gf, t36); + + if (enable_checkpointing) { + ggml_build_backward_gradient_checkpointing(ctx, gf, gb, gb_tmp, checkpoints.data(), (int) checkpoints.size()); + } else { + *gb = *gf; + ggml_build_backward_expand(ctx, gf, gb, true); + } + + GGML_ASSERT(alloc != NULL); + + // make sure some tensors are not reallocated by inserting new temporary nodes depending on them + int n_leafs_before = gb->n_leafs; + int n_nodes_before = gb->n_nodes; + struct ggml_tensor * one = ggml_new_f32(ctx, 1.0f); + // output tensors + ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t35, one)); + ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t36, one)); + // input gradient + ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t36->grad, one)); + GGML_ASSERT(t36->grad->data == NULL && t36->grad->view_src == NULL); + ggml_allocr_alloc(alloc, t36->grad); + // KQ_pos + ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, KQ_pos, one)); + + // make sure base model tensors data cannot be used in viewable operations + ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, model->tok_embeddings, one)); + ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, model->norm, one)); + ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, model->output, one)); + for (int il = 0; il < n_layer; ++il) { + struct my_llama_layer & layer = model->layers[il]; + ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.attention_norm, one)); + ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.ffn_norm, one)); + ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.wq, one)); + ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.wk, one)); + ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.wv, one)); + ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.wo, one)); + ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.w1, one)); + ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.w2, one)); + ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.w3, one)); + } + + // allocating checkpoints in one block to reduce memory fragmentation + // note: they will be freed in reverse order + for (unsigned int i = 0; i < checkpoints.size(); ++i) { + if (checkpoints[i]->data == NULL && checkpoints[i]->view_src == NULL) { + ggml_allocr_alloc(alloc, checkpoints[i]); + } + } + + ggml_allocr_alloc_graph(alloc, gb); + + // remove the additional nodes and leafs + for (int i = n_leafs_before; i < gb->n_leafs; ++i) { + gb->leafs[i] = NULL; + } + for (int i = n_nodes_before; i < gb->n_nodes; ++i) { + gb->nodes[i] = NULL; + } + gb->n_leafs = n_leafs_before; + gb->n_nodes = n_nodes_before; + + *logits = t35; + return t36; +} + +static void load_llama_lora_gguf(struct gguf_context * fctx, struct ggml_context * f_ggml_ctx, struct my_llama_model * model, struct my_llama_lora * lora) { + // NOTE: gguf_context must be initialized with f_ggml_ctx and no_alloc=false, otherwise tensor data can not be read + + std::string arch; + + std::vector keybuf; + keybuf.resize(512); + + GGUF_GET_KEY(fctx, arch, gguf_get_val_str, GGUF_TYPE_STRING, true, LLM_KV_GENERAL_ARCHITECTURE); + GGML_ASSERT(arch == "llama"); + + uint32_t ftype_u; + GGUF_GET_KEY(fctx, ftype_u, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_GENERAL_FILE_TYPE); + GGML_ASSERT((enum llama_ftype) ftype_u == LLAMA_FTYPE_ALL_F32); + + struct my_llama_hparams hparams; + load_model_hparams_gguf(fctx, &hparams, arch.c_str()); + + // parameters that define tensor shapes must match + GGML_ASSERT(hparams.n_embd == model->hparams.n_embd); + GGML_ASSERT(hparams.n_ff == model->hparams.n_ff); + GGML_ASSERT(hparams.n_head == model->hparams.n_head); + GGML_ASSERT(hparams.n_head_kv == model->hparams.n_head_kv); + GGML_ASSERT(hparams.n_layer == model->hparams.n_layer); + + GGUF_GET_KEY(fctx, lora->hparams.n_rank_tok_embeddings, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_TOKEN_EMBD); + GGUF_GET_KEY(fctx, lora->hparams.n_rank_norm, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_OUTPUT_NORM); + GGUF_GET_KEY(fctx, lora->hparams.n_rank_output, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_OUTPUT); + GGUF_GET_KEY(fctx, lora->hparams.n_rank_attention_norm, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_ATTN_NORM); + GGUF_GET_KEY(fctx, lora->hparams.n_rank_wq, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_ATTN_Q); + GGUF_GET_KEY(fctx, lora->hparams.n_rank_wk, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_ATTN_K); + GGUF_GET_KEY(fctx, lora->hparams.n_rank_wv, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_ATTN_V); + GGUF_GET_KEY(fctx, lora->hparams.n_rank_wo, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_ATTN_OUT); + GGUF_GET_KEY(fctx, lora->hparams.n_rank_ffn_norm, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_FFN_NORM); + GGUF_GET_KEY(fctx, lora->hparams.n_rank_w1, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_FFN_GATE); + GGUF_GET_KEY(fctx, lora->hparams.n_rank_w2, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_FFN_DOWN); + GGUF_GET_KEY(fctx, lora->hparams.n_rank_w3, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_FFN_UP); + + init_lora(model, lora); + + copy_tensor_by_name(lora->tok_embeddings_a, f_ggml_ctx, ggml_get_name(lora->tok_embeddings_a)); + copy_tensor_by_name(lora->tok_embeddings_b, f_ggml_ctx, ggml_get_name(lora->tok_embeddings_b)); + copy_tensor_by_name(lora->norm_a, f_ggml_ctx, ggml_get_name(lora->norm_a)); + copy_tensor_by_name(lora->norm_b, f_ggml_ctx, ggml_get_name(lora->norm_b)); + copy_tensor_by_name(lora->output_a, f_ggml_ctx, ggml_get_name(lora->output_a)); + copy_tensor_by_name(lora->output_b, f_ggml_ctx, ggml_get_name(lora->output_b)); + + for (uint32_t i = 0; i < lora->layers.size(); ++i) { + auto & layer = lora->layers[i]; + copy_tensor_by_name(layer.attention_norm_a, f_ggml_ctx, ggml_get_name(layer.attention_norm_a)); + copy_tensor_by_name(layer.attention_norm_b, f_ggml_ctx, ggml_get_name(layer.attention_norm_b)); + copy_tensor_by_name(layer.wq_a, f_ggml_ctx, ggml_get_name(layer.wq_a)); + copy_tensor_by_name(layer.wq_b, f_ggml_ctx, ggml_get_name(layer.wq_b)); + copy_tensor_by_name(layer.wk_a, f_ggml_ctx, ggml_get_name(layer.wk_a)); + copy_tensor_by_name(layer.wk_b, f_ggml_ctx, ggml_get_name(layer.wk_b)); + copy_tensor_by_name(layer.wv_a, f_ggml_ctx, ggml_get_name(layer.wv_a)); + copy_tensor_by_name(layer.wv_b, f_ggml_ctx, ggml_get_name(layer.wv_b)); + copy_tensor_by_name(layer.wo_a, f_ggml_ctx, ggml_get_name(layer.wo_a)); + copy_tensor_by_name(layer.wo_b, f_ggml_ctx, ggml_get_name(layer.wo_b)); + copy_tensor_by_name(layer.ffn_norm_a, f_ggml_ctx, ggml_get_name(layer.ffn_norm_a)); + copy_tensor_by_name(layer.ffn_norm_b, f_ggml_ctx, ggml_get_name(layer.ffn_norm_b)); + copy_tensor_by_name(layer.w1_a, f_ggml_ctx, ggml_get_name(layer.w1_a)); + copy_tensor_by_name(layer.w1_b, f_ggml_ctx, ggml_get_name(layer.w1_b)); + copy_tensor_by_name(layer.w2_a, f_ggml_ctx, ggml_get_name(layer.w2_a)); + copy_tensor_by_name(layer.w2_b, f_ggml_ctx, ggml_get_name(layer.w2_b)); + copy_tensor_by_name(layer.w3_a, f_ggml_ctx, ggml_get_name(layer.w3_a)); + copy_tensor_by_name(layer.w3_b, f_ggml_ctx, ggml_get_name(layer.w3_b)); + } +} + +static void save_llama_lora_gguf(struct gguf_context * fctx, struct my_llama_model * model, struct my_llama_lora * lora) { + const char * arch = "llama"; + enum llama_ftype ftype = LLAMA_FTYPE_ALL_F32; + + std::vector keybuf; + keybuf.resize(512); + auto kv = [arch, &keybuf](const char * key) -> const char * { + snprintf(keybuf.data(), keybuf.size(), key, arch); + return keybuf.data(); + }; + + gguf_set_val_str(fctx, LLM_KV_GENERAL_ARCHITECTURE, arch); + gguf_set_val_u32(fctx, LLM_KV_GENERAL_FILE_TYPE, ftype); + + gguf_set_val_u32(fctx, kv(LLM_KV_CONTEXT_LENGTH), model->hparams.n_ctx); + gguf_set_val_u32(fctx, kv(LLM_KV_EMBEDDING_LENGTH), model->hparams.n_embd); + gguf_set_val_u32(fctx, kv(LLM_KV_FEED_FORWARD_LENGTH), model->hparams.n_ff); + gguf_set_val_u32(fctx, kv(LLM_KV_ATTENTION_HEAD_COUNT), model->hparams.n_head); + gguf_set_val_u32(fctx, kv(LLM_KV_ATTENTION_HEAD_COUNT_KV), model->hparams.n_head_kv); + gguf_set_val_u32(fctx, kv(LLM_KV_BLOCK_COUNT), model->hparams.n_layer); + gguf_set_val_u32(fctx, kv(LLM_KV_ROPE_DIMENSION_COUNT), model->hparams.n_embd_head()); + gguf_set_val_f32(fctx, kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS), model->hparams.f_norm_rms_eps); + gguf_set_val_f32(fctx, kv(LLM_KV_ROPE_FREQ_BASE), model->hparams.rope_freq_base); + gguf_set_val_f32(fctx, kv(LLM_KV_ROPE_SCALE_LINEAR), model->hparams.rope_freq_scale); + + gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_TOKEN_EMBD, lora->hparams.n_rank_tok_embeddings); + gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_OUTPUT_NORM, lora->hparams.n_rank_norm); + gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_OUTPUT, lora->hparams.n_rank_output); + gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_ATTN_NORM, lora->hparams.n_rank_attention_norm); + gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_ATTN_Q, lora->hparams.n_rank_wq); + gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_ATTN_K, lora->hparams.n_rank_wk); + gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_ATTN_V, lora->hparams.n_rank_wv); + gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_ATTN_OUT, lora->hparams.n_rank_wo); + gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_FFN_NORM, lora->hparams.n_rank_ffn_norm); + gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_FFN_GATE, lora->hparams.n_rank_w1); + gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_FFN_DOWN, lora->hparams.n_rank_w2); + gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_FFN_UP, lora->hparams.n_rank_w3); + + gguf_add_tensor(fctx, lora->tok_embeddings_a); + gguf_add_tensor(fctx, lora->tok_embeddings_b); + gguf_add_tensor(fctx, lora->norm_a); + gguf_add_tensor(fctx, lora->norm_b); + gguf_add_tensor(fctx, lora->output_a); + gguf_add_tensor(fctx, lora->output_b); + + for (uint32_t i = 0; i < lora->layers.size(); ++i) { + auto & layer = lora->layers[i]; + + gguf_add_tensor(fctx, layer.attention_norm_a); + gguf_add_tensor(fctx, layer.attention_norm_b); + gguf_add_tensor(fctx, layer.wq_a); + gguf_add_tensor(fctx, layer.wq_b); + gguf_add_tensor(fctx, layer.wk_a); + gguf_add_tensor(fctx, layer.wk_b); + gguf_add_tensor(fctx, layer.wv_a); + gguf_add_tensor(fctx, layer.wv_b); + gguf_add_tensor(fctx, layer.wo_a); + gguf_add_tensor(fctx, layer.wo_b); + gguf_add_tensor(fctx, layer.ffn_norm_a); + gguf_add_tensor(fctx, layer.ffn_norm_b); + gguf_add_tensor(fctx, layer.w1_a); + gguf_add_tensor(fctx, layer.w1_b); + gguf_add_tensor(fctx, layer.w2_a); + gguf_add_tensor(fctx, layer.w2_b); + gguf_add_tensor(fctx, layer.w3_a); + gguf_add_tensor(fctx, layer.w3_b); + } +} + +static void load_checkpoint_lora_gguf(struct gguf_context * fctx, struct ggml_context * f_ggml_ctx, struct my_llama_model * model, struct my_llama_lora * lora, struct train_state * train) { + std::string train_type = LLM_KV_TRAINING_TYPE_FINETUNE_LORA; + GGUF_GET_KEY(fctx, train_type, gguf_get_val_str, GGUF_TYPE_STRING, false, LLM_KV_TRAINING_TYPE); + GGML_ASSERT(train_type == LLM_KV_TRAINING_TYPE_FINETUNE_LORA); + + load_train_state_gguf(fctx, f_ggml_ctx, train); + load_llama_lora_gguf(fctx, f_ggml_ctx, model, lora); +} + +static void save_checkpoint_lora_gguf(struct gguf_context * fctx, struct my_llama_model * model, struct my_llama_lora * lora, struct train_state * train) { + gguf_set_val_str(fctx, LLM_KV_TRAINING_TYPE, LLM_KV_TRAINING_TYPE_FINETUNE_LORA); + save_llama_lora_gguf(fctx, model, lora); + save_train_state_gguf(fctx, train); +} + +static bool load_checkpoint_lora_file(const char * filename, struct my_llama_model * model, struct my_llama_lora * lora, struct train_state * train) { + struct ggml_context * f_ggml_ctx; + struct gguf_init_params params; + params.no_alloc = false; + params.ctx = &f_ggml_ctx; + struct gguf_context * fctx = gguf_init_from_file(filename, params); + if (fctx == NULL) { + return false; + } + + load_checkpoint_lora_gguf(fctx, f_ggml_ctx, model, lora, train); + + gguf_free(fctx); + return true; +} + +static void save_checkpoint_lora_file(const char * filename, struct my_llama_model * model, struct my_llama_lora * lora, struct train_state * train) { + printf("%s: saving to %s\n", __func__, filename); + struct gguf_context * fctx = gguf_init_empty(); + + save_checkpoint_lora_gguf(fctx, model, lora, train); + + // write file + const bool only_meta = false; + gguf_write_to_file(fctx, filename, only_meta); + gguf_free(fctx); +} + +struct llama_file { + // use FILE * so we don't have to re-open the file to mmap + FILE * fp; + size_t size; + + llama_file(const char * fname, const char * mode) { + fp = std::fopen(fname, mode); + if (fp == NULL) { + size = 0; + } else { + seek(0, SEEK_END); + size = tell(); + seek(0, SEEK_SET); + } + } + + size_t tell() const { +#ifdef _WIN32 + __int64 ret = _ftelli64(fp); +#else + long ret = std::ftell(fp); +#endif + GGML_ASSERT(ret != -1); // this really shouldn't fail + return (size_t) ret; + } + + void seek(size_t offset, int whence) { +#ifdef _WIN32 + int ret = _fseeki64(fp, (__int64) offset, whence); +#else + int ret = std::fseek(fp, (long) offset, whence); +#endif + GGML_ASSERT(ret == 0); // same + } + + void read_raw(void * ptr, size_t size) { + if (size == 0) { + return; + } + errno = 0; + std::size_t ret = std::fread(ptr, size, 1, fp); + if (ferror(fp)) { + die_fmt("read error: %s", strerror(errno)); + } + if (ret != 1) { + die("unexpectedly reached end of file"); + } + } + + std::uint32_t read_u32() { + std::uint32_t ret; + read_raw(&ret, sizeof(ret)); + return ret; + } + + std::string read_string(std::uint32_t len) { + std::vector chars(len); + read_raw(chars.data(), len); + return std::string(chars.data(), len); + } + + void write_raw(const void * ptr, size_t size) { + if (size == 0) { + return; + } + errno = 0; + size_t ret = std::fwrite(ptr, size, 1, fp); + if (ret != 1) { + die_fmt("write error: %s", strerror(errno)); + } + } + + void write_u32(std::uint32_t val) { + write_raw(&val, sizeof(val)); + } + + ~llama_file() { + if (fp) { + std::fclose(fp); + } + } +}; + +static void write_tensor(struct llama_file * file, struct ggml_tensor * tensor, const char * name) { + if (tensor == NULL) { + file->write_u32(0); + file->write_u32(0); + file->write_u32(GGML_TYPE_F32); + file->seek((0-file->tell()) & 31, SEEK_CUR); + return; + } + if (name == NULL) { + name = ggml_get_name(tensor); + } + uint32_t name_len = strlen(name); + uint32_t nd = tensor->n_dims; + uint32_t ne[4] = { (uint32_t)tensor->ne[0], + (uint32_t)tensor->ne[1], + (uint32_t)tensor->ne[2], + (uint32_t)tensor->ne[3] }; + file->write_u32(nd); + file->write_u32(name_len); + file->write_u32(tensor->type); + file->write_raw(ne, sizeof(ne[0]) * nd); + file->write_raw(name, name_len); + file->seek((0-file->tell()) & 31, SEEK_CUR); + file->write_raw(tensor->data, ggml_nbytes(tensor)); +} + +static void save_as_llama_lora(const char * filename, struct my_llama_lora * lora) { + printf("%s: saving to %s\n", __func__, filename); + struct llama_file file(filename, "wb"); + if (file.fp == NULL) { + return; + } + + std::vector tn_buf; + tn_buf.resize(GGML_MAX_NAME); + + auto tn = [&tn_buf](const char * key, const char * suffix) -> const char * { + snprintf(tn_buf.data(), tn_buf.size(), "%s%s", key, suffix); + return tn_buf.data(); + }; + + auto tni = [&tn_buf](const char * key, int bid, const char * suffix) -> const char * { + snprintf(tn_buf.data(), tn_buf.size(), key, bid); + std::string s = tn_buf.data(); + snprintf(tn_buf.data(), tn_buf.size(), "%s%s", s.c_str(), suffix); + return tn_buf.data(); + }; + + uint32_t LLAMA_FILE_MAGIC_LORA = 0x67676C61; // 'ggla' + // write_magic + file.write_u32(LLAMA_FILE_MAGIC_LORA); // magic + file.write_u32(1); // version + // write_hparams + file.write_u32(lora->hparams.lora_r); + file.write_u32(lora->hparams.lora_alpha); + // write tensors + write_tensor(&file, lora->tok_embeddings_a, tn(LLM_TENSOR_TOKEN_EMBD, ".weight.loraA")); + write_tensor(&file, lora->tok_embeddings_b, tn(LLM_TENSOR_TOKEN_EMBD, ".weight.loraB")); + write_tensor(&file, lora->norm_a, tn(LLM_TENSOR_OUTPUT_NORM, ".weight.loraA")); + write_tensor(&file, lora->norm_b, tn(LLM_TENSOR_OUTPUT_NORM, ".weight.loraB")); + write_tensor(&file, lora->output_a, tn(LLM_TENSOR_OUTPUT, ".weight.loraA")); + write_tensor(&file, lora->output_b, tn(LLM_TENSOR_OUTPUT, ".weight.loraB")); + for (uint32_t i = 0; i < lora->layers.size(); ++i) { + auto & layer = lora->layers[i]; + write_tensor(&file, layer.attention_norm_a, tni(LLM_TENSOR_ATTN_NORM, i, ".weight.loraA")); + write_tensor(&file, layer.attention_norm_b, tni(LLM_TENSOR_ATTN_NORM, i, ".weight.loraB")); + write_tensor(&file, layer.wq_a, tni(LLM_TENSOR_ATTN_Q, i, ".weight.loraA")); + write_tensor(&file, layer.wq_b, tni(LLM_TENSOR_ATTN_Q, i, ".weight.loraB")); + write_tensor(&file, layer.wk_a, tni(LLM_TENSOR_ATTN_K, i, ".weight.loraA")); + write_tensor(&file, layer.wk_b, tni(LLM_TENSOR_ATTN_K, i, ".weight.loraB")); + write_tensor(&file, layer.wv_a, tni(LLM_TENSOR_ATTN_V, i, ".weight.loraA")); + write_tensor(&file, layer.wv_b, tni(LLM_TENSOR_ATTN_V, i, ".weight.loraB")); + write_tensor(&file, layer.wo_a, tni(LLM_TENSOR_ATTN_OUT, i, ".weight.loraA")); + write_tensor(&file, layer.wo_b, tni(LLM_TENSOR_ATTN_OUT, i, ".weight.loraB")); + write_tensor(&file, layer.ffn_norm_a, tni(LLM_TENSOR_FFN_NORM, i, ".weight.loraA")); + write_tensor(&file, layer.ffn_norm_b, tni(LLM_TENSOR_FFN_NORM, i, ".weight.loraB")); + write_tensor(&file, layer.w1_a, tni(LLM_TENSOR_FFN_GATE, i, ".weight.loraA")); + write_tensor(&file, layer.w1_b, tni(LLM_TENSOR_FFN_GATE, i, ".weight.loraB")); + write_tensor(&file, layer.w2_a, tni(LLM_TENSOR_FFN_DOWN, i, ".weight.loraA")); + write_tensor(&file, layer.w2_b, tni(LLM_TENSOR_FFN_DOWN, i, ".weight.loraB")); + write_tensor(&file, layer.w3_a, tni(LLM_TENSOR_FFN_UP, i, ".weight.loraA")); + write_tensor(&file, layer.w3_b, tni(LLM_TENSOR_FFN_UP, i, ".weight.loraB")); + } +} + +struct train_params { + struct train_params_common common; + + const char * fn_model_base; + const char * fn_lora_out; + + bool only_write_lora; + + float f_norm_rms_eps; + float rope_freq_base; + float rope_freq_scale; + + bool custom_f_norm_rms_eps; + bool custom_rope_freq_base; + bool custom_rope_freq_scale; + + int32_t lora_r; + int32_t lora_alpha; + bool custom_lora_alpha; + + uint32_t n_rank_attention_norm; + uint32_t n_rank_wq; + uint32_t n_rank_wk; + uint32_t n_rank_wv; + uint32_t n_rank_wo; + uint32_t n_rank_ffn_norm; + uint32_t n_rank_w1; + uint32_t n_rank_w2; + uint32_t n_rank_w3; + uint32_t n_rank_tok_embeddings; + uint32_t n_rank_norm; + uint32_t n_rank_output; + + bool custom_n_rank_attention_norm; + bool custom_n_rank_wq; + bool custom_n_rank_wk; + bool custom_n_rank_wv; + bool custom_n_rank_wo; + bool custom_n_rank_ffn_norm; + bool custom_n_rank_w1; + bool custom_n_rank_w2; + bool custom_n_rank_w3; + bool custom_n_rank_tok_embeddings; + bool custom_n_rank_norm; + bool custom_n_rank_output; +}; + +static struct train_params get_default_train_params() { + struct train_params params; + params.common = get_default_train_params_common(); + params.fn_model_base = ""; + params.fn_lora_out = "ggml-lora-ITERATION-f32.gguf"; + + params.only_write_lora = false; + + params.f_norm_rms_eps = 1e-5f; + params.rope_freq_base = 10000.0f; + params.rope_freq_scale = 1.0f; + + params.custom_f_norm_rms_eps = false; + params.custom_rope_freq_base = false; + params.custom_rope_freq_scale = false; + + params.lora_r = 4; + params.lora_alpha = 4; + params.custom_lora_alpha = false; + + params.n_rank_attention_norm = 1; + params.n_rank_wq = 4; + params.n_rank_wk = 4; + params.n_rank_wv = 4; + params.n_rank_wo = 4; + params.n_rank_ffn_norm = 1; + params.n_rank_w1 = 4; + params.n_rank_w2 = 4; + params.n_rank_w3 = 4; + params.n_rank_tok_embeddings = 4; + params.n_rank_norm = 1; + params.n_rank_output = 4; + + params.custom_n_rank_attention_norm = false; + params.custom_n_rank_wq = false; + params.custom_n_rank_wk = false; + params.custom_n_rank_wv = false; + params.custom_n_rank_wo = false; + params.custom_n_rank_ffn_norm = false; + params.custom_n_rank_w1 = false; + params.custom_n_rank_w2 = false; + params.custom_n_rank_w3 = false; + params.custom_n_rank_tok_embeddings = false; + params.custom_n_rank_norm = false; + params.custom_n_rank_output = false; + + return params; +} + +static void train_print_usage(int argc, char ** argv, const struct train_params * params) { + fprintf(stderr, "usage: %s [options]\n", argv[0]); + fprintf(stderr, "\n"); + fprintf(stderr, "options:\n"); + fprintf(stderr, " -h, --help show this help message and exit\n"); + + fprintf(stderr, " --model-base FNAME model path from which to load base model (default '%s')\n", params->fn_model_base); + fprintf(stderr, " --lora-out FNAME path to save llama lora (default '%s')\n", params->fn_lora_out); + fprintf(stderr, " --only-write-lora only save llama lora, don't do any training. use this if you only want to convert a checkpoint to a lora adapter.\n"); + fprintf(stderr, " --norm-rms-eps F RMS-Norm epsilon value (default %f)\n", params->f_norm_rms_eps); + fprintf(stderr, " --rope-freq-base F Frequency base for ROPE (default %f)\n", params->rope_freq_base); + fprintf(stderr, " --rope-freq-scale F Frequency scale for ROPE (default %f)\n", params->rope_freq_scale); + fprintf(stderr, " --lora-alpha N LORA alpha : resulting LORA scaling is alpha/r. (default %d)\n", params->lora_alpha); + fprintf(stderr, " --lora-r N LORA r: default rank. Also specifies resulting scaling together with lora-alpha. (default %d)\n", params->lora_r); + fprintf(stderr, " --rank-att-norm N LORA rank for attention norm tensor, overrides default rank. Norm tensors should generally have rank 1.\n"); + fprintf(stderr, " --rank-ffn-norm N LORA rank for feed-forward norm tensor, overrides default rank. Norm tensors should generally have rank 1.\n"); + fprintf(stderr, " --rank-out-norm N LORA rank for output norm tensor, overrides default rank. Norm tensors should generally have rank 1.\n"); + fprintf(stderr, " --rank-tok-embd N LORA rank for token embeddings tensor, overrides default rank.\n"); + fprintf(stderr, " --rank-out N LORA rank for output tensor, overrides default rank.\n"); + fprintf(stderr, " --rank-wq N LORA rank for wq tensor, overrides default rank.\n"); + fprintf(stderr, " --rank-wk N LORA rank for wk tensor, overrides default rank.\n"); + fprintf(stderr, " --rank-wv N LORA rank for wv tensor, overrides default rank.\n"); + fprintf(stderr, " --rank-wo N LORA rank for wo tensor, overrides default rank.\n"); + fprintf(stderr, " --rank-w1 N LORA rank for w1 tensor, overrides default rank.\n"); + fprintf(stderr, " --rank-w2 N LORA rank for w2 tensor, overrides default rank.\n"); + fprintf(stderr, " --rank-w3 N LORA rank for w3 tensor, overrides default rank.\n"); + + print_common_train_usage(argc, argv, ¶ms->common); +} + +static bool train_params_parse(int argc, char ** argv, struct train_params * params) { + bool invalid_param = false; + std::string arg; + struct train_params default_params = get_default_train_params(); + const std::string arg_prefix = "--"; + + for (int i = 1; i < argc; i++) { + arg = argv[i]; + if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) { + std::replace(arg.begin(), arg.end(), '_', '-'); + } + + if (consume_common_train_arg(argc, argv, &i, ¶ms->common, &invalid_param)) { + if (invalid_param) { + break; + } else if (params->common.print_usage) { + train_print_usage(argc, argv, &default_params); + exit(0); + } + } else if (arg == "--model-base") { + if (++i >= argc) { + invalid_param = true; + break; + } + params->fn_model_base = argv[i]; + } else if (arg == "--lora-out") { + if (++i >= argc) { + invalid_param = true; + break; + } + params->fn_lora_out = argv[i]; + } else if (arg == "--only-write-lora") { + params->only_write_lora = true; + } else if (arg == "--norm-rms-eps") { + if (++i >= argc) { + invalid_param = true; + break; + } + params->f_norm_rms_eps = std::stof(argv[i]); + params->custom_f_norm_rms_eps = true; + } else if (arg == "--rope-freq-base") { + if (++i >= argc) { + invalid_param = true; + break; + } + params->rope_freq_base = std::stof(argv[i]); + params->custom_rope_freq_base = true; + } else if (arg == "--rope-freq-scale") { + if (++i >= argc) { + invalid_param = true; + break; + } + params->rope_freq_scale = std::stof(argv[i]); + params->custom_rope_freq_scale = true; + } else if (arg == "--lora-alpha") { + if (++i >= argc) { + invalid_param = true; + break; + } + params->lora_alpha = std::stoi(argv[i]); + params->custom_lora_alpha = true; + } else if (arg == "--lora-r") { + if (++i >= argc) { + invalid_param = true; + break; + } + params->lora_r = std::stoi(argv[i]); + } else if (arg == "--rank-att-norm") { + if (++i >= argc) { + invalid_param = true; + break; + } + params->n_rank_attention_norm = std::stoi(argv[i]); + params->custom_n_rank_attention_norm = true; + } else if (arg == "--rank-ffn-norm") { + if (++i >= argc) { + invalid_param = true; + break; + } + params->n_rank_ffn_norm = std::stoi(argv[i]); + params->custom_n_rank_ffn_norm = true; + } else if (arg == "--rank-out-norm") { + if (++i >= argc) { + invalid_param = true; + break; + } + params->n_rank_norm = std::stoi(argv[i]); + params->custom_n_rank_norm = true; + } else if (arg == "--rank-tok-embd") { + if (++i >= argc) { + invalid_param = true; + break; + } + params->n_rank_tok_embeddings = std::stoi(argv[i]); + params->custom_n_rank_tok_embeddings = true; + } else if (arg == "--rank-out") { + if (++i >= argc) { + invalid_param = true; + break; + } + params->n_rank_output = std::stoi(argv[i]); + params->custom_n_rank_output = true; + } else if (arg == "--rank-wq") { + if (++i >= argc) { + invalid_param = true; + break; + } + params->n_rank_wq = std::stoi(argv[i]); + params->custom_n_rank_wq = true; + } else if (arg == "--rank-wk") { + if (++i >= argc) { + invalid_param = true; + break; + } + params->n_rank_wk = std::stoi(argv[i]); + params->custom_n_rank_wk = true; + } else if (arg == "--rank-wv") { + if (++i >= argc) { + invalid_param = true; + break; + } + params->n_rank_wv = std::stoi(argv[i]); + params->custom_n_rank_wv = true; + } else if (arg == "--rank-wo") { + if (++i >= argc) { + invalid_param = true; + break; + } + params->n_rank_wo = std::stoi(argv[i]); + params->custom_n_rank_wo = true; + } else if (arg == "--rank-w1") { + if (++i >= argc) { + invalid_param = true; + break; + } + params->n_rank_w1 = std::stoi(argv[i]); + params->custom_n_rank_w1 = true; + } else if (arg == "--rank-w2") { + if (++i >= argc) { + invalid_param = true; + break; + } + params->n_rank_w2 = std::stoi(argv[i]); + params->custom_n_rank_w2 = true; + } else if (arg == "--rank-w3") { + if (++i >= argc) { + invalid_param = true; + break; + } + params->n_rank_w3 = std::stoi(argv[i]); + params->custom_n_rank_w3 = true; + } else { + fprintf(stderr, "error: unknown argument: %s\n", arg.c_str()); + train_print_usage(argc, argv, &default_params); + exit(1); + } + } + if (invalid_param) { + fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str()); + train_print_usage(argc, argv, &default_params); + exit(1); + } + finish_processing_train_args(¶ms->common); + return true; +} + +struct save_train_files_data { + const char * fn_checkpoint_out; + const char * fn_lora_out; + const char * pattern_fn_it; + const char * fn_latest; + struct my_llama_model * model; + struct my_llama_lora * lora; +}; + +static void save_train_files(void * vdata, struct train_state * train) { + struct save_train_files_data * data = (struct save_train_files_data *) vdata; + + int64_t iter = train->opt->iter; + + if (strlen(data->fn_checkpoint_out) > 0) { + save_checkpoint_lora_file(get_train_filename(data->fn_checkpoint_out, data->pattern_fn_it, data->fn_latest, iter).c_str(), data->model, data->lora, train); + save_checkpoint_lora_file(get_train_filename(data->fn_checkpoint_out, data->pattern_fn_it, data->fn_latest, -1 ).c_str(), data->model, data->lora, train); + } + if (strlen(data->fn_lora_out) > 0) { + save_as_llama_lora(get_train_filename(data->fn_lora_out, data->pattern_fn_it, data->fn_latest, iter).c_str(), data->lora); + save_as_llama_lora(get_train_filename(data->fn_lora_out, data->pattern_fn_it, data->fn_latest, -1 ).c_str(), data->lora); + } +} + +static int64_t get_parameter_count(struct my_llama_lora* lora) { + int64_t nx = 0; + nx += ggml_nelements(lora->tok_embeddings_a); + nx += ggml_nelements(lora->tok_embeddings_b); + nx += ggml_nelements(lora->norm_a); + nx += ggml_nelements(lora->norm_b); + nx += ggml_nelements(lora->output_a); + nx += ggml_nelements(lora->output_b); + + for (uint32_t i = 0; i < lora->layers.size(); ++i) { + auto & layer = lora->layers[i]; + nx += ggml_nelements(layer.attention_norm_a); + nx += ggml_nelements(layer.attention_norm_b); + nx += ggml_nelements(layer.wq_a); + nx += ggml_nelements(layer.wq_b); + nx += ggml_nelements(layer.wk_a); + nx += ggml_nelements(layer.wk_b); + nx += ggml_nelements(layer.wv_a); + nx += ggml_nelements(layer.wv_b); + nx += ggml_nelements(layer.wo_a); + nx += ggml_nelements(layer.wo_b); + nx += ggml_nelements(layer.ffn_norm_a); + nx += ggml_nelements(layer.ffn_norm_b); + nx += ggml_nelements(layer.w1_a); + nx += ggml_nelements(layer.w1_b); + nx += ggml_nelements(layer.w2_a); + nx += ggml_nelements(layer.w2_b); + nx += ggml_nelements(layer.w3_a); + nx += ggml_nelements(layer.w3_b); + } + return nx; +} + +int main(int argc, char ** argv) { + struct train_params params = get_default_train_params(); + + if (!train_params_parse(argc, argv, ¶ms)) { + return 1; + } + + if (params.common.seed == LLAMA_DEFAULT_SEED) { + params.common.seed = time(NULL); + } + printf("%s: seed: %u\n", __func__, params.common.seed); + srand(params.common.seed); + + struct llama_model_params llama_mparams = llama_model_default_params(); + llama_mparams.vocab_only = false; + + printf("%s: model base = '%s'\n", __func__, params.fn_model_base); + struct llama_model * lmodel = llama_load_model_from_file(params.fn_model_base, llama_mparams); + + struct llama_context_params llama_cparams = llama_context_default_params(); + struct llama_context * lctx = llama_new_context_with_model(lmodel, llama_cparams); + + struct my_llama_model model; + init_model(lmodel, &model, params.fn_model_base, params.common.n_ctx); + + struct my_llama_lora lora; + + struct train_state * train = init_train_state(); + struct ggml_opt_context * opt = train->opt; + + // set params from command line + if (params.custom_f_norm_rms_eps) { + model.hparams.f_norm_rms_eps = params.f_norm_rms_eps; + } + if (params.custom_rope_freq_base) { + model.hparams.rope_freq_base = params.rope_freq_base; + } + if (params.custom_rope_freq_scale) { + model.hparams.rope_freq_scale = params.rope_freq_scale; + } + lora.hparams.lora_r = params.lora_r; + lora.hparams.lora_alpha = params.custom_lora_alpha ? params.lora_alpha : params.lora_r; + uint32_t n_rank_attention_norm = params.custom_n_rank_attention_norm ? params.n_rank_attention_norm : 1; + uint32_t n_rank_wq = params.custom_n_rank_wq ? params.n_rank_wq : params.lora_r; + uint32_t n_rank_wk = params.custom_n_rank_wk ? params.n_rank_wk : params.lora_r; + uint32_t n_rank_wv = params.custom_n_rank_wv ? params.n_rank_wv : params.lora_r; + uint32_t n_rank_wo = params.custom_n_rank_wo ? params.n_rank_wo : params.lora_r; + uint32_t n_rank_ffn_norm = params.custom_n_rank_ffn_norm ? params.n_rank_ffn_norm : 1; + uint32_t n_rank_w1 = params.custom_n_rank_w1 ? params.n_rank_w1 : params.lora_r; + uint32_t n_rank_w2 = params.custom_n_rank_w2 ? params.n_rank_w2 : params.lora_r; + uint32_t n_rank_w3 = params.custom_n_rank_w3 ? params.n_rank_w3 : params.lora_r; + uint32_t n_rank_tok_embeddings = params.custom_n_rank_tok_embeddings ? params.n_rank_tok_embeddings : params.lora_r; + uint32_t n_rank_norm = params.custom_n_rank_norm ? params.n_rank_norm : 1; + uint32_t n_rank_output = params.custom_n_rank_output ? params.n_rank_output : params.lora_r; + lora.hparams.n_rank_attention_norm = n_rank_attention_norm; + lora.hparams.n_rank_wq = n_rank_wq; + lora.hparams.n_rank_wk = n_rank_wk; + lora.hparams.n_rank_wv = n_rank_wv; + lora.hparams.n_rank_wo = n_rank_wo; + lora.hparams.n_rank_ffn_norm = n_rank_ffn_norm; + lora.hparams.n_rank_w1 = n_rank_w1; + lora.hparams.n_rank_w2 = n_rank_w2; + lora.hparams.n_rank_w3 = n_rank_w3; + lora.hparams.n_rank_tok_embeddings = n_rank_tok_embeddings; + lora.hparams.n_rank_norm = n_rank_norm; + lora.hparams.n_rank_output = n_rank_output; + + // set opt params from command line + opt->params = ggml_opt_default_params(GGML_OPT_ADAM); + opt->params.print_forward_graph = false; + opt->params.print_backward_graph = false; + opt->params.n_threads = params.common.n_threads; + opt->params.past = params.common.opt_past; + opt->params.delta = params.common.opt_delta; + opt->params.max_no_improvement = params.common.opt_max_no_improvement; + opt->params.n_gradient_accumulation = params.common.n_gradient_accumulation; + opt->params.adam.n_iter = params.common.adam_n_iter; + opt->params.adam.sched = 1.0f; + opt->params.adam.alpha = params.common.adam_alpha; + opt->params.adam.decay = params.common.adam_decay; + opt->params.adam.decay_min_ndim = params.common.adam_decay_min_ndim; + opt->params.adam.beta1 = params.common.adam_beta1; + opt->params.adam.beta2 = params.common.adam_beta2; + opt->params.adam.gclip = params.common.adam_gclip; + opt->params.adam.eps_f = params.common.adam_eps_f; + + ggml_allocr * alloc = NULL; + + printf("%s: init model\n", __func__); + bool existed = load_checkpoint_lora_file(params.common.fn_checkpoint_in, &model, &lora, train); + + if (existed) { + // overwrite last n_ctx with user provided n_ctx + if (params.common.custom_n_ctx) { + model.hparams.n_ctx = params.common.n_ctx; + } + + const bool opt_param_count_changed = ( + (lora.hparams.n_rank_attention_norm != n_rank_attention_norm) + || (lora.hparams.n_rank_wq != n_rank_wq) + || (lora.hparams.n_rank_wk != n_rank_wk) + || (lora.hparams.n_rank_wv != n_rank_wv) + || (lora.hparams.n_rank_wo != n_rank_wo) + || (lora.hparams.n_rank_ffn_norm != n_rank_ffn_norm) + || (lora.hparams.n_rank_w1 != n_rank_w1) + || (lora.hparams.n_rank_w2 != n_rank_w2) + || (lora.hparams.n_rank_w3 != n_rank_w3) + || (lora.hparams.n_rank_tok_embeddings != n_rank_tok_embeddings) + || (lora.hparams.n_rank_norm != n_rank_norm) + || (lora.hparams.n_rank_output != n_rank_output) + ); + + const bool opt_past_changed = opt->params.past != params.common.opt_past; + + if (opt_param_count_changed) { + print_lora_params(&lora.hparams); + die("Provided rank differs from checkpoint file. To use different rank start finetune from scratch with empty input checkpoint, e.g --checkpoint-in ''. Aborting."); + // need to discard previous optimizer gradient statistics and opt_init with new shapes + // TODO + } + if (opt_past_changed) { + die("Optimizer parameter '--opt-past N' differs from checkpoint file. To use different value finetune from scratch with empty input checkpoint, e.g --checkpoint-in ''. Aborting"); + // need to discard previous optimizer past function value statistics and opt_init with new shapes + // TODO + } + } else { // existed == false + init_lora(&model, &lora); + randomize_lora(&lora, params.common.seed, 0.0f, 1.0f, -1.0f, +1.0f); + if (!params.only_write_lora) { + ggml_opt_init(opt->ctx, opt, opt->params, get_parameter_count(&lora)); + } + } + opt->iter = train->train_its; + + print_params(&model.hparams); + print_lora_params(&lora.hparams); + printf("%s: total train_iterations %llu\n", __func__, (long long unsigned) train->train_its); + printf("%s: seen train_samples %llu\n", __func__, (long long unsigned) train->train_samples); + printf("%s: seen train_tokens %llu\n", __func__, (long long unsigned) train->train_tokens); + printf("%s: completed train_epochs %llu\n", __func__, (long long unsigned) train->train_epochs); + printf("%s: lora_size = %zu bytes (%.1f MB)\n", __func__, (ggml_used_mem(lora.ctx) + lora.data.size()), (float) (ggml_used_mem(lora.ctx) + lora.data.size()) / (1024.0f*1024.0f)); + + if (params.only_write_lora) { + save_train_files_data save_data; + save_data.fn_checkpoint_out = ""; + save_data.fn_lora_out = params.fn_lora_out; + save_data.pattern_fn_it = params.common.pattern_fn_it; + save_data.fn_latest = params.common.fn_latest; + save_data.model = &model; + save_data.lora = &lora; + + save_train_files(&save_data, train); + + free_train_state(train); + ggml_free(lora.ctx); + llama_free(lctx); + llama_free_model(lmodel); + return 0; + } + + printf("%s: opt_size = %zu bytes (%.1f MB)\n", __func__, ggml_get_mem_size(opt->ctx), (float) ggml_get_mem_size(opt->ctx) / (1024.0f*1024.0f)); + printf("%s: opt iter %d\n", __func__, opt->iter); + + int n_tokens = model.hparams.n_ctx; + int n_vocab = model.hparams.n_vocab; + int n_batch = params.common.n_batch; + + + std::vector mem_input_data; + std::vector mem_compute_data; + + // context for input tensors without their data + struct ggml_init_params ctx_input_params = { + ggml_tensor_overhead() * 2, // mem_size + NULL, // mem_buffer + true, // no_alloc + }; + struct ggml_context * ctx_input = ggml_init(ctx_input_params); + + // the input tensors + struct ggml_tensor * tokens_input = ggml_new_tensor_2d(ctx_input, GGML_TYPE_I32, n_tokens, n_batch); + struct ggml_tensor * target_probs = ggml_new_tensor_3d(ctx_input, GGML_TYPE_F32, n_vocab, n_tokens, n_batch); + + // measure required memory for input tensors + alloc = ggml_allocr_new_measure(tensor_alignment); + ggml_allocr_alloc(alloc, tokens_input); + ggml_allocr_alloc(alloc, target_probs); + size_t max_input_size = ggml_allocr_max_size(alloc) + tensor_alignment; + ggml_allocr_free(alloc); + printf("%s: input_size = %zu bytes (%.1f MB)\n", __func__, max_input_size, (float) max_input_size / (1024.0f*1024.0f)); + + // allocate input tensors + mem_input_data.resize(max_input_size); + alloc = ggml_allocr_new(mem_input_data.data(), mem_input_data.size(), tensor_alignment); + ggml_allocr_alloc(alloc, tokens_input); + ggml_allocr_alloc(alloc, target_probs); + ggml_allocr_free(alloc); + + // context for compute tensors without their data + size_t estimated_compute_size_wo_data = ( + ggml_tensor_overhead()*GGML_MAX_NODES*2 + + (GGML_OBJECT_SIZE+GGML_GRAPH_SIZE)*( + params.common.use_checkpointing ? 3 : 2 + ) + ); + struct ggml_init_params ctx_compute_params = { + estimated_compute_size_wo_data, // mem_size + NULL, // mem_buffer + true, // no_alloc + }; + struct ggml_context * ctx_compute = NULL; + + struct ggml_tensor * loss = NULL; + struct ggml_tensor * logits = NULL; + + struct ggml_cgraph * gf = NULL; + struct ggml_cgraph * gb = NULL; + struct ggml_cgraph * gb_tmp = NULL; + + // measure required memory for compute tensors + size_t best_compute_size = SIZE_MAX; + enum ggml_cgraph_eval_order best_order = GGML_CGRAPH_EVAL_ORDER_COUNT; + // find best evaluation order + for (unsigned order = 0; order < (unsigned) GGML_CGRAPH_EVAL_ORDER_COUNT; ++order) { + ctx_compute = ggml_init(ctx_compute_params); + alloc = ggml_allocr_new_measure(tensor_alignment); + gf = ggml_new_graph(ctx_compute); + gf->order = (enum ggml_cgraph_eval_order) order; + gb = ggml_new_graph(ctx_compute); + gb_tmp = params.common.use_checkpointing + ? ggml_new_graph(ctx_compute) + : NULL; + loss = llama_build_lora_finetune_graphs( + &model, &lora, alloc, ctx_compute, + gf, gb, gb_tmp, + &logits, tokens_input, target_probs, + n_tokens, n_batch, + params.common.use_flash, + params.common.use_checkpointing + ); + size_t max_compute_size = ggml_allocr_max_size(alloc) + tensor_alignment; + if (max_compute_size < best_compute_size) { + best_compute_size = max_compute_size; + best_order = gf->order; + } + ggml_allocr_free(alloc); + ggml_free(ctx_compute); + } + size_t max_compute_size = best_compute_size; + printf("%s: compute_size = %zu bytes (%.1f MB)\n", __func__, max_compute_size, (float) max_compute_size / (1024.0f*1024.0f)); + printf("%s: evaluation order = %s\n", __func__, + (best_order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? "LEFT_TO_RIGHT" : + (best_order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? "RIGHT_TO_LEFT" : + "invalid"); + + // allocate compute tensors + mem_compute_data.resize(max_compute_size); + ctx_compute = ggml_init(ctx_compute_params); + alloc = ggml_allocr_new(mem_compute_data.data(), mem_compute_data.size(), tensor_alignment); + gf = ggml_new_graph(ctx_compute); + gf->order = best_order; + gb = ggml_new_graph(ctx_compute); + gb_tmp = params.common.use_checkpointing + ? ggml_new_graph(ctx_compute) + : NULL; + loss = llama_build_lora_finetune_graphs( + &model, &lora, alloc, ctx_compute, + gf, gb, gb_tmp, + &logits, tokens_input, target_probs, + n_tokens, n_batch, + params.common.use_flash, + params.common.use_checkpointing + ); + ggml_allocr_free(alloc); + + // tokenize data + std::vector train_tokens; + std::vector train_samples_begin; + std::vector train_samples_size; + printf("%s: tokenize training data\n", __func__); + tokenize_file(lctx, + params.common.fn_train_data, + params.common.sample_start, + params.common.include_sample_start, + params.common.overlapping_samples, + n_tokens, + train_tokens, + train_samples_begin, + train_samples_size); + GGML_ASSERT(train_samples_begin.size() == train_samples_size.size()); + + printf("%s: number of training tokens: %zu\n", __func__, train_tokens.size()); + + std::vector token_noccurs; + token_noccurs.resize(model.hparams.n_vocab, 0); + for (unsigned int i = 0; i < train_tokens.size(); ++i) { + ++token_noccurs[train_tokens[i]]; + } + int n_unique_tokens = 0; + for (unsigned int i = 0; i < token_noccurs.size(); ++i) { + if (token_noccurs[i] == 0) continue; + ++n_unique_tokens; + } + printf("%s: number of unique tokens: %d\n", __func__, n_unique_tokens); + + size_t shuffle_samples_hash = compute_samples_hash(params.common.fn_train_data, train_samples_begin.data(), train_samples_size.data(), train_samples_size.size()); + const bool changed_train_data = (shuffle_samples_hash != train->shuffle_samples_hash) || (train->shuffle_sample_count != train_samples_size.size()); + if (changed_train_data) { + printf("%s: train data seems to have changed. restarting shuffled epoch.\n", __func__); + } + if (params.common.force_reshuffle) { + printf("%s: forced reshuffling of data. restarting with newly shuffled epoch.\n", __func__); + } + if ((train->shuffle_rng_state_current == "") || changed_train_data || params.common.force_reshuffle) { + train->shuffle_rng_state_current = mt19937_seed_to_state(params.common.seed); + train->shuffle_sample_count = train_samples_size.size(); + train->shuffle_next_sample = 0; + train->shuffle_samples_hash = shuffle_samples_hash; + } + std::vector train_shuffled_samples_offs; + std::vector train_shuffled_samples_begin; + std::vector train_shuffled_samples_size; + train_shuffled_samples_offs.resize(train_samples_begin.size()); + train_shuffled_samples_begin.resize(train_samples_begin.size()); + train_shuffled_samples_size.resize(train_samples_size.size()); + train->shuffle_rng_state_next = shuffle_samples( + train->shuffle_rng_state_current, + train_shuffled_samples_offs.data(), + train_shuffled_samples_begin.data(), + train_shuffled_samples_size.data(), + train_samples_begin.data(), + train_samples_size.data(), + train_samples_size.size()); + + printf("%s: begin training\n", __func__); + + save_train_files_data save_data; + save_data.fn_checkpoint_out = params.common.fn_checkpoint_out; + save_data.fn_lora_out = params.fn_lora_out; + save_data.pattern_fn_it = params.common.pattern_fn_it; + save_data.fn_latest = params.common.fn_latest; + save_data.model = &model; + save_data.lora = &lora; + + struct train_opt_callback_data opt_cb_data; + opt_cb_data.params = ¶ms.common; + opt_cb_data.train = train; + opt_cb_data.save_cb = &save_train_files; + opt_cb_data.save_data = &save_data; + opt_cb_data.lctx = lctx; + opt_cb_data.last_save_iter = opt->iter; + opt_cb_data.tokens_data = train_tokens.data(); + opt_cb_data.tokens_size = train_tokens.size(); + opt_cb_data.samples_begin = train_samples_begin.data(); + opt_cb_data.samples_size = train_samples_size.data(); + opt_cb_data.shuffled_samples_offs = train_shuffled_samples_offs.data(); + opt_cb_data.shuffled_samples_begin = train_shuffled_samples_begin.data(); + opt_cb_data.shuffled_samples_size = train_shuffled_samples_size.data(); + opt_cb_data.samples_count = train_samples_size.size(); + opt_cb_data.tokens_input = tokens_input; + opt_cb_data.target_probs = target_probs; + opt_cb_data.first_iter = opt->iter; + opt_cb_data.first_epoch = train->train_epochs; + opt_cb_data.iter_at_last_epoch = -1; + opt_cb_data.last_time = ggml_time_ms(); + opt_cb_data.millis_per_iter = 0.0; + + // measure required memory for work buffer + size_t max_work_size = ggml_graph_plan(gb, params.common.n_threads).work_size + GGML_OBJECT_SIZE; + printf("%s: work_size = %zu bytes (%.1f MB)\n", __func__, max_work_size, (float) max_work_size / (1024.0f*1024.0f)); + + // context for work buffer + struct ggml_init_params ctx_work_params = { + max_work_size, // mem_size + NULL, // mem_buffer + false, // no_alloc + }; + struct ggml_context * ctx_work = ggml_init(ctx_work_params); + + int64_t t0 = ggml_time_ms(); + + ggml_opt_resume_g(ctx_work, opt, loss, gf, gb, &train_opt_callback, (void *) &opt_cb_data); + + ggml_free(ctx_work); + ggml_free(ctx_compute); + ggml_free(ctx_input); + + int64_t t1 = ggml_time_ms(); + printf("%s: total training time: ", __func__); + print_duration((double) (t1 - t0)); + printf("\n"); + + int new_iters = opt->iter - opt_cb_data.last_save_iter; + if (new_iters > 0) { + train->train_its += new_iters; + train->train_tokens += new_iters * opt->params.n_gradient_accumulation * n_batch * n_tokens; + + save_train_files(&save_data, train); + opt_cb_data.last_save_iter = opt->iter; + } + + ggml_free(opt->ctx); + free_train_state(train); + ggml_free(lora.ctx); + llama_free(lctx); + llama_free_model(lmodel); + return 0; +} diff --git a/examples/gguf/gguf.cpp b/examples/gguf/gguf.cpp index a34010f1022a7..9ab63a29310ad 100644 --- a/examples/gguf/gguf.cpp +++ b/examples/gguf/gguf.cpp @@ -13,14 +13,14 @@ #define MIN(a, b) ((a) < (b) ? (a) : (b)) #define MAX(a, b) ((a) > (b) ? (a) : (b)) -template +template static std::string to_string(const T & val) { std::stringstream ss; ss << val; return ss.str(); } -bool gguf_ex_write(const std::string & fname) { +static bool gguf_ex_write(const std::string & fname) { struct gguf_context * ctx = gguf_init_empty(); gguf_set_val_u8 (ctx, "some.parameter.uint8", 0x12); @@ -85,7 +85,7 @@ bool gguf_ex_write(const std::string & fname) { } // just read tensor info -bool gguf_ex_read_0(const std::string & fname) { +static bool gguf_ex_read_0(const std::string & fname) { struct gguf_init_params params = { /*.no_alloc = */ false, /*.ctx = */ NULL, @@ -143,7 +143,7 @@ bool gguf_ex_read_0(const std::string & fname) { } // read and create ggml_context containing the tensors and their data -bool gguf_ex_read_1(const std::string & fname) { +static bool gguf_ex_read_1(const std::string & fname) { struct ggml_context * ctx_data = NULL; struct gguf_init_params params = { diff --git a/examples/gptneox-wip/falcon-main.cpp b/examples/gptneox-wip/falcon-main.cpp index 7f9a1620b60bf..e9197f6b51b41 100644 --- a/examples/gptneox-wip/falcon-main.cpp +++ b/examples/gptneox-wip/falcon-main.cpp @@ -367,10 +367,10 @@ bool falcon_model_load(const std::string & fname, falcon_model & model, gpt2bpe_ keyidx = gguf_find_key(ggufctx, "general.architecture"); if (keyidx != -1) { printf("%s: model architecture = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); } keyidx = gguf_find_key(ggufctx, "general.file_type"); - if (keyidx != -1) { printf("%s: model file type = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); } + if (keyidx != -1) { printf("%s: model file type = %" PRIu32 "\n", __func__, gguf_get_val_u32(ggufctx, keyidx)); } keyidx = gguf_find_key(ggufctx, "gptneox.tensor_data_layout"); if (keyidx != -1) { printf("%s: model data layout = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); } - keyidx = gguf_find_key(ggufctx, "general.source.hugginface.repository"); + keyidx = gguf_find_key(ggufctx, "general.source.huggingface.repository"); if (keyidx != -1) { printf("%s: model source HF repo = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); } } diff --git a/examples/gptneox-wip/gptneox-main.cpp b/examples/gptneox-wip/gptneox-main.cpp index 55eba0cdcfdfb..b76bafaa8c51f 100644 --- a/examples/gptneox-wip/gptneox-main.cpp +++ b/examples/gptneox-wip/gptneox-main.cpp @@ -380,10 +380,10 @@ bool gpt_neox_model_load(const std::string & fname, gpt_neox_model & model, gpt2 keyidx = gguf_find_key(ggufctx, "general.architecture"); if (keyidx != -1) { printf("%s: model architecture = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); } keyidx = gguf_find_key(ggufctx, "general.file_type"); - if (keyidx != -1) { printf("%s: model file type = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); } + if (keyidx != -1) { printf("%s: model file type = %" PRIu32 "\n", __func__, gguf_get_val_u32(ggufctx, keyidx)); } keyidx = gguf_find_key(ggufctx, "gptneox.tensor_data_layout"); if (keyidx != -1) { printf("%s: model data layout = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); } - keyidx = gguf_find_key(ggufctx, "general.source.hugginface.repository"); + keyidx = gguf_find_key(ggufctx, "general.source.huggingface.repository"); if (keyidx != -1) { printf("%s: model source HF repo = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); } } diff --git a/examples/llama-bench/README.md b/examples/llama-bench/README.md new file mode 100644 index 0000000000000..d02824bfa8d2f --- /dev/null +++ b/examples/llama-bench/README.md @@ -0,0 +1,271 @@ +# llama.cpp/example/llama-bench + +Performance testing tool for llama.cpp. + +## Table of contents + +1. [Syntax](#syntax) +2. [Examples](#examples) + 1. [Text generation with different models](#text-generation-with-different-models) + 2. [Prompt processing with different batch sizes](#prompt-processing-with-different-batch-sizes) + 3. [Different numbers of threads](#different-numbers-of-threads) + 4. [Different numbers of layers offloaded to the GPU](#different-numbers-of-layers-offloaded-to-the-gpu) +3. [Output formats](#output-formats) + 1. [Markdown](#markdown) + 2. [CSV](#csv) + 3. [JSON](#json) + 4. [SQL](#sql) + +## Syntax + +``` +usage: ./llama-bench [options] + +options: + -h, --help + -m, --model (default: models/7B/ggml-model-q4_0.gguf) + -p, --n-prompt (default: 512) + -n, --n-gen (default: 128) + -b, --batch-size (default: 512) + --memory-f32 <0|1> (default: 0) + -t, --threads (default: 16) + -ngl N, --n-gpu-layers (default: 99) + -mg i, --main-gpu (default: 0) + -mmq, --mul-mat-q <0|1> (default: 1) + -ts, --tensor_split + -r, --repetitions (default: 5) + -o, --output (default: md) + -v, --verbose (default: 0) + +Multiple values can be given for each parameter by separating them with ',' or by specifying the parameter multiple times. +``` + +llama-bench can perform two types of tests: + +- Prompt processing (pp): processing a prompt in batches (`-p`) +- Text generation (tg): generating a sequence of tokens (`-n`) + +With the exception of `-r`, `-o` and `-v`, all options can be specified multiple times to run multiple tests. Each pp and tg test is run with all combinations of the specified options. To specify multiple values for an option, the values can be separated by commas (e.g. `-n 16,32`), or the option can be specified multiple times (e.g. `-n 16 -n 32`). + +Each test is repeated the number of times given by `-r`, and the results are averaged. The results are given in average tokens per second (t/s) and standard deviation. Some output formats (e.g. json) also include the individual results of each repetition. + +For a description of the other options, see the [main example](../main/README.md). + +## Examples + +### Text generation with different models + +```sh +$ ./llama-bench -m models/7B/ggml-model-q4_0.gguf -m models/13B/ggml-model-q4_0.gguf -p 0 -n 128,256,512 +``` + +| model | size | params | backend | ngl | test | t/s | +| ------------------------------ | ---------: | ---------: | ---------- | --: | ---------- | ---------------: | +| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 99 | tg 128 | 132.19 ± 0.55 | +| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 99 | tg 256 | 129.37 ± 0.54 | +| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 99 | tg 512 | 123.83 ± 0.25 | +| llama 13B mostly Q4_0 | 6.86 GiB | 13.02 B | CUDA | 99 | tg 128 | 82.17 ± 0.31 | +| llama 13B mostly Q4_0 | 6.86 GiB | 13.02 B | CUDA | 99 | tg 256 | 80.74 ± 0.23 | +| llama 13B mostly Q4_0 | 6.86 GiB | 13.02 B | CUDA | 99 | tg 512 | 78.08 ± 0.07 | + +### Prompt processing with different batch sizes + +```sh +$ ./llama-bench -n 0 -p 1024 -b 128,256,512,1024 +``` + +| model | size | params | backend | ngl | n_batch | test | t/s | +| ------------------------------ | ---------: | ---------: | ---------- | --: | ---------: | ---------- | ---------------: | +| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 99 | 128 | pp 1024 | 1436.51 ± 3.66 | +| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 99 | 256 | pp 1024 | 1932.43 ± 23.48 | +| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 99 | 512 | pp 1024 | 2254.45 ± 15.59 | +| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 99 | 1024 | pp 1024 | 2498.61 ± 13.58 | + +### Different numbers of threads + +```sh +$ ./llama-bench -n 0 -n 16 -p 64 -t 1,2,4,8,16,32 +``` + +| model | size | params | backend | threads | test | t/s | +| ------------------------------ | ---------: | ---------: | ---------- | ---------: | ---------- | ---------------: | +| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CPU | 1 | pp 64 | 6.17 ± 0.07 | +| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CPU | 1 | tg 16 | 4.05 ± 0.02 | +| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CPU | 2 | pp 64 | 12.31 ± 0.13 | +| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CPU | 2 | tg 16 | 7.80 ± 0.07 | +| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CPU | 4 | pp 64 | 23.18 ± 0.06 | +| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CPU | 4 | tg 16 | 12.22 ± 0.07 | +| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CPU | 8 | pp 64 | 32.29 ± 1.21 | +| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CPU | 8 | tg 16 | 16.71 ± 0.66 | +| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CPU | 16 | pp 64 | 33.52 ± 0.03 | +| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CPU | 16 | tg 16 | 15.32 ± 0.05 | +| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CPU | 32 | pp 64 | 59.00 ± 1.11 | +| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CPU | 32 | tg 16 | 16.41 ± 0.79 || + +### Different numbers of layers offloaded to the GPU + +```sh +$ ./llama-bench -ngl 10,20,30,31,32,33,34,35 +``` + +| model | size | params | backend | ngl | test | t/s | +| ------------------------------ | ---------: | ---------: | ---------- | --: | ---------- | ---------------: | +| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 10 | pp 512 | 373.36 ± 2.25 | +| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 10 | tg 128 | 13.45 ± 0.93 | +| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 20 | pp 512 | 472.65 ± 1.25 | +| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 20 | tg 128 | 21.36 ± 1.94 | +| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 30 | pp 512 | 631.87 ± 11.25 | +| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 30 | tg 128 | 40.04 ± 1.82 | +| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 31 | pp 512 | 657.89 ± 5.08 | +| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 31 | tg 128 | 48.19 ± 0.81 | +| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 32 | pp 512 | 688.26 ± 3.29 | +| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 32 | tg 128 | 54.78 ± 0.65 | +| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 33 | pp 512 | 704.27 ± 2.24 | +| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 33 | tg 128 | 60.62 ± 1.76 | +| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 34 | pp 512 | 881.34 ± 5.40 | +| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 34 | tg 128 | 71.76 ± 0.23 | +| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 35 | pp 512 | 2400.01 ± 7.72 | +| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 35 | tg 128 | 131.66 ± 0.49 | + +## Output formats + +By default, llama-bench outputs the results in markdown format. The results can be output in other formats by using the `-o` option. + +### Markdown + +```sh +$ ./llama-bench -o md +``` + +| model | size | params | backend | ngl | test | t/s | +| ------------------------------ | ---------: | ---------: | ---------- | --: | ---------- | ---------------: | +| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 99 | pp 512 | 2368.80 ± 93.24 | +| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 99 | tg 128 | 131.42 ± 0.59 | + +### CSV + +```sh +$ ./llama-bench -o csv +``` + +```csv +build_commit,build_number,cuda,opencl,metal,gpu_blas,blas,cpu_info,gpu_info,model_filename,model_type,model_size,model_n_params,n_batch,n_threads,f16_kv,n_gpu_layers,main_gpu,mul_mat_q,tensor_split,n_prompt,n_gen,test_time,avg_ns,stddev_ns,avg_ts,stddev_ts +"3469684","1275","1","0","0","1","1","13th Gen Intel(R) Core(TM) i9-13900K","NVIDIA GeForce RTX 3090 Ti","models/7B/ggml-model-q4_0.gguf","llama 7B mostly Q4_0","3825065984","6738415616","512","16","1","99","0","1","0.00","512","0","2023-09-23T12:09:01Z","212155977","732372","2413.341687","8.305961" +"3469684","1275","1","0","0","1","1","13th Gen Intel(R) Core(TM) i9-13900K","NVIDIA GeForce RTX 3090 Ti","models/7B/ggml-model-q4_0.gguf","llama 7B mostly Q4_0","3825065984","6738415616","512","16","1","99","0","1","0.00","0","128","2023-09-23T12:09:02Z","969320879","2728399","132.052051","0.371342" +``` + +### JSON + +```sh +$ ./llama-bench -o json +``` + +```json +[ + { + "build_commit": "3469684", + "build_number": 1275, + "cuda": true, + "opencl": false, + "metal": false, + "gpu_blas": true, + "blas": true, + "cpu_info": "13th Gen Intel(R) Core(TM) i9-13900K", + "gpu_info": "NVIDIA GeForce RTX 3090 Ti", + "model_filename": "models/7B/ggml-model-q4_0.gguf", + "model_type": "llama 7B mostly Q4_0", + "model_size": 3825065984, + "model_n_params": 6738415616, + "n_batch": 512, + "n_threads": 16, + "f16_kv": true, + "n_gpu_layers": 99, + "main_gpu": 0, + "mul_mat_q": true, + "tensor_split": "0.00", + "n_prompt": 512, + "n_gen": 0, + "test_time": "2023-09-23T12:09:57Z", + "avg_ns": 212365953, + "stddev_ns": 985423, + "avg_ts": 2410.974041, + "stddev_ts": 11.163766, + "samples_ns": [ 213837238, 211635853, 212328053, 211329715, 212698907 ], + "samples_ts": [ 2394.34, 2419.25, 2411.36, 2422.75, 2407.16 ] + }, + { + "build_commit": "3469684", + "build_number": 1275, + "cuda": true, + "opencl": false, + "metal": false, + "gpu_blas": true, + "blas": true, + "cpu_info": "13th Gen Intel(R) Core(TM) i9-13900K", + "gpu_info": "NVIDIA GeForce RTX 3090 Ti", + "model_filename": "models/7B/ggml-model-q4_0.gguf", + "model_type": "llama 7B mostly Q4_0", + "model_size": 3825065984, + "model_n_params": 6738415616, + "n_batch": 512, + "n_threads": 16, + "f16_kv": true, + "n_gpu_layers": 99, + "main_gpu": 0, + "mul_mat_q": true, + "tensor_split": "0.00", + "n_prompt": 0, + "n_gen": 128, + "test_time": "2023-09-23T12:09:59Z", + "avg_ns": 977425219, + "stddev_ns": 9268593, + "avg_ts": 130.965708, + "stddev_ts": 1.238924, + "samples_ns": [ 984472709, 974901233, 989474741, 970729355, 967548060 ], + "samples_ts": [ 130.019, 131.295, 129.362, 131.86, 132.293 ] + } +] +``` + +### SQL + +SQL output is suitable for importing into a SQLite database. The output can be piped into the `sqlite3` command line tool to add the results to a database. + +```sh +$ ./llama-bench -o sql +``` + +```sql +CREATE TABLE IF NOT EXISTS test ( + build_commit TEXT, + build_number INTEGER, + cuda INTEGER, + opencl INTEGER, + metal INTEGER, + gpu_blas INTEGER, + blas INTEGER, + cpu_info TEXT, + gpu_info TEXT, + model_filename TEXT, + model_type TEXT, + model_size INTEGER, + model_n_params INTEGER, + n_batch INTEGER, + n_threads INTEGER, + f16_kv INTEGER, + n_gpu_layers INTEGER, + main_gpu INTEGER, + mul_mat_q INTEGER, + tensor_split TEXT, + n_prompt INTEGER, + n_gen INTEGER, + test_time TEXT, + avg_ns INTEGER, + stddev_ns INTEGER, + avg_ts REAL, + stddev_ts REAL +); + +INSERT INTO test (build_commit, build_number, cuda, opencl, metal, gpu_blas, blas, cpu_info, gpu_info, model_filename, model_type, model_size, model_n_params, n_batch, n_threads, f16_kv, n_gpu_layers, main_gpu, mul_mat_q, tensor_split, n_prompt, n_gen, test_time, avg_ns, stddev_ns, avg_ts, stddev_ts) VALUES ('3469684', '1275', '1', '0', '0', '1', '1', '13th Gen Intel(R) Core(TM) i9-13900K', 'NVIDIA GeForce RTX 3090 Ti', 'models/7B/ggml-model-q4_0.gguf', 'llama 7B mostly Q4_0', '3825065984', '6738415616', '512', '16', '1', '99', '0', '1', '0.00', '512', '0', '2023-09-23T12:10:30Z', '212693772', '743623', '2407.240204', '8.409634'); +INSERT INTO test (build_commit, build_number, cuda, opencl, metal, gpu_blas, blas, cpu_info, gpu_info, model_filename, model_type, model_size, model_n_params, n_batch, n_threads, f16_kv, n_gpu_layers, main_gpu, mul_mat_q, tensor_split, n_prompt, n_gen, test_time, avg_ns, stddev_ns, avg_ts, stddev_ts) VALUES ('3469684', '1275', '1', '0', '0', '1', '1', '13th Gen Intel(R) Core(TM) i9-13900K', 'NVIDIA GeForce RTX 3090 Ti', 'models/7B/ggml-model-q4_0.gguf', 'llama 7B mostly Q4_0', '3825065984', '6738415616', '512', '16', '1', '99', '0', '1', '0.00', '0', '128', '2023-09-23T12:10:31Z', '977925003', '4037361', '130.891159', '0.537692'); +``` diff --git a/examples/llama-bench/llama-bench.cpp b/examples/llama-bench/llama-bench.cpp index dedaa34fd84ba..a04115c962655 100644 --- a/examples/llama-bench/llama-bench.cpp +++ b/examples/llama-bench/llama-bench.cpp @@ -74,14 +74,6 @@ static T stdev(const std::vector & v) { return stdev; } -static bool ggml_cpu_has_metal() { -#if defined(GGML_USE_METAL) - return true; -#else - return false; -#endif -} - static std::string get_cpu_info() { std::string id; #ifdef __linux__ @@ -140,7 +132,6 @@ struct cmd_params { std::vector n_gpu_layers; std::vector main_gpu; std::vector mul_mat_q; - std::vector low_vram; std::vector> tensor_split; int reps; bool verbose; @@ -157,7 +148,6 @@ static const cmd_params cmd_params_defaults = { /* n_gpu_layers */ {99}, /* main_gpu */ {0}, /* mul_mat_q */ {true}, - /* low_vram */ {false}, /* tensor_split */ {{}}, /* reps */ 5, /* verbose */ false, @@ -175,9 +165,8 @@ static void print_usage(int /* argc */, char ** argv) { printf(" -b, --batch-size (default: %s)\n", join(cmd_params_defaults.n_batch, ",").c_str()); printf(" --memory-f32 <0|1> (default: %s)\n", join(cmd_params_defaults.f32_kv, ",").c_str()); printf(" -t, --threads (default: %s)\n", join(cmd_params_defaults.n_threads, ",").c_str()); - printf(" -ngl N, --n-gpu-layers (default: %s)\n", join(cmd_params_defaults.n_gpu_layers, ",").c_str()); - printf(" -mg i, --main-gpu (default: %s)\n", join(cmd_params_defaults.main_gpu, ",").c_str()); - printf(" -lv, --low-vram <0|1> (default: %s)\n", join(cmd_params_defaults.low_vram, ",").c_str()); + printf(" -ngl, --n-gpu-layers (default: %s)\n", join(cmd_params_defaults.n_gpu_layers, ",").c_str()); + printf(" -mg, --main-gpu (default: %s)\n", join(cmd_params_defaults.main_gpu, ",").c_str()); printf(" -mmq, --mul-mat-q <0|1> (default: %s)\n", join(cmd_params_defaults.mul_mat_q, ",").c_str()); printf(" -ts, --tensor_split \n"); printf(" -r, --repetitions (default: %d)\n", cmd_params_defaults.reps); @@ -263,13 +252,6 @@ static cmd_params parse_cmd_params(int argc, char ** argv) { break; } params.main_gpu = split(argv[i], split_delim); - } else if (arg == "-lv" || arg == "--low-vram") { - if (++i >= argc) { - invalid_param = true; - break; - } - auto p = split(argv[i], split_delim); - params.low_vram.insert(params.low_vram.end(), p.begin(), p.end()); } else if (arg == "-mmq" || arg == "--mul-mat-q") { if (++i >= argc) { invalid_param = true; @@ -344,7 +326,6 @@ static cmd_params parse_cmd_params(int argc, char ** argv) { if (params.n_gpu_layers.empty()) { params.n_gpu_layers = cmd_params_defaults.n_gpu_layers; } if (params.main_gpu.empty()) { params.main_gpu = cmd_params_defaults.main_gpu; } if (params.mul_mat_q.empty()) { params.mul_mat_q = cmd_params_defaults.mul_mat_q; } - if (params.low_vram.empty()) { params.low_vram = cmd_params_defaults.low_vram; } if (params.tensor_split.empty()) { params.tensor_split = cmd_params_defaults.tensor_split; } if (params.n_threads.empty()) { params.n_threads = cmd_params_defaults.n_threads; } @@ -361,21 +342,34 @@ struct cmd_params_instance { int n_gpu_layers; int main_gpu; bool mul_mat_q; - bool low_vram; std::array tensor_split; - llama_context_params to_llama_params() const { - llama_context_params lparams = llama_context_default_params(); - lparams.n_ctx = n_prompt + n_gen; - lparams.n_batch = n_batch; - lparams.f16_kv = !f32_kv; - lparams.n_gpu_layers = n_gpu_layers; - lparams.main_gpu = main_gpu; - lparams.mul_mat_q = mul_mat_q; - lparams.low_vram = low_vram; - lparams.tensor_split = tensor_split.data(); + llama_model_params to_llama_mparams() const { + llama_model_params mparams = llama_model_default_params(); + + mparams.n_gpu_layers = n_gpu_layers; + mparams.main_gpu = main_gpu; + mparams.tensor_split = tensor_split.data(); - return lparams; + return mparams; + } + + bool equal_mparams(const cmd_params_instance & other) const { + return model == other.model && + n_gpu_layers == other.n_gpu_layers && + main_gpu == other.main_gpu && + tensor_split == other.tensor_split; + } + + llama_context_params to_llama_cparams() const { + llama_context_params cparams = llama_context_default_params(); + + cparams.n_ctx = n_prompt + n_gen; + cparams.n_batch = n_batch; + cparams.f16_kv = !f32_kv; + cparams.mul_mat_q = mul_mat_q; + + return cparams; } }; @@ -383,13 +377,12 @@ static std::vector get_cmd_params_instances_int(const cmd_p std::vector instances; for (const auto & m : params.model) - for (const auto & nb : params.n_batch) - for (const auto & fk : params.f32_kv) for (const auto & nl : params.n_gpu_layers) for (const auto & mg : params.main_gpu) - for (const auto & mmq : params.mul_mat_q) - for (const auto & lv : params.low_vram) for (const auto & ts : params.tensor_split) + for (const auto & nb : params.n_batch) + for (const auto & fk : params.f32_kv) + for (const auto & mmq : params.mul_mat_q) for (const auto & nt : params.n_threads) { cmd_params_instance instance = { /* .model = */ m, @@ -401,7 +394,6 @@ static std::vector get_cmd_params_instances_int(const cmd_p /* .n_gpu_layers = */ nl, /* .main_gpu = */ mg, /* .mul_mat_q = */ mmq, - /* .low_vram = */ lv, /* .tensor_split = */ ts, }; instances.push_back(instance); @@ -412,6 +404,56 @@ static std::vector get_cmd_params_instances_int(const cmd_p static std::vector get_cmd_params_instances(const cmd_params & params) { std::vector instances; +#if 1 + // this ordering minimizes the number of times that each model needs to be reloaded + for (const auto & m : params.model) + for (const auto & nl : params.n_gpu_layers) + for (const auto & mg : params.main_gpu) + for (const auto & ts : params.tensor_split) + for (const auto & nb : params.n_batch) + for (const auto & fk : params.f32_kv) + for (const auto & mmq : params.mul_mat_q) + for (const auto & nt : params.n_threads) { + for (const auto & n_prompt : params.n_prompt) { + if (n_prompt == 0) { + continue; + } + cmd_params_instance instance = { + /* .model = */ m, + /* .n_prompt = */ n_prompt, + /* .n_gen = */ 0, + /* .n_batch = */ nb, + /* .f32_kv = */ fk, + /* .n_threads = */ nt, + /* .n_gpu_layers = */ nl, + /* .main_gpu = */ mg, + /* .mul_mat_q = */ mmq, + /* .tensor_split = */ ts, + }; + instances.push_back(instance); + } + + for (const auto & n_gen : params.n_gen) { + if (n_gen == 0) { + continue; + } + cmd_params_instance instance = { + /* .model = */ m, + /* .n_prompt = */ 0, + /* .n_gen = */ n_gen, + /* .n_batch = */ nb, + /* .f32_kv = */ fk, + /* .n_threads = */ nt, + /* .n_gpu_layers = */ nl, + /* .main_gpu = */ mg, + /* .mul_mat_q = */ mmq, + /* .tensor_split = */ ts, + }; + instances.push_back(instance); + } + } +#else + // this ordering separates the prompt and generation tests for (const auto & n_prompt : params.n_prompt) { if (n_prompt == 0) { continue; @@ -427,6 +469,7 @@ static std::vector get_cmd_params_instances(const cmd_param auto instances_gen = get_cmd_params_instances_int(params, n_gen, 0); instances.insert(instances.end(), instances_gen.begin(), instances_gen.end()); } +#endif return instances; } @@ -451,7 +494,6 @@ struct test { int n_gpu_layers; int main_gpu; bool mul_mat_q; - bool low_vram; std::array tensor_split; int n_prompt; int n_gen; @@ -471,7 +513,6 @@ struct test { n_gpu_layers = inst.n_gpu_layers; main_gpu = inst.main_gpu; mul_mat_q = inst.mul_mat_q; - low_vram = inst.low_vram; tensor_split = inst.tensor_split; n_prompt = inst.n_prompt; n_gen = inst.n_gen; @@ -532,7 +573,7 @@ struct test { "cpu_info", "gpu_info", "model_filename", "model_type", "model_size", "model_n_params", "n_batch", "n_threads", "f16_kv", - "n_gpu_layers", "main_gpu", "mul_mat_q", "low_vram", "tensor_split", + "n_gpu_layers", "main_gpu", "mul_mat_q", "tensor_split", "n_prompt", "n_gen", "test_time", "avg_ns", "stddev_ns", "avg_ts", "stddev_ts" @@ -551,7 +592,7 @@ struct test { return INT; } if (field == "cuda" || field == "opencl" || field == "metal" || field == "gpu_blas" || field == "blas" || - field == "f16_kv" || field == "mul_mat_q" || field == "low_vram") { + field == "f16_kv" || field == "mul_mat_q") { return BOOL; } if (field == "avg_ts" || field == "stddev_ts") { @@ -582,7 +623,7 @@ struct test { cpu_info, gpu_info, model_filename, model_type, std::to_string(model_size), std::to_string(model_n_params), std::to_string(n_batch), std::to_string(n_threads), std::to_string(!f32_kv), - std::to_string(n_gpu_layers), std::to_string(main_gpu), std::to_string(mul_mat_q), std::to_string(low_vram), tensor_split_str, + std::to_string(n_gpu_layers), std::to_string(main_gpu), std::to_string(mul_mat_q), tensor_split_str, std::to_string(n_prompt), std::to_string(n_gen), test_time, std::to_string(avg_ns()), std::to_string(stdev_ns()), std::to_string(avg_ts()), std::to_string(stdev_ts()) @@ -614,9 +655,9 @@ struct printer { virtual ~printer() {} FILE * fout; - virtual void print_header(const cmd_params & params) { (void) params; }; + virtual void print_header(const cmd_params & params) { (void) params; } virtual void print_test(const test & t) = 0; - virtual void print_footer() { }; + virtual void print_footer() { } }; struct csv_printer : public printer { @@ -774,9 +815,6 @@ struct markdown_printer : public printer { if (params.mul_mat_q.size() > 1 || params.mul_mat_q != cmd_params_defaults.mul_mat_q) { fields.push_back("mul_mat_q"); } - if (params.low_vram.size() > 1 || params.low_vram != cmd_params_defaults.low_vram) { - fields.push_back("low_vram"); - } if (params.tensor_split.size() > 1 || params.tensor_split != cmd_params_defaults.tensor_split) { fields.push_back("tensor_split"); } @@ -897,21 +935,27 @@ struct sql_printer : public printer { static void test_prompt(llama_context * ctx, int n_prompt, int n_past, int n_batch, int n_threads) { std::vector tokens(n_batch, llama_token_bos(ctx)); int n_processed = 0; + + llama_set_n_threads(ctx, n_threads, n_threads); + while (n_processed < n_prompt) { int n_tokens = std::min(n_prompt - n_processed, n_batch); - llama_eval(ctx, tokens.data(), n_tokens, n_past + n_processed, n_threads); + llama_decode(ctx, llama_batch_get_one(tokens.data(), n_tokens, n_past + n_processed, 0)); n_processed += n_tokens; } } static void test_gen(llama_context * ctx, int n_gen, int n_past, int n_threads) { llama_token token = llama_token_bos(ctx); + + llama_set_n_threads(ctx, n_threads, n_threads); + for (int i = 0; i < n_gen; i++) { - llama_eval(ctx, &token, 1, n_past + i, n_threads); + llama_decode(ctx, llama_batch_get_one(&token, 1, n_past + i, 0)); } } -static void llama_null_log_callback(enum llama_log_level level, const char * text, void * user_data) { +static void llama_null_log_callback(enum ggml_log_level level, const char * text, void * user_data) { (void) level; (void) text; (void) user_data; @@ -966,17 +1010,25 @@ int main(int argc, char ** argv) { std::vector params_instances = get_cmd_params_instances(params); + llama_model * lmodel = nullptr; + const cmd_params_instance * prev_inst = nullptr; + for (const auto & inst : params_instances) { - // TODO: keep the model between tests when possible - llama_context_params lparams = inst.to_llama_params(); + // keep the same model between tests when possible + if (!lmodel || !prev_inst || !inst.equal_mparams(*prev_inst)) { + if (lmodel) { + llama_free_model(lmodel); + } - llama_model * lmodel = llama_load_model_from_file(inst.model.c_str(), lparams); - if (lmodel == NULL) { - fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, inst.model.c_str()); - return 1; + lmodel = llama_load_model_from_file(inst.model.c_str(), inst.to_llama_mparams()); + if (lmodel == NULL) { + fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, inst.model.c_str()); + return 1; + } + prev_inst = &inst; } - llama_context * ctx = llama_new_context_with_model(lmodel, lparams); + llama_context * ctx = llama_new_context_with_model(lmodel, inst.to_llama_cparams()); if (ctx == NULL) { fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, inst.model.c_str()); llama_free_model(lmodel); @@ -985,6 +1037,8 @@ int main(int argc, char ** argv) { test t(inst, lmodel, ctx); + llama_kv_cache_tokens_rm(ctx, -1, -1); + // warmup run if (t.n_prompt > 0) { test_prompt(ctx, std::min(2, t.n_batch), 0, t.n_batch, t.n_threads); @@ -994,6 +1048,8 @@ int main(int argc, char ** argv) { } for (int i = 0; i < params.reps; i++) { + llama_kv_cache_tokens_rm(ctx, -1, -1); + uint64_t t_start = get_time_ns(); if (t.n_prompt > 0) { test_prompt(ctx, t.n_prompt, 0, t.n_batch, t.n_threads); @@ -1010,9 +1066,10 @@ int main(int argc, char ** argv) { llama_print_timings(ctx); llama_free(ctx); - llama_free_model(lmodel); } + llama_free_model(lmodel); + p->print_footer(); llama_backend_free(); diff --git a/examples/main-cmake-pkg/.gitignore b/examples/main-cmake-pkg/.gitignore new file mode 100644 index 0000000000000..e32c11c7f4653 --- /dev/null +++ b/examples/main-cmake-pkg/.gitignore @@ -0,0 +1,51 @@ +# Prerequisites +*.d + +# Compiled Object files +*.slo +*.lo +*.o +*.obj + +# Precompiled Headers +*.gch +*.pch + +# Compiled Dynamic libraries +*.so +*.dylib +*.dll + +# Fortran module files +*.mod +*.smod + +# Compiled Static libraries +*.lai +*.la +*.a +*.lib + +# Executables +*.exe +*.out +*.app + +*.gguf + +*.log +.DS_Store +.build/ +.cache/ +.direnv/ +.envrc +.swiftpm +.venv +.clang-tidy +.vs/ +.vscode/ + +build*/ +out/ +tmp/ + diff --git a/examples/main-cmake-pkg/CMakeLists.txt b/examples/main-cmake-pkg/CMakeLists.txt new file mode 100644 index 0000000000000..473738719197d --- /dev/null +++ b/examples/main-cmake-pkg/CMakeLists.txt @@ -0,0 +1,36 @@ +cmake_minimum_required(VERSION 3.12) +project("main-cmake-pkg" C CXX) +set(TARGET main-cmake-pkg) + +find_package(Llama 0.0.1 REQUIRED) + +# Bake common functionality in with target. Because applications +# using the relocatable Llama package should be outside of the +# source tree, main-cmake-pkg pretends the dependencies are built-in. + +set(_common_path "${CMAKE_CURRENT_LIST_DIR}/../../common") +add_library(common OBJECT + ${_common_path}/common.h + ${_common_path}/common.cpp + ${_common_path}/console.h + ${_common_path}/console.cpp + ${_common_path}/grammar-parser.h + ${_common_path}/grammar-parser.cpp + ) + +# WARNING: because build-info.h is auto-generated, it will only +# be available after the user has built the llama.cpp sources. +# +configure_file(${_common_path}/../build-info.h + ${CMAKE_CURRENT_BINARY_DIR}/build-info.h + COPYONLY) + +target_include_directories(common PUBLIC ${LLAMA_INCLUDE_DIR} + ${CMAKE_CURRENT_BINARY_DIR}) + +add_executable(${TARGET} ${CMAKE_CURRENT_LIST_DIR}/../main/main.cpp) +target_include_directories(${TARGET} PRIVATE ${_common_path}) +install(TARGETS ${TARGET} RUNTIME) +target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT}) +target_compile_features(${TARGET} PRIVATE cxx_std_11) + diff --git a/examples/main-cmake-pkg/README.md b/examples/main-cmake-pkg/README.md new file mode 100644 index 0000000000000..6d665f28fe9bd --- /dev/null +++ b/examples/main-cmake-pkg/README.md @@ -0,0 +1,37 @@ +# llama.cpp/example/main-cmake-pkg + +This program builds the [main](../main) application using a relocatable CMake package. It serves as an example of using the `find_package()` CMake command to conveniently include [llama.cpp](https://github.com/ggerganov/llama.cpp) in projects which live outside of the source tree. + +## Building + +Because this example is "outside of the source tree", it is important to first build/install llama.cpp using CMake. An example is provided here, but please see the [llama.cpp build instructions](../..) for more detailed build instructions. + +### Considerations + +When hardware acceleration libraries are used (e.g. CUBlas, Metal, CLBlast, etc.), CMake must be able to locate the associated CMake package. In the example below, when building _main-cmake-pkg_ notice the `CMAKE_PREFIX_PATH` includes the Llama CMake package location _in addition to_ the CLBlast package—which was used when compiling _llama.cpp_. + +### Build llama.cpp and install to C:\LlamaCPP directory + +In this case, CLBlast was already installed so the CMake package is referenced in `CMAKE_PREFIX_PATH`. + +```cmd +git clone https://github.com/ggerganov/llama.cpp +cd llama.cpp +mkdir build +cd build +cmake .. -DBUILD_SHARED_LIBS=OFF -DLLAMA_CLBLAST=ON -DCMAKE_PREFIX_PATH=C:/CLBlast/lib/cmake/CLBlast -G "Visual Studio 17 2022" -A x64 +cmake --build . --config Release +cmake --install . --prefix C:/LlamaCPP +``` + +### Build main-cmake-pkg + + +```cmd +cd ..\examples\main-cmake-pkg +mkdir build +cd build +cmake .. -DBUILD_SHARED_LIBS=OFF -DCMAKE_PREFIX_PATH="C:/CLBlast/lib/cmake/CLBlast;C:/LlamaCPP/lib/cmake/Llama" -G "Visual Studio 17 2022" -A x64 +cmake --build . --config Release +cmake --install . --prefix C:/MyLlamaApp +``` diff --git a/examples/main/README.md b/examples/main/README.md index 2773fe976b57d..a9561c383c0cb 100644 --- a/examples/main/README.md +++ b/examples/main/README.md @@ -144,7 +144,7 @@ The `--ctx-size` option allows you to set the size of the prompt context used by Some fine-tuned models have extened the context length by scaling RoPE. For example, if the original pretrained model have a context length (max sequence length) of 4096 (4k) and the fine-tuned model have 32k. That is a scaling factor of 8, and should work by setting the above `--ctx-size` to 32768 (32k) and `--rope-scale` to 8. -- `--rope-scale N`: Where N is the linear scaling factor used by the fine-tuned model. +- `--rope-scale N`: Where N is the linear scaling factor used by the fine-tuned model. ### Keep Prompt @@ -262,7 +262,8 @@ These options help improve the performance and memory usage of the LLaMA models. ### Number of Threads -- `-t N, --threads N`: Set the number of threads to use during computation. For optimal performance, it is recommended to set this value to the number of physical CPU cores your system has (as opposed to the logical number of cores). Using the correct number of threads can greatly improve performance. +- `-t N, --threads N`: Set the number of threads to use during generation. For optimal performance, it is recommended to set this value to the number of physical CPU cores your system has (as opposed to the logical number of cores). Using the correct number of threads can greatly improve performance. +- `-tb N, --threads-batch N`: Set the number of threads to use during batch and prompt processing. In some systems, it is beneficial to use a higher number of threads during batch processing than during generation. If not specified, the number of threads used for batch processing will be the same as the number of threads used for generation. ### Mlock @@ -274,7 +275,7 @@ These options help improve the performance and memory usage of the LLaMA models. ### NUMA support -- `--numa`: Attempt optimizations that help on some systems with non-uniform memory access. This currently consists of pinning an equal proportion of the threads to the cores on each NUMA node, and disabling prefetch and readahead for mmap. The latter causes mapped pages to be faulted in on first access instead of all at once, and in combination with pinning threads to NUMA nodes, more of the pages end up on the NUMA node where they are used. Note that if the model is already in the system page cache, for example because of a previous run without this option, this will have little effect unless you drop the page cache first. This can be done by rebooting the system or on Linux by writing '3' to '/proc/sys/vm/drop\_caches' as root. +- `--numa`: Attempt optimizations that help on some systems with non-uniform memory access. This currently consists of pinning an equal proportion of the threads to the cores on each NUMA node, and disabling prefetch and readahead for mmap. The latter causes mapped pages to be faulted in on first access instead of all at once, and in combination with pinning threads to NUMA nodes, more of the pages end up on the NUMA node where they are used. Note that if the model is already in the system page cache, for example because of a previous run without this option, this will have little effect unless you drop the page cache first. This can be done by rebooting the system or on Linux by writing '3' to '/proc/sys/vm/drop_caches' as root. ### Memory Float 32 @@ -302,10 +303,8 @@ These options provide extra functionality and customization when running the LLa - `-h, --help`: Display a help message showing all available options and their default values. This is particularly useful for checking the latest options and default values, as they can change frequently, and the information in this document may become outdated. - `--verbose-prompt`: Print the prompt before generating text. -- `--mtest`: Test the model's functionality by running a series of tests to ensure it's working properly. - `-ngl N, --n-gpu-layers N`: When compiled with appropriate support (currently CLBlast or cuBLAS), this option allows offloading some layers to the GPU for computation. Generally results in increased performance. - `-mg i, --main-gpu i`: When using multiple GPUs this option controls which GPU is used for small tensors for which the overhead of splitting the computation across all GPUs is not worthwhile. The GPU in question will use slightly more VRAM to store a scratch buffer for temporary results. By default GPU 0 is used. Requires cuBLAS. - `-ts SPLIT, --tensor-split SPLIT`: When using multiple GPUs this option controls how large tensors should be split across all GPUs. `SPLIT` is a comma-separated list of non-negative values that assigns the proportion of data that each GPU should get in order. For example, "3,2" will assign 60% of the data to GPU 0 and 40% to GPU 1. By default the data is split in proportion to VRAM but this may not be optimal for performance. Requires cuBLAS. -- `-lv, --low-vram`: Do not allocate a VRAM scratch buffer for holding temporary results. Reduces VRAM usage at the cost of performance, particularly prompt processing speed. Requires cuBLAS. - `--lora FNAME`: Apply a LoRA (Low-Rank Adaptation) adapter to the model (implies --no-mmap). This allows you to adapt the pretrained model to specific tasks or domains. - `--lora-base FNAME`: Optional model to use as a base for the layers modified by the LoRA adapter. This flag is used in conjunction with the `--lora` flag, and specifies the base model for the adaptation. diff --git a/examples/main/main.cpp b/examples/main/main.cpp index e4b318ee38831..4a492fa4388b9 100644 --- a/examples/main/main.cpp +++ b/examples/main/main.cpp @@ -41,7 +41,8 @@ static std::ostringstream * g_output_ss; static std::vector * g_output_tokens; static bool is_interacting = false; -void write_logfile( + +static void write_logfile( const llama_context * ctx, const gpt_params & params, const llama_model * model, const std::vector & input_tokens, const std::string & output, const std::vector & output_tokens @@ -86,7 +87,7 @@ void write_logfile( } #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32) -void sigint_handler(int signo) { +static void sigint_handler(int signo) { if (signo == SIGINT) { if (!is_interacting) { is_interacting = true; @@ -132,7 +133,7 @@ int main(int argc, char ** argv) { console::init(params.simple_io, params.use_color); atexit([]() { console::cleanup(); }); - if (params.perplexity) { + if (params.logits_all) { printf("\n************\n"); printf("%s: please use the 'perplexity' tool for perplexity calculations\n", __func__); printf("************\n\n"); @@ -148,15 +149,21 @@ int main(int argc, char ** argv) { return 0; } - if (params.rope_freq_base != 10000.0) { - LOG_TEE("%s: warning: changing RoPE frequency base to %g (default 10000.0)\n", __func__, params.rope_freq_base); + if (params.n_ctx != 0 && params.n_ctx < 8) { + LOG_TEE("%s: warning: minimum context size is 8, using minimum size.\n", __func__); + params.n_ctx = 8; + } + + if (params.rope_freq_base != 0.0) { + LOG_TEE("%s: warning: changing RoPE frequency base to %g.\n", __func__, params.rope_freq_base); } - if (params.rope_freq_scale != 1.0) { - LOG_TEE("%s: warning: scaling RoPE frequency by %g (default 1.0)\n", __func__, params.rope_freq_scale); + if (params.rope_freq_scale != 0.0) { + LOG_TEE("%s: warning: scaling RoPE frequency by %g.\n", __func__, params.rope_freq_scale); } LOG_TEE("%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT); + LOG_TEE("%s: built with %s for %s\n", __func__, BUILD_COMPILER, BUILD_TARGET); if (params.seed == LLAMA_DEFAULT_SEED) { params.seed = time(NULL); @@ -191,46 +198,19 @@ int main(int argc, char ** argv) { return 1; } - const int n_ctx_train = llama_n_ctx_train(ctx); - if (params.n_ctx > n_ctx_train) { + const int n_ctx_train = llama_n_ctx_train(model); + const int n_ctx = llama_n_ctx(ctx); + LOG("n_ctx: %d\n", n_ctx); + + if (n_ctx > n_ctx_train) { LOG_TEE("%s: warning: model was trained on only %d context tokens (%d specified)\n", - __func__, n_ctx_train, params.n_ctx); - } else if (params.n_ctx < 8) { - LOG_TEE("%s: warning: minimum context size is 8, using minimum size.\n", __func__); - params.n_ctx = 8; + __func__, n_ctx_train, n_ctx); } // print system information { LOG_TEE("\n"); - LOG_TEE("system_info: n_threads = %d / %d | %s\n", - params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info()); - } - - // determine the maximum memory usage needed to do inference for the given n_batch and n_ctx parameters - // uncomment the "used_mem" line in llama.cpp to see the results - if (params.mem_test) { - { - LOG_TEE("%s: testing memory usage for n_batch = %d, n_ctx = %d\n", __func__, params.n_batch, params.n_ctx); - - const std::vector tmp(params.n_batch, llama_token_bos(ctx)); - llama_eval(ctx, tmp.data(), tmp.size(), params.n_ctx, params.n_threads); - } - - llama_print_timings(ctx); - llama_free(ctx); - llama_free_model(model); - - return 0; - } - - // export the cgraph and exit - if (params.export_cgraph) { - llama_eval_export(ctx, "llama.ggml"); - llama_free(ctx); - llama_free_model(model); - - return 0; + LOG_TEE("%s\n", get_system_info(params).c_str()); } std::string path_session = params.path_prompt_cache; @@ -244,7 +224,7 @@ int main(int argc, char ** argv) { if (fp != NULL) { std::fclose(fp); - session_tokens.resize(params.n_ctx); + session_tokens.resize(n_ctx); size_t n_token_count_out = 0; if (!llama_load_session_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.capacity(), &n_token_count_out)) { LOG_TEE("%s: error: failed to load session file '%s'\n", __func__, path_session.c_str()); @@ -259,7 +239,7 @@ int main(int argc, char ** argv) { } } - const bool add_bos = llama_vocab_type(ctx) == LLAMA_VOCAB_TYPE_SPM; + const bool add_bos = llama_vocab_type(model) == LLAMA_VOCAB_TYPE_SPM; LOG("add_bos: %d\n", add_bos); std::vector embd_inp; @@ -300,9 +280,6 @@ int main(int argc, char ** argv) { LOG("guidance_offset: %s", log_tostr(guidance_offset)); } - const int n_ctx = llama_n_ctx(ctx); - LOG("n_ctx: %d\n", n_ctx); - if ((int) embd_inp.size() > n_ctx - 4) { LOG_TEE("%s: error: prompt is too long (%d tokens, max %d)\n", __func__, (int) embd_inp.size(), n_ctx - 4); return 1; @@ -499,7 +476,7 @@ int main(int argc, char ** argv) { std::vector embd; std::vector embd_guidance; - const int n_vocab = llama_n_vocab(ctx); + const int n_vocab = llama_n_vocab(model); std::vector candidates; candidates.reserve(n_vocab); @@ -532,17 +509,22 @@ int main(int argc, char ** argv) { break; } - const int n_left = n_past - params.n_keep; - LOG("context full, swapping: n_past = %d, n_left = %d, n_ctx = %d, n_keep = %d\n", n_past, n_left, n_ctx, params.n_keep); + const int n_left = n_past - params.n_keep - 1; + const int n_discard = n_left/2; - // always keep the first token - BOS - n_past = std::max(1, params.n_keep); - n_past_guidance = std::max(1, params.n_keep + guidance_offset); + LOG("context full, swapping: n_past = %d, n_left = %d, n_ctx = %d, n_keep = %d, n_discard = %d\n", + n_past, n_left, n_ctx, params.n_keep, n_discard); - LOG("after swap: n_past = %d, n_past_guidance = %d\n", n_past, n_past_guidance); + llama_kv_cache_seq_rm (ctx, 0, params.n_keep + 1 , params.n_keep + n_discard + 1); + llama_kv_cache_seq_shift(ctx, 0, params.n_keep + 1 + n_discard, n_past, -n_discard); + + n_past -= n_discard; - // insert n_left/2 tokens at the start of embd from last_tokens - embd.insert(embd.begin(), last_tokens.begin() + n_ctx - n_left/2 - embd.size(), last_tokens.end() - embd.size()); + if (ctx_guidance) { + n_past_guidance -= n_discard; + } + + LOG("after swap: n_past = %d, n_past_guidance = %d\n", n_past, n_past_guidance); LOG("embd: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd)); @@ -604,7 +586,7 @@ int main(int argc, char ** argv) { for (int i = 0; i < input_size; i += params.n_batch) { int n_eval = std::min(input_size - i, params.n_batch); - if (llama_eval(ctx_guidance, input_buf + i, n_eval, n_past_guidance, params.n_threads)) { + if (llama_decode(ctx_guidance, llama_batch_get_one(input_buf + i, n_eval, n_past_guidance, 0))) { LOG_TEE("%s : failed to eval\n", __func__); return 1; } @@ -621,7 +603,7 @@ int main(int argc, char ** argv) { LOG("eval: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd)); - if (llama_eval(ctx, &embd[i], n_eval, n_past, params.n_threads)) { + if (llama_decode(ctx, llama_batch_get_one(&embd[i], n_eval, n_past, 0))) { LOG_TEE("%s : failed to eval\n", __func__); return 1; } @@ -880,7 +862,7 @@ int main(int argc, char ** argv) { llama_backend_free(); #ifndef LOG_DISABLE_LOGS - LOG_TEE("Log end\n") + LOG_TEE("Log end\n"); #endif // LOG_DISABLE_LOGS return 0; diff --git a/examples/make-ggml.py b/examples/make-ggml.py index 6a34eeac53faa..c73485ebf1eff 100755 --- a/examples/make-ggml.py +++ b/examples/make-ggml.py @@ -1,22 +1,25 @@ #!/usr/bin/env python3 """ -This script converts Hugging Face llama models to GGML and quantizes them. +This script converts Hugging Face Llama, StarCoder, Falcon, Baichuan, and GPT-NeoX models to GGUF and quantizes them. Usage: -python make-ggml.py --model {model_dir_or_hf_repo_name} [--outname {output_name} (Optional)] [--outdir {output_directory} (Optional)] [--quants {quant_types} (Optional)] [--keep_fp16 (Optional)] +python make-ggml.py {model_dir_or_hf_repo_name} --model_type {model_type} [--outname {output_name} (Optional)] [--outdir {output_directory} (Optional)] [--quants {quant_types} (Optional)] [--keep_fp16 (Optional)] Arguments: -- --model: (Required) The directory of the downloaded Hugging Face model or the name of the Hugging Face model repository. If the model directory does not exist, it will be downloaded from the Hugging Face model hub. +- model: (Required) The directory of the downloaded Hugging Face model or the name of the Hugging Face model repository. If the model directory does not exist, it will be downloaded from the Hugging Face model hub. +- --model_type: (Required) The type of the model to be converted. Choose from llama, starcoder, falcon, baichuan, or gptneox. - --outname: (Optional) The name of the output model. If not specified, the last part of the model directory path or the Hugging Face model repo name will be used. - --outdir: (Optional) The directory where the output model(s) will be stored. If not specified, '../models/{outname}' will be used. - --quants: (Optional) The types of quantization to apply. This should be a space-separated list. The default is 'Q4_K_M Q5_K_S'. - --keep_fp16: (Optional) If specified, the FP16 model will not be deleted after the quantized models are created. -Quant types: +Old quant types (some base model types require these): - Q4_0: small, very high quality loss - legacy, prefer using Q3_K_M - Q4_1: small, substantial quality loss - legacy, prefer using Q3_K_L - Q5_0: medium, balanced quality - legacy, prefer using Q4_K_M - Q5_1: medium, low quality loss - legacy, prefer using Q5_K_M + +New quant types (recommended): - Q2_K: smallest, extreme quality loss - not recommended - Q3_K: alias for Q3_K_M - Q3_K_S: very small, very high quality loss @@ -40,9 +43,7 @@ import os from huggingface_hub import snapshot_download -def main(model, outname, outdir, quants, keep_fp16): - ggml_version = "v3" - +def main(model, model_type, outname, outdir, quants, keep_fp16): if not os.path.isdir(model): print(f"Model not found at {model}. Downloading...") try: @@ -63,17 +64,20 @@ def main(model, outname, outdir, quants, keep_fp16): print("Building llama.cpp") subprocess.run(f"cd .. && make quantize", shell=True, check=True) - fp16 = f"{outdir}/{outname}.ggml{ggml_version}.fp16.bin" + fp16 = f"{outdir}/{outname}.gguf.fp16.bin" - print(f"Making unquantised GGML at {fp16}") + print(f"Making unquantised GGUF at {fp16}") if not os.path.isfile(fp16): - subprocess.run(f"python3 ../convert.py {model} --outtype f16 --outfile {fp16}", shell=True, check=True) + if model_type != "llama": + subprocess.run(f"python3 ../convert-{model_type}-hf-to-gguf.py {model} 1 --outfile {fp16}", shell=True, check=True) + else: + subprocess.run(f"python3 ../convert.py {model} --outtype f16 --outfile {fp16}", shell=True, check=True) else: print(f"Unquantised GGML already exists at: {fp16}") print("Making quants") for type in quants: - outfile = f"{outdir}/{outname}.ggml{ggml_version}.{type}.bin" + outfile = f"{outdir}/{outname}.gguf.{type}.bin" print(f"Making {type} : {outfile}") subprocess.run(f"../quantize {fp16} {outfile} {type}", shell=True, check=True) @@ -81,8 +85,9 @@ def main(model, outname, outdir, quants, keep_fp16): os.remove(fp16) if __name__ == "__main__": - parser = argparse.ArgumentParser(description='Convert/Quantize HF to GGML. If you have the HF model downloaded already, pass the path to the model dir. Otherwise, pass the Hugging Face model repo name. You need to be in the /examples folder for it to work.') - parser.add_argument('--model', required=True, help='Downloaded model dir or Hugging Face model repo name') + parser = argparse.ArgumentParser(description='Convert/Quantize HF models to GGUF. If you have the HF model downloaded already, pass the path to the model dir. Otherwise, pass the Hugging Face model repo name. You need to be in the /examples folder for it to work.') + parser.add_argument('model', help='Downloaded model dir or Hugging Face model repo name') + parser.add_argument('--model_type', required=True, choices=['llama', 'starcoder', 'falcon', 'baichuan', 'gptneox'], help='Type of the model to be converted. Choose from llama, starcoder, falcon, baichuan, or gptneox.') parser.add_argument('--outname', default=None, help='Output model(s) name') parser.add_argument('--outdir', default=None, help='Output directory') parser.add_argument('--quants', nargs='*', default=["Q4_K_M", "Q5_K_S"], help='Quant types') @@ -90,4 +95,4 @@ def main(model, outname, outdir, quants, keep_fp16): args = parser.parse_args() - main(args.model, args.outname, args.outdir, args.quants, args.keep_fp16) + main(args.model, args.model_type, args.outname, args.outdir, args.quants, args.keep_fp16) diff --git a/examples/parallel/CMakeLists.txt b/examples/parallel/CMakeLists.txt new file mode 100644 index 0000000000000..0bbf89eaefce6 --- /dev/null +++ b/examples/parallel/CMakeLists.txt @@ -0,0 +1,8 @@ +set(TARGET parallel) +add_executable(${TARGET} parallel.cpp) +install(TARGETS ${TARGET} RUNTIME) +target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT}) +target_compile_features(${TARGET} PRIVATE cxx_std_11) +if(TARGET BUILD_INFO) + add_dependencies(${TARGET} BUILD_INFO) +endif() diff --git a/examples/parallel/README.md b/examples/parallel/README.md new file mode 100644 index 0000000000000..4d0fe5cef12fa --- /dev/null +++ b/examples/parallel/README.md @@ -0,0 +1,3 @@ +# llama.cpp/example/parallel + +Simplified simluation for serving incoming requests in parallel diff --git a/examples/parallel/parallel.cpp b/examples/parallel/parallel.cpp new file mode 100644 index 0000000000000..0434ded234b18 --- /dev/null +++ b/examples/parallel/parallel.cpp @@ -0,0 +1,380 @@ +// A basic application simulating a server with multiple clients. +// The clients submite requests to the server and they are processed in parallel. + +#include "build-info.h" + +#include "common.h" +#include "llama.h" + +#include +#include +#include +#include + +// trim whitespace from the beginning and end of a string +static std::string trim(const std::string & str) { + size_t start = 0; + size_t end = str.size(); + + while (start < end && isspace(str[start])) { + start += 1; + } + + while (end > start && isspace(str[end - 1])) { + end -= 1; + } + + return str.substr(start, end - start); +} + +static std::string k_system = +R"(Transcript of a never ending dialog, where the User interacts with an Assistant. +The Assistant is helpful, kind, honest, good at writing, and never fails to answer the User's requests immediately and with precision. + +User: Recommend a nice restaurant in the area. +Assistant: I recommend the restaurant "The Golden Duck". It is a 5 star restaurant with a great view of the city. The food is delicious and the service is excellent. The prices are reasonable and the portions are generous. The restaurant is located at 123 Main Street, New York, NY 10001. The phone number is (212) 555-1234. The hours are Monday through Friday from 11:00 am to 10:00 pm. The restaurant is closed on Saturdays and Sundays. +User: Who is Richard Feynman? +Assistant: Richard Feynman was an American physicist who is best known for his work in quantum mechanics and particle physics. He was awarded the Nobel Prize in Physics in 1965 for his contributions to the development of quantum electrodynamics. He was a popular lecturer and author, and he wrote several books, including "Surely You're Joking, Mr. Feynman!" and "What Do You Care What Other People Think?". +User:)"; + +static std::vector k_prompts = { + "What is the meaning of life?", + "Tell me an interesting fact about llamas.", + "What is the best way to cook a steak?", + "Are you familiar with the Special Theory of Relativity and can you explain it to me?", + "Recommend some interesting books to read.", + "What is the best way to learn a new language?", + "How to get a job at Google?", + "If you could have any superpower, what would it be?", + "I want to learn how to play the piano.", +}; + +struct client { + int32_t id = 0; + + llama_seq_id seq_id = -1; + + llama_token sampled; + + int64_t t_start_prompt; + int64_t t_start_gen; + + int32_t n_prompt = 0; + int32_t n_decoded = 0; + int32_t i_batch = -1; + + std::string input; + std::string prompt; + std::string response; + + std::vector tokens_prev; +}; + +int main(int argc, char ** argv) { + srand(1234); + + gpt_params params; + + if (gpt_params_parse(argc, argv, params) == false) { + return 1; + } + + // number of simultaneous "clients" to simulate + const int32_t n_clients = params.n_parallel; + + // requests to simulate + const int32_t n_seq = params.n_sequences; + + // insert new requests as soon as the previous one is done + const bool cont_batching = params.cont_batching; + +#ifndef LOG_DISABLE_LOGS + log_set_target(log_filename_generator("parallel", "log")); + LOG_TEE("Log start\n"); + log_dump_cmdline(argc, argv); +#endif // LOG_DISABLE_LOGS + + // init llama.cpp + llama_backend_init(params.numa); + + llama_model * model = NULL; + llama_context * ctx = NULL; + + // load the target model + params.logits_all = true; + std::tie(model, ctx) = llama_init_from_gpt_params(params); + + fprintf(stderr, "\n\n"); + fflush(stderr); + + const int n_ctx = llama_n_ctx(ctx); + const int n_vocab = llama_n_vocab(model); + + std::vector clients(n_clients); + for (size_t i = 0; i < clients.size(); ++i) { + auto & client = clients[i]; + client.id = i; + client.tokens_prev.resize(std::max(256, params.n_predict)); + std::fill(client.tokens_prev.begin(), client.tokens_prev.end(), 0); + } + + std::vector candidates; + candidates.reserve(n_vocab); + + std::vector tokens_system; + tokens_system = ::llama_tokenize(ctx, k_system, true); + const int32_t n_tokens_system = tokens_system.size(); + + llama_seq_id g_seq_id = 0; + + // the max batch size is as large as the context to handle cases where we get very long input prompt from multiple + // users. regardless of the size, the main loop will chunk the batch into a maximum of params.n_batch tokens at a time + llama_batch batch = llama_batch_init(params.n_ctx, 0); + + int32_t n_total_prompt = 0; + int32_t n_total_gen = 0; + int32_t n_cache_miss = 0; + + const auto t_main_start = ggml_time_us(); + + LOG_TEE("%s: Simulating parallel requests from clients:\n", __func__); + LOG_TEE("%s: n_parallel = %d, n_sequences = %d, cont_batching = %d, system tokens = %d\n", __func__, n_clients, n_seq, cont_batching, n_tokens_system); + LOG_TEE("\n"); + + { + LOG_TEE("%s: Evaluating the system prompt ...\n", __func__); + + batch.n_tokens = n_tokens_system; + + for (int32_t i = 0; i < batch.n_tokens; ++i) { + batch.token[i] = tokens_system[i]; + batch.pos[i] = i; + batch.seq_id[i] = 0; + batch.logits[i] = false; + } + + if (llama_decode(ctx, batch) != 0) { + LOG_TEE("%s: llama_decode() failed\n", __func__); + return 1; + } + + // assign the system KV cache to all parallel sequences + for (int32_t i = 1; i < n_clients; ++i) { + llama_kv_cache_seq_cp(ctx, 0, i, 0, n_tokens_system); + } + + LOG_TEE("\n"); + } + + LOG_TEE("Processing requests ...\n\n"); + + while (true) { + batch.n_tokens = 0; + + // decode any currently ongoing sequences + for (auto & client : clients) { + if (client.seq_id == -1) { + continue; + } + + batch.token [batch.n_tokens] = client.sampled; + batch.pos [batch.n_tokens] = n_tokens_system + client.n_prompt + client.n_decoded; + batch.seq_id[batch.n_tokens] = client.id; + batch.logits[batch.n_tokens] = true; + + client.n_decoded += 1; + client.i_batch = batch.n_tokens; + + batch.n_tokens += 1; + } + + if (batch.n_tokens == 0) { + // all sequences have ended - clear the entire KV cache + for (int i = 0; i < n_clients; ++i) { + llama_kv_cache_seq_rm(ctx, i, n_tokens_system, -1); + } + + LOG_TEE("%s: clearing the KV cache\n", __func__); + } + + // insert new sequences for decoding + if (cont_batching || batch.n_tokens == 0) { + for (auto & client : clients) { + if (client.seq_id == -1 && g_seq_id < n_seq) { + client.seq_id = g_seq_id; + + client.t_start_prompt = ggml_time_us(); + client.t_start_gen = 0; + + client.input = k_prompts[rand() % k_prompts.size()]; + client.prompt = client.input + "\nAssistant:"; + client.response = ""; + + std::fill(client.tokens_prev.begin(), client.tokens_prev.end(), 0); + + // do not prepend BOS because we have a system prompt! + std::vector tokens_prompt; + tokens_prompt = ::llama_tokenize(ctx, client.prompt, false); + + for (size_t i = 0; i < tokens_prompt.size(); ++i) { + batch.token [batch.n_tokens] = tokens_prompt[i]; + batch.pos [batch.n_tokens] = i + n_tokens_system; + batch.seq_id[batch.n_tokens] = client.id; + batch.logits[batch.n_tokens] = false; + batch.n_tokens += 1; + } + + // extract the logits only for the last token + if (batch.n_tokens > 0) { + batch.logits[batch.n_tokens - 1] = true; + } + + client.n_prompt = tokens_prompt.size(); + client.n_decoded = 0; + client.i_batch = batch.n_tokens - 1; + + LOG_TEE("\033[1mClient %3d, seq %4d, started decoding ...\033[0m\n", client.id, client.seq_id); + + g_seq_id += 1; + + // insert new requests one-by-one + //if (cont_batching) { + // break; + //} + } + } + } + + if (batch.n_tokens == 0) { + break; + } + + // process in chunks of params.n_batch + int32_t n_batch = params.n_batch; + + for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch) { + // experiment: process in powers of 2 + //if (i + n_batch > (int32_t) batch.n_tokens && n_batch > 32) { + // n_batch /= 2; + // i -= n_batch; + // continue; + //} + + const int32_t n_tokens = std::min(n_batch, (int32_t) (batch.n_tokens - i)); + + llama_batch batch_view = { + n_tokens, + batch.token + i, + nullptr, + batch.pos + i, + batch.seq_id + i, + batch.logits + i, + 0, 0, 0, // unused + }; + + const int ret = llama_decode(ctx, batch_view); + if (ret != 0) { + if (n_batch == 1 || ret < 0) { + // if you get here, it means the KV cache is full - try increasing it via the context size + LOG_TEE("%s : failed to decode the batch, n_batch = %d, ret = %d\n", __func__, n_batch, ret); + return 1; + } + + LOG("%s : failed to decode the batch, retrying with n_batch = %d\n", __func__, n_batch / 2); + + n_cache_miss += 1; + + // retry with half the batch size to try to find a free slot in the KV cache + n_batch /= 2; + i -= n_batch; + + continue; + } + + LOG("%s : decoded batch of %d tokens\n", __func__, n_tokens); + + for (auto & client : clients) { + if (client.i_batch < (int) i || client.i_batch >= (int) (i + n_tokens)) { + continue; + } + + //printf("client %d, seq %d, token %d, pos %d, batch %d\n", + // client.id, client.seq_id, client.sampled, client.n_decoded, client.i_batch); + + const llama_token id = llama_sample_token(ctx, NULL, NULL, params, client.tokens_prev, candidates, client.i_batch - i); + + if (client.n_decoded == 1) { + // start measuring generation time after the first token to make sure all concurrent clients + // have their prompt already processed + client.t_start_gen = ggml_time_us(); + } + + // remember which tokens were sampled - used for repetition penalties during sampling + client.tokens_prev.erase(client.tokens_prev.begin()); + client.tokens_prev.push_back(id); + + const std::string token_str = llama_token_to_piece(ctx, id); + client.response += token_str; + client.sampled = id; + + //printf("client %d, seq %d, token %d, pos %d, batch %d: %s\n", + // client.id, client.seq_id, id, client.n_decoded, client.i_batch, token_str.c_str()); + + if (client.n_decoded > 2 && + (id == llama_token_eos(ctx) || + (params.n_predict > 0 && client.n_decoded + client.n_prompt >= params.n_predict) || + client.response.find("User:") != std::string::npos || + client.response.find('\n') != std::string::npos)) { + // basic reverse prompt + const size_t pos = client.response.find("User:"); + if (pos != std::string::npos) { + client.response = client.response.substr(0, pos); + } + + // delete only the generated part of the sequence, i.e. keep the system prompt in the cache + llama_kv_cache_seq_rm(ctx, client.id, n_tokens_system, n_ctx); + + const auto t_main_end = ggml_time_us(); + + LOG_TEE("\033[1mClient %3d, seq %4d, prompt %4d t, response %4d t, time %5.2f s, speed %5.2f t/s, cache miss %d \033[0m \n\nInput: %s\nResponse: %s\n\n", + client.id, client.seq_id, client.n_prompt, client.n_decoded, + (t_main_end - client.t_start_prompt) / 1e6, + (double) (client.n_prompt + client.n_decoded) / (t_main_end - client.t_start_prompt) * 1e6, + n_cache_miss, + ::trim(client.input).c_str(), + ::trim(client.response).c_str()); + + n_total_prompt += client.n_prompt; + n_total_gen += client.n_decoded; + + client.seq_id = -1; + } + + client.i_batch = -1; + } + } + } + + const auto t_main_end = ggml_time_us(); + + LOG_TEE("\n\n"); + LOG_TEE("Total prompt tokens: %6d, speed: %5.2f t/s\n", n_total_prompt, (double) (n_total_prompt ) / (t_main_end - t_main_start) * 1e6); + LOG_TEE("Total gen tokens: %6d, speed: %5.2f t/s\n", n_total_gen, (double) (n_total_gen ) / (t_main_end - t_main_start) * 1e6); + LOG_TEE("Total speed (AVG): %6s speed: %5.2f t/s\n", "", (double) (n_total_prompt + n_total_gen) / (t_main_end - t_main_start) * 1e6); + LOG_TEE("Cache misses: %6d\n", n_cache_miss); + + LOG_TEE("\n\n"); + + llama_print_timings(ctx); + + llama_batch_free(batch); + + llama_free(ctx); + llama_free_model(model); + + llama_backend_free(); + + fprintf(stderr, "\n\n"); + + return 0; +} diff --git a/examples/perplexity/README.md b/examples/perplexity/README.md index eacfb17c67fb2..50e1af0111dd6 100644 --- a/examples/perplexity/README.md +++ b/examples/perplexity/README.md @@ -1,3 +1,21 @@ # perplexity TODO + +## Llama 2 70B Scorechart +Quantization | Model size (GiB) | Perplexity | Delta to fp16 +-- | -- | -- | -- +Q4_0 | 36.20 | 3.5550 | 3.61% +Q4_1 | 40.20 | 3.5125 | 2.37% +Q5_0 | 44.20 | 3.4744 | 1.26% +Q2_K | 27.27 | 3.7339 | 8.82% +Q3_K_S | 27.86 | 3.7019 | 7.89% +Q3_K_M | 30.83 | 3.5932 | 4.72% +Q3_K_L | 33.67 | 3.5617 | 3.80% +Q4_K_S | 36.39 | 3.4852 | 1.57% +Q4_K_M | 38.54 | 3.4725 | 1.20% +Q5_K_S | 44.20 | 3.4483 | 0.50% +Q5_K_M | 45.41 | 3.4451 | 0.40% +Q6_K | 52.70 | 3.4367 | 0.16% +fp16 | 128.5 | 3.4313 | - + diff --git a/examples/perplexity/perplexity.cpp b/examples/perplexity/perplexity.cpp index 3a1c8c28da09b..7d0038bd40757 100644 --- a/examples/perplexity/perplexity.cpp +++ b/examples/perplexity/perplexity.cpp @@ -1,6 +1,6 @@ +#include "build-info.h" #include "common.h" #include "llama.h" -#include "build-info.h" #include #include @@ -28,9 +28,10 @@ struct results_log_softmax { float prob; }; -void write_logfile(const llama_context * ctx, const gpt_params & params, - const llama_model * model, const struct results_perplexity & results) { - +static void write_logfile( + const llama_context * ctx, const gpt_params & params, const llama_model * model, + const struct results_perplexity & results +) { if (params.logdir.empty()) { return; } @@ -76,10 +77,12 @@ void write_logfile(const llama_context * ctx, const gpt_params & params, fclose(logfile); } -std::vector softmax(const std::vector& logits) { +static std::vector softmax(const std::vector& logits) { std::vector probs(logits.size()); float max_logit = logits[0]; - for (float v : logits) max_logit = std::max(max_logit, v); + for (float v : logits) { + max_logit = std::max(max_logit, v); + } double sum_exp = 0.0; for (size_t i = 0; i < logits.size(); i++) { // Subtract the maximum logit value from the current logit value for numerical stability @@ -88,25 +91,33 @@ std::vector softmax(const std::vector& logits) { sum_exp += exp_logit; probs[i] = exp_logit; } - for (size_t i = 0; i < probs.size(); i++) probs[i] /= sum_exp; + for (size_t i = 0; i < probs.size(); i++) { + probs[i] /= sum_exp; + } return probs; } -results_log_softmax log_softmax(int n_vocab, const float * logits, int tok) { +static results_log_softmax log_softmax(int n_vocab, const float * logits, int tok) { float max_logit = logits[0]; - for (int i = 1; i < n_vocab; ++i) max_logit = std::max(max_logit, logits[i]); + for (int i = 1; i < n_vocab; ++i) { + max_logit = std::max(max_logit, logits[i]); + } double sum_exp = 0.0; - for (int i = 0; i < n_vocab; ++i) sum_exp += expf(logits[i] - max_logit); + for (int i = 0; i < n_vocab; ++i) { + sum_exp += expf(logits[i] - max_logit); + } return {logits[tok] - max_logit - log(sum_exp), logits[tok], expf(logits[tok] - max_logit) / (float) sum_exp}; } -void process_logits(int n_vocab, const float * logits, const int * tokens, int n_token, std::vector & workers, - double & nll, double & nll2, float * logit_history, float * prob_history) { - +static void process_logits( + int n_vocab, const float * logits, const int * tokens, int n_token, std::vector & workers, + double & nll, double & nll2, float * logit_history, float * prob_history +) { std::mutex mutex; int counter = 0; auto compute = [&mutex, &counter, &nll, &nll2, logit_history, prob_history, n_vocab, logits, tokens, n_token] () { - double local_nll = 0, local_nll2 = 0; + double local_nll = 0; + double local_nll2 = 0; while (true) { std::unique_lock lock(mutex); int i = counter++; @@ -124,34 +135,39 @@ void process_logits(int n_vocab, const float * logits, const int * tokens, int n prob_history[i] = results.prob; } }; - for (auto & w : workers) w = std::thread(compute); + for (auto & w : workers) { + w = std::thread(compute); + } compute(); - for (auto & w : workers) w.join(); - + for (auto & w : workers) { + w.join(); + } } -results_perplexity perplexity_v2(llama_context * ctx, const gpt_params & params) { +static results_perplexity perplexity_v2(llama_context * ctx, const gpt_params & params) { // Download: https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip?ref=salesforce-research // Run `./perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw` // Output: `perplexity: 13.5106 [114/114]` // BOS tokens will be added for each chunk before eval - const bool is_spm = llama_vocab_type(ctx) == LLAMA_VOCAB_TYPE_SPM; + const bool is_spm = llama_vocab_type(llama_get_model(ctx)) == LLAMA_VOCAB_TYPE_SPM; const bool add_bos = is_spm; fprintf(stderr, "%s: tokenizing the input ..\n", __func__); std::vector tokens = ::llama_tokenize(ctx, params.prompt, add_bos); - if (int(tokens.size()) < 2*params.n_ctx) { - fprintf(stderr, "%s: you need at least %d tokens to evaluate perplexity with a context of %d\n",__func__,2*params.n_ctx, - params.n_ctx); + const int n_ctx = llama_n_ctx(ctx); + + if (int(tokens.size()) < 2*n_ctx) { + fprintf(stderr, "%s: you need at least %d tokens to evaluate perplexity with a context of %d\n",__func__,2*n_ctx, + n_ctx); fprintf(stderr, "%s: the data file you provided tokenizes to only %zu tokens\n",__func__,tokens.size()); return {std::move(tokens), 0., {}, {}}; } - std::vector logit_history; - std::vector prob_history; + std::vector logit_history; + std::vector prob_history; logit_history.resize(tokens.size()); prob_history.resize(tokens.size()); @@ -161,20 +177,20 @@ results_perplexity perplexity_v2(llama_context * ctx, const gpt_params & params) return {tokens, -1, logit_history, prob_history}; } - const int calc_chunk = params.n_ctx; + const int calc_chunk = n_ctx; fprintf(stderr, "%s: have %zu tokens. Calculation chunk = %d\n", __func__, tokens.size(), calc_chunk); if (int(tokens.size()) <= calc_chunk) { fprintf(stderr, "%s: there are only %zu tokens, this is not enough for a context size of %d and stride %d\n",__func__, - tokens.size(), params.n_ctx, params.ppl_stride); + tokens.size(), n_ctx, params.ppl_stride); return {tokens, -1, logit_history, prob_history}; } const int n_chunk_max = (tokens.size() - calc_chunk + params.ppl_stride - 1) / params.ppl_stride; const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max); - const int n_vocab = llama_n_vocab(ctx); + const int n_vocab = llama_n_vocab(llama_get_model(ctx)); const int n_batch = params.n_batch; int count = 0; @@ -193,12 +209,15 @@ results_perplexity perplexity_v2(llama_context * ctx, const gpt_params & params) const auto t_start = std::chrono::high_resolution_clock::now(); + // clear the KV cache + llama_kv_cache_tokens_rm(ctx, -1, -1); + for (int j = 0; j < num_batches; ++j) { const int batch_start = start + j * n_batch; const int batch_size = std::min(end - batch_start, n_batch); //fprintf(stderr, " Batch %d: starts at %d, size is %d, n_past is %d\n",j,batch_start,batch_size,j * n_batch); - if (llama_eval(ctx, tokens.data() + batch_start, batch_size, j * n_batch, params.n_threads)) { + if (llama_decode(ctx, llama_batch_get_one(tokens.data() + batch_start, batch_size, j * n_batch, 0))) { //fprintf(stderr, "%s : failed to eval\n", __func__); return {tokens, -1, logit_history, prob_history}; } @@ -233,7 +252,7 @@ results_perplexity perplexity_v2(llama_context * ctx, const gpt_params & params) } //fprintf(stderr, "%s: using tokens %d...%d\n",__func__,params.n_ctx - params.ppl_stride + start, params.n_ctx + start); - for (int j = params.n_ctx - params.ppl_stride - 1; j < params.n_ctx - 1; ++j) { + for (int j = n_ctx - params.ppl_stride - 1; j < n_ctx - 1; ++j) { // Calculate probability of next token, given the previous ones. const std::vector tok_logits( @@ -260,8 +279,7 @@ results_perplexity perplexity_v2(llama_context * ctx, const gpt_params & params) return {tokens, std::exp(nll / count), logit_history, prob_history}; } -results_perplexity perplexity(llama_context * ctx, const gpt_params & params) { - +static results_perplexity perplexity(llama_context * ctx, const gpt_params & params) { if (params.ppl_stride > 0) { return perplexity_v2(ctx, params); } @@ -271,8 +289,9 @@ results_perplexity perplexity(llama_context * ctx, const gpt_params & params) { // Output: `perplexity: 13.5106 [114/114]` // BOS tokens will be added for each chunk before eval - const bool is_spm = llama_vocab_type(ctx) == LLAMA_VOCAB_TYPE_SPM; + const bool is_spm = llama_vocab_type(llama_get_model(ctx)) == LLAMA_VOCAB_TYPE_SPM; const bool add_bos = is_spm; + const int n_ctx = llama_n_ctx(ctx); auto tim1 = std::chrono::high_resolution_clock::now(); fprintf(stderr, "%s: tokenizing the input ..\n", __func__); @@ -282,9 +301,9 @@ results_perplexity perplexity(llama_context * ctx, const gpt_params & params) { auto tim2 = std::chrono::high_resolution_clock::now(); fprintf(stderr, "%s: tokenization took %g ms\n",__func__,1e-3*std::chrono::duration_cast(tim2-tim1).count()); - if (int(tokens.size()) < 2*params.n_ctx) { - fprintf(stderr, "%s: you need at least %d tokens to evaluate perplexity with a context of %d\n",__func__,2*params.n_ctx, - params.n_ctx); + if (int(tokens.size()) < 2*n_ctx) { + fprintf(stderr, "%s: you need at least %d tokens to evaluate perplexity with a context of %d\n",__func__,2*n_ctx, + n_ctx); fprintf(stderr, "%s: the data file you provided tokenizes to only %zu tokens\n",__func__,tokens.size()); return {std::move(tokens), 0., {}, {}}; } @@ -295,10 +314,10 @@ results_perplexity perplexity(llama_context * ctx, const gpt_params & params) { std::vector prob_history; prob_history.resize(tokens.size()); - const int n_chunk_max = tokens.size() / params.n_ctx; + const int n_chunk_max = tokens.size() / n_ctx; const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max); - const int n_vocab = llama_n_vocab(ctx); + const int n_vocab = llama_n_vocab(llama_get_model(ctx)); const int n_batch = params.n_batch; int count = 0; @@ -310,15 +329,18 @@ results_perplexity perplexity(llama_context * ctx, const gpt_params & params) { std::vector workers(std::thread::hardware_concurrency() - 1); for (int i = 0; i < n_chunk; ++i) { - const int start = i * params.n_ctx; - const int end = start + params.n_ctx; + const int start = i * n_ctx; + const int end = start + n_ctx; - const int num_batches = (params.n_ctx + n_batch - 1) / n_batch; + const int num_batches = (n_ctx + n_batch - 1) / n_batch; std::vector logits; const auto t_start = std::chrono::high_resolution_clock::now(); + // clear the KV cache + llama_kv_cache_tokens_rm(ctx, -1, -1); + for (int j = 0; j < num_batches; ++j) { const int batch_start = start + j * n_batch; const int batch_size = std::min(end - batch_start, n_batch); @@ -331,7 +353,7 @@ results_perplexity perplexity(llama_context * ctx, const gpt_params & params) { tokens[batch_start] = llama_token_bos(ctx); } - if (llama_eval(ctx, tokens.data() + batch_start, batch_size, j * n_batch, params.n_threads)) { + if (llama_decode(ctx, llama_batch_get_one(tokens.data() + batch_start, batch_size, j * n_batch, 0))) { fprintf(stderr, "%s : failed to eval\n", __func__); return {tokens, -1, logit_history, prob_history}; } @@ -339,7 +361,7 @@ results_perplexity perplexity(llama_context * ctx, const gpt_params & params) { // restore the original token in case it was set to BOS tokens[batch_start] = token_org; - const auto batch_logits = llama_get_logits(ctx); + const auto * batch_logits = llama_get_logits(ctx); logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab); } @@ -368,10 +390,10 @@ results_perplexity perplexity(llama_context * ctx, const gpt_params & params) { // Example, we have a context window of 512, we will compute perplexity for each of the // last 256 tokens. Then, we split the input up into context window size chunks to // process the entire prompt. - const int first = params.n_ctx/2; - process_logits(n_vocab, logits.data() + first*n_vocab, tokens.data() + start + first, params.n_ctx - 1 - first, + const int first = n_ctx/2; + process_logits(n_vocab, logits.data() + first*n_vocab, tokens.data() + start + first, n_ctx - 1 - first, workers, nll, nll2, logit_history.data() + start + first, prob_history.data() + start + first); - count += params.n_ctx - first - 1; + count += n_ctx - first - 1; // perplexity is e^(average negative log-likelihood) if (params.ppl_output_type == 0) { @@ -380,7 +402,7 @@ results_perplexity perplexity(llama_context * ctx, const gpt_params & params) { double av = nll/count; double av2 = nll2/count - av*av; if (av2 > 0) av2 = sqrt(av2/(count-1)); - printf("%8d %.4lf %4lf %4lf\n", i*params.n_ctx, std::exp(nll / count), av, av2); + printf("%8d %.4lf %4lf %4lf\n", i*n_ctx, std::exp(nll / count), av, av2); } fflush(stdout); } @@ -400,15 +422,16 @@ results_perplexity perplexity(llama_context * ctx, const gpt_params & params) { return {tokens, ppl, logit_history, prob_history}; } -std::vector hellaswag_evaluate_tokens(llama_context * ctx, const std::vector& tokens, int n_past, int n_batch, - int n_vocab, int n_thread) { +static std::vector hellaswag_evaluate_tokens( + llama_context * ctx, std::vector & tokens, int n_past, int n_batch, int n_vocab +) { std::vector result; result.reserve(tokens.size() * n_vocab); size_t n_chunk = (tokens.size() + n_batch - 1)/n_batch; for (size_t i_chunk = 0; i_chunk < n_chunk; ++i_chunk) { size_t n_tokens = tokens.size() - i_chunk * n_batch; n_tokens = std::min(n_tokens, size_t(n_batch)); - if (llama_eval(ctx, tokens.data() + i_chunk * n_batch, n_tokens, n_past, n_thread)) { + if (llama_decode(ctx, llama_batch_get_one(tokens.data() + i_chunk * n_batch, n_tokens, n_past, 0))) { fprintf(stderr, "%s : failed to eval\n", __func__); return {}; } @@ -421,7 +444,7 @@ std::vector hellaswag_evaluate_tokens(llama_context * ctx, const std::vec return result; } -void hellaswag_score(llama_context * ctx, const gpt_params & params) { +static void hellaswag_score(llama_context * ctx, const gpt_params & params) { // Calculates hellaswag score (acc_norm) from prompt // // Data extracted from the HellaSwag validation dataset (MIT license) https://github.com/rowanz/hellaswag/blob/master/data/hellaswag_val.jsonl @@ -455,7 +478,7 @@ void hellaswag_score(llama_context * ctx, const gpt_params & params) { size_t hs_task_count = prompt_lines.size()/6; fprintf(stderr, "%s : loaded %zu tasks from prompt.\n", __func__, hs_task_count); - const bool is_spm = llama_vocab_type(ctx) == LLAMA_VOCAB_TYPE_SPM; + const bool is_spm = llama_vocab_type(llama_get_model(ctx)) == LLAMA_VOCAB_TYPE_SPM; fprintf(stderr, "================================= is_spm = %d\n", is_spm); // This is needed as usual for LLaMA models @@ -510,7 +533,8 @@ void hellaswag_score(llama_context * ctx, const gpt_params & params) { printf("\ntask\tacc_norm\n"); double acc = 0.0f; - const int n_vocab = llama_n_vocab(ctx); + const int n_vocab = llama_n_vocab(llama_get_model(ctx)); + const int n_ctx = llama_n_ctx(ctx); std::vector> ending_tokens(4); @@ -538,7 +562,7 @@ void hellaswag_score(llama_context * ctx, const gpt_params & params) { auto query_size = query_embd.size(); // Stop if query wont fit the ctx window - if (query_size > (size_t)params.n_ctx) { + if (query_size > (size_t)n_ctx) { fprintf(stderr, "%s : number of tokens in query %zu > n_ctxl\n", __func__, query_size); return; } @@ -548,7 +572,10 @@ void hellaswag_score(llama_context * ctx, const gpt_params & params) { query_embd.resize(32); } - auto logits = hellaswag_evaluate_tokens(ctx, query_embd, 0, params.n_batch, n_vocab, params.n_threads); + // clear the KV cache + llama_kv_cache_tokens_rm(ctx, -1, -1); + + auto logits = hellaswag_evaluate_tokens(ctx, query_embd, 0, params.n_batch, n_vocab); if (logits.empty()) { fprintf(stderr, "%s : failed to eval\n", __func__); return; @@ -585,7 +612,7 @@ void hellaswag_score(llama_context * ctx, const gpt_params & params) { query_size = query_embd.size(); // Stop if query wont fit the ctx window - if (context_size + query_size > (size_t)params.n_ctx) { + if (context_size + query_size > (size_t)n_ctx) { fprintf(stderr, "%s : number of tokens in query %zu > n_ctxl\n", __func__, query_size); return; } @@ -597,7 +624,7 @@ void hellaswag_score(llama_context * ctx, const gpt_params & params) { //} // Evaluate the query - logits = hellaswag_evaluate_tokens(ctx, query_embd, context_size, params.n_batch, n_vocab, params.n_threads); + logits = hellaswag_evaluate_tokens(ctx, query_embd, context_size, params.n_batch, n_vocab); if (logits.empty()) { fprintf(stderr, "%s : failed to eval\n", __func__); return; @@ -659,7 +686,7 @@ int main(int argc, char ** argv) { return 1; } - params.perplexity = true; + params.logits_all = true; params.n_batch = std::min(params.n_batch, params.n_ctx); if (params.ppl_stride > 0) { @@ -668,7 +695,7 @@ int main(int argc, char ** argv) { params.n_ctx += params.ppl_stride/2; } - fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT); + print_build_info(); if (params.seed == LLAMA_DEFAULT_SEED) { params.seed = time(NULL); @@ -693,7 +720,7 @@ int main(int argc, char ** argv) { return 1; } - const int n_ctx_train = llama_n_ctx_train(ctx); + const int n_ctx_train = llama_n_ctx_train(model); if (params.n_ctx > n_ctx_train) { fprintf(stderr, "%s: warning: model was trained on only %d context tokens (%d specified)\n", __func__, n_ctx_train, params.n_ctx); @@ -702,8 +729,7 @@ int main(int argc, char ** argv) { // print system information { fprintf(stderr, "\n"); - fprintf(stderr, "system_info: n_threads = %d / %d | %s\n", - params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info()); + fprintf(stderr, "%s\n", get_system_info(params).c_str()); } struct results_perplexity results; diff --git a/examples/quantize-stats/CMakeLists.txt b/examples/quantize-stats/CMakeLists.txt index c5c394058ced8..db182e2633f1f 100644 --- a/examples/quantize-stats/CMakeLists.txt +++ b/examples/quantize-stats/CMakeLists.txt @@ -2,4 +2,5 @@ set(TARGET quantize-stats) add_executable(${TARGET} quantize-stats.cpp) install(TARGETS ${TARGET} RUNTIME) target_link_libraries(${TARGET} PRIVATE llama ${CMAKE_THREAD_LIBS_INIT}) +target_include_directories(${TARGET} PRIVATE ../../common) target_compile_features(${TARGET} PRIVATE cxx_std_11) diff --git a/examples/quantize-stats/quantize-stats.cpp b/examples/quantize-stats/quantize-stats.cpp index 6ce03ba7ba50b..dd76b1ceef134 100644 --- a/examples/quantize-stats/quantize-stats.cpp +++ b/examples/quantize-stats/quantize-stats.cpp @@ -1,7 +1,7 @@ -#include "ggml.h" -#include "build-info.h" - #define LLAMA_API_INTERNAL +#include "build-info.h" +#include "common.h" +#include "ggml.h" #include "llama.h" #include @@ -34,8 +34,8 @@ struct quantize_stats_params { std::vector include_types; }; -const size_t HISTOGRAM_BUCKETS = 150; -const double HISTOGRAM_RANGE = 0.03; +constexpr size_t HISTOGRAM_BUCKETS = 150; +constexpr double HISTOGRAM_RANGE = 0.03; struct error_stats { size_t num_samples; @@ -44,8 +44,7 @@ struct error_stats { uint64_t error_histogram[HISTOGRAM_BUCKETS]; }; - -void quantize_stats_print_usage(int /*argc*/, char ** argv) { +static void quantize_stats_print_usage(int /*argc*/, char ** argv) { quantize_stats_params params; fprintf(stderr, "usage: %s [options]\n", argv[0]); fprintf(stderr, "\n"); @@ -71,7 +70,7 @@ void quantize_stats_print_usage(int /*argc*/, char ** argv) { } // Check if a layer is included/excluded by command line -bool layer_included(const quantize_stats_params & params, const std::string & layer) { +static bool layer_included(const quantize_stats_params & params, const std::string & layer) { for (const auto& excluded : params.exclude_layers) { if (std::regex_search(layer, std::regex(excluded))) { return false; @@ -86,7 +85,7 @@ bool layer_included(const quantize_stats_params & params, const std::string & la } // Update error statistics given vectors with the before/after result of quantization -void update_error_stats(int64_t nelements, const float * input, const float * output, error_stats & stats) { +static void update_error_stats(int64_t nelements, const float * input, const float * output, error_stats & stats) { for (int64_t i = 0; i < nelements; i++) { double diff = input[i] - output[i]; stats.total_error += diff * diff; @@ -96,14 +95,14 @@ void update_error_stats(int64_t nelements, const float * input, const float * ou stats.num_samples += nelements; } -void combine_error_stats(error_stats & into, const error_stats & from) { +static void combine_error_stats(error_stats & into, const error_stats & from) { into.num_samples += from.num_samples; into.total_error += from.total_error; if (from.max_error > into.max_error) into.max_error = from.max_error; for (size_t i=0; inb[3] == tensor->nb[2]*tensor->ne[2]; } -void test_roundtrip_on_chunk( - const ggml_tensor * layer, - int64_t offset, - int64_t chunk_size, - const ggml_type_traits_t & qfns, - bool use_reference, - float * input_scratch, - char * quantized_scratch, - float * output_scratch, - error_stats & stats) { - +static void test_roundtrip_on_chunk( + const ggml_tensor * layer, int64_t offset, int64_t chunk_size, const ggml_type_traits_t & qfns, bool use_reference, + float * input_scratch, char * quantized_scratch, float * output_scratch, error_stats & stats +) { if (layer->type == GGML_TYPE_F16) { for (int i = 0; i < chunk_size; i++) { input_scratch[i] = ggml_get_f32_1d(layer, i + offset); @@ -174,18 +166,11 @@ void test_roundtrip_on_chunk( // Run quantization function for a single layer and update error stats -void test_roundtrip_on_layer( - std::string & name, - bool print_layer_stats, - const ggml_type_traits_t & qfns, - bool use_reference, - const ggml_tensor * layer, - std::vector & input_scratch, - std::vector & quantized_scratch, - std::vector & output_scratch, - error_stats & total_error, - int max_thread = 0) { - +static void test_roundtrip_on_layer( + std::string & name, bool print_layer_stats, const ggml_type_traits_t & qfns, bool use_reference, + const ggml_tensor * layer, std::vector & input_scratch, std::vector & quantized_scratch, + std::vector & output_scratch, error_stats & total_error, int max_thread = 0 +) { assert(tensor_is_contiguous(layer)); error_stats layer_error {}; uint64_t nelements = ggml_nelements(layer); @@ -314,7 +299,7 @@ int main(int argc, char ** argv) { return 1; } - fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT); + print_build_info(); // load the model fprintf(stderr, "Loading model\n"); @@ -324,21 +309,22 @@ int main(int argc, char ** argv) { llama_context * ctx; { - auto lparams = llama_context_default_params(); + auto mparams = llama_model_default_params(); + mparams.use_mlock = false; - lparams.n_ctx = 256; - lparams.seed = 1; - lparams.f16_kv = false; - lparams.use_mlock = false; - - model = llama_load_model_from_file(params.model.c_str(), lparams); + model = llama_load_model_from_file(params.model.c_str(), mparams); if (model == NULL) { fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, params.model.c_str()); return 1; } - ctx = llama_new_context_with_model(model, lparams); + auto cparams = llama_context_default_params(); + cparams.n_ctx = 256; + cparams.seed = 1; + cparams.f16_kv = false; + + ctx = llama_new_context_with_model(model, cparams); if (ctx == NULL) { fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, params.model.c_str()); diff --git a/examples/quantize/CMakeLists.txt b/examples/quantize/CMakeLists.txt index 47d0be72ecc0f..4a8eed544cb04 100644 --- a/examples/quantize/CMakeLists.txt +++ b/examples/quantize/CMakeLists.txt @@ -2,6 +2,7 @@ set(TARGET quantize) add_executable(${TARGET} quantize.cpp) install(TARGETS ${TARGET} RUNTIME) target_link_libraries(${TARGET} PRIVATE llama ${CMAKE_THREAD_LIBS_INIT}) +target_include_directories(${TARGET} PRIVATE ../../common) target_compile_features(${TARGET} PRIVATE cxx_std_11) if(TARGET BUILD_INFO) add_dependencies(${TARGET} BUILD_INFO) diff --git a/examples/quantize/README.md b/examples/quantize/README.md index f349e913e3d10..c8b9a27a0b04e 100644 --- a/examples/quantize/README.md +++ b/examples/quantize/README.md @@ -1,3 +1,44 @@ # quantize TODO + +## Llama 2 7B + +Quantization | Bits per Weight (BPW) +-- | -- +Q2_K | 3.35 +Q3_K_S | 3.50 +Q3_K_M | 3.91 +Q3_K_L | 4.27 +Q4_K_S | 4.58 +Q4_K_M | 4.84 +Q5_K_S | 5.52 +Q5_K_M | 5.68 +Q6_K | 6.56 + +## Llama 2 13B +Quantization | Bits per Weight (BPW) +-- | -- +Q2_K | 3.34 +Q3_K_S | 3.48 +Q3_K_M | 3.89 +Q3_K_L | 4.26 +Q4_K_S | 4.56 +Q4_K_M | 4.83 +Q5_K_S | 5.51 +Q5_K_M | 5.67 +Q6_K | 6.56 + +# Llama 2 70B + +Quantization | Bits per Weight (BPW) +-- | -- +Q2_K | 3.40 +Q3_K_S | 3.47 +Q3_K_M | 3.85 +Q3_K_L | 4.19 +Q4_K_S | 4.53 +Q4_K_M | 4.80 +Q5_K_S | 5.50 +Q5_K_M | 5.65 +Q6_K | 6.56 diff --git a/examples/quantize/quantize.cpp b/examples/quantize/quantize.cpp index 1bf182482e5ae..c7dd0d894634c 100644 --- a/examples/quantize/quantize.cpp +++ b/examples/quantize/quantize.cpp @@ -1,5 +1,5 @@ #include "build-info.h" - +#include "common.h" #include "llama.h" #include @@ -40,7 +40,7 @@ static const std::vector QUANT_OPTIONS = { }; -bool try_parse_ftype(const std::string & ftype_str_in, llama_ftype & ftype, std::string & ftype_str_out) { +static bool try_parse_ftype(const std::string & ftype_str_in, llama_ftype & ftype, std::string & ftype_str_out) { std::string ftype_str; for (auto ch : ftype_str_in) { @@ -72,7 +72,8 @@ bool try_parse_ftype(const std::string & ftype_str_in, llama_ftype & ftype, std: // usage: // ./quantize [--allow-requantize] [--leave-output-tensor] models/llama/ggml-model.gguf [models/llama/ggml-model-quant.gguf] type [nthreads] // -void usage(const char * executable) { +[[noreturn]] +static void usage(const char * executable) { printf("usage: %s [--help] [--allow-requantize] [--leave-output-tensor] model-f32.gguf [model-quant.gguf] type [nthreads]\n\n", executable); printf(" --allow-requantize: Allows requantizing tensors that have already been quantized. Warning: This can severely reduce quality compared to quantizing from 16bit or 32bit\n"); printf(" --leave-output-tensor: Will leave output.weight un(re)quantized. Increases model size but may also increase quality, especially when requantizing\n"); @@ -161,7 +162,7 @@ int main(int argc, char ** argv) { } } - fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT); + print_build_info(); fprintf(stderr, "%s: quantizing '%s' to '%s' as %s", __func__, fname_inp.c_str(), fname_out.c_str(), ftype_str.c_str()); if (params.nthread > 0) { diff --git a/examples/save-load-state/save-load-state.cpp b/examples/save-load-state/save-load-state.cpp index 14e9501ca601b..acc6dbdfd07d0 100644 --- a/examples/save-load-state/save-load-state.cpp +++ b/examples/save-load-state/save-load-state.cpp @@ -1,6 +1,6 @@ +#include "build-info.h" #include "common.h" #include "llama.h" -#include "build-info.h" #include #include @@ -17,29 +17,23 @@ int main(int argc, char ** argv) { return 1; } - fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT); + print_build_info(); if (params.n_predict < 0) { params.n_predict = 16; } - auto lparams = llama_context_default_params(); - - lparams.n_ctx = params.n_ctx; - lparams.seed = params.seed; - lparams.f16_kv = params.memory_f16; - lparams.use_mmap = params.use_mmap; - lparams.use_mlock = params.use_mlock; - auto n_past = 0; auto last_n_tokens_data = std::vector(params.repeat_last_n, 0); // init - auto model = llama_load_model_from_file(params.model.c_str(), lparams); + llama_model * model; + llama_context * ctx; + + std::tie(model, ctx) = llama_init_from_gpt_params( params ); if (model == nullptr) { return 1; } - auto ctx = llama_new_context_with_model(model, lparams); if (ctx == nullptr) { llama_free_model(model); return 1; @@ -54,7 +48,7 @@ int main(int argc, char ** argv) { } // evaluate prompt - llama_eval(ctx, tokens.data(), n_prompt_tokens, n_past, params.n_threads); + llama_decode(ctx, llama_batch_get_one(tokens.data(), n_prompt_tokens, n_past, 0)); last_n_tokens_data.insert(last_n_tokens_data.end(), tokens.data(), tokens.data() + n_prompt_tokens); n_past += n_prompt_tokens; @@ -78,8 +72,8 @@ int main(int argc, char ** argv) { printf("\n%s", params.prompt.c_str()); for (auto i = 0; i < params.n_predict; i++) { - auto logits = llama_get_logits(ctx); - auto n_vocab = llama_n_vocab(ctx); + auto * logits = llama_get_logits(ctx); + auto n_vocab = llama_n_vocab(model); std::vector candidates; candidates.reserve(n_vocab); for (llama_token token_id = 0; token_id < n_vocab; token_id++) { @@ -91,7 +85,7 @@ int main(int argc, char ** argv) { last_n_tokens_data.push_back(next_token); printf("%s", next_token_str.c_str()); - if (llama_eval(ctx, &next_token, 1, n_past, params.n_threads)) { + if (llama_decode(ctx, llama_batch_get_one(&next_token, 1, n_past, 0))) { fprintf(stderr, "\n%s : failed to evaluate\n", __func__); llama_free(ctx); llama_free_model(model); @@ -106,7 +100,7 @@ int main(int argc, char ** argv) { llama_free(ctx); // make new context - auto ctx2 = llama_new_context_with_model(model, lparams); + auto * ctx2 = llama_new_context_with_model(model, llama_context_params_from_gpt_params(params)); // Load state (rng, logits, embedding and kv_cache) from file { @@ -138,8 +132,8 @@ int main(int argc, char ** argv) { // second run for (auto i = 0; i < params.n_predict; i++) { - auto logits = llama_get_logits(ctx2); - auto n_vocab = llama_n_vocab(ctx2); + auto * logits = llama_get_logits(ctx2); + auto n_vocab = llama_n_vocab(model); std::vector candidates; candidates.reserve(n_vocab); for (llama_token token_id = 0; token_id < n_vocab; token_id++) { @@ -151,7 +145,7 @@ int main(int argc, char ** argv) { last_n_tokens_data.push_back(next_token); printf("%s", next_token_str.c_str()); - if (llama_eval(ctx2, &next_token, 1, n_past, params.n_threads)) { + if (llama_decode(ctx, llama_batch_get_one(&next_token, 1, n_past, 0))) { fprintf(stderr, "\n%s : failed to evaluate\n", __func__); llama_free(ctx2); llama_free_model(model); diff --git a/examples/server/README.md b/examples/server/README.md index 5176080463839..d409e8408f192 100644 --- a/examples/server/README.md +++ b/examples/server/README.md @@ -4,14 +4,14 @@ This example demonstrates a simple HTTP API server and a simple web front end to Command line options: -- `--threads N`, `-t N`: Set the number of threads to use during computation. +- `--threads N`, `-t N`: Set the number of threads to use during generation. +- `-tb N, --threads-batch N`: Set the number of threads to use during batch and prompt processing. If not specified, the number of threads will be set to the number of threads used for generation. - `-m FNAME`, `--model FNAME`: Specify the path to the LLaMA model file (e.g., `models/7B/ggml-model.gguf`). - `-m ALIAS`, `--alias ALIAS`: Set an alias for the model. The alias will be returned in API responses. - `-c N`, `--ctx-size N`: Set the size of the prompt context. The default is 512, but LLaMA models were built with a context of 2048, which will provide better results for longer input/inference. The size may differ in other models, for example, baichuan models were build with a context of 4096. - `-ngl N`, `--n-gpu-layers N`: When compiled with appropriate support (currently CLBlast or cuBLAS), this option allows offloading some layers to the GPU for computation. Generally results in increased performance. - `-mg i, --main-gpu i`: When using multiple GPUs this option controls which GPU is used for small tensors for which the overhead of splitting the computation across all GPUs is not worthwhile. The GPU in question will use slightly more VRAM to store a scratch buffer for temporary results. By default GPU 0 is used. Requires cuBLAS. - `-ts SPLIT, --tensor-split SPLIT`: When using multiple GPUs this option controls how large tensors should be split across all GPUs. `SPLIT` is a comma-separated list of non-negative values that assigns the proportion of data that each GPU should get in order. For example, "3,2" will assign 60% of the data to GPU 0 and 40% to GPU 1. By default the data is split in proportion to VRAM but this may not be optimal for performance. Requires cuBLAS. -- `-lv, --low-vram`: Do not allocate a VRAM scratch buffer for holding temporary results. Reduces VRAM usage at the cost of performance, particularly prompt processing speed. Requires cuBLAS. - `-b N`, `--batch-size N`: Set the batch size for prompt processing. Default: `512`. - `--memory-f32`: Use 32-bit floats instead of 16-bit floats for memory key+value. Not recommended. - `--mlock`: Lock the model in memory, preventing it from being swapped out when memory-mapped. diff --git a/examples/server/server.cpp b/examples/server/server.cpp index 3f3c646503c79..fe9a4255e7680 100644 --- a/examples/server/server.cpp +++ b/examples/server/server.cpp @@ -200,6 +200,7 @@ struct llama_server_context llama_model *model = nullptr; llama_context *ctx = nullptr; gpt_params params; + int n_ctx; grammar_parser::parse_state parsed_grammar; llama_grammar *grammar = nullptr; @@ -239,7 +240,7 @@ struct llama_server_context num_prompt_tokens = 0; num_tokens_predicted = 0; generated_text = ""; - generated_text.reserve(params.n_ctx); + generated_text.reserve(n_ctx); generated_token_probs.clear(); truncated = false; stopped_eos = false; @@ -265,8 +266,8 @@ struct llama_server_context LOG_ERROR("unable to load model", {{"model", params_.model}}); return false; } - - last_n_tokens.resize(params.n_ctx); + n_ctx = llama_n_ctx(ctx); + last_n_tokens.resize(n_ctx); std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0); return true; } @@ -351,19 +352,19 @@ struct llama_server_context { params.n_keep = (int)num_prompt_tokens; } - params.n_keep = std::min(params.n_ctx - 4, params.n_keep); + params.n_keep = std::min(n_ctx - 4, params.n_keep); // if input prompt is too big, truncate like normal - if (num_prompt_tokens >= (size_t)params.n_ctx) + if (num_prompt_tokens >= (size_t)n_ctx) { - const int n_left = (params.n_ctx - params.n_keep) / 2; + const int n_left = (n_ctx - params.n_keep) / 2; std::vector new_tokens(prompt_tokens.begin(), prompt_tokens.begin() + params.n_keep); const int erased_blocks = (num_prompt_tokens - params.n_keep - n_left - 1) / n_left; new_tokens.insert(new_tokens.end(), prompt_tokens.begin() + params.n_keep + erased_blocks * n_left, prompt_tokens.end()); - std::copy(prompt_tokens.end() - params.n_ctx, prompt_tokens.end(), last_n_tokens.begin()); + std::copy(prompt_tokens.end() - n_ctx, prompt_tokens.end(), last_n_tokens.begin()); LOG_VERBOSE("input truncated", { - {"n_ctx", params.n_ctx}, + {"n_ctx", n_ctx}, {"n_keep", params.n_keep}, {"n_left", n_left}, {"new_tokens", tokens_to_str(ctx, new_tokens.cbegin(), new_tokens.cend())}, @@ -381,6 +382,10 @@ struct llama_server_context // compare the evaluated prompt with the new prompt n_past = common_part(embd, prompt_tokens); + + // since #3228 we now have to manually manage the KV cache + llama_kv_cache_seq_rm(ctx, 0, n_past, params.n_ctx); + embd = prompt_tokens; if (n_past == num_prompt_tokens) { @@ -409,21 +414,29 @@ struct llama_server_context completion_token_output result; result.tok = -1; - if (embd.size() >= (size_t)params.n_ctx) + if (embd.size() >= (size_t)n_ctx) { - // Reset context - const int n_left = (params.n_ctx - params.n_keep) / 2; + // Shift context + + const int n_left = n_past - params.n_keep - 1; + const int n_discard = n_left/2; + + llama_kv_cache_seq_rm (ctx, 0, params.n_keep + 1 , params.n_keep + n_discard + 1); + llama_kv_cache_seq_shift(ctx, 0, params.n_keep + 1 + n_discard, n_past, -n_discard); + + for (size_t i = params.n_keep + 1 + n_discard; i < embd.size(); i++) + { + embd[i - n_discard] = embd[i]; + } + embd.resize(embd.size() - n_discard); + + n_past -= n_discard; - std::vector new_tokens(embd.begin(), embd.begin() + params.n_keep); - new_tokens.insert(new_tokens.end(), embd.end() - n_left, embd.end()); - embd = new_tokens; - n_past = params.n_keep; truncated = true; LOG_VERBOSE("input truncated", { - {"n_ctx", params.n_ctx}, + {"n_ctx", n_ctx}, {"n_keep", params.n_keep}, {"n_left", n_left}, - {"new_tokens", tokens_to_str(ctx, new_tokens.cbegin(), new_tokens.cend())}, }); } @@ -434,12 +447,12 @@ struct llama_server_context { n_eval = params.n_batch; } - if (llama_eval(ctx, &embd[n_past], n_eval, n_past, params.n_threads)) + + if (llama_decode(ctx, llama_batch_get_one(&embd[n_past], n_eval, n_past, 0))) { LOG_ERROR("failed to eval", { {"n_eval", n_eval}, {"n_past", n_past}, - {"n_threads", params.n_threads}, {"embd", tokens_to_str(ctx, embd.cbegin() + n_past, embd.cend())}, }); has_next_token = false; @@ -457,11 +470,11 @@ struct llama_server_context // out of user input, sample next token const float temp = params.temp; - const int32_t top_k = params.top_k <= 0 ? llama_n_vocab(ctx) : params.top_k; + const int32_t top_k = params.top_k <= 0 ? llama_n_vocab(model) : params.top_k; const float top_p = params.top_p; const float tfs_z = params.tfs_z; const float typical_p = params.typical_p; - const int32_t repeat_last_n = params.repeat_last_n < 0 ? params.n_ctx : params.repeat_last_n; + const int32_t repeat_last_n = params.repeat_last_n < 0 ? n_ctx : params.repeat_last_n; const float repeat_penalty = params.repeat_penalty; const float alpha_presence = params.presence_penalty; const float alpha_frequency = params.frequency_penalty; @@ -473,7 +486,7 @@ struct llama_server_context { auto *logits = llama_get_logits(ctx); - auto n_vocab = llama_n_vocab(ctx); + auto n_vocab = llama_n_vocab(model); // Apply params.logit_bias map for (const auto &it : params.logit_bias) @@ -492,7 +505,7 @@ struct llama_server_context // Apply penalties float nl_logit = logits[llama_token_nl(ctx)]; - auto last_n_repeat = std::min(std::min((int)last_n_tokens.size(), repeat_last_n), params.n_ctx); + auto last_n_repeat = std::min(std::min((int)last_n_tokens.size(), repeat_last_n), n_ctx); llama_sample_repetition_penalty(ctx, &candidates_p, last_n_tokens.data() + last_n_tokens.size() - last_n_repeat, last_n_repeat, repeat_penalty); @@ -523,13 +536,13 @@ struct llama_server_context { static float mirostat_mu = 2.0f * mirostat_tau; const int mirostat_m = 100; - llama_sample_temperature(ctx, &candidates_p, temp); + llama_sample_temp(ctx, &candidates_p, temp); result.tok = llama_sample_token_mirostat(ctx, &candidates_p, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu); } else if (mirostat == 2) { static float mirostat_mu = 2.0f * mirostat_tau; - llama_sample_temperature(ctx, &candidates_p, temp); + llama_sample_temp(ctx, &candidates_p, temp); result.tok = llama_sample_token_mirostat_v2(ctx, &candidates_p, mirostat_tau, mirostat_eta, &mirostat_mu); } else @@ -540,7 +553,7 @@ struct llama_server_context llama_sample_tail_free(ctx, &candidates_p, tfs_z, min_keep); llama_sample_typical(ctx, &candidates_p, typical_p, min_keep); llama_sample_top_p(ctx, &candidates_p, top_p, min_keep); - llama_sample_temperature(ctx, &candidates_p, temp); + llama_sample_temp(ctx, &candidates_p, temp); result.tok = llama_sample_token(ctx, &candidates_p); } } @@ -677,7 +690,7 @@ struct llama_server_context std::vector getEmbedding() { - static const int n_embd = llama_n_embd(ctx); + static const int n_embd = llama_n_embd(model); if (!params.embedding) { LOG_WARNING("embedding disabled", { @@ -701,8 +714,8 @@ static void server_print_usage(const char *argv0, const gpt_params ¶ms, printf(" -v, --verbose verbose output (default: %s)\n", server_verbose ? "enabled" : "disabled"); printf(" -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads); printf(" -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx); - printf(" --rope-freq-base N RoPE base frequency (default: %.1f)\n", params.rope_freq_base); - printf(" --rope-freq-scale N RoPE frequency scaling factor (default: %g)\n", params.rope_freq_scale); + printf(" --rope-freq-base N RoPE base frequency (default: loaded from model)\n"); + printf(" --rope-freq-scale N RoPE frequency scaling factor (default: loaded from model)\n"); printf(" -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch); printf(" --memory-f32 use f32 instead of f16 for memory key+value (default: disabled)\n"); printf(" not recommended: doubles context memory required and no measurable increase in quality\n"); @@ -721,7 +734,6 @@ static void server_print_usage(const char *argv0, const gpt_params ¶ms, printf(" -ts SPLIT --tensor-split SPLIT\n"); printf(" how to split tensors across multiple GPUs, comma-separated list of proportions, e.g. 3,1\n"); printf(" -mg i, --main-gpu i the GPU to use for scratch and small tensors\n"); - printf(" -lv, --low-vram don't allocate VRAM scratch buffer\n"); printf(" -nommq, --no-mul-mat-q\n"); printf(" use cuBLAS instead of custom mul_mat_q CUDA kernels.\n"); printf(" Not recommended since this is both slower and uses more VRAM.\n"); @@ -905,14 +917,6 @@ static void server_params_parse(int argc, char **argv, server_params &sparams, } #else LOG_WARNING("llama.cpp was compiled without cuBLAS. It is not possible to set a tensor split.\n", {}); -#endif // GGML_USE_CUBLAS - } - else if (arg == "--low-vram" || arg == "-lv") - { -#ifdef GGML_USE_CUBLAS - params.low_vram = true; -#else - LOG_WARNING("warning: llama.cpp was compiled without cuBLAS. It is not possible to set lower vram usage.\n", {}); #endif // GGML_USE_CUBLAS } else if (arg == "--no-mul-mat-q" || arg == "-nommq") @@ -943,7 +947,23 @@ static void server_params_parse(int argc, char **argv, server_params &sparams, invalid_param = true; break; } - params.lora_adapter = argv[i]; + params.lora_adapter.push_back({argv[i], 1.0f}); + params.use_mmap = false; + } + else if (arg == "--lora-scaled") + { + if (++i >= argc) + { + invalid_param = true; + break; + } + const char * lora_adapter = argv[i]; + if (++i >= argc) + { + invalid_param = true; + break; + } + params.lora_adapter.push_back({lora_adapter, std::stof(argv[i])}); params.use_mmap = false; } else if (arg == "--lora-base") @@ -1002,7 +1022,7 @@ static json format_generation_settings(llama_server_context &llama) eos_bias->second < 0.0f && std::isinf(eos_bias->second); return json{ - {"n_ctx", llama.params.n_ctx}, + {"n_ctx", llama.n_ctx}, {"model", llama.params.model_alias}, {"seed", llama.params.seed}, {"temp", llama.params.temp}, @@ -1083,8 +1103,9 @@ static json format_final_response(llama_server_context &llama, const std::string return res; } -static json format_partial_response(llama_server_context &llama, const std::string &content, const std::vector &probs) -{ +static json format_partial_response( + llama_server_context &llama, const std::string &content, const std::vector &probs +) { json res = json{ {"content", content}, {"stop", false}, @@ -1161,7 +1182,7 @@ static void parse_options_completion(const json &body, llama_server_context &lla const auto &logit_bias = body.find("logit_bias"); if (logit_bias != body.end() && logit_bias->is_array()) { - const int n_vocab = llama_n_vocab(llama.ctx); + const int n_vocab = llama_n_vocab(llama.model); for (const auto &el : *logit_bias) { if (el.is_array() && el.size() == 2 && el[0].is_number_integer()) @@ -1215,7 +1236,7 @@ static void log_server_request(const Request &req, const Response &res) }); } -bool is_at_eob(llama_server_context & server_context, const llama_token * tokens, const size_t n_tokens) { +static bool is_at_eob(llama_server_context &server_context, const llama_token *tokens, const size_t n_tokens) { return n_tokens && tokens[n_tokens-1] == llama_token_eos(server_context.ctx); } @@ -1225,7 +1246,7 @@ bool is_at_eob(llama_server_context & server_context, const llama_token * tokens // * When all beams converge to a common prefix, they are made available in beams_state.beams[0]. // This is also called when the stop condition is met. // Collect tokens into std::vector response which is pointed to by callback_data. -void beam_search_callback(void * callback_data, llama_beams_state beams_state) { +static void beam_search_callback(void *callback_data, llama_beams_state beams_state) { auto & llama = *static_cast(callback_data); // Mark beams as EOS as needed. for (size_t i = 0 ; i < beams_state.n_beams ; ++i) { @@ -1258,7 +1279,8 @@ struct token_translator { std::string operator()(const completion_token_output & cto) const { return (*this)(cto.tok); } }; -void append_to_generated_text_from_generated_token_probs(llama_server_context & llama) { +static void append_to_generated_text_from_generated_token_probs(llama_server_context &llama) +{ auto & gtps = llama.generated_token_probs; auto translator = token_translator{llama.ctx}; auto add_strlen = [=](size_t sum, const completion_token_output & cto) { return sum + translator(cto).size(); }; @@ -1293,6 +1315,7 @@ int main(int argc, char **argv) {"commit", BUILD_COMMIT}}); LOG_INFO("system info", { {"n_threads", params.n_threads}, + {"n_threads_batch", params.n_threads_batch}, {"total_threads", std::thread::hardware_concurrency()}, {"system_info", llama_print_system_info()}, }); @@ -1356,7 +1379,7 @@ int main(int argc, char **argv) if (llama.params.n_beams) { // Fill llama.generated_token_probs vector with final beam. llama_beam_search(llama.ctx, beam_search_callback, &llama, llama.params.n_beams, - llama.n_past, llama.n_remain, llama.params.n_threads); + llama.n_past, llama.n_remain); // Translate llama.generated_token_probs to llama.generated_text. append_to_generated_text_from_generated_token_probs(llama); } else { diff --git a/examples/simple/CMakeLists.txt b/examples/simple/CMakeLists.txt index 0ac9cb03a8eca..7da5ff6f3ac04 100644 --- a/examples/simple/CMakeLists.txt +++ b/examples/simple/CMakeLists.txt @@ -3,6 +3,3 @@ add_executable(${TARGET} simple.cpp) install(TARGETS ${TARGET} RUNTIME) target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT}) target_compile_features(${TARGET} PRIVATE cxx_std_11) -if(TARGET BUILD_INFO) - add_dependencies(${TARGET} BUILD_INFO) -endif() diff --git a/examples/simple/README.md b/examples/simple/README.md new file mode 100644 index 0000000000000..5d24b1046935c --- /dev/null +++ b/examples/simple/README.md @@ -0,0 +1,21 @@ +# llama.cpp/example/simple + +The purpose of this example is to demonstrate a minimal usage of llama.cpp for generating text with a given prompt. + +```bash +./simple ./models/llama-7b-v2/ggml-model-f16.gguf "Hello my name is" + +... + +main: n_len = 32, n_ctx = 2048, n_parallel = 1, n_kv_req = 32 + + Hello my name is Shawn and I'm a 20 year old male from the United States. I'm a 20 year old + +main: decoded 27 tokens in 2.31 s, speed: 11.68 t/s + +llama_print_timings: load time = 579.15 ms +llama_print_timings: sample time = 0.72 ms / 28 runs ( 0.03 ms per token, 38888.89 tokens per second) +llama_print_timings: prompt eval time = 655.63 ms / 10 tokens ( 65.56 ms per token, 15.25 tokens per second) +llama_print_timings: eval time = 2180.97 ms / 27 runs ( 80.78 ms per token, 12.38 tokens per second) +llama_print_timings: total time = 2891.13 ms +``` diff --git a/examples/simple/simple.cpp b/examples/simple/simple.cpp index ba5de0cc61e54..24fb16b78d058 100644 --- a/examples/simple/simple.cpp +++ b/examples/simple/simple.cpp @@ -1,5 +1,3 @@ -#include "build-info.h" - #include "common.h" #include "llama.h" @@ -28,35 +26,62 @@ int main(int argc, char ** argv) { params.prompt = "Hello my name is"; } + // total length of the sequence including the prompt + const int n_len = 32; + // init LLM llama_backend_init(params.numa); - llama_context_params ctx_params = llama_context_default_params(); + // initialize the model + + llama_model_params model_params = llama_model_default_params(); + + // model_params.n_gpu_layers = 99; // offload all layers to the GPU - llama_model * model = llama_load_model_from_file(params.model.c_str(), ctx_params); + llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params); if (model == NULL) { fprintf(stderr , "%s: error: unable to load model\n" , __func__); return 1; } + // initialize the context + + llama_context_params ctx_params = llama_context_default_params(); + + ctx_params.seed = 1234; + ctx_params.n_ctx = 2048; + ctx_params.n_threads = params.n_threads; + ctx_params.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch; + llama_context * ctx = llama_new_context_with_model(model, ctx_params); + if (ctx == NULL) { + fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__); + return 1; + } + // tokenize the prompt std::vector tokens_list; tokens_list = ::llama_tokenize(ctx, params.prompt, true); - const int max_context_size = llama_n_ctx(ctx); - const int max_tokens_list_size = max_context_size - 4; + const int n_ctx = llama_n_ctx(ctx); + const int n_kv_req = tokens_list.size() + (n_len - tokens_list.size()); + + LOG_TEE("\n%s: n_len = %d, n_ctx = %d, n_kv_req = %d\n", __func__, n_len, n_ctx, n_kv_req); - if ((int) tokens_list.size() > max_tokens_list_size) { - fprintf(stderr, "%s: error: prompt too long (%d tokens, max %d)\n", __func__, (int) tokens_list.size(), max_tokens_list_size); + // make sure the KV cache is big enough to hold all the prompt and generated tokens + if (n_kv_req > n_ctx) { + LOG_TEE("%s: error: n_kv_req > n_ctx, the required KV cache size is not big enough\n", __func__); + LOG_TEE("%s: either reduce n_parallel or increase n_ctx\n", __func__); return 1; } - fprintf(stderr, "\n\n"); + // print the prompt token-by-token + + fprintf(stderr, "\n"); for (auto id : tokens_list) { fprintf(stderr, "%s", llama_token_to_piece(ctx, id).c_str()); @@ -64,63 +89,104 @@ int main(int argc, char ** argv) { fflush(stderr); - // main loop + // create a llama_batch with size 512 + // we use this object to submit token data for decoding - // The LLM keeps a contextual cache memory of previous token evaluation. - // Usually, once this cache is full, it is required to recompute a compressed context based on previous - // tokens (see "infinite text generation via context swapping" in the main example), but in this minimalist - // example, we will just stop the loop once this cache is full or once an end of stream is detected. + llama_batch batch = llama_batch_init(512, 0); - const int n_gen = std::min(32, max_context_size); + // evaluate the initial prompt + batch.n_tokens = tokens_list.size(); - while (llama_get_kv_cache_token_count(ctx) < n_gen) { - // evaluate the transformer + for (int32_t i = 0; i < batch.n_tokens; i++) { + batch.token[i] = tokens_list[i]; + batch.pos[i] = i; + batch.seq_id[i] = 0; + batch.logits[i] = false; + } - if (llama_eval(ctx, tokens_list.data(), int(tokens_list.size()), llama_get_kv_cache_token_count(ctx), params.n_threads)) { - fprintf(stderr, "%s : failed to eval\n", __func__); - return 1; - } + // llama_decode will output logits only for the last token of the prompt + batch.logits[batch.n_tokens - 1] = true; + + if (llama_decode(ctx, batch) != 0) { + LOG_TEE("%s: llama_decode() failed\n", __func__); + return 1; + } + + // main loop + + int n_cur = batch.n_tokens; + int n_decode = 0; - tokens_list.clear(); + const auto t_main_start = ggml_time_us(); + while (n_cur <= n_len) { // sample the next token + { + auto n_vocab = llama_n_vocab(model); + auto * logits = llama_get_logits_ith(ctx, batch.n_tokens - 1); - llama_token new_token_id = 0; + std::vector candidates; + candidates.reserve(n_vocab); - auto logits = llama_get_logits(ctx); - auto n_vocab = llama_n_vocab(ctx); + for (llama_token token_id = 0; token_id < n_vocab; token_id++) { + candidates.emplace_back(llama_token_data{ token_id, logits[token_id], 0.0f }); + } - std::vector candidates; - candidates.reserve(n_vocab); + llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false }; - for (llama_token token_id = 0; token_id < n_vocab; token_id++) { - candidates.emplace_back(llama_token_data{ token_id, logits[token_id], 0.0f }); - } + // sample the most likely token + const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p); + + // is it an end of stream? + if (new_token_id == llama_token_eos(ctx) || n_cur == n_len) { + LOG_TEE("\n"); + + break; + } + + LOG_TEE("%s", llama_token_to_piece(ctx, new_token_id).c_str()); + fflush(stdout); + + // prepare the next batch + batch.n_tokens = 0; - llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false }; + // push this new token for next evaluation + batch.token [batch.n_tokens] = new_token_id; + batch.pos [batch.n_tokens] = n_cur; + batch.seq_id[batch.n_tokens] = 0; + batch.logits[batch.n_tokens] = true; - new_token_id = llama_sample_token_greedy(ctx , &candidates_p); + batch.n_tokens += 1; - // is it an end of stream ? - if (new_token_id == llama_token_eos(ctx)) { - fprintf(stderr, " [end of text]\n"); - break; + n_decode += 1; } - // print the new token : - printf("%s", llama_token_to_piece(ctx, new_token_id).c_str()); - fflush(stdout); + n_cur += 1; - // push this new token for next evaluation - tokens_list.push_back(new_token_id); + // evaluate the current batch with the transformer model + if (llama_decode(ctx, batch)) { + fprintf(stderr, "%s : failed to eval, return code %d\n", __func__, 1); + return 1; + } } + LOG_TEE("\n"); + + const auto t_main_end = ggml_time_us(); + + LOG_TEE("%s: decoded %d tokens in %.2f s, speed: %.2f t/s\n", + __func__, n_decode, (t_main_end - t_main_start) / 1000000.0f, n_decode / ((t_main_end - t_main_start) / 1000000.0f)); + + llama_print_timings(ctx); + + fprintf(stderr, "\n"); + + llama_batch_free(batch); + llama_free(ctx); llama_free_model(model); llama_backend_free(); - fprintf(stderr, "\n\n"); - return 0; } diff --git a/examples/speculative/speculative.cpp b/examples/speculative/speculative.cpp index 822d7b529f01d..c5e5b234f0f5c 100644 --- a/examples/speculative/speculative.cpp +++ b/examples/speculative/speculative.cpp @@ -37,11 +37,12 @@ int main(int argc, char ** argv) { llama_context * ctx_dft = NULL; // load the target model - params.perplexity = true; // HACK: enable logits_all = true + params.logits_all = true; std::tie(model_tgt, ctx_tgt) = llama_init_from_gpt_params(params); // load the draft model params.model = params.model_draft; + params.n_gpu_layers = params.n_gpu_layers_draft; std::tie(model_dft, ctx_dft) = llama_init_from_gpt_params(params); // tokenize the prompt @@ -69,19 +70,19 @@ int main(int argc, char ** argv) { const auto t_enc_start = ggml_time_us(); // eval the prompt with both models - llama_eval(ctx_tgt, inp.data(), int(inp.size() - 1), 0, params.n_threads); - llama_eval(ctx_tgt, &inp.back(), 1, inp.size() - 1, params.n_threads); - llama_eval(ctx_dft, inp.data(), int(inp.size()), 0, params.n_threads); + llama_decode(ctx_tgt, llama_batch_get_one( inp.data(), n_input - 1, 0, 0)); + llama_decode(ctx_tgt, llama_batch_get_one(&inp.back(), 1, n_input - 1, 0)); + llama_decode(ctx_dft, llama_batch_get_one( inp.data(), n_input, 0, 0)); const auto t_enc_end = ggml_time_us(); // the 2 models should have the same vocab const int n_ctx = llama_n_ctx(ctx_tgt); - const int n_vocab = llama_n_vocab(ctx_tgt); - //GGML_ASSERT(n_vocab == llama_n_vocab(ctx_dft)); + const int n_vocab = llama_n_vocab(model_tgt); + //GGML_ASSERT(n_vocab == llama_n_vocab(model_dft)); // how many tokens to draft each time - const int n_draft = params.n_draft; + int n_draft = params.n_draft; int n_predict = 0; int n_drafted = 0; @@ -130,9 +131,10 @@ int main(int argc, char ** argv) { LOG("drafted: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_dft, drafted)); int i_dft = 0; + while (true) { // sample from the target model - const llama_token id = llama_sample_token(ctx_tgt, NULL, grammar_tgt, params, last_tokens, candidates, i_dft); + llama_token id = llama_sample_token(ctx_tgt, NULL, grammar_tgt, params, last_tokens, candidates, i_dft); // remember which tokens were sampled - used for repetition penalties during sampling last_tokens.erase(last_tokens.begin()); @@ -170,9 +172,31 @@ int main(int argc, char ** argv) { LOG("out of drafted tokens\n"); } - llama_eval(ctx_dft, &id, 1, n_past_dft, params.n_threads); + llama_kv_cache_seq_rm(ctx_dft, 0, n_past_dft, n_ctx); + llama_decode(ctx_dft, llama_batch_get_one(&id, 1, n_past_dft, 0)); ++n_past_dft; + // heuristic for n_draft + { + const int n_draft_cur = (int) drafted.size(); + const bool all_accepted = i_dft == n_draft_cur; + + LOG("n_draft = %d\n", n_draft); + LOG("n_draft_cur = %d\n", n_draft_cur); + LOG("i_dft = %d\n", i_dft); + LOG("all_accepted = %d\n", all_accepted); + + if (all_accepted && n_draft == n_draft_cur) { + LOG(" - max drafted tokens accepted - n_draft += 8\n"); + n_draft = std::min(30, n_draft + 8); + } else if (all_accepted) { + LOG(" - partially drafted tokens accepted - no change\n"); + } else { + LOG(" - drafted token rejected - n_draft -= 1\n"); + n_draft = std::max(2, n_draft - 1); + } + } + drafted.clear(); drafted.push_back(id); @@ -233,7 +257,8 @@ int main(int argc, char ** argv) { } // evaluate the drafted token on the draft model - llama_eval(ctx_dft, &drafted.back(), 1, n_past_cur, params.n_threads); + llama_kv_cache_seq_rm(ctx_dft, 0, n_past_cur, n_ctx); + llama_decode(ctx_dft, llama_batch_get_one(&drafted.back(), 1, n_past_cur, 0)); ++n_past_cur; if (grammar_dft != NULL) { @@ -242,7 +267,8 @@ int main(int argc, char ** argv) { } // evaluate the target model on the drafted tokens - llama_eval(ctx_tgt, drafted.data(), drafted.size(), n_past_tgt, params.n_threads); + llama_kv_cache_seq_rm(ctx_tgt, 0, n_past_tgt, n_ctx); + llama_decode(ctx_tgt, llama_batch_get_one(drafted.data(), drafted.size(), n_past_tgt, 0)); ++n_past_tgt; // the first token is always proposed by the traget model before the speculation loop diff --git a/examples/train-text-from-scratch/README.md b/examples/train-text-from-scratch/README.md index f4ffcd9876c0c..1b3454069e9a3 100644 --- a/examples/train-text-from-scratch/README.md +++ b/examples/train-text-from-scratch/README.md @@ -10,9 +10,9 @@ wget https://raw.githubusercontent.com/brunoklein99/deep-learning-notes/master/s ./bin/train-text-from-scratch \ --vocab-model ../models/ggml-vocab-llama.gguf \ --ctx 64 --embd 256 --head 8 --layer 16 \ - --checkpoint-in chk-shakespeare-256x16.gguf \ - --checkpoint-out chk-shakespeare-256x16.gguf \ - --model-out ggml-shakespeare-256x16-f32.gguf \ + --checkpoint-in chk-shakespeare-256x16-LATEST.gguf \ + --checkpoint-out chk-shakespeare-256x16-ITERATION.gguf \ + --model-out ggml-shakespeare-256x16-f32-ITERATION.gguf \ --train-data "shakespeare.txt" \ -t 6 -b 16 --seed 1 --adam-iter 256 \ --no-checkpointing @@ -20,3 +20,8 @@ wget https://raw.githubusercontent.com/brunoklein99/deep-learning-notes/master/s # predict ./bin/main -m ggml-shakespeare-256x16-f32.gguf ``` + +Output files will be saved every N iterations (config with `--save-every N`). +The pattern "ITERATION" in the output filenames will be replaced with the iteration number and "LATEST" for the latest output. + +To train GGUF models just pass them to `--checkpoint-in FN`. diff --git a/examples/train-text-from-scratch/convert-train-checkpoint-to-gguf.py b/examples/train-text-from-scratch/convert-train-checkpoint-to-gguf.py index a527d615304b8..351e7bc2d2a95 100644 --- a/examples/train-text-from-scratch/convert-train-checkpoint-to-gguf.py +++ b/examples/train-text-from-scratch/convert-train-checkpoint-to-gguf.py @@ -47,10 +47,13 @@ LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_S = "optimizer.lbfgs.memory_s" LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_Y = "optimizer.lbfgs.memory_y" -LLM_KV_TRAINING_FILE_VERSION = "training.file_version" -LLM_KV_TRAINING_ITERATION_COUNT = "training.iteration_count" -LLM_KV_TRAINING_SAMPLE_COUNT = "training.sample_count" -LLM_KV_TRAINING_TOKEN_COUNT = "training.token_count" +LLM_KV_TRAINING_TYPE_TRAIN_MODEL = "train_model" +LLM_KV_TRAINING_TYPE_FINETUNE_LORA = "finetune_lora" +LLM_KV_TRAINING_TYPE = "training.type" +LLM_KV_TRAINING_FILE_VERSION = "training.file_version" +LLM_KV_TRAINING_ITERATION_COUNT = "training.iteration_count" +LLM_KV_TRAINING_SAMPLE_COUNT = "training.sample_count" +LLM_KV_TRAINING_TOKEN_COUNT = "training.token_count" class Tensor: def __init__(self, dtype='f', ne=None): @@ -460,6 +463,7 @@ def save_gguf(self, gguf_writer): gguf_writer.add_file_type(gguf.GGMLQuantizationType.F32) gguf_writer.add_layer_norm_rms_eps(1e-5) gguf_writer.add_uint32(LLM_KV_TRAINING_FILE_VERSION, 0) + gguf_writer.add_string(LLM_KV_TRAINING_TYPE, LLM_KV_TRAINING_TYPE_TRAIN_MODEL) gguf_writer.add_uint32(LLM_KV_TRAINING_ITERATION_COUNT, self.train_its) gguf_writer.add_uint32(LLM_KV_TRAINING_SAMPLE_COUNT, self.train_samples) gguf_writer.add_uint32(LLM_KV_TRAINING_TOKEN_COUNT, self.train_tokens) diff --git a/examples/train-text-from-scratch/train-text-from-scratch.cpp b/examples/train-text-from-scratch/train-text-from-scratch.cpp index 947aa7ed3bd3e..be693b3ac7a43 100644 --- a/examples/train-text-from-scratch/train-text-from-scratch.cpp +++ b/examples/train-text-from-scratch/train-text-from-scratch.cpp @@ -1,6 +1,7 @@ #include "ggml.h" #include "ggml-alloc.h" #include "common.h" +#include "train.h" #include "llama.h" #include #include @@ -18,142 +19,7 @@ #pragma warning(disable: 4244 4267) // possible loss of data #endif -struct random_normal_distribution { - std::mt19937 gen; - std::normal_distribution rd; - float min; - float max; -}; - -struct random_uniform_distribution { - std::mt19937 gen; - std::uniform_real_distribution rd; -}; - -void init_random_normal_distribution(struct random_normal_distribution * rnd, int seed, float mean, float std, float min, float max) { - rnd->gen = std::mt19937(seed); - rnd->rd = std::normal_distribution{mean, std}; - rnd->min = min; - rnd->max = max; -} - -void init_random_uniform_distribution(struct random_uniform_distribution * rnd, int seed, float min, float max) { - rnd->gen = std::mt19937(seed); - rnd->rd = std::uniform_real_distribution{min, max}; -} - -int clamp(const int v, const int min, const int max) { - return ((v < min) ? (min) : (v > max) ? (max) : v); -} - -float fclamp(const float v, const float min, const float max) { - return ((v < min) ? (min) : (v > max) ? (max) : v); -} - -float frand() { - return (float)rand()/(float)RAND_MAX; -} - -float frand_normal(struct random_normal_distribution * rnd) { - return fclamp(rnd->rd(rnd->gen), rnd->min, rnd->max); -} - -float frand_uniform(struct random_uniform_distribution * rnd) { - return rnd->rd(rnd->gen); -} - -struct ggml_tensor * randomize_tensor_normal(struct ggml_tensor * tensor, struct random_normal_distribution * rnd) { - float scale = 1.0f; // xavier - switch (tensor->n_dims) { - case 1: - scale /= sqrtf(tensor->ne[0]); - for (int i0 = 0; i0 < tensor->ne[0]; i0++) { - float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0]); - *dst = scale * frand_normal(rnd); - } - break; - case 2: - scale /= sqrtf(tensor->ne[0]+tensor->ne[1]); - for (int i1 = 0; i1 < tensor->ne[1]; i1++) { - for (int i0 = 0; i0 < tensor->ne[0]; i0++) { - float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]); - *dst = scale * frand_normal(rnd); - } - } - break; - case 3: - scale /= sqrtf(tensor->ne[0]+tensor->ne[1]); - for (int i2 = 0; i2 < tensor->ne[2]; i2++) { - for (int i1 = 0; i1 < tensor->ne[1]; i1++) { - for (int i0 = 0; i0 < tensor->ne[0]; i0++) { - float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2]); - *dst = scale * frand_normal(rnd); - } - } - } - break; - case 4: - scale /= sqrtf(tensor->ne[0]+tensor->ne[1]); - for (int i3 = 0; i3 < tensor->ne[3]; i3++) { - for (int i2 = 0; i2 < tensor->ne[2]; i2++) { - for (int i1 = 0; i1 < tensor->ne[1]; i1++) { - for (int i0 = 0; i0 < tensor->ne[0]; i0++) { - float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3]); - *dst = scale * frand_normal(rnd); - } - } - } - } - break; - default: - assert(false); - }; - return tensor; -} - -struct ggml_tensor * randomize_tensor_uniform(struct ggml_tensor * tensor, struct random_uniform_distribution * rnd) { - switch (tensor->n_dims) { - case 1: - for (int i0 = 0; i0 < tensor->ne[0]; i0++) { - float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0]); - *dst = frand_uniform(rnd); - } - break; - case 2: - for (int i1 = 0; i1 < tensor->ne[1]; i1++) { - for (int i0 = 0; i0 < tensor->ne[0]; i0++) { - float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]); - *dst = frand_uniform(rnd); - } - } - break; - case 3: - for (int i2 = 0; i2 < tensor->ne[2]; i2++) { - for (int i1 = 0; i1 < tensor->ne[1]; i1++) { - for (int i0 = 0; i0 < tensor->ne[0]; i0++) { - float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2]); - *dst = frand_uniform(rnd); - } - } - } - break; - case 4: - for (int i3 = 0; i3 < tensor->ne[3]; i3++) { - for (int i2 = 0; i2 < tensor->ne[2]; i2++) { - for (int i1 = 0; i1 < tensor->ne[1]; i1++) { - for (int i0 = 0; i0 < tensor->ne[0]; i0++) { - float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3]); - *dst = frand_uniform(rnd); - } - } - } - } - break; - default: - assert(false); - }; - return tensor; -} +static const size_t tensor_alignment = 32; struct my_llama_hparams { uint32_t n_vocab = 32000; @@ -164,8 +30,8 @@ struct my_llama_hparams { uint32_t n_rot = 64; uint32_t n_ff = 11008; - // float f_norm_eps = 1e-5; // falcon - float f_norm_rms_eps = 1e-5; // llama + // float f_norm_eps = 1e-5f; // falcon + float f_norm_rms_eps = 1e-5f; // llama float rope_freq_base = 10000.0f; float rope_freq_scale = 1.0f; @@ -192,6 +58,7 @@ struct my_llama_layer { struct my_llama_model { struct ggml_context * ctx = NULL; + std::vector data; my_llama_hparams hparams; @@ -201,92 +68,50 @@ struct my_llama_model { struct ggml_tensor * output; std::vector layers; - - uint32_t train_its = 0; - uint32_t train_samples = 0; - uint32_t train_tokens = 0; }; -// gguf constants -const char * LLM_KV_OPTIMIZER_TYPE = "optimizer.type"; -const char * LLM_KV_OPTIMIZER_TYPE_ADAM = "adam"; -const char * LLM_KV_OPTIMIZER_TYPE_LBFGS = "lbfgs"; -const char * LLM_KV_OPTIMIZER_FILE_VERSION = "optimizer.file_version"; -const char * LLM_KV_OPTIMIZER_CONVERGENCE_PAST_COUNT = "optimizer.convergence_past_count"; -const char * LLM_KV_OPTIMIZER_PARAMETER_COUNT = "optimizer.parameter_count"; -const char * LLM_KV_OPTIMIZER_ITERATION_COUNT = "optimizer.iteration_count"; -const char * LLM_KV_OPTIMIZER_JUST_INITIALIZED = "optimizer.just_initialized"; -const char * LLM_KV_OPTIMIZER_ADAM_BEST_LOSS = "optimizer.adam.best_loss"; -const char * LLM_KV_OPTIMIZER_ADAM_PREVIOUS_LOSS = "optimizer.adam.previous_loss"; -const char * LLM_KV_OPTIMIZER_ADAM_NO_IMPROVEMENT_COUNT = "optimizer.adam.no_improvement_count"; -const char * LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT = "optimizer.lbfgs.approx_hessian_count"; -const char * LLM_KV_OPTIMIZER_LBFGS_BEST_LOSS = "optimizer.lbfgs.best_loss"; -const char * LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_STEP = "optimizer.lbfgs.line_search_step"; -const char * LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_J = "optimizer.lbfgs.line_search_j"; -const char * LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_K = "optimizer.lbfgs.line_search_k"; -const char * LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_END = "optimizer.lbfgs.line_search_end"; -const char * LLM_KV_OPTIMIZER_LBFGS_NO_IMPROVEMENT_COUNT = "optimizer.lbfgs.no_improvement_count"; - -const char * LLM_TENSOR_OPTIMIZER_ADAM_FIRST_MOMENTS = "optimizer.adam.first_moments"; -const char * LLM_TENSOR_OPTIMIZER_ADAM_SECOND_MOMENTS = "optimizer.adam.second_moments"; -const char * LLM_TENSOR_OPTIMIZER_ADAM_PAST_LOSS_VALUES = "optimizer.adam.past_loss_values"; - -const char * LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_PARAMETERS = "optimizer.lbfgs.current_parameters"; -const char * LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_PARAMETERS = "optimizer.lbfgs.previous_parameters"; -const char * LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_GRADIENTS = "optimizer.lbfgs.current_gradients"; -const char * LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_GRADIENTS = "optimizer.lbfgs.previous_gradients"; -const char * LLM_TENSOR_OPTIMIZER_LBFGS_SEARCH_DIRECTION = "optimizer.lbfgs.search_direction"; -const char * LLM_TENSOR_OPTIMIZER_LBFGS_PAST_LOSS_VALUES = "optimizer.lbfgs.past_loss_values"; -const char * LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_ALPHA = "optimizer.lbfgs.memory_alpha"; -const char * LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_YS = "optimizer.lbfgs.memory_ys"; -const char * LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_S = "optimizer.lbfgs.memory_s"; -const char * LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_Y = "optimizer.lbfgs.memory_y"; - -const char * LLM_KV_TRAINING_FILE_VERSION = "training.file_version"; -const char * LLM_KV_TRAINING_ITERATION_COUNT = "training.iteration_count"; -const char * LLM_KV_TRAINING_SAMPLE_COUNT = "training.sample_count"; -const char * LLM_KV_TRAINING_TOKEN_COUNT = "training.token_count"; - // gguf constants (sync with gguf.py) - -const char * LLM_KV_GENERAL_ARCHITECTURE = "general.architecture"; -const char * LLM_KV_GENERAL_FILE_TYPE = "general.file_type"; - -const char * LLM_KV_CONTEXT_LENGTH = "%s.context_length"; -const char * LLM_KV_EMBEDDING_LENGTH = "%s.embedding_length"; -const char * LLM_KV_BLOCK_COUNT = "%s.block_count"; -const char * LLM_KV_FEED_FORWARD_LENGTH = "%s.feed_forward_length"; -const char * LLM_KV_ATTENTION_HEAD_COUNT = "%s.attention.head_count"; -const char * LLM_KV_ATTENTION_LAYERNORM_RMS_EPS = "%s.attention.layer_norm_rms_epsilon"; -const char * LLM_KV_ROPE_DIMENSION_COUNT = "%s.rope.dimension_count"; -const char * LLM_KV_ROPE_FREQ_BASE = "%s.rope.freq_base"; // TODO load in llama.cpp -const char * LLM_KV_ROPE_SCALE_LINEAR = "%s.rope.scale_linear"; - -const char * LLM_KV_TOKENIZER_MODEL = "tokenizer.ggml.model"; -const char * LLM_KV_TOKENIZER_LIST = "tokenizer.ggml.tokens"; -const char * LLM_KV_TOKENIZER_TOKEN_TYPE = "tokenizer.ggml.token_type"; -const char * LLM_KV_TOKENIZER_SCORES = "tokenizer.ggml.scores"; -const char * LLM_KV_TOKENIZER_MERGES = "tokenizer.ggml.merges"; -const char * LLM_KV_TOKENIZER_BOS_ID = "tokenizer.ggml.bos_token_id"; -const char * LLM_KV_TOKENIZER_EOS_ID = "tokenizer.ggml.eos_token_id"; -const char * LLM_KV_TOKENIZER_UNK_ID = "tokenizer.ggml.unknown_token_id"; -const char * LLM_KV_TOKENIZER_SEP_ID = "tokenizer.ggml.seperator_token_id"; -const char * LLM_KV_TOKENIZER_PAD_ID = "tokenizer.ggml.padding_token_id"; - -const char * LLM_TENSOR_TOKEN_EMBD = "token_embd"; -const char * LLM_TENSOR_OUTPUT_NORM = "output_norm"; -const char * LLM_TENSOR_OUTPUT = "output"; -const char * LLM_TENSOR_ATTN_NORM = "blk.%d.attn_norm"; -const char * LLM_TENSOR_ATTN_Q = "blk.%d.attn_q"; -const char * LLM_TENSOR_ATTN_K = "blk.%d.attn_k"; -const char * LLM_TENSOR_ATTN_V = "blk.%d.attn_v"; -const char * LLM_TENSOR_ATTN_OUT = "blk.%d.attn_output"; -const char * LLM_TENSOR_FFN_NORM = "blk.%d.ffn_norm"; -const char * LLM_TENSOR_FFN_GATE = "blk.%d.ffn_gate"; -const char * LLM_TENSOR_FFN_DOWN = "blk.%d.ffn_down"; -const char * LLM_TENSOR_FFN_UP = "blk.%d.ffn_up"; - -void print_params(struct my_llama_hparams * params) { +static const char * LLM_KV_TRAINING_TYPE_TRAIN_MODEL = "train_model"; +static const char * LLM_KV_TRAINING_TYPE = "training.type"; + +static const char * LLM_KV_GENERAL_ARCHITECTURE = "general.architecture"; +static const char * LLM_KV_GENERAL_FILE_TYPE = "general.file_type"; + +static const char * LLM_KV_CONTEXT_LENGTH = "%s.context_length"; +static const char * LLM_KV_EMBEDDING_LENGTH = "%s.embedding_length"; +static const char * LLM_KV_BLOCK_COUNT = "%s.block_count"; +static const char * LLM_KV_FEED_FORWARD_LENGTH = "%s.feed_forward_length"; +static const char * LLM_KV_ATTENTION_HEAD_COUNT = "%s.attention.head_count"; +static const char * LLM_KV_ATTENTION_LAYERNORM_RMS_EPS = "%s.attention.layer_norm_rms_epsilon"; +static const char * LLM_KV_ROPE_DIMENSION_COUNT = "%s.rope.dimension_count"; +static const char * LLM_KV_ROPE_FREQ_BASE = "%s.rope.freq_base"; // TODO load in llama.cpp +static const char * LLM_KV_ROPE_SCALE_LINEAR = "%s.rope.scale_linear"; + +static const char * LLM_KV_TOKENIZER_MODEL = "tokenizer.ggml.model"; +static const char * LLM_KV_TOKENIZER_LIST = "tokenizer.ggml.tokens"; +static const char * LLM_KV_TOKENIZER_TOKEN_TYPE = "tokenizer.ggml.token_type"; +static const char * LLM_KV_TOKENIZER_SCORES = "tokenizer.ggml.scores"; +static const char * LLM_KV_TOKENIZER_MERGES = "tokenizer.ggml.merges"; +static const char * LLM_KV_TOKENIZER_BOS_ID = "tokenizer.ggml.bos_token_id"; +static const char * LLM_KV_TOKENIZER_EOS_ID = "tokenizer.ggml.eos_token_id"; +static const char * LLM_KV_TOKENIZER_UNK_ID = "tokenizer.ggml.unknown_token_id"; +static const char * LLM_KV_TOKENIZER_SEP_ID = "tokenizer.ggml.seperator_token_id"; +static const char * LLM_KV_TOKENIZER_PAD_ID = "tokenizer.ggml.padding_token_id"; + +static const char * LLM_TENSOR_TOKEN_EMBD = "token_embd"; +static const char * LLM_TENSOR_OUTPUT_NORM = "output_norm"; +static const char * LLM_TENSOR_OUTPUT = "output"; +static const char * LLM_TENSOR_ATTN_NORM = "blk.%d.attn_norm"; +static const char * LLM_TENSOR_ATTN_Q = "blk.%d.attn_q"; +static const char * LLM_TENSOR_ATTN_K = "blk.%d.attn_k"; +static const char * LLM_TENSOR_ATTN_V = "blk.%d.attn_v"; +static const char * LLM_TENSOR_ATTN_OUT = "blk.%d.attn_output"; +static const char * LLM_TENSOR_FFN_NORM = "blk.%d.ffn_norm"; +static const char * LLM_TENSOR_FFN_GATE = "blk.%d.ffn_gate"; +static const char * LLM_TENSOR_FFN_DOWN = "blk.%d.ffn_down"; +static const char * LLM_TENSOR_FFN_UP = "blk.%d.ffn_up"; + +static void print_params(struct my_llama_hparams * params) { printf("%s: n_vocab: %d\n", __func__, params->n_vocab); printf("%s: n_ctx: %d\n", __func__, params->n_ctx); printf("%s: n_embd: %d\n", __func__, params->n_embd); @@ -296,7 +121,66 @@ void print_params(struct my_llama_hparams * params) { printf("%s: n_rot: %d\n", __func__, params->n_rot); } -void init_model(struct my_llama_model * model) { +static void set_param_model(struct my_llama_model * model) { + const auto& hparams = model->hparams; + + const uint32_t n_layer = hparams.n_layer; + + struct ggml_context* ctx = model->ctx; + + ggml_set_param(ctx, model->tok_embeddings); + ggml_set_param(ctx, model->norm); + ggml_set_param(ctx, model->output); + + for (uint32_t i = 0; i < n_layer; ++i) { + auto & layer = model->layers[i]; + + ggml_set_param(ctx, layer.attention_norm); + ggml_set_param(ctx, layer.wq); + ggml_set_param(ctx, layer.wk); + ggml_set_param(ctx, layer.wv); + ggml_set_param(ctx, layer.wo); + ggml_set_param(ctx, layer.ffn_norm); + ggml_set_param(ctx, layer.w1); + ggml_set_param(ctx, layer.w2); + ggml_set_param(ctx, layer.w3); + } +} + +static void alloc_model(struct ggml_allocr * alloc, struct my_llama_model * model) { + ggml_allocr_alloc(alloc, model->tok_embeddings); + ggml_allocr_alloc(alloc, model->norm); + ggml_allocr_alloc(alloc, model->output); + for (uint32_t i = 0; i < model->layers.size(); ++i) { + auto & layer = model->layers[i]; + ggml_allocr_alloc(alloc, layer.attention_norm); + ggml_allocr_alloc(alloc, layer.wq); + ggml_allocr_alloc(alloc, layer.wk); + ggml_allocr_alloc(alloc, layer.wv); + ggml_allocr_alloc(alloc, layer.wo); + ggml_allocr_alloc(alloc, layer.ffn_norm); + ggml_allocr_alloc(alloc, layer.w1); + ggml_allocr_alloc(alloc, layer.w2); + ggml_allocr_alloc(alloc, layer.w3); + } + ggml_allocr_alloc(alloc, model->tok_embeddings->grad); + ggml_allocr_alloc(alloc, model->norm->grad); + ggml_allocr_alloc(alloc, model->output->grad); + for (uint32_t i = 0; i < model->layers.size(); ++i) { + auto & layer = model->layers[i]; + ggml_allocr_alloc(alloc, layer.attention_norm->grad); + ggml_allocr_alloc(alloc, layer.wq->grad); + ggml_allocr_alloc(alloc, layer.wk->grad); + ggml_allocr_alloc(alloc, layer.wv->grad); + ggml_allocr_alloc(alloc, layer.wo->grad); + ggml_allocr_alloc(alloc, layer.ffn_norm->grad); + ggml_allocr_alloc(alloc, layer.w1->grad); + ggml_allocr_alloc(alloc, layer.w2->grad); + ggml_allocr_alloc(alloc, layer.w3->grad); + } +} + +static void init_model(struct my_llama_model * model) { const auto & hparams = model->hparams; const uint32_t n_embd = hparams.n_embd; @@ -304,11 +188,6 @@ void init_model(struct my_llama_model * model) { const uint32_t n_vocab = hparams.n_vocab; const uint32_t n_ff = hparams.n_ff; - struct ggml_context * ctx = model->ctx; - - model->train_its = 0; - model->train_samples = 0; - model->train_tokens = 0; std::vector tn_buf; tn_buf.resize(GGML_MAX_NAME); @@ -323,6 +202,15 @@ void init_model(struct my_llama_model * model) { return tn_buf.data(); }; + // context for model tensors without their data + struct ggml_init_params ctx_model_params; + ctx_model_params.mem_size = ggml_tensor_overhead()*2*(6 + n_layer*18); + ctx_model_params.mem_buffer = NULL; + ctx_model_params.no_alloc = true; + + struct ggml_context * ctx = ggml_init(ctx_model_params); + model->ctx = ctx; + model->tok_embeddings = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab); model->norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); model->output = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab); @@ -361,288 +249,53 @@ void init_model(struct my_llama_model * model) { ggml_set_name(layer.w2, tni(LLM_TENSOR_FFN_DOWN, i)); ggml_set_name(layer.w3, tni(LLM_TENSOR_FFN_UP, i)); } -} -void set_param_model(struct my_llama_model * model) { - const auto& hparams = model->hparams; + set_param_model(model); - const uint32_t n_layer = hparams.n_layer; - - struct ggml_context* ctx = model->ctx; + // measure data size + struct ggml_allocr * alloc = NULL; + alloc = ggml_allocr_new_measure(tensor_alignment); + alloc_model(alloc, model); - ggml_set_param(ctx, model->tok_embeddings); - ggml_set_param(ctx, model->norm); - ggml_set_param(ctx, model->output); - - for (uint32_t i = 0; i < n_layer; ++i) { - auto & layer = model->layers[i]; - - ggml_set_param(ctx, layer.attention_norm); - ggml_set_param(ctx, layer.wq); - ggml_set_param(ctx, layer.wk); - ggml_set_param(ctx, layer.wv); - ggml_set_param(ctx, layer.wo); - ggml_set_param(ctx, layer.ffn_norm); - ggml_set_param(ctx, layer.w1); - ggml_set_param(ctx, layer.w2); - ggml_set_param(ctx, layer.w3); - } + // allocate data + model->data.resize(ggml_allocr_max_size(alloc) + tensor_alignment); + ggml_allocr_free(alloc); + alloc = ggml_allocr_new(model->data.data(), model->data.size(), tensor_alignment); + alloc_model(alloc, model); + ggml_allocr_free(alloc); } -void randomize_model(struct my_llama_model * model, int seed, float mean, float std, float min, float max) { +static void randomize_model(struct my_llama_model * model, int seed, float mean, float std, float min, float max) { const auto & hparams = model->hparams; const uint32_t n_layer = hparams.n_layer; - struct random_normal_distribution rnd; - init_random_normal_distribution(&rnd, seed, mean, std, min, max); + struct random_normal_distribution * rnd = init_random_normal_distribution(seed, mean, std, min, max); - randomize_tensor_normal(model->tok_embeddings, &rnd); - randomize_tensor_normal(model->norm, &rnd); - randomize_tensor_normal(model->output, &rnd); + randomize_tensor_normal(model->tok_embeddings, rnd); + randomize_tensor_normal(model->norm, rnd); + randomize_tensor_normal(model->output, rnd); for (uint32_t i = 0; i < n_layer; ++i) { auto & layer = model->layers[i]; - randomize_tensor_normal(layer.attention_norm, &rnd); + randomize_tensor_normal(layer.attention_norm, rnd); - randomize_tensor_normal(layer.wq, &rnd); - randomize_tensor_normal(layer.wk, &rnd); - randomize_tensor_normal(layer.wv, &rnd); - randomize_tensor_normal(layer.wo, &rnd); + randomize_tensor_normal(layer.wq, rnd); + randomize_tensor_normal(layer.wk, rnd); + randomize_tensor_normal(layer.wv, rnd); + randomize_tensor_normal(layer.wo, rnd); - randomize_tensor_normal(layer.ffn_norm, &rnd); + randomize_tensor_normal(layer.ffn_norm, rnd); - randomize_tensor_normal(layer.w1, &rnd); - randomize_tensor_normal(layer.w2, &rnd); - randomize_tensor_normal(layer.w3, &rnd); + randomize_tensor_normal(layer.w1, rnd); + randomize_tensor_normal(layer.w2, rnd); + randomize_tensor_normal(layer.w3, rnd); } -} - -void assert_shape_1d(struct ggml_tensor * tensor, int64_t ne0) { - GGML_ASSERT(tensor->n_dims == 1); - GGML_ASSERT(tensor->ne[0] == ne0); -} - -void assert_shape_2d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1) { - GGML_ASSERT(tensor->n_dims == 2); - GGML_ASSERT(tensor->ne[0] == ne0); - GGML_ASSERT(tensor->ne[1] == ne1); -} -void assert_shape_3d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1, int64_t ne2) { - GGML_ASSERT(tensor->n_dims == 3); - GGML_ASSERT(tensor->ne[0] == ne0); - GGML_ASSERT(tensor->ne[1] == ne1); - GGML_ASSERT(tensor->ne[2] == ne2); + free_random_normal_distribution(rnd); } -void assert_shape_4d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) { - GGML_ASSERT(tensor->n_dims == 4); - GGML_ASSERT(tensor->ne[0] == ne0); - GGML_ASSERT(tensor->ne[1] == ne1); - GGML_ASSERT(tensor->ne[2] == ne2); - GGML_ASSERT(tensor->ne[3] == ne3); -} - -static size_t hash(void * p) { - return (size_t)p % GGML_GRAPH_HASHTABLE_SIZE; -} - -static size_t hash_find(void * hash_table[], void * p) { - size_t h = hash(p); - - // linear probing - size_t i = h; - while (hash_table[i] != NULL && hash_table[i] != p) { - i = (i + 1) % GGML_GRAPH_HASHTABLE_SIZE; - if (i == h) { - // visited all hash table entries -> not found - return GGML_GRAPH_HASHTABLE_SIZE; - } - } - return i; -} - -static bool hash_insert(void * hash_table[], void * p) { - //size_t h = hash(p); - size_t i = hash_find(hash_table, p); - - GGML_ASSERT(i < GGML_GRAPH_HASHTABLE_SIZE); // assert that not full - - if (hash_table[i] == p) { - return true; - } - - // insert - GGML_ASSERT(hash_table[i] == NULL); - hash_table[i] = p; - return false; -} - -static bool hash_contains(void * hash_table[], void * p) { - size_t i = hash_find(hash_table, p); - return (i < GGML_GRAPH_HASHTABLE_SIZE) && (hash_table[i] == p); -} - -struct hash_map { - void * keys[GGML_GRAPH_HASHTABLE_SIZE]; - void * vals[GGML_GRAPH_HASHTABLE_SIZE]; -}; -//static const size_t HASH_MAP_SIZE = sizeof(struct hash_map); - -struct hash_map * new_hash_map() { - struct hash_map * result = new struct hash_map; - for (int i=0; ikeys[i] = NULL; - result->vals[i] = NULL; - } - return result; -}; - -void free_hash_map(struct hash_map * map) { - delete map; -} - -static bool ggml_is_view(struct ggml_tensor * t) { - return t->op == GGML_OP_RESHAPE || t->op == GGML_OP_VIEW || t->op == GGML_OP_TRANSPOSE || - t->op == GGML_OP_PERMUTE || t->op == GGML_OP_CPY; -} - -static struct ggml_tensor * get_view_parent(struct ggml_tensor * t) { - switch (t->op) { - case GGML_OP_PERMUTE: - case GGML_OP_RESHAPE: - case GGML_OP_TRANSPOSE: - case GGML_OP_VIEW: - return t->src[0]; - case GGML_OP_CPY: - return t->src[1]; - default: - return NULL; - } -} - -static struct ggml_tensor * get_view_source(struct ggml_tensor * t) { - struct ggml_tensor * parent = t; - do { - parent = get_view_parent(parent); - } while (ggml_is_view(parent)); - return parent; -} - -struct ggml_tensor * ggml_recompute_graph_node( - struct ggml_context * ctx, - struct ggml_cgraph * graph, - struct hash_map * replacements, - struct ggml_tensor * node) { - - if (node == NULL) { - return NULL; - } - - if (node->is_param) { - return node; - } - - if (!hash_contains(graph->visited_hash_table, node)) { - return node; - } - - int count_children = 0; - for (int k = 0; k < GGML_MAX_SRC; ++k) { - if (node->src[k]) { - ++count_children; - } - } - - if (count_children == 0) { - return node; - } - - size_t i = hash_find(replacements->keys, node); - GGML_ASSERT(i < GGML_GRAPH_HASHTABLE_SIZE); // assert that not full - if (replacements->keys[i] == node) { - return (struct ggml_tensor *) replacements->vals[i]; - } - - struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, node->n_dims, node->ne); - - // insert clone into replacements - GGML_ASSERT(replacements->keys[i] == NULL); // assert that we don't overwrite - replacements->keys[i] = node; - replacements->vals[i] = clone; - - clone->op = node->op; - clone->grad = node->grad; - clone->is_param = node->is_param; - clone->extra = node->extra; - for (int k = 0; k < GGML_MAX_DIMS; ++k) { - clone->nb[k] = node->nb[k]; - } - for (int k = 0; k < GGML_MAX_SRC; ++k) { - clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]); - } - if (ggml_is_view(clone)) { - struct ggml_tensor * source = get_view_source(clone); - GGML_ASSERT(source != NULL); - clone->data = source->data; - } - - GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t))); - GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME); - memcpy(clone->op_params, node->op_params, sizeof(node->op_params)); - ggml_format_name(clone, "%s (clone)", ggml_get_name(node)); - - return clone; -}; - -void ggml_build_backward_gradient_checkpointing( - struct ggml_context * ctx, - struct ggml_cgraph * gf, - struct ggml_cgraph * gb, - struct ggml_cgraph * gb_tmp, - struct ggml_tensor * * checkpoints, - int n_checkpoints) { - *gb_tmp = *gf; - ggml_build_backward_expand(ctx, gf, gb_tmp, true); - - if (n_checkpoints <= 0) { - *gb = *gb_tmp; - return; - } - - struct hash_map * replacements = new_hash_map(); - - // insert checkpoints in replacements - for (int i = 0; i < n_checkpoints; ++i) { - size_t k = hash_find(replacements->keys, checkpoints[i]); - GGML_ASSERT(k < GGML_GRAPH_HASHTABLE_SIZE); // assert that not full - GGML_ASSERT(replacements->keys[k] == NULL); // assert that we don't overwrite - replacements->keys[k] = checkpoints[i]; - replacements->vals[k] = checkpoints[i]; - } - - *gb = *gf; - // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes], - // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]), - // by recomputing them from checkpoints - for (int i = gf->n_nodes; in_nodes; ++i) { - struct ggml_tensor * node = gb_tmp->nodes[i]; - for (int k = 0; k < GGML_MAX_SRC; ++k) { - // insert new tensors recomputing src, reusing already made replacements, - // remember replacements: remember new tensors with mapping from corresponding gf nodes - // recurse for input tensors, - // unless (i.e. terminating when) input tensors are checkpoints - node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]); - } - // insert rewritten backward node with replacements made into resulting backward graph gb - ggml_build_forward_expand(gb, node); - } - - free_hash_map(replacements); -} - -struct ggml_tensor * llama_build_train_graphs( +static struct ggml_tensor * llama_build_train_graphs( struct my_llama_model * model, struct ggml_allocr * alloc, struct ggml_context * ctx, @@ -679,15 +332,24 @@ struct ggml_tensor * llama_build_train_graphs( } }; + // KQ_pos - contains the positions + struct ggml_tensor * KQ_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, N); + ggml_allocr_alloc(alloc, KQ_pos); + if (!ggml_allocr_is_measure(alloc)) { + int * data = (int *) KQ_pos->data; + for (int i = 0; i < N; ++i) { + data[i] = n_past + i; + } + } + // rope has so much parameters that we make a custom function for it - auto rope = [ctx, n_rot, n_ctx, rope_freq_base, rope_freq_scale] + auto rope = [ctx, KQ_pos, n_rot, n_ctx, rope_freq_base, rope_freq_scale] (struct ggml_tensor * t) -> struct ggml_tensor * { // not capturing these, to silcence warnings - const int n_past = 0; const int rope_mode = 0; return ggml_rope_custom(ctx, - t, n_past, n_rot, rope_mode, n_ctx, + t, KQ_pos, n_rot, rope_mode, n_ctx, rope_freq_base, rope_freq_scale); }; @@ -706,7 +368,7 @@ struct ggml_tensor * llama_build_train_graphs( checkpoints.push_back(t00); checkpoints.push_back(t01); - struct ggml_tensor * kv_scale; + struct ggml_tensor * kv_scale = NULL; if (!enable_flash_attn) { kv_scale = ggml_new_f32(ctx, 1.0f/sqrtf(float(n_embd)/n_head)); } @@ -787,21 +449,16 @@ struct ggml_tensor * llama_build_train_graphs( ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t36, one)); // input gradient ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t36->grad, one)); - GGML_ASSERT(t36->grad->data == NULL && !ggml_is_view(t36->grad)); + // KQ_pos + ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, KQ_pos, one)); + GGML_ASSERT(t36->grad->data == NULL && t36->grad->view_src == NULL); + ggml_allocr_alloc(alloc, t36->grad); - // gradient tensors (will be set to zero by ggml_graph_reset) - // pinning these produces large unnecessary memory overhead, which will be resolved by PR 2632 - for (int i = 0; i < gf->n_nodes; ++i) { - if (!gf->grads[i]) continue; - if (gf->grads[i]->data == NULL && !ggml_is_view(gf->grads[i])) { - ggml_allocr_alloc(alloc, gf->grads[i]); - } - ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, gf->grads[i], one)); - } + // allocating checkpoints in one block to reduce memory fragmentation // note: they will be freed in reverse order for (int i = 0; i < (int) checkpoints.size(); ++i) { - if (checkpoints[i]->data == NULL && !ggml_is_view(checkpoints[i])) { + if (checkpoints[i]->data == NULL && checkpoints[i]->view_src == NULL) { ggml_allocr_alloc(alloc, checkpoints[i]); } } @@ -826,196 +483,8 @@ struct ggml_tensor * llama_build_train_graphs( return t36; } -void set_f32_3d(struct ggml_tensor * tensor, int64_t i0, int64_t i1, int64_t i2, float value) { - float * ptr = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2]); - *ptr = value; -} - -void set_f32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1, float value) { - float * ptr = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]); - *ptr = value; -} - -void set_i32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1, int32_t value) { - int32_t * ptr = (int32_t *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]); - *ptr = value; -} - -float get_f32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1) { - float * ptr = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]); - return *ptr; -} - -int32_t get_i32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1) { - int32_t * ptr = (int32_t *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]); - return *ptr; -} - -void print_row(struct ggml_tensor * probs, int i) { - for (int k = 0; k < probs->ne[0]; ++k) { - float p = get_f32_2d(probs, k, i); - printf(" %.2f", p); - } - printf("\n"); -} - -void print_matrix(struct ggml_tensor * probs) { - assert(probs->n_dims == 2); - for (int i = 0; i < probs->ne[1]; ++i) { - for (int k = 0; k < probs->ne[0]; ++k) { - float p = get_f32_2d(probs, k, i); - printf(" %.2f", p); - } - printf("\n"); - } -} - -void get_example_targets(struct llama_context * lctx, const int * train_samples, size_t n_train_samples, const llama_token * train_data, size_t n_train_data, int example_id, struct ggml_tensor * tokens_input, struct ggml_tensor * target_logits, struct ggml_tensor * target_probs) { - int n_tokens = tokens_input->ne[0]; - int n_vocab = target_logits->ne[0]; - - size_t sample = train_samples[example_id % n_train_samples]; - GGML_ASSERT(sample+n_tokens-1 < n_train_data); - - ggml_set_f32(target_logits, -1.0f/n_vocab); - ggml_set_f32(target_probs, 0.0f); - ggml_set_i32_1d(tokens_input, 0, llama_token_bos(lctx)); - for (int i=1; in_dims == 2); - GGML_ASSERT(target_logits->n_dims == 3); - GGML_ASSERT(target_probs->n_dims == 3); - int n_vocab = target_logits->ne[0]; - int n_tokens = tokens_input->ne[0]; - int n_batch = tokens_input->ne[1]; - GGML_ASSERT(n_tokens == target_logits->ne[1]); - GGML_ASSERT(n_batch == target_logits->ne[2]); - GGML_ASSERT(n_vocab == target_probs->ne[0]); - GGML_ASSERT(n_tokens == target_probs->ne[1]); - GGML_ASSERT(n_batch == target_probs->ne[2]); - - ggml_set_f32(target_logits, -1.0f/n_vocab); - ggml_set_f32(target_probs, 0.0f); - // printf("%s: example_id=%d n_batch=%d n_train_samples=%zu\n", __func__, example_id, n_batch, n_train_samples); - for (int k=0; k& out) { - FILE * fp = std::fopen(filename, "rb"); - if (fp == NULL) { - return 0; - } - -#ifdef _WIN32 - GGML_ASSERT(_fseeki64(fp, (__int64) 0, SEEK_END) == 0); -#else - GGML_ASSERT(std::fseek(fp, (long) 0, SEEK_END) == 0); -#endif - - size_t size = 0; -#ifdef _WIN32 - __int64 ret = _ftelli64(fp); - size = ret; -#else - long ret = std::ftell(fp); - size = ret; -#endif - -#ifdef _WIN32 - GGML_ASSERT(_fseeki64(fp, (__int64) 0, SEEK_SET) == 0); -#else - GGML_ASSERT(std::fseek(fp, (long) 0, SEEK_SET) == 0); -#endif - - std::vector buf; - buf.resize(size+1); - out.resize(size+1); - - if (std::fread(buf.data(), size, 1, fp) != 1) { - die("unexpectedly reached end of file"); - } - if (ferror(fp)) { - die_fmt("fread failed: %s", strerror(errno)); - } - - buf[size] = '\0'; - - int n_tokens = llama_tokenize(lctx, buf.data(), out.data(), out.size(), false); - if (n_tokens < 0) { - out.resize(-n_tokens); - n_tokens = llama_tokenize(lctx, buf.data(), out.data(), out.size(), false); - } - GGML_ASSERT(n_tokens >= 0); - out.resize(n_tokens); - - bool verify = false; - if (verify) { - const char * in = buf.data(); - const char * end = buf.data() + buf.size(); - for (int i = 0; i < (int) out.size(); ++i) { - std::string s = llama_token_to_piece(lctx, out[i]); - int len = s.length(); - if (in >= end) { - printf("%s: unexpected end of original text.\n", __func__); - break; - } - const bool matches = (strncmp(in, s.c_str(), len) == 0); - if (matches) { - in += len; - } else { - printf("%s: mismatch: expected '%s', but got '%s'\n", __func__, std::string(in, len).c_str(), s.c_str()); - } - } - } - - return n_tokens; -} - -void shuffle_ints(int * begin, int * end) { - if (end <= begin) return; - int max=begin[0]; - for (int i=1; i max) { - max = begin[i]; - } - } - std::vector vals; - vals.resize(max+1); - for (int i=0; i= 0) { \ @@ -1027,161 +496,9 @@ void shuffle_ints(int * begin, int * end) { } else if (req) { \ die_fmt("key not found in model: %s", skey.c_str()); \ } \ -} - - -bool are_same_layout(struct ggml_tensor * a, struct ggml_tensor * b) { - GGML_ASSERT(a != NULL); - GGML_ASSERT(b != NULL); - GGML_ASSERT(a->type == b->type); - GGML_ASSERT(ggml_are_same_shape(a, b)); - GGML_ASSERT(ggml_is_contiguous(a) && ggml_is_contiguous(b)); - - return true; -} +} while (0) -void read_tensor_by_name(struct ggml_tensor * dst, struct ggml_context * ctx, const char * name) { - if (dst == NULL) { - return; - } - struct ggml_tensor * t = ggml_get_tensor(ctx, name); - GGML_ASSERT(are_same_layout(dst, t)); - memcpy(dst->data, t->data, ggml_nbytes(t)); - - if (strlen(ggml_get_name(dst)) == 0) { - ggml_set_name(dst, name); - } -} - -void load_opt_context_gguf(struct gguf_context * fctx, struct ggml_context * f_ggml_ctx, struct ggml_opt_context * opt) { - // NOTE: gguf_context must be initialized with f_ggml_ctx and no_alloc=false, otherwise tensor data can not be read - - uint32_t file_version; - GGUF_GET_KEY(fctx, file_version, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_OPTIMIZER_FILE_VERSION); - GGML_ASSERT(file_version == 0); - - GGUF_GET_KEY(fctx, opt->params.past, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_OPTIMIZER_CONVERGENCE_PAST_COUNT); - GGUF_GET_KEY(fctx, opt->iter, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_OPTIMIZER_ITERATION_COUNT); - GGUF_GET_KEY(fctx, opt->just_initialized, gguf_get_val_bool, GGUF_TYPE_BOOL, true, LLM_KV_OPTIMIZER_JUST_INITIALIZED); - - uint64_t nx; - GGUF_GET_KEY(fctx, nx, gguf_get_val_u64, GGUF_TYPE_UINT64, true, LLM_KV_OPTIMIZER_PARAMETER_COUNT); - opt->nx = (size_t) nx; - - // don't call ggml_opt_init until optimizer type and optimizer specific parameters are know - - std::string opt_type; - GGUF_GET_KEY(fctx, opt_type, gguf_get_val_str, GGUF_TYPE_STRING, true, LLM_KV_OPTIMIZER_TYPE); - if (opt_type == LLM_KV_OPTIMIZER_TYPE_ADAM) { - opt->params.type = GGML_OPT_ADAM; - - GGUF_GET_KEY(fctx, opt->adam.fx_best, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, LLM_KV_OPTIMIZER_ADAM_BEST_LOSS); - GGUF_GET_KEY(fctx, opt->adam.fx_prev, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, LLM_KV_OPTIMIZER_ADAM_PREVIOUS_LOSS); - GGUF_GET_KEY(fctx, opt->adam.n_no_improvement, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_OPTIMIZER_ADAM_NO_IMPROVEMENT_COUNT); - - GGML_ASSERT(opt->ctx != NULL); - ggml_opt_init(opt->ctx, opt, opt->params, opt->nx); - - read_tensor_by_name(opt->adam.m, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_ADAM_FIRST_MOMENTS); - read_tensor_by_name(opt->adam.v, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_ADAM_SECOND_MOMENTS); - read_tensor_by_name(opt->adam.pf, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_ADAM_PAST_LOSS_VALUES); - } else if (opt_type == LLM_KV_OPTIMIZER_TYPE_LBFGS) { - opt->params.type = GGML_OPT_LBFGS; - - GGUF_GET_KEY(fctx, opt->params.lbfgs.m, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT); - GGUF_GET_KEY(fctx, opt->lbfgs.fx_best, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, LLM_KV_OPTIMIZER_LBFGS_BEST_LOSS); - GGUF_GET_KEY(fctx, opt->lbfgs.step, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_STEP); - GGUF_GET_KEY(fctx, opt->lbfgs.j, gguf_get_val_i32, GGUF_TYPE_INT32, true, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_J); - GGUF_GET_KEY(fctx, opt->lbfgs.k, gguf_get_val_i32, GGUF_TYPE_INT32, true, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_K); - GGUF_GET_KEY(fctx, opt->lbfgs.end, gguf_get_val_i32, GGUF_TYPE_INT32, true, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_END); - GGUF_GET_KEY(fctx, opt->lbfgs.n_no_improvement, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_OPTIMIZER_LBFGS_NO_IMPROVEMENT_COUNT); - - GGML_ASSERT(opt->ctx != NULL); - ggml_opt_init(opt->ctx, opt, opt->params, opt->nx); - - read_tensor_by_name(opt->lbfgs.x, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_PARAMETERS); - read_tensor_by_name(opt->lbfgs.xp, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_PARAMETERS); - read_tensor_by_name(opt->lbfgs.g, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_GRADIENTS); - read_tensor_by_name(opt->lbfgs.gp, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_GRADIENTS); - read_tensor_by_name(opt->lbfgs.d, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_SEARCH_DIRECTION); - read_tensor_by_name(opt->lbfgs.pf, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_PAST_LOSS_VALUES); - read_tensor_by_name(opt->lbfgs.lmal, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_ALPHA); - read_tensor_by_name(opt->lbfgs.lmys, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_YS); - read_tensor_by_name(opt->lbfgs.lms, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_S); - read_tensor_by_name(opt->lbfgs.lmy, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_Y); - } else { - die("unknown optimizer type"); - } -} - -void save_opt_context_gguf(struct gguf_context * fctx, struct ggml_opt_context * opt) { - gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_FILE_VERSION, 0); - gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_CONVERGENCE_PAST_COUNT, opt->params.past); - gguf_set_val_u64(fctx, LLM_KV_OPTIMIZER_PARAMETER_COUNT, (uint64_t) opt->nx); - gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_ITERATION_COUNT, opt->iter); - gguf_set_val_bool(fctx, LLM_KV_OPTIMIZER_JUST_INITIALIZED, opt->just_initialized); - - switch (opt->params.type) { - case GGML_OPT_ADAM: - { - gguf_set_val_str(fctx, LLM_KV_OPTIMIZER_TYPE, LLM_KV_OPTIMIZER_TYPE_ADAM); - gguf_set_val_f32(fctx, LLM_KV_OPTIMIZER_ADAM_BEST_LOSS, opt->adam.fx_best); - gguf_set_val_f32(fctx, LLM_KV_OPTIMIZER_ADAM_PREVIOUS_LOSS, opt->adam.fx_prev); - gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_ADAM_NO_IMPROVEMENT_COUNT, opt->adam.n_no_improvement); - - ggml_set_name(opt->adam.m, LLM_TENSOR_OPTIMIZER_ADAM_FIRST_MOMENTS); - ggml_set_name(opt->adam.v, LLM_TENSOR_OPTIMIZER_ADAM_SECOND_MOMENTS); - if (opt->adam.pf) { - ggml_set_name(opt->adam.pf, LLM_TENSOR_OPTIMIZER_ADAM_PAST_LOSS_VALUES); - } - - gguf_add_tensor(fctx, opt->adam.m); - gguf_add_tensor(fctx, opt->adam.v); - if (opt->adam.pf) { - gguf_add_tensor(fctx, opt->adam.pf); - } - } break; - case GGML_OPT_LBFGS: - { - gguf_set_val_str(fctx, LLM_KV_OPTIMIZER_TYPE, LLM_KV_OPTIMIZER_TYPE_LBFGS); - gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT, opt->params.lbfgs.m); - gguf_set_val_f32(fctx, LLM_KV_OPTIMIZER_LBFGS_BEST_LOSS, opt->lbfgs.fx_best); - gguf_set_val_f32(fctx, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_STEP, opt->lbfgs.step); - gguf_set_val_i32(fctx, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_J, opt->lbfgs.j); - gguf_set_val_i32(fctx, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_K, opt->lbfgs.k); - gguf_set_val_i32(fctx, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_END, opt->lbfgs.end); - gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_LBFGS_NO_IMPROVEMENT_COUNT, opt->lbfgs.n_no_improvement); - - ggml_set_name(opt->lbfgs.x, LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_PARAMETERS); - ggml_set_name(opt->lbfgs.xp, LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_PARAMETERS); - ggml_set_name(opt->lbfgs.g, LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_GRADIENTS); - ggml_set_name(opt->lbfgs.gp, LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_GRADIENTS); - ggml_set_name(opt->lbfgs.d, LLM_TENSOR_OPTIMIZER_LBFGS_SEARCH_DIRECTION); - if (opt->lbfgs.pf) { - ggml_set_name(opt->lbfgs.pf, LLM_TENSOR_OPTIMIZER_LBFGS_PAST_LOSS_VALUES); - } - ggml_set_name(opt->lbfgs.lmal, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_ALPHA); - ggml_set_name(opt->lbfgs.lmys, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_YS); - ggml_set_name(opt->lbfgs.lms, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_S); - ggml_set_name(opt->lbfgs.lmy, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_Y); - - gguf_add_tensor(fctx, opt->lbfgs.x); - gguf_add_tensor(fctx, opt->lbfgs.xp); - gguf_add_tensor(fctx, opt->lbfgs.g); - gguf_add_tensor(fctx, opt->lbfgs.gp); - gguf_add_tensor(fctx, opt->lbfgs.d); - if (opt->lbfgs.pf) { - gguf_add_tensor(fctx, opt->lbfgs.pf); - } - gguf_add_tensor(fctx, opt->lbfgs.lmal); - gguf_add_tensor(fctx, opt->lbfgs.lmys); - gguf_add_tensor(fctx, opt->lbfgs.lms); - gguf_add_tensor(fctx, opt->lbfgs.lmy); - } break; - } -} - -void load_llama_model_gguf(struct gguf_context * fctx, struct ggml_context * f_ggml_ctx, struct my_llama_model * model) { +static void load_llama_model_gguf(struct gguf_context * fctx, struct ggml_context * f_ggml_ctx, struct my_llama_model * model) { // NOTE: gguf_context must be initialized with f_ggml_ctx and no_alloc=false, otherwise tensor data can not be read std::string arch; @@ -1233,26 +550,26 @@ void load_llama_model_gguf(struct gguf_context * fctx, struct ggml_context * f_g init_model(model); - read_tensor_by_name(model->tok_embeddings, f_ggml_ctx, tn(LLM_TENSOR_TOKEN_EMBD)); - read_tensor_by_name(model->norm, f_ggml_ctx, tn(LLM_TENSOR_OUTPUT_NORM)); - read_tensor_by_name(model->output, f_ggml_ctx, tn(LLM_TENSOR_OUTPUT)); + copy_tensor_by_name(model->tok_embeddings, f_ggml_ctx, tn(LLM_TENSOR_TOKEN_EMBD)); + copy_tensor_by_name(model->norm, f_ggml_ctx, tn(LLM_TENSOR_OUTPUT_NORM)); + copy_tensor_by_name(model->output, f_ggml_ctx, tn(LLM_TENSOR_OUTPUT)); for (uint32_t i = 0; i < model->hparams.n_layer; ++i) { auto & layer = model->layers[i]; - read_tensor_by_name(layer.attention_norm, f_ggml_ctx, tni(LLM_TENSOR_ATTN_NORM, i)); - read_tensor_by_name(layer.wq, f_ggml_ctx, tni(LLM_TENSOR_ATTN_Q, i)); - read_tensor_by_name(layer.wk, f_ggml_ctx, tni(LLM_TENSOR_ATTN_K, i)); - read_tensor_by_name(layer.wv, f_ggml_ctx, tni(LLM_TENSOR_ATTN_V, i)); - read_tensor_by_name(layer.wo, f_ggml_ctx, tni(LLM_TENSOR_ATTN_OUT, i)); - read_tensor_by_name(layer.ffn_norm, f_ggml_ctx, tni(LLM_TENSOR_FFN_NORM, i)); - read_tensor_by_name(layer.w1, f_ggml_ctx, tni(LLM_TENSOR_FFN_GATE, i)); - read_tensor_by_name(layer.w2, f_ggml_ctx, tni(LLM_TENSOR_FFN_DOWN, i)); - read_tensor_by_name(layer.w3, f_ggml_ctx, tni(LLM_TENSOR_FFN_UP, i)); + copy_tensor_by_name(layer.attention_norm, f_ggml_ctx, tni(LLM_TENSOR_ATTN_NORM, i)); + copy_tensor_by_name(layer.wq, f_ggml_ctx, tni(LLM_TENSOR_ATTN_Q, i)); + copy_tensor_by_name(layer.wk, f_ggml_ctx, tni(LLM_TENSOR_ATTN_K, i)); + copy_tensor_by_name(layer.wv, f_ggml_ctx, tni(LLM_TENSOR_ATTN_V, i)); + copy_tensor_by_name(layer.wo, f_ggml_ctx, tni(LLM_TENSOR_ATTN_OUT, i)); + copy_tensor_by_name(layer.ffn_norm, f_ggml_ctx, tni(LLM_TENSOR_FFN_NORM, i)); + copy_tensor_by_name(layer.w1, f_ggml_ctx, tni(LLM_TENSOR_FFN_GATE, i)); + copy_tensor_by_name(layer.w2, f_ggml_ctx, tni(LLM_TENSOR_FFN_DOWN, i)); + copy_tensor_by_name(layer.w3, f_ggml_ctx, tni(LLM_TENSOR_FFN_UP, i)); } } -void save_llama_model_gguf(struct gguf_context * fctx, const char * fn_vocab_model, struct my_llama_model * model) { +static void save_llama_model_gguf(struct gguf_context * fctx, const char * fn_vocab_model, struct my_llama_model * model) { const char * arch = "llama"; enum llama_ftype ftype = LLAMA_FTYPE_ALL_F32; @@ -1395,7 +712,8 @@ void save_llama_model_gguf(struct gguf_context * fctx, const char * fn_vocab_mod } } -void save_llama_model_file(const char * filename, const char * fn_vocab_model, struct my_llama_model * model) { +static void save_llama_model_file(const char * filename, const char * fn_vocab_model, struct my_llama_model * model) { + printf("%s: saving to %s\n", __func__, filename); struct gguf_context * fctx = gguf_init_empty(); save_llama_model_gguf(fctx, fn_vocab_model, model); @@ -1406,32 +724,24 @@ void save_llama_model_file(const char * filename, const char * fn_vocab_model, s gguf_free(fctx); } -void load_checkpoint_gguf(struct gguf_context * fctx, struct ggml_context * f_ggml_ctx, struct my_llama_model * model, struct ggml_opt_context * opt) { +static void load_checkpoint_gguf(struct gguf_context * fctx, struct ggml_context * f_ggml_ctx, struct my_llama_model * model, struct train_state * train) { load_llama_model_gguf(fctx, f_ggml_ctx, model); - - uint32_t file_version; - GGUF_GET_KEY(fctx, file_version, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_FILE_VERSION); - GGML_ASSERT(file_version == 0); - - GGUF_GET_KEY(fctx, model->train_its, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_ITERATION_COUNT); - GGUF_GET_KEY(fctx, model->train_samples, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_SAMPLE_COUNT); - GGUF_GET_KEY(fctx, model->train_tokens, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_TOKEN_COUNT); - - load_opt_context_gguf(fctx, f_ggml_ctx, opt); + if (load_train_state_gguf(fctx, f_ggml_ctx, train)) { + std::string train_type = LLM_KV_TRAINING_TYPE_TRAIN_MODEL; + GGUF_GET_KEY(fctx, train_type, gguf_get_val_str, GGUF_TYPE_STRING, false, LLM_KV_TRAINING_TYPE); + GGML_ASSERT(train_type == LLM_KV_TRAINING_TYPE_TRAIN_MODEL); + } else { + printf("%s: loaded llama model as checkpoint\n", __func__); + } } -void save_checkpoint_gguf(struct gguf_context * fctx, const char * fn_vocab_model, struct my_llama_model * model, struct ggml_opt_context * opt) { +static void save_checkpoint_gguf(struct gguf_context * fctx, const char * fn_vocab_model, struct my_llama_model * model, struct train_state * train) { + gguf_set_val_str(fctx, LLM_KV_TRAINING_TYPE, LLM_KV_TRAINING_TYPE_TRAIN_MODEL); save_llama_model_gguf(fctx, fn_vocab_model, model); - - gguf_set_val_u32(fctx, LLM_KV_TRAINING_FILE_VERSION, 0); - gguf_set_val_u32(fctx, LLM_KV_TRAINING_ITERATION_COUNT, model->train_its); - gguf_set_val_u32(fctx, LLM_KV_TRAINING_SAMPLE_COUNT, model->train_samples); - gguf_set_val_u32(fctx, LLM_KV_TRAINING_TOKEN_COUNT, model->train_tokens); - - save_opt_context_gguf(fctx, opt); + save_train_state_gguf(fctx, train); } -bool load_checkpoint_file(const char * filename, struct my_llama_model * model, struct ggml_opt_context * opt) { +static bool load_checkpoint_file(const char * filename, struct my_llama_model * model, struct train_state * train) { struct ggml_context * f_ggml_ctx; struct gguf_init_params params; params.no_alloc = false; @@ -1441,15 +751,16 @@ bool load_checkpoint_file(const char * filename, struct my_llama_model * model, return false; } - load_checkpoint_gguf(fctx, f_ggml_ctx, model, opt); + load_checkpoint_gguf(fctx, f_ggml_ctx, model, train); return true; } -void save_checkpoint_file(const char * filename, const char * fn_vocab_model, struct my_llama_model * model, struct ggml_opt_context * opt) { +static void save_checkpoint_file(const char * filename, const char * fn_vocab_model, struct my_llama_model * model, struct train_state * train) { + printf("%s: saving to %s\n", __func__, filename); struct gguf_context * fctx = gguf_init_empty(); - save_checkpoint_gguf(fctx, fn_vocab_model, model, opt); + save_checkpoint_gguf(fctx, fn_vocab_model, model, train); // write file const bool only_meta = false; @@ -1457,33 +768,13 @@ void save_checkpoint_file(const char * filename, const char * fn_vocab_model, st gguf_free(fctx); } -float cosine_decay(const int decay_steps, const float minimum, int step) { - if (step > decay_steps) { - step = decay_steps; - } - const float cosine_decay = 0.50f*(1.0f + cosf(3.14159265359f*step/decay_steps)); - const float decay = (1 - minimum)*cosine_decay + minimum; - return decay; -} - -float cosine_decay_restart(int decay_steps, const float minimum, int step, float restart_step_mult, bool enable_restart) { - if (enable_restart) { - while (step > decay_steps) { - step -= decay_steps; - decay_steps = (int) restart_step_mult * decay_steps; - } - } - return cosine_decay(decay_steps, minimum, step); -} - struct train_params { + struct train_params_common common; + const char * fn_vocab_model; - const char * fn_train_data; - const char * fn_checkpoint_in; - const char * fn_checkpoint_out; const char * fn_model_out; - uint32_t seed; + bool only_write_model; int n_ctx; int n_embd; @@ -1491,58 +782,18 @@ struct train_params { int n_layer; int n_ff; - int n_threads; - int n_batch; - int n_examples; - float f_norm_rms_eps; float rope_freq_base; float rope_freq_scale; - - int print_info_interval; - - bool samples_start_after_nl; - bool use_adam; - bool use_flash; - bool use_checkpointing; - bool use_alloc; - - // only adam - int warmup; - int cos_decay_steps; - float cos_decay_restart; - float cos_decay_min; - bool enable_restart; - - int opt_past; - float opt_delta; - int opt_max_no_improvement; - - int lbfgs_n_iter; - int adam_n_iter; - float adam_alpha; - float adam_min_alpha; - float adam_decay; - int adam_decay_min_ndim; - float adam_beta1; - float adam_beta2; - float adam_gclip; - float adam_eps_f; - - int mem_model_gb; - int mem_compute_gb; - int mem_compute0_gb; }; -struct train_params get_default_train_params() { +static struct train_params get_default_train_params() { struct train_params params; + params.common = get_default_train_params_common(); params.fn_vocab_model = "ggml-vic7b-uncensored-q4_0.bin"; - params.fn_train_data = "shakespeare.txt"; - params.fn_checkpoint_in = "checkpoint.bin"; - params.fn_checkpoint_out = "checkpoint.bin"; params.fn_model_out = "ggml-checkpoint-f32.bin"; - params.seed = -1; + params.only_write_model = false; params.n_ctx = 128; params.n_embd = 256; @@ -1550,62 +801,22 @@ struct train_params get_default_train_params() { params.n_layer = 16; params.n_ff = 768; - params.n_threads = 6; - params.n_batch = 8; - params.n_examples = 1; - - params.f_norm_rms_eps = 1e-5; + params.f_norm_rms_eps = 1e-5f; params.rope_freq_base = 10000.0f; params.rope_freq_scale = 1.0f; - params.print_info_interval = 1; - - params.samples_start_after_nl = false; - params.use_adam = true; - params.use_flash = true; - params.use_checkpointing = true; - params.use_alloc = true; - - params.opt_past = 0; - params.opt_delta = 1e-5f; - params.opt_max_no_improvement = 0; - - // only adam - params.warmup = 100; - params.cos_decay_steps = 1000; - params.cos_decay_restart = 1.1f; - params.cos_decay_min = 0.1f; - params.enable_restart = false; - - params.lbfgs_n_iter = 256; - params.adam_n_iter = 256; - params.adam_alpha = 1e-3f; - params.adam_min_alpha = 0; - params.adam_decay = 1e-1f; - params.adam_decay_min_ndim = 2; - params.adam_beta1 = 0.9f; - params.adam_beta2 = 0.999f; - params.adam_gclip = 1.0f; - params.adam_eps_f = 0.0f; - - params.mem_model_gb = 2; - params.mem_compute_gb = 24; - params.mem_compute0_gb = 8; return params; } -void train_print_usage(int /*argc*/, char ** argv, const struct train_params * params) { +static void train_print_usage(int argc, char ** argv, const struct train_params * params) { fprintf(stderr, "usage: %s [options]\n", argv[0]); fprintf(stderr, "\n"); fprintf(stderr, "options:\n"); fprintf(stderr, " -h, --help show this help message and exit\n"); + fprintf(stderr, " --vocab-model FNAME model path from which to load vocab (default '%s')\n", params->fn_vocab_model); - fprintf(stderr, " --train-data FNAME path from which to load training data (default '%s')\n", params->fn_train_data); - fprintf(stderr, " --checkpoint-in FNAME path from which to load training checkpoint (default '%s')\n", params->fn_checkpoint_in); - fprintf(stderr, " --checkpoint-out FNAME path to save training checkpoint (default '%s')\n", params->fn_checkpoint_out); fprintf(stderr, " --model-out FNAME path to save ggml model (default '%s')\n", params->fn_model_out); - fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1, use random seed for -1)\n"); - fprintf(stderr, " -c N, --ctx N Context size used during training (default %d)\n", params->n_ctx); + fprintf(stderr, " --only-write-model only save llama model, don't do any training. use this if you only want to convert a checkpoint to a model.\n"); fprintf(stderr, " --embd N Embedding size used for new models (default %d)\n", params->n_embd); fprintf(stderr, " --ff N Feedforward size used for new models. (default %d)\n", params->n_ff); fprintf(stderr, " --head N Number of heads for new models (default %d)\n", params->n_head); @@ -1613,45 +824,11 @@ void train_print_usage(int /*argc*/, char ** argv, const struct train_params * p fprintf(stderr, " --norm-rms-eps F RMS-Norm epsilon value (default %f)\n", params->f_norm_rms_eps); fprintf(stderr, " --rope-freq-base F Frequency base for ROPE (default %f)\n", params->rope_freq_base); fprintf(stderr, " --rope-freq-scale F Frequency scale for ROPE (default %f)\n", params->rope_freq_scale); - fprintf(stderr, " -t N, --threads N Number of threads (default %d)\n", params->n_threads); - fprintf(stderr, " -b N, --batch N Parallel batch size (default %d)\n", params->n_batch); - fprintf(stderr, " -n N, --examples N Number of examples to train (default %d)\n", params->n_examples); - fprintf(stderr, " --print-info-interval N Print infos during training each N examples (default %d)\n", params->print_info_interval); - fprintf(stderr, " --samples-after-nl Training samples start after newlines. (default %s)\n", params->samples_start_after_nl ? "on" : "off"); - fprintf(stderr, " --use-lbfgs Use LBFGS optimizer instead of default Adam\n"); - fprintf(stderr, " --use-adam Use Adam optimizer (default)\n"); - fprintf(stderr, " --no-flash Don't use flash attention \n"); - fprintf(stderr, " --use-flash Use flash attention (default)\n"); - fprintf(stderr, " --no-checkpointing Don't use gradient checkpointing\n"); - fprintf(stderr, " --use-checkpointing Use gradient checkpointing (default)\n"); - fprintf(stderr, " --no-alloc Don't use allocator\n"); - fprintf(stderr, " --use-alloc Use allocator (default)\n"); - fprintf(stderr, " --warmup N Only for Adam optimizer. Number of warmup steps (default %d)\n", params->warmup); - fprintf(stderr, " --cos-decay-steps N Only for Adam optimizer. Number of cosine decay steps (default %d)\n", params->cos_decay_steps); - fprintf(stderr, " --cos-decay-restart N Only for Adam optimizer. Increase of cosine decay steps after restart (default %f)\n", params->cos_decay_restart); - fprintf(stderr, " --cos-decay-min N Only for Adam optimizer. Cosine decay minimum (default %f)\n", params->cos_decay_min); - fprintf(stderr, " --enable-restart N Only for Adam optimizer. Enable restarts of cos-decay %s\n", params->enable_restart ? "(default)" : ""); - fprintf(stderr, " --disable-restart N Only for Adam optimizer. Disable restarts of cos-decay %s\n", !params->enable_restart ? "(default)" : ""); - fprintf(stderr, " --opt-past N Number of optimization iterations to track for delta convergence test. Disabled when zero. (default %d)\n", params->opt_past); - fprintf(stderr, " --opt-delta N Maximum delta for delta convergence test. Disabled when <= zero. (default %f)\n", params->opt_delta); - fprintf(stderr, " --opt-max-no-improvement N Maximum number of optimization iterations with no improvement. Disabled when <= zero. (default %d)\n", params->opt_max_no_improvement); - fprintf(stderr, " --adam-epsf N AdamW epsilon for convergence test. Disabled when <= zero. (default %f)\n", params->adam_eps_f); - fprintf(stderr, " --adam-iter N Maximum number of Adam optimization iterations for each batch (default %d)\n", params->adam_n_iter); - fprintf(stderr, " --adam-alpha N Adam learning rate alpha (default %f)\n", params->adam_alpha); - fprintf(stderr, " --adam-min-alpha N Adam minimum learning rate alpha - including warmup phase (default %f)\n", params->adam_min_alpha); - fprintf(stderr, " --adam-decay N AdamW weight decay. Values greater zero enable AdamW instead of regular Adam. (default %f)\n", params->adam_decay); - fprintf(stderr, " --adam-decay-min-ndim N Minimum number of tensor dimensions to apply AdamW weight decay. Weight decay is not applied to tensors with less n_dims. (default %d)\n", params->adam_decay_min_ndim); - fprintf(stderr, " --adam-beta1 N AdamW beta1 in interval [0,1). How much to smooth the first moment of gradients. (default %f)\n", params->adam_beta1); - fprintf(stderr, " --adam-beta2 N AdamW beta2 in interval [0,1). How much to smooth the second moment of gradients. (default %f)\n", params->adam_beta2); - fprintf(stderr, " --adam-gclip N AdamW gradient clipping. Disabled when zero. (default %f)\n", params->adam_gclip); - fprintf(stderr, " --lbfgs-iter N Maximum number of LBFGS optimization iterations for each batch (default %d)\n", params->lbfgs_n_iter); - fprintf(stderr, " --mem-model N Memory to allocate for model and cache in gigabytes. (default %d)\n", params->mem_model_gb); - fprintf(stderr, " --mem-compute N Memory to allocate for compute in gigabytes. (default %d)\n", params->mem_compute_gb); - fprintf(stderr, " --mem-compute0 N Memory to allocate for automatic memory allocator in gigabytes. (default %d)\n", params->mem_compute0_gb); - fprintf(stderr, "\n"); + + print_common_train_usage(argc, argv, ¶ms->common); } -bool train_params_parse(int argc, char ** argv, struct train_params * params) { +static bool train_params_parse(int argc, char ** argv, struct train_params * params) { bool invalid_param = false; std::string arg; struct train_params default_params = get_default_train_params(); @@ -1663,48 +840,27 @@ bool train_params_parse(int argc, char ** argv, struct train_params * params) { std::replace(arg.begin(), arg.end(), '_', '-'); } - if (arg == "--vocab-model") { - if (++i >= argc) { - invalid_param = true; + if (consume_common_train_arg(argc, argv, &i, ¶ms->common, &invalid_param)) { + if (invalid_param) { break; + } else if (params->common.print_usage) { + train_print_usage(argc, argv, &default_params); + exit(0); } - params->fn_vocab_model = argv[i]; - } else if (arg == "--train-data") { + } else if (arg == "--vocab-model") { if (++i >= argc) { invalid_param = true; break; } - params->fn_train_data = argv[i]; - } else if (arg == "--checkpoint-in") { - if (++i >= argc) { - invalid_param = true; - break; - } - params->fn_checkpoint_in = argv[i]; - } else if (arg == "--checkpoint-out") { - if (++i >= argc) { - invalid_param = true; - break; - } - params->fn_checkpoint_out = argv[i]; + params->fn_vocab_model = argv[i]; } else if (arg == "--model-out") { if (++i >= argc) { invalid_param = true; break; } params->fn_model_out = argv[i]; - } else if (arg == "-s" || arg == "--seed") { - if (++i >= argc) { - invalid_param = true; - break; - } - params->seed = std::stoi(argv[i]); - } else if (arg == "-c" || arg == "--ctx") { - if (++i >= argc) { - invalid_param = true; - break; - } - params->n_ctx = std::stoi(argv[i]); + } else if (arg == "--only-write-model") { + params->only_write_model = true; } else if (arg == "--embd") { if (++i >= argc) { invalid_param = true; @@ -1747,175 +903,6 @@ bool train_params_parse(int argc, char ** argv, struct train_params * params) { break; } params->rope_freq_scale = std::stof(argv[i]); - } else if (arg == "-t" || arg == "--threads") { - if (++i >= argc) { - invalid_param = true; - break; - } - params->n_threads = std::stoi(argv[i]); - } else if (arg == "-b" || arg == "--batch") { - if (++i >= argc) { - invalid_param = true; - break; - } - params->n_batch = std::stoi(argv[i]); - } else if (arg == "-n" || arg == "--examples") { - if (++i >= argc) { - invalid_param = true; - break; - } - params->n_examples = std::stoi(argv[i]); - } else if (arg == "--print-info-interval") { - if (++i >= argc) { - invalid_param = true; - break; - } - params->print_info_interval = std::stoi(argv[i]); - } else if (arg == "--samples-after-nl") { - params->samples_start_after_nl = true; - } else if (arg == "--use-lbfgs") { - params->use_adam = false; - } else if (arg == "--use-adam") { - params->use_adam = true; - } else if (arg == "--no-flash") { - params->use_flash = false; - } else if (arg == "--use-flash") { - params->use_flash = true; - } else if (arg == "--no-checkpointing") { - params->use_checkpointing = false; - } else if (arg == "--use-checkpointing") { - params->use_checkpointing = true; - } else if (arg == "--no-alloc") { - params->use_alloc = false; - } else if (arg == "--use-alloc") { - params->use_alloc = true; - } else if (arg == "--warmup") { - if (++i >= argc) { - invalid_param = true; - break; - } - params->warmup = std::stoi(argv[i]); - } else if (arg == "--cos-decay-steps") { - if (++i >= argc) { - invalid_param = true; - break; - } - params->cos_decay_steps = std::stof(argv[i]); - } else if (arg == "--cos-decay-restart") { - if (++i >= argc) { - invalid_param = true; - break; - } - params->cos_decay_restart = std::stof(argv[i]); - } else if (arg == "--cos-decay-min") { - if (++i >= argc) { - invalid_param = true; - break; - } - params->cos_decay_min = std::stof(argv[i]); - } else if (arg == "--enable-restart") { - params->enable_restart = true; - } else if (arg == "--disable-restart") { - params->enable_restart = false; - } else if (arg == "--opt-past") { - if (++i >= argc) { - invalid_param = true; - break; - } - params->opt_past = std::stoi(argv[i]); - } else if (arg == "--opt-delta") { - if (++i >= argc) { - invalid_param = true; - break; - } - params->opt_delta = std::stof(argv[i]); - } else if (arg == "--opt-max-no-improvement") { - if (++i >= argc) { - invalid_param = true; - break; - } - params->opt_max_no_improvement = std::stoi(argv[i]); - } else if (arg == "--adam-epsf") { - if (++i >= argc) { - invalid_param = true; - break; - } - params->adam_eps_f = std::stof(argv[i]); - } else if (arg == "--adam-iter") { - if (++i >= argc) { - invalid_param = true; - break; - } - params->adam_n_iter = std::stoi(argv[i]); - } else if (arg == "--adam-alpha") { - if (++i >= argc) { - invalid_param = true; - break; - } - params->adam_alpha = std::stof(argv[i]); - } else if (arg == "--adam-min-alpha") { - if (++i >= argc) { - invalid_param = true; - break; - } - params->adam_min_alpha = std::stof(argv[i]); - } else if (arg == "--adam-decay") { - if (++i >= argc) { - invalid_param = true; - break; - } - params->adam_decay = std::stof(argv[i]); - } else if (arg == "--adam-decay-min-ndim") { - if (++i >= argc) { - invalid_param = true; - break; - } - params->adam_decay_min_ndim = std::stoi(argv[i]); - } else if (arg == "--adam-beta1") { - if (++i >= argc) { - invalid_param = true; - break; - } - params->adam_beta1 = std::stof(argv[i]); - } else if (arg == "--adam-beta2") { - if (++i >= argc) { - invalid_param = true; - break; - } - params->adam_beta2 = std::stof(argv[i]); - } else if (arg == "--adam-gclip") { - if (++i >= argc) { - invalid_param = true; - break; - } - params->adam_gclip = std::stof(argv[i]); - } else if (arg == "--lbfgs-iter") { - if (++i >= argc) { - invalid_param = true; - break; - } - params->lbfgs_n_iter = std::stoi(argv[i]); - } else if (arg == "--mem-model") { - if (++i >= argc) { - invalid_param = true; - break; - } - params->mem_model_gb = std::stoi(argv[i]); - } else if (arg == "--mem-compute") { - if (++i >= argc) { - invalid_param = true; - break; - } - params->mem_compute_gb = std::stoi(argv[i]); - } else if (arg == "--mem-compute0") { - if (++i >= argc) { - invalid_param = true; - break; - } - params->mem_compute0_gb = std::stoi(argv[i]); - } else if (arg == "-h" || arg == "--help") { - train_print_usage(argc, argv, &default_params); - exit(0); } else { fprintf(stderr, "error: unknown argument: %s\n", arg.c_str()); train_print_usage(argc, argv, &default_params); @@ -1927,65 +914,54 @@ bool train_params_parse(int argc, char ** argv, struct train_params * params) { train_print_usage(argc, argv, &default_params); exit(1); } + finish_processing_train_args(¶ms->common); return true; } -struct opt_callback_data { - struct train_params * params; - struct ggml_opt_context * opt; - struct llama_context * lctx; - llama_token * tokens_data; - size_t tokens_size; - int * samples_data; - size_t samples_size; - int shuffle_countdown; - struct ggml_tensor * tokens_input; - struct ggml_tensor * target_logits; - struct ggml_tensor * target_probs; +struct save_train_files_data { + const char * fn_checkpoint_out; + const char * fn_model_out; + const char * fn_vocab_model; + const char * pattern_fn_it; + const char * fn_latest; + struct my_llama_model * model; }; -void opt_callback(void * vdata, float * sched) { - struct opt_callback_data * data = (struct opt_callback_data *) vdata; - struct train_params * params = data->params; - struct ggml_opt_context * opt = data->opt; - int n_batch = params->n_batch; - - *sched = (opt->iter < params->warmup) - ? (float) opt->iter / (float) params->warmup - : cosine_decay_restart( - params->cos_decay_steps, - params->cos_decay_min, - opt->iter - params->warmup, - params->cos_decay_restart, - params->enable_restart); - float min_sched = params->adam_min_alpha / params->adam_alpha; - *sched = min_sched + *sched * (1.0f - min_sched); - - int impr_plot = std::isnan(opt->loss_after) ? 0 : -std::lround(1 + (opt->loss_before - opt->loss_after) * 10.0f); - printf("%s: iter=%*d, sched=%f loss0=%f loss=%f | improvement: %*d>\n", __func__, 6, opt->iter, *sched, opt->loss_before, opt->loss_after, impr_plot, (int)0); - - if (data->shuffle_countdown < n_batch) { - printf("%s: reshuffle samples\n", __func__); - shuffle_ints(data->samples_data, data->samples_data + data->samples_size); - for (int i = 0; i < (int) data->samples_size; ++i) { - GGML_ASSERT(data->samples_data[i]+params->n_ctx-1 < (int) data->tokens_size); - } - data->shuffle_countdown = data->samples_size; +static void save_train_files(void * vdata, struct train_state * train) { + struct save_train_files_data * data = (struct save_train_files_data *) vdata; + int64_t iter = train->opt->iter; + + if (strlen(data->fn_checkpoint_out) > 0) { + save_checkpoint_file(get_train_filename(data->fn_checkpoint_out, data->pattern_fn_it, data->fn_latest, iter).c_str(), data->fn_vocab_model, data->model, train); + save_checkpoint_file(get_train_filename(data->fn_checkpoint_out, data->pattern_fn_it, data->fn_latest, -1 ).c_str(), data->fn_vocab_model, data->model, train); + } + if (strlen(data->fn_model_out) > 0) { + save_llama_model_file(get_train_filename(data->fn_model_out, data->pattern_fn_it, data->fn_latest, iter).c_str(), data->fn_vocab_model, data->model); + save_llama_model_file(get_train_filename(data->fn_model_out, data->pattern_fn_it, data->fn_latest, -1 ).c_str(), data->fn_vocab_model, data->model); + } +} - get_example_targets_batch( - data->lctx, - data->samples_data, - data->samples_size, - data->tokens_data, - data->tokens_size, - opt->iter, - data->tokens_input, - data->target_logits, - data->target_probs); - - data->shuffle_countdown -= n_batch; +static int64_t get_parameter_count(struct my_llama_model* model) { + int64_t nx = 0; + nx += ggml_nelements(model->tok_embeddings); + nx += ggml_nelements(model->norm); + nx += ggml_nelements(model->output); + + for (uint32_t i = 0; i < model->layers.size(); ++i) { + auto & layer = model->layers[i]; + nx += ggml_nelements(layer.attention_norm); + nx += ggml_nelements(layer.wq); + nx += ggml_nelements(layer.wk); + nx += ggml_nelements(layer.wv); + nx += ggml_nelements(layer.wo); + nx += ggml_nelements(layer.ffn_norm); + nx += ggml_nelements(layer.w1); + nx += ggml_nelements(layer.w2); + nx += ggml_nelements(layer.w3); + } + return nx; } int main(int argc, char ** argv) { @@ -1995,28 +971,23 @@ int main(int argc, char ** argv) { return 1; } - if (params.seed == LLAMA_DEFAULT_SEED) { - params.seed = time(NULL); + if (params.common.seed == LLAMA_DEFAULT_SEED) { + params.common.seed = time(NULL); } - printf("%s: seed: %u\n", __func__, params.seed); - srand(params.seed); + printf("%s: seed: %u\n", __func__, params.common.seed); + srand(params.common.seed); - struct llama_context_params llama_params = llama_context_default_params(); - llama_params.vocab_only = true; + struct llama_model_params mparams = llama_model_default_params(); + mparams.vocab_only = true; - struct llama_model * lmodel = llama_load_model_from_file(params.fn_vocab_model, llama_params); - struct llama_context * lctx = llama_new_context_with_model(lmodel, llama_params); + struct llama_context_params cparams = llama_context_default_params(); - printf("%s: tokenize training data\n", __func__); - std::vector train_tokens; - if (tokenize_file(lctx, params.fn_train_data, train_tokens) < 0) { - fprintf(stderr, "%s: failed to tokenize file '%s'\n", __func__, params.fn_train_data); - } - printf("%s: number of training tokens: %d\n", __func__, (int) train_tokens.size()); + struct llama_model * lmodel = llama_load_model_from_file(params.fn_vocab_model, mparams); + struct llama_context * lctx = llama_new_context_with_model(lmodel, cparams); struct my_llama_model model; - model.hparams.n_vocab = llama_n_vocab(lctx); - model.hparams.n_ctx = params.n_ctx; + model.hparams.n_vocab = llama_n_vocab(lmodel); + model.hparams.n_ctx = params.common.n_ctx; model.hparams.n_embd = params.n_embd; model.hparams.n_head = params.n_head; model.hparams.n_layer = params.n_layer; @@ -2027,243 +998,311 @@ int main(int argc, char ** argv) { model.hparams.rope_freq_base = params.rope_freq_base; model.hparams.rope_freq_scale = params.rope_freq_scale; - print_params(&model.hparams); - - std::vector token_noccurs; - std::vector token_notavail; - token_noccurs.resize(model.hparams.n_vocab, 0); - token_notavail.resize(model.hparams.n_vocab, true); - for (int i = 0; i < (int) train_tokens.size(); ++i) { - ++token_noccurs[train_tokens[i]]; - token_notavail[train_tokens[i]] = false; - } - - std::vector token_freq; - token_freq.resize(model.hparams.n_vocab, 0); - int n_unique_tokens = 0; - for (int i = 0; i < (int) token_noccurs.size(); ++i) { - token_freq[i] = (float) token_noccurs[i] / (float) train_tokens.size(); - n_unique_tokens += (token_noccurs[i] > 0) ? 1 : 0; - } - printf("%s: number of unique tokens: %d\n", __func__, n_unique_tokens); + struct train_state * train = init_train_state(); + struct ggml_opt_context * opt = train->opt; + + // set opt params from command line + opt->params = ggml_opt_default_params(GGML_OPT_ADAM); + opt->params.print_forward_graph = false; + opt->params.print_backward_graph = false; + opt->params.n_threads = params.common.n_threads; + opt->params.past = params.common.opt_past; + opt->params.delta = params.common.opt_delta; + opt->params.max_no_improvement = params.common.opt_max_no_improvement; + opt->params.n_gradient_accumulation = params.common.n_gradient_accumulation; + opt->params.adam.n_iter = params.common.adam_n_iter; + opt->params.adam.sched = 1.0f; + opt->params.adam.alpha = params.common.adam_alpha; + opt->params.adam.decay = params.common.adam_decay; + opt->params.adam.decay_min_ndim = params.common.adam_decay_min_ndim; + opt->params.adam.beta1 = params.common.adam_beta1; + opt->params.adam.beta2 = params.common.adam_beta2; + opt->params.adam.gclip = params.common.adam_gclip; + opt->params.adam.eps_f = params.common.adam_eps_f; - struct ggml_init_params lcparams; - lcparams.mem_size = 1024ll*1024ll*1024ll*((size_t) params.mem_model_gb); - lcparams.mem_buffer = NULL; - lcparams.no_alloc = false; + printf("%s: init model\n", __func__); + bool existed = load_checkpoint_file(params.common.fn_checkpoint_in, &model, train); + if (existed) { + // overwrite last n_ctx with user provided n_ctx + if (params.common.custom_n_ctx) { + model.hparams.n_ctx = params.common.n_ctx; + } - model.ctx = ggml_init(lcparams); + const bool opt_past_changed = opt->params.past != params.common.opt_past; - int n_tokens = model.hparams.n_ctx; - int n_vocab = model.hparams.n_vocab; - int n_batch = params.n_batch; - - struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context)); - memset(opt, 0, sizeof(struct ggml_opt_context)); - - struct ggml_opt_params opt_params_adam = ggml_opt_default_params(GGML_OPT_ADAM); - struct ggml_opt_params opt_params_lbfgs = ggml_opt_default_params(GGML_OPT_LBFGS); - opt_params_adam.print_forward_graph = false; - opt_params_adam.print_backward_graph = false; - opt_params_adam.n_threads = params.n_threads; - opt_params_adam.past = params.opt_past; - opt_params_adam.delta = params.opt_delta; - opt_params_adam.max_no_improvement = params.opt_max_no_improvement; - opt_params_adam.adam.n_iter = params.adam_n_iter; - opt_params_adam.adam.sched = 1.0f; - opt_params_adam.adam.alpha = params.adam_alpha; - opt_params_adam.adam.decay = params.adam_decay; - opt_params_adam.adam.decay_min_ndim = params.adam_decay_min_ndim; - opt_params_adam.adam.beta1 = params.adam_beta1; - opt_params_adam.adam.beta2 = params.adam_beta2; - opt_params_adam.adam.gclip = params.adam_gclip; - opt_params_adam.adam.eps_f = params.adam_eps_f; - - opt_params_lbfgs.print_forward_graph = false; - opt_params_lbfgs.print_backward_graph = false; - opt_params_lbfgs.n_threads = params.n_threads; - opt_params_adam.past = params.opt_past; - opt_params_adam.delta = params.opt_delta; - opt_params_adam.max_no_improvement = params.opt_max_no_improvement; - opt_params_lbfgs.lbfgs.n_iter = params.lbfgs_n_iter; - - opt->ctx = model.ctx; - opt->params = params.use_adam ? opt_params_adam : opt_params_lbfgs; - - printf("%s: init model\n", __func__); - bool existed = load_checkpoint_file(params.fn_checkpoint_in, &model, opt); - if (!existed) { + if (opt_past_changed) { + die("Optimizer parameter '--opt-past N' differs from checkpoint file. To use different value train from scratch with empty input checkpoint, e.g --checkpoint-in ''. Aborting"); + // need to discard previous optimizer past function value statistics and opt_init with new shapes + // TODO + } + } else { init_model(&model); + randomize_model(&model, params.common.seed, 0.0f, 1.0f, -1.0f, +1.0f); + if (!params.only_write_model) { + ggml_opt_init(opt->ctx, opt, opt->params, get_parameter_count(&model)); + } } - set_param_model(&model); - - opt->params = params.use_adam ? opt_params_adam : opt_params_lbfgs; + opt->iter = train->train_its; - opt->iter = model.train_its; - printf("%s: opt iter %d\n", __func__, opt->iter); - - bool from_scratch = !existed; - if (from_scratch) { - randomize_model(&model, params.seed, 0.0f, 1.0f, -1.0f, +1.0f); + print_params(&model.hparams); + printf("%s: total train_iterations %llu\n", __func__, (long long unsigned) train->train_its); + printf("%s: seen train_samples %llu\n", __func__, (long long unsigned) train->train_samples); + printf("%s: seen train_tokens %llu\n", __func__, (long long unsigned) train->train_tokens); + printf("%s: completed train_epochs %llu\n", __func__, (long long unsigned) train->train_epochs); + printf("%s: model_size = %zu bytes (%.1f MB)\n", __func__, (ggml_used_mem(model.ctx) + model.data.size()), (float) (ggml_used_mem(model.ctx) + model.data.size()) / (1024.0f*1024.0f)); + + if (params.only_write_model) { + save_train_files_data save_data; + save_data.fn_checkpoint_out = ""; + save_data.fn_model_out = params.fn_model_out; + save_data.fn_vocab_model = params.fn_vocab_model; + save_data.pattern_fn_it = params.common.pattern_fn_it; + save_data.fn_latest = params.common.fn_latest; + save_data.model = &model; + + save_train_files(&save_data, train); + + free_train_state(train); + ggml_free(model.ctx); + llama_free(lctx); + llama_free_model(lmodel); + return 0; } - printf("used_mem model: %zu bytes\n", ggml_used_mem(model.ctx)); - // ggml_print_tensor_objects(model.ctx); + printf("%s: opt_size = %zu bytes (%.1f MB)\n", __func__, ggml_get_mem_size(opt->ctx), (float) ggml_get_mem_size(opt->ctx) / (1024.0f*1024.0f)); + printf("%s: opt iter %d\n", __func__, opt->iter); - // TODO: use std::vector intead of "new" - size_t compute_size = 1024ll*1024ll*1024ll*((size_t) params.mem_compute_gb); - uint8_t * compute_addr = new uint8_t[compute_size]; + int n_tokens = model.hparams.n_ctx; + int n_vocab = model.hparams.n_vocab; + int n_batch = params.common.n_batch; - size_t size_buf_0 = 1024ll*1024ll*1024ll*((size_t) params.mem_compute0_gb); - uint8_t * compute_buf_0 = new uint8_t[size_buf_0]; + std::vector mem_input_data; + std::vector mem_compute_data; ggml_allocr * alloc = NULL; - if (params.use_alloc) { - static const size_t tensor_alignment = 32; - alloc = ggml_allocr_new(compute_buf_0, size_buf_0, tensor_alignment); - } - - GGML_ASSERT(n_tokens < (int) train_tokens.size()); - std::vector train_samples; - train_samples.push_back(0); - for (int i = 1; i < (int) train_tokens.size() - n_tokens; ++i) { - if (!params.samples_start_after_nl || (train_tokens[i-1] == llama_token_nl(lctx))) { - train_samples.push_back(i); - } - } - shuffle_ints(train_samples.data(), train_samples.data() + train_samples.size()); - for (int i = 0; i < (int) train_samples.size(); ++i) { - GGML_ASSERT(train_samples[i]+n_tokens-1 < (int) train_tokens.size()); - } - - printf("%s: begin training\n", __func__); - - struct opt_callback_data opt_cb_data; - opt_cb_data.params = ¶ms; - opt_cb_data.opt = opt; - opt_cb_data.lctx = lctx; - opt_cb_data.tokens_data = train_tokens.data(); - opt_cb_data.tokens_size = train_tokens.size(); - opt_cb_data.samples_data = train_samples.data(); - opt_cb_data.samples_size = train_samples.size(); - opt_cb_data.shuffle_countdown = train_samples.size(); - opt_cb_data.tokens_input = NULL; - opt_cb_data.target_logits = NULL; - opt_cb_data.target_probs = NULL; - - int64_t t0 = ggml_time_ms(); - - for (int ex = 0; ex < params.n_examples; ++ex) { - if (ex*n_batch >= (int) train_samples.size()) { - shuffle_ints(train_samples.data(), train_samples.data() + train_samples.size()); - for (int i = 0; i < (int) train_samples.size(); ++i) { - GGML_ASSERT(train_samples[i]+n_tokens-1 < (int) train_tokens.size()); - } - } - - struct ggml_init_params cparams = { - compute_size, // mem_size - compute_addr, // mem_buffer - false, // no_alloc - }; - struct ggml_context * ctx0 = ggml_init(cparams); - - ggml_set_no_alloc(ctx0, false); - - // don't use alloc for input tensors, so we can safely fill them with data - //struct ggml_tensor * after_opt_best_samples = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_tokens, n_batch); - //struct ggml_tensor * after_opt_probs = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_vocab, n_tokens, n_batch); - struct ggml_tensor * tokens_input = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_tokens, n_batch); - struct ggml_tensor * target_logits = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_vocab, n_tokens, n_batch); - struct ggml_tensor * target_probs = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_vocab, n_tokens, n_batch); - - ggml_set_no_alloc(ctx0, (alloc != NULL)); - if (alloc) { - ggml_allocr_reset(alloc); - } - - opt_cb_data.tokens_input = tokens_input; - opt_cb_data.target_logits = target_logits; - opt_cb_data.target_probs = target_probs; - - int n_past = 0; - - struct ggml_cgraph * gf = ggml_new_graph(ctx0); - struct ggml_cgraph * gb = ggml_new_graph(ctx0); - struct ggml_cgraph * gb_tmp = params.use_checkpointing - ? ggml_new_graph(ctx0) + // context for input tensors without their data + struct ggml_init_params ctx_input_params = { + ggml_tensor_overhead() * 2, // mem_size + NULL, // mem_buffer + true, // no_alloc + }; + struct ggml_context * ctx_input = ggml_init(ctx_input_params); + + // the input tensors + struct ggml_tensor * tokens_input = ggml_new_tensor_2d(ctx_input, GGML_TYPE_I32, n_tokens, n_batch); + struct ggml_tensor * target_probs = ggml_new_tensor_3d(ctx_input, GGML_TYPE_F32, n_vocab, n_tokens, n_batch); + + // measure required memory for input tensors + alloc = ggml_allocr_new_measure(tensor_alignment); + ggml_allocr_alloc(alloc, tokens_input); + ggml_allocr_alloc(alloc, target_probs); + size_t max_input_size = ggml_allocr_max_size(alloc) + tensor_alignment; + ggml_allocr_free(alloc); + printf("%s: input_size = %zu bytes (%.1f MB)\n", __func__, max_input_size, (float) max_input_size / (1024.0f*1024.0f)); + + // allocate input tensors + mem_input_data.resize(max_input_size); + alloc = ggml_allocr_new(mem_input_data.data(), mem_input_data.size(), tensor_alignment); + ggml_allocr_alloc(alloc, tokens_input); + ggml_allocr_alloc(alloc, target_probs); + ggml_allocr_free(alloc); + + // context for compute tensors without their data + size_t estimated_compute_size_wo_data = ( + ggml_tensor_overhead()*GGML_MAX_NODES*2 + + (GGML_OBJECT_SIZE+GGML_GRAPH_SIZE)*( + params.common.use_checkpointing ? 3 : 2 + ) + ); + struct ggml_init_params ctx_compute_params = { + estimated_compute_size_wo_data, // mem_size + NULL, // mem_buffer + true, // no_alloc + }; + struct ggml_context * ctx_compute = NULL; + + struct ggml_tensor * loss = NULL; + struct ggml_tensor * logits = NULL; + + struct ggml_cgraph * gf = NULL; + struct ggml_cgraph * gb = NULL; + struct ggml_cgraph * gb_tmp = NULL; + + // measure required memory for compute tensors + size_t best_compute_size = SIZE_MAX; + enum ggml_cgraph_eval_order best_order = GGML_CGRAPH_EVAL_ORDER_COUNT; + // find best evaluation order + for (unsigned order = 0; order < (unsigned) GGML_CGRAPH_EVAL_ORDER_COUNT; ++order) { + ctx_compute = ggml_init(ctx_compute_params); + alloc = ggml_allocr_new_measure(tensor_alignment); + gf = ggml_new_graph(ctx_compute); + gf->order = (enum ggml_cgraph_eval_order) order; + gb = ggml_new_graph(ctx_compute); + gb_tmp = params.common.use_checkpointing + ? ggml_new_graph(ctx_compute) : NULL; - - GGML_ASSERT(n_past == 0); - - struct ggml_tensor * loss = NULL; - struct ggml_tensor * logits = NULL; - loss = llama_build_train_graphs( - &model, alloc, ctx0, + &model, alloc, ctx_compute, gf, gb, gb_tmp, &logits, tokens_input, target_probs, n_tokens, n_batch, - params.use_flash, - params.use_checkpointing + params.common.use_flash, + params.common.use_checkpointing ); + size_t max_compute_size = ggml_allocr_max_size(alloc) + tensor_alignment; + if (max_compute_size < best_compute_size) { + best_compute_size = max_compute_size; + best_order = gf->order; + } + ggml_allocr_free(alloc); + ggml_free(ctx_compute); + } + size_t max_compute_size = best_compute_size; + printf("%s: compute_size = %zu bytes (%.1f MB)\n", __func__, max_compute_size, (float) max_compute_size / (1024.0f*1024.0f)); + printf("%s: evaluation order = %s\n", __func__, + (best_order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? "LEFT_TO_RIGHT" : + (best_order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? "RIGHT_TO_LEFT" : + "invalid"); + + // allocate compute tensors + mem_compute_data.resize(max_compute_size); + ctx_compute = ggml_init(ctx_compute_params); + alloc = ggml_allocr_new(mem_compute_data.data(), mem_compute_data.size(), tensor_alignment); + gf = ggml_new_graph(ctx_compute); + gf->order = best_order; + gb = ggml_new_graph(ctx_compute); + gb_tmp = params.common.use_checkpointing + ? ggml_new_graph(ctx_compute) + : NULL; + loss = llama_build_train_graphs( + &model, alloc, ctx_compute, + gf, gb, gb_tmp, + &logits, tokens_input, target_probs, + n_tokens, n_batch, + params.common.use_flash, + params.common.use_checkpointing + ); + ggml_allocr_free(alloc); - size_t used_mem_before_opt = ggml_used_mem(ctx0); - - opt->params.adam.sched = (opt->iter < params.warmup) - ? (float) opt->iter / (float) params.warmup - : cosine_decay_restart( - params.cos_decay_steps, - params.cos_decay_min, - opt->iter - params.warmup, - params.cos_decay_restart, - params.enable_restart); - - float min_sched = params.adam_min_alpha / params.adam_alpha; - opt->params.adam.sched = min_sched + opt->params.adam.sched * (1.0f - min_sched); - - printf("%s: opt->params.adam.sched %.5f\n", __func__, opt->params.adam.sched); - - ggml_opt_resume_g(ctx0, opt, loss, gf, gb, &opt_callback, (void *) &opt_cb_data); + std::vector train_tokens; + std::vector train_samples_begin; + std::vector train_samples_size; + printf("%s: tokenize training data\n", __func__); + tokenize_file(lctx, + params.common.fn_train_data, + params.common.sample_start, + params.common.include_sample_start, + params.common.overlapping_samples, + n_tokens, + train_tokens, + train_samples_begin, + train_samples_size); + GGML_ASSERT(train_samples_begin.size() == train_samples_size.size()); + + printf("%s: number of training tokens: %zu\n", __func__, train_tokens.size()); + + size_t shuffle_samples_hash = compute_samples_hash(params.common.fn_train_data, train_samples_begin.data(), train_samples_size.data(), train_samples_size.size()); + const bool changed_train_data = (shuffle_samples_hash != train->shuffle_samples_hash) || (train->shuffle_sample_count != train_samples_size.size()); + if (changed_train_data) { + printf("%s: train data seems to have changed. restarting shuffled epoch.\n", __func__); + } + if (params.common.force_reshuffle) { + printf("%s: forced reshuffling of data. restarting with newly shuffled epoch.\n", __func__); + } + if ((train->shuffle_rng_state_current == "") || changed_train_data || params.common.force_reshuffle) { + train->shuffle_rng_state_current = mt19937_seed_to_state(params.common.seed); + train->shuffle_sample_count = train_samples_size.size(); + train->shuffle_next_sample = 0; + train->shuffle_samples_hash = shuffle_samples_hash; + } + std::vector train_shuffled_samples_offs; + std::vector train_shuffled_samples_begin; + std::vector train_shuffled_samples_size; + train_shuffled_samples_offs.resize(train_samples_begin.size()); + train_shuffled_samples_begin.resize(train_samples_begin.size()); + train_shuffled_samples_size.resize(train_samples_size.size()); + train->shuffle_rng_state_next = shuffle_samples( + train->shuffle_rng_state_current, + train_shuffled_samples_offs.data(), + train_shuffled_samples_begin.data(), + train_shuffled_samples_size.data(), + train_samples_begin.data(), + train_samples_size.data(), + train_samples_size.size()); + printf("%s: begin training\n", __func__); - size_t used_mem_after_opt = ggml_used_mem(ctx0); + save_train_files_data save_data; + save_data.fn_checkpoint_out = params.common.fn_checkpoint_out; + save_data.fn_model_out = params.fn_model_out; + save_data.fn_vocab_model = params.fn_vocab_model; + save_data.pattern_fn_it = params.common.pattern_fn_it; + save_data.fn_latest = params.common.fn_latest; + save_data.model = &model; + + struct train_opt_callback_data opt_cb_data; + opt_cb_data.params = ¶ms.common; + opt_cb_data.train = train; + opt_cb_data.save_cb = &save_train_files; + opt_cb_data.save_data = &save_data; + opt_cb_data.lctx = lctx; + opt_cb_data.last_save_iter = opt->iter; + opt_cb_data.tokens_data = train_tokens.data(); + opt_cb_data.tokens_size = train_tokens.size(); + opt_cb_data.samples_begin = train_samples_begin.data(); + opt_cb_data.samples_size = train_samples_size.data(); + opt_cb_data.shuffled_samples_offs = train_shuffled_samples_offs.data(); + opt_cb_data.shuffled_samples_begin = train_shuffled_samples_begin.data(); + opt_cb_data.shuffled_samples_size = train_shuffled_samples_size.data(); + opt_cb_data.samples_count = train_samples_size.size(); + opt_cb_data.tokens_input = tokens_input; + opt_cb_data.target_probs = target_probs; + opt_cb_data.first_iter = opt->iter; + opt_cb_data.first_epoch = train->train_epochs; + opt_cb_data.iter_at_last_epoch = -1; + opt_cb_data.last_time = ggml_time_ms(); + opt_cb_data.millis_per_iter = 0.0; + + // measure required memory for work buffer + size_t max_work_size = ggml_graph_plan(gb, params.common.n_threads).work_size + GGML_OBJECT_SIZE; + printf("%s: work_size = %zu bytes (%.1f MB)\n", __func__, max_work_size, (float) max_work_size / (1024.0f*1024.0f)); + + // context for work buffer + struct ggml_init_params ctx_work_params = { + max_work_size, // mem_size + NULL, // mem_buffer + false, // no_alloc + }; + struct ggml_context * ctx_work = ggml_init(ctx_work_params); - int n_iter = params.use_adam ? params.adam_n_iter : params.lbfgs_n_iter; - model.train_its = opt->iter; - model.train_samples += n_batch * n_iter; - model.train_tokens += n_batch * n_tokens * n_iter; + int64_t t0 = ggml_time_ms(); - if (params.print_info_interval > 0 && ex % params.print_info_interval == 0) { - printf("Example %d, opt iter %d\n", ex, opt->iter); - printf("error_before_opt: %.6f\n", opt->loss_before); - printf("error_after_opt: %.6f\n", opt->loss_after); - printf("used_mem_before_opt: %zu bytes\n", used_mem_before_opt); - printf("used_mem_after_opt: %zu bytes\n", used_mem_after_opt); - } + ggml_opt_resume_g(ctx_work, opt, loss, gf, gb, &train_opt_callback, (void *) &opt_cb_data); - ggml_free(ctx0); - } + ggml_free(ctx_work); + ggml_free(ctx_compute); + ggml_free(ctx_input); int64_t t1 = ggml_time_ms(); - int64_t d = t1-t0; - double dd = (double) d * 1e-3; - printf("%s: total training time=%f seconds\n", __func__, dd); + printf("%s: total training time: ", __func__); + print_duration((double) (t1 - t0)); + printf("\n"); - if (params.n_examples > 0) { - save_checkpoint_file(params.fn_checkpoint_out, params.fn_vocab_model, &model, opt); - } + int new_iters = opt->iter - opt_cb_data.last_save_iter; + if (new_iters > 0) { + train->train_its += new_iters; + train->train_tokens += new_iters * opt->params.n_gradient_accumulation * n_batch * n_tokens; - if (strlen(params.fn_model_out) > 0) { - save_llama_model_file(params.fn_model_out, params.fn_vocab_model, &model); + save_train_files(&save_data, train); + opt_cb_data.last_save_iter = opt->iter; } if (alloc) { ggml_allocr_free(alloc); } - delete[] compute_addr; - delete[] compute_buf_0; + ggml_free(opt->ctx); + free_train_state(train); ggml_free(model.ctx); llama_free(lctx); llama_free_model(lmodel); diff --git a/flake.nix b/flake.nix index 1f69a4d5450c3..433d3d942ce40 100644 --- a/flake.nix +++ b/flake.nix @@ -34,7 +34,21 @@ with pkgs; [ openblas ] ); pkgs = import nixpkgs { inherit system; }; - nativeBuildInputs = with pkgs; [ cmake ninja pkgconfig ]; + nativeBuildInputs = with pkgs; [ cmake ninja pkg-config ]; + cudatoolkit_joined = with pkgs; symlinkJoin { + # HACK(Green-Sky): nix currently has issues with cmake findcudatoolkit + # see https://github.com/NixOS/nixpkgs/issues/224291 + # copied from jaxlib + name = "${cudaPackages.cudatoolkit.name}-merged"; + paths = [ + cudaPackages.cudatoolkit.lib + cudaPackages.cudatoolkit.out + ] ++ lib.optionals (lib.versionOlder cudaPackages.cudatoolkit.version "11") [ + # for some reason some of the required libs are in the targets/x86_64-linux + # directory; not sure why but this works around it + "${cudaPackages.cudatoolkit}/targets/${system}" + ]; + }; llama-python = pkgs.python3.withPackages (ps: with ps; [ numpy sentencepiece ]); postPatch = '' @@ -45,12 +59,15 @@ postInstall = '' mv $out/bin/main $out/bin/llama mv $out/bin/server $out/bin/llama-server + mkdir -p $out/include + cp ${src}/llama.h $out/include/ ''; cmakeFlags = [ "-DLLAMA_BUILD_SERVER=ON" "-DLLAMA_MPI=ON" "-DBUILD_SHARED_LIBS=ON" "-DCMAKE_SKIP_BUILD_RPATH=ON" ]; in { packages.default = pkgs.stdenv.mkDerivation { - inherit name src meta postPatch nativeBuildInputs buildInputs postInstall; + inherit name src meta postPatch nativeBuildInputs postInstall; + buildInputs = osSpecific; cmakeFlags = cmakeFlags ++ (if isAarch64 && isDarwin then [ "-DCMAKE_C_FLAGS=-D__ARM_FEATURE_DOTPROD=1" @@ -67,6 +84,13 @@ "-DLLAMA_CLBLAST=ON" ]; }; + packages.cuda = pkgs.stdenv.mkDerivation { + inherit name src meta postPatch nativeBuildInputs postInstall; + buildInputs = with pkgs; buildInputs ++ [ cudatoolkit_joined ]; + cmakeFlags = cmakeFlags ++ [ + "-DLLAMA_CUBLAS=ON" + ]; + }; packages.rocm = pkgs.stdenv.mkDerivation { inherit name src meta postPatch nativeBuildInputs postInstall; buildInputs = with pkgs; buildInputs ++ [ hip hipblas rocblas ]; diff --git a/ggml-alloc.c b/ggml-alloc.c index a1f6e7bf4f66e..805759db74fef 100644 --- a/ggml-alloc.c +++ b/ggml-alloc.c @@ -77,7 +77,7 @@ struct free_block { size_t size; }; -#define MAX_FREE_BLOCKS 128 +#define MAX_FREE_BLOCKS 256 struct ggml_allocr { void * data; @@ -131,6 +131,10 @@ static bool ggml_allocr_is_own(struct ggml_allocr * alloc, const struct ggml_ten return ptr >= alloc->data && (char *)ptr < (char *)alloc->data + alloc->max_size; } +static bool ggml_is_view(struct ggml_tensor * t) { + return t->view_src != NULL; +} + void ggml_allocr_alloc(struct ggml_allocr * alloc, struct ggml_tensor * tensor) { #ifdef GGML_ALLOCATOR_DEBUG GGML_ASSERT(!ggml_is_view(tensor)); // views generally get data pointer from one of their sources @@ -183,6 +187,7 @@ void ggml_allocr_alloc(struct ggml_allocr * alloc, struct ggml_tensor * tensor) } tensor->data = addr; + AT_PRINTF("%s: allocated data at %p\n", __func__, tensor->data); #ifdef GGML_ALLOCATOR_DEBUG add_allocated_tensor(alloc, tensor); @@ -214,7 +219,8 @@ static void ggml_allocr_free_tensor(struct ggml_allocr * alloc, struct ggml_tens size_t size = ggml_allocr_get_alloc_size(alloc, tensor); size = aligned_offset(NULL, size, alloc->alignment); - AT_PRINTF("%s: freeing %s (%zu bytes) - n_free_blocks = %d\n", __func__, tensor->name, size, alloc->n_free_blocks); + AT_PRINTF("%s: freeing %s at %p (%zu bytes) - n_free_blocks = %d\n", __func__, tensor->name, ptr, size, alloc->n_free_blocks); + AT_PRINTF("%s: alloc->data = %p alloc->data+alloc->size = %p alloc->data+alloc->max_size = %p\n", __func__, alloc->data, (char*)alloc->data + alloc->size, (char*)alloc->data + alloc->max_size); #ifdef GGML_ALLOCATOR_DEBUG remove_allocated_tensor(alloc, tensor); @@ -338,8 +344,8 @@ static void free_vmem(void * base_addr, size_t size) { // allocate uncommitted virtual memory to measure the size of the graph static void alloc_measure_vmem(void ** base_addr, size_t * size) { - // 1TB for 64-bit, 1GB for 32-bit - *size = sizeof(void *) == 4 ? 1ULL<<30 : 1ULL<<40; + // 128GB for 64-bit, 1GB for 32-bit + *size = sizeof(void *) == 4 ? 1ULL<<30 : 1ULL<<37; do { *base_addr = alloc_vmem(*size); if (*base_addr != NULL) { @@ -399,10 +405,6 @@ bool ggml_allocr_is_measure(struct ggml_allocr * alloc) { //////////// compute graph allocator -static bool ggml_is_view(struct ggml_tensor * t) { - return t->view_src != NULL; -} - static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) { if (a->type != b->type) { return false; @@ -631,3 +633,7 @@ static size_t ggml_allocr_alloc_graph_tensors_n( size_t ggml_allocr_alloc_graph(struct ggml_allocr * alloc, struct ggml_cgraph * graph) { return ggml_allocr_alloc_graph_tensors_n(alloc, &graph, 1, NULL, NULL); } + +size_t ggml_allocr_max_size(struct ggml_allocr * alloc) { + return alloc->max_size; +} diff --git a/ggml-alloc.h b/ggml-alloc.h index 9559da75871a6..0c224f174f396 100644 --- a/ggml-alloc.h +++ b/ggml-alloc.h @@ -19,6 +19,7 @@ GGML_API bool ggml_allocr_is_measure(struct ggml_allocr * alloc); GGML_API void ggml_allocr_reset(struct ggml_allocr * alloc); GGML_API void ggml_allocr_alloc(struct ggml_allocr * alloc, struct ggml_tensor * tensor); GGML_API size_t ggml_allocr_alloc_graph(struct ggml_allocr * alloc, struct ggml_cgraph * graph); +GGML_API size_t ggml_allocr_max_size(struct ggml_allocr * alloc); #ifdef __cplusplus diff --git a/ggml-cuda.cu b/ggml-cuda.cu index 00e9bbeae4449..86d1fe203a465 100644 --- a/ggml-cuda.cu +++ b/ggml-cuda.cu @@ -1,3 +1,4 @@ +#include #include #include #include @@ -13,10 +14,12 @@ #ifdef __HIP_PLATFORM_AMD__ // for rocblas_initialize() #include "rocblas/rocblas.h" -#endif +#endif // __HIP_PLATFORM_AMD__ +#define CUBLAS_COMPUTE_16F HIPBLAS_R_16F #define CUBLAS_COMPUTE_32F HIPBLAS_R_32F #define CUBLAS_COMPUTE_32F_FAST_16F HIPBLAS_R_32F #define CUBLAS_GEMM_DEFAULT HIPBLAS_GEMM_DEFAULT +#define CUBLAS_GEMM_DEFAULT_TENSOR_OP HIPBLAS_GEMM_DEFAULT #define CUBLAS_OP_N HIPBLAS_OP_N #define CUBLAS_OP_T HIPBLAS_OP_T #define CUBLAS_STATUS_SUCCESS HIPBLAS_STATUS_SUCCESS @@ -31,6 +34,9 @@ #define cublasSetStream hipblasSetStream #define cublasSgemm hipblasSgemm #define cublasStatus_t hipblasStatus_t +#define cudaDeviceCanAccessPeer hipDeviceCanAccessPeer +#define cudaDeviceDisablePeerAccess hipDeviceDisablePeerAccess +#define cudaDeviceEnablePeerAccess hipDeviceEnablePeerAccess #define cudaDeviceProp hipDeviceProp_t #define cudaDeviceSynchronize hipDeviceSynchronize #define cudaError_t hipError_t @@ -61,26 +67,36 @@ #define cudaStreamCreateWithFlags hipStreamCreateWithFlags #define cudaStreamNonBlocking hipStreamNonBlocking #define cudaStreamSynchronize hipStreamSynchronize -#define cudaStreamWaitEvent(stream, event) hipStreamWaitEvent(stream, event, 0) +#define cudaStreamWaitEvent(stream, event, flags) hipStreamWaitEvent(stream, event, flags) #define cudaStream_t hipStream_t #define cudaSuccess hipSuccess #else #include #include #include -#endif +#endif // defined(GGML_USE_HIPBLAS) #include "ggml-cuda.h" #include "ggml.h" -#define MIN_CC_DP4A 610 // minimum compute capability for __dp4a, an intrinsic for byte-wise dot products -#ifndef CC_TURING -#define CC_TURING 700 -#endif +#define MIN_CC_DP4A 610 // minimum compute capability for __dp4a, an intrinsic for byte-wise dot products +#define CC_TURING 700 +#define CC_OFFSET_AMD 1000000 +#define CC_RDNA2 CC_OFFSET_AMD + 1030 #if defined(GGML_USE_HIPBLAS) #define __CUDA_ARCH__ 1300 +#if defined(__gfx1100__) || defined(__gfx1101__) || defined(__gfx1102__) || defined(__gfx1103__) || \ + defined(__gfx1150__) || defined(__gfx1151__) +#define RDNA3 +#endif + +#if defined(__gfx1030__) || defined(__gfx1031__) || defined(__gfx1032__) || defined(__gfx1033__) || \ + defined(__gfx1034__) || defined(__gfx1035__) || defined(__gfx1036__) || defined(__gfx1037__) +#define RDNA2 +#endif + #ifndef __has_builtin #define __has_builtin(x) 0 #endif @@ -132,7 +148,7 @@ static __device__ __forceinline__ int __dp4a(const int a, const int b, int c) { #endif return c; } -#endif +#endif // defined(GGML_USE_HIPBLAS) #if defined(_MSC_VER) #pragma warning(disable: 4244 4267) // possible loss of data @@ -144,8 +160,11 @@ static_assert(sizeof(half) == sizeof(ggml_fp16_t), "wrong fp16 size"); do { \ cudaError_t err_ = (err); \ if (err_ != cudaSuccess) { \ - fprintf(stderr, "CUDA error %d at %s:%d: %s\n", err_, __FILE__, __LINE__, \ + int id; \ + cudaGetDevice(&id); \ + fprintf(stderr, "\nCUDA error %d at %s:%d: %s\n", err_, __FILE__, __LINE__, \ cudaGetErrorString(err_)); \ + fprintf(stderr, "current device: %d\n", id); \ exit(1); \ } \ } while (0) @@ -155,8 +174,11 @@ static_assert(sizeof(half) == sizeof(ggml_fp16_t), "wrong fp16 size"); do { \ cublasStatus_t err_ = (err); \ if (err_ != CUBLAS_STATUS_SUCCESS) { \ + int id; \ + cudaGetDevice(&id); \ fprintf(stderr, "\ncuBLAS error %d at %s:%d: %s\n", \ err_, __FILE__, __LINE__, cublasGetStatusString(err_)); \ + fprintf(stderr, "current device: %d\n", id); \ exit(1); \ } \ } while (0) @@ -165,12 +187,21 @@ static_assert(sizeof(half) == sizeof(ggml_fp16_t), "wrong fp16 size"); do { \ cublasStatus_t err_ = (err); \ if (err_ != CUBLAS_STATUS_SUCCESS) { \ + int id; \ + cudaGetDevice(&id); \ fprintf(stderr, "\ncuBLAS error %d at %s:%d\n", err_, __FILE__, __LINE__); \ + fprintf(stderr, "current device: %d\n", id); \ exit(1); \ } \ } while (0) #endif // CUDART_VERSION >= 11 +#if CUDART_VERSION >= 11100 +#define GGML_CUDA_ASSUME(x) __builtin_assume(x) +#else +#define GGML_CUDA_ASSUME(x) +#endif // CUDART_VERSION >= 11100 + #ifdef GGML_CUDA_F16 typedef half dfloat; // dequantize float typedef half2 dfloat2; @@ -207,15 +238,22 @@ static __device__ __forceinline__ int get_int_from_uint8_aligned(const uint8_t * return *((int *) (x8 + sizeof(int) * i32)); // assume at least 4 byte alignment } +template +using to_t_cuda_t = void (*)(const void * __restrict__ x, T * __restrict__ y, int k, cudaStream_t stream); +typedef to_t_cuda_t to_fp32_cuda_t; +typedef to_t_cuda_t to_fp16_cuda_t; + typedef void (*dequantize_kernel_t)(const void * vx, const int ib, const int iqs, dfloat2 & v); -typedef void (*to_fp32_cuda_t)(const void * __restrict__ x, float * __restrict__ y, int k, cudaStream_t stream); typedef void (*dot_kernel_k_t)(const void * __restrict__ vx, const int ib, const int iqs, const float * __restrict__ y, float & v); typedef void (*cpy_kernel_t)(const char * cx, char * cdst); typedef void (*ggml_cuda_func_t)(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst); -typedef void (*ggml_cuda_op_t)( - const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i, float * src0_ddf_i, - float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1, - cudaStream_t & cudaStream_main); +typedef void (*ggml_cuda_op_mul_mat_t)( + const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i, + const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols, + const int64_t src1_padded_row_size, const cudaStream_t & stream); +typedef void (*ggml_cuda_op_flatten_t)( + const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, + const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream); // QK = number of values after dequantization // QR = QK / number of values before dequantization @@ -396,11 +434,33 @@ static_assert(sizeof(block_q6_K) == sizeof(ggml_fp16_t) + 13*QK_K/16, "wrong q6_ static_assert(K_QUANTS_PER_ITERATION == 1 || K_QUANTS_PER_ITERATION == 2, "K_QUANTS_PER_ITERATION must be 1 or 2"); #endif +#ifndef GGML_CUDA_PEER_MAX_BATCH_SIZE +#define GGML_CUDA_PEER_MAX_BATCH_SIZE 128 +#endif // GGML_CUDA_PEER_MAX_BATCH_SIZE + +#define MUL_MAT_SRC1_COL_STRIDE 128 + +#define MAX_STREAMS 8 +static cudaStream_t g_cudaStreams[GGML_CUDA_MAX_DEVICES][MAX_STREAMS] = { nullptr }; + struct ggml_tensor_extra_gpu { void * data_device[GGML_CUDA_MAX_DEVICES]; // 1 pointer for each device for split tensors - cudaEvent_t events[GGML_CUDA_MAX_DEVICES]; // events for synchronizing multiple GPUs + cudaEvent_t events[GGML_CUDA_MAX_DEVICES][MAX_STREAMS]; // events for synchronizing multiple GPUs }; +// this is faster on Windows +// probably because the Windows CUDA libraries forget to make this check before invoking the drivers +inline cudaError_t ggml_cuda_set_device(const int device) { + int current_device; + CUDA_CHECK(cudaGetDevice(¤t_device)); + + if (device == current_device) { + return cudaSuccess; + } + + return cudaSetDevice(device); +} + static int g_device_count = -1; static int g_main_device = 0; static int g_compute_capabilities[GGML_CUDA_MAX_DEVICES]; @@ -408,13 +468,11 @@ static float g_tensor_split[GGML_CUDA_MAX_DEVICES] = {0}; static bool g_mul_mat_q = true; static void * g_scratch_buffer = nullptr; -static size_t g_scratch_size = 1024*1024*1024; // 1 GB by default +static size_t g_scratch_size = 0; // disabled by default static size_t g_scratch_offset = 0; static cublasHandle_t g_cublas_handles[GGML_CUDA_MAX_DEVICES] = {nullptr}; -static cudaStream_t g_cudaStreams_main[GGML_CUDA_MAX_DEVICES] = { nullptr }; - static __global__ void add_f32(const float * x, const float * y, float * dst, const int kx, const int ky) { const int i = blockDim.x*blockIdx.x + threadIdx.x; @@ -1464,6 +1522,14 @@ static __device__ void convert_f16(const void * vx, const int ib, const int iqs, v.y = x[ib + iqs + 1]; } +static __device__ void convert_f32(const void * vx, const int ib, const int iqs, dfloat2 & v){ + const float * x = (const float *) vx; + + // automatic half -> float type cast if dfloat == float + v.x = x[ib + iqs + 0]; + v.y = x[ib + iqs + 1]; +} + static __global__ void quantize_q8_1(const float * __restrict__ x, void * __restrict__ vy, const int kx, const int kx_padded) { const int ix = blockDim.x*blockIdx.x + threadIdx.x; @@ -1503,8 +1569,8 @@ static __global__ void quantize_q8_1(const float * __restrict__ x, void * __rest reinterpret_cast(y[ib].ds.y) = sum; } -template -static __global__ void dequantize_block(const void * __restrict__ vx, float * __restrict__ y, const int k) { +template +static __global__ void dequantize_block(const void * __restrict__ vx, dst_t * __restrict__ y, const int k) { const int i = blockDim.x*blockIdx.x + 2*threadIdx.x; if (i >= k) { @@ -2107,10 +2173,10 @@ template static __device__ __forceinlin const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh, int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) { - __builtin_assume(i_offset >= 0); - __builtin_assume(i_offset < nwarps); - __builtin_assume(k >= 0); - __builtin_assume(k < WARP_SIZE); + GGML_CUDA_ASSUME(i_offset >= 0); + GGML_CUDA_ASSUME(i_offset < nwarps); + GGML_CUDA_ASSUME(k >= 0); + GGML_CUDA_ASSUME(k < WARP_SIZE); const int kbx = k / QI4_0; const int kqsx = k % QI4_0; @@ -2201,10 +2267,10 @@ template static __device__ __forceinlin const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh, int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) { - __builtin_assume(i_offset >= 0); - __builtin_assume(i_offset < nwarps); - __builtin_assume(k >= 0); - __builtin_assume(k < WARP_SIZE); + GGML_CUDA_ASSUME(i_offset >= 0); + GGML_CUDA_ASSUME(i_offset < nwarps); + GGML_CUDA_ASSUME(k >= 0); + GGML_CUDA_ASSUME(k < WARP_SIZE); const int kbx = k / QI4_1; const int kqsx = k % QI4_1; @@ -2293,10 +2359,10 @@ template static __device__ __forceinlin const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh, int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) { - __builtin_assume(i_offset >= 0); - __builtin_assume(i_offset < nwarps); - __builtin_assume(k >= 0); - __builtin_assume(k < WARP_SIZE); + GGML_CUDA_ASSUME(i_offset >= 0); + GGML_CUDA_ASSUME(i_offset < nwarps); + GGML_CUDA_ASSUME(k >= 0); + GGML_CUDA_ASSUME(k < WARP_SIZE); const int kbx = k / QI5_0; const int kqsx = k % QI5_0; @@ -2407,10 +2473,10 @@ template static __device__ __forceinlin const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh, int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) { - __builtin_assume(i_offset >= 0); - __builtin_assume(i_offset < nwarps); - __builtin_assume(k >= 0); - __builtin_assume(k < WARP_SIZE); + GGML_CUDA_ASSUME(i_offset >= 0); + GGML_CUDA_ASSUME(i_offset < nwarps); + GGML_CUDA_ASSUME(k >= 0); + GGML_CUDA_ASSUME(k < WARP_SIZE); const int kbx = k / QI5_1; const int kqsx = k % QI5_1; @@ -2513,10 +2579,10 @@ template static __device__ __forceinlin const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh, int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) { - __builtin_assume(i_offset >= 0); - __builtin_assume(i_offset < nwarps); - __builtin_assume(k >= 0); - __builtin_assume(k < WARP_SIZE); + GGML_CUDA_ASSUME(i_offset >= 0); + GGML_CUDA_ASSUME(i_offset < nwarps); + GGML_CUDA_ASSUME(k >= 0); + GGML_CUDA_ASSUME(k < WARP_SIZE); const int kbx = k / QI8_0; const int kqsx = k % QI8_0; @@ -2604,10 +2670,10 @@ template static __device__ __forceinlin const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh, int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) { - __builtin_assume(i_offset >= 0); - __builtin_assume(i_offset < nwarps); - __builtin_assume(k >= 0); - __builtin_assume(k < WARP_SIZE); + GGML_CUDA_ASSUME(i_offset >= 0); + GGML_CUDA_ASSUME(i_offset < nwarps); + GGML_CUDA_ASSUME(k >= 0); + GGML_CUDA_ASSUME(k < WARP_SIZE); const int kbx = k / QI2_K; const int kqsx = k % QI2_K; @@ -2725,10 +2791,10 @@ template static __device__ __forceinlin const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh, int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) { - __builtin_assume(i_offset >= 0); - __builtin_assume(i_offset < nwarps); - __builtin_assume(k >= 0); - __builtin_assume(k < WARP_SIZE); + GGML_CUDA_ASSUME(i_offset >= 0); + GGML_CUDA_ASSUME(i_offset < nwarps); + GGML_CUDA_ASSUME(k >= 0); + GGML_CUDA_ASSUME(k < WARP_SIZE); const int kbx = k / QI3_K; const int kqsx = k % QI3_K; @@ -2943,10 +3009,10 @@ template static __device__ __forceinlin const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh, int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) { - __builtin_assume(i_offset >= 0); - __builtin_assume(i_offset < nwarps); - __builtin_assume(k >= 0); - __builtin_assume(k < WARP_SIZE); + GGML_CUDA_ASSUME(i_offset >= 0); + GGML_CUDA_ASSUME(i_offset < nwarps); + GGML_CUDA_ASSUME(k >= 0); + GGML_CUDA_ASSUME(k < WARP_SIZE); const int kbx = k / QI4_K; // == 0 if QK_K == 256 const int kqsx = k % QI4_K; // == k if QK_K == 256 @@ -3124,10 +3190,10 @@ template static __device__ __forceinlin const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh, int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) { - __builtin_assume(i_offset >= 0); - __builtin_assume(i_offset < nwarps); - __builtin_assume(k >= 0); - __builtin_assume(k < WARP_SIZE); + GGML_CUDA_ASSUME(i_offset >= 0); + GGML_CUDA_ASSUME(i_offset < nwarps); + GGML_CUDA_ASSUME(k >= 0); + GGML_CUDA_ASSUME(k < WARP_SIZE); const int kbx = k / QI5_K; // == 0 if QK_K == 256 const int kqsx = k % QI5_K; // == k if QK_K == 256 @@ -3253,10 +3319,10 @@ template static __device__ __forceinlin const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh, int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) { - __builtin_assume(i_offset >= 0); - __builtin_assume(i_offset < nwarps); - __builtin_assume(k >= 0); - __builtin_assume(k < WARP_SIZE); + GGML_CUDA_ASSUME(i_offset >= 0); + GGML_CUDA_ASSUME(i_offset < nwarps); + GGML_CUDA_ASSUME(k >= 0); + GGML_CUDA_ASSUME(k < WARP_SIZE); const int kbx = k / QI6_K; // == 0 if QK_K == 256 const int kqsx = k % QI6_K; // == k if QK_K == 256 @@ -3444,6 +3510,12 @@ static __device__ __forceinline__ void mul_mat_q( } } +#define MMQ_X_Q4_0_RDNA2 64 +#define MMQ_Y_Q4_0_RDNA2 128 +#define NWARPS_Q4_0_RDNA2 8 +#define MMQ_X_Q4_0_RDNA1 64 +#define MMQ_Y_Q4_0_RDNA1 64 +#define NWARPS_Q4_0_RDNA1 8 #define MMQ_X_Q4_0_AMPERE 64 #define MMQ_Y_Q4_0_AMPERE 128 #define NWARPS_Q4_0_AMPERE 4 @@ -3451,11 +3523,32 @@ static __device__ __forceinline__ void mul_mat_q( #define MMQ_Y_Q4_0_PASCAL 64 #define NWARPS_Q4_0_PASCAL 8 -template static __global__ void mul_mat_q4_0( +template static __global__ void +#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) +#if defined(RDNA3) || defined(RDNA2) + __launch_bounds__(WARP_SIZE*NWARPS_Q4_0_RDNA2, 2) +#endif // defined(RDNA3) || defined(RDNA2) +#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) + mul_mat_q4_0( const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst, const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) { -#if __CUDA_ARCH__ >= CC_TURING +#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) +#if defined(RDNA3) || defined(RDNA2) + const int mmq_x = MMQ_X_Q4_0_RDNA2; + const int mmq_y = MMQ_Y_Q4_0_RDNA2; + const int nwarps = NWARPS_Q4_0_RDNA2; +#else + const int mmq_x = MMQ_X_Q4_0_RDNA1; + const int mmq_y = MMQ_Y_Q4_0_RDNA1; + const int nwarps = NWARPS_Q4_0_RDNA1; +#endif // defined(RDNA3) || defined(RDNA2) + + mul_mat_q, + load_tiles_q4_0, VDR_Q4_0_Q8_1_MMQ, vec_dot_q4_0_q8_1_mul_mat> + (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); + +#elif __CUDA_ARCH__ >= CC_TURING const int mmq_x = MMQ_X_Q4_0_AMPERE; const int mmq_y = MMQ_Y_Q4_0_AMPERE; const int nwarps = NWARPS_Q4_0_AMPERE; @@ -3478,6 +3571,12 @@ template static __global__ void mul_mat_q4_0( #endif // __CUDA_ARCH__ >= CC_TURING } +#define MMQ_X_Q4_1_RDNA2 64 +#define MMQ_Y_Q4_1_RDNA2 128 +#define NWARPS_Q4_1_RDNA2 8 +#define MMQ_X_Q4_1_RDNA1 64 +#define MMQ_Y_Q4_1_RDNA1 64 +#define NWARPS_Q4_1_RDNA1 8 #define MMQ_X_Q4_1_AMPERE 64 #define MMQ_Y_Q4_1_AMPERE 128 #define NWARPS_Q4_1_AMPERE 4 @@ -3486,14 +3585,33 @@ template static __global__ void mul_mat_q4_0( #define NWARPS_Q4_1_PASCAL 8 template static __global__ void -#if __CUDA_ARCH__ < CC_TURING +#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) +#if defined(RDNA3) || defined(RDNA2) + __launch_bounds__(WARP_SIZE*NWARPS_Q4_1_RDNA2, 2) +#endif // defined(RDNA3) || defined(RDNA2) +#elif __CUDA_ARCH__ < CC_TURING __launch_bounds__(WARP_SIZE*NWARPS_Q4_1_PASCAL, 2) #endif // __CUDA_ARCH__ < CC_TURING mul_mat_q4_1( const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst, const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) { -#if __CUDA_ARCH__ >= CC_TURING +#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) +#if defined(RDNA3) || defined(RDNA2) + const int mmq_x = MMQ_X_Q4_1_RDNA2; + const int mmq_y = MMQ_Y_Q4_1_RDNA2; + const int nwarps = NWARPS_Q4_1_RDNA2; +#else + const int mmq_x = MMQ_X_Q4_1_RDNA1; + const int mmq_y = MMQ_Y_Q4_1_RDNA1; + const int nwarps = NWARPS_Q4_1_RDNA1; +#endif // defined(RDNA3) || defined(RDNA2) + + mul_mat_q, + load_tiles_q4_1, VDR_Q4_1_Q8_1_MMQ, vec_dot_q4_1_q8_1_mul_mat> + (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); + +#elif __CUDA_ARCH__ >= CC_TURING const int mmq_x = MMQ_X_Q4_1_AMPERE; const int mmq_y = MMQ_Y_Q4_1_AMPERE; const int nwarps = NWARPS_Q4_1_AMPERE; @@ -3516,6 +3634,12 @@ template static __global__ void #endif // __CUDA_ARCH__ >= CC_TURING } +#define MMQ_X_Q5_0_RDNA2 64 +#define MMQ_Y_Q5_0_RDNA2 128 +#define NWARPS_Q5_0_RDNA2 8 +#define MMQ_X_Q5_0_RDNA1 64 +#define MMQ_Y_Q5_0_RDNA1 64 +#define NWARPS_Q5_0_RDNA1 8 #define MMQ_X_Q5_0_AMPERE 128 #define MMQ_Y_Q5_0_AMPERE 64 #define NWARPS_Q5_0_AMPERE 4 @@ -3523,11 +3647,32 @@ template static __global__ void #define MMQ_Y_Q5_0_PASCAL 64 #define NWARPS_Q5_0_PASCAL 8 -template static __global__ void mul_mat_q5_0( +template static __global__ void +#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) +#if defined(RDNA3) || defined(RDNA2) + __launch_bounds__(WARP_SIZE*NWARPS_Q5_0_RDNA2, 2) +#endif // defined(RDNA3) || defined(RDNA2) +#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) + mul_mat_q5_0( const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst, const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) { -#if __CUDA_ARCH__ >= CC_TURING +#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) +#if defined(RDNA3) || defined(RDNA2) + const int mmq_x = MMQ_X_Q5_0_RDNA2; + const int mmq_y = MMQ_Y_Q5_0_RDNA2; + const int nwarps = NWARPS_Q5_0_RDNA2; +#else + const int mmq_x = MMQ_X_Q5_0_RDNA1; + const int mmq_y = MMQ_Y_Q5_0_RDNA1; + const int nwarps = NWARPS_Q5_0_RDNA1; +#endif // defined(RDNA3) || defined(RDNA2) + + mul_mat_q, + load_tiles_q5_0, VDR_Q5_0_Q8_1_MMQ, vec_dot_q5_0_q8_1_mul_mat> + (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); + +#elif __CUDA_ARCH__ >= CC_TURING const int mmq_x = MMQ_X_Q5_0_AMPERE; const int mmq_y = MMQ_Y_Q5_0_AMPERE; const int nwarps = NWARPS_Q5_0_AMPERE; @@ -3550,6 +3695,12 @@ template static __global__ void mul_mat_q5_0( #endif // __CUDA_ARCH__ >= CC_TURING } +#define MMQ_X_Q5_1_RDNA2 64 +#define MMQ_Y_Q5_1_RDNA2 128 +#define NWARPS_Q5_1_RDNA2 8 +#define MMQ_X_Q5_1_RDNA1 64 +#define MMQ_Y_Q5_1_RDNA1 64 +#define NWARPS_Q5_1_RDNA1 8 #define MMQ_X_Q5_1_AMPERE 128 #define MMQ_Y_Q5_1_AMPERE 64 #define NWARPS_Q5_1_AMPERE 4 @@ -3557,11 +3708,32 @@ template static __global__ void mul_mat_q5_0( #define MMQ_Y_Q5_1_PASCAL 64 #define NWARPS_Q5_1_PASCAL 8 -template static __global__ void mul_mat_q5_1( +template static __global__ void +#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) +#if defined(RDNA3) || defined(RDNA2) + __launch_bounds__(WARP_SIZE*NWARPS_Q5_1_RDNA2, 2) +#endif // defined(RDNA3) || defined(RDNA2) +#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) +mul_mat_q5_1( const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst, const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) { -#if __CUDA_ARCH__ >= CC_TURING +#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) +#if defined(RDNA3) || defined(RDNA2) + const int mmq_x = MMQ_X_Q5_1_RDNA2; + const int mmq_y = MMQ_Y_Q5_1_RDNA2; + const int nwarps = NWARPS_Q5_1_RDNA2; +#else + const int mmq_x = MMQ_X_Q5_1_RDNA1; + const int mmq_y = MMQ_Y_Q5_1_RDNA1; + const int nwarps = NWARPS_Q5_1_RDNA1; +#endif // defined(RDNA3) || defined(RDNA2) + + mul_mat_q, + load_tiles_q5_1, VDR_Q5_1_Q8_1_MMQ, vec_dot_q5_1_q8_1_mul_mat> + (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); + +#elif __CUDA_ARCH__ >= CC_TURING const int mmq_x = MMQ_X_Q5_1_AMPERE; const int mmq_y = MMQ_Y_Q5_1_AMPERE; const int nwarps = NWARPS_Q5_1_AMPERE; @@ -3584,6 +3756,12 @@ template static __global__ void mul_mat_q5_1( #endif // __CUDA_ARCH__ >= CC_TURING } +#define MMQ_X_Q8_0_RDNA2 64 +#define MMQ_Y_Q8_0_RDNA2 128 +#define NWARPS_Q8_0_RDNA2 8 +#define MMQ_X_Q8_0_RDNA1 64 +#define MMQ_Y_Q8_0_RDNA1 64 +#define NWARPS_Q8_0_RDNA1 8 #define MMQ_X_Q8_0_AMPERE 128 #define MMQ_Y_Q8_0_AMPERE 64 #define NWARPS_Q8_0_AMPERE 4 @@ -3591,11 +3769,32 @@ template static __global__ void mul_mat_q5_1( #define MMQ_Y_Q8_0_PASCAL 64 #define NWARPS_Q8_0_PASCAL 8 -template static __global__ void mul_mat_q8_0( +template static __global__ void +#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) +#if defined(RDNA3) || defined(RDNA2) + __launch_bounds__(WARP_SIZE*NWARPS_Q8_0_RDNA2, 2) +#endif // defined(RDNA3) || defined(RDNA2) +#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) + mul_mat_q8_0( const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst, const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) { -#if __CUDA_ARCH__ >= CC_TURING +#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) +#if defined(RDNA3) || defined(RDNA2) + const int mmq_x = MMQ_X_Q8_0_RDNA2; + const int mmq_y = MMQ_Y_Q8_0_RDNA2; + const int nwarps = NWARPS_Q8_0_RDNA2; +#else + const int mmq_x = MMQ_X_Q8_0_RDNA1; + const int mmq_y = MMQ_Y_Q8_0_RDNA1; + const int nwarps = NWARPS_Q8_0_RDNA1; +#endif // defined(RDNA3) || defined(RDNA2) + + mul_mat_q, + load_tiles_q8_0, VDR_Q8_0_Q8_1_MMQ, vec_dot_q8_0_q8_1_mul_mat> + (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); + +#elif __CUDA_ARCH__ >= CC_TURING const int mmq_x = MMQ_X_Q8_0_AMPERE; const int mmq_y = MMQ_Y_Q8_0_AMPERE; const int nwarps = NWARPS_Q8_0_AMPERE; @@ -3618,6 +3817,12 @@ template static __global__ void mul_mat_q8_0( #endif // __CUDA_ARCH__ >= CC_TURING } +#define MMQ_X_Q2_K_RDNA2 64 +#define MMQ_Y_Q2_K_RDNA2 128 +#define NWARPS_Q2_K_RDNA2 8 +#define MMQ_X_Q2_K_RDNA1 128 +#define MMQ_Y_Q2_K_RDNA1 32 +#define NWARPS_Q2_K_RDNA1 8 #define MMQ_X_Q2_K_AMPERE 64 #define MMQ_Y_Q2_K_AMPERE 128 #define NWARPS_Q2_K_AMPERE 4 @@ -3625,11 +3830,32 @@ template static __global__ void mul_mat_q8_0( #define MMQ_Y_Q2_K_PASCAL 64 #define NWARPS_Q2_K_PASCAL 8 -template static __global__ void mul_mat_q2_K( +template static __global__ void +#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) +#if defined(RDNA3) || defined(RDNA2) + __launch_bounds__(WARP_SIZE*NWARPS_Q2_K_RDNA2, 2) +#endif // defined(RDNA3) || defined(RDNA2) +#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) +mul_mat_q2_K( const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst, const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) { -#if __CUDA_ARCH__ >= CC_TURING +#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) +#if defined(RDNA3) || defined(RDNA2) + const int mmq_x = MMQ_X_Q2_K_RDNA2; + const int mmq_y = MMQ_Y_Q2_K_RDNA2; + const int nwarps = NWARPS_Q2_K_RDNA2; +#else + const int mmq_x = MMQ_X_Q2_K_RDNA1; + const int mmq_y = MMQ_Y_Q2_K_RDNA1; + const int nwarps = NWARPS_Q2_K_RDNA1; +#endif // defined(RDNA3) || defined(RDNA2) + + mul_mat_q, + load_tiles_q2_K, VDR_Q2_K_Q8_1_MMQ, vec_dot_q2_K_q8_1_mul_mat> + (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); + +#elif __CUDA_ARCH__ >= CC_TURING const int mmq_x = MMQ_X_Q2_K_AMPERE; const int mmq_y = MMQ_Y_Q2_K_AMPERE; const int nwarps = NWARPS_Q2_K_AMPERE; @@ -3652,6 +3878,12 @@ template static __global__ void mul_mat_q2_K( #endif // __CUDA_ARCH__ >= CC_TURING } +#define MMQ_X_Q3_K_RDNA2 128 +#define MMQ_Y_Q3_K_RDNA2 64 +#define NWARPS_Q3_K_RDNA2 8 +#define MMQ_X_Q3_K_RDNA1 32 +#define MMQ_Y_Q3_K_RDNA1 128 +#define NWARPS_Q3_K_RDNA1 8 #define MMQ_X_Q3_K_AMPERE 128 #define MMQ_Y_Q3_K_AMPERE 128 #define NWARPS_Q3_K_AMPERE 4 @@ -3660,14 +3892,33 @@ template static __global__ void mul_mat_q2_K( #define NWARPS_Q3_K_PASCAL 8 template static __global__ void -#if __CUDA_ARCH__ < CC_TURING +#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) +#if defined(RDNA3) || defined(RDNA2) + __launch_bounds__(WARP_SIZE*NWARPS_Q3_K_RDNA2, 2) +#endif // defined(RDNA3) || defined(RDNA2) +#elif __CUDA_ARCH__ < CC_TURING __launch_bounds__(WARP_SIZE*NWARPS_Q3_K_PASCAL, 2) #endif // __CUDA_ARCH__ < CC_TURING mul_mat_q3_K( const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst, const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) { -#if __CUDA_ARCH__ >= CC_TURING +#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) +#if defined(RDNA3) || defined(RDNA2) + const int mmq_x = MMQ_X_Q3_K_RDNA2; + const int mmq_y = MMQ_Y_Q3_K_RDNA2; + const int nwarps = NWARPS_Q3_K_RDNA2; +#else + const int mmq_x = MMQ_X_Q3_K_RDNA1; + const int mmq_y = MMQ_Y_Q3_K_RDNA1; + const int nwarps = NWARPS_Q3_K_RDNA1; +#endif // defined(RDNA3) || defined(RDNA2) + + mul_mat_q, + load_tiles_q3_K, VDR_Q3_K_Q8_1_MMQ, vec_dot_q3_K_q8_1_mul_mat> + (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); + +#elif __CUDA_ARCH__ >= CC_TURING const int mmq_x = MMQ_X_Q3_K_AMPERE; const int mmq_y = MMQ_Y_Q3_K_AMPERE; const int nwarps = NWARPS_Q3_K_AMPERE; @@ -3690,6 +3941,12 @@ template static __global__ void #endif // __CUDA_ARCH__ >= CC_TURING } +#define MMQ_X_Q4_K_RDNA2 64 +#define MMQ_Y_Q4_K_RDNA2 128 +#define NWARPS_Q4_K_RDNA2 8 +#define MMQ_X_Q4_K_RDNA1 32 +#define MMQ_Y_Q4_K_RDNA1 64 +#define NWARPS_Q4_K_RDNA1 8 #define MMQ_X_Q4_K_AMPERE 64 #define MMQ_Y_Q4_K_AMPERE 128 #define NWARPS_Q4_K_AMPERE 4 @@ -3698,14 +3955,33 @@ template static __global__ void #define NWARPS_Q4_K_PASCAL 8 template static __global__ void -#if __CUDA_ARCH__ < CC_TURING +#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) +#if defined(RDNA3) || defined(RDNA2) + __launch_bounds__(WARP_SIZE*NWARPS_Q4_K_RDNA2, 2) +#endif // defined(RDNA3) || defined(RDNA2) +#elif __CUDA_ARCH__ < CC_TURING __launch_bounds__(WARP_SIZE*NWARPS_Q4_K_PASCAL, 2) #endif // __CUDA_ARCH__ < CC_TURING mul_mat_q4_K( const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst, const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) { -#if __CUDA_ARCH__ >= CC_TURING +#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) +#if defined(RDNA3) || defined(RDNA2) + const int mmq_x = MMQ_X_Q4_K_RDNA2; + const int mmq_y = MMQ_Y_Q4_K_RDNA2; + const int nwarps = NWARPS_Q4_K_RDNA2; +#else + const int mmq_x = MMQ_X_Q4_K_RDNA1; + const int mmq_y = MMQ_Y_Q4_K_RDNA1; + const int nwarps = NWARPS_Q4_K_RDNA1; +#endif // defined(RDNA3) || defined(RDNA2) + + mul_mat_q, + load_tiles_q4_K, VDR_Q4_K_Q8_1_MMQ, vec_dot_q4_K_q8_1_mul_mat> + (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); + +#elif __CUDA_ARCH__ >= CC_TURING const int mmq_x = MMQ_X_Q4_K_AMPERE; const int mmq_y = MMQ_Y_Q4_K_AMPERE; const int nwarps = NWARPS_Q4_K_AMPERE; @@ -3728,6 +4004,12 @@ template static __global__ void #endif // __CUDA_ARCH__ >= CC_TURING } +#define MMQ_X_Q5_K_RDNA2 64 +#define MMQ_Y_Q5_K_RDNA2 128 +#define NWARPS_Q5_K_RDNA2 8 +#define MMQ_X_Q5_K_RDNA1 32 +#define MMQ_Y_Q5_K_RDNA1 64 +#define NWARPS_Q5_K_RDNA1 8 #define MMQ_X_Q5_K_AMPERE 64 #define MMQ_Y_Q5_K_AMPERE 128 #define NWARPS_Q5_K_AMPERE 4 @@ -3735,11 +4017,32 @@ template static __global__ void #define MMQ_Y_Q5_K_PASCAL 64 #define NWARPS_Q5_K_PASCAL 8 -template static __global__ void mul_mat_q5_K( +template static __global__ void +#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) +#if defined(RDNA3) || defined(RDNA2) + __launch_bounds__(WARP_SIZE*NWARPS_Q5_K_RDNA2, 2) +#endif // defined(RDNA3) || defined(RDNA2) +#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) +mul_mat_q5_K( const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst, const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) { -#if __CUDA_ARCH__ >= CC_TURING +#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) +#if defined(RDNA3) || defined(RDNA2) + const int mmq_x = MMQ_X_Q5_K_RDNA2; + const int mmq_y = MMQ_Y_Q5_K_RDNA2; + const int nwarps = NWARPS_Q5_K_RDNA2; +#else + const int mmq_x = MMQ_X_Q5_K_RDNA1; + const int mmq_y = MMQ_Y_Q5_K_RDNA1; + const int nwarps = NWARPS_Q5_K_RDNA1; +#endif // defined(RDNA3) || defined(RDNA2) + + mul_mat_q, + load_tiles_q5_K, VDR_Q5_K_Q8_1_MMQ, vec_dot_q5_K_q8_1_mul_mat> + (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); + +#elif __CUDA_ARCH__ >= CC_TURING const int mmq_x = MMQ_X_Q5_K_AMPERE; const int mmq_y = MMQ_Y_Q5_K_AMPERE; const int nwarps = NWARPS_Q5_K_AMPERE; @@ -3762,6 +4065,12 @@ template static __global__ void mul_mat_q5_K( #endif // __CUDA_ARCH__ >= CC_TURING } +#define MMQ_X_Q6_K_RDNA2 64 +#define MMQ_Y_Q6_K_RDNA2 128 +#define NWARPS_Q6_K_RDNA2 8 +#define MMQ_X_Q6_K_RDNA1 32 +#define MMQ_Y_Q6_K_RDNA1 64 +#define NWARPS_Q6_K_RDNA1 8 #define MMQ_X_Q6_K_AMPERE 64 #define MMQ_Y_Q6_K_AMPERE 64 #define NWARPS_Q6_K_AMPERE 4 @@ -3770,14 +4079,33 @@ template static __global__ void mul_mat_q5_K( #define NWARPS_Q6_K_PASCAL 8 template static __global__ void -#if __CUDA_ARCH__ < CC_TURING +#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) +#if defined(RDNA3) || defined(RDNA2) + __launch_bounds__(WARP_SIZE*NWARPS_Q6_K_RDNA2, 2) +#endif // defined(RDNA3) || defined(RDNA2) +#elif __CUDA_ARCH__ < CC_TURING __launch_bounds__(WARP_SIZE*NWARPS_Q6_K_PASCAL, 2) #endif // __CUDA_ARCH__ < CC_TURING mul_mat_q6_K( const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst, const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) { -#if __CUDA_ARCH__ >= CC_TURING +#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) +#if defined(RDNA3) || defined(RDNA2) + const int mmq_x = MMQ_X_Q6_K_RDNA2; + const int mmq_y = MMQ_Y_Q6_K_RDNA2; + const int nwarps = NWARPS_Q6_K_RDNA2; +#else + const int mmq_x = MMQ_X_Q6_K_RDNA1; + const int mmq_y = MMQ_Y_Q6_K_RDNA1; + const int nwarps = NWARPS_Q6_K_RDNA1; +#endif // defined(RDNA3) || defined(RDNA2) + + mul_mat_q, + load_tiles_q6_K, VDR_Q6_K_Q8_1_MMQ, vec_dot_q6_K_q8_1_mul_mat> + (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); + +#elif __CUDA_ARCH__ >= CC_TURING const int mmq_x = MMQ_X_Q6_K_AMPERE; const int mmq_y = MMQ_Y_Q6_K_AMPERE; const int nwarps = NWARPS_Q6_K_AMPERE; @@ -4042,8 +4370,10 @@ static __global__ void cpy_f32_f16(const char * cx, char * cdst, const int ne, } // rope == RoPE == rotary positional embedding -static __global__ void rope_f32(const float * x, float * dst, const int ncols, const float p0, - const float p_delta, const int p_delta_rows, const float theta_scale) { + +template +static __global__ void rope(const T * x, T * dst, const int ncols, const int32_t * pos, const float freq_scale, + const int p_delta_rows, const float theta_scale) { const int col = 2*(blockDim.y*blockIdx.y + threadIdx.y); if (col >= ncols) { @@ -4052,8 +4382,11 @@ static __global__ void rope_f32(const float * x, float * dst, const int ncols, c const int row = blockDim.x*blockIdx.x + threadIdx.x; const int i = row*ncols + col; + const int i2 = row/p_delta_rows; - const float theta = (p0 + p_delta * (row/p_delta_rows))*powf(theta_scale, col/2); + const int p = has_pos ? pos[i2] : 0; + const float p0 = p*freq_scale; + const float theta = p0*powf(theta_scale, col/2); const float sin_theta = sinf(theta); const float cos_theta = cosf(theta); @@ -4064,8 +4397,9 @@ static __global__ void rope_f32(const float * x, float * dst, const int ncols, c dst[i + 1] = x0*sin_theta + x1*cos_theta; } -static __global__ void rope_neox_f32(const float * x, float * dst, const int ncols, const float p0, - const float p_delta, const int p_delta_rows, const float theta_scale) { +template +static __global__ void rope_neox(const T * x, T * dst, const int ncols, const int32_t * pos, const float freq_scale, + const int p_delta_rows, const float theta_scale) { const int col = 2*(blockDim.y*blockIdx.y + threadIdx.y); if (col >= ncols) { @@ -4074,8 +4408,11 @@ static __global__ void rope_neox_f32(const float * x, float * dst, const int nco const int row = blockDim.x*blockIdx.x + threadIdx.x; const int i = row*ncols + col/2; + const int i2 = row/p_delta_rows; - const float theta = (p0 + p_delta * (row/p_delta_rows))*powf(theta_scale, col/2); + const int p = has_pos ? pos[i2] : 0; + const float p0 = p*freq_scale; + const float theta = p0*powf(theta_scale, col/2); const float sin_theta = sinf(theta); const float cos_theta = cosf(theta); @@ -4086,8 +4423,8 @@ static __global__ void rope_neox_f32(const float * x, float * dst, const int nco dst[i + ncols/2] = x0*sin_theta + x1*cos_theta; } -static __global__ void rope_glm_f32(const float * x, float * dst, const int ncols, const float p0, - const float p_delta, const int p_delta_rows, const float theta_scale, const int n_ctx) { +static __global__ void rope_glm_f32(const float * x, float * dst, const int ncols, const int32_t * pos, const float freq_scale, + const int p_delta_rows, const float theta_scale, const int n_ctx) { const int col = blockDim.x*blockIdx.x + threadIdx.x; const int half_n_dims = ncols/4; @@ -4097,11 +4434,13 @@ static __global__ void rope_glm_f32(const float * x, float * dst, const int ncol const int row = blockDim.y*blockIdx.y + threadIdx.y; const int i = row*ncols + col; + const int i2 = row/p_delta_rows; const float col_theta_scale = powf(theta_scale, col); - const float p = p0 + p_delta*(row/p_delta_rows); + // FIXME: this is likely wrong + const int p = pos != nullptr ? pos[i2] : 0; - const float theta = min(p, p_delta*(n_ctx - 2))*col_theta_scale; + const float theta = min(p, n_ctx - 2)*freq_scale*col_theta_scale; const float sin_theta = sinf(theta); const float cos_theta = cosf(theta); @@ -4111,7 +4450,7 @@ static __global__ void rope_glm_f32(const float * x, float * dst, const int ncol dst[i + 0] = x0*cos_theta - x1*sin_theta; dst[i + half_n_dims] = x0*sin_theta + x1*cos_theta; - const float block_theta = max(p - p_delta*(n_ctx - 2), 0.f)*col_theta_scale; + const float block_theta = ((float)max(p - n_ctx - 2, 0))*col_theta_scale; const float sin_block_theta = sinf(block_theta); const float cos_block_theta = cosf(block_theta); @@ -4513,6 +4852,11 @@ static void convert_fp16_to_fp32_cuda(const void * vx, float * y, const int k, c dequantize_block<1, 1, convert_f16><<>>(vx, y, k); } +static void convert_fp32_to_fp16_cuda(const void * vx, half * y, const int k, cudaStream_t stream) { + const int num_blocks = (k + CUDA_QUANTIZE_BLOCK_SIZE - 1) / CUDA_QUANTIZE_BLOCK_SIZE; + dequantize_block<1, 1, convert_f32><<>>(vx, y, k); +} + static void convert_mul_mat_vec_f16_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0); const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y; @@ -4522,6 +4866,15 @@ static void convert_mul_mat_vec_f16_cuda(const void * vx, const dfloat * y, floa <<>>(vx, y, dst, ncols, nrows); } +static to_fp16_cuda_t ggml_get_to_fp16_cuda(ggml_type type) { + switch (type) { + case GGML_TYPE_F32: + return convert_fp32_to_fp16_cuda; + default: + return nullptr; + } +} + static to_fp32_cuda_t ggml_get_to_fp32_cuda(ggml_type type) { switch (type) { case GGML_TYPE_Q4_0: @@ -4560,7 +4913,15 @@ static void ggml_mul_mat_q4_0_q8_1_cuda( const int compute_capability = g_compute_capabilities[id]; int mmq_x, mmq_y, nwarps; - if (compute_capability >= CC_TURING) { + if (compute_capability >= CC_RDNA2) { + mmq_x = MMQ_X_Q4_0_RDNA2; + mmq_y = MMQ_Y_Q4_0_RDNA2; + nwarps = NWARPS_Q4_0_RDNA2; + } else if (compute_capability >= CC_OFFSET_AMD) { + mmq_x = MMQ_X_Q4_0_RDNA1; + mmq_y = MMQ_Y_Q4_0_RDNA1; + nwarps = NWARPS_Q4_0_RDNA1; + } else if (compute_capability >= CC_TURING) { mmq_x = MMQ_X_Q4_0_AMPERE; mmq_y = MMQ_Y_Q4_0_AMPERE; nwarps = NWARPS_Q4_0_AMPERE; @@ -4597,7 +4958,15 @@ static void ggml_mul_mat_q4_1_q8_1_cuda( const int compute_capability = g_compute_capabilities[id]; int mmq_x, mmq_y, nwarps; - if (compute_capability >= CC_TURING) { + if (compute_capability >= CC_RDNA2) { + mmq_x = MMQ_X_Q4_1_RDNA2; + mmq_y = MMQ_Y_Q4_1_RDNA2; + nwarps = NWARPS_Q4_1_RDNA2; + } else if (compute_capability >= CC_OFFSET_AMD) { + mmq_x = MMQ_X_Q4_1_RDNA1; + mmq_y = MMQ_Y_Q4_1_RDNA1; + nwarps = NWARPS_Q4_1_RDNA1; + } else if (compute_capability >= CC_TURING) { mmq_x = MMQ_X_Q4_1_AMPERE; mmq_y = MMQ_Y_Q4_1_AMPERE; nwarps = NWARPS_Q4_1_AMPERE; @@ -4634,7 +5003,15 @@ static void ggml_mul_mat_q5_0_q8_1_cuda( const int compute_capability = g_compute_capabilities[id]; int mmq_x, mmq_y, nwarps; - if (compute_capability >= CC_TURING) { + if (compute_capability >= CC_RDNA2) { + mmq_x = MMQ_X_Q5_0_RDNA2; + mmq_y = MMQ_Y_Q5_0_RDNA2; + nwarps = NWARPS_Q5_0_RDNA2; + } else if (compute_capability >= CC_OFFSET_AMD) { + mmq_x = MMQ_X_Q5_0_RDNA1; + mmq_y = MMQ_Y_Q5_0_RDNA1; + nwarps = NWARPS_Q5_0_RDNA1; + } else if (compute_capability >= CC_TURING) { mmq_x = MMQ_X_Q5_0_AMPERE; mmq_y = MMQ_Y_Q5_0_AMPERE; nwarps = NWARPS_Q5_0_AMPERE; @@ -4671,7 +5048,15 @@ static void ggml_mul_mat_q5_1_q8_1_cuda( const int compute_capability = g_compute_capabilities[id]; int mmq_x, mmq_y, nwarps; - if (compute_capability >= CC_TURING) { + if (compute_capability >= CC_RDNA2) { + mmq_x = MMQ_X_Q5_1_RDNA2; + mmq_y = MMQ_Y_Q5_1_RDNA2; + nwarps = NWARPS_Q5_1_RDNA2; + } else if (compute_capability >= CC_OFFSET_AMD) { + mmq_x = MMQ_X_Q5_1_RDNA1; + mmq_y = MMQ_Y_Q5_1_RDNA1; + nwarps = NWARPS_Q5_1_RDNA1; + } else if (compute_capability >= CC_TURING) { mmq_x = MMQ_X_Q5_1_AMPERE; mmq_y = MMQ_Y_Q5_1_AMPERE; nwarps = NWARPS_Q5_1_AMPERE; @@ -4708,7 +5093,15 @@ static void ggml_mul_mat_q8_0_q8_1_cuda( const int compute_capability = g_compute_capabilities[id]; int mmq_x, mmq_y, nwarps; - if (compute_capability >= CC_TURING) { + if (compute_capability >= CC_RDNA2) { + mmq_x = MMQ_X_Q8_0_RDNA2; + mmq_y = MMQ_Y_Q8_0_RDNA2; + nwarps = NWARPS_Q8_0_RDNA2; + } else if (compute_capability >= CC_OFFSET_AMD) { + mmq_x = MMQ_X_Q8_0_RDNA1; + mmq_y = MMQ_Y_Q8_0_RDNA1; + nwarps = NWARPS_Q8_0_RDNA1; + } else if (compute_capability >= CC_TURING) { mmq_x = MMQ_X_Q8_0_AMPERE; mmq_y = MMQ_Y_Q8_0_AMPERE; nwarps = NWARPS_Q8_0_AMPERE; @@ -4745,7 +5138,15 @@ static void ggml_mul_mat_q2_K_q8_1_cuda( const int compute_capability = g_compute_capabilities[id]; int mmq_x, mmq_y, nwarps; - if (compute_capability >= CC_TURING) { + if (compute_capability >= CC_RDNA2) { + mmq_x = MMQ_X_Q2_K_RDNA2; + mmq_y = MMQ_Y_Q2_K_RDNA2; + nwarps = NWARPS_Q2_K_RDNA2; + } else if (compute_capability >= CC_OFFSET_AMD) { + mmq_x = MMQ_X_Q2_K_RDNA1; + mmq_y = MMQ_Y_Q2_K_RDNA1; + nwarps = NWARPS_Q2_K_RDNA1; + } else if (compute_capability >= CC_TURING) { mmq_x = MMQ_X_Q2_K_AMPERE; mmq_y = MMQ_Y_Q2_K_AMPERE; nwarps = NWARPS_Q2_K_AMPERE; @@ -4784,7 +5185,15 @@ static void ggml_mul_mat_q3_K_q8_1_cuda( const int compute_capability = g_compute_capabilities[id]; int mmq_x, mmq_y, nwarps; - if (compute_capability >= CC_TURING) { + if (compute_capability >= CC_RDNA2) { + mmq_x = MMQ_X_Q3_K_RDNA2; + mmq_y = MMQ_Y_Q3_K_RDNA2; + nwarps = NWARPS_Q3_K_RDNA2; + } else if (compute_capability >= CC_OFFSET_AMD) { + mmq_x = MMQ_X_Q3_K_RDNA1; + mmq_y = MMQ_Y_Q3_K_RDNA1; + nwarps = NWARPS_Q3_K_RDNA1; + } else if (compute_capability >= CC_TURING) { mmq_x = MMQ_X_Q3_K_AMPERE; mmq_y = MMQ_Y_Q3_K_AMPERE; nwarps = NWARPS_Q3_K_AMPERE; @@ -4822,7 +5231,15 @@ static void ggml_mul_mat_q4_K_q8_1_cuda( const int compute_capability = g_compute_capabilities[id]; int mmq_x, mmq_y, nwarps; - if (compute_capability >= CC_TURING) { + if (compute_capability >= CC_RDNA2) { + mmq_x = MMQ_X_Q4_K_RDNA2; + mmq_y = MMQ_Y_Q4_K_RDNA2; + nwarps = NWARPS_Q4_K_RDNA2; + } else if (compute_capability >= CC_OFFSET_AMD) { + mmq_x = MMQ_X_Q4_K_RDNA1; + mmq_y = MMQ_Y_Q4_K_RDNA1; + nwarps = NWARPS_Q4_K_RDNA1; + } else if (compute_capability >= CC_TURING) { mmq_x = MMQ_X_Q4_K_AMPERE; mmq_y = MMQ_Y_Q4_K_AMPERE; nwarps = NWARPS_Q4_K_AMPERE; @@ -4859,7 +5276,15 @@ static void ggml_mul_mat_q5_K_q8_1_cuda( const int compute_capability = g_compute_capabilities[id]; int mmq_x, mmq_y, nwarps; - if (compute_capability >= CC_TURING) { + if (compute_capability >= CC_RDNA2) { + mmq_x = MMQ_X_Q5_K_RDNA2; + mmq_y = MMQ_Y_Q5_K_RDNA2; + nwarps = NWARPS_Q5_K_RDNA2; + } else if (compute_capability >= CC_OFFSET_AMD) { + mmq_x = MMQ_X_Q5_K_RDNA1; + mmq_y = MMQ_Y_Q5_K_RDNA1; + nwarps = NWARPS_Q5_K_RDNA1; + } else if (compute_capability >= CC_TURING) { mmq_x = MMQ_X_Q5_K_AMPERE; mmq_y = MMQ_Y_Q5_K_AMPERE; nwarps = NWARPS_Q5_K_AMPERE; @@ -4896,7 +5321,15 @@ static void ggml_mul_mat_q6_K_q8_1_cuda( const int compute_capability = g_compute_capabilities[id]; int mmq_x, mmq_y, nwarps; - if (compute_capability >= CC_TURING) { + if (compute_capability >= CC_RDNA2) { + mmq_x = MMQ_X_Q6_K_RDNA2; + mmq_y = MMQ_Y_Q6_K_RDNA2; + nwarps = NWARPS_Q6_K_RDNA2; + } else if (compute_capability >= CC_OFFSET_AMD) { + mmq_x = MMQ_X_Q6_K_RDNA1; + mmq_y = MMQ_Y_Q6_K_RDNA1; + nwarps = NWARPS_Q6_K_RDNA1; + } else if (compute_capability >= CC_TURING) { mmq_x = MMQ_X_Q6_K_AMPERE; mmq_y = MMQ_Y_Q6_K_AMPERE; nwarps = NWARPS_Q6_K_AMPERE; @@ -4968,31 +5401,41 @@ static void scale_f32_cuda(const float * x, float * dst, const float scale, cons scale_f32<<>>(x, dst, scale, k); } -static void rope_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float p0, - const float p_delta, const int p_delta_rows, const float theta_scale, cudaStream_t stream) { +template +static void rope_cuda(const T * x, T * dst, const int ncols, const int nrows, const int32_t * pos, const float freq_scale, + const int p_delta_rows, const float theta_scale, cudaStream_t stream) { GGML_ASSERT(ncols % 2 == 0); const dim3 block_dims(1, CUDA_ROPE_BLOCK_SIZE, 1); const int num_blocks_x = (ncols + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE); const dim3 block_nums(nrows, num_blocks_x, 1); - rope_f32<<>>(x, dst, ncols, p0, p_delta, p_delta_rows, theta_scale); + if (pos == nullptr) { + rope<<>>(x, dst, ncols, pos, freq_scale, p_delta_rows, theta_scale); + } else { + rope<<>>(x, dst, ncols, pos, freq_scale, p_delta_rows, theta_scale); + } } -static void rope_neox_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float p0, - const float p_delta, const int p_delta_rows, const float theta_scale, cudaStream_t stream) { +template +static void rope_neox_cuda(const T * x, T * dst, const int ncols, const int nrows, const int32_t * pos, const float freq_scale, + const int p_delta_rows, const float theta_scale, cudaStream_t stream) { GGML_ASSERT(ncols % 2 == 0); const dim3 block_dims(1, CUDA_ROPE_BLOCK_SIZE, 1); const int num_blocks_x = (ncols + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE); const dim3 block_nums(nrows, num_blocks_x, 1); - rope_neox_f32<<>>(x, dst, ncols, p0, p_delta, p_delta_rows, theta_scale); + if (pos == nullptr) { + rope_neox<<>>(x, dst, ncols, pos, freq_scale, p_delta_rows, theta_scale); + } else { + rope_neox<<>>(x, dst, ncols, pos, freq_scale, p_delta_rows, theta_scale); + } } -static void rope_glm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float p0, - const float p_delta, const int p_delta_rows, const float theta_scale, const int n_ctx, cudaStream_t stream) { +static void rope_glm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const int32_t * pos, const float freq_scale, + const int p_delta_rows, const float theta_scale, const int n_ctx, cudaStream_t stream) { GGML_ASSERT(ncols % 4 == 0); const dim3 block_dims(CUDA_ROPE_BLOCK_SIZE/4, 1, 1); const int num_blocks_x = (ncols + CUDA_ROPE_BLOCK_SIZE - 1) / CUDA_ROPE_BLOCK_SIZE; const dim3 block_nums(num_blocks_x, nrows, 1); - rope_glm_f32<<>>(x, dst, ncols, p0, p_delta, p_delta_rows, theta_scale, n_ctx); + rope_glm_f32<<>>(x, dst, ncols, pos, freq_scale, p_delta_rows, theta_scale, n_ctx); } static void alibi_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, @@ -5130,25 +5573,30 @@ void ggml_init_cublas() { GGML_ASSERT(g_device_count <= GGML_CUDA_MAX_DEVICES); int64_t total_vram = 0; fprintf(stderr, "%s: found %d " GGML_CUDA_NAME " devices:\n", __func__, g_device_count); - for (int id = 0; id < g_device_count; ++id) { + for (int64_t id = 0; id < g_device_count; ++id) { cudaDeviceProp prop; CUDA_CHECK(cudaGetDeviceProperties(&prop, id)); - fprintf(stderr, " Device %d: %s, compute capability %d.%d\n", id, prop.name, prop.major, prop.minor); + fprintf(stderr, " Device %ld: %s, compute capability %d.%d\n", id, prop.name, prop.major, prop.minor); g_tensor_split[id] = total_vram; total_vram += prop.totalGlobalMem; - +#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) + g_compute_capabilities[id] = 100*prop.major + 10*prop.minor + CC_OFFSET_AMD; +#else g_compute_capabilities[id] = 100*prop.major + 10*prop.minor; +#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) } - for (int id = 0; id < g_device_count; ++id) { + for (int64_t id = 0; id < g_device_count; ++id) { g_tensor_split[id] /= total_vram; } - for (int id = 0; id < g_device_count; ++id) { - CUDA_CHECK(cudaSetDevice(id)); + for (int64_t id = 0; id < g_device_count; ++id) { + CUDA_CHECK(ggml_cuda_set_device(id)); - // create main stream - CUDA_CHECK(cudaStreamCreateWithFlags(&g_cudaStreams_main[id], cudaStreamNonBlocking)); + // create cuda streams + for (int64_t is = 0; is < MAX_STREAMS; ++is) { + CUDA_CHECK(cudaStreamCreateWithFlags(&g_cudaStreams[id][is], cudaStreamNonBlocking)); + } // create cublas handle CUBLAS_CHECK(cublasCreate(&g_cublas_handles[id])); @@ -5217,7 +5665,8 @@ static cudaError_t ggml_cuda_cpy_tensor_2d( if (src->backend == GGML_BACKEND_CPU) { kind = cudaMemcpyHostToDevice; src_ptr = (char *) src->data; - } else if (src->backend == GGML_BACKEND_GPU) { + } else if (src->backend == GGML_BACKEND_GPU || src->backend == GGML_BACKEND_GPU_SPLIT) { + GGML_ASSERT(src->backend != GGML_BACKEND_GPU_SPLIT || (i1_low == 0 && i1_high == src->ne[1])); kind = cudaMemcpyDeviceToDevice; struct ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) src->extra; int id; @@ -5256,236 +5705,205 @@ static cudaError_t ggml_cuda_cpy_tensor_2d( } inline void ggml_cuda_op_add( - const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i, - float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1, - cudaStream_t & cudaStream_main){ + const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, + const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) { - GGML_ASSERT(src0_ddq_i != nullptr || src0_ddf_i != nullptr); - GGML_ASSERT(src1_ddf_i != nullptr); - GGML_ASSERT(dst_ddf_i != nullptr); - - const int64_t ne00 = src0->ne[0]; - const int64_t i01_diff = i01_high - i01_low; + GGML_ASSERT(src1->type == GGML_TYPE_F32); const int64_t ne10 = src1->ne[0]; const int64_t ne11 = src1->ne[1]; - // compute if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { - add_f32_cuda(src0_ddf_i, src1_ddf_i, dst_ddf_i, ne00*i01_diff, ne10*ne11, cudaStream_main); + add_f32_cuda(src0_dd, src1_dd, dst_dd, ggml_nelements(src0), ne10*ne11, main_stream); } else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) { - add_f16_f32_f16_cuda((half *) src0_ddq_i, src1_ddf_i, (half *) dst_ddf_i, ne00*i01_diff, cudaStream_main); + add_f16_f32_f16_cuda((const half *) src0_dd, src1_dd, (half *) dst_dd, ggml_nelements(src0), main_stream); } else { GGML_ASSERT(false); } (void) src1; (void) dst; - (void) src0_ddq_i; - (void) i02; - (void) i1; } inline void ggml_cuda_op_mul( - const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i, - float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1, - cudaStream_t & cudaStream_main){ - - GGML_ASSERT(src0_ddf_i != nullptr); - GGML_ASSERT(src1_ddf_i != nullptr); - GGML_ASSERT(dst_ddf_i != nullptr); + const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, + const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) { - const int64_t ne00 = src0->ne[0]; - const int64_t i01_diff = i01_high - i01_low; + GGML_ASSERT(src0->type == GGML_TYPE_F32); + GGML_ASSERT(src1->type == GGML_TYPE_F32); + GGML_ASSERT( dst->type == GGML_TYPE_F32); const int64_t ne10 = src1->ne[0]; const int64_t ne11 = src1->ne[1]; - mul_f32_cuda(src0_ddf_i, src1_ddf_i, dst_ddf_i, ne00*i01_diff, ne10*ne11, cudaStream_main); + mul_f32_cuda(src0_dd, src1_dd, dst_dd, ggml_nelements(src0), ne10*ne11, main_stream); (void) dst; - (void) src0_ddq_i; - (void) i02; - (void) i1; } inline void ggml_cuda_op_gelu( - const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i, - float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1, - cudaStream_t & cudaStream_main){ + const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, + const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) { - GGML_ASSERT(src0_ddf_i != nullptr); - GGML_ASSERT(dst_ddf_i != nullptr); + GGML_ASSERT(src0->type == GGML_TYPE_F32); + GGML_ASSERT( dst->type == GGML_TYPE_F32); - const int64_t ne00 = src0->ne[0]; - const int64_t i01_diff = i01_high - i01_low; - - // compute - gelu_f32_cuda(src0_ddf_i, dst_ddf_i, ne00*i01_diff, cudaStream_main); + gelu_f32_cuda(src0_dd, dst_dd, ggml_nelements(src0), main_stream); (void) src1; (void) dst; - (void) src0_ddq_i; - (void) src1_ddf_i; - (void) i02; - (void) i1; + (void) src1_dd; } inline void ggml_cuda_op_silu( - const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i, - float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1, - cudaStream_t & cudaStream_main){ - - GGML_ASSERT(src0_ddf_i != nullptr); - GGML_ASSERT(dst_ddf_i != nullptr); + const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, + const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) { - const int64_t ne00 = src0->ne[0]; - const int64_t i01_diff = i01_high - i01_low; + GGML_ASSERT(src0->type == GGML_TYPE_F32); + GGML_ASSERT( dst->type == GGML_TYPE_F32); - // compute - silu_f32_cuda(src0_ddf_i, dst_ddf_i, ne00*i01_diff, cudaStream_main); + silu_f32_cuda(src0_dd, dst_dd, ggml_nelements(src0), main_stream); (void) src1; (void) dst; - (void) src0_ddq_i; - (void) src1_ddf_i; - (void) i02; - (void) i1; + (void) src1_dd; } inline void ggml_cuda_op_norm( - const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i, - float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1, - cudaStream_t & cudaStream_main){ + const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, + const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) { - GGML_ASSERT(src0_ddf_i != nullptr); - GGML_ASSERT(dst_ddf_i != nullptr); + GGML_ASSERT(src0->type == GGML_TYPE_F32); + GGML_ASSERT( dst->type == GGML_TYPE_F32); const int64_t ne00 = src0->ne[0]; - const int64_t i01_diff = i01_high - i01_low; + const int64_t nrows = ggml_nrows(src0); - // compute - norm_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, cudaStream_main); + norm_f32_cuda(src0_dd, dst_dd, ne00, nrows, main_stream); (void) src1; (void) dst; - (void) src0_ddq_i; - (void) src1_ddf_i; - (void) i02; - (void) i1; + (void) src1_dd; } inline void ggml_cuda_op_rms_norm( - const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i, - float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1, - cudaStream_t & cudaStream_main){ + const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, + const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) { - GGML_ASSERT(src0_ddf_i != nullptr); - GGML_ASSERT(dst_ddf_i != nullptr); + GGML_ASSERT(src0->type == GGML_TYPE_F32); + GGML_ASSERT( dst->type == GGML_TYPE_F32); const int64_t ne00 = src0->ne[0]; - const int64_t i01_diff = i01_high - i01_low; + const int64_t nrows = ggml_nrows(src0); float eps; memcpy(&eps, dst->op_params, sizeof(float)); - // compute - rms_norm_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, eps, cudaStream_main); + rms_norm_f32_cuda(src0_dd, dst_dd, ne00, nrows, eps, main_stream); (void) src1; (void) dst; - (void) src0_ddq_i; - (void) src1_ddf_i; - (void) i02; - (void) i1; + (void) src1_dd; } inline void ggml_cuda_op_mul_mat_q( - const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i, - float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1, - cudaStream_t & cudaStream_main){ - - GGML_ASSERT(src0_ddq_i != nullptr); - GGML_ASSERT(src1_ddf_i != nullptr); - GGML_ASSERT(dst_ddf_i != nullptr); + const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i, + const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols, + const int64_t src1_padded_row_size, const cudaStream_t & stream) { const int64_t ne00 = src0->ne[0]; const int64_t ne10 = src1->ne[0]; - const int64_t ne11 = src1->ne[1]; GGML_ASSERT(ne10 % QK8_1 == 0); const int64_t ne0 = dst->ne[0]; - const int64_t i01_diff = i01_high - i01_low; + const int64_t row_diff = row_high - row_low; int id; CUDA_CHECK(cudaGetDevice(&id)); // the main device has a larger memory buffer to hold the results from all GPUs // nrows_dst == nrows of the matrix that the dequantize_mul_mat kernel writes into - const int64_t nrows_dst = dst->backend == GGML_BACKEND_GPU && id == g_main_device ? ne0 : i01_diff; - - const int64_t padded_row_size = ne10 % MATRIX_ROW_PADDING == 0 ? - ne10 : ne10 - ne10 % MATRIX_ROW_PADDING + MATRIX_ROW_PADDING; - size_t as; - void * src1_q8_1 = ggml_cuda_pool_malloc(padded_row_size*ne11*sizeof(block_q8_1)/QK8_1, &as); - quantize_row_q8_1_cuda(src1_ddf_i, src1_q8_1, ne10, ne11, padded_row_size, cudaStream_main); + const int64_t nrows_dst = dst->backend == GGML_BACKEND_GPU && id == g_main_device ? ne0 : row_diff; switch (src0->type) { case GGML_TYPE_Q4_0: - ggml_mul_mat_q4_0_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, i01_diff, ne11, padded_row_size, nrows_dst, cudaStream_main); + ggml_mul_mat_q4_0_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream); break; case GGML_TYPE_Q4_1: - ggml_mul_mat_q4_1_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, i01_diff, ne11, padded_row_size, nrows_dst, cudaStream_main); + ggml_mul_mat_q4_1_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream); break; case GGML_TYPE_Q5_0: - ggml_mul_mat_q5_0_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, i01_diff, ne11, padded_row_size, nrows_dst, cudaStream_main); + ggml_mul_mat_q5_0_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream); break; case GGML_TYPE_Q5_1: - ggml_mul_mat_q5_1_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, i01_diff, ne11, padded_row_size, nrows_dst, cudaStream_main); + ggml_mul_mat_q5_1_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream); break; case GGML_TYPE_Q8_0: - ggml_mul_mat_q8_0_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, i01_diff, ne11, padded_row_size, nrows_dst, cudaStream_main); + ggml_mul_mat_q8_0_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream); break; case GGML_TYPE_Q2_K: - ggml_mul_mat_q2_K_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, i01_diff, ne11, padded_row_size, nrows_dst, cudaStream_main); + ggml_mul_mat_q2_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream); break; case GGML_TYPE_Q3_K: - ggml_mul_mat_q3_K_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, i01_diff, ne11, padded_row_size, nrows_dst, cudaStream_main); + ggml_mul_mat_q3_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream); break; case GGML_TYPE_Q4_K: - ggml_mul_mat_q4_K_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, i01_diff, ne11, padded_row_size, nrows_dst, cudaStream_main); + ggml_mul_mat_q4_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream); break; case GGML_TYPE_Q5_K: - ggml_mul_mat_q5_K_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, i01_diff, ne11, padded_row_size, nrows_dst, cudaStream_main); + ggml_mul_mat_q5_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream); break; case GGML_TYPE_Q6_K: - ggml_mul_mat_q6_K_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, i01_diff, ne11, padded_row_size, nrows_dst, cudaStream_main); + ggml_mul_mat_q6_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream); break; default: GGML_ASSERT(false); break; } - ggml_cuda_pool_free(src1_q8_1, as); - (void) src1; (void) dst; - (void) src0_ddf_i; - (void) i02; - (void) i1; + (void) src1_ddf_i; } static int64_t get_row_rounding(ggml_type type) { - int max_compute_capability = INT_MIN; - for (int id = 0; id < g_device_count; ++id) { - if (max_compute_capability < g_compute_capabilities[id] - && g_tensor_split[id] < (id + 1 < g_device_count ? g_tensor_split[id + 1] : 1.0f)) { - max_compute_capability = g_compute_capabilities[id]; + int64_t min_compute_capability = INT_MAX; + int64_t max_compute_capability = INT_MIN; + for (int64_t id = 0; id < g_device_count; ++id) { + if (g_tensor_split[id] < (id + 1 < g_device_count ? g_tensor_split[id + 1] : 1.0f)) { + if (min_compute_capability > g_compute_capabilities[id]) { + min_compute_capability = g_compute_capabilities[id]; + } + if (max_compute_capability < g_compute_capabilities[id]) { + max_compute_capability = g_compute_capabilities[id]; + } } } +#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) + switch(type) { + case GGML_TYPE_Q4_0: + case GGML_TYPE_Q4_1: + case GGML_TYPE_Q5_0: + case GGML_TYPE_Q5_1: + case GGML_TYPE_Q8_0: + return max_compute_capability >= CC_RDNA2 ? 128 : 64; + case GGML_TYPE_F16: + return 1; + case GGML_TYPE_Q2_K: + return max_compute_capability >= CC_RDNA2 ? 128 : 32; + case GGML_TYPE_Q3_K: + return min_compute_capability < CC_RDNA2 ? 128 : 64; + case GGML_TYPE_Q4_K: + case GGML_TYPE_Q5_K: + case GGML_TYPE_Q6_K: + return max_compute_capability >= CC_RDNA2 ? 128 : 64; + default: + GGML_ASSERT(false); + } +#else switch(type) { case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: @@ -5506,216 +5924,250 @@ static int64_t get_row_rounding(ggml_type type) { default: GGML_ASSERT(false); } +#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) } -inline void ggml_cuda_op_mul_mat_vec( - const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i, - float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1, - cudaStream_t & cudaStream_main){ - - GGML_ASSERT(src0_ddq_i != nullptr); - GGML_ASSERT(src1_ddf_i != nullptr); - GGML_ASSERT(dst_ddf_i != nullptr); +inline void ggml_cuda_op_mul_mat_vec_q( + const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i, + const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols, + const int64_t src1_padded_row_size, const cudaStream_t & stream) { const int64_t ne00 = src0->ne[0]; - const int64_t nrows = i01_high - i01_low; + const int64_t row_diff = row_high - row_low; -#ifdef GGML_CUDA_FORCE_DMMV - const bool use_mul_mat_vec_q = false; - (void) g_compute_capabilities[0]; -#else - int id; - CUDA_CHECK(cudaGetDevice(&id)); + switch (src0->type) { + case GGML_TYPE_Q4_0: + mul_mat_vec_q4_0_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream); + break; + case GGML_TYPE_Q4_1: + mul_mat_vec_q4_1_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream); + break; + case GGML_TYPE_Q5_0: + mul_mat_vec_q5_0_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream); + break; + case GGML_TYPE_Q5_1: + mul_mat_vec_q5_1_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream); + break; + case GGML_TYPE_Q8_0: + mul_mat_vec_q8_0_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream); + break; + case GGML_TYPE_Q2_K: + mul_mat_vec_q2_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream); + break; + case GGML_TYPE_Q3_K: + mul_mat_vec_q3_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream); + break; + case GGML_TYPE_Q4_K: + mul_mat_vec_q4_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream); + break; + case GGML_TYPE_Q5_K: + mul_mat_vec_q5_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream); + break; + case GGML_TYPE_Q6_K: + mul_mat_vec_q6_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream); + break; + default: + GGML_ASSERT(false); + break; + } - bool mul_mat_vec_q_implemented = - src0->type == GGML_TYPE_Q4_0 || - src0->type == GGML_TYPE_Q4_1 || - src0->type == GGML_TYPE_Q5_0 || - src0->type == GGML_TYPE_Q5_1 || - src0->type == GGML_TYPE_Q8_0; -#if QK_K == 256 - mul_mat_vec_q_implemented = mul_mat_vec_q_implemented || - src0->type == GGML_TYPE_Q2_K || - src0->type == GGML_TYPE_Q3_K || - src0->type == GGML_TYPE_Q4_K || - src0->type == GGML_TYPE_Q5_K || - src0->type == GGML_TYPE_Q6_K; -#endif // QK_K == 256 - - const bool use_mul_mat_vec_q = g_compute_capabilities[id] >= MIN_CC_DP4A && mul_mat_vec_q_implemented; -#endif + (void) src1; + (void) dst; + (void) src1_ddf_i; + (void) src1_ncols; + (void) src1_padded_row_size; +} - if (use_mul_mat_vec_q) { - const int64_t padded_row_size = ne00 % MATRIX_ROW_PADDING == 0 ? - ne00 : ne00 - ne00 % MATRIX_ROW_PADDING + MATRIX_ROW_PADDING; - size_t as; - void * src1_q8_1 = ggml_cuda_pool_malloc(padded_row_size*sizeof(block_q8_1)/QK8_1, &as); - quantize_row_q8_1_cuda(src1_ddf_i, src1_q8_1, ne00, 1, padded_row_size, cudaStream_main); - - switch (src0->type) { - case GGML_TYPE_Q4_0: - mul_mat_vec_q4_0_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, nrows, cudaStream_main); - break; - case GGML_TYPE_Q4_1: - mul_mat_vec_q4_1_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, nrows, cudaStream_main); - break; - case GGML_TYPE_Q5_0: - mul_mat_vec_q5_0_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, nrows, cudaStream_main); - break; - case GGML_TYPE_Q5_1: - mul_mat_vec_q5_1_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, nrows, cudaStream_main); - break; - case GGML_TYPE_Q8_0: - mul_mat_vec_q8_0_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, nrows, cudaStream_main); - break; - case GGML_TYPE_Q2_K: - mul_mat_vec_q2_K_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, nrows, cudaStream_main); - break; - case GGML_TYPE_Q3_K: - mul_mat_vec_q3_K_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, nrows, cudaStream_main); - break; - case GGML_TYPE_Q4_K: - mul_mat_vec_q4_K_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, nrows, cudaStream_main); - break; - case GGML_TYPE_Q5_K: - mul_mat_vec_q5_K_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, nrows, cudaStream_main); - break; - case GGML_TYPE_Q6_K: - mul_mat_vec_q6_K_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, nrows, cudaStream_main); - break; - default: - GGML_ASSERT(false); - break; - } +inline void ggml_cuda_op_dequantize_mul_mat_vec( + const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i, + const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols, + const int64_t src1_padded_row_size, const cudaStream_t & stream) { - ggml_cuda_pool_free(src1_q8_1, as); - } else { - // on some GPUs it is faster to convert src1 to half and to use half precision intrinsics + const int64_t ne00 = src0->ne[0]; + const int64_t row_diff = row_high - row_low; + + // on some GPUs it is faster to convert src1 to half and to use half precision intrinsics #ifdef GGML_CUDA_F16 - size_t ash; - dfloat * src1_dfloat = nullptr; // dfloat == half - - bool src1_convert_f16 = src0->type == GGML_TYPE_Q4_0 || src0->type == GGML_TYPE_Q4_1 || - src0->type == GGML_TYPE_Q5_0 || src0->type == GGML_TYPE_Q5_1 || - src0->type == GGML_TYPE_Q8_0 || src0->type == GGML_TYPE_F16; - - if (src1_convert_f16) { - src1_dfloat = (half *) ggml_cuda_pool_malloc(ne00*sizeof(half), &ash); - ggml_cpy_f32_f16_cuda((char *) src1_ddf_i, (char *) src1_dfloat, ne00, - ne00, 1, sizeof(float), 0, 0, - ne00, 1, sizeof(half), 0, 0, cudaStream_main); - } + size_t ash; + dfloat * src1_dfloat = nullptr; // dfloat == half + + bool src1_convert_f16 = src0->type == GGML_TYPE_Q4_0 || src0->type == GGML_TYPE_Q4_1 || + src0->type == GGML_TYPE_Q5_0 || src0->type == GGML_TYPE_Q5_1 || + src0->type == GGML_TYPE_Q8_0 || src0->type == GGML_TYPE_F16; + + if (src1_convert_f16) { + src1_dfloat = (half *) ggml_cuda_pool_malloc(ne00*sizeof(half), &ash); + ggml_cpy_f32_f16_cuda((const char *) src1_ddf_i, (char *) src1_dfloat, ne00, + ne00, 1, sizeof(float), 0, 0, + ne00, 1, sizeof(half), 0, 0, stream); + } #else - dfloat * src1_dfloat = src1_ddf_i; // dfloat == float, no conversion + const dfloat * src1_dfloat = (const dfloat *) src1_ddf_i; // dfloat == float, no conversion #endif // GGML_CUDA_F16 - switch (src0->type) { - case GGML_TYPE_Q4_0: - dequantize_mul_mat_vec_q4_0_cuda(src0_ddq_i, src1_dfloat, dst_ddf_i, ne00, nrows, cudaStream_main); - break; - case GGML_TYPE_Q4_1: - dequantize_mul_mat_vec_q4_1_cuda(src0_ddq_i, src1_dfloat, dst_ddf_i, ne00, nrows, cudaStream_main); - break; - case GGML_TYPE_Q5_0: - dequantize_mul_mat_vec_q5_0_cuda(src0_ddq_i, src1_dfloat, dst_ddf_i, ne00, nrows, cudaStream_main); - break; - case GGML_TYPE_Q5_1: - dequantize_mul_mat_vec_q5_1_cuda(src0_ddq_i, src1_dfloat, dst_ddf_i, ne00, nrows, cudaStream_main); - break; - case GGML_TYPE_Q8_0: - dequantize_mul_mat_vec_q8_0_cuda(src0_ddq_i, src1_dfloat, dst_ddf_i, ne00, nrows, cudaStream_main); - break; - case GGML_TYPE_Q2_K: - dequantize_mul_mat_vec_q2_K_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main); - break; - case GGML_TYPE_Q3_K: - dequantize_mul_mat_vec_q3_K_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main); - break; - case GGML_TYPE_Q4_K: - dequantize_mul_mat_vec_q4_K_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main); - break; - case GGML_TYPE_Q5_K: - dequantize_mul_mat_vec_q5_K_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main); - break; - case GGML_TYPE_Q6_K: - dequantize_mul_mat_vec_q6_K_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main); - break; - case GGML_TYPE_F16: - convert_mul_mat_vec_f16_cuda(src0_ddq_i, src1_dfloat, dst_ddf_i, ne00, nrows, cudaStream_main); - break; - default: - GGML_ASSERT(false); - break; - } + switch (src0->type) { + case GGML_TYPE_Q4_0: + dequantize_mul_mat_vec_q4_0_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream); + break; + case GGML_TYPE_Q4_1: + dequantize_mul_mat_vec_q4_1_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream); + break; + case GGML_TYPE_Q5_0: + dequantize_mul_mat_vec_q5_0_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream); + break; + case GGML_TYPE_Q5_1: + dequantize_mul_mat_vec_q5_1_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream); + break; + case GGML_TYPE_Q8_0: + dequantize_mul_mat_vec_q8_0_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream); + break; + case GGML_TYPE_Q2_K: + dequantize_mul_mat_vec_q2_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream); + break; + case GGML_TYPE_Q3_K: + dequantize_mul_mat_vec_q3_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream); + break; + case GGML_TYPE_Q4_K: + dequantize_mul_mat_vec_q4_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream); + break; + case GGML_TYPE_Q5_K: + dequantize_mul_mat_vec_q5_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream); + break; + case GGML_TYPE_Q6_K: + dequantize_mul_mat_vec_q6_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream); + break; + case GGML_TYPE_F16: + convert_mul_mat_vec_f16_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream); + break; + default: + GGML_ASSERT(false); + break; + } #ifdef GGML_CUDA_F16 - if (src1_convert_f16) { - ggml_cuda_pool_free(src1_dfloat, ash); - } -#endif // GGML_CUDA_F16 + if (src1_convert_f16) { + ggml_cuda_pool_free(src1_dfloat, ash); } +#endif // GGML_CUDA_F16 (void) src1; (void) dst; - (void) src0_ddf_i; - (void) i02; - (void) i1; + (void) src1_ddq_i; + (void) src1_ncols; + (void) src1_padded_row_size; } inline void ggml_cuda_op_mul_mat_cublas( - const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i, - float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1, - cudaStream_t & cudaStream_main){ + const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i, + const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols, + const int64_t src1_padded_row_size, const cudaStream_t & stream) { - GGML_ASSERT(src0_ddf_i != nullptr); + GGML_ASSERT(src0_dd_i != nullptr); GGML_ASSERT(src1_ddf_i != nullptr); - GGML_ASSERT(dst_ddf_i != nullptr); + GGML_ASSERT(dst_dd_i != nullptr); - const float alpha = 1.0f; - const float beta = 0.0f; const int64_t ne00 = src0->ne[0]; const int64_t ne10 = src1->ne[0]; - const int64_t ne11 = src1->ne[1]; const int64_t ne0 = dst->ne[0]; - const int64_t i01_diff = i01_high - i01_low; + const int64_t row_diff = row_high - row_low; int id; CUDA_CHECK(cudaGetDevice(&id)); // the main device has a larger memory buffer to hold the results from all GPUs // ldc == nrows of the matrix that cuBLAS writes into - int ldc = dst->backend == GGML_BACKEND_GPU && id == g_main_device ? ne0 : i01_diff; + int ldc = dst->backend == GGML_BACKEND_GPU && id == g_main_device ? ne0 : row_diff; + + const int compute_capability = g_compute_capabilities[id]; + + if (compute_capability >= CC_TURING && src0->type == GGML_TYPE_F16 && ggml_is_contiguous(src0) && ldc == row_diff) { + // convert src1 to fp16, multiply as fp16, convert dst to fp32 + half * src1_as_f16 = nullptr; + size_t src1_as = 0; + if (src1->type != GGML_TYPE_F16) { + const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type); + GGML_ASSERT(to_fp16_cuda != nullptr); + size_t ne = src1_ncols*ne10; + src1_as_f16 = (half *) ggml_cuda_pool_malloc(ne * sizeof(half), &src1_as); + to_fp16_cuda(src1_ddf_i, src1_as_f16, ne, stream); + } + const half * src1_ptr = src1->type == GGML_TYPE_F16 ? (const half *) src1_ddq_i : src1_as_f16; - CUBLAS_CHECK(cublasSetStream(g_cublas_handles[id], cudaStream_main)); - CUBLAS_CHECK( - cublasSgemm(g_cublas_handles[id], CUBLAS_OP_T, CUBLAS_OP_N, - i01_diff, ne11, ne10, - &alpha, src0_ddf_i, ne00, - src1_ddf_i, ne10, - &beta, dst_ddf_i, ldc)); + size_t dst_as = 0; + half * dst_f16 = (half *) ggml_cuda_pool_malloc(row_diff*src1_ncols * sizeof(half), &dst_as); + + const half alpha_f16 = 1.0f; + const half beta_f16 = 0.0f; + + CUBLAS_CHECK(cublasSetStream(g_cublas_handles[id], stream)); + CUBLAS_CHECK( + cublasGemmEx(g_cublas_handles[id], CUBLAS_OP_T, CUBLAS_OP_N, + row_diff, src1_ncols, ne10, + &alpha_f16, src0_dd_i, CUDA_R_16F, ne00, + src1_ptr, CUDA_R_16F, ne10, + &beta_f16, dst_f16, CUDA_R_16F, ldc, + CUBLAS_COMPUTE_16F, + CUBLAS_GEMM_DEFAULT_TENSOR_OP)); + + const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16); + to_fp32_cuda(dst_f16, dst_dd_i, row_diff*src1_ncols, stream); + + ggml_cuda_pool_free(dst_f16, dst_as); + + if (src1_as != 0) { + ggml_cuda_pool_free(src1_as_f16, src1_as); + } + } + else { + float * src0_ddq_as_f32 = nullptr; + size_t src0_as = 0; + + if (src0->type != GGML_TYPE_F32) { + const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(src0->type); + GGML_ASSERT(to_fp32_cuda != nullptr); + src0_ddq_as_f32 = (float *) ggml_cuda_pool_malloc(row_diff*ne00 * sizeof(float), &src0_as); // NOLINT + to_fp32_cuda(src0_dd_i, src0_ddq_as_f32, row_diff*ne00, stream); + } + const float * src0_ddf_i = src0->type == GGML_TYPE_F32 ? (const float *) src0_dd_i : src0_ddq_as_f32; + + const float alpha = 1.0f; + const float beta = 0.0f; + + CUBLAS_CHECK(cublasSetStream(g_cublas_handles[id], stream)); + CUBLAS_CHECK( + cublasSgemm(g_cublas_handles[id], CUBLAS_OP_T, CUBLAS_OP_N, + row_diff, src1_ncols, ne10, + &alpha, src0_ddf_i, ne00, + src1_ddf_i, ne10, + &beta, dst_dd_i, ldc)); + + if (src0_as != 0) { + ggml_cuda_pool_free(src0_ddq_as_f32, src0_as); + } + } (void) dst; - (void) src0_ddq_i; - (void) i02; - (void) i1; + (void) src1_ddq_i; + (void) src1_padded_row_size; } inline void ggml_cuda_op_rope( - const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i, - float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1, - cudaStream_t & cudaStream_main){ + const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, + const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) { - GGML_ASSERT(src0_ddf_i != nullptr); - GGML_ASSERT(dst_ddf_i != nullptr); + GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16); + GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16); + GGML_ASSERT(src0->type == dst->type); const int64_t ne00 = src0->ne[0]; const int64_t ne01 = src0->ne[1]; - const int64_t i01_diff = i01_high - i01_low; + const int64_t ne2 = dst->ne[2]; + const int64_t nrows = ggml_nrows(src0); - const int n_past = ((int32_t *) dst->op_params)[0]; + //const int n_past = ((int32_t *) dst->op_params)[0]; const int n_dims = ((int32_t *) dst->op_params)[1]; const int mode = ((int32_t *) dst->op_params)[2]; const int n_ctx = ((int32_t *) dst->op_params)[3]; @@ -5726,40 +6178,56 @@ inline void ggml_cuda_op_rope( memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float)); const float theta_scale = powf(freq_base, -2.0f/n_dims); - const float p0 = (((mode & 1) == 0 ? n_past : 0)) * freq_scale; + + const int32_t * pos = nullptr; + if ((mode & 1) == 0) { + GGML_ASSERT(src1->type == GGML_TYPE_I32); + GGML_ASSERT(src1->ne[0] == ne2); + pos = (const int32_t *) src1_dd; + } const bool is_neox = mode & 2; const bool is_glm = mode & 4; // compute if (is_glm) { - rope_glm_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, p0, freq_scale, ne01, theta_scale, n_ctx, cudaStream_main); + GGML_ASSERT(false); + rope_glm_f32_cuda(src0_dd, dst_dd, ne00, nrows, pos, freq_scale, ne01, theta_scale, n_ctx, main_stream); } else if (is_neox) { GGML_ASSERT(ne00 == n_dims && "ne00 != n_dims is not implemented for CUDA yet"); - rope_neox_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, p0, freq_scale, ne01, theta_scale, cudaStream_main); + if (src0->type == GGML_TYPE_F32) { + rope_neox_cuda((const float *)src0_dd, (float *)dst_dd, ne00, nrows, pos, freq_scale, ne01, theta_scale, main_stream); + } else if (src0->type == GGML_TYPE_F16) { + rope_neox_cuda((const half *)src0_dd, (half *)dst_dd, ne00, nrows, pos, freq_scale, ne01, theta_scale, main_stream); + } else { + GGML_ASSERT(false); + } } else { - rope_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, p0, freq_scale, ne01, theta_scale, cudaStream_main); + if (src0->type == GGML_TYPE_F32) { + rope_cuda((const float *)src0_dd, (float *)dst_dd, ne00, nrows, pos, freq_scale, ne01, theta_scale, main_stream); + } else if (src0->type == GGML_TYPE_F16) { + rope_cuda((const half *)src0_dd, (half *)dst_dd, ne00, nrows, pos, freq_scale, ne01, theta_scale, main_stream); + } else { + GGML_ASSERT(false); + } } (void) src1; (void) dst; - (void) src0_ddq_i; - (void) src1_ddf_i; - (void) i1; + (void) src1_dd; } inline void ggml_cuda_op_alibi( - const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i, - float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1, - cudaStream_t & cudaStream_main){ + const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, + const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) { - GGML_ASSERT(src0_ddf_i != nullptr); - GGML_ASSERT(dst_ddf_i != nullptr); + GGML_ASSERT(src0->type == GGML_TYPE_F32); + GGML_ASSERT( dst->type == GGML_TYPE_F32); const int64_t ne00 = src0->ne[0]; const int64_t ne01 = src0->ne[1]; const int64_t ne02 = src0->ne[2]; - const int64_t i01_diff = i01_high - i01_low; + const int64_t nrows = ggml_nrows(src0); const int n_past = ((int32_t *) dst->op_params)[0]; const int n_head = ((int32_t *) dst->op_params)[1]; @@ -5774,334 +6242,393 @@ inline void ggml_cuda_op_alibi( const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor); const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor); - // compute - alibi_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, ne01, n_heads_log2_floor, m0, m1, cudaStream_main); + alibi_f32_cuda(src0_dd, dst_dd, ne00, nrows, ne01, n_heads_log2_floor, m0, m1, main_stream); (void) src1; - (void) src0_ddq_i; - (void) src1_ddf_i; - (void) i1; + (void) src1_dd; } inline void ggml_cuda_op_diag_mask_inf( - const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i, - float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1, - cudaStream_t & cudaStream_main){ + const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, + const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) { - GGML_ASSERT(src0_ddf_i != nullptr); - GGML_ASSERT(dst_ddf_i != nullptr); + GGML_ASSERT(src0->type == GGML_TYPE_F32); + GGML_ASSERT( dst->type == GGML_TYPE_F32); const int64_t ne00 = src0->ne[0]; const int64_t ne01 = src0->ne[1]; - const int64_t i01_diff = i01_high - i01_low; + const int nrows0 = ggml_nrows(src0); const int n_past = ((int32_t *) dst->op_params)[0]; - // compute - diag_mask_inf_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, ne01, n_past, cudaStream_main); + diag_mask_inf_f32_cuda(src0_dd, dst_dd, ne00, nrows0, ne01, n_past, main_stream); (void) src1; (void) dst; - (void) src0_ddq_i; - (void) src1_ddf_i; - (void) i02; - (void) i1; + (void) src1_dd; } inline void ggml_cuda_op_soft_max( - const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i, - float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1, - cudaStream_t & cudaStream_main){ + const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, + const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) { - GGML_ASSERT(src0_ddf_i != nullptr); - GGML_ASSERT(dst_ddf_i != nullptr); + GGML_ASSERT(src0->type == GGML_TYPE_F32); + GGML_ASSERT( dst->type == GGML_TYPE_F32); const int64_t ne00 = src0->ne[0]; - const int64_t i01_diff = i01_high - i01_low; + const int64_t nrows = ggml_nrows(src0); - // compute - soft_max_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, cudaStream_main); + soft_max_f32_cuda(src0_dd, dst_dd, ne00, nrows, main_stream); (void) src1; (void) dst; - (void) src0_ddq_i; - (void) src1_ddf_i; - (void) i02; - (void) i1; + (void) src1_dd; } inline void ggml_cuda_op_scale( - const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i, - float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1, - cudaStream_t & cudaStream_main){ + const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, + const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) { - GGML_ASSERT(src0_ddf_i != nullptr); - GGML_ASSERT(dst_ddf_i != nullptr); + GGML_ASSERT(src0->type == GGML_TYPE_F32); + GGML_ASSERT(src1->type == GGML_TYPE_F32); + GGML_ASSERT( dst->type == GGML_TYPE_F32); const float scale = ((float *) src1->data)[0]; - const int64_t ne00 = src0->ne[0]; - const int64_t i01_diff = i01_high - i01_low; - - // compute - scale_f32_cuda(src0_ddf_i, dst_ddf_i, scale, ne00*i01_diff, cudaStream_main); + scale_f32_cuda(src0_dd, dst_dd, scale, ggml_nelements(src0), main_stream); CUDA_CHECK(cudaGetLastError()); (void) src1; (void) dst; - (void) src0_ddq_i; - (void) src1_ddf_i; - (void) i02; - (void) i1; + (void) src1_dd; } -static void ggml_cuda_op(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, - ggml_cuda_op_t op, bool src0_needs_f32, bool flatten_rows) { +static void ggml_cuda_op_flatten(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const ggml_cuda_op_flatten_t op) { + const int64_t nrows0 = ggml_nrows(src0); + + const bool use_src1 = src1 != nullptr; + const int64_t nrows1 = use_src1 ? ggml_nrows(src1) : 1; + + GGML_ASSERT(!use_src1 || src1->backend != GGML_BACKEND_GPU_SPLIT); + GGML_ASSERT( dst->backend != GGML_BACKEND_GPU_SPLIT); + + struct ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra; + struct ggml_tensor_extra_gpu * src1_extra = use_src1 ? (ggml_tensor_extra_gpu *) src1->extra : nullptr; + struct ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra; + + const bool src0_on_device = src0->backend == GGML_BACKEND_GPU || src0->backend == GGML_BACKEND_GPU_SPLIT; + const bool src1_on_device = use_src1 && src1->backend == GGML_BACKEND_GPU; + const bool dst_on_device = dst->backend == GGML_BACKEND_GPU; + + const bool src1_stays_on_host = use_src1 && dst->op == GGML_OP_SCALE; + + // dd = data device + float * src0_ddf = nullptr; + float * src1_ddf = nullptr; + float * dst_ddf = nullptr; + + // as = actual size + size_t src0_asf = 0; + size_t src1_asf = 0; + size_t dst_asf = 0; + + ggml_cuda_set_device(g_main_device); + const cudaStream_t main_stream = g_cudaStreams[g_main_device][0]; + + if (src0_on_device) { + src0_ddf = (float *) src0_extra->data_device[g_main_device]; + } else { + src0_ddf = (float *) ggml_cuda_pool_malloc(ggml_nbytes(src0), &src0_asf); + CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src0_ddf, src0, 0, 0, 0, nrows0, main_stream)); + } + + if (use_src1 && !src1_stays_on_host) { + if (src1_on_device) { + src1_ddf = (float *) src1_extra->data_device[g_main_device]; + } else { + src1_ddf = (float *) ggml_cuda_pool_malloc(ggml_nbytes(src1), &src1_asf); + CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src1_ddf, src1, 0, 0, 0, nrows1, main_stream)); + } + } + if (dst_on_device) { + dst_ddf = (float *) dst_extra->data_device[g_main_device]; + } else { + dst_ddf = (float *) ggml_cuda_pool_malloc(ggml_nbytes(dst), &dst_asf); + } + + // do the computation + op(src0, src1, dst, src0_ddf, src1_ddf, dst_ddf, main_stream); + CUDA_CHECK(cudaGetLastError()); + + // copy dst to host if necessary + if (!dst_on_device) { + CUDA_CHECK(cudaMemcpyAsync(dst->data, dst_ddf, ggml_nbytes(dst), cudaMemcpyDeviceToHost, main_stream)); + } + + if (src0_asf > 0) { + ggml_cuda_pool_free(src0_ddf, src0_asf); + } + if (src1_asf > 0) { + ggml_cuda_pool_free(src1_ddf, src1_asf); + } + if (dst_asf > 0) { + ggml_cuda_pool_free(dst_ddf, dst_asf); + } + + if (dst->backend == GGML_BACKEND_CPU) { + CUDA_CHECK(cudaDeviceSynchronize()); + } +} + +static void ggml_cuda_set_peer_access(const int n_tokens) { + static bool peer_access_enabled = false; + + const bool enable_peer_access = n_tokens <= GGML_CUDA_PEER_MAX_BATCH_SIZE; + + if (peer_access_enabled == enable_peer_access) { + return; + } + +#ifdef NDEBUG + for (int id = 0; id < g_device_count; ++id) { + CUDA_CHECK(ggml_cuda_set_device(id)); + + for (int id_other = 0; id_other < g_device_count; ++id_other) { + if (id == id_other) { + continue; + } + if (id != g_main_device && id_other != g_main_device) { + continue; + } + + int can_access_peer; + CUDA_CHECK(cudaDeviceCanAccessPeer(&can_access_peer, id, id_other)); + if (can_access_peer) { + if (enable_peer_access) { + CUDA_CHECK(cudaDeviceEnablePeerAccess(id_other, 0)); + } else { + CUDA_CHECK(cudaDeviceDisablePeerAccess(id_other)); + } + } + } + } +#endif // NDEBUG + + peer_access_enabled = enable_peer_access; +} + +static void ggml_cuda_op_mul_mat( + const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, ggml_cuda_op_mul_mat_t op, + const bool convert_src1_to_q8_1) { + const int64_t ne00 = src0->ne[0]; const int64_t ne01 = src0->ne[1]; const int64_t ne02 = src0->ne[2]; const int64_t ne03 = src0->ne[3]; const int64_t nrows0 = ggml_nrows(src0); - const bool use_src1 = src1 != nullptr; - const int64_t ne10 = use_src1 ? src1->ne[0] : 1; - const int64_t ne11 = use_src1 ? src1->ne[1] : 1; - const int64_t ne12 = use_src1 ? src1->ne[2] : 1; - const int64_t ne13 = use_src1 ? src1->ne[3] : 1; - const int64_t nrows1 = use_src1 ? ggml_nrows(src1) : 1; + const int64_t ne10 = src1->ne[0]; + const int64_t ne11 = src1->ne[1]; + const int64_t ne12 = src1->ne[2]; + const int64_t ne13 = src1->ne[3]; + const int64_t nrows1 = ggml_nrows(src1); GGML_ASSERT(ne03 == ne13); const int64_t ne0 = dst->ne[0]; const int64_t ne1 = dst->ne[1]; - const int nb2 = dst->nb[2]; - const int nb3 = dst->nb[3]; + const int nb2 = dst->nb[2]; + const int nb3 = dst->nb[3]; + + ggml_cuda_set_peer_access(ne11); GGML_ASSERT(dst->backend != GGML_BACKEND_GPU_SPLIT); - GGML_ASSERT(!use_src1 || src1->backend != GGML_BACKEND_GPU_SPLIT); + GGML_ASSERT(src1->backend != GGML_BACKEND_GPU_SPLIT); - // strides for iteration over dims 3 and 2 - const int64_t num_iters_0 = ne02 >= ne12 ? ne02*ne03 : ne12*ne13; - const int64_t num_iters = flatten_rows ? 1 : num_iters_0; - const int64_t stride_mod = flatten_rows ? num_iters_0 : 1; - const int64_t src0_stride = ne00 * ne01 * stride_mod; - const int64_t src1_stride = ne10 * ne11 * stride_mod; - const int64_t dst_stride = ne0 * ne1 * stride_mod; + GGML_ASSERT(ne12 >= ne02 && ne12 % ne02 == 0); - const int64_t rows_per_iter = flatten_rows ? nrows0 : ne01; - const int64_t i03_max = flatten_rows ? 1 : ne03; - const int64_t i02_max = flatten_rows ? 1 : (ne02 >= ne12 ? ne02 : ne12); - const int64_t i02_divisor = ne02 >= ne12 ? 1 : ne12 / ne02; - GGML_ASSERT(!(flatten_rows && ne02 < ne12)); + const int64_t i02_divisor = ne12 / ne02; const size_t src0_ts = ggml_type_size(src0->type); const size_t src0_bs = ggml_blck_size(src0->type); + const size_t q8_1_ts = sizeof(block_q8_1); + const size_t q8_1_bs = QK8_1; - struct ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra; - struct ggml_tensor_extra_gpu * src1_extra = use_src1 ? (ggml_tensor_extra_gpu *) src1->extra : nullptr; - struct ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra; + struct ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra; + struct ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra; + struct ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra; const bool src0_on_device = src0->backend == GGML_BACKEND_GPU || src0->backend == GGML_BACKEND_GPU_SPLIT; const bool src0_is_contiguous = ggml_is_contiguous(src0); - const bool src0_is_f32 = src0->type == GGML_TYPE_F32; - const bool src1_is_contiguous = use_src1 && ggml_is_contiguous(src1); - const bool src1_stays_on_host = use_src1 && ( - dst->op == GGML_OP_SCALE || dst->op == GGML_OP_DIAG_MASK_INF || dst->op == GGML_OP_ROPE); + const bool src1_is_contiguous = ggml_is_contiguous(src1); + const int64_t src1_padded_col_size = ne10 % MATRIX_ROW_PADDING == 0 ? + ne10 : ne10 - ne10 % MATRIX_ROW_PADDING + MATRIX_ROW_PADDING; const bool split = src0->backend == GGML_BACKEND_GPU_SPLIT; + GGML_ASSERT(!(split && ne02 > 1)); + GGML_ASSERT(!(split && ne03 > 1)); GGML_ASSERT(!(split && ne02 < ne12)); - const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(src0->type); - // dd = data device - char * src0_ddq[GGML_CUDA_MAX_DEVICES] = {nullptr}; // quantized - float * src0_ddf[GGML_CUDA_MAX_DEVICES] = {nullptr}; // float - float * src1_ddf[GGML_CUDA_MAX_DEVICES] = {nullptr}; - float * dst_ddf[GGML_CUDA_MAX_DEVICES] = {nullptr}; - - // asq = actual size quantized, asf = actual size float - size_t src0_asq[GGML_CUDA_MAX_DEVICES] = {0}; - size_t src0_asf[GGML_CUDA_MAX_DEVICES] = {0}; - size_t src1_asf[GGML_CUDA_MAX_DEVICES] = {0}; - size_t dst_asf[GGML_CUDA_MAX_DEVICES] = {0}; + char * src0_dd[GGML_CUDA_MAX_DEVICES] = {nullptr}; + float * src1_ddf[GGML_CUDA_MAX_DEVICES] = {nullptr}; // float + char * src1_ddq[GGML_CUDA_MAX_DEVICES] = {nullptr}; // q8_1 + float * dst_dd[GGML_CUDA_MAX_DEVICES] = {nullptr}; - // if multiple devices are used they need to wait for the main device - // here an event is recorded that signifies that the main device has finished calculating the input data - if (split && g_device_count > 1) { - CUDA_CHECK(cudaSetDevice(g_main_device)); - CUDA_CHECK(cudaEventRecord(src0_extra->events[g_main_device], g_cudaStreams_main[g_main_device])); - } + // as = actual size + size_t src0_as[GGML_CUDA_MAX_DEVICES] = {0}; + size_t src1_asf[GGML_CUDA_MAX_DEVICES] = {0}; + size_t src1_asq[GGML_CUDA_MAX_DEVICES] = {0}; + size_t dst_as[GGML_CUDA_MAX_DEVICES] = {0}; - for (int id = 0; id < g_device_count; ++id) { - if (!split && id != g_main_device) { - continue; - } + int64_t row_low[GGML_CUDA_MAX_DEVICES]; + int64_t row_high[GGML_CUDA_MAX_DEVICES]; - const bool src1_on_device = use_src1 && src1->backend == GGML_BACKEND_GPU && id == g_main_device; - const bool dst_on_device = dst->backend == GGML_BACKEND_GPU && id == g_main_device; + for (int64_t id = 0; id < g_device_count; ++id) { + // by default, use all rows + row_low[id] = 0; + row_high[id] = ne01; - int64_t row_low, row_high; + // for multi GPU, get the row boundaries from tensor split + // and round to mul_mat_q tile sizes if (split) { const int64_t rounding = get_row_rounding(src0->type); - row_low = id == 0 ? 0 : nrows0*g_tensor_split[id]; - row_low -= row_low % rounding; + if (id != 0) { + row_low[id] = ne01*g_tensor_split[id]; + row_low[id] -= row_low[id] % rounding; + } - if (id == g_device_count - 1) { - row_high = nrows0; - } else { - row_high = nrows0*g_tensor_split[id + 1]; - row_high -= row_high % rounding; + if (id != g_device_count - 1) { + row_high[id] = ne01*g_tensor_split[id + 1]; + row_high[id] -= row_high[id] % rounding; } - } else { - row_low = 0; - row_high = nrows0*i02_divisor; } - if (row_low == row_high) { + } + + for (int64_t id = 0; id < g_device_count; ++id) { + if ((!split && id != g_main_device) || row_low[id] == row_high[id]) { continue; } - int64_t row_diff = row_high - row_low; + const bool src1_on_device = src1->backend == GGML_BACKEND_GPU && id == g_main_device; + const bool dst_on_device = dst->backend == GGML_BACKEND_GPU && id == g_main_device; - cudaSetDevice(id); - cudaStream_t cudaStream_main = g_cudaStreams_main[id]; - - // wait for main GPU data if necessary - if (split && id != g_main_device) { - CUDA_CHECK(cudaStreamWaitEvent(cudaStream_main, src0_extra->events[g_main_device])); - } + ggml_cuda_set_device(id); + const cudaStream_t stream = g_cudaStreams[id][0]; if (src0_on_device && src0_is_contiguous) { - if (src0_is_f32) { - src0_ddf[id] = (float *) src0_extra->data_device[id]; - } else { - src0_ddq[id] = (char *) src0_extra->data_device[id]; - } + src0_dd[id] = (char *) src0_extra->data_device[id]; } else { - if (src0_is_f32) { - src0_ddf[id] = (float *) ggml_cuda_pool_malloc(row_diff*ne00 * sizeof(float), &src0_asf[id]); - } else { - src0_ddq[id] = (char *) ggml_cuda_pool_malloc(row_diff*ne00 * src0_ts/src0_bs, &src0_asq[id]); - } + const size_t size_src0_ddq = split ? (row_high[id]-row_low[id])*ne00 * src0_ts/src0_bs : ggml_nbytes(src0); + src0_dd[id] = (char *) ggml_cuda_pool_malloc(ggml_nbytes(src0), &src0_as[id]); } - if (src0_needs_f32 && !src0_is_f32) { - src0_ddf[id] = (float *) ggml_cuda_pool_malloc(row_diff*ne00 * sizeof(float), &src0_asf[id]); + if (src1_on_device && src1_is_contiguous) { + src1_ddf[id] = (float *) src1_extra->data_device[id]; + } else { + src1_ddf[id] = (float *) ggml_cuda_pool_malloc(ggml_nbytes(src1), &src1_asf[id]); } - if (use_src1 && !src1_stays_on_host) { - if (src1_on_device && src1_is_contiguous) { - src1_ddf[id] = (float *) src1_extra->data_device[id]; - } else { - src1_ddf[id] = (float *) ggml_cuda_pool_malloc(num_iters*src1_stride * sizeof(float), &src1_asf[id]); + if (convert_src1_to_q8_1) { + src1_ddq[id] = (char *) ggml_cuda_pool_malloc(nrows1*src1_padded_col_size*q8_1_ts/q8_1_bs, &src1_asq[id]); + + if (split && src1_on_device && src1_is_contiguous) { + quantize_row_q8_1_cuda(src1_ddf[id], src1_ddq[id], ne10, nrows1, src1_padded_col_size, stream); + CUDA_CHECK(cudaGetLastError()); } } + if (dst_on_device) { - dst_ddf[id] = (float *) dst_extra->data_device[id]; + dst_dd[id] = (float *) dst_extra->data_device[id]; } else { - size_t size_dst_ddf = split ? row_diff*ne1 * sizeof(float) : num_iters*dst_stride * sizeof(float); - dst_ddf[id] = (float *) ggml_cuda_pool_malloc(size_dst_ddf, &dst_asf[id]); + const size_t size_dst_ddf = split ? (row_high[id]-row_low[id])*ne1*sizeof(float) : ggml_nbytes(dst); + dst_dd[id] = (float *) ggml_cuda_pool_malloc(size_dst_ddf, &dst_as[id]); } + } - for (int64_t i03 = 0; i03 < i03_max; i03++) { - const int64_t i13 = i03 % ne13; - for (int64_t i02 = 0; i02 < i02_max; i02++) { - const int64_t i12 = i02 % ne12; + // if multiple devices are used they need to wait for the main device + // here an event is recorded that signals that the main device has finished calculating the input data + if (split && g_device_count > 1) { + CUDA_CHECK(ggml_cuda_set_device(g_main_device)); + CUDA_CHECK(cudaEventRecord(src0_extra->events[g_main_device][0], g_cudaStreams[g_main_device][0])); + } - const int64_t i0 = i03*i02_max + i02; + const int64_t src1_col_stride = split && g_device_count > 1 ? MUL_MAT_SRC1_COL_STRIDE : ne11; + for (int64_t src1_col_0 = 0; src1_col_0 < ne11; src1_col_0 += src1_col_stride) { + const int64_t is = split ? (src1_col_0/src1_col_stride) % MAX_STREAMS : 0; + const int64_t src1_ncols = src1_col_0 + src1_col_stride > ne11 ? ne11 - src1_col_0 : src1_col_stride; - // i0 values that contain the lower/upper rows for a split tensor when using multiple GPUs - const int64_t i0_offset_low = row_low/rows_per_iter; - const int64_t i0_offset_high = row_high/rows_per_iter; + for (int64_t id = 0; id < g_device_count; ++id) { + if ((!split && id != g_main_device) || row_low[id] == row_high[id]) { + continue; + } - int64_t i01_low = 0; - int64_t i01_high = rows_per_iter; - if (split) { - if (i0 < i0_offset_low || i0 > i0_offset_high) { - continue; - } - if (i0 == i0_offset_low) { - i01_low = row_low % rows_per_iter; - } - if (i0 == i0_offset_high) { - i01_high = row_high % rows_per_iter; - } - } + const bool src1_on_device = src1->backend == GGML_BACKEND_GPU && id == g_main_device; + const bool dst_on_device = dst->backend == GGML_BACKEND_GPU && id == g_main_device; + const int64_t row_diff = row_high[id] - row_low[id]; - // There is possibly a bug in the Windows nvcc compiler regarding instruction reordering or optimizing out local variables. - // Removing the first assert or changing the order of the arguments causes the second assert to fail. - // Removing both asserts results in i01_high becoming 0 which in turn results in garbage output. - // The root cause seems to be a problem with i0_offset_high becoming 0 when it should always be >0 (for single GPU). - GGML_ASSERT(i01_low == 0 || g_device_count > 1); - GGML_ASSERT(i01_high == rows_per_iter || g_device_count > 1); + ggml_cuda_set_device(id); + const cudaStream_t stream = g_cudaStreams[id][is]; - const int64_t i01_diff = i01_high - i01_low; - if (i01_diff == 0) { - continue; - } - const int64_t i11 = i13*ne12 + i12; + // wait for main GPU data if necessary + if (split && (id != g_main_device || is != 0)) { + CUDA_CHECK(cudaStreamWaitEvent(stream, src0_extra->events[g_main_device][0], 0)); + } + + for (int64_t i0 = 0; i0 < ne13*ne12; ++i0) { + const int64_t i03 = i0 / ne12; + const int64_t i02 = i0 % ne12; + + const size_t src1_ddq_i_offset = (i0*ne11 + src1_col_0) * src1_padded_col_size*q8_1_ts/q8_1_bs; // for split tensors the data begins at i0 == i0_offset_low - char * src0_ddq_i = src0_ddq[id] + (i0/i02_divisor - i0_offset_low)*src0_stride*src0_ts/src0_bs; - float * src0_ddf_i = src0_ddf[id] + (i0/i02_divisor - i0_offset_low)*src0_stride; - float * src1_ddf_i = src1_ddf[id] + i11*src1_stride; - float * dst_ddf_i = dst_ddf[id] + (i0 - i0_offset_low)*dst_stride; - - // for split tensors the data pointer needs to be rounded down - // to the bin edge for i03, i02 bins beyond the first - if (i0 - i0_offset_low > 0) { - GGML_ASSERT(!flatten_rows); - src0_ddq_i -= (row_low % ne01)*ne00 * src0_ts/src0_bs; - src0_ddf_i -= (row_low % ne01)*ne00; - dst_ddf_i -= (row_low % ne0)*ne1; - } + char * src0_dd_i = src0_dd[id] + (i0/i02_divisor) * ne01*ne00*src0_ts/src0_bs; + float * src1_ddf_i = src1_ddf[id] + (i0*ne11 + src1_col_0) * ne10; + char * src1_ddq_i = src1_ddq[id] + src1_ddq_i_offset; + float * dst_dd_i = dst_dd[id] + (i0*ne1 + src1_col_0) * (dst_on_device ? ne0 : row_diff); // the main device memory buffer can be on VRAM scratch, with space for all partial results // in that case an offset on dst_ddf_i is needed if (dst->backend == GGML_BACKEND_GPU && id == g_main_device) { - dst_ddf_i += i01_low; // offset is 0 if no tensor split + dst_dd_i += row_low[id]; // offset is 0 if no tensor split } // copy src0, src1 to device if necessary - if (use_src1 && !src1_stays_on_host) { - if (src1->backend == GGML_BACKEND_CPU) { - GGML_ASSERT(!flatten_rows || nrows0 == ggml_nrows(src1)); - int64_t nrows1 = flatten_rows ? nrows0 : ne11; - CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src1_ddf_i, src1, i03, i02, 0, nrows1, cudaStream_main)); - } else if (src1->backend == GGML_BACKEND_GPU && src1_is_contiguous) { - if (id != g_main_device) { - GGML_ASSERT(!flatten_rows); + if (src1->backend == GGML_BACKEND_GPU && src1_is_contiguous) { + if (id != g_main_device) { + if (convert_src1_to_q8_1) { + char * src1_ddq_i_source = src1_ddq[g_main_device] + src1_ddq_i_offset; + CUDA_CHECK(cudaMemcpyAsync(src1_ddq_i, src1_ddq_i_source, src1_ncols*src1_padded_col_size*q8_1_ts/q8_1_bs, + cudaMemcpyDeviceToDevice, stream)); + } else { float * src1_ddf_i_source = (float *) src1_extra->data_device[g_main_device]; - src1_ddf_i_source += i11*src1_stride; - CUDA_CHECK(cudaMemcpyAsync(src1_ddf_i, src1_ddf_i_source, src1_stride*sizeof(float), - cudaMemcpyDeviceToDevice, cudaStream_main)); + src1_ddf_i_source += (i0*ne11 + src1_col_0) * ne10; + CUDA_CHECK(cudaMemcpyAsync(src1_ddf_i, src1_ddf_i_source, src1_ncols*ne10*sizeof(float), + cudaMemcpyDeviceToDevice, stream)); } - } else if (src1_on_device && !src1_is_contiguous) { - GGML_ASSERT(!split); - CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src1_ddf_i, src1, i03, i02, 0, ne11, cudaStream_main)); - } else { - GGML_ASSERT(false); } + } else if (src1->backend == GGML_BACKEND_CPU || (src1_on_device && !src1_is_contiguous)) { + CUDA_CHECK(ggml_cuda_cpy_tensor_2d( + src1_ddf_i, src1, i03, i02, src1_col_0, src1_col_0+src1_ncols, stream)); + } else { + GGML_ASSERT(false); } - if ((!src0_on_device || !src0_is_contiguous) && i02 % i02_divisor == 0) { - if (src0_is_f32) { - CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src0_ddf_i, src0, i03, i02/i02_divisor, i01_low, i01_high, cudaStream_main)); - } else { - CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src0_ddq_i, src0, i03, i02/i02_divisor, i01_low, i01_high, cudaStream_main)); - } + if (convert_src1_to_q8_1 && src1->backend == GGML_BACKEND_CPU) { + quantize_row_q8_1_cuda(src1_ddf_i, src1_ddq_i, ne10, src1_ncols, src1_padded_col_size, stream); + CUDA_CHECK(cudaGetLastError()); } - // convert src0 to f32 if it is necessary for the ggml_cuda_op - if (src0_needs_f32 && !src0_is_f32) { - to_fp32_cuda(src0_ddq_i, src0_ddf_i, i01_diff*ne00, cudaStream_main); - CUDA_CHECK(cudaGetLastError()); + if (src1_col_0 == 0 && (!src0_on_device || !src0_is_contiguous) && i02 % i02_divisor == 0) { + CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src0_dd_i, src0, i03, i02/i02_divisor, row_low[id], row_high[id], stream)); } // do the computation - op(src0, src1, dst, src0_ddq_i, src0_ddf_i, src1_ddf_i, dst_ddf_i, i02, i01_low, i01_high, i11, cudaStream_main); + op(src0, src1, dst, src0_dd_i, src1_ddf_i, src1_ddq_i, dst_dd_i, + row_low[id], row_high[id], src1_ncols, src1_padded_col_size, stream); CUDA_CHECK(cudaGetLastError()); // copy dst to host or other device if necessary @@ -6123,95 +6650,86 @@ static void ggml_cuda_op(const ggml_tensor * src0, const ggml_tensor * src1, ggm // The outputs of matrix matrix multiplications can therefore NOT simply be concatenated for >1 GPU. // Instead they need to be copied to the correct slice in ne0 = dst row index. // If dst is a vector with ne0 == 1 then you don't have to do this but it still produces correct results. - float * dhf_dst_i = (float *) ((char *) dst_off_device + i01_low*sizeof(float) + i02*nb2 + i03*nb3); - CUDA_CHECK(cudaMemcpy2DAsync(dhf_dst_i, ne0*sizeof(float), dst_ddf_i, i01_diff*sizeof(float), - i01_diff*sizeof(float), ne1, kind, cudaStream_main)); + float * dhf_dst_i = (float *) ((char *) dst_off_device + i02*nb2 + i03*nb3); + GGML_ASSERT(dst->nb[1] == ne0*sizeof(float)); + dhf_dst_i += src1_col_0*ne0 + row_low[id]; + CUDA_CHECK(cudaMemcpy2DAsync(dhf_dst_i, ne0*sizeof(float), dst_dd_i, row_diff*sizeof(float), + row_diff*sizeof(float), src1_ncols, kind, stream)); } else { float * dhf_dst_i = (float *) ((char *) dst_off_device + i02*nb2 + i03*nb3); - CUDA_CHECK(cudaMemcpyAsync(dhf_dst_i, dst_ddf_i, dst_stride*sizeof(float), kind, cudaStream_main)); + GGML_ASSERT(dst->nb[1] == ne0*sizeof(float)); + dhf_dst_i += src1_col_0*ne0; + CUDA_CHECK(cudaMemcpyAsync(dhf_dst_i, dst_dd_i, src1_ncols*ne0*sizeof(float), kind, stream)); } } - // signify to main device that other device is done - if (split && g_device_count > 1 && id != g_main_device) { - CUDA_CHECK(cudaEventRecord(src0_extra->events[id], cudaStream_main)); + // add event for the main device to wait on until other device is done + if (split && (id != g_main_device || is != 0)) { + CUDA_CHECK(cudaEventRecord(src0_extra->events[id][is], stream)); } } } } - // wait until each device is finished, then free their buffers - for (int id = 0; id < g_device_count; ++id) { - if (src0_asq[id] == 0 && src0_asf[id] == 0 && src1_asf[id] == 0 && dst_asf[id] == 0) { - continue; - } - - CUDA_CHECK(cudaSetDevice(id)); + for (int64_t id = 0; id < g_device_count; ++id) { + CUDA_CHECK(ggml_cuda_set_device(id)); - if (src0_asq[id] > 0) { - ggml_cuda_pool_free(src0_ddq[id], src0_asq[id]); - } - if (src0_asf[id] > 0) { - ggml_cuda_pool_free(src0_ddf[id], src0_asf[id]); + // free buffers again when done + if (src0_as[id] > 0) { + ggml_cuda_pool_free(src0_dd[id], src0_as[id]); } if (src1_asf[id] > 0) { ggml_cuda_pool_free(src1_ddf[id], src1_asf[id]); } - if (dst_asf[id] > 0) { - ggml_cuda_pool_free(dst_ddf[id], dst_asf[id]); + if (src1_asq[id] > 0) { + ggml_cuda_pool_free(src1_ddq[id], src1_asq[id]); + } + if (dst_as[id] > 0) { + ggml_cuda_pool_free(dst_dd[id], dst_as[id]); } } // main device waits for all other devices to be finished if (split && g_device_count > 1) { - CUDA_CHECK(cudaSetDevice(g_main_device)); - for (int id = 0; id < g_device_count; ++id) { - if (id != g_main_device && src0_extra->events[id]) { - CUDA_CHECK(cudaStreamWaitEvent(g_cudaStreams_main[g_main_device], src0_extra->events[id])); + int64_t is_max = (ne11 + MUL_MAT_SRC1_COL_STRIDE - 1) / MUL_MAT_SRC1_COL_STRIDE; + is_max = is_max <= MAX_STREAMS ? is_max : MAX_STREAMS; + + CUDA_CHECK(ggml_cuda_set_device(g_main_device)); + for (int64_t id = 0; id < g_device_count; ++id) { + for (int64_t is = 0; is < is_max; ++is) { + CUDA_CHECK(cudaStreamWaitEvent(g_cudaStreams[g_main_device][0], src0_extra->events[id][is], 0)); } } } if (dst->backend == GGML_BACKEND_CPU) { - CUDA_CHECK(cudaSetDevice(g_main_device)); + CUDA_CHECK(ggml_cuda_set_device(g_main_device)); CUDA_CHECK(cudaDeviceSynchronize()); } } -void ggml_cuda_add(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { - // ggml_cuda_add permits f16 dst even though this could in theory cause problems with the pointer arithmetic in ggml_cuda_op. - // Due to flatten_rows == true this does in practice not make a difference however. - // Better solution would be nice but right now that would require disproportionate changes. - GGML_ASSERT( - (src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16) && - src1->type == GGML_TYPE_F32 && - (dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16)); - ggml_cuda_op(src0, src1, dst, ggml_cuda_op_add, false, true); +static void ggml_cuda_add(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { + ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_add); } -void ggml_cuda_mul(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { - GGML_ASSERT(src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32); - ggml_cuda_op(src0, src1, dst, ggml_cuda_op_mul, true, false); // TODO ggml_cuda_op needs modification for flatten +static void ggml_cuda_mul(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { + ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_mul); } -void ggml_cuda_gelu(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { - GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32); - ggml_cuda_op(src0, src1, dst, ggml_cuda_op_gelu, true, true); +static void ggml_cuda_gelu(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { + ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_gelu); } -void ggml_cuda_silu(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { - GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32); - ggml_cuda_op(src0, src1, dst, ggml_cuda_op_silu, true, true); +static void ggml_cuda_silu(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { + ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_silu); } -void ggml_cuda_norm(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { - GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32); - ggml_cuda_op(src0, src1, dst, ggml_cuda_op_norm, true, true); +static void ggml_cuda_norm(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { + ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_norm); } -void ggml_cuda_rms_norm(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { - GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32); - ggml_cuda_op(src0, src1, dst, ggml_cuda_op_rms_norm, true, true); +static void ggml_cuda_rms_norm(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { + ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_rms_norm); } bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) { @@ -6221,17 +6739,13 @@ bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_te const int64_t ne1 = dst->ne[1]; // TODO: find the optimal values for these - if ((src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) && - src1->type == GGML_TYPE_F32 && - dst->type == GGML_TYPE_F32 && - (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) { - return true; - } - - return false; + return (src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) && + src1->type == GGML_TYPE_F32 && + dst->type == GGML_TYPE_F32 && + (ne0 >= 32 && ne1 >= 32 && ne10 >= 32); } -void ggml_cuda_mul_mat_vec_p021(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst){ +static void ggml_cuda_mul_mat_vec_p021(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst){ GGML_ASSERT(ggml_is_permuted(src0) && ggml_is_permuted(src1)); GGML_ASSERT(src0->backend != GGML_BACKEND_GPU_SPLIT); GGML_ASSERT(src0->nb[0] <= src0->nb[1] && src0->nb[2] <= src0->nb[3]); // 0213 permutation @@ -6245,8 +6759,8 @@ void ggml_cuda_mul_mat_vec_p021(const ggml_tensor * src0, const ggml_tensor * sr const int64_t ne12 = src1->ne[2]; - CUDA_CHECK(cudaSetDevice(g_main_device)); - cudaStream_t cudaStream_main = g_cudaStreams_main[g_main_device]; + CUDA_CHECK(ggml_cuda_set_device(g_main_device)); + cudaStream_t main_stream = g_cudaStreams[g_main_device][0]; struct ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra; void * src0_ddq = src0_extra->data_device[g_main_device]; @@ -6257,10 +6771,10 @@ void ggml_cuda_mul_mat_vec_p021(const ggml_tensor * src0, const ggml_tensor * sr struct ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra; float * dst_ddf = (float *) dst_extra->data_device[g_main_device]; - ggml_mul_mat_p021_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, ne02, ne12, cudaStream_main); + ggml_mul_mat_p021_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, ne02, ne12, main_stream); } -void ggml_cuda_mul_mat_vec_nc(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst){ +static void ggml_cuda_mul_mat_vec_nc(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst){ GGML_ASSERT(!ggml_is_contiguous(src0) && ggml_is_contiguous(src1)); GGML_ASSERT(!ggml_is_permuted(src0)); GGML_ASSERT(src0->backend != GGML_BACKEND_GPU_SPLIT); @@ -6276,8 +6790,8 @@ void ggml_cuda_mul_mat_vec_nc(const ggml_tensor * src0, const ggml_tensor * src1 const int64_t nb01 = src0->nb[1]; const int64_t nb02 = src0->nb[2]; - CUDA_CHECK(cudaSetDevice(g_main_device)); - cudaStream_t cudaStream_main = g_cudaStreams_main[g_main_device]; + CUDA_CHECK(ggml_cuda_set_device(g_main_device)); + cudaStream_t main_stream = g_cudaStreams[g_main_device][0]; struct ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra; void * src0_ddq = src0_extra->data_device[g_main_device]; @@ -6288,38 +6802,49 @@ void ggml_cuda_mul_mat_vec_nc(const ggml_tensor * src0, const ggml_tensor * src1 struct ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra; float * dst_ddf = (float *) dst_extra->data_device[g_main_device]; - const int row_stride_x = nb01 / sizeof(half); - const int channel_stride_x = nb02 / sizeof(half); + const int64_t row_stride_x = nb01 / sizeof(half); + const int64_t channel_stride_x = nb02 / sizeof(half); - ggml_mul_mat_vec_nc_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, row_stride_x, ne02, ne12, channel_stride_x, cudaStream_main); + ggml_mul_mat_vec_nc_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, row_stride_x, ne02, ne12, channel_stride_x, main_stream); } -void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { +static void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { bool all_on_device = (src0->backend == GGML_BACKEND_GPU || src0->backend == GGML_BACKEND_GPU_SPLIT) && src1->backend == GGML_BACKEND_GPU && dst->backend == GGML_BACKEND_GPU; + int64_t min_compute_capability = INT_MAX; + for (int64_t id = 0; id < g_device_count; ++id) { + if (min_compute_capability > g_compute_capabilities[id] + && g_tensor_split[id] < (id + 1 < g_device_count ? g_tensor_split[id + 1] : 1.0f)) { + min_compute_capability = g_compute_capabilities[id]; + } + } + if (all_on_device && ggml_is_permuted(src0) && ggml_is_permuted(src1) && src1->ne[1] == 1) { ggml_cuda_mul_mat_vec_p021(src0, src1, dst); } else if (all_on_device && !ggml_is_contiguous(src0) && ggml_is_contiguous(src1) && src1->ne[1] == 1) { ggml_cuda_mul_mat_vec_nc(src0, src1, dst); }else if (src0->type == GGML_TYPE_F32) { - ggml_cuda_op(src0, src1, dst, ggml_cuda_op_mul_mat_cublas, true, false); + ggml_cuda_op_mul_mat(src0, src1, dst, ggml_cuda_op_mul_mat_cublas, false); } else if (ggml_is_quantized(src0->type) || src0->type == GGML_TYPE_F16) { if (src1->ne[1] == 1 && src0->ne[0] % GGML_CUDA_DMMV_X == 0) { - ggml_cuda_op(src0, src1, dst, ggml_cuda_op_mul_mat_vec, false, false); - } else { - int min_compute_capability = INT_MAX; - for (int id = 0; id < g_device_count; ++id) { - if (min_compute_capability > g_compute_capabilities[id] - && g_tensor_split[id] < (id + 1 < g_device_count ? g_tensor_split[id + 1] : 1.0f)) { - min_compute_capability = g_compute_capabilities[id]; - } - } +#ifdef GGML_CUDA_FORCE_DMMV + const bool use_mul_mat_vec_q = false; +#else + const bool use_mul_mat_vec_q = min_compute_capability >= MIN_CC_DP4A && ggml_is_quantized(src0->type); +#endif // GGML_CUDA_FORCE_DMMV + + if (use_mul_mat_vec_q) { + ggml_cuda_op_mul_mat(src0, src1, dst, ggml_cuda_op_mul_mat_vec_q, true); + } else { + ggml_cuda_op_mul_mat(src0, src1, dst, ggml_cuda_op_dequantize_mul_mat_vec, false); + } + } else { if (g_mul_mat_q && ggml_is_quantized(src0->type) && min_compute_capability >= MIN_CC_DP4A) { - ggml_cuda_op(src0, src1, dst, ggml_cuda_op_mul_mat_q, false, false); + ggml_cuda_op_mul_mat(src0, src1, dst, ggml_cuda_op_mul_mat_q, true); } else { - ggml_cuda_op(src0, src1, dst, ggml_cuda_op_mul_mat_cublas, true, false); + ggml_cuda_op_mul_mat(src0, src1, dst, ggml_cuda_op_mul_mat_cublas, false); } } } else { @@ -6327,12 +6852,11 @@ void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_ } } -void ggml_cuda_scale(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { - GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32); - ggml_cuda_op(src0, src1, dst, ggml_cuda_op_scale, true, true); +static void ggml_cuda_scale(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { + ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_scale); } -void ggml_cuda_cpy(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { +static void ggml_cuda_cpy(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { const int64_t ne = ggml_nelements(src0); GGML_ASSERT(ne == ggml_nelements(src1)); @@ -6358,8 +6882,8 @@ void ggml_cuda_cpy(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tens const int64_t nb11 = src1->nb[1]; const int64_t nb12 = src1->nb[2]; - CUDA_CHECK(cudaSetDevice(g_main_device)); - cudaStream_t cudaStream_main = g_cudaStreams_main[g_main_device]; + CUDA_CHECK(ggml_cuda_set_device(g_main_device)); + cudaStream_t main_stream = g_cudaStreams[g_main_device][0]; const struct ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra; const struct ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra; @@ -6369,52 +6893,49 @@ void ggml_cuda_cpy(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tens if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32) { ggml_cpy_f32_f32_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, nb00, nb01, nb02, - ne10, ne11, nb10, nb11, nb12, cudaStream_main); + ne10, ne11, nb10, nb11, nb12, main_stream); } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F16) { ggml_cpy_f32_f16_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, nb00, nb01, nb02, - ne10, ne11, nb10, nb11, nb12, cudaStream_main); + ne10, ne11, nb10, nb11, nb12, main_stream); } else { + fprintf(stderr, "%s: unsupported type combination (%s to %s)\n", __func__, + ggml_type_name(src0->type), ggml_type_name(src1->type)); GGML_ASSERT(false); } (void) dst; } -void ggml_cuda_dup(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { +static void ggml_cuda_dup(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { ggml_cuda_cpy(src0, dst, nullptr); (void) src1; } -void ggml_cuda_diag_mask_inf(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { - GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32); - ggml_cuda_op(src0, src1, dst, ggml_cuda_op_diag_mask_inf, true, true); +static void ggml_cuda_diag_mask_inf(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { + ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_diag_mask_inf); } -void ggml_cuda_soft_max(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { - GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32); - ggml_cuda_op(src0, src1, dst, ggml_cuda_op_soft_max, true, true); +static void ggml_cuda_soft_max(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { + ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_soft_max); } -void ggml_cuda_rope(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { - GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32); +static void ggml_cuda_rope(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { GGML_ASSERT(ggml_is_contiguous(src0)); // TODO: this restriction is temporary until non-cont support is implemented - - ggml_cuda_op(src0, src1, dst, ggml_cuda_op_rope, true, true); + ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_rope); } -void ggml_cuda_alibi(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { - GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32); - ggml_cuda_op(src0, src1, dst, ggml_cuda_op_alibi, true, true); +static void ggml_cuda_alibi(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { + ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_alibi); } -void ggml_cuda_nop(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { +static void ggml_cuda_nop(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { (void) src0; (void) src1; (void) dst; } void ggml_cuda_transform_tensor(void * data, struct ggml_tensor * tensor) { - int nrows = ggml_nrows(tensor); + const int64_t nrows = ggml_nrows(tensor); const int64_t ne0 = tensor->ne[0]; @@ -6424,14 +6945,14 @@ void ggml_cuda_transform_tensor(void * data, struct ggml_tensor * tensor) { struct ggml_tensor_extra_gpu * extra = new struct ggml_tensor_extra_gpu; memset(extra, 0, sizeof(*extra)); - for (int id = 0; id < g_device_count; ++id) { + for (int64_t id = 0; id < g_device_count; ++id) { if (backend == GGML_BACKEND_GPU && id != g_main_device) { continue; } - cudaSetDevice(id); + ggml_cuda_set_device(id); - int row_low, row_high; + int64_t row_low, row_high; if (backend == GGML_BACKEND_GPU) { row_low = 0; row_high = nrows; @@ -6481,7 +7002,9 @@ void ggml_cuda_transform_tensor(void * data, struct ggml_tensor * tensor) { extra->data_device[id] = buf; if (backend == GGML_BACKEND_GPU_SPLIT) { - CUDA_CHECK(cudaEventCreateWithFlags(&extra->events[id], cudaEventDisableTiming)); + for (int64_t is = 0; is < MAX_STREAMS; ++is) { + CUDA_CHECK(cudaEventCreateWithFlags(&extra->events[id][is], cudaEventDisableTiming)); + } } } @@ -6495,15 +7018,17 @@ void ggml_cuda_free_data(struct ggml_tensor * tensor) { ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra; - for (int id = 0; id < g_device_count; ++id) { + for (int64_t id = 0; id < g_device_count; ++id) { if (extra->data_device[id] != nullptr) { - CUDA_CHECK(cudaSetDevice(id)); + CUDA_CHECK(ggml_cuda_set_device(id)); CUDA_CHECK(cudaFree(extra->data_device[id])); } - if (extra->events[id] != nullptr) { - CUDA_CHECK(cudaSetDevice(id)); - CUDA_CHECK(cudaEventDestroy(extra->events[id])); + for (int64_t is = 0; is < MAX_STREAMS; ++is) { + if (extra->events[id][is] != nullptr) { + CUDA_CHECK(ggml_cuda_set_device(id)); + CUDA_CHECK(cudaEventDestroy(extra->events[id][is])); + } } } @@ -6526,11 +7051,13 @@ static struct ggml_tensor_extra_gpu * ggml_cuda_alloc_temp_tensor_extra() { return extra; } -void ggml_cuda_assign_buffers_impl(struct ggml_tensor * tensor, bool scratch, bool force_inplace, bool no_alloc) { +static void ggml_cuda_assign_buffers_impl(struct ggml_tensor * tensor, bool scratch, bool force_inplace, bool no_alloc) { if (scratch && g_scratch_size == 0) { return; } + tensor->backend = GGML_BACKEND_GPU; + // recursively assign CUDA buffers until a compute tensor is found if (tensor->src[0] != nullptr && tensor->src[0]->backend == GGML_BACKEND_CPU) { const ggml_op src0_op = tensor->src[0]->op; @@ -6542,8 +7069,6 @@ void ggml_cuda_assign_buffers_impl(struct ggml_tensor * tensor, bool scratch, bo ggml_cuda_assign_buffers_impl(tensor->src[1], scratch, force_inplace, no_alloc); } - tensor->backend = GGML_BACKEND_GPU; - if (scratch && no_alloc) { return; } @@ -6555,7 +7080,7 @@ void ggml_cuda_assign_buffers_impl(struct ggml_tensor * tensor, bool scratch, bo force_inplace; const size_t size = ggml_nbytes(tensor); - CUDA_CHECK(cudaSetDevice(g_main_device)); + CUDA_CHECK(ggml_cuda_set_device(g_main_device)); if (inplace && (tensor->src[0]->backend == GGML_BACKEND_GPU || tensor->src[0]->backend == GGML_BACKEND_GPU_SPLIT)) { struct ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu * ) tensor->src[0]->extra; char * src0_ddc = (char *) src0_extra->data_device[g_main_device]; @@ -6604,6 +7129,7 @@ void ggml_cuda_assign_scratch_offset(struct ggml_tensor * tensor, size_t offset) return; } if (g_scratch_buffer == nullptr) { + ggml_cuda_set_device(g_main_device); CUDA_CHECK(cudaMalloc(&g_scratch_buffer, g_scratch_size)); } @@ -6627,6 +7153,15 @@ void ggml_cuda_assign_scratch_offset(struct ggml_tensor * tensor, size_t offset) tensor->extra = extra; } +void ggml_cuda_copy_to_device(struct ggml_tensor * tensor) { + GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU); + GGML_ASSERT(ggml_is_contiguous(tensor)); + + struct ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra; + CUDA_CHECK(ggml_cuda_set_device(g_main_device)); + CUDA_CHECK(cudaMemcpy(extra->data_device[g_main_device], tensor->data, ggml_nbytes(tensor), cudaMemcpyHostToDevice)); +} + void ggml_cuda_assign_buffers(struct ggml_tensor * tensor) { ggml_cuda_assign_buffers_impl(tensor, true, false, false); } @@ -6643,7 +7178,7 @@ void ggml_cuda_assign_buffers_force_inplace(struct ggml_tensor * tensor) { ggml_cuda_assign_buffers_impl(tensor, false, true, false); } -void ggml_cuda_set_main_device(int main_device) { +void ggml_cuda_set_main_device(const int main_device) { if (main_device >= g_device_count) { fprintf(stderr, "warning: cannot set main_device=%d because there are only %d devices. Using device %d instead.\n", main_device, g_device_count, g_main_device); @@ -6657,12 +7192,17 @@ void ggml_cuda_set_main_device(int main_device) { } } -void ggml_cuda_set_mul_mat_q(bool mul_mat_q) { +void ggml_cuda_set_mul_mat_q(const bool mul_mat_q) { g_mul_mat_q = mul_mat_q; } -void ggml_cuda_set_scratch_size(size_t scratch_size) { - g_scratch_size = scratch_size; +void ggml_cuda_set_scratch_size(const size_t scratch_size) { + // this is a hack to not completely break llama.cpp when using multiple models or contexts simultaneously + // it still won't always work as expected, but it's better than nothing + if (scratch_size > g_scratch_size) { + ggml_cuda_free_scratch(); + } + g_scratch_size = std::max(g_scratch_size, scratch_size); } void ggml_cuda_free_scratch() { diff --git a/ggml-cuda.h b/ggml-cuda.h index a72e82069b9f1..fda704b665623 100644 --- a/ggml-cuda.h +++ b/ggml-cuda.h @@ -31,6 +31,7 @@ GGML_API void ggml_cuda_assign_buffers_force_inplace(struct ggml_tensor * tens GGML_API void ggml_cuda_assign_buffers_no_alloc(struct ggml_tensor * tensor); GGML_API void ggml_cuda_assign_scratch_offset(struct ggml_tensor * tensor, size_t offset); +GGML_API void ggml_cuda_copy_to_device(struct ggml_tensor * tensor); GGML_API void ggml_cuda_set_main_device(int main_device); GGML_API void ggml_cuda_set_mul_mat_q(bool mul_mat_q); diff --git a/ggml-metal.h b/ggml-metal.h index fca28d37ef970..790cf0bf7b963 100644 --- a/ggml-metal.h +++ b/ggml-metal.h @@ -19,6 +19,8 @@ #pragma once +#include "ggml.h" + #include #include @@ -33,6 +35,8 @@ struct ggml_cgraph; extern "C" { #endif +void ggml_metal_log_set_callback(ggml_log_callback log_callback, void * user_data); + struct ggml_metal_context; // number of command buffers to use diff --git a/ggml-metal.m b/ggml-metal.m index b577d7f6088a4..b3c463f03ad3d 100644 --- a/ggml-metal.m +++ b/ggml-metal.m @@ -11,11 +11,14 @@ #define MIN(a, b) ((a) < (b) ? (a) : (b)) #define MAX(a, b) ((a) > (b) ? (a) : (b)) -// TODO: temporary - reuse llama.cpp logging #ifdef GGML_METAL_NDEBUG -#define metal_printf(...) +#define GGML_METAL_LOG_INFO(...) +#define GGML_METAL_LOG_WARN(...) +#define GGML_METAL_LOG_ERROR(...) #else -#define metal_printf(...) fprintf(stderr, __VA_ARGS__) +#define GGML_METAL_LOG_INFO(...) ggml_metal_log(GGML_LOG_LEVEL_INFO, __VA_ARGS__) +#define GGML_METAL_LOG_WARN(...) ggml_metal_log(GGML_LOG_LEVEL_WARN, __VA_ARGS__) +#define GGML_METAL_LOG_ERROR(...) ggml_metal_log(GGML_LOG_LEVEL_ERROR, __VA_ARGS__) #endif #define UNUSED(x) (void)(x) @@ -63,7 +66,10 @@ GGML_METAL_DECL_KERNEL(relu); GGML_METAL_DECL_KERNEL(gelu); GGML_METAL_DECL_KERNEL(soft_max); + GGML_METAL_DECL_KERNEL(soft_max_4); GGML_METAL_DECL_KERNEL(diag_mask_inf); + GGML_METAL_DECL_KERNEL(diag_mask_inf_8); + GGML_METAL_DECL_KERNEL(get_rows_f32); GGML_METAL_DECL_KERNEL(get_rows_f16); GGML_METAL_DECL_KERNEL(get_rows_q4_0); GGML_METAL_DECL_KERNEL(get_rows_q4_1); @@ -75,8 +81,10 @@ GGML_METAL_DECL_KERNEL(get_rows_q6_K); GGML_METAL_DECL_KERNEL(rms_norm); GGML_METAL_DECL_KERNEL(norm); + GGML_METAL_DECL_KERNEL(mul_mat_f32_f32); GGML_METAL_DECL_KERNEL(mul_mat_f16_f32); GGML_METAL_DECL_KERNEL(mul_mat_f16_f32_1row); + GGML_METAL_DECL_KERNEL(mul_mat_f16_f32_l4); GGML_METAL_DECL_KERNEL(mul_mat_q4_0_f32); GGML_METAL_DECL_KERNEL(mul_mat_q4_1_f32); GGML_METAL_DECL_KERNEL(mul_mat_q8_0_f32); @@ -85,6 +93,7 @@ GGML_METAL_DECL_KERNEL(mul_mat_q4_K_f32); GGML_METAL_DECL_KERNEL(mul_mat_q5_K_f32); GGML_METAL_DECL_KERNEL(mul_mat_q6_K_f32); + GGML_METAL_DECL_KERNEL(mul_mm_f32_f32); GGML_METAL_DECL_KERNEL(mul_mm_f16_f32); GGML_METAL_DECL_KERNEL(mul_mm_q4_0_f32); GGML_METAL_DECL_KERNEL(mul_mm_q4_1_f32); @@ -94,7 +103,8 @@ GGML_METAL_DECL_KERNEL(mul_mm_q4_K_f32); GGML_METAL_DECL_KERNEL(mul_mm_q5_K_f32); GGML_METAL_DECL_KERNEL(mul_mm_q6_K_f32); - GGML_METAL_DECL_KERNEL(rope); + GGML_METAL_DECL_KERNEL(rope_f32); + GGML_METAL_DECL_KERNEL(rope_f16); GGML_METAL_DECL_KERNEL(alibi_f32); GGML_METAL_DECL_KERNEL(cpy_f32_f16); GGML_METAL_DECL_KERNEL(cpy_f32_f32); @@ -114,8 +124,37 @@ @interface GGMLMetalClass : NSObject @implementation GGMLMetalClass @end +ggml_log_callback ggml_metal_log_callback = NULL; +void * ggml_metal_log_user_data = NULL; + +void ggml_metal_log_set_callback(ggml_log_callback log_callback, void * user_data) { + ggml_metal_log_callback = log_callback; + ggml_metal_log_user_data = user_data; +} + +static void ggml_metal_log(enum ggml_log_level level, const char* format, ...){ + if (ggml_metal_log_callback != NULL) { + va_list args; + va_start(args, format); + char buffer[128]; + int len = vsnprintf(buffer, 128, format, args); + if (len < 128) { + ggml_metal_log_callback(level, buffer, ggml_metal_log_user_data); + } else { + char* buffer2 = malloc(len+1); + vsnprintf(buffer2, len+1, format, args); + buffer2[len] = 0; + ggml_metal_log_callback(level, buffer2, ggml_metal_log_user_data); + free(buffer2); + } + va_end(args); + } +} + + + struct ggml_metal_context * ggml_metal_init(int n_cb) { - metal_printf("%s: allocating\n", __func__); + GGML_METAL_LOG_INFO("%s: allocating\n", __func__); id device; NSString * s; @@ -125,14 +164,14 @@ @implementation GGMLMetalClass NSArray * devices = MTLCopyAllDevices(); for (device in devices) { s = [device name]; - metal_printf("%s: found device: %s\n", __func__, [s UTF8String]); + GGML_METAL_LOG_INFO("%s: found device: %s\n", __func__, [s UTF8String]); } #endif // Pick and show default Metal device device = MTLCreateSystemDefaultDevice(); s = [device name]; - metal_printf("%s: picking default device: %s\n", __func__, [s UTF8String]); + GGML_METAL_LOG_INFO("%s: picking default device: %s\n", __func__, [s UTF8String]); // Configure context struct ggml_metal_context * ctx = malloc(sizeof(struct ggml_metal_context)); @@ -142,7 +181,7 @@ @implementation GGMLMetalClass ctx->n_buffers = 0; ctx->concur_list_len = 0; - ctx->d_queue = dispatch_queue_create("llama.cpp", DISPATCH_QUEUE_CONCURRENT); + ctx->d_queue = dispatch_queue_create("ggml-metal", DISPATCH_QUEUE_CONCURRENT); #ifdef GGML_SWIFT // load the default.metallib file @@ -159,7 +198,7 @@ @implementation GGMLMetalClass ctx->library = [ctx->device newLibraryWithURL:libURL error:&error]; if (error) { - metal_printf("%s: error: %s\n", __func__, [[error description] UTF8String]); + GGML_METAL_LOG_ERROR("%s: error: %s\n", __func__, [[error description] UTF8String]); return NULL; } } @@ -172,12 +211,12 @@ @implementation GGMLMetalClass //NSString * path = [[NSBundle mainBundle] pathForResource:@"../../examples/metal/metal" ofType:@"metal"]; NSBundle * bundle = [NSBundle bundleForClass:[GGMLMetalClass class]]; - NSString * path = [bundle pathForResource:@"ggml-metal" ofType:@"metal"]; - metal_printf("%s: loading '%s'\n", __func__, [path UTF8String]); + NSString * path = [bundle pathForResource:@"ggml-metal" ofType:@"metal"]; + GGML_METAL_LOG_INFO("%s: loading '%s'\n", __func__, [path UTF8String]); NSString * src = [NSString stringWithContentsOfFile:path encoding:NSUTF8StringEncoding error:&error]; if (error) { - metal_printf("%s: error: %s\n", __func__, [[error description] UTF8String]); + GGML_METAL_LOG_ERROR("%s: error: %s\n", __func__, [[error description] UTF8String]); return NULL; } @@ -189,7 +228,7 @@ @implementation GGMLMetalClass ctx->library = [ctx->device newLibraryWithSource:src options:nil error:&error]; #endif if (error) { - metal_printf("%s: error: %s\n", __func__, [[error description] UTF8String]); + GGML_METAL_LOG_ERROR("%s: error: %s\n", __func__, [[error description] UTF8String]); return NULL; } } @@ -201,11 +240,11 @@ @implementation GGMLMetalClass #define GGML_METAL_ADD_KERNEL(name) \ ctx->function_##name = [ctx->library newFunctionWithName:@"kernel_"#name]; \ ctx->pipeline_##name = [ctx->device newComputePipelineStateWithFunction:ctx->function_##name error:&error]; \ - metal_printf("%s: loaded %-32s %16p | th_max = %4d | th_width = %4d\n", __func__, "kernel_"#name, (void *) ctx->pipeline_##name, \ + GGML_METAL_LOG_INFO("%s: loaded %-32s %16p | th_max = %4d | th_width = %4d\n", __func__, "kernel_"#name, (void *) ctx->pipeline_##name, \ (int) ctx->pipeline_##name.maxTotalThreadsPerThreadgroup, \ (int) ctx->pipeline_##name.threadExecutionWidth); \ if (error) { \ - metal_printf("%s: load pipeline error: %s\n", __func__, [[error description] UTF8String]); \ + GGML_METAL_LOG_ERROR("%s: error: load pipeline error: %s\n", __func__, [[error description] UTF8String]); \ return NULL; \ } @@ -218,7 +257,10 @@ @implementation GGMLMetalClass GGML_METAL_ADD_KERNEL(relu); GGML_METAL_ADD_KERNEL(gelu); GGML_METAL_ADD_KERNEL(soft_max); + GGML_METAL_ADD_KERNEL(soft_max_4); GGML_METAL_ADD_KERNEL(diag_mask_inf); + GGML_METAL_ADD_KERNEL(diag_mask_inf_8); + GGML_METAL_ADD_KERNEL(get_rows_f32); GGML_METAL_ADD_KERNEL(get_rows_f16); GGML_METAL_ADD_KERNEL(get_rows_q4_0); GGML_METAL_ADD_KERNEL(get_rows_q4_1); @@ -230,8 +272,10 @@ @implementation GGMLMetalClass GGML_METAL_ADD_KERNEL(get_rows_q6_K); GGML_METAL_ADD_KERNEL(rms_norm); GGML_METAL_ADD_KERNEL(norm); + GGML_METAL_ADD_KERNEL(mul_mat_f32_f32); GGML_METAL_ADD_KERNEL(mul_mat_f16_f32); GGML_METAL_ADD_KERNEL(mul_mat_f16_f32_1row); + GGML_METAL_ADD_KERNEL(mul_mat_f16_f32_l4); GGML_METAL_ADD_KERNEL(mul_mat_q4_0_f32); GGML_METAL_ADD_KERNEL(mul_mat_q4_1_f32); GGML_METAL_ADD_KERNEL(mul_mat_q8_0_f32); @@ -240,6 +284,7 @@ @implementation GGMLMetalClass GGML_METAL_ADD_KERNEL(mul_mat_q4_K_f32); GGML_METAL_ADD_KERNEL(mul_mat_q5_K_f32); GGML_METAL_ADD_KERNEL(mul_mat_q6_K_f32); + GGML_METAL_ADD_KERNEL(mul_mm_f32_f32); GGML_METAL_ADD_KERNEL(mul_mm_f16_f32); GGML_METAL_ADD_KERNEL(mul_mm_q4_0_f32); GGML_METAL_ADD_KERNEL(mul_mm_q8_0_f32); @@ -249,7 +294,8 @@ @implementation GGMLMetalClass GGML_METAL_ADD_KERNEL(mul_mm_q4_K_f32); GGML_METAL_ADD_KERNEL(mul_mm_q5_K_f32); GGML_METAL_ADD_KERNEL(mul_mm_q6_K_f32); - GGML_METAL_ADD_KERNEL(rope); + GGML_METAL_ADD_KERNEL(rope_f32); + GGML_METAL_ADD_KERNEL(rope_f16); GGML_METAL_ADD_KERNEL(alibi_f32); GGML_METAL_ADD_KERNEL(cpy_f32_f16); GGML_METAL_ADD_KERNEL(cpy_f32_f32); @@ -258,13 +304,13 @@ @implementation GGMLMetalClass #undef GGML_METAL_ADD_KERNEL } - metal_printf("%s: hasUnifiedMemory = %s\n", __func__, ctx->device.hasUnifiedMemory ? "true" : "false"); + GGML_METAL_LOG_INFO("%s: hasUnifiedMemory = %s\n", __func__, ctx->device.hasUnifiedMemory ? "true" : "false"); #if TARGET_OS_OSX - metal_printf("%s: recommendedMaxWorkingSetSize = %8.2f MB\n", __func__, ctx->device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0); + GGML_METAL_LOG_INFO("%s: recommendedMaxWorkingSetSize = %8.2f MB\n", __func__, ctx->device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0); if (ctx->device.maxTransferRate != 0) { - metal_printf("%s: maxTransferRate = %8.2f MB/s\n", __func__, ctx->device.maxTransferRate / 1024.0 / 1024.0); + GGML_METAL_LOG_INFO("%s: maxTransferRate = %8.2f MB/s\n", __func__, ctx->device.maxTransferRate / 1024.0 / 1024.0); } else { - metal_printf("%s: maxTransferRate = built-in GPU\n", __func__); + GGML_METAL_LOG_INFO("%s: maxTransferRate = built-in GPU\n", __func__); } #endif @@ -272,7 +318,7 @@ @implementation GGMLMetalClass } void ggml_metal_free(struct ggml_metal_context * ctx) { - metal_printf("%s: deallocating\n", __func__); + GGML_METAL_LOG_INFO("%s: deallocating\n", __func__); #define GGML_METAL_DEL_KERNEL(name) \ [ctx->function_##name release]; \ [ctx->pipeline_##name release]; @@ -286,7 +332,10 @@ void ggml_metal_free(struct ggml_metal_context * ctx) { GGML_METAL_DEL_KERNEL(relu); GGML_METAL_DEL_KERNEL(gelu); GGML_METAL_DEL_KERNEL(soft_max); + GGML_METAL_DEL_KERNEL(soft_max_4); GGML_METAL_DEL_KERNEL(diag_mask_inf); + GGML_METAL_DEL_KERNEL(diag_mask_inf_8); + GGML_METAL_DEL_KERNEL(get_rows_f32); GGML_METAL_DEL_KERNEL(get_rows_f16); GGML_METAL_DEL_KERNEL(get_rows_q4_0); GGML_METAL_DEL_KERNEL(get_rows_q4_1); @@ -298,8 +347,10 @@ void ggml_metal_free(struct ggml_metal_context * ctx) { GGML_METAL_DEL_KERNEL(get_rows_q6_K); GGML_METAL_DEL_KERNEL(rms_norm); GGML_METAL_DEL_KERNEL(norm); + GGML_METAL_DEL_KERNEL(mul_mat_f32_f32); GGML_METAL_DEL_KERNEL(mul_mat_f16_f32); GGML_METAL_DEL_KERNEL(mul_mat_f16_f32_1row); + GGML_METAL_DEL_KERNEL(mul_mat_f16_f32_l4); GGML_METAL_DEL_KERNEL(mul_mat_q4_0_f32); GGML_METAL_DEL_KERNEL(mul_mat_q4_1_f32); GGML_METAL_DEL_KERNEL(mul_mat_q8_0_f32); @@ -308,6 +359,7 @@ void ggml_metal_free(struct ggml_metal_context * ctx) { GGML_METAL_DEL_KERNEL(mul_mat_q4_K_f32); GGML_METAL_DEL_KERNEL(mul_mat_q5_K_f32); GGML_METAL_DEL_KERNEL(mul_mat_q6_K_f32); + GGML_METAL_DEL_KERNEL(mul_mm_f32_f32); GGML_METAL_DEL_KERNEL(mul_mm_f16_f32); GGML_METAL_DEL_KERNEL(mul_mm_q4_0_f32); GGML_METAL_DEL_KERNEL(mul_mm_q8_0_f32); @@ -317,7 +369,8 @@ void ggml_metal_free(struct ggml_metal_context * ctx) { GGML_METAL_DEL_KERNEL(mul_mm_q4_K_f32); GGML_METAL_DEL_KERNEL(mul_mm_q5_K_f32); GGML_METAL_DEL_KERNEL(mul_mm_q6_K_f32); - GGML_METAL_DEL_KERNEL(rope); + GGML_METAL_DEL_KERNEL(rope_f32); + GGML_METAL_DEL_KERNEL(rope_f16); GGML_METAL_DEL_KERNEL(alibi_f32); GGML_METAL_DEL_KERNEL(cpy_f32_f16); GGML_METAL_DEL_KERNEL(cpy_f32_f32); @@ -342,7 +395,7 @@ void ggml_metal_free(struct ggml_metal_context * ctx) { void * data = NULL; const int result = posix_memalign((void **) &data, sysconf(_SC_PAGESIZE), n); if (result != 0) { - metal_printf("%s: error: posix_memalign failed\n", __func__); + GGML_METAL_LOG_ERROR("%s: error: posix_memalign failed\n", __func__); return NULL; } @@ -370,7 +423,7 @@ int ggml_metal_if_optimized(struct ggml_metal_context * ctx) { // Metal buffer based on the host memory pointer // static id ggml_metal_get_buffer(struct ggml_metal_context * ctx, struct ggml_tensor * t, size_t * offs) { - //metal_printf("%s: data tensor '%16s', offs_data = %8ld, offs_eval = %8ld, offs_cach = %8ld\n", __func__, t->name, offs_data, offs_eval, offs_cach); + //GGML_METAL_LOG_INFO("%s: data tensor '%16s', offs_data = %8ld, offs_eval = %8ld, offs_cach = %8ld\n", __func__, t->name, offs_data, offs_eval, offs_cach); const int64_t tsize = ggml_nbytes(t); @@ -378,16 +431,17 @@ int ggml_metal_if_optimized(struct ggml_metal_context * ctx) { for (int i = 0; i < ctx->n_buffers; ++i) { const int64_t ioffs = (int64_t) t->data - (int64_t) ctx->buffers[i].data; + //metal_printf("ioffs = %10ld, tsize = %10ld, sum = %10ld, ctx->buffers[%d].size = %10ld, name = %s\n", ioffs, tsize, ioffs + tsize, i, ctx->buffers[i].size, ctx->buffers[i].name); if (ioffs >= 0 && ioffs + tsize <= (int64_t) ctx->buffers[i].size) { *offs = (size_t) ioffs; - //metal_printf("%s: '%s' tensor '%16s', offs = %8ld\n", __func__, ctx->buffers[i].name, t->name, *offs); + //GGML_METAL_LOG_INFO("%s: '%s' tensor '%16s', offs = %8ld\n", __func__, ctx->buffers[i].name, t->name, *offs); return ctx->buffers[i].metal; } } - metal_printf("%s: error: buffer is nil\n", __func__); + GGML_METAL_LOG_ERROR("%s: error: buffer is nil\n", __func__); return nil; } @@ -399,7 +453,7 @@ bool ggml_metal_add_buffer( size_t size, size_t max_size) { if (ctx->n_buffers >= GGML_METAL_MAX_BUFFERS) { - metal_printf("%s: too many buffers\n", __func__); + GGML_METAL_LOG_ERROR("%s: error: too many buffers\n", __func__); return false; } @@ -409,7 +463,7 @@ bool ggml_metal_add_buffer( const int64_t ioffs = (int64_t) data - (int64_t) ctx->buffers[i].data; if (ioffs >= 0 && ioffs < (int64_t) ctx->buffers[i].size) { - metal_printf("%s: error: buffer '%s' overlaps with '%s'\n", __func__, name, ctx->buffers[i].name); + GGML_METAL_LOG_ERROR("%s: error: buffer '%s' overlaps with '%s'\n", __func__, name, ctx->buffers[i].name); return false; } } @@ -430,11 +484,11 @@ bool ggml_metal_add_buffer( ctx->buffers[ctx->n_buffers].metal = [ctx->device newBufferWithBytesNoCopy:data length:size_aligned options:MTLResourceStorageModeShared deallocator:nil]; if (ctx->buffers[ctx->n_buffers].metal == nil) { - metal_printf("%s: failed to allocate '%-16s' buffer, size = %8.2f MB\n", __func__, name, size_aligned / 1024.0 / 1024.0); + GGML_METAL_LOG_ERROR("%s: error: failed to allocate '%-16s' buffer, size = %8.2f MB\n", __func__, name, size_aligned / 1024.0 / 1024.0); return false; } - metal_printf("%s: allocated '%-16s' buffer, size = %8.2f MB", __func__, name, size_aligned / 1024.0 / 1024.0); + GGML_METAL_LOG_INFO("%s: allocated '%-16s' buffer, size = %8.2f MB", __func__, name, size_aligned / 1024.0 / 1024.0); ++ctx->n_buffers; } else { @@ -454,13 +508,13 @@ bool ggml_metal_add_buffer( ctx->buffers[ctx->n_buffers].metal = [ctx->device newBufferWithBytesNoCopy:(void *) ((uint8_t *) data + i) length:size_step_aligned options:MTLResourceStorageModeShared deallocator:nil]; if (ctx->buffers[ctx->n_buffers].metal == nil) { - metal_printf("%s: failed to allocate '%-16s' buffer, size = %8.2f MB\n", __func__, name, size_step_aligned / 1024.0 / 1024.0); + GGML_METAL_LOG_ERROR("%s: error: failed to allocate '%-16s' buffer, size = %8.2f MB\n", __func__, name, size_step_aligned / 1024.0 / 1024.0); return false; } - metal_printf("%s: allocated '%-16s' buffer, size = %8.2f MB, offs = %12ld", __func__, name, size_step_aligned / 1024.0 / 1024.0, i); + GGML_METAL_LOG_INFO("%s: allocated '%-16s' buffer, size = %8.2f MB, offs = %12ld", __func__, name, size_step_aligned / 1024.0 / 1024.0, i); if (i + size_step < size) { - metal_printf("\n"); + GGML_METAL_LOG_INFO("\n"); } ++ctx->n_buffers; @@ -468,17 +522,17 @@ bool ggml_metal_add_buffer( } #if TARGET_OS_OSX - metal_printf(", (%8.2f / %8.2f)", + GGML_METAL_LOG_INFO(", (%8.2f / %8.2f)", ctx->device.currentAllocatedSize / 1024.0 / 1024.0, ctx->device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0); if (ctx->device.currentAllocatedSize > ctx->device.recommendedMaxWorkingSetSize) { - metal_printf(", warning: current allocated size is greater than the recommended max working set size\n"); + GGML_METAL_LOG_WARN(", warning: current allocated size is greater than the recommended max working set size\n", __func__); } else { - metal_printf("\n"); + GGML_METAL_LOG_INFO("\n"); } #else - metal_printf(", (%8.2f)\n", ctx->device.currentAllocatedSize / 1024.0 / 1024.0); + GGML_METAL_LOG_INFO(", (%8.2f)\n", ctx->device.currentAllocatedSize / 1024.0 / 1024.0); #endif } @@ -591,7 +645,7 @@ void ggml_metal_graph_find_concurrency( } if (ctx->concur_list_len > GGML_MAX_CONCUR) { - metal_printf("%s: too many elements for metal ctx->concur_list!\n", __func__); + GGML_METAL_LOG_WARN("%s: too many elements for metal ctx->concur_list!\n", __func__); } } @@ -645,7 +699,7 @@ void ggml_metal_graph_compute( continue; } - //metal_printf("%s: encoding node %3d, op = %8s\n", __func__, i, ggml_op_name(gf->nodes[i]->op)); + //GGML_METAL_LOG_INFO("%s: encoding node %3d, op = %8s\n", __func__, i, ggml_op_name(gf->nodes[i]->op)); struct ggml_tensor * src0 = gf->nodes[i]->src[0]; struct ggml_tensor * src1 = gf->nodes[i]->src[1]; @@ -689,17 +743,17 @@ void ggml_metal_graph_compute( id id_src1 = src1 ? ggml_metal_get_buffer(ctx, src1, &offs_src1) : nil; id id_dst = dst ? ggml_metal_get_buffer(ctx, dst, &offs_dst) : nil; - //metal_printf("%s: op - %s\n", __func__, ggml_op_name(dst->op)); + //GGML_METAL_LOG_INFO("%s: op - %s\n", __func__, ggml_op_name(dst->op)); //if (src0) { - // metal_printf("%s: src0 - %4s [%5lld, %5lld, %5lld], %d, %s\n", __func__, ggml_type_name(src0t), ne00, ne01, ne02, + // GGML_METAL_LOG_INFO("%s: src0 - %4s [%5lld, %5lld, %5lld], %d, %s\n", __func__, ggml_type_name(src0t), ne00, ne01, ne02, // ggml_is_contiguous(src0), src0->name); //} //if (src1) { - // metal_printf("%s: src1 - %4s [%5lld, %5lld, %5lld], %d, %s\n", __func__, ggml_type_name(src1t), ne10, ne11, ne12, + // GGML_METAL_LOG_INFO("%s: src1 - %4s [%5lld, %5lld, %5lld], %d, %s\n", __func__, ggml_type_name(src1t), ne10, ne11, ne12, // ggml_is_contiguous(src1), src1->name); //} //if (dst) { - // metal_printf("%s: dst - %4s [%5lld, %5lld, %5lld], 1, %s\n", __func__, ggml_type_name(dstt), ne0, ne1, ne2, + // GGML_METAL_LOG_INFO("%s: dst - %4s [%5lld, %5lld, %5lld], 1, %s\n", __func__, ggml_type_name(dstt), ne0, ne1, ne2, // dst->name); //} @@ -715,29 +769,66 @@ void ggml_metal_graph_compute( case GGML_OP_ADD: { GGML_ASSERT(ggml_is_contiguous(src0)); + GGML_ASSERT(ggml_is_contiguous(src1)); - // utilize float4 - GGML_ASSERT(ne00 % 4 == 0); - const int64_t nb = ne00/4; + bool bcast_row = false; - if (ggml_nelements(src1) == ne10) { + int64_t nb = ne00; + + if (ggml_nelements(src1) == ne10 && ne00 % 4 == 0) { // src1 is a row + GGML_ASSERT(ne11 == 1); + + nb = ne00 / 4; [encoder setComputePipelineState:ctx->pipeline_add_row]; + + bcast_row = true; } else { [encoder setComputePipelineState:ctx->pipeline_add]; } [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1]; [encoder setBuffer:id_dst offset:offs_dst atIndex:2]; - [encoder setBytes:&nb length:sizeof(nb) atIndex:3]; - - const int64_t n = ggml_nelements(dst)/4; + [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3]; + [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:4]; + [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:5]; + [encoder setBytes:&ne03 length:sizeof(ne03) atIndex:6]; + [encoder setBytes:&nb00 length:sizeof(nb00) atIndex:7]; + [encoder setBytes:&nb01 length:sizeof(nb01) atIndex:8]; + [encoder setBytes:&nb02 length:sizeof(nb02) atIndex:9]; + [encoder setBytes:&nb03 length:sizeof(nb03) atIndex:10]; + [encoder setBytes:&ne10 length:sizeof(ne10) atIndex:11]; + [encoder setBytes:&ne11 length:sizeof(ne11) atIndex:12]; + [encoder setBytes:&ne12 length:sizeof(ne12) atIndex:13]; + [encoder setBytes:&ne13 length:sizeof(ne13) atIndex:14]; + [encoder setBytes:&nb10 length:sizeof(nb10) atIndex:15]; + [encoder setBytes:&nb11 length:sizeof(nb11) atIndex:16]; + [encoder setBytes:&nb12 length:sizeof(nb12) atIndex:17]; + [encoder setBytes:&nb13 length:sizeof(nb13) atIndex:18]; + [encoder setBytes:&ne0 length:sizeof(ne0) atIndex:19]; + [encoder setBytes:&ne1 length:sizeof(ne1) atIndex:20]; + [encoder setBytes:&ne2 length:sizeof(ne2) atIndex:21]; + [encoder setBytes:&ne3 length:sizeof(ne3) atIndex:22]; + [encoder setBytes:&nb0 length:sizeof(nb0) atIndex:23]; + [encoder setBytes:&nb1 length:sizeof(nb1) atIndex:24]; + [encoder setBytes:&nb2 length:sizeof(nb2) atIndex:25]; + [encoder setBytes:&nb3 length:sizeof(nb3) atIndex:26]; + [encoder setBytes:&nb length:sizeof(nb) atIndex:27]; + + if (bcast_row) { + const int64_t n = ggml_nelements(dst)/4; + + [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; + } else { + const int nth = MIN(1024, ne0); - [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; + [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; + } } break; case GGML_OP_MUL: { GGML_ASSERT(ggml_is_contiguous(src0)); + GGML_ASSERT(ggml_is_contiguous(src1)); // utilize float4 GGML_ASSERT(ne00 % 4 == 0); @@ -745,6 +836,7 @@ void ggml_metal_graph_compute( if (ggml_nelements(src1) == ne10) { // src1 is a row + GGML_ASSERT(ne11 == 1); [encoder setComputePipelineState:ctx->pipeline_mul_row]; } else { [encoder setComputePipelineState:ctx->pipeline_mul]; @@ -760,6 +852,8 @@ void ggml_metal_graph_compute( } break; case GGML_OP_SCALE: { + GGML_ASSERT(ggml_is_contiguous(src0)); + const float scale = *(const float *) src1->data; [encoder setComputePipelineState:ctx->pipeline_scale]; @@ -767,7 +861,7 @@ void ggml_metal_graph_compute( [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; [encoder setBytes:&scale length:sizeof(scale) atIndex:2]; - const int64_t n = ggml_nelements(dst); + const int64_t n = ggml_nelements(dst)/4; [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; } break; @@ -779,7 +873,7 @@ void ggml_metal_graph_compute( [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; - const int64_t n = ggml_nelements(dst); + const int64_t n = ggml_nelements(dst)/4; [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; } break; @@ -799,27 +893,30 @@ void ggml_metal_graph_compute( [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; - const int64_t n = ggml_nelements(dst); + const int64_t n = ggml_nelements(dst)/4; [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; } break; default: { - metal_printf("%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op)); + GGML_METAL_LOG_WARN("%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op)); GGML_ASSERT(false); } } break; case GGML_OP_SOFT_MAX: { - const int nth = 32; + const int nth = MIN(32, ne00); - [encoder setComputePipelineState:ctx->pipeline_soft_max]; + if (ne00%4 == 0) { + [encoder setComputePipelineState:ctx->pipeline_soft_max_4]; + } else { + [encoder setComputePipelineState:ctx->pipeline_soft_max]; + } [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2]; [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3]; [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4]; - [encoder setThreadgroupMemoryLength:nth*sizeof(float) atIndex:0]; [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; } break; @@ -827,14 +924,23 @@ void ggml_metal_graph_compute( { const int n_past = ((int32_t *)(dst->op_params))[0]; - [encoder setComputePipelineState:ctx->pipeline_diag_mask_inf]; + if (ne00%8 == 0) { + [encoder setComputePipelineState:ctx->pipeline_diag_mask_inf_8]; + } else { + [encoder setComputePipelineState:ctx->pipeline_diag_mask_inf]; + } [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2]; [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3]; [encoder setBytes:&n_past length:sizeof(int) atIndex:4]; - [encoder dispatchThreadgroups:MTLSizeMake(ne00, ne01, ne02) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; + if (ne00%8 == 0) { + [encoder dispatchThreadgroups:MTLSizeMake(ne00*ne01*ne02/8, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; + } + else { + [encoder dispatchThreadgroups:MTLSizeMake(ne00, ne01, ne02) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; + } } break; case GGML_OP_MUL_MAT: { @@ -847,13 +953,14 @@ void ggml_metal_graph_compute( // for now the matrix-matrix multiplication kernel only works on A14+/M1+ SoCs // AMD GPU and older A-chips will reuse matrix-vector multiplication kernel - if (ggml_is_contiguous(src0) && - ggml_is_contiguous(src1) && + if (!ggml_is_transposed(src0) && + !ggml_is_transposed(src1) && src1t == GGML_TYPE_F32 && [ctx->device supportsFamily:MTLGPUFamilyApple7] && ne00%32 == 0 && - ne11 > 1) { + ne11 > 2) { switch (src0->type) { + case GGML_TYPE_F32: [encoder setComputePipelineState:ctx->pipeline_mul_mm_f32_f32]; break; case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_mul_mm_f16_f32]; break; case GGML_TYPE_Q4_0: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q4_0_f32]; break; case GGML_TYPE_Q4_1: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q4_1_f32]; break; @@ -873,25 +980,38 @@ void ggml_metal_graph_compute( [encoder setBytes:&nb01 length:sizeof(nb01) atIndex:5]; [encoder setBytes:&nb02 length:sizeof(nb02) atIndex:6]; [encoder setBytes:&ne12 length:sizeof(ne12) atIndex:7]; - [encoder setBytes:&ne0 length:sizeof(ne0) atIndex:8]; - [encoder setBytes:&ne1 length:sizeof(ne1) atIndex:9]; - [encoder setBytes:&gqa length:sizeof(gqa) atIndex:10]; + [encoder setBytes:&nb10 length:sizeof(nb10) atIndex:8]; + [encoder setBytes:&nb11 length:sizeof(nb11) atIndex:9]; + [encoder setBytes:&nb12 length:sizeof(nb12) atIndex:10]; + [encoder setBytes:&ne0 length:sizeof(ne0) atIndex:11]; + [encoder setBytes:&ne1 length:sizeof(ne1) atIndex:12]; + [encoder setBytes:&gqa length:sizeof(gqa) atIndex:13]; [encoder setThreadgroupMemoryLength:8192 atIndex:0]; [encoder dispatchThreadgroups:MTLSizeMake( (ne11+31)/32, (ne01+63) / 64, ne12) threadsPerThreadgroup:MTLSizeMake(128, 1, 1)]; } else { int nth0 = 32; int nth1 = 1; + int nrows = 1; // use custom matrix x vector kernel switch (src0t) { + case GGML_TYPE_F32: + { + [encoder setComputePipelineState:ctx->pipeline_mul_mat_f32_f32]; + nrows = 4; + } break; case GGML_TYPE_F16: { nth0 = 32; nth1 = 1; if (ne11 * ne12 < 4) { [encoder setComputePipelineState:ctx->pipeline_mul_mat_f16_f32_1row]; + } else if (ne00 >= 128 && ne01 >= 8 && ne00%4 == 0) { + [encoder setComputePipelineState:ctx->pipeline_mul_mat_f16_f32_l4]; + nrows = ne11; } else { [encoder setComputePipelineState:ctx->pipeline_mul_mat_f16_f32]; + nrows = 4; } } break; case GGML_TYPE_Q4_0: @@ -968,7 +1088,7 @@ void ggml_metal_graph_compute( } break; default: { - metal_printf("Asserting on type %d\n",(int)src0t); + GGML_METAL_LOG_ERROR("Asserting on type %d\n", (int)src0t); GGML_ASSERT(false && "not implemented"); } }; @@ -1012,7 +1132,7 @@ void ggml_metal_graph_compute( else if (src0t == GGML_TYPE_Q6_K) { [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 1)/2, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; } else { - int64_t ny = (ne11 + 3)/4; + int64_t ny = (ne11 + nrows - 1)/nrows; [encoder dispatchThreadgroups:MTLSizeMake(ne01, ny, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; } } @@ -1020,6 +1140,7 @@ void ggml_metal_graph_compute( case GGML_OP_GET_ROWS: { switch (src0->type) { + case GGML_TYPE_F32: [encoder setComputePipelineState:ctx->pipeline_get_rows_f32]; break; case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_get_rows_f16]; break; case GGML_TYPE_Q4_0: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_0]; break; case GGML_TYPE_Q4_1: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_1]; break; @@ -1035,9 +1156,9 @@ void ggml_metal_graph_compute( [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1]; [encoder setBuffer:id_dst offset:offs_dst atIndex:2]; - [encoder setBytes:&(src0->ne[0]) length:sizeof( int64_t) atIndex:3]; - [encoder setBytes:&(src0->nb[1]) length:sizeof(uint64_t) atIndex:4]; - [encoder setBytes:&(dst->nb[1]) length:sizeof(uint64_t) atIndex:5]; + [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:3]; + [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:4]; + [encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:5]; const int64_t n = ggml_nelements(src1); @@ -1048,7 +1169,7 @@ void ggml_metal_graph_compute( float eps; memcpy(&eps, dst->op_params, sizeof(float)); - const int nth = 512; + const int nth = MIN(512, ne00); [encoder setComputePipelineState:ctx->pipeline_rms_norm]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; @@ -1067,7 +1188,7 @@ void ggml_metal_graph_compute( float eps; memcpy(&eps, dst->op_params, sizeof(float)); - const int nth = 256; + const int nth = MIN(256, ne00); [encoder setComputePipelineState:ctx->pipeline_norm]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; @@ -1085,6 +1206,8 @@ void ggml_metal_graph_compute( { GGML_ASSERT((src0t == GGML_TYPE_F32)); + const int nth = MIN(1024, ne00); + const int n_past = ((int32_t *) dst->op_params)[0]; UNUSED(n_past); const int n_head = ((int32_t *) dst->op_params)[1]; float max_bias; @@ -1118,12 +1241,14 @@ void ggml_metal_graph_compute( [encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:17]; [encoder setBytes:&m0 length:sizeof( float) atIndex:18]; - const int nth = 32; - [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; } break; case GGML_OP_ROPE: { + GGML_ASSERT(ne10 == ne02); + + const int nth = MIN(1024, ne00); + const int n_past = ((int32_t *) dst->op_params)[0]; const int n_dims = ((int32_t *) dst->op_params)[1]; const int mode = ((int32_t *) dst->op_params)[2]; @@ -1133,38 +1258,44 @@ void ggml_metal_graph_compute( memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float)); memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float)); - [encoder setComputePipelineState:ctx->pipeline_rope]; + switch (src0->type) { + case GGML_TYPE_F32: [encoder setComputePipelineState:ctx->pipeline_rope_f32]; break; + case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_rope_f16]; break; + default: GGML_ASSERT(false); + }; + [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; - [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; - [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2]; - [encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:3]; - [encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:4]; - [encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:5]; - [encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:6]; - [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:7]; - [encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:8]; - [encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:9]; - [encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:10]; - [encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:11]; - [encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:12]; - [encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:13]; - [encoder setBytes:&nb0 length:sizeof(uint64_t) atIndex:14]; - [encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:15]; - [encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:16]; - [encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:17]; - [encoder setBytes:&n_past length:sizeof( int) atIndex:18]; - [encoder setBytes:&n_dims length:sizeof( int) atIndex:19]; - [encoder setBytes:&mode length:sizeof( int) atIndex:20]; - [encoder setBytes:&freq_base length:sizeof(float) atIndex:21]; - [encoder setBytes:&freq_scale length:sizeof(float) atIndex:22]; + [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1]; + [encoder setBuffer:id_dst offset:offs_dst atIndex:2]; + [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:3]; + [encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:4]; + [encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:5]; + [encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:6]; + [encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:7]; + [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:8]; + [encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:9]; + [encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:10]; + [encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:11]; + [encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:12]; + [encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:13]; + [encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:14]; + [encoder setBytes:&nb0 length:sizeof(uint64_t) atIndex:15]; + [encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:16]; + [encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:17]; + [encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:18]; + [encoder setBytes:&n_past length:sizeof( int) atIndex:19]; + [encoder setBytes:&n_dims length:sizeof( int) atIndex:20]; + [encoder setBytes:&mode length:sizeof( int) atIndex:21]; + [encoder setBytes:&freq_base length:sizeof(float) atIndex:22]; + [encoder setBytes:&freq_scale length:sizeof(float) atIndex:23]; - [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(32, 1, 1)]; + [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; } break; case GGML_OP_DUP: case GGML_OP_CPY: case GGML_OP_CONT: { - const int nth = 32; + const int nth = MIN(1024, ne00); switch (src0t) { case GGML_TYPE_F32: @@ -1209,7 +1340,7 @@ void ggml_metal_graph_compute( } break; default: { - metal_printf("%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op)); + GGML_METAL_LOG_ERROR("%s: error: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op)); GGML_ASSERT(false); } } @@ -1234,7 +1365,7 @@ void ggml_metal_graph_compute( MTLCommandBufferStatus status = (MTLCommandBufferStatus) [ctx->command_buffers[i] status]; if (status != MTLCommandBufferStatusCompleted) { - metal_printf("%s: command buffer %d failed with status %lu\n", __func__, i, status); + GGML_METAL_LOG_INFO("%s: command buffer %d failed with status %lu\n", __func__, i, status); GGML_ASSERT(false); } } diff --git a/ggml-metal.metal b/ggml-metal.metal index 7b5c21d92ab63..5e1af6a092aed 100644 --- a/ggml-metal.metal +++ b/ggml-metal.metal @@ -24,12 +24,59 @@ typedef struct { int8_t qs[QK8_0]; // quants } block_q8_0; +// general-purpose kernel for addition of two tensors +// pros: works for non-contiguous tensors, supports broadcast across dims 1, 2 and 3 +// cons: not very efficient kernel void kernel_add( - device const float4 * src0, - device const float4 * src1, - device float4 * dst, - uint tpig[[thread_position_in_grid]]) { - dst[tpig] = src0[tpig] + src1[tpig]; + device const char * src0, + device const char * src1, + device char * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant int64_t & ne03, + constant int64_t & nb00, + constant int64_t & nb01, + constant int64_t & nb02, + constant int64_t & nb03, + constant int64_t & ne10, + constant int64_t & ne11, + constant int64_t & ne12, + constant int64_t & ne13, + constant int64_t & nb10, + constant int64_t & nb11, + constant int64_t & nb12, + constant int64_t & nb13, + constant int64_t & ne0, + constant int64_t & ne1, + constant int64_t & ne2, + constant int64_t & ne3, + constant int64_t & nb0, + constant int64_t & nb1, + constant int64_t & nb2, + constant int64_t & nb3, + uint3 tgpig[[threadgroup_position_in_grid]], + uint3 tpitg[[thread_position_in_threadgroup]], + uint3 ntg[[threads_per_threadgroup]]) { + const int64_t i03 = tgpig.z; + const int64_t i02 = tgpig.y; + const int64_t i01 = tgpig.x; + + const int64_t i13 = i03 % ne13; + const int64_t i12 = i02 % ne12; + const int64_t i11 = i01 % ne11; + + device const char * src0_ptr = src0 + i03*nb03 + i02*nb02 + i01*nb01 + tpitg.x*nb00; + device const char * src1_ptr = src1 + i13*nb13 + i12*nb12 + i11*nb11 + tpitg.x*nb10; + device char * dst_ptr = dst + i03*nb3 + i02*nb2 + i01*nb1 + tpitg.x*nb0; + + for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) { + ((device float *)dst_ptr)[0] = ((device float *)src0_ptr)[0] + ((device float *)src1_ptr)[0]; + + src0_ptr += ntg.x*nb00; + src1_ptr += ntg.x*nb10; + dst_ptr += ntg.x*nb0; + } } // assumption: src1 is a row @@ -38,7 +85,7 @@ kernel void kernel_add_row( device const float4 * src0, device const float4 * src1, device float4 * dst, - constant int64_t & nb, + constant int64_t & nb [[buffer(27)]], uint tpig[[thread_position_in_grid]]) { dst[tpig] = src0[tpig] + src1[tpig % nb]; } @@ -63,18 +110,18 @@ kernel void kernel_mul_row( } kernel void kernel_scale( - device const float * src0, - device float * dst, + device const float4 * src0, + device float4 * dst, constant float & scale, uint tpig[[thread_position_in_grid]]) { dst[tpig] = src0[tpig] * scale; } kernel void kernel_silu( - device const float * src0, - device float * dst, + device const float4 * src0, + device float4 * dst, uint tpig[[thread_position_in_grid]]) { - float x = src0[tpig]; + device const float4 & x = src0[tpig]; dst[tpig] = x / (1.0f + exp(-x)); } @@ -89,10 +136,10 @@ constant float GELU_COEF_A = 0.044715f; constant float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f; kernel void kernel_gelu( - device const float * src0, - device float * dst, + device const float4 * src0, + device float4 * dst, uint tpig[[thread_position_in_grid]]) { - float x = src0[tpig]; + device const float4 & x = src0[tpig]; // BEWARE !!! // Simply using "tanh" instead of "precise::tanh" will sometimes results in NaNs! @@ -107,7 +154,6 @@ kernel void kernel_soft_max( constant int64_t & ne00, constant int64_t & ne01, constant int64_t & ne02, - threadgroup float * buf [[threadgroup(0)]], uint3 tgpig[[threadgroup_position_in_grid]], uint3 tpitg[[thread_position_in_threadgroup]], uint3 ntg[[threads_per_threadgroup]]) { @@ -119,61 +165,67 @@ kernel void kernel_soft_max( device float * pdst = dst + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00; // parallel max - buf[tpitg[0]] = -INFINITY; - for (int i00 = tpitg[0]; i00 < ne00; i00 += ntg[0]) { - buf[tpitg[0]] = MAX(buf[tpitg[0]], psrc0[i00]); - } - - // reduce - threadgroup_barrier(mem_flags::mem_threadgroup); - for (uint i = ntg[0]/2; i > 0; i /= 2) { - if (tpitg[0] < i) { - buf[tpitg[0]] = MAX(buf[tpitg[0]], buf[tpitg[0] + i]); - } - threadgroup_barrier(mem_flags::mem_threadgroup); + float lmax = tpitg[0] < ne00 ? psrc0[tpitg[0]] : -INFINITY; + for (int i00 = tpitg[0] + ntg[0]; i00 < ne00; i00 += ntg[0]) { + lmax = MAX(lmax, psrc0[i00]); } - - //// broadcast - not needed. There is a threadgroup barrier above in the last iteration of - // the loop, and when that is done, buf[0] has the correct (synchronized) value - //if (tpitg[0] == 0) { - // buf[0] = buf[0]; - //} - - //threadgroup_barrier(mem_flags::mem_threadgroup); - - const float max = buf[0]; + const float max = simd_max(lmax); // parallel sum - buf[tpitg[0]] = 0.0f; + float lsum = 0.0f; for (int i00 = tpitg[0]; i00 < ne00; i00 += ntg[0]) { const float exp_psrc0 = exp(psrc0[i00] - max); - buf[tpitg[0]] += exp_psrc0; + lsum += exp_psrc0; // Remember the result of exp here. exp is expensive, so we really do not // whish to compute it twice. pdst[i00] = exp_psrc0; } - // reduce - threadgroup_barrier(mem_flags::mem_threadgroup); - for (uint i = ntg[0]/2; i > 0; i /= 2) { - if (tpitg[0] < i) { - buf[tpitg[0]] += buf[tpitg[0] + i]; - } - threadgroup_barrier(mem_flags::mem_threadgroup); + const float sum = simd_sum(lsum); + + for (int i00 = tpitg[0]; i00 < ne00; i00 += ntg[0]) { + pdst[i00] /= sum; } +} - // broadcast - not needed, see above - //// broadcast - //if (tpitg[0] == 0) { - // buf[0] = buf[0]; - //} +kernel void kernel_soft_max_4( + device const float * src0, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + uint3 tgpig[[threadgroup_position_in_grid]], + uint3 tpitg[[thread_position_in_threadgroup]], + uint3 ntg[[threads_per_threadgroup]]) { + const int64_t i03 = tgpig[2]; + const int64_t i02 = tgpig[1]; + const int64_t i01 = tgpig[0]; + + device const float4 * psrc4 = (device const float4 *)(src0 + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00); + device float4 * pdst4 = (device float4 *)(dst + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00); - //threadgroup_barrier(mem_flags::mem_threadgroup); + // parallel max + float4 lmax4 = tpitg[0] < ne00/4 ? psrc4[tpitg[0]] : -INFINITY; + for (int i00 = tpitg[0] + ntg[0]; i00 < ne00/4; i00 += ntg[0]) { + lmax4 = fmax(lmax4, psrc4[i00]); + } + float lmax = MAX(MAX(lmax4[0], lmax4[1]), MAX(lmax4[2], lmax4[3])); - const float sum = buf[0]; + const float max = simd_max(lmax); - for (int i00 = tpitg[0]; i00 < ne00; i00 += ntg[0]) { - pdst[i00] /= sum; + // parallel sum + float4 lsum4 = 0.0f; + for (int i00 = tpitg[0]; i00 < ne00/4; i00 += ntg[0]) { + const float4 exp_psrc4 = exp(psrc4[i00] - max); + lsum4 += exp_psrc4; + pdst4[i00] = exp_psrc4; + } + float lsum = lsum4[0] + lsum4[1] + lsum4[2] + lsum4[3]; + + const float sum = simd_sum(lsum); + + for (int i00 = tpitg[0]; i00 < ne00/4; i00 += ntg[0]) { + pdst4[i00] /= sum; } } @@ -192,6 +244,33 @@ kernel void kernel_diag_mask_inf( dst[i02*ne01*ne00 + i01*ne00 + i00] = -INFINITY; } else { dst[i02*ne01*ne00 + i01*ne00 + i00] = src0[i02*ne01*ne00 + i01*ne00 + i00]; + } +} + +kernel void kernel_diag_mask_inf_8( + device const float4 * src0, + device float4 * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int & n_past, + uint3 tpig[[thread_position_in_grid]]) { + + const int64_t i = 2*tpig[0]; + + dst[i+0] = src0[i+0]; + dst[i+1] = src0[i+1]; + int64_t i4 = 4*i; + const int64_t i02 = i4/(ne00*ne01); i4 -= i02*ne00*ne01; + const int64_t i01 = i4/(ne00); i4 -= i01*ne00; + const int64_t i00 = i4; + for (int k = 3; k >= 0; --k) { + if (i00 + 4 + k <= n_past + i01) { + break; + } + dst[i+1][k] = -INFINITY; + if (i00 + k > n_past + i01) { + dst[i][k] = -INFINITY; + } } } @@ -491,6 +570,79 @@ kernel void kernel_mul_mat_q8_0_f32( } } +#define N_F32_F32 4 + +kernel void kernel_mul_mat_f32_f32( + device const char * src0, + device const char * src1, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant int64_t & ne10, + constant int64_t & ne11, + constant int64_t & ne12, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb12, + constant int64_t & ne0, + constant int64_t & ne1, + uint3 tgpig[[threadgroup_position_in_grid]], + uint tiisg[[thread_index_in_simdgroup]]) { + + const int64_t r0 = tgpig.x; + const int64_t rb = tgpig.y*N_F32_F32; + const int64_t im = tgpig.z; + + device const float * x = (device const float *) (src0 + r0*nb01 + im/(ne12/ne02)*nb02); + + if (ne00 < 128) { + for (int row = 0; row < N_F32_F32; ++row) { + int r1 = rb + row; + if (r1 >= ne11) { + break; + } + + device const float * y = (device const float *) (src1 + r1*nb11 + im*nb12); + + float sumf = 0; + for (int i = tiisg; i < ne00; i += 32) { + sumf += (float) x[i] * (float) y[i]; + } + + float all_sum = simd_sum(sumf); + if (tiisg == 0) { + dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum; + } + } + } else { + device const float4 * x4 = (device const float4 *)x; + for (int row = 0; row < N_F32_F32; ++row) { + int r1 = rb + row; + if (r1 >= ne11) { + break; + } + + device const float * y = (device const float *) (src1 + r1*nb11 + im*nb12); + device const float4 * y4 = (device const float4 *) y; + + float sumf = 0; + for (int i = tiisg; i < ne00/4; i += 32) { + for (int k = 0; k < 4; ++k) sumf += (float) x4[i][k] * y4[i][k]; + } + + float all_sum = simd_sum(sumf); + if (tiisg == 0) { + for (int i = 4*(ne00/4); i < ne00; ++i) all_sum += (float) x[i] * y[i]; + dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum; + } + } + } +} + kernel void kernel_mul_mat_f16_f32_1row( device const char * src0, device const char * src1, @@ -616,6 +768,49 @@ kernel void kernel_mul_mat_f16_f32( } } +// Assumes row size (ne00) is a multiple of 4 +kernel void kernel_mul_mat_f16_f32_l4( + device const char * src0, + device const char * src1, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant int64_t & ne10, + constant int64_t & ne11, + constant int64_t & ne12, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb12, + constant int64_t & ne0, + constant int64_t & ne1, + uint3 tgpig[[threadgroup_position_in_grid]], + uint tiisg[[thread_index_in_simdgroup]]) { + + const int nrows = ne11; + const int64_t r0 = tgpig.x; + const int64_t im = tgpig.z; + + device const half4 * x4 = (device const half4 *) (src0 + r0*nb01 + im/(ne12/ne02)*nb02); + + for (int r1 = 0; r1 < nrows; ++r1) { + device const float4 * y4 = (device const float4 *) (src1 + r1*nb11 + im*nb12); + + float sumf = 0; + for (int i = tiisg; i < ne00/4; i += 32) { + for (int k = 0; k < 4; ++k) sumf += (float) x4[i][k] * y4[i][k]; + } + + float all_sum = simd_sum(sumf); + if (tiisg == 0) { + dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum; + } + } +} + kernel void kernel_alibi_f32( device const float * src0, device float * dst, @@ -658,30 +853,61 @@ kernel void kernel_alibi_f32( } } +typedef void (rope_t)( + device const void * src0, + device const int32_t * src1, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant int64_t & ne03, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant uint64_t & nb03, + constant int64_t & ne0, + constant int64_t & ne1, + constant int64_t & ne2, + constant int64_t & ne3, + constant uint64_t & nb0, + constant uint64_t & nb1, + constant uint64_t & nb2, + constant uint64_t & nb3, + constant int & n_past, + constant int & n_dims, + constant int & mode, + constant float & freq_base, + constant float & freq_scale, + uint tiitg[[thread_index_in_threadgroup]], + uint3 tptg[[threads_per_threadgroup]], + uint3 tgpig[[threadgroup_position_in_grid]]); + +template kernel void kernel_rope( - device const void * src0, - device float * dst, - constant int64_t & ne00, - constant int64_t & ne01, - constant int64_t & ne02, - constant int64_t & ne03, - constant uint64_t & nb00, - constant uint64_t & nb01, - constant uint64_t & nb02, - constant uint64_t & nb03, - constant int64_t & ne0, - constant int64_t & ne1, - constant int64_t & ne2, - constant int64_t & ne3, - constant uint64_t & nb0, - constant uint64_t & nb1, - constant uint64_t & nb2, - constant uint64_t & nb3, - constant int & n_past, - constant int & n_dims, - constant int & mode, - constant float & freq_base, - constant float & freq_scale, + device const void * src0, + device const int32_t * src1, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant int64_t & ne03, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant uint64_t & nb03, + constant int64_t & ne0, + constant int64_t & ne1, + constant int64_t & ne2, + constant int64_t & ne3, + constant uint64_t & nb0, + constant uint64_t & nb1, + constant uint64_t & nb2, + constant uint64_t & nb3, + constant int & n_past, + constant int & n_dims, + constant int & mode, + constant float & freq_base, + constant float & freq_scale, uint tiitg[[thread_index_in_threadgroup]], uint3 tptg[[threads_per_threadgroup]], uint3 tgpig[[threadgroup_position_in_grid]]) { @@ -691,7 +917,9 @@ kernel void kernel_rope( const bool is_neox = mode & 2; - const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2); + device const int32_t * pos = src1; + + const int64_t p = pos[i2]; const float theta_0 = freq_scale * (float)p; const float inv_ndims = -1.f/n_dims; @@ -703,11 +931,11 @@ kernel void kernel_rope( const float cos_theta = cos(theta); const float sin_theta = sin(theta); - device const float * const src = (device float *)((device char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00); - device float * dst_data = (device float *)((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); + device const T * const src = (device T *)((device char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00); + device T * dst_data = (device T *)((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); - const float x0 = src[0]; - const float x1 = src[1]; + const T x0 = src[0]; + const T x1 = src[1]; dst_data[0] = x0*cos_theta - x1*sin_theta; dst_data[1] = x0*sin_theta + x1*cos_theta; @@ -722,8 +950,8 @@ kernel void kernel_rope( const int64_t i0 = ib*n_dims + ic/2; - device const float * const src = (device float *)((device char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00); - device float * dst_data = (device float *)((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); + device const T * const src = (device T *)((device char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00); + device T * dst_data = (device T *)((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); const float x0 = src[0]; const float x1 = src[n_dims/2]; @@ -735,6 +963,9 @@ kernel void kernel_rope( } } +template [[host_name("kernel_rope_f32")]] kernel rope_t kernel_rope; +template [[host_name("kernel_rope_f16")]] kernel rope_t kernel_rope; + kernel void kernel_cpy_f16_f16( device const half * src0, device half * dst, @@ -1125,8 +1356,8 @@ kernel void kernel_mul_mat_q3_K_f32( float yl[32]; - const uint16_t kmask1 = 0x3030; - const uint16_t kmask2 = 0x0f0f; + //const uint16_t kmask1 = 0x3030; + //const uint16_t kmask2 = 0x0f0f; const int tid = tiisg/4; const int ix = tiisg%4; @@ -1246,7 +1477,6 @@ kernel void kernel_mul_mat_q3_K_f32( dst[r1*ne0 + r2*ne0*ne1 + first_row + row] = sumf1[row]; } } - } #else kernel void kernel_mul_mat_q3_K_f32( @@ -1325,13 +1555,13 @@ kernel void kernel_mul_mat_q4_K_f32( device const float * src1, device float * dst, constant int64_t & ne00, - constant int64_t & ne01[[buffer(4)]], - constant int64_t & ne02[[buffer(5)]], - constant int64_t & ne10[[buffer(9)]], - constant int64_t & ne12[[buffer(11)]], - constant int64_t & ne0[[buffer(15)]], - constant int64_t & ne1[[buffer(16)]], - constant uint & gqa[[buffer(17)]], + constant int64_t & ne01 [[buffer(4)]], + constant int64_t & ne02 [[buffer(5)]], + constant int64_t & ne10 [[buffer(9)]], + constant int64_t & ne12 [[buffer(11)]], + constant int64_t & ne0 [[buffer(15)]], + constant int64_t & ne1 [[buffer(16)]], + constant uint & gqa [[buffer(17)]], uint3 tgpig[[threadgroup_position_in_grid]], uint tiisg[[thread_index_in_simdgroup]], uint sgitg[[simdgroup_index_in_threadgroup]]) { @@ -1790,6 +2020,15 @@ kernel void kernel_mul_mat_q6_K_f32( //============================= templates and their specializations ============================= +// NOTE: this is not dequantizing - we are simply fitting the template +template +void dequantize_f32(device const float4x4 * src, short il, thread type4x4 & reg) { + float4x4 temp = *(((device float4x4 *)src)); + for (int i = 0; i < 16; i++){ + reg[i/4][i%4] = temp[i/4][i%4]; + } +} + template void dequantize_f16(device const half4x4 * src, short il, thread type4x4 & reg) { half4x4 temp = *(((device half4x4 *)src)); @@ -1801,28 +2040,30 @@ void dequantize_f16(device const half4x4 * src, short il, thread type4x4 & reg) template void dequantize_q4_0(device const block_q4_0 *xb, short il, thread type4x4 & reg) { device const uint16_t * qs = ((device const uint16_t *)xb + 1); - const half d = il ? (xb->d / 16.h) : xb->d; - const half m = il ? ( -8.h * 16.h) : -8.h; + const float d1 = il ? (xb->d / 16.h) : xb->d; + const float d2 = d1 / 256.f; + const float md = -8.h * xb->d; const ushort mask0 = il ? 0x00F0 : 0x000F; - const ushort mask1 = il ? 0xF000 : 0x0F00; + const ushort mask1 = mask0 << 8; for (int i=0;i<8;i++) { - reg[i/2][2*(i%2)] = (((qs[i] & mask0) ) + m) * d; - reg[i/2][2*(i%2)+1] = (((qs[i] & mask1) >> 8) + m) * d; + reg[i/2][2*(i%2)+0] = d1 * (qs[i] & mask0) + md; + reg[i/2][2*(i%2)+1] = d2 * (qs[i] & mask1) + md; } } template void dequantize_q4_1(device const block_q4_1 *xb, short il, thread type4x4 & reg) { device const uint16_t * qs = ((device const uint16_t *)xb + 2); - const half d = il ? (xb->d / 16.h) : xb->d; - const half m = xb->m; + const float d1 = il ? (xb->d / 16.h) : xb->d; + const float d2 = d1 / 256.f; + const float m = xb->m; const ushort mask0 = il ? 0x00F0 : 0x000F; - const ushort mask1 = il ? 0xF000 : 0x0F00; + const ushort mask1 = mask0 << 8; for (int i=0;i<8;i++) { - reg[i/2][2*(i%2)] = (((qs[i] & mask0) ) * d) + m; - reg[i/2][2*(i%2)+1] = (((qs[i] & mask1) >> 8) * d) + m; + reg[i/2][2*(i%2)+0] = ((qs[i] & mask0) * d1) + m; + reg[i/2][2*(i%2)+1] = ((qs[i] & mask1) * d2) + m; } } @@ -1858,7 +2099,7 @@ void dequantize_q2_K(device const block_q2_K *xb, short il, thread type4x4 & reg template void dequantize_q3_K(device const block_q3_K *xb, short il, thread type4x4 & reg) { - const float d_all = (float)(xb->d); + const half d_all = xb->d; device const uint8_t * q = (device const uint8_t *)xb->qs; device const uint8_t * h = (device const uint8_t *)xb->hmask; device const int8_t * scales = (device const int8_t *)xb->scales; @@ -1871,16 +2112,18 @@ void dequantize_q3_K(device const block_q3_K *xb, short il, thread type4x4 & reg ((il/4)>0 ? 12 : 3); uint16_t kmask2 = il/8 ? 0xF0 : 0x0F; uint16_t scale_2 = scales[il%8], scale_1 = scales[8 + il%4]; - int16_t dl_int = (il/4)&1 ? (scale_2&kmask2) | ((scale_1&kmask1) << 2) : \ - (scale_2&kmask2) | ((scale_1&kmask1) << 4); - float dl = il<8 ? d_all * (dl_int - 32.f) : d_all * (dl_int / 16.f - 32.f); + int16_t dl_int = (il/4)&1 ? (scale_2&kmask2) | ((scale_1&kmask1) << 2) + : (scale_2&kmask2) | ((scale_1&kmask1) << 4); + half dl = il<8 ? d_all * (dl_int - 32.h) : d_all * (dl_int / 16.h - 32.h); + const half ml = 4.h * dl; - il = (il/2)%4; - float coef = il>1 ? (il>2 ? 1/64.h : 1/16.h) : (il>0 ? 1/4.h : 1.h); - uint8_t mask = il>1 ? (il>2 ? 192 : 48) : (il>0 ? 12 : 3); + il = (il/2) & 3; + const half coef = il>1 ? (il>2 ? 1/64.h : 1/16.h) : (il>0 ? 1/4.h : 1.h); + const uint8_t mask = il>1 ? (il>2 ? 192 : 48) : (il>0 ? 12 : 3); + dl *= coef; for (int i = 0; i < 16; ++i) { - reg[i/4][i%4] = coef * dl * ((q[i] & mask) - ((h[i] & m) ? 0 : 4.f/coef)); + reg[i/4][i%4] = dl * (q[i] & mask) - (h[i] & m ? 0 : ml); } #else float kcoef = il&1 ? 1.f/16.f : 1.f; @@ -1895,26 +2138,31 @@ void dequantize_q3_K(device const block_q3_K *xb, short il, thread type4x4 & reg #endif } +static inline uchar2 get_scale_min_k4_just2(int j, int k, device const uchar * q) { + return j < 4 ? uchar2{uchar(q[j+0+k] & 63), uchar(q[j+4+k] & 63)} + : uchar2{uchar((q[j+4+k] & 0xF) | ((q[j-4+k] & 0xc0) >> 2)), uchar((q[j+4+k] >> 4) | ((q[j-0+k] & 0xc0) >> 2))}; +} + template void dequantize_q4_K(device const block_q4_K *xb, short il, thread type4x4 & reg) { - device const uint8_t * q = xb->qs; + device const uchar * q = xb->qs; #if QK_K == 256 - const float d = (float)(xb->d); - const float min = (float)(xb->dmin); short is = (il/4) * 2; q = q + (il/4) * 32 + 16 * (il&1); - il = il%4; - const uchar4 sc = get_scale_min_k4(is, xb->scales); - const float dl = il<2 ? d * sc[0] : d * sc[2]/16.h; - const float ml = il<2 ? min * sc[1] : min * sc[3]; + il = il & 3; + const uchar2 sc = get_scale_min_k4_just2(is, il/2, xb->scales); + const half d = il < 2 ? xb->d : xb->d / 16.h; + const half min = xb->dmin; + const half dl = d * sc[0]; + const half ml = min * sc[1]; #else q = q + 16 * (il&1); device const uint8_t * s = xb->scales; device const half2 * dh = (device const half2 *)xb->d; const float2 d = (float2)dh[0]; const float dl = il<2 ? d[0] * (s[0]&0xF) : d[0] * (s[1]&0xF)/16.h; - const float ml = il<2 ? d[1] * (s[0]>>4) : d[1 ]* (s[1]>>4); + const float ml = il<2 ? d[1] * (s[0]>>4) : d[1] * (s[1]>>4); #endif const ushort mask = il<2 ? 0x0F : 0xF0; for (int i = 0; i < 16; ++i) { @@ -1928,19 +2176,19 @@ void dequantize_q5_K(device const block_q5_K *xb, short il, thread type4x4 & reg device const uint8_t * qh = xb->qh; #if QK_K == 256 - const float d = (float)(xb->d); - const float min = (float)(xb->dmin); short is = (il/4) * 2; q = q + 32 * (il/4) + 16 * (il&1); qh = qh + 16 * (il&1); uint8_t ul = 1 << (il/2); - il = il%4; - const uchar4 sc = get_scale_min_k4(is, xb->scales); - const float dl = il<2 ? d * sc[0] : d * sc[2]/16.h; - const float ml = il<2 ? min * sc[1] : min * sc[3]; + il = il & 3; + const uchar2 sc = get_scale_min_k4_just2(is, il/2, xb->scales); + const half d = il < 2 ? xb->d : xb->d / 16.h; + const half min = xb->dmin; + const half dl = d * sc[0]; + const half ml = min * sc[1]; - const ushort mask = il<2 ? 0x0F : 0xF0; - const float qh_val = il<2 ? 16.f : 256.f; + const ushort mask = il<2 ? 0x0F : 0xF0; + const half qh_val = il<2 ? 16.h : 256.h; for (int i = 0; i < 16; ++i) { reg[i/4][i%4] = dl * ((q[i] & mask) + (qh[i] & ul ? qh_val : 0)) - ml; } @@ -1959,7 +2207,7 @@ void dequantize_q5_K(device const block_q5_K *xb, short il, thread type4x4 & reg template void dequantize_q6_K(device const block_q6_K *xb, short il, thread type4x4 & reg) { - const float d_all = (float)(xb->d); + const half d_all = xb->d; device const uint8_t * ql = (device const uint8_t *)xb->ql; device const uint8_t * qh = (device const uint8_t *)xb->qh; device const int8_t * scales = (device const int8_t *)xb->scales; @@ -1967,19 +2215,21 @@ void dequantize_q6_K(device const block_q6_K *xb, short il, thread type4x4 & reg #if QK_K == 256 ql = ql + 64*(il/8) + 32*((il/2)&1) + 16*(il&1); qh = qh + 32*(il/8) + 16*(il&1); - float sc = scales[(il%2) + 2 * ((il/2))]; - il = (il/2)%4; + half sc = scales[(il%2) + 2 * ((il/2))]; + il = (il/2) & 3; #else ql = ql + 16 * (il&1); - float sc = scales[il]; + half sc = scales[il]; #endif + const uint16_t kmask1 = il>1 ? (il>2 ? 192 : 48) : (il>0 ? 12 : 3); + const uint16_t kmask2 = il>1 ? 0xF0 : 0x0F; + const half coef = il>1 ? 1.f/16.h : 1.h; + const half ml = d_all * sc * 32.h; + const half dl = d_all * sc * coef; for (int i = 0; i < 16; ++i) { - uint16_t kmask1 = il>1 ? (il>2 ? 192 : 48) : (il>0 ? 12 : 3); - uint16_t kmask2 = il>1 ? 0xF0 : 0x0F; - const float coef = il>1 ? 1.f/16.f : 1.f; - float q = il&1 ? ((ql[i]&kmask2)|((qh[i]&kmask1)<<2)) - 32.f/coef : \ - ((ql[i]&kmask2)|((qh[i]&kmask1)<<4)) - 32.f/coef; - reg[i/4][i%4] = d_all * sc * q * coef; + const half q = il&1 ? ((ql[i] & kmask2) | ((qh[i] & kmask1) << 2)) + : ((ql[i] & kmask2) | ((qh[i] & kmask1) << 4)); + reg[i/4][i%4] = dl * q - ml; } } @@ -2019,22 +2269,25 @@ kernel void kernel_get_rows( // each block_q contains 16*nl weights template kernel void kernel_mul_mm(device const uchar * src0, - device const float * src1, - device float * dst, - constant int64_t & ne00, - constant int64_t & ne02, - constant int64_t & nb01, - constant int64_t & nb02, - constant int64_t & ne12, - constant int64_t & ne0, - constant int64_t & ne1, - constant uint & gqa, - threadgroup uchar * shared_memory [[threadgroup(0)]], - uint3 tgpig[[threadgroup_position_in_grid]], - uint tiitg[[thread_index_in_threadgroup]], - uint sgitg[[simdgroup_index_in_threadgroup]]) { - - threadgroup half * sa = ((threadgroup half *)shared_memory); + device const uchar * src1, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne02, + constant int64_t & nb01, + constant int64_t & nb02, + constant int64_t & ne12, + constant int64_t & nb10, + constant int64_t & nb11, + constant int64_t & nb12, + constant int64_t & ne0, + constant int64_t & ne1, + constant uint & gqa, + threadgroup uchar * shared_memory [[threadgroup(0)]], + uint3 tgpig[[threadgroup_position_in_grid]], + uint tiitg[[thread_index_in_threadgroup]], + uint sgitg[[simdgroup_index_in_threadgroup]]) { + + threadgroup half * sa = (threadgroup half *)(shared_memory); threadgroup float * sb = (threadgroup float *)(shared_memory + 4096); const uint r0 = tgpig.y; @@ -2047,7 +2300,7 @@ kernel void kernel_mul_mm(device const uchar * src0, short thread_row = ((short)tiitg/THREAD_PER_ROW) < n_rows ? ((short)tiitg/THREAD_PER_ROW) : n_rows - 1; short thread_col = ((short)tiitg/THREAD_PER_COL) < n_cols ? ((short)tiitg/THREAD_PER_COL) : n_cols - 1; - simdgroup_half8x8 ma[4]; + simdgroup_half8x8 ma[4]; simdgroup_float8x8 mb[2]; simdgroup_float8x8 c_res[8]; for (int i = 0; i < 8; i++){ @@ -2055,10 +2308,15 @@ kernel void kernel_mul_mm(device const uchar * src0, } short il = (tiitg % THREAD_PER_ROW); - uint offset0 = im/gqa*nb02; ushort offset1 = il/nl; - device const block_q * x = (device const block_q *)(src0 + (r0 * BLOCK_SIZE_M + thread_row) * nb01 + offset0) + offset1; - device const float * y = src1 + (r1 * BLOCK_SIZE_N + thread_col) * ne00 \ - + BLOCK_SIZE_K / THREAD_PER_COL * (tiitg % THREAD_PER_COL) + im * ne00 * ne1; + + uint offset0 = im/gqa*nb02; + ushort offset1 = il/nl; + + device const block_q * x = (device const block_q *)(src0 + (r0 * BLOCK_SIZE_M + thread_row) * nb01 + offset0) + offset1; + device const float * y = (device const float *)(src1 + + nb12 * im + + nb11 * (r1 * BLOCK_SIZE_N + thread_col) + + nb10 * (BLOCK_SIZE_K / THREAD_PER_COL * (tiitg % THREAD_PER_COL))); for (int loop_k = 0; loop_k < ne00; loop_k += BLOCK_SIZE_K) { //load data and store to threadgroup memory @@ -2138,6 +2396,7 @@ kernel void kernel_mul_mm(device const uchar * src0, typedef void (get_rows_t)(device const void *, device const int *, device float *, constant int64_t &, \ constant uint64_t &, constant uint64_t &, uint, uint, uint); +template [[host_name("kernel_get_rows_f32")]] kernel get_rows_t kernel_get_rows; template [[host_name("kernel_get_rows_f16")]] kernel get_rows_t kernel_get_rows; template [[host_name("kernel_get_rows_q4_0")]] kernel get_rows_t kernel_get_rows; template [[host_name("kernel_get_rows_q4_1")]] kernel get_rows_t kernel_get_rows; @@ -2148,14 +2407,28 @@ template [[host_name("kernel_get_rows_q4_K")]] kernel get_rows_t kernel_get_rows template [[host_name("kernel_get_rows_q5_K")]] kernel get_rows_t kernel_get_rows; template [[host_name("kernel_get_rows_q6_K")]] kernel get_rows_t kernel_get_rows; -typedef void (mat_mm_t)(device const uchar *, device const float *, device float *, constant int64_t &,\ - constant int64_t &, constant int64_t &, constant int64_t &, constant int64_t &, \ - constant int64_t &, constant int64_t &, constant uint &, threadgroup uchar *, uint3, uint, uint); - -template [[host_name("kernel_mul_mm_f16_f32")]] kernel mat_mm_t kernel_mul_mm; -template [[host_name("kernel_mul_mm_q4_0_f32")]] kernel mat_mm_t kernel_mul_mm; -template [[host_name("kernel_mul_mm_q4_1_f32")]] kernel mat_mm_t kernel_mul_mm; -template [[host_name("kernel_mul_mm_q8_0_f32")]] kernel mat_mm_t kernel_mul_mm; +typedef void (mat_mm_t)( + device const uchar * src0, + device const uchar * src1, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne02, + constant int64_t & nb01, + constant int64_t & nb02, + constant int64_t & ne12, + constant int64_t & nb10, + constant int64_t & nb11, + constant int64_t & nb12, + constant int64_t & ne0, + constant int64_t & ne1, + constant uint & gqa, + threadgroup uchar *, uint3, uint, uint); + +template [[host_name("kernel_mul_mm_f32_f32")]] kernel mat_mm_t kernel_mul_mm; +template [[host_name("kernel_mul_mm_f16_f32")]] kernel mat_mm_t kernel_mul_mm; +template [[host_name("kernel_mul_mm_q4_0_f32")]] kernel mat_mm_t kernel_mul_mm; +template [[host_name("kernel_mul_mm_q4_1_f32")]] kernel mat_mm_t kernel_mul_mm; +template [[host_name("kernel_mul_mm_q8_0_f32")]] kernel mat_mm_t kernel_mul_mm; template [[host_name("kernel_mul_mm_q2_K_f32")]] kernel mat_mm_t kernel_mul_mm; template [[host_name("kernel_mul_mm_q3_K_f32")]] kernel mat_mm_t kernel_mul_mm; template [[host_name("kernel_mul_mm_q4_K_f32")]] kernel mat_mm_t kernel_mul_mm; diff --git a/ggml-opencl.cpp b/ggml-opencl.cpp index 777048d011157..c7d9150fec2f0 100644 --- a/ggml-opencl.cpp +++ b/ggml-opencl.cpp @@ -847,7 +847,7 @@ std::array mul_str_values = { "mul_f32", "float" }; -std::string& replace(std::string& s, const std::string& from, const std::string& to) { +static std::string& replace(std::string& s, const std::string& from, const std::string& to) { size_t pos = 0; while ((pos = s.find(from, pos)) != std::string::npos) { s.replace(pos, from.length(), to); @@ -856,7 +856,7 @@ std::string& replace(std::string& s, const std::string& from, const std::string& return s; } -std::string generate_kernels() { +static std::string generate_kernels() { std::stringstream src; src << program_source << '\n'; src << k_quants_source << '\n'; @@ -1788,7 +1788,7 @@ bool ggml_cl_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tens return false; } -bool ggml_cl_mul_mat_use_f16(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * /* dst */) { +static bool ggml_cl_mul_mat_use_f16(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * /* dst */) { // If device doesn't support FP16 if (!fp16_support) { return false; diff --git a/ggml.c b/ggml.c index 3f72379c3553e..820fe2e74b0ae 100644 --- a/ggml.c +++ b/ggml.c @@ -89,7 +89,9 @@ static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(vo static int pthread_join(pthread_t thread, void * unused) { (void) unused; - return (int) WaitForSingleObject(thread, INFINITE); + int ret = (int) WaitForSingleObject(thread, INFINITE); + CloseHandle(thread); + return ret; } static int sched_yield (void) { @@ -134,6 +136,7 @@ typedef void * thread_ret_t; #define GGML_SOFT_MAX_UNROLL 4 #define GGML_VEC_DOT_UNROLL 2 +#define GGML_VEC_MAD_UNROLL 32 // // logging @@ -242,18 +245,18 @@ inline static void * ggml_aligned_malloc(size_t size) { // #define GGML_TENSOR_UNARY_OP_LOCALS \ - GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne); \ - GGML_TENSOR_LOCALS(size_t, nb0, src0, nb); \ - GGML_TENSOR_LOCALS(int64_t, ne, dst, ne); \ - GGML_TENSOR_LOCALS(size_t, nb, dst, nb); + GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \ + GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \ + GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \ + GGML_TENSOR_LOCALS(size_t, nb, dst, nb) #define GGML_TENSOR_BINARY_OP_LOCALS \ - GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne); \ - GGML_TENSOR_LOCALS(size_t, nb0, src0, nb); \ - GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne); \ - GGML_TENSOR_LOCALS(size_t, nb1, src1, nb); \ - GGML_TENSOR_LOCALS(int64_t, ne, dst, ne); \ - GGML_TENSOR_LOCALS(size_t, nb, dst, nb); + GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \ + GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \ + GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) \ + GGML_TENSOR_LOCALS(size_t, nb1, src1, nb) \ + GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \ + GGML_TENSOR_LOCALS(size_t, nb, dst, nb) #if defined(GGML_USE_ACCELERATE) #include @@ -283,7 +286,7 @@ typedef double ggml_float; // 16-bit float // on Arm, we use __fp16 // on x86, we use uint16_t -#ifdef __ARM_NEON +#if defined(__ARM_NEON) && !defined(_MSC_VER) // if YCM cannot find , make a symbolic link to it, for example: // @@ -1863,7 +1866,7 @@ ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) { #define GGML_F16x8_ADD vaddq_f16 #define GGML_F16x8_MUL vmulq_f16 #define GGML_F16x8_REDUCE(res, x) \ - { \ + do { \ int offset = GGML_F16_ARR >> 1; \ for (int i = 0; i < offset; ++i) { \ x[i] = vaddq_f16(x[i], x[offset+i]); \ @@ -1879,7 +1882,7 @@ ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) { const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \ const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \ res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \ - } + } while (0) #define GGML_F16_VEC GGML_F16x8 #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO @@ -1940,7 +1943,7 @@ ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) { #define GGML_F32x8_ADD _mm256_add_ps #define GGML_F32x8_MUL _mm256_mul_ps #define GGML_F32x8_REDUCE(res, x) \ -{ \ +do { \ int offset = GGML_F32_ARR >> 1; \ for (int i = 0; i < offset; ++i) { \ x[i] = _mm256_add_ps(x[i], x[offset+i]); \ @@ -1957,7 +1960,7 @@ ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) { _mm256_extractf128_ps(x[0], 1)); \ const __m128 t1 = _mm_hadd_ps(t0, t0); \ res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \ -} +} while (0) // TODO: is this optimal ? #define GGML_F32_VEC GGML_F32x8 @@ -3707,6 +3710,58 @@ inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float #endif } +// xs and vs are byte strides of x and v +inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) { + + const float * restrict x[GGML_VEC_MAD_UNROLL]; + const float * restrict v[GGML_VEC_MAD_UNROLL]; + + for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) { + x[i] = (const float *) ((const char *) xv + i*xs); + v[i] = (const float *) ((const char *) vv + i*vs); + } + +#if defined(GGML_SIMD) + const int np = (n & ~(GGML_F32_STEP - 1)); + + GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL]; + + for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) { + vx[k] = GGML_F32_VEC_SET1(v[k][0]); + } + + GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR]; + GGML_F32_VEC ay[GGML_F32_ARR]; + + for (int i = 0; i < np; i += GGML_F32_STEP) { + for (int j = 0; j < GGML_F32_ARR; j++) { + ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR); + + for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) { + ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR); + ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]); + } + + GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]); + } + } + + // leftovers + for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) { + for (int i = np; i < n; ++i) { + y[i] += x[k][i]*v[k][0]; + } + } +#else + // scalar + for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) { + for (int i = 0; i < n; ++i) { + y[i] += x[k][i]*v[k][0]; + } + } +#endif +} + //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; } inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { #if defined(GGML_USE_ACCELERATE) @@ -4303,10 +4358,21 @@ int64_t ggml_nrows(const struct ggml_tensor * tensor) { } size_t ggml_nbytes(const struct ggml_tensor * tensor) { - size_t nbytes = tensor->ne[0]*tensor->nb[0]/ggml_blck_size(tensor->type); - for (int i = 1; i < GGML_MAX_DIMS; ++i) { - nbytes += (tensor->ne[i] - 1)*tensor->nb[i]; + size_t nbytes; + size_t blck_size = ggml_blck_size(tensor->type); + if (blck_size == 1) { + nbytes = ggml_type_size(tensor->type); + for (int i = 0; i < GGML_MAX_DIMS; ++i) { + nbytes += (tensor->ne[i] - 1)*tensor->nb[i]; + } } + else { + nbytes = tensor->ne[0]*tensor->nb[0]/blck_size; + for (int i = 1; i < GGML_MAX_DIMS; ++i) { + nbytes += (tensor->ne[i] - 1)*tensor->nb[i]; + } + } + return nbytes; } @@ -4381,10 +4447,9 @@ static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) { static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); - return - (t0->ne[1] == t1->ne[1]) && - (t0->ne[2] == t1->ne[2]) && - (t0->ne[3] == t1->ne[3]); + return (t0->ne[1] == t1->ne[1]) && + (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable + (t1->ne[3]%t0->ne[3] == 0); } enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) { @@ -5054,43 +5119,78 @@ struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) { return tensor; } +void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) { + const int64_t ne2 = tensor->ne[2]; + const int64_t ne1 = tensor->ne[1]; + const int64_t ne0 = tensor->ne[0]; + + const int64_t i3_ = (i/(ne2*ne1*ne0)); + const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0); + const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0; + const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0); + + if (i0) { + * i0 = i0_; + } + if (i1) { + * i1 = i1_; + } + if (i2) { + * i2 = i2_; + } + if (i3) { + * i3 = i3_; + } +} + int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) { + if (!ggml_is_contiguous(tensor)) { + int64_t id[4] = { 0, 0, 0, 0 }; + ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]); + return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]); + } switch (tensor->type) { case GGML_TYPE_I8: { GGML_ASSERT(tensor->nb[0] == sizeof(int8_t)); return ((int8_t *)(tensor->data))[i]; - } break; + } case GGML_TYPE_I16: { GGML_ASSERT(tensor->nb[0] == sizeof(int16_t)); return ((int16_t *)(tensor->data))[i]; - } break; + } case GGML_TYPE_I32: { GGML_ASSERT(tensor->nb[0] == sizeof(int32_t)); return ((int32_t *)(tensor->data))[i]; - } break; + } case GGML_TYPE_F16: { GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t)); return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]); - } break; + } case GGML_TYPE_F32: { GGML_ASSERT(tensor->nb[0] == sizeof(float)); return ((float *)(tensor->data))[i]; - } break; + } default: { GGML_ASSERT(false); - } break; + } } return 0.0f; } void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) { + if (!ggml_is_contiguous(tensor)) { + int64_t id[4] = { 0, 0, 0, 0 }; + ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]); + ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value); + return; + } switch (tensor->type) { case GGML_TYPE_I8: { @@ -5124,43 +5224,104 @@ void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) { } } +int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) { + void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3]; + switch (tensor->type) { + case GGML_TYPE_I8: + return ((int8_t *) data)[0]; + case GGML_TYPE_I16: + return ((int16_t *) data)[0]; + case GGML_TYPE_I32: + return ((int32_t *) data)[0]; + case GGML_TYPE_F16: + return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]); + case GGML_TYPE_F32: + return ((float *) data)[0]; + default: + GGML_ASSERT(false); + } + + return 0.0f; +} + +void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) { + void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3]; + switch (tensor->type) { + case GGML_TYPE_I8: + { + ((int8_t *)(data))[0] = value; + } break; + case GGML_TYPE_I16: + { + ((int16_t *)(data))[0] = value; + } break; + case GGML_TYPE_I32: + { + ((int32_t *)(data))[0] = value; + } break; + case GGML_TYPE_F16: + { + ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value); + } break; + case GGML_TYPE_F32: + { + ((float *)(data))[0] = value; + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) { + if (!ggml_is_contiguous(tensor)) { + int64_t id[4] = { 0, 0, 0, 0 }; + ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]); + return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]); + } switch (tensor->type) { case GGML_TYPE_I8: { GGML_ASSERT(tensor->nb[0] == sizeof(int8_t)); return ((int8_t *)(tensor->data))[i]; - } break; + } case GGML_TYPE_I16: { GGML_ASSERT(tensor->nb[0] == sizeof(int16_t)); return ((int16_t *)(tensor->data))[i]; - } break; + } case GGML_TYPE_I32: { GGML_ASSERT(tensor->nb[0] == sizeof(int32_t)); return ((int32_t *)(tensor->data))[i]; - } break; + } case GGML_TYPE_F16: { GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t)); return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]); - } break; + } case GGML_TYPE_F32: { GGML_ASSERT(tensor->nb[0] == sizeof(float)); return ((float *)(tensor->data))[i]; - } break; + } default: { GGML_ASSERT(false); - } break; + } } return 0.0f; } void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) { + if (!ggml_is_contiguous(tensor)) { + int64_t id[4] = { 0, 0, 0, 0 }; + ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]); + ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value); + return; + } switch (tensor->type) { case GGML_TYPE_I8: { @@ -5194,6 +5355,56 @@ void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) { } } +float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) { + void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3]; + switch (tensor->type) { + case GGML_TYPE_I8: + return ((int8_t *) data)[0]; + case GGML_TYPE_I16: + return ((int16_t *) data)[0]; + case GGML_TYPE_I32: + return ((int32_t *) data)[0]; + case GGML_TYPE_F16: + return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]); + case GGML_TYPE_F32: + return ((float *) data)[0]; + default: + GGML_ASSERT(false); + } + + return 0.0f; +} + +void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) { + void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3]; + switch (tensor->type) { + case GGML_TYPE_I8: + { + ((int8_t *)(data))[0] = value; + } break; + case GGML_TYPE_I16: + { + ((int16_t *)(data))[0] = value; + } break; + case GGML_TYPE_I32: + { + ((int32_t *)(data))[0] = value; + } break; + case GGML_TYPE_F16: + { + ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value); + } break; + case GGML_TYPE_F32: + { + ((float *)(data))[0] = value; + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + void * ggml_get_data(const struct ggml_tensor * tensor) { return tensor->data; } @@ -5336,6 +5547,44 @@ struct ggml_tensor * ggml_add_inplace( return ggml_add_impl(ctx, a, b, true); } +// ggml_add_cast + +static struct ggml_tensor * ggml_add_cast_impl( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + enum ggml_type type) { + // TODO: support less-strict constraint + // GGML_ASSERT(ggml_can_repeat(b, a)); + GGML_ASSERT(ggml_can_repeat_rows(b, a)); + GGML_ASSERT(ggml_is_quantized(a->type)); // currently only supported for quantized input + + bool is_node = false; + + if (a->grad || b->grad) { + // TODO: support backward pass for broadcasting + GGML_ASSERT(ggml_are_same_shape(a, b)); + is_node = true; + } + + struct ggml_tensor * result = ggml_new_tensor(ctx, type, a->n_dims, a->ne); + + result->op = GGML_OP_ADD; + result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, a->ne) : NULL; + result->src[0] = a; + result->src[1] = b; + + return result; +} + +struct ggml_tensor * ggml_add_cast( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + enum ggml_type type) { + return ggml_add_cast_impl(ctx, a, b, type); +} + // ggml_add1 static struct ggml_tensor * ggml_add1_impl( @@ -5772,7 +6021,6 @@ struct ggml_tensor * ggml_repeat( result->op = GGML_OP_REPEAT; result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; result->src[0] = a; - result->src[1] = b; return result; } @@ -5800,7 +6048,6 @@ struct ggml_tensor * ggml_repeat_back( result->op = GGML_OP_REPEAT_BACK; result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; result->src[0] = a; - result->src[1] = b; return result; } @@ -6175,8 +6422,9 @@ struct ggml_tensor * ggml_out_prod( is_node = true; } - const int64_t ne[4] = { a->ne[0], b->ne[0], a->ne[2], b->ne[3] }; - struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne); + // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3] + const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] }; + struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MAX(a->n_dims, b->n_dims), ne); result->op = GGML_OP_OUT_PROD; result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; @@ -6395,6 +6643,54 @@ struct ggml_tensor * ggml_cont_inplace( return ggml_cont_impl(ctx, a, true); } + +// make contiguous, with new shape +GGML_API struct ggml_tensor * ggml_cont_1d( + struct ggml_context * ctx, + struct ggml_tensor * a, + int64_t ne0) { + return ggml_cont_4d(ctx, a, ne0, 1, 1, 1); +} + +GGML_API struct ggml_tensor * ggml_cont_2d( + struct ggml_context * ctx, + struct ggml_tensor * a, + int64_t ne0, + int64_t ne1) { + return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1); +} + +GGML_API struct ggml_tensor * ggml_cont_3d( + struct ggml_context * ctx, + struct ggml_tensor * a, + int64_t ne0, + int64_t ne1, + int64_t ne2) { + return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1); +} + +struct ggml_tensor * ggml_cont_4d( + struct ggml_context * ctx, + struct ggml_tensor * a, + int64_t ne0, + int64_t ne1, + int64_t ne2, + int64_t ne3) { + GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3)); + + bool is_node = false; + + struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3); + ggml_format_name(result, "%s (cont)", a->name); + + result->op = GGML_OP_CONT; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src[0] = a; + + return result; +} + + // ggml_reshape struct ggml_tensor * ggml_reshape( @@ -6402,7 +6698,7 @@ struct ggml_tensor * ggml_reshape( struct ggml_tensor * a, struct ggml_tensor * b) { GGML_ASSERT(ggml_is_contiguous(a)); - GGML_ASSERT(ggml_is_contiguous(b)); + // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b)); bool is_node = false; @@ -6775,7 +7071,6 @@ struct ggml_tensor * ggml_get_rows_back( result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; result->src[0] = a; result->src[1] = b; - result->src[2] = c; return result; } @@ -6957,7 +7252,7 @@ struct ggml_tensor * ggml_soft_max_back_inplace( static struct ggml_tensor * ggml_rope_impl( struct ggml_context * ctx, struct ggml_tensor * a, - int n_past, + struct ggml_tensor * b, int n_dims, int mode, int n_ctx, @@ -6966,7 +7261,10 @@ static struct ggml_tensor * ggml_rope_impl( float xpos_base, bool xpos_down, bool inplace) { - GGML_ASSERT(n_past >= 0); + GGML_ASSERT(ggml_is_vector(b)); + GGML_ASSERT(b->type == GGML_TYPE_I32); + GGML_ASSERT(a->ne[2] == b->ne[0]); + bool is_node = false; if (a->grad) { @@ -6975,7 +7273,7 @@ static struct ggml_tensor * ggml_rope_impl( struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); - int32_t params[8] = { n_past, n_dims, mode, n_ctx }; + int32_t params[8] = { /*n_past*/ 0, n_dims, mode, n_ctx }; memcpy(params + 4, &freq_base, sizeof(float)); memcpy(params + 5, &freq_scale, sizeof(float)); memcpy(params + 6, &xpos_base, sizeof(float)); @@ -6985,6 +7283,7 @@ static struct ggml_tensor * ggml_rope_impl( result->op = GGML_OP_ROPE; result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; result->src[0] = a; + result->src[1] = b; return result; } @@ -6992,55 +7291,55 @@ static struct ggml_tensor * ggml_rope_impl( struct ggml_tensor * ggml_rope( struct ggml_context * ctx, struct ggml_tensor * a, - int n_past, + struct ggml_tensor * b, int n_dims, int mode, int n_ctx) { - return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, 10000.0f, 1.0f, 0.0f, false, false); + return ggml_rope_impl(ctx, a, b, n_dims, mode, n_ctx, 10000.0f, 1.0f, 0.0f, false, false); } struct ggml_tensor * ggml_rope_inplace( struct ggml_context * ctx, struct ggml_tensor * a, - int n_past, + struct ggml_tensor * b, int n_dims, int mode, int n_ctx) { - return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, 10000.0f, 1.0f, 0.0f, false, true); + return ggml_rope_impl(ctx, a, b, n_dims, mode, n_ctx, 10000.0f, 1.0f, 0.0f, false, true); } struct ggml_tensor * ggml_rope_custom( struct ggml_context * ctx, struct ggml_tensor * a, - int n_past, + struct ggml_tensor * b, int n_dims, int mode, int n_ctx, float freq_base, float freq_scale) { - return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, freq_base, freq_scale, 0.0f, false, false); + return ggml_rope_impl(ctx, a, b, n_dims, mode, n_ctx, freq_base, freq_scale, 0.0f, false, false); } struct ggml_tensor * ggml_rope_custom_inplace( struct ggml_context * ctx, struct ggml_tensor * a, - int n_past, + struct ggml_tensor * b, int n_dims, int mode, int n_ctx, float freq_base, float freq_scale) { - return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, freq_base, freq_scale, 0.0f, false, true); + return ggml_rope_impl(ctx, a, b, n_dims, mode, n_ctx, freq_base, freq_scale, 0.0f, false, true); } struct ggml_tensor * ggml_rope_xpos_inplace( struct ggml_context * ctx, struct ggml_tensor * a, - int n_past, + struct ggml_tensor * b, int n_dims, float base, bool down) { - return ggml_rope_impl(ctx, a, n_past, n_dims, 0, 0, 10000.0f, 1.0f, base, down, true); + return ggml_rope_impl(ctx, a, b, n_dims, 0, 0, 10000.0f, 1.0f, base, down, true); } // ggml_rope_back @@ -7048,7 +7347,7 @@ struct ggml_tensor * ggml_rope_xpos_inplace( struct ggml_tensor * ggml_rope_back( struct ggml_context * ctx, struct ggml_tensor * a, - int n_past, + struct ggml_tensor * b, int n_dims, int mode, int n_ctx, @@ -7056,7 +7355,10 @@ struct ggml_tensor * ggml_rope_back( float freq_scale, float xpos_base, bool xpos_down) { - GGML_ASSERT(n_past >= 0); + GGML_ASSERT(ggml_is_vector(b)); + GGML_ASSERT(b->type == GGML_TYPE_I32); + GGML_ASSERT(a->ne[2] == b->ne[0]); + GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet"); bool is_node = false; @@ -7067,7 +7369,7 @@ struct ggml_tensor * ggml_rope_back( struct ggml_tensor * result = ggml_dup_tensor(ctx, a); - int32_t params[8] = { n_past, n_dims, mode, n_ctx }; + int32_t params[8] = { /*n_past*/ 0, n_dims, mode, n_ctx }; memcpy(params + 4, &freq_base, sizeof(float)); memcpy(params + 5, &freq_scale, sizeof(float)); memcpy(params + 6, &xpos_base, sizeof(float)); @@ -7077,6 +7379,7 @@ struct ggml_tensor * ggml_rope_back( result->op = GGML_OP_ROPE_BACK; result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; result->src[0] = a; + result->src[1] = b; return result; } @@ -7473,27 +7776,30 @@ struct ggml_tensor * ggml_flash_attn_back( // d shape [D,N,ne2,ne3] // q shape [D,N,ne2,ne3] - // k shape [D,M,ne2,ne3] - // v shape [M,D,ne2,ne3] + // k shape [D,M,kvne2,ne3] + // v shape [M,D,kvne2,ne3] - const int64_t D = q->ne[0]; - const int64_t N = q->ne[1]; - const int64_t M = k->ne[1]; - const int64_t ne2 = q->ne[2]; - const int64_t ne3 = q->ne[3]; + const int64_t D = q->ne[0]; + const int64_t N = q->ne[1]; + const int64_t M = k->ne[1]; + const int64_t ne2 = q->ne[2]; + const int64_t ne3 = q->ne[3]; + const int64_t kvne2 = k->ne[2]; GGML_ASSERT(k->ne[0] == D); GGML_ASSERT(v->ne[0] == M); GGML_ASSERT(v->ne[1] == D); GGML_ASSERT(d->ne[0] == D); GGML_ASSERT(d->ne[1] == N); - GGML_ASSERT(k->ne[2] == ne2); + GGML_ASSERT(k->ne[2] == kvne2); GGML_ASSERT(k->ne[3] == ne3); - GGML_ASSERT(v->ne[2] == ne2); + GGML_ASSERT(v->ne[2] == kvne2); GGML_ASSERT(v->ne[3] == ne3); GGML_ASSERT(d->ne[2] == ne2); GGML_ASSERT(d->ne[3] == ne3); + GGML_ASSERT(ne2 % kvne2 == 0); + bool is_node = false; if (q->grad || k->grad || v->grad) { @@ -7503,14 +7809,23 @@ struct ggml_tensor * ggml_flash_attn_back( } // store gradients of q, k and v as continuous tensors concatenated in result. - // q shape[D,N,ne2,ne3] ; k shape [D,M,ne2,ne3] ; v shape [M,D,ne2,ne3] - // gradq->data = result->data - // gradk->data = result->data + nb0*D*N*ne2*ne3 - // gradv->data = result->data + nb0*D*N*ne2*ne3 + nb0*D*M*ne2*ne3 // note: v and gradv are actually transposed, i.e. v->ne[0] != D. - int64_t ne[4] = {D,M+N+M,ne2,ne3}; + const int64_t elem_q = ggml_nelements(q); + const int64_t elem_k = ggml_nelements(k); + const int64_t elem_v = ggml_nelements(v); - struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne); + enum ggml_type result_type = GGML_TYPE_F32; + GGML_ASSERT(ggml_blck_size(result_type) == 1); + const size_t tsize = ggml_type_size(result_type); + + const size_t offs_q = 0; + const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN); + const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN); + const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN); + + const size_t nelements = (end + tsize - 1)/tsize; + + struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements); int32_t masked_i = masked ? 1 : 0; ggml_set_op_params(result, &masked_i, sizeof(masked_i)); @@ -8203,7 +8518,7 @@ static void ggml_compute_forward_dup_f16( return; } - GGML_TENSOR_UNARY_OP_LOCALS; + GGML_TENSOR_UNARY_OP_LOCALS const int ith = params->ith; // thread index const int nth = params->nth; // number of threads @@ -8474,7 +8789,7 @@ static void ggml_compute_forward_dup_f32( return; } - GGML_TENSOR_UNARY_OP_LOCALS; + GGML_TENSOR_UNARY_OP_LOCALS const int ith = params->ith; // thread index const int nth = params->nth; // number of threads @@ -8755,7 +9070,7 @@ static void ggml_compute_forward_add_f32( const int nr = ggml_nrows(src0); - GGML_TENSOR_BINARY_OP_LOCALS; + GGML_TENSOR_BINARY_OP_LOCALS GGML_ASSERT( nb0 == sizeof(float)); GGML_ASSERT(nb00 == sizeof(float)); @@ -8787,8 +9102,6 @@ static void ggml_compute_forward_add_f32( #else ggml_vec_add_f32(ne00, dst_ptr, src0_ptr, src1_ptr); #endif - // } - // } } } else { // src1 is not contiguous @@ -8830,7 +9143,7 @@ static void ggml_compute_forward_add_f16_f32( const int nr = ggml_nrows(src0); - GGML_TENSOR_BINARY_OP_LOCALS; + GGML_TENSOR_BINARY_OP_LOCALS GGML_ASSERT(src0->type == GGML_TYPE_F16); GGML_ASSERT(src1->type == GGML_TYPE_F32); @@ -8884,7 +9197,7 @@ static void ggml_compute_forward_add_f16_f16( const int nr = ggml_nrows(src0); - GGML_TENSOR_BINARY_OP_LOCALS; + GGML_TENSOR_BINARY_OP_LOCALS GGML_ASSERT(src0->type == GGML_TYPE_F16); GGML_ASSERT(src1->type == GGML_TYPE_F16); @@ -8935,14 +9248,15 @@ static void ggml_compute_forward_add_q_f32( const int nr = ggml_nrows(src0); - GGML_TENSOR_BINARY_OP_LOCALS; + GGML_TENSOR_BINARY_OP_LOCALS const int ith = params->ith; const int nth = params->nth; const enum ggml_type type = src0->type; + const enum ggml_type dtype = dst->type; ggml_to_float_t const dequantize_row_q = type_traits[type].to_float; - ggml_from_float_t const quantize_row_q = type_traits[type].from_float; + ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float; // we don't support permuted src0 or src1 GGML_ASSERT(nb00 == ggml_type_size(type)); @@ -8954,7 +9268,6 @@ static void ggml_compute_forward_add_q_f32( GGML_ASSERT(nb2 <= nb3); GGML_ASSERT(ggml_is_quantized(src0->type)); - GGML_ASSERT(dst->type == src0->type); GGML_ASSERT(src1->type == GGML_TYPE_F32); // rows per thread @@ -8992,7 +9305,11 @@ static void ggml_compute_forward_add_q_f32( // add src1 ggml_vec_acc_f32(ne00, wdata, src1_row); // quantize row to dst - quantize_row_q(wdata, dst_row, ne00); + if (quantize_row_q != NULL) { + quantize_row_q(wdata, dst_row, ne00); + } else { + memcpy(dst_row, wdata, ne0*nb0); + } } } @@ -9057,7 +9374,7 @@ static void ggml_compute_forward_add1_f32( const int nr = ggml_nrows(src0); - GGML_TENSOR_UNARY_OP_LOCALS; + GGML_TENSOR_UNARY_OP_LOCALS GGML_ASSERT( nb0 == sizeof(float)); GGML_ASSERT(nb00 == sizeof(float)); @@ -9112,7 +9429,7 @@ static void ggml_compute_forward_add1_f16_f32( const int nr = ggml_nrows(src0); - GGML_TENSOR_UNARY_OP_LOCALS; + GGML_TENSOR_UNARY_OP_LOCALS GGML_ASSERT(src0->type == GGML_TYPE_F16); GGML_ASSERT(src1->type == GGML_TYPE_F32); @@ -9162,7 +9479,7 @@ static void ggml_compute_forward_add1_f16_f16( const int nr = ggml_nrows(src0); - GGML_TENSOR_UNARY_OP_LOCALS; + GGML_TENSOR_UNARY_OP_LOCALS GGML_ASSERT(src0->type == GGML_TYPE_F16); GGML_ASSERT(src1->type == GGML_TYPE_F16); @@ -9212,7 +9529,7 @@ static void ggml_compute_forward_add1_q_f32( const int nr = ggml_nrows(src0); - GGML_TENSOR_UNARY_OP_LOCALS; + GGML_TENSOR_UNARY_OP_LOCALS const enum ggml_type type = src0->type; ggml_to_float_t const dequantize_row_q = type_traits[type].to_float; @@ -9340,8 +9657,8 @@ static void ggml_compute_forward_acc_f32( const int nr = ggml_nrows(src1); const int nc = src1->ne[0]; - GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne); - GGML_TENSOR_LOCALS(size_t, nb1, src1, nb); + GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) + GGML_TENSOR_LOCALS(size_t, nb1, src1, nb) // src0 and dst as viewed during acc const size_t nb0 = ggml_element_size(src0); @@ -9430,7 +9747,7 @@ static void ggml_compute_forward_sub_f32( const int nr = ggml_nrows(src0); - GGML_TENSOR_BINARY_OP_LOCALS; + GGML_TENSOR_BINARY_OP_LOCALS GGML_ASSERT( nb0 == sizeof(float)); GGML_ASSERT(nb00 == sizeof(float)); @@ -9520,7 +9837,7 @@ static void ggml_compute_forward_mul_f32( const int64_t nr = ggml_nrows(src0); - GGML_TENSOR_BINARY_OP_LOCALS; + GGML_TENSOR_BINARY_OP_LOCALS GGML_ASSERT( nb0 == sizeof(float)); GGML_ASSERT(nb00 == sizeof(float)); @@ -9611,7 +9928,7 @@ static void ggml_compute_forward_div_f32( const int nr = ggml_nrows(src0); - GGML_TENSOR_BINARY_OP_LOCALS; + GGML_TENSOR_BINARY_OP_LOCALS GGML_ASSERT( nb0 == sizeof(float)); GGML_ASSERT(nb00 == sizeof(float)); @@ -9820,8 +10137,8 @@ static void ggml_compute_forward_sum_f32( assert(ggml_is_scalar(dst)); assert(src0->nb[0] == sizeof(float)); - GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne); - GGML_TENSOR_LOCALS(size_t, nb0, src0, nb); + GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) + GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) ggml_float sum = 0; ggml_float row_sum = 0; @@ -9852,8 +10169,8 @@ static void ggml_compute_forward_sum_f16( assert(src0->nb[0] == sizeof(ggml_fp16_t)); - GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne); - GGML_TENSOR_LOCALS(size_t, nb0, src0, nb); + GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) + GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) float sum = 0; float row_sum = 0; @@ -9906,7 +10223,7 @@ static void ggml_compute_forward_sum_rows_f32( GGML_ASSERT(src0->nb[0] == sizeof(float)); GGML_ASSERT(dst->nb[0] == sizeof(float)); - GGML_TENSOR_UNARY_OP_LOCALS; + GGML_TENSOR_UNARY_OP_LOCALS GGML_ASSERT(ne0 == 1); GGML_ASSERT(ne1 == ne01); @@ -9956,7 +10273,7 @@ static void ggml_compute_forward_mean_f32( assert(src0->nb[0] == sizeof(float)); - GGML_TENSOR_UNARY_OP_LOCALS; + GGML_TENSOR_UNARY_OP_LOCALS assert(ne0 == 1); assert(ne1 == ne01); @@ -10056,7 +10373,7 @@ static void ggml_compute_forward_repeat_f32( return; } - GGML_TENSOR_UNARY_OP_LOCALS; + GGML_TENSOR_UNARY_OP_LOCALS // guaranteed to be an integer due to the check in ggml_can_repeat const int nr0 = (int)(ne0/ne00); @@ -10088,11 +10405,61 @@ static void ggml_compute_forward_repeat_f32( } } +static void ggml_compute_forward_repeat_f16( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst) { + GGML_ASSERT(params->ith == 0); + GGML_ASSERT(ggml_can_repeat(src0, dst)); + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + GGML_TENSOR_UNARY_OP_LOCALS; + + // guaranteed to be an integer due to the check in ggml_can_repeat + const int nr0 = (int)(ne0/ne00); + const int nr1 = (int)(ne1/ne01); + const int nr2 = (int)(ne2/ne02); + const int nr3 = (int)(ne3/ne03); + + // TODO: support for transposed / permuted tensors + GGML_ASSERT(nb0 == sizeof(ggml_fp16_t)); + GGML_ASSERT(nb00 == sizeof(ggml_fp16_t)); + + // TODO: maybe this is not optimal? + for (int i3 = 0; i3 < nr3; i3++) { + for (int k3 = 0; k3 < ne03; k3++) { + for (int i2 = 0; i2 < nr2; i2++) { + for (int k2 = 0; k2 < ne02; k2++) { + for (int i1 = 0; i1 < nr1; i1++) { + for (int k1 = 0; k1 < ne01; k1++) { + for (int i0 = 0; i0 < nr0; i0++) { + ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0); + ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01); + // ggml_vec_cpy_f16(ne00, y, x) + for (int i = 0; i < ne00; ++i) { + y[i] = x[i]; + } + } + } + } + } + } + } + } +} + static void ggml_compute_forward_repeat( const struct ggml_compute_params * params, const struct ggml_tensor * src0, struct ggml_tensor * dst) { switch (src0->type) { + case GGML_TYPE_F16: + { + ggml_compute_forward_repeat_f16(params, src0, dst); + } break; case GGML_TYPE_F32: { ggml_compute_forward_repeat_f32(params, src0, dst); @@ -10117,7 +10484,7 @@ static void ggml_compute_forward_repeat_back_f32( return; } - GGML_TENSOR_UNARY_OP_LOCALS; + GGML_TENSOR_UNARY_OP_LOCALS // guaranteed to be an integer due to the check in ggml_can_repeat const int nr0 = (int)(ne00/ne0); @@ -10195,7 +10562,7 @@ static void ggml_compute_forward_concat_f32( const int ith = params->ith; - GGML_TENSOR_BINARY_OP_LOCALS; + GGML_TENSOR_BINARY_OP_LOCALS // TODO: support for transposed / permuted tensors GGML_ASSERT(nb0 == sizeof(float)); @@ -10797,7 +11164,7 @@ static void ggml_compute_forward_norm_f32( const int ith = params->ith; const int nth = params->nth; - GGML_TENSOR_UNARY_OP_LOCALS; + GGML_TENSOR_UNARY_OP_LOCALS float eps; memcpy(&eps, dst->op_params, sizeof(float)); @@ -10866,7 +11233,7 @@ static void ggml_compute_forward_rms_norm_f32( const int ith = params->ith; const int nth = params->nth; - GGML_TENSOR_UNARY_OP_LOCALS; + GGML_TENSOR_UNARY_OP_LOCALS float eps; memcpy(&eps, dst->op_params, sizeof(float)); @@ -10931,7 +11298,7 @@ static void ggml_compute_forward_rms_norm_back_f32( const int ith = params->ith; const int nth = params->nth; - GGML_TENSOR_BINARY_OP_LOCALS; + GGML_TENSOR_BINARY_OP_LOCALS float eps; memcpy(&eps, dst->op_params, sizeof(float)); @@ -11106,7 +11473,7 @@ static void ggml_compute_forward_group_norm_f32( const int ith = params->ith; const int nth = params->nth; - GGML_TENSOR_UNARY_OP_LOCALS; + GGML_TENSOR_UNARY_OP_LOCALS const float eps = 1e-6f; // TODO: make this a parameter @@ -11217,7 +11584,7 @@ static void ggml_compute_forward_mul_mat( int64_t t0 = ggml_perf_time_us(); UNUSED(t0); - GGML_TENSOR_BINARY_OP_LOCALS; + GGML_TENSOR_BINARY_OP_LOCALS const int ith = params->ith; const int nth = params->nth; @@ -11432,10 +11799,10 @@ static void ggml_compute_forward_out_prod_f32( const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) { - int64_t t0 = ggml_perf_time_us(); - UNUSED(t0); + // int64_t t0 = ggml_perf_time_us(); + // UNUSED(t0); - GGML_TENSOR_BINARY_OP_LOCALS; + GGML_TENSOR_BINARY_OP_LOCALS const int ith = params->ith; const int nth = params->nth; @@ -11474,6 +11841,146 @@ static void ggml_compute_forward_out_prod_f32( return; } + // dst[:,:,:,:] = 0 + // for i2,i3: + // for i1: + // for i01: + // for i0: + // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3] + + // parallelize by last three dimensions + + // total rows in dst + const int64_t nr = ne1*ne2*ne3; + + // rows per thread + const int64_t dr = (nr + nth - 1)/nth; + + // row range for this thread + const int64_t ir0 = dr*ith; + const int64_t ir1 = MIN(ir0 + dr, nr); + + // block-tiling attempt + const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32); + const int64_t blck_1 = 16; + + for (int64_t bir = ir0; bir < ir1; bir += blck_1) { + const int64_t bir1 = MIN(bir + blck_1, ir1); + for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) { + const int64_t bne01 = MIN(bi01 + blck_0, ne01); + for (int64_t ir = bir; ir < bir1; ++ir) { + // dst indices + const int64_t i3 = ir/(ne2*ne1); + const int64_t i2 = (ir - i3*ne2*ne1)/ne1; + const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1); + + const int64_t i02 = i2; + const int64_t i03 = i3; + + //const int64_t i10 = i1; + const int64_t i12 = i2; + const int64_t i13 = i3; + +#if GGML_VEC_MAD_UNROLL > 2 + const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL); + for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) { + const int64_t i11 = i01; + + float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03)); + float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13)); + float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3)); + + ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1); + } + for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) { + const int64_t i11 = i01; + + float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03)); + float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13)); + float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3)); + + ggml_vec_mad_f32(ne0, d, s0, *s1); + } +#else + for (int64_t i01 = bi01; i01 < bne01; ++i01) { + const int64_t i11 = i01; + + float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03)); + float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13)); + float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3)); + + ggml_vec_mad_f32(ne0, d, s0, *s1); + } +#endif + } + } + } + + + //int64_t t1 = ggml_perf_time_us(); + //static int64_t acc = 0; + //acc += t1 - t0; + //if (t1 - t0 > 10) { + // printf("\n"); + // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03); + // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03); + // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13); + // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13); + + // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc); + //} +} + +static void ggml_compute_forward_out_prod_q_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst) { + // int64_t t0 = ggml_perf_time_us(); + // UNUSED(t0); + + GGML_TENSOR_BINARY_OP_LOCALS; + + const int ith = params->ith; + const int nth = params->nth; + + const enum ggml_type type = src0->type; + ggml_to_float_t const dequantize_row_q = type_traits[type].to_float; + + GGML_ASSERT(ne02 == ne12); + GGML_ASSERT(ne03 == ne13); + GGML_ASSERT(ne2 == ne12); + GGML_ASSERT(ne3 == ne13); + + // we don't support permuted src0 dim0 + GGML_ASSERT(nb00 == ggml_type_size(type)); + + // dst dim0 cannot be transposed or permuted + GGML_ASSERT(nb0 == sizeof(float)); + // GGML_ASSERT(nb0 <= nb1); + // GGML_ASSERT(nb1 <= nb2); + // GGML_ASSERT(nb2 <= nb3); + + GGML_ASSERT(ne0 == ne00); + GGML_ASSERT(ne1 == ne10); + GGML_ASSERT(ne2 == ne02); + GGML_ASSERT(ne3 == ne03); + + // nb01 >= nb00 - src0 is not transposed + // compute by src0 rows + + // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod + // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST) + + if (params->type == GGML_TASK_INIT) { + ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0); + return; + } + + if (params->type == GGML_TASK_FINALIZE) { + return; + } + // parallelize by last three dimensions // total rows in dst @@ -11493,6 +12000,8 @@ static void ggml_compute_forward_out_prod_f32( // for i0: // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3] + float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith; + for (int64_t ir = ir0; ir < ir1; ++ir) { // dst indices const int64_t i3 = ir/(ne2*ne1); @@ -11513,10 +12022,8 @@ static void ggml_compute_forward_out_prod_f32( float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13)); float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3)); - ggml_vec_mad_f32(ne0, d, s0, *s1); - // for (int64_t i0 = 0; i0 < ne0; ++i0) { - // d[i0] += s0[i0] * s1[i1]; - // } + dequantize_row_q(s0, wdata, ne0); + ggml_vec_mad_f32(ne0, d, wdata, *s1); } } @@ -11545,10 +12052,13 @@ static void ggml_compute_forward_out_prod( case GGML_TYPE_Q5_0: case GGML_TYPE_Q5_1: case GGML_TYPE_Q8_0: - case GGML_TYPE_Q8_1: + case GGML_TYPE_Q2_K: + case GGML_TYPE_Q3_K: + case GGML_TYPE_Q4_K: + case GGML_TYPE_Q5_K: + case GGML_TYPE_Q6_K: { - GGML_ASSERT(false); // todo - // ggml_compute_forward_out_prod_q_f32(params, src0, src1, dst); + ggml_compute_forward_out_prod_q_f32(params, src0, src1, dst); } break; case GGML_TYPE_F16: { @@ -11666,8 +12176,8 @@ static void ggml_compute_forward_set_f32( const int nr = ggml_nrows(src1); const int nc = src1->ne[0]; - GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne); - GGML_TENSOR_LOCALS(size_t, nb1, src1, nb); + GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) + GGML_TENSOR_LOCALS(size_t, nb1, src1, nb) // src0 and dst as viewed during set const size_t nb0 = ggml_element_size(src0); @@ -11936,14 +12446,15 @@ static void ggml_compute_forward_get_rows_back_f32_f16( const struct ggml_compute_params * params, const struct ggml_tensor * src0, const struct ggml_tensor * src1, - const struct ggml_tensor * opt0, struct ggml_tensor * dst) { GGML_ASSERT(params->ith == 0); - GGML_ASSERT(ggml_are_same_shape(opt0, dst)); - GGML_ASSERT(ggml_is_contiguous(opt0)); GGML_ASSERT(ggml_is_contiguous(dst)); - ggml_compute_forward_dup_same_cont(params, opt0, dst); + // ggml_compute_forward_dup_same_cont(params, opt0, dst); + + if (params->type == GGML_TASK_INIT) { + memset(dst->data, 0, ggml_nbytes(dst)); + } if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { return; @@ -11969,11 +12480,8 @@ static void ggml_compute_forward_get_rows_back_f32( const struct ggml_compute_params * params, const struct ggml_tensor * src0, const struct ggml_tensor * src1, - const struct ggml_tensor * opt0, struct ggml_tensor * dst) { GGML_ASSERT(params->ith == 0); - GGML_ASSERT(ggml_are_same_shape(opt0, dst)); - GGML_ASSERT(ggml_is_contiguous(opt0)); GGML_ASSERT(ggml_is_contiguous(dst)); // ggml_compute_forward_dup_same_cont(params, opt0, dst); @@ -12007,16 +12515,15 @@ static void ggml_compute_forward_get_rows_back( const struct ggml_compute_params * params, const struct ggml_tensor * src0, const struct ggml_tensor * src1, - const struct ggml_tensor * opt0, struct ggml_tensor * dst) { switch (src0->type) { case GGML_TYPE_F16: { - ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, opt0, dst); + ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, dst); } break; case GGML_TYPE_F32: { - ggml_compute_forward_get_rows_back_f32(params, src0, src1, opt0, dst); + ggml_compute_forward_get_rows_back_f32(params, src0, src1, dst); } break; default: { @@ -12057,7 +12564,7 @@ static void ggml_compute_forward_diag_f32( // TODO: handle transposed/permuted matrices - GGML_TENSOR_UNARY_OP_LOCALS; + GGML_TENSOR_UNARY_OP_LOCALS GGML_ASSERT(ne00 == ne0); GGML_ASSERT(ne00 == ne1); @@ -12445,13 +12952,11 @@ static void ggml_compute_forward_alibi_f16( return; } - const int n_past = ((int32_t *) dst->op_params)[0]; + //const int n_past = ((int32_t *) dst->op_params)[0]; const int n_head = ((int32_t *) dst->op_params)[1]; float max_bias; memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float)); - assert(n_past >= 0); - const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1 const int ne1 = src0->ne[1]; // seq_len_without_past const int ne2 = src0->ne[2]; // n_head -> this is k @@ -12466,7 +12971,7 @@ static void ggml_compute_forward_alibi_f16( //const int nb3 = src0->nb[3]; GGML_ASSERT(nb0 == sizeof(ggml_fp16_t)); - GGML_ASSERT(ne1 + n_past == ne0); (void) n_past; + //GGML_ASSERT(ne1 + n_past == ne0); (void) n_past; GGML_ASSERT(n_head == ne2); // add alibi to src0 (KQ_scaled) @@ -12612,8 +13117,8 @@ static void ggml_compute_forward_clamp( static void ggml_compute_forward_rope_f32( const struct ggml_compute_params * params, const struct ggml_tensor * src0, + const struct ggml_tensor * src1, struct ggml_tensor * dst) { - if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { return; } @@ -12623,9 +13128,9 @@ static void ggml_compute_forward_rope_f32( // these two only relevant for xPos RoPE: float xpos_base; - bool xpos_down; + bool xpos_down; - const int n_past = ((int32_t *) dst->op_params)[0]; + //const int n_past = ((int32_t *) dst->op_params)[0]; const int n_dims = ((int32_t *) dst->op_params)[1]; const int mode = ((int32_t *) dst->op_params)[2]; const int n_ctx = ((int32_t *) dst->op_params)[3]; @@ -12634,9 +13139,7 @@ static void ggml_compute_forward_rope_f32( memcpy(&xpos_base, (int32_t *) dst->op_params + 6, sizeof(float)); memcpy(&xpos_down, (int32_t *) dst->op_params + 7, sizeof(bool)); - assert(n_past >= 0); - - GGML_TENSOR_UNARY_OP_LOCALS; + GGML_TENSOR_UNARY_OP_LOCALS //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3); //printf("n_past = %d, ne2 = %d\n", n_past, ne2); @@ -12666,9 +13169,11 @@ static void ggml_compute_forward_rope_f32( const bool is_neox = mode & 2; const bool is_glm = mode & 4; + const int32_t * pos = (const int32_t *) src1->data; + for (int64_t i3 = 0; i3 < ne3; i3++) { - for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) { - const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2); + for (int64_t i2 = 0; i2 < ne2; i2++) { + const int64_t p = pos[i2]; for (int64_t i1 = 0; i1 < ne1; i1++) { if (ir++ < ir0) continue; if (ir > ir1) break; @@ -12705,7 +13210,7 @@ static void ggml_compute_forward_rope_f32( const float cos_theta = cosf(theta); const float sin_theta = sinf(theta); // zeta scaling for xPos only: - float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), (n_past + i2) / xpos_base) : 1.0f; + float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f; if (xpos_down) zeta = 1.0f / zeta; theta *= theta_scale; @@ -12750,8 +13255,8 @@ static void ggml_compute_forward_rope_f32( static void ggml_compute_forward_rope_f16( const struct ggml_compute_params * params, const struct ggml_tensor * src0, + const struct ggml_tensor * src1, struct ggml_tensor * dst) { - if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { return; } @@ -12759,16 +13264,14 @@ static void ggml_compute_forward_rope_f16( float freq_base; float freq_scale; - const int n_past = ((int32_t *) dst->op_params)[0]; + //const int n_past = ((int32_t *) dst->op_params)[0]; const int n_dims = ((int32_t *) dst->op_params)[1]; const int mode = ((int32_t *) dst->op_params)[2]; const int n_ctx = ((int32_t *) dst->op_params)[3]; memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float)); memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float)); - assert(n_past >= 0); - - GGML_TENSOR_UNARY_OP_LOCALS; + GGML_TENSOR_UNARY_OP_LOCALS //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3); //printf("n_past = %d, ne2 = %d\n", n_past, ne2); @@ -12798,9 +13301,11 @@ static void ggml_compute_forward_rope_f16( const bool is_neox = mode & 2; const bool is_glm = mode & 4; + const int32_t * pos = (const int32_t *) src1->data; + for (int64_t i3 = 0; i3 < ne3; i3++) { - for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) { - const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2); + for (int64_t i2 = 0; i2 < ne2; i2++) { + const int64_t p = pos[i2]; for (int64_t i1 = 0; i1 < ne1; i1++) { if (ir++ < ir0) continue; if (ir > ir1) break; @@ -12879,15 +13384,16 @@ static void ggml_compute_forward_rope_f16( static void ggml_compute_forward_rope( const struct ggml_compute_params * params, const struct ggml_tensor * src0, + const struct ggml_tensor * src1, struct ggml_tensor * dst) { switch (src0->type) { case GGML_TYPE_F16: { - ggml_compute_forward_rope_f16(params, src0, dst); + ggml_compute_forward_rope_f16(params, src0, src1, dst); } break; case GGML_TYPE_F32: { - ggml_compute_forward_rope_f32(params, src0, dst); + ggml_compute_forward_rope_f32(params, src0, src1, dst); } break; default: { @@ -12901,6 +13407,7 @@ static void ggml_compute_forward_rope( static void ggml_compute_forward_rope_back_f32( const struct ggml_compute_params * params, const struct ggml_tensor * src0, + const struct ggml_tensor * src1, struct ggml_tensor * dst) { if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { @@ -12918,7 +13425,7 @@ static void ggml_compute_forward_rope_back_f32( float xpos_base; bool xpos_down; - const int n_past = ((int32_t *) dst->op_params)[0]; + //const int n_past = ((int32_t *) dst->op_params)[0]; const int n_dims = ((int32_t *) dst->op_params)[1]; const int mode = ((int32_t *) dst->op_params)[2]; const int n_ctx = ((int32_t *) dst->op_params)[3]; UNUSED(n_ctx); @@ -12927,9 +13434,7 @@ static void ggml_compute_forward_rope_back_f32( memcpy(&xpos_base, (int32_t *) dst->op_params + 6, sizeof(float)); memcpy(&xpos_down, (int32_t *) dst->op_params + 7, sizeof(bool)); - assert(n_past >= 0); - - GGML_TENSOR_UNARY_OP_LOCALS; + GGML_TENSOR_UNARY_OP_LOCALS //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3); //printf("n_past = %d, ne2 = %d\n", n_past, ne2); @@ -12955,9 +13460,11 @@ static void ggml_compute_forward_rope_back_f32( const bool is_neox = mode & 2; + const int32_t * pos = (const int32_t *) src1->data; + for (int64_t i3 = 0; i3 < ne3; i3++) { - for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) { - const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2); + for (int64_t i2 = 0; i2 < ne2; i2++) { + const int64_t p = pos[i2]; for (int64_t i1 = 0; i1 < ne1; i1++) { if (ir++ < ir0) continue; if (ir > ir1) break; @@ -12969,7 +13476,7 @@ static void ggml_compute_forward_rope_back_f32( const float cos_theta = cosf(theta); const float sin_theta = sinf(theta); // zeta scaling for xPos only: - float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), (n_past + i2) / xpos_base) : 1.0f; + float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f; if (xpos_down) zeta = 1.0f / zeta; theta *= theta_scale; @@ -13012,6 +13519,7 @@ static void ggml_compute_forward_rope_back_f32( static void ggml_compute_forward_rope_back_f16( const struct ggml_compute_params * params, const struct ggml_tensor * src0, + const struct ggml_tensor * src1, struct ggml_tensor * dst) { if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { @@ -13022,13 +13530,11 @@ static void ggml_compute_forward_rope_back_f16( // dx = rope_back(dy, src1) // src0 is dy, src1 contains options - const int n_past = ((int32_t *) dst->op_params)[0]; + //const int n_past = ((int32_t *) dst->op_params)[0]; const int n_dims = ((int32_t *) dst->op_params)[1]; const int mode = ((int32_t *) dst->op_params)[2]; - assert(n_past >= 0); - - GGML_TENSOR_UNARY_OP_LOCALS; + GGML_TENSOR_UNARY_OP_LOCALS //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3); //printf("n_past = %d, ne2 = %d\n", n_past, ne2); @@ -13054,9 +13560,11 @@ static void ggml_compute_forward_rope_back_f16( const bool is_neox = mode & 2; + const int32_t * pos = (const int32_t *) src1->data; + for (int64_t i3 = 0; i3 < ne3; i3++) { - for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) { - const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2); + for (int64_t i2 = 0; i2 < ne2; i2++) { + const int64_t p = pos[i2]; for (int64_t i1 = 0; i1 < ne1; i1++) { if (ir++ < ir0) continue; if (ir > ir1) break; @@ -13108,15 +13616,16 @@ static void ggml_compute_forward_rope_back_f16( static void ggml_compute_forward_rope_back( const struct ggml_compute_params * params, const struct ggml_tensor * src0, + const struct ggml_tensor * src1, struct ggml_tensor * dst) { switch (src0->type) { case GGML_TYPE_F16: { - ggml_compute_forward_rope_back_f16(params, src0, dst); + ggml_compute_forward_rope_back_f16(params, src0, src1, dst); } break; case GGML_TYPE_F32: { - ggml_compute_forward_rope_back_f32(params, src0, dst); + ggml_compute_forward_rope_back_f32(params, src0, src1, dst); } break; default: { @@ -13139,7 +13648,7 @@ static void ggml_compute_forward_conv_1d_s1_ph_f16_f32( int64_t t0 = ggml_perf_time_us(); UNUSED(t0); - GGML_TENSOR_BINARY_OP_LOCALS; + GGML_TENSOR_BINARY_OP_LOCALS const int ith = params->ith; const int nth = params->nth; @@ -13230,7 +13739,7 @@ static void ggml_compute_forward_conv_1d_s1_ph_f32( int64_t t0 = ggml_perf_time_us(); UNUSED(t0); - GGML_TENSOR_BINARY_OP_LOCALS; + GGML_TENSOR_BINARY_OP_LOCALS const int ith = params->ith; const int nth = params->nth; @@ -13342,7 +13851,7 @@ static void ggml_compute_forward_conv_1d_s2_ph_f16_f32( int64_t t0 = ggml_perf_time_us(); UNUSED(t0); - GGML_TENSOR_BINARY_OP_LOCALS; + GGML_TENSOR_BINARY_OP_LOCALS const int ith = params->ith; const int nth = params->nth; @@ -13433,7 +13942,7 @@ static void ggml_compute_forward_conv_1d_s2_ph_f32( int64_t t0 = ggml_perf_time_us(); UNUSED(t0); - GGML_TENSOR_BINARY_OP_LOCALS; + GGML_TENSOR_BINARY_OP_LOCALS const int ith = params->ith; const int nth = params->nth; @@ -13551,7 +14060,7 @@ static void ggml_compute_forward_conv_1d( ggml_compute_forward_conv_1d_s2_ph(params, src0, src1, dst); } else { GGML_ASSERT(false); // only stride 1 and 2 supported - }; + } } // ggml_compute_forward_conv_2d @@ -13568,7 +14077,7 @@ static void ggml_compute_forward_conv_2d_f16_f32( int64_t t0 = ggml_perf_time_us(); UNUSED(t0); - GGML_TENSOR_BINARY_OP_LOCALS; + GGML_TENSOR_BINARY_OP_LOCALS const int ith = params->ith; const int nth = params->nth; @@ -13688,7 +14197,7 @@ static void ggml_compute_forward_conv_transpose_2d( int64_t t0 = ggml_perf_time_us(); UNUSED(t0); - GGML_TENSOR_BINARY_OP_LOCALS; + GGML_TENSOR_BINARY_OP_LOCALS const int ith = params->ith; const int nth = params->nth; @@ -13947,7 +14456,7 @@ static void ggml_compute_forward_upscale_f32( const int ith = params->ith; - GGML_TENSOR_UNARY_OP_LOCALS; + GGML_TENSOR_UNARY_OP_LOCALS const int scale_factor = dst->op_params[0]; @@ -13999,14 +14508,14 @@ static void ggml_compute_forward_flash_attn_f32( int64_t t0 = ggml_perf_time_us(); UNUSED(t0); - GGML_TENSOR_LOCALS(int64_t, neq, q, ne); - GGML_TENSOR_LOCALS(size_t, nbq, q, nb); - GGML_TENSOR_LOCALS(int64_t, nek, k, ne); - GGML_TENSOR_LOCALS(size_t, nbk, k, nb); - GGML_TENSOR_LOCALS(int64_t, nev, v, ne); - GGML_TENSOR_LOCALS(size_t, nbv, v, nb); - GGML_TENSOR_LOCALS(int64_t, ne, dst, ne); - GGML_TENSOR_LOCALS(size_t, nb, dst, nb); + GGML_TENSOR_LOCALS(int64_t, neq, q, ne) + GGML_TENSOR_LOCALS(size_t, nbq, q, nb) + GGML_TENSOR_LOCALS(int64_t, nek, k, ne) + GGML_TENSOR_LOCALS(size_t, nbk, k, nb) + GGML_TENSOR_LOCALS(int64_t, nev, v, ne) + GGML_TENSOR_LOCALS(size_t, nbv, v, nb) + GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) + GGML_TENSOR_LOCALS(size_t, nb, dst, nb) const int ith = params->ith; const int nth = params->nth; @@ -14076,10 +14585,11 @@ static void ggml_compute_forward_flash_attn_f32( S[i] = -INFINITY; } - for (int64_t ic = 0; ic < nek1; ++ic) { + const int64_t masked_begin = masked ? (P + iq1 + 1) : M; + for (int64_t ic = 0; ic < masked_begin; ++ic) { // k indices const int ik3 = iq3; - const int ik2 = iq2; + const int ik2 = iq2 % nek2; const int ik1 = ic; // S indices @@ -14092,20 +14602,18 @@ static void ggml_compute_forward_flash_attn_f32( } // scale - ggml_vec_scale_f32(nek1, S, scale); + ggml_vec_scale_f32(masked_begin, S, scale); - if (masked) { - for (int64_t i = P; i < M; i++) { - if (i > P + iq1) { - S[i] = -INFINITY; - } - } + for (int64_t i = masked_begin; i < M; i++) { + S[i] = -INFINITY; } // softmax + // exclude known -INF S[..] values from max and loop + // dont forget to set their SW values to zero { float max = -INFINITY; - ggml_vec_max_f32(M, &max, S); + ggml_vec_max_f32(masked_begin, &max, S); ggml_float sum = 0.0; { @@ -14119,10 +14627,15 @@ static void ggml_compute_forward_flash_attn_f32( ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 }; for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) { + if (i >= masked_begin) { + break; + } float * SS = S + i; for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) { - if (SS[j] == -INFINITY) { + if (i + j >= masked_begin) { + break; + } else if (SS[j] == -INFINITY) { SS[j] = 0.0f; } else { #ifndef GGML_FLASH_ATTN_EXP_FP16 @@ -14147,10 +14660,10 @@ static void ggml_compute_forward_flash_attn_f32( assert(sum > 0.0); sum = 1.0/sum; - ggml_vec_scale_f32(M, S, sum); + ggml_vec_scale_f32(masked_begin, S, sum); #ifndef NDEBUG - for (int i = 0; i < M; ++i) { + for (int i = 0; i < masked_begin; ++i) { assert(!isnan(S[i])); assert(!isinf(S[i])); } @@ -14163,9 +14676,13 @@ static void ggml_compute_forward_flash_attn_f32( const int i2 = iq2; const int i3 = iq3; - ggml_vec_dot_f32(nek1, - (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), - (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)), + // v indices + const int iv2 = iq2 % nev2; + const int iv3 = iq3; + + ggml_vec_dot_f32(masked_begin, + (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), + (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), S); } } @@ -14181,14 +14698,14 @@ static void ggml_compute_forward_flash_attn_f16( int64_t t0 = ggml_perf_time_us(); UNUSED(t0); - GGML_TENSOR_LOCALS(int64_t, neq, q, ne); - GGML_TENSOR_LOCALS(size_t, nbq, q, nb); - GGML_TENSOR_LOCALS(int64_t, nek, k, ne); - GGML_TENSOR_LOCALS(size_t, nbk, k, nb); - GGML_TENSOR_LOCALS(int64_t, nev, v, ne); - GGML_TENSOR_LOCALS(size_t, nbv, v, nb); - GGML_TENSOR_LOCALS(int64_t, ne, dst, ne); - GGML_TENSOR_LOCALS(size_t, nb, dst, nb); + GGML_TENSOR_LOCALS(int64_t, neq, q, ne) + GGML_TENSOR_LOCALS(size_t, nbq, q, nb) + GGML_TENSOR_LOCALS(int64_t, nek, k, ne) + GGML_TENSOR_LOCALS(size_t, nbk, k, nb) + GGML_TENSOR_LOCALS(int64_t, nev, v, ne) + GGML_TENSOR_LOCALS(size_t, nbv, v, nb) + GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) + GGML_TENSOR_LOCALS(size_t, nb, dst, nb) const int ith = params->ith; const int nth = params->nth; @@ -14262,7 +14779,7 @@ static void ggml_compute_forward_flash_attn_f16( for (int64_t ic = 0; ic < nek1; ++ic) { // k indices const int ik3 = iq3; - const int ik2 = iq2; + const int ik2 = iq2 % nek2; const int ik1 = ic; // S indices @@ -14277,7 +14794,7 @@ static void ggml_compute_forward_flash_attn_f16( for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) { // k indices const int ik3 = iq3; - const int ik2 = iq2; + const int ik2 = iq2 % nek2; const int ik1 = ic; // S indices @@ -14302,6 +14819,8 @@ static void ggml_compute_forward_flash_attn_f16( } // softmax + // todo: exclude known -INF S[..] values from max and loop, assuming their results to be zero. + // dont forget to set their S values to zero { float max = -INFINITY; ggml_vec_max_f32(M, &max, S); @@ -14358,6 +14877,7 @@ static void ggml_compute_forward_flash_attn_f16( S16[i] = GGML_FP32_TO_FP16(S[i]); } + // todo: exclude known zero S[..] values from dot (reducing nev0 and increasing begin of v and S16). if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) { for (int64_t ic = 0; ic < nev1; ++ic) { // dst indices @@ -14365,9 +14885,13 @@ static void ggml_compute_forward_flash_attn_f16( const int i2 = iq2; const int i3 = iq3; - ggml_vec_dot_f16(nek1, - (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), - (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)), + // v indices + const int iv2 = iq2 % nev2; + const int iv3 = iq3; + + ggml_vec_dot_f16(nev0, + (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), + (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), S16); } } else { @@ -14377,9 +14901,13 @@ static void ggml_compute_forward_flash_attn_f16( const int i2 = iq2; const int i3 = iq3; - ggml_vec_dot_f16_unroll(nek1, nbv1, - (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), - ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)), + // v indices + const int iv2 = iq2 % nev2; + const int iv3 = iq3; + + ggml_vec_dot_f16_unroll(nev0, nbv1, + (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), + ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), S16); } } @@ -14422,18 +14950,18 @@ static void ggml_compute_forward_flash_ff_f16( int64_t t0 = ggml_perf_time_us(); UNUSED(t0); - GGML_TENSOR_LOCALS(int64_t, nea, a, ne); - GGML_TENSOR_LOCALS(size_t, nba, a, nb); - GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne); - GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb); - GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne); - GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb); - GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne); - GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb); - GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne); - GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb); - GGML_TENSOR_LOCALS(int64_t, ne, dst, ne); - GGML_TENSOR_LOCALS(size_t, nb, dst, nb); + GGML_TENSOR_LOCALS(int64_t, nea, a, ne) + GGML_TENSOR_LOCALS(size_t, nba, a, nb) + GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne) + GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb) + GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne) + GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb) + GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne) + GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb) + GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne) + GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb) + GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) + GGML_TENSOR_LOCALS(size_t, nb, dst, nb) const int ith = params->ith; const int nth = params->nth; @@ -14581,16 +15109,16 @@ static void ggml_compute_forward_flash_attn_back_f32( int64_t t0 = ggml_perf_time_us(); UNUSED(t0); - GGML_TENSOR_LOCALS(int64_t, neq, q, ne); - GGML_TENSOR_LOCALS(size_t, nbq, q, nb); - GGML_TENSOR_LOCALS(int64_t, nek, k, ne); - GGML_TENSOR_LOCALS(size_t, nbk, k, nb); - GGML_TENSOR_LOCALS(int64_t, nev, v, ne); - GGML_TENSOR_LOCALS(size_t, nbv, v, nb); - GGML_TENSOR_LOCALS(int64_t, ned, d, ne); - GGML_TENSOR_LOCALS(size_t, nbd, d, nb); - GGML_TENSOR_LOCALS(int64_t, ne, dst, ne); - GGML_TENSOR_LOCALS(size_t, nb, dst, nb); + GGML_TENSOR_LOCALS(int64_t, neq, q, ne) + GGML_TENSOR_LOCALS(size_t, nbq, q, nb) + GGML_TENSOR_LOCALS(int64_t, nek, k, ne) + GGML_TENSOR_LOCALS(size_t, nbk, k, nb) + GGML_TENSOR_LOCALS(int64_t, nev, v, ne) + GGML_TENSOR_LOCALS(size_t, nbv, v, nb) + GGML_TENSOR_LOCALS(int64_t, ned, d, ne) + GGML_TENSOR_LOCALS(size_t, nbd, d, nb) + GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) + GGML_TENSOR_LOCALS(size_t, nb, dst, nb) const int ith = params->ith; const int nth = params->nth; @@ -14638,10 +15166,37 @@ static void ggml_compute_forward_flash_attn_back_f32( return; } - // parallelize by q rows using ggml_vec_dot_f32 + const int64_t elem_q = ggml_nelements(q); + const int64_t elem_k = ggml_nelements(k); - // total rows in q - const int nr = neq2*neq3; + enum ggml_type result_type = dst->type; + GGML_ASSERT(ggml_blck_size(result_type) == 1); + const size_t tsize = ggml_type_size(result_type); + + const size_t offs_q = 0; + const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN); + const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN); + + void * grad_q = (char *) dst->data; + void * grad_k = (char *) dst->data + offs_k; + void * grad_v = (char *) dst->data + offs_v; + + const size_t nbgq1 = nb0*neq0; + const size_t nbgq2 = nb0*neq0*neq1; + const size_t nbgq3 = nb0*neq0*neq1*neq2; + + const size_t nbgk1 = nb0*nek0; + const size_t nbgk2 = nb0*nek0*nek1; + const size_t nbgk3 = nb0*nek0*nek1*neq2; + + const size_t nbgv1 = nb0*nev0; + const size_t nbgv2 = nb0*nev0*nev1; + const size_t nbgv3 = nb0*nev0*nev1*neq2; + + // parallelize by k rows using ggml_vec_dot_f32 + + // total rows in k + const int nr = nek2*nek3; // rows per thread const int dr = (nr + nth - 1)/nth; @@ -14654,268 +15209,243 @@ static void ggml_compute_forward_flash_attn_back_f32( //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale); + // how often k2 (and v2) is repeated in q2 + int nrep = neq2/nek2; + for (int ir = ir0; ir < ir1; ++ir) { // q indices - const int iq3 = ir/(neq2); - const int iq2 = ir - iq3*neq2; - for ( int iq1 = 0; iq1 < neq1; ++iq1) { + const int ik3 = ir/(nek2); + const int ik2 = ir - ik3*nek2; + const int iq3 = ik3; + const int id3 = ik3; + const int iv3 = ik3; + const int iv2 = ik2; - // not sure about CACHE_LINE_SIZE_F32.. - // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset? - float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32); - float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32); + for (int irep = 0; irep < nrep; ++irep) { + const int iq2 = ik2 + irep*nek2; + const int id2 = iq2; - for (int i = M; i < Mup; ++i) { - S[i] = -INFINITY; - } + // (ik2 + irep*nek2) % nek2 == ik2 + for (int iq1 = 0; iq1 < neq1; ++iq1) { + const int id1 = iq1; - for (int64_t ic = 0; ic < nek1; ++ic) { - // k indices - const int ik3 = iq3; - const int ik2 = iq2; - const int ik1 = ic; + // not sure about CACHE_LINE_SIZE_F32.. + // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset? + float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32); + float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32); - // S indices - const int i1 = ik1; + for (int i = M; i < Mup; ++i) { + S[i] = -INFINITY; + } - ggml_vec_dot_f32(neq0, - S + i1, - (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), - (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3))); - } + const int64_t masked_begin = masked ? (P + iq1 + 1) : M; + for (int64_t ic = 0; ic < masked_begin; ++ic) { + // k indices + const int ik1 = ic; - // scale - ggml_vec_scale_f32(nek1, S, scale); + // S indices + const int i1 = ik1; - if (masked) { - for (int64_t i = P; i < M; i++) { - if (i > P + iq1) { - S[i] = -INFINITY; - } + ggml_vec_dot_f32(neq0, + S + i1, + (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), + (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3))); } - } - // softmax - { - float max = -INFINITY; - ggml_vec_max_f32(M, &max, S); + // scale + ggml_vec_scale_f32(masked_begin, S, scale); - ggml_float sum = 0.0; + for (int64_t i = masked_begin; i < M; i++) { + S[i] = -INFINITY; + } + + // softmax + // exclude known -INF S[..] values from max and loop + // dont forget to set their SM values to zero { + float max = -INFINITY; + ggml_vec_max_f32(masked_begin, &max, S); + + ggml_float sum = 0.0; + { #ifdef GGML_SOFT_MAX_ACCELERATE - max = -max; - vDSP_vsadd(SM, 1, &max, SM, 1, Mup); - vvexpf(SM, SM, &Mup); - ggml_vec_sum_f32(Mup, &sum, SM); + max = -max; + vDSP_vsadd(SM, 1, &max, SM, 1, Mup); + vvexpf(SM, SM, &Mup); + ggml_vec_sum_f32(Mup, &sum, SM); #else - uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt); - ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 }; + uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt); + ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 }; - for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) { - float * SR = S + i; - float * SW = SM + i; - - for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) { - if (SR[j] == -INFINITY) { - SW[j] = 0.0f; - } else { + for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) { + if (i >= masked_begin) { + break; + } + float * SR = S + i; + float * SW = SM + i; + + for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) { + if (i + j >= masked_begin) { + break; + } else if (SR[j] == -INFINITY) { + SW[j] = 0.0f; + } else { #ifndef GGML_FLASH_ATTN_EXP_FP16 - const float val = expf(SR[j] - max); + const float val = expf(SR[j] - max); #else - ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max); - memcpy(&scvt[j], &s, sizeof(uint16_t)); - const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]); + ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max); + memcpy(&scvt[j], &s, sizeof(uint16_t)); + const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]); #endif - sump[j] += (ggml_float)val; - SW[j] = val; + sump[j] += (ggml_float)val; + SW[j] = val; + } } } - } - for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) { - sum += sump[i]; - } + for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) { + sum += sump[i]; + } #endif - } - - assert(sum > 0.0); - - sum = 1.0/sum; - ggml_vec_scale_f32(M, SM, sum); - - } - - // step-by-step explanation - { - // forward-process shape grads from backward process - // parallel_for iq2,iq3: - // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,iq2,iq3] += grad[kcur] - // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur] - // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iq2,iq3] += grad[vcur] - // for iq1: - // kcur = k[:D,:M,iq2,iq3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur - // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur - // vcur = v[:M,:D,iq2,iq3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4 - // S0 = -Inf [D,1,1,1] - // ~S1[i] = dot(kcur[:D,i], qcur) - // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale - // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P) - // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4])) - // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur - // ~S5[i] = dot(vcur[:,i], S4) - // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,iq1,iq2,iq3] - // ~dst[i,iq1,iq2,iq3] = S5[i] ^ - // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,iq1,iq2,iq3] - // dst backward-/ grad[dst] = d - // - // output gradients with their dependencies: - // - // grad[kcur] = grad[S1].T @ qcur - // grad[S1] = diag_mask_zero(grad[S3], P) * scale - // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4])) - // grad[S4] = grad[S5] @ vcur - // grad[S4] = d[:D,iq1,iq2,iq3] @ vcur - // grad[qcur] = grad[S1] @ kcur - // grad[vcur] = grad[S5].T @ S4 - // grad[vcur] = d[:D,iq1,iq2,iq3].T @ S4 - // - // in post-order: - // - // S1 = qcur @ kcur.T - // S2 = S1 * scale - // S3 = diag_mask_inf(S2, P) - // S4 = softmax(S3) - // grad[S4] = d[:D,iq1,iq2,iq3] @ vcur - // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4])) - // grad[S1] = diag_mask_zero(grad[S3], P) * scale - // grad[qcur] = grad[S1] @ kcur - // grad[kcur] = grad[S1].T @ qcur - // grad[vcur] = d[:D,iq1,iq2,iq3].T @ S4 - // - // using less variables (SM=S4): - // - // S = diag_mask_inf(qcur @ kcur.T * scale, P) - // SM = softmax(S) - // S = d[:D,iq1,iq2,iq3] @ vcur - // dot_SM_gradSM = dot(SM, S) - // S = SM * (S - dot(SM, S)) - // S = diag_mask_zero(S, P) * scale - // - // grad[q][:D,iq1,iq2,iq3] += S @ kcur - // grad[k][:D,:M,iq2,iq3] += S.T @ qcur - // grad[v][:M,:D,iq2,iq3] += d[:D,iq1,iq2,iq3].T @ SM - } - - // S = gradSM = d[:D,iq1,iq2,iq3] @ vcur - // S = d[:D,iq1,iq2,iq3] @ vcur - // S[:M] += vcur[:M,ic] * d[ic,iq1,iq2,iq3] - ggml_vec_set_f32(M, S, 0); - for (int64_t ic = 0; ic < D; ++ic) { - // dst indices - const int i1 = iq1; - const int i2 = iq2; - const int i3 = iq3; + } - ggml_vec_mad_f32(M, - S, - (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)), - *(float *) ((char *) d->data + (ic*nbd0 + i1*nbd1 + i2*nbd2 + i3*nbd3))); - } + assert(sum > 0.0); - // S = SM * (S - dot(SM, S)) - float dot_SM_gradSM = 0; - ggml_vec_dot_f32 (M, &dot_SM_gradSM, SM, S); - ggml_vec_acc1_f32(M, S, -dot_SM_gradSM); - ggml_vec_mul_f32 (M, S, S, SM); + sum = 1.0/sum; + ggml_vec_scale_f32(masked_begin, SM, sum); - // S = diag_mask_zero(S, P) * scale - if (masked) { - // for (int64_t i = P + iq1 + 1; i < M; i++) { - // S[i] = 0; - // } - for (int64_t i = P; i < M; i++) { - if (i > P + iq1) { - S[i] = 0; - } } - } - ggml_vec_scale_f32(M, S, scale); - - void * grad_q = (char *) dst->data; - void * grad_k = (char *) dst->data + nb0*D*N*neq2*neq3; - void * grad_v = (char *) dst->data + nb0*D*N*neq2*neq3 + nb0*D*M*neq2*neq3; - - const size_t nbgq1 = nb0*neq0; - const size_t nbgq2 = nb0*neq0*neq1; - const size_t nbgq3 = nb0*neq0*neq1*neq2; - - const size_t nbgk1 = nb0*nek0; - const size_t nbgk2 = nb0*nek0*nek1; - const size_t nbgk3 = nb0*nek0*nek1*neq2; - - const size_t nbgv1 = nb0*nev0; - const size_t nbgv2 = nb0*nev0*nev1; - const size_t nbgv3 = nb0*nev0*nev1*neq2; - - // S shape [M,1] - // SM shape [M,1] - // kcur shape [D,M] - // qcur shape [D,1] - // vcur shape [M,D] - // - // grad[q][:D,iq1,iq2,iq3] += S @ kcur - // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M] - // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic] - // - //// grad[q][ic,iq1,iq2,iq3] += dot(kcur[:,ic],S.T) - //// grad[q][ic,iq1,iq2,iq3] += dot(k[:D,ic,iq2,iq3],S.T) - for (int64_t ic = 0; ic < M; ++ic) { - // dst indices - const int i1 = iq1; - const int i2 = iq2; - const int i3 = iq3; - ggml_vec_mad_f32(D, - (float *) ((char *) grad_q + (i1*nbgq1 + i2*nbgq2 + i3*nbgq3)), - (float *) ((char *) k->data + (ic*nbk1 + i2*nbk2 + i3*nbk3)), - S[ic]); - } + // step-by-step explanation + { + // forward-process shape grads from backward process + // parallel_for ik2,ik3: + // for irep: + // iq2 = ik2 + irep*nek2 + // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur] + // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur] + // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur] + // for iq1: + // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur + // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur + // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4 + // S0 = -Inf [D,1,1,1] + // ~S1[i] = dot(kcur[:D,i], qcur) + // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale + // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P) + // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4])) + // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur + // ~S5[i] = dot(vcur[:,i], S4) + // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3] + // ~dst[i,iq1,iq2,iq3] = S5[i] ^ + // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3] + // dst backward-/ grad[dst] = d + // + // output gradients with their dependencies: + // + // grad[kcur] = grad[S1].T @ qcur + // grad[S1] = diag_mask_zero(grad[S3], P) * scale + // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4])) + // grad[S4] = grad[S5] @ vcur + // grad[S4] = d[:D,id1,id2,id3] @ vcur + // grad[qcur] = grad[S1] @ kcur + // grad[vcur] = grad[S5].T @ S4 + // grad[vcur] = d[:D,id1,id2,id3].T @ S4 + // + // in post-order: + // + // S1 = qcur @ kcur.T + // S2 = S1 * scale + // S3 = diag_mask_inf(S2, P) + // S4 = softmax(S3) + // grad[S4] = d[:D,id1,id2,id3] @ vcur + // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4])) + // grad[S1] = diag_mask_zero(grad[S3], P) * scale + // grad[qcur] = grad[S1] @ kcur + // grad[kcur] = grad[S1].T @ qcur + // grad[vcur] = d[:D,id1,id2,id3].T @ S4 + // + // using less variables (SM=S4): + // + // S = diag_mask_inf(qcur @ kcur.T * scale, P) + // SM = softmax(S) + // S = d[:D,iq1,iq2,iq3] @ vcur + // dot_SM_gradSM = dot(SM, S) + // S = SM * (S - dot(SM, S)) + // S = diag_mask_zero(S, P) * scale + // + // grad[q][:D,iq1,iq2,iq3] += S @ kcur + // grad[k][:D,:M,ik2,ik3] += S.T @ qcur + // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM + } - // grad[k][:D,:M,iq2,iq3] += S.T @ qcur - // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0] - // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0] - for (int64_t ic = 0; ic < M; ++ic) { - // dst indices - const int i1 = iq1; - const int i2 = iq2; - const int i3 = iq3; + // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3] + // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3] + // for ic: + // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3] + // exclude known future zero S[..] values from operation + ggml_vec_set_f32(masked_begin, S, 0); + for (int64_t ic = 0; ic < D; ++ic) { + ggml_vec_mad_f32(masked_begin, + S, + (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), + *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3))); + } - // ggml_vec_set_f32(D, - // (float *) ((char *) grad_k + (ic*nbgk1 + i2*nbgk2 + i3*nbgk3)), - // 0); - ggml_vec_mad_f32(D, - (float *) ((char *) grad_k + (ic*nbgk1 + i2*nbgk2 + i3*nbgk3)), - (float *) ((char *) q->data + (i1*nbq1 + i2*nbq2 + i3*nbq3)), - S[ic]); - } + // S = SM * (S - dot(SM, S)) + float dot_SM_gradSM = 0; + ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, SM, S); + ggml_vec_acc1_f32(M, S, -dot_SM_gradSM); + ggml_vec_mul_f32 (masked_begin, S, S, SM); + + // S = diag_mask_zero(S, P) * scale + // already done by above ggml_vec_set_f32 + + // exclude known zero S[..] values from operation + ggml_vec_scale_f32(masked_begin, S, scale); + + // S shape [M,1] + // SM shape [M,1] + // kcur shape [D,M] + // qcur shape [D,1] + // vcur shape [M,D] + + // grad[q][:D,iq1,iq2,iq3] += S @ kcur + // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M] + // for ic: + // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3] + // exclude known zero S[..] values from loop + for (int64_t ic = 0; ic < masked_begin; ++ic) { + ggml_vec_mad_f32(D, + (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)), + (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)), + S[ic]); + } - // grad[v][:M,:D,iq2,iq3] += d[:D,iq1,iq2,iq3].T @ SM - // grad[v][:M,ic,iq2,iq3] += d[:D,iq1,iq2,iq3].T[0,ic] * SM[:M] - // grad[v][:M,ic,iq2,iq3] += d[ic,iq1,iq2,iq3] * SM[:M] - for (int64_t ic = 0; ic < D; ++ic) { - // dst indices - const int i1 = iq1; - const int i2 = iq2; - const int i3 = iq3; + // grad[k][:D,:M,iq2,iq3] += S.T @ qcur + // for ic: + // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0] + // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0] + // exclude known zero S[..] values from loop + for (int64_t ic = 0; ic < masked_begin; ++ic) { + ggml_vec_mad_f32(D, + (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)), + (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), + S[ic]); + } - // ggml_vec_set_f32(M, - // (float *) ((char *) grad_v + ( ic*nbgv1 + i2*nbgv2 + i3*nbgv3)), - // 0); - ggml_vec_mad_f32(M, - (float *) ((char *) grad_v + ( ic*nbgv1 + i2*nbgv2 + i3*nbgv3)), - SM, - *(float *) ((char *) d->data + (ic*nbd0 + i1*nbd1 + i2*nbd2 + i3*nbd3))); + // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM + // for ic: + // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M] + // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M] + // exclude known zero SM[..] values from mad + for (int64_t ic = 0; ic < D; ++ic) { + ggml_vec_mad_f32(masked_begin, + (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)), + SM, + *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3))); + } } } } @@ -14951,8 +15481,8 @@ static void ggml_compute_forward_win_part_f32( return; } - GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne); - GGML_TENSOR_LOCALS(int64_t, ne, dst, ne); + GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) + GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) const int32_t nep0 = ((const int32_t *)(dst->op_params))[0]; const int32_t nep1 = ((const int32_t *)(dst->op_params))[1]; @@ -15013,8 +15543,8 @@ static void ggml_compute_forward_win_unpart_f32( return; } - GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne); - GGML_TENSOR_LOCALS(int64_t, ne, dst, ne); + GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) + GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) const int32_t w = ((const int32_t *)(dst->op_params))[0]; @@ -15131,7 +15661,7 @@ static void ggml_compute_forward_get_rel_pos_f16( // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322 - GGML_TENSOR_UNARY_OP_LOCALS; + GGML_TENSOR_UNARY_OP_LOCALS const int64_t w = ne1; @@ -15829,7 +16359,7 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm } break; case GGML_OP_GET_ROWS_BACK: { - ggml_compute_forward_get_rows_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor); + ggml_compute_forward_get_rows_back(params, tensor->src[0], tensor->src[1], tensor); } break; case GGML_OP_DIAG: { @@ -15853,11 +16383,11 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm } break; case GGML_OP_ROPE: { - ggml_compute_forward_rope(params, tensor->src[0], tensor); + ggml_compute_forward_rope(params, tensor->src[0], tensor->src[1], tensor); } break; case GGML_OP_ROPE_BACK: { - ggml_compute_forward_rope_back(params, tensor->src[0], tensor); + ggml_compute_forward_rope_back(params, tensor->src[0], tensor->src[1], tensor); } break; case GGML_OP_ALIBI: { @@ -16002,7 +16532,218 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm //////////////////////////////////////////////////////////////////////////////// -static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) { +static_assert(GGML_GRAPH_HASHTABLE_SIZE > GGML_MAX_NODES * 2, "GGML_GRAPH_HT_SIZE is too small"); + +static size_t hash(void * p) { + return (size_t)p % GGML_GRAPH_HASHTABLE_SIZE; +} + +static size_t hash_find(void * hash_table[], void * p) { + size_t h = hash(p); + + // linear probing + size_t i = h; + while (hash_table[i] != NULL && hash_table[i] != p) { + i = (i + 1) % GGML_GRAPH_HASHTABLE_SIZE; + if (i == h) { + // visited all hash table entries -> not found + return GGML_GRAPH_HASHTABLE_SIZE; + } + } + return i; +} + +static bool hash_insert(void * hash_table[], void * p) { + size_t i = hash_find(hash_table, p); + + GGML_ASSERT(i < GGML_GRAPH_HASHTABLE_SIZE); // assert that not full + + if (hash_table[i] == p) { + return true; + } + + // insert + GGML_ASSERT(hash_table[i] == NULL); + hash_table[i] = p; + return false; +} + +static bool hash_contains(void * hash_table[], void * p) { + size_t i = hash_find(hash_table, p); + return (i < GGML_GRAPH_HASHTABLE_SIZE) && (hash_table[i] == p); +} + +struct hash_map { + void * keys[GGML_GRAPH_HASHTABLE_SIZE]; + void * vals[GGML_GRAPH_HASHTABLE_SIZE]; +}; + +static struct hash_map * new_hash_map(void) { + struct hash_map * result = malloc(sizeof(struct hash_map)); + for (int i=0; ikeys[i] = NULL; + result->vals[i] = NULL; + } + return result; +} + +static void free_hash_map(struct hash_map * map) { + free(map); +} + +// gradient checkpointing + +static struct ggml_tensor * ggml_recompute_graph_node( + struct ggml_context * ctx, + struct ggml_cgraph * graph, + struct hash_map * replacements, + struct ggml_tensor * node) { + + if (node == NULL) { + return NULL; + } + + if (node->is_param) { + return node; + } + + if (!hash_contains(graph->visited_hash_table, node)) { + return node; + } + + int count_children = 0; + for (int k = 0; k < GGML_MAX_SRC; ++k) { + if (node->src[k]) { + ++count_children; + } + } + + if (count_children == 0) { + return node; + } + + size_t i = hash_find(replacements->keys, node); + GGML_ASSERT(i < GGML_GRAPH_HASHTABLE_SIZE); // assert that not full + if (replacements->keys[i] == node) { + return (struct ggml_tensor *) replacements->vals[i]; + } + + struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, node->n_dims, node->ne); + + // insert clone into replacements + GGML_ASSERT(replacements->keys[i] == NULL); // assert that we don't overwrite + replacements->keys[i] = node; + replacements->vals[i] = clone; + + clone->op = node->op; + clone->grad = node->grad; + clone->is_param = node->is_param; + clone->extra = node->extra; + for (int k = 0; k < GGML_MAX_DIMS; ++k) { + clone->nb[k] = node->nb[k]; + } + for (int k = 0; k < GGML_MAX_SRC; ++k) { + clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]); + } + if (node->view_src != NULL) { + clone->data = (node->view_src->data == NULL) + ? NULL // view_src not yet allocated + : (char *) node->view_src->data // view_src already allocated + + node->view_offs; + clone->view_src = node->view_src; + clone->view_offs = node->view_offs; + } + + GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t))); + GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME); + memcpy(clone->op_params, node->op_params, sizeof(node->op_params)); + ggml_format_name(clone, "%s (clone)", ggml_get_name(node)); + + return clone; +} + +void ggml_build_backward_gradient_checkpointing( + struct ggml_context * ctx, + struct ggml_cgraph * gf, + struct ggml_cgraph * gb, + struct ggml_cgraph * gb_tmp, + struct ggml_tensor * * checkpoints, + int n_checkpoints) { + *gb_tmp = *gf; + ggml_build_backward_expand(ctx, gf, gb_tmp, true); + + if (n_checkpoints <= 0) { + *gb = *gb_tmp; + return; + } + + struct hash_map * replacements = new_hash_map(); + + // insert checkpoints in replacements + for (int i = 0; i < n_checkpoints; ++i) { + size_t k = hash_find(replacements->keys, checkpoints[i]); + GGML_ASSERT(k < GGML_GRAPH_HASHTABLE_SIZE); // assert that not full + GGML_ASSERT(replacements->keys[k] == NULL); // assert that we don't overwrite + replacements->keys[k] = checkpoints[i]; + replacements->vals[k] = checkpoints[i]; + } + + *gb = *gf; + // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes], + // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]), + // by recomputing them from checkpoints + for (int i = gf->n_nodes; in_nodes; ++i) { + struct ggml_tensor * node = gb_tmp->nodes[i]; + for (int k = 0; k < GGML_MAX_SRC; ++k) { + // insert new tensors recomputing src, reusing already made replacements, + // remember replacements: remember new tensors with mapping from corresponding gf nodes + // recurse for input tensors, + // unless (i.e. terminating when) input tensors are replacments (like checkpoints) + node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]); + } + // insert rewritten backward node with replacements made into resulting backward graph gb + ggml_build_forward_expand(gb, node); + } + + free_hash_map(replacements); +} + +// functions to change gradients considering the case that input a might be initial gradient with zero value + +static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, void * zero_table[]) { + if (hash_contains(zero_table, a)) { + return b; + } else { + return ggml_add_impl(ctx, a, b, false); + } +} + +static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, void * zero_table[]) { + if (hash_contains(zero_table, a)) { + struct ggml_tensor * a_zero = ggml_scale(ctx, a, ggml_new_f32(ctx, 0)); + return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false); + } else { + return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false); + } +} + +static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, void * zero_table[]) { + if (hash_contains(zero_table, a)) { + return ggml_repeat(ctx, b, a); + } else { + return ggml_add1_impl(ctx, a, b, false); + } +} + +static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, void * zero_table[]) { + if (hash_contains(zero_table, a)) { + return ggml_neg(ctx, b); + } else { + return ggml_sub_impl(ctx, a, b, false); + } +} + +static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, void * zero_table[]) { struct ggml_tensor * src0 = tensor->src[0]; struct ggml_tensor * src1 = tensor->src[1]; @@ -16010,34 +16751,34 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor case GGML_OP_DUP: { if (src0->grad) { - src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace); + src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table); } } break; case GGML_OP_ADD: { if (src0->grad) { - src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace); + src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table); } if (src1->grad) { - src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace); + src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table); } } break; case GGML_OP_ADD1: { if (src0->grad) { - src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace); + src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table); } if (src1->grad) { - src1->grad = ggml_add_impl(ctx, + src1->grad = ggml_add_or_set(ctx, src1->grad, ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean - inplace); + zero_table); } } break; case GGML_OP_ACC: { if (src0->grad) { - src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace); + src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table); } if (src1->grad) { const size_t nb1 = ((int32_t *) tensor->op_params)[0]; @@ -16054,117 +16795,117 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor nb1, nb2, nb3, offset); src1->grad = - ggml_add_impl(ctx, + ggml_add_or_set(ctx, src1->grad, ggml_reshape(ctx, ggml_cont(ctx, tensor_grad_view), src1->grad), - inplace); + zero_table); } } break; case GGML_OP_SUB: { if (src0->grad) { - src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace); + src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table); } if (src1->grad) { - src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace); + src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table); } } break; case GGML_OP_MUL: { if (src0->grad) { src0->grad = - ggml_add_impl(ctx, + ggml_add_or_set(ctx, src0->grad, ggml_mul(ctx, src1, tensor->grad), - inplace); + zero_table); } if (src1->grad) { src1->grad = - ggml_add_impl(ctx, + ggml_add_or_set(ctx, src1->grad, ggml_mul(ctx, src0, tensor->grad), - inplace); + zero_table); } } break; case GGML_OP_DIV: { if (src0->grad) { src0->grad = - ggml_add_impl(ctx, + ggml_add_or_set(ctx, src0->grad, ggml_div(ctx, tensor->grad, src1), - inplace); + zero_table); } if (src1->grad) { src1->grad = - ggml_sub_impl(ctx, + ggml_sub_or_set(ctx, src1->grad, ggml_mul(ctx, tensor->grad, ggml_div(ctx, tensor, src1)), - inplace); + zero_table); } } break; case GGML_OP_SQR: { if (src0->grad) { src0->grad = - ggml_add_impl(ctx, + ggml_add_or_set(ctx, src0->grad, ggml_scale(ctx, ggml_mul(ctx, src0, tensor->grad), ggml_new_f32(ctx, 2.0f)), - inplace); + zero_table); } } break; case GGML_OP_SQRT: { if (src0->grad) { src0->grad = - ggml_add_impl(ctx, + ggml_add_or_set(ctx, src0->grad, ggml_scale(ctx, ggml_div(ctx, tensor->grad, tensor), ggml_new_f32(ctx, 0.5f)), - inplace); + zero_table); } } break; case GGML_OP_LOG: { if (src0->grad) { src0->grad = - ggml_add_impl(ctx, + ggml_add_or_set(ctx, src0->grad, ggml_div(ctx, tensor->grad, src0), - inplace); + zero_table); } } break; case GGML_OP_SUM: { if (src0->grad) { src0->grad = - ggml_add1_impl(ctx, + ggml_add1_or_set(ctx, src0->grad, tensor->grad, - inplace); + zero_table); } } break; case GGML_OP_SUM_ROWS: { if (src0->grad) { src0->grad = - ggml_add_impl(ctx, + ggml_add_or_set(ctx, src0->grad, ggml_repeat(ctx, tensor->grad, src0->grad), - inplace); + zero_table); } } break; case GGML_OP_MEAN: @@ -16176,20 +16917,20 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor { // necessary for llama if (src0->grad) { - src0->grad = ggml_add_impl(ctx, + src0->grad = ggml_add_or_set(ctx, src0->grad, ggml_repeat_back(ctx, tensor->grad, src0->grad), - inplace); + zero_table); } } break; case GGML_OP_REPEAT_BACK: { if (src0->grad) { // TODO: test this - src0->grad = ggml_add_impl(ctx, + src0->grad = ggml_add_or_set(ctx, src0->grad, ggml_repeat(ctx, tensor->grad, src0->grad), - inplace); + zero_table); } } break; case GGML_OP_CONCAT: @@ -16211,10 +16952,10 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor float eps; memcpy(&eps, tensor->op_params, sizeof(float)); - src0->grad = ggml_add_impl(ctx, + src0->grad = ggml_add_or_set(ctx, src0->grad, ggml_rms_norm_back(ctx, src0, tensor->grad, eps), - inplace); + zero_table); } } break; case GGML_OP_RMS_NORM_BACK: @@ -16238,37 +16979,49 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix // ds1 = t.T.dot(dt) - // tensor.shape [m,p] - // src0.shape [n,m] - // src1.shape [n,p] + // tensor.shape [m,p,qq,rr] + // src0.shape [n,m,q1,r1] + // src1.shape [n,p,qq,rr] // necessary for llama if (src0->grad) { + struct ggml_tensor * s1_tg = + ggml_out_prod(ctx, // [n,m,qq,rr] + src1, // [n,p,qq,rr] + tensor->grad); // [m,p,qq,rr] + const int64_t qq = s1_tg->ne[2]; + const int64_t rr = s1_tg->ne[3]; + const int64_t q1 = src0->ne[2]; + const int64_t r1 = src0->ne[3]; + const bool ne2_broadcasted = qq > q1; + const bool ne3_broadcasted = rr > r1; + if (ne2_broadcasted || ne3_broadcasted) { + // sum broadcast repetitions of s1_tg into shape of src0 + s1_tg = ggml_repeat_back(ctx, s1_tg, src0); + } src0->grad = - ggml_add_impl(ctx, - src0->grad, - ggml_out_prod(ctx, // [n,m] - src1, // [n,p] - tensor->grad), // [m,p] - inplace); + ggml_add_or_set(ctx, + src0->grad, // [n,m,q1,r1] + s1_tg, // [n,m,q1,r1] + zero_table); } if (src1->grad) { src1->grad = - ggml_add_impl(ctx, - src1->grad, - // ggml_mul_mat(ctx, // [n,p] - // ggml_cont(ctx, // [m,n] - // ggml_transpose(ctx, src0)), // [m,n] - // tensor->grad), // [m,p] + ggml_add_or_set(ctx, + src1->grad, // [n,p,qq,rr] + // ggml_mul_mat(ctx, // [n,p,qq,rr] + // ggml_cont(ctx, // [m,n,q1,r1] + // ggml_transpose(ctx, src0)), // [m,n,q1,r1] + // tensor->grad), // [m,p,qq,rr] // // when src0 is bigger than tensor->grad (this is mostly the case in llama), // // avoid transpose of src0, rather transpose smaller tensor->grad // // and then use ggml_out_prod - ggml_out_prod(ctx, // [n,p] - src0, // [n,m] - ggml_transpose(ctx, // [p,m] - tensor->grad)), // [m,p] - inplace); + ggml_out_prod(ctx, // [n,p,qq,rr] + src0, // [n,m,q1,r1] + ggml_transpose(ctx, // [p,m,qq,rr] + tensor->grad)), // [m,p,qq,rr] + zero_table); } } break; case GGML_OP_OUT_PROD: @@ -16280,17 +17033,17 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor // necessary for llama if (src0->grad) { src0->grad = - ggml_add_impl(ctx, + ggml_add_or_set(ctx, src0->grad, ggml_scale_impl(ctx, tensor->grad, src1, false), - inplace); + zero_table); } if (src1->grad) { src1->grad = - ggml_add_impl(ctx, + ggml_add_or_set(ctx, src1->grad, ggml_sum(ctx, ggml_mul_impl(ctx, tensor->grad, src0, false)), - inplace); + zero_table); } } break; case GGML_OP_SET: @@ -16317,23 +17070,23 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor } if (src0->grad) { - src0->grad = ggml_add_impl(ctx, + src0->grad = ggml_add_or_set(ctx, src0->grad, ggml_acc_impl(ctx, tensor->grad, ggml_neg(ctx, tensor_grad_view), nb1, nb2, nb3, offset, false), - inplace); + zero_table); } if (src1->grad) { src1->grad = - ggml_add_impl(ctx, + ggml_add_or_set(ctx, src1->grad, ggml_reshape(ctx, ggml_cont(ctx, tensor_grad_view), src1->grad), - inplace); + zero_table); } } break; case GGML_OP_CPY: @@ -16344,7 +17097,7 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor // tensor = src0 * 1 + src1 * 0 if (src0->grad) { // dsrc0 = dtensor * 1 - src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace); + src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table); } if (src1->grad) { // dsrc1 = dtensor * 0 -> noop @@ -16356,7 +17109,7 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor if (src0->grad) { GGML_ASSERT(ggml_is_contiguous(src0->grad)); GGML_ASSERT(ggml_is_contiguous(tensor->grad)); - src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace); + src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table); } } break; case GGML_OP_RESHAPE: @@ -16364,9 +17117,13 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor // necessary for llama if (src0->grad) { src0->grad = - ggml_add_impl(ctx, src0->grad, - ggml_reshape(ctx, tensor->grad, src0->grad), - inplace); + ggml_add_or_set(ctx, src0->grad, + ggml_reshape(ctx, + ggml_is_contiguous(tensor->grad) + ? tensor->grad + : ggml_cont(ctx, tensor->grad), + src0->grad), + zero_table); } } break; case GGML_OP_VIEW: @@ -16395,7 +17152,7 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor nb3 = (nb3 / n0) * ng; } - src0->grad = ggml_acc_impl(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, inplace); + src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table); } } break; case GGML_OP_PERMUTE: @@ -16413,14 +17170,14 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor axes_backward[axis2] = 2; axes_backward[axis3] = 3; src0->grad = - ggml_add_impl(ctx, src0->grad, + ggml_add_or_set(ctx, src0->grad, ggml_permute(ctx, tensor->grad, axes_backward[0], axes_backward[1], axes_backward[2], axes_backward[3]), - inplace); + zero_table); } } break; case GGML_OP_TRANSPOSE: @@ -16428,9 +17185,9 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor // necessary for llama if (src0->grad) { src0->grad = - ggml_add_impl(ctx, src0->grad, + ggml_add_or_set(ctx, src0->grad, ggml_transpose(ctx, tensor->grad), - inplace); + zero_table); } } break; case GGML_OP_GET_ROWS: @@ -16438,9 +17195,11 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor // necessary for llama (only for tokenizer) if (src0->grad) { src0->grad = - ggml_add_impl(ctx, src0->grad, + ggml_add_or_set(ctx, src0->grad, + // last ggml_get_rows_back argument src0->grad is only + // necessary to setup correct output shape ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad), - inplace); + zero_table); } if (src1->grad) { // noop @@ -16460,9 +17219,9 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor if (src0->grad) { const int n_past = ((int32_t *) tensor->op_params)[0]; src0->grad = - ggml_add_impl(ctx, src0->grad, + ggml_add_or_set(ctx, src0->grad, ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false), - inplace); + zero_table); } } break; case GGML_OP_DIAG_MASK_ZERO: @@ -16471,9 +17230,9 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor if (src0->grad) { const int n_past = ((int32_t *) tensor->op_params)[0]; src0->grad = - ggml_add_impl(ctx, src0->grad, + ggml_add_or_set(ctx, src0->grad, ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false), - inplace); + zero_table); } } break; case GGML_OP_SOFT_MAX: @@ -16481,9 +17240,9 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor // necessary for llama if (src0->grad) { src0->grad = - ggml_add_impl(ctx, src0->grad, + ggml_add_or_set(ctx, src0->grad, ggml_soft_max_back(ctx, tensor->grad, tensor), - inplace); + zero_table); } } break; @@ -16495,7 +17254,7 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor { // necessary for llama if (src0->grad) { - const int n_past = ((int32_t *) tensor->op_params)[0]; + //const int n_past = ((int32_t *) tensor->op_params)[0]; const int n_dims = ((int32_t *) tensor->op_params)[1]; const int mode = ((int32_t *) tensor->op_params)[2]; const int n_ctx = ((int32_t *) tensor->op_params)[3]; @@ -16508,11 +17267,11 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor memcpy(&xpos_base, (int32_t *) tensor->op_params + 6, sizeof(float)); memcpy(&xpos_down, (int32_t *) tensor->op_params + 7, sizeof(bool)); - src0->grad = ggml_add_impl(ctx, + src0->grad = ggml_add_or_set(ctx, src0->grad, ggml_rope_back(ctx, tensor->grad, - n_past, + src1, n_dims, mode, n_ctx, @@ -16520,13 +17279,13 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor freq_scale, xpos_base, xpos_down), - inplace); + zero_table); } } break; case GGML_OP_ROPE_BACK: { if (src0->grad) { - const int n_past = ((int32_t *) tensor->op_params)[0]; + //const int n_past = ((int32_t *) tensor->op_params)[0]; const int n_dims = ((int32_t *) tensor->op_params)[1]; const int mode = ((int32_t *) tensor->op_params)[2]; const int n_ctx = ((int32_t *) tensor->op_params)[3]; @@ -16539,11 +17298,11 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor memcpy(&xpos_base, (int32_t *) tensor->op_params + 6, sizeof(float)); memcpy(&xpos_down, (int32_t *) tensor->op_params + 7, sizeof(bool)); - src0->grad = ggml_add_impl(ctx, + src0->grad = ggml_add_or_set(ctx, src0->grad, ggml_rope_impl(ctx, tensor->grad, - n_past, + src1, n_dims, mode, n_ctx, @@ -16552,7 +17311,7 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor xpos_base, xpos_down, false), - inplace); + zero_table); } } break; case GGML_OP_ALIBI: @@ -16603,145 +17362,42 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor masked); } - if (src0->grad) { - struct ggml_tensor * grad_q = NULL; - const size_t nb0 = flash_grad->nb[0]; - const size_t offset = 0; - switch(src0->n_dims) { - case 2: - { - grad_q = ggml_view_2d(ctx, - flash_grad, - src0->ne[0], - src0->ne[1], - nb0*src0->ne[0], - offset); - } break; - case 3: - { - grad_q = ggml_view_3d(ctx, - flash_grad, - src0->ne[0], - src0->ne[1], - src0->ne[2], - nb0*src0->ne[0], - nb0*src0->ne[0]*src0->ne[1], - offset); - } break; - case 4: - { - grad_q = ggml_view_4d(ctx, - flash_grad, - src0->ne[0], - src0->ne[1], - src0->ne[2], - src0->ne[3], - nb0*src0->ne[0], - nb0*src0->ne[0]*src0->ne[1], - nb0*src0->ne[0]*src0->ne[1]*src0->ne[2], - offset); - } break; - } + struct ggml_tensor * src2 = tensor->src[2]; + const int64_t elem_q = ggml_nelements(src0); + const int64_t elem_k = ggml_nelements(src1); + const int64_t elem_v = ggml_nelements(src2); + + enum ggml_type result_type = flash_grad->type; + GGML_ASSERT(ggml_blck_size(result_type) == 1); + const size_t tsize = ggml_type_size(result_type); + + const size_t offs_q = 0; + const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN); + const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN); - src0->grad = ggml_add_impl(ctx, + if (src0->grad) { + struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q); + struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0); + src0->grad = ggml_add_or_set(ctx, src0->grad, grad_q, - inplace); + zero_table); } - if (src1->grad) { - struct ggml_tensor * grad_k = NULL; - const size_t nb0 = flash_grad->nb[0]; - const size_t offset = nb0*src0->ne[0]*src0->ne[1]*src0->ne[2]*src0->ne[3]; - switch(src1->n_dims) { - case 2: - { - grad_k = ggml_view_2d(ctx, - flash_grad, - src1->ne[0], - src1->ne[1], - nb0*src1->ne[0], - offset); - } break; - case 3: - { - grad_k = ggml_view_3d(ctx, - flash_grad, - src1->ne[0], - src1->ne[1], - src1->ne[2], - nb0*src1->ne[0], - nb0*src1->ne[0]*src1->ne[1], - offset); - } break; - case 4: - { - grad_k = ggml_view_4d(ctx, - flash_grad, - src1->ne[0], - src1->ne[1], - src1->ne[2], - src1->ne[3], - nb0*src1->ne[0], - nb0*src1->ne[0]*src1->ne[1], - nb0*src1->ne[0]*src1->ne[1]*src1->ne[2], - offset); - } break; - } - - src1->grad = ggml_add_impl(ctx, + struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k); + struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1); + src1->grad = ggml_add_or_set(ctx, src1->grad, grad_k, - inplace); + zero_table); } - - struct ggml_tensor * opt0 = tensor->src[2]; - - if (opt0->grad) { - struct ggml_tensor * grad_v = NULL; - const size_t nb0 = flash_grad->nb[0]; - const size_t offset = nb0*src0->ne[0]*src0->ne[1]*src0->ne[2]*src0->ne[3] - + nb0*src1->ne[0]*src1->ne[1]*src1->ne[2]*src1->ne[3]; - switch(opt0->n_dims) { - case 2: - { - grad_v = ggml_view_2d(ctx, - flash_grad, - opt0->ne[0], - opt0->ne[1], - nb0*opt0->ne[0], - offset); - } break; - case 3: - { - grad_v = ggml_view_3d(ctx, - flash_grad, - opt0->ne[0], - opt0->ne[1], - opt0->ne[2], - nb0*opt0->ne[0], - nb0*opt0->ne[0]*opt0->ne[1], - offset); - } break; - case 4: - { - grad_v = ggml_view_4d(ctx, - flash_grad, - opt0->ne[0], - opt0->ne[1], - opt0->ne[2], - opt0->ne[3], - nb0*opt0->ne[0], - nb0*opt0->ne[0]*opt0->ne[1], - nb0*opt0->ne[0]*opt0->ne[1]*opt0->ne[2], - offset); - } break; - } - - opt0->grad = ggml_add_impl(ctx, - opt0->grad, + if (src2->grad) { + struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v); + struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2); + src2->grad = ggml_add_or_set(ctx, + src2->grad, grad_v, - inplace); + zero_table); } } break; case GGML_OP_FLASH_FF: @@ -16761,12 +17417,12 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor { if (src0->grad) { src0->grad = - ggml_add_impl(ctx, + ggml_add_or_set(ctx, src0->grad, ggml_mul(ctx, ggml_sgn(ctx, src0), tensor->grad), - inplace); + zero_table); } } break; case GGML_UNARY_OP_SGN: @@ -16778,7 +17434,7 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor case GGML_UNARY_OP_NEG: { if (src0->grad) { - src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace); + src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table); } } break; case GGML_UNARY_OP_STEP: @@ -16798,12 +17454,12 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor case GGML_UNARY_OP_RELU: { if (src0->grad) { - src0->grad = ggml_add_impl(ctx, + src0->grad = ggml_add_or_set(ctx, src0->grad, ggml_mul(ctx, ggml_step(ctx, src0), tensor->grad), - inplace); + zero_table); } } break; case GGML_UNARY_OP_GELU: @@ -16818,10 +17474,10 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor { // necessary for llama if (src0->grad) { - src0->grad = ggml_add_impl(ctx, + src0->grad = ggml_add_or_set(ctx, src0->grad, ggml_silu_back(ctx, src0, tensor->grad), - inplace); + zero_table); } } break; default: @@ -16844,13 +17500,13 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor case GGML_OP_CROSS_ENTROPY_LOSS: { if (src0->grad) { - src0->grad = ggml_add_impl(ctx, + src0->grad = ggml_add_or_set(ctx, src0->grad, ggml_cross_entropy_loss_back(ctx, src0, src1, tensor->grad), - inplace); + zero_table); } } break; case GGML_OP_CROSS_ENTROPY_LOSS_BACK: @@ -16866,34 +17522,12 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor GGML_ASSERT(false); } break; } -} -static_assert(GGML_GRAPH_HASHTABLE_SIZE > GGML_MAX_NODES * 2, "GGML_GRAPH_HT_SIZE is too small"); - -static size_t hash(void * p) { - return (size_t)p % GGML_GRAPH_HASHTABLE_SIZE; -} - -static bool hash_insert(void * hash_table[], void * p) { - size_t h = hash(p); - - // linear probing - size_t i = h; - while (hash_table[i] != NULL && hash_table[i] != p) { - i = (i + 1) % GGML_GRAPH_HASHTABLE_SIZE; - if (i == h) { - // hash table is full - GGML_ASSERT(false); + for (int i = 0; i < GGML_MAX_SRC; ++i) { + if (tensor->src[i] && tensor->src[i]->grad) { + GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad)); } } - - if (hash_table[i] == p) { - return true; - } - - // insert - hash_table[i] = p; - return false; } static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) { @@ -16911,8 +17545,12 @@ static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * } for (int i = 0; i < GGML_MAX_SRC; ++i) { - if (node->src[i]) { - ggml_visit_parents(cgraph, node->src[i]); + const int k = + (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i : + (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) : + /* unknown order, just fall back to using i*/ i; + if (node->src[k]) { + ggml_visit_parents(cgraph, node->src[k]); } } @@ -16971,6 +17609,7 @@ struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) { /*.grads =*/ { NULL }, /*.leafs =*/ { NULL }, /*.hash_table =*/ { NULL }, + /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT, /*.perf_runs =*/ 0, /*.perf_cycles =*/ 0, /*.perf_time_us =*/ 0, @@ -16996,12 +17635,22 @@ void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * } } + // remember original gradients which start with zero values + void ** zero_table = malloc(sizeof(void *) * GGML_GRAPH_HASHTABLE_SIZE); + memset(zero_table, 0, sizeof(void*) * GGML_GRAPH_HASHTABLE_SIZE); + for (int i = 0; i < gf->n_nodes; i++) { + if (gf->grads[i]) { + hash_insert(zero_table, gf->grads[i]); + } + } + for (int i = gf->n_nodes - 1; i >= 0; i--) { struct ggml_tensor * node = gf->nodes[i]; - // because we detached the grad nodes from the original graph, we can afford inplace operations + // inplace operations to add gradients are not created by ggml_compute_backward + // use allocator to automatically make inplace operations if (node->grad) { - ggml_compute_backward(ctx, node, keep); + ggml_compute_backward(ctx, node, zero_table); } } @@ -17013,6 +17662,8 @@ void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * ggml_build_forward_expand(gb, node->grad); } } + + free(zero_table); } struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) { @@ -17032,6 +17683,7 @@ struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) { /*.grads =*/ { NULL }, /*.leafs =*/ { NULL }, /*.hash_table =*/ { NULL }, + /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT, /*.perf_runs =*/ 0, /*.perf_cycles =*/ 0, /*.perf_time_us =*/ 0, @@ -17283,10 +17935,18 @@ static thread_ret_t ggml_graph_compute_thread(void * data) { } else { // wait for other threads to finish const int last = node_n; - do { - //sched_yield(); + while (true) { + // TODO: this sched_yield can have significant impact on the performance - either positive or negative + // depending on the workload and the operating system. + // since it is not clear what is the best approach, it should potentially become user-configurable + // ref: https://github.com/ggerganov/ggml/issues/291 +#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) + sched_yield(); +#endif + node_n = atomic_load(&state->shared->node_n); - } while (node_n == last); + if (node_n != last) break; + }; } // check if we should stop @@ -17414,7 +18074,6 @@ struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) { } break; case GGML_OP_CONCAT: case GGML_OP_MUL_MAT: - case GGML_OP_OUT_PROD: { n_tasks = n_threads; @@ -17456,6 +18115,18 @@ struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) { cur = 0; } + work_size = MAX(work_size, cur); + } break; + case GGML_OP_OUT_PROD: + { + n_tasks = n_threads; + + size_t cur = 0; + + if (ggml_is_quantized(node->src[0]->type)) { + cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks; + } + work_size = MAX(work_size, cur); } break; case GGML_OP_SCALE: @@ -18337,10 +19008,11 @@ void ggml_graph_print(const struct ggml_cgraph * cgraph) { for (int i = 0; i < cgraph->n_leafs; i++) { struct ggml_tensor * node = cgraph->leafs[i]; - GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s\n", + GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n", i, node->ne[0], node->ne[1], - ggml_op_name(node->op)); + ggml_op_name(node->op), + ggml_get_name(node)); } for (int i = 0; i < GGML_OP_COUNT; i++) { @@ -18548,7 +19220,7 @@ static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * } static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) { - int i = 0; + int64_t i = 0; for (int p = 0; p < np; ++p) { const int64_t ne = ggml_nelements(ps[p]) ; // TODO: add function to get all elements at once @@ -18558,6 +19230,17 @@ static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g } } +static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) { + int64_t i = 0; + for (int p = 0; p < np; ++p) { + const int64_t ne = ggml_nelements(ps[p]) ; + // TODO: add function to get all elements at once + for (int64_t j = 0; j < ne; ++j) { + g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale; + } + } +} + // // ADAM // @@ -18606,26 +19289,43 @@ static enum ggml_opt_result ggml_opt_adam( const float eps = params.adam.eps; const float gclip = params.adam.gclip; const int decay_min_ndim = params.adam.decay_min_ndim; + const int n_accum = MAX(1, params.n_gradient_accumulation); + const float accum_norm = 1.0f / (float) n_accum; + float * g = opt->adam.g->data; // gradients float * m = opt->adam.m->data; // first moment float * v = opt->adam.v->data; // second moment float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values - if (callback) { - callback(callback_data, &sched); - } - - // compute the function value - ggml_graph_reset (gf); - ggml_set_f32 (f->grad, 1.0f); - struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads); struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size); cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs; - ggml_graph_compute(gb, &cplan); - opt->adam.fx_prev = ggml_get_f32_1d(f, 0); + bool cancel = false; + + // compute the function value + float fx = 0; + ggml_set_zero(opt->adam.g); + for (int accum_step = 0; accum_step < n_accum; ++accum_step) { + if (callback) { + callback(callback_data, accum_step, &sched, &cancel); + if (cancel) { + break; + } + } + // ggml_graph_reset (gf); + ggml_set_f32 (f->grad, 1.0f); + ggml_graph_compute(gb, &cplan); + ggml_opt_acc_grad(np, ps, g, accum_norm); + fx += ggml_get_f32_1d(f, 0); + } + if (cancel) { + return GGML_OPT_DID_NOT_CONVERGE; + } + fx *= accum_norm; + + opt->adam.fx_prev = fx; opt->adam.fx_best = opt->adam.fx_prev; if (pf) { pf[opt->iter % params.past] = opt->adam.fx_prev; @@ -18648,6 +19348,9 @@ static enum ggml_opt_result ggml_opt_adam( // run the optimizer for (int t = 0; t < params.adam.n_iter; ++t) { + if (cancel) { + break; + } opt->iter = iter0 + t + 1; GGML_PRINT_DEBUG ("=== iter %d ===\n", t); @@ -18670,12 +19373,8 @@ static enum ggml_opt_result ggml_opt_adam( if (gclip > 0.0f) { // gradient clipping ggml_float sum = 0.0; - for (int p = 0; p < np; ++p) { - const int64_t ne = ggml_nelements(ps[p]); - for (int64_t j = 0; j < ne; ++j) { - float g = ggml_get_f32_1d(ps[p]->grad, j); - sum += (ggml_float)(g*g); - } + for (int64_t i = 0; i < nx; ++i) { + sum += (ggml_float)(g[i]*g[i]); } ggml_float norm = sqrt(sum); if (norm > (ggml_float) gclip) { @@ -18689,10 +19388,10 @@ static enum ggml_opt_result ggml_opt_adam( const int64_t ne = ggml_nelements(ps[p]); const float p_decay = ((ps[p]->n_dims >= decay_min_ndim) ? decay : 0.0f) * sched; for (int64_t j = 0; j < ne; ++j) { - float x = ggml_get_f32_1d(ps[p], j); - float g = ggml_get_f32_1d(ps[p]->grad, j)*gnorm; - m[i] = m[i]*beta1 + g*(1.0f - beta1); - v[i] = v[i]*beta2 + g*g*(1.0f - beta2); + float x = ggml_get_f32_1d(ps[p], j); + float g_ = g[i]*gnorm; + m[i] = m[i]*beta1 + g_*(1.0f - beta1); + v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2); float mh = m[i]*beta1h; float vh = v[i]*beta2h; vh = sqrtf(vh) + eps; @@ -18703,16 +19402,26 @@ static enum ggml_opt_result ggml_opt_adam( } } - if (callback) { - callback(callback_data, &sched); + fx = 0; + ggml_set_zero(opt->adam.g); + for (int accum_step = 0; accum_step < n_accum; ++accum_step) { + if (callback) { + callback(callback_data, accum_step, &sched, &cancel); + if (cancel) { + break; + } + } + // ggml_graph_reset (gf); + ggml_set_f32 (f->grad, 1.0f); + ggml_graph_compute(gb, &cplan); + ggml_opt_acc_grad(np, ps, g, accum_norm); + fx += ggml_get_f32_1d(f, 0); } + if (cancel) { + break; + } + fx *= accum_norm; - ggml_graph_reset (gf); - ggml_set_f32 (f->grad, 1.0f); - - ggml_graph_compute(gb, &cplan); - - const float fx = ggml_get_f32_1d(f, 0); opt->loss_after = fx; @@ -18792,11 +19501,11 @@ static enum ggml_opt_result linesearch_backtracking( float * step, const float * xp, struct ggml_tensor * f, - struct ggml_cgraph * gf, struct ggml_cgraph * gb, struct ggml_cplan * cplan, const int np, struct ggml_tensor * ps[], + bool * cancel, ggml_opt_callback callback, void * callback_data) { int count = 0; @@ -18810,6 +19519,9 @@ static enum ggml_opt_result linesearch_backtracking( const float dec = 0.5f; const float inc = 2.1f; + const int n_accum = MAX(1, params->n_gradient_accumulation); + const float accum_norm = 1.0f / (float) n_accum; + if (*step <= 0.f) { return GGML_LINESEARCH_INVALID_PARAMETERS; } @@ -18826,13 +19538,7 @@ static enum ggml_opt_result linesearch_backtracking( finit = *fx; dgtest = params->lbfgs.ftol*dginit; - while (true) { - if (callback) { - // LBFG-S does not support learning rate -> ignore learning schedule - float sched = 0; - callback(callback_data, &sched); - } - + while (!*cancel) { ggml_vec_cpy_f32(nx, x, xp); ggml_vec_mad_f32(nx, x, d, *step); @@ -18840,14 +19546,28 @@ static enum ggml_opt_result linesearch_backtracking( { ggml_opt_set_params(np, ps, x); - ggml_graph_reset (gf); - ggml_set_f32 (f->grad, 1.0f); - - ggml_graph_compute(gb, cplan); - - ggml_opt_get_grad(np, ps, g); + *fx = 0; + memset(g, 0, sizeof(float)*nx); + for (int accum_step = 0; accum_step < n_accum; ++accum_step) { + if (callback) { + // LBFG-S does not support learning rate -> ignore learning schedule + float sched = 0; + callback(callback_data, accum_step, &sched, cancel); + if (*cancel) { + break; + } + } + // ggml_graph_reset (gf); + ggml_set_f32 (f->grad, 1.0f); + ggml_graph_compute(gb, cplan); + ggml_opt_acc_grad(np, ps, g, accum_norm); + *fx += ggml_get_f32_1d(f, 0); + } + if (*cancel) { + break; + } + *fx *= accum_norm; - *fx = ggml_get_f32_1d(f, 0); } ++count; @@ -18893,7 +19613,7 @@ static enum ggml_opt_result linesearch_backtracking( (*step) *= width; } - return GGML_LINESEARCH_FAIL; + GGML_UNREACHABLE(); } static enum ggml_opt_result ggml_opt_lbfgs( @@ -18948,6 +19668,9 @@ static enum ggml_opt_result ggml_opt_lbfgs( float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values + const int n_accum = MAX(1, params.n_gradient_accumulation); + const float accum_norm = 1.0f / (float) n_accum; + float fx = 0.0f; // cost function value float xnorm = 0.0f; // ||x|| float gnorm = 0.0f; // ||g|| @@ -18961,24 +19684,33 @@ static enum ggml_opt_result ggml_opt_lbfgs( float * lm_s = opt->lbfgs.lms->data; float * lm_y = opt->lbfgs.lmy->data; - if (callback) { - // LBFG-S does not support learning rate -> ignore learning schedule - float sched = 0; - callback(callback_data, &sched); - } + bool cancel = false; // evaluate the function value and its gradient { ggml_opt_set_params(np, ps, x); - ggml_graph_reset (gf); - ggml_set_f32 (f->grad, 1.0f); - - ggml_graph_compute(gb, &cplan); - - ggml_opt_get_grad(np, ps, g); - - fx = ggml_get_f32_1d(f, 0); + fx = 0; + memset(g, 0, sizeof(float)*nx); + for (int accum_step = 0; accum_step < n_accum; ++accum_step) { + if (callback) { + // LBFG-S does not support learning rate -> ignore learning schedule + float sched = 0; + callback(callback_data, accum_step, &sched, &cancel); + if (cancel) { + break; + } + } + // ggml_graph_reset (gf); + ggml_set_f32 (f->grad, 1.0f); + ggml_graph_compute(gb, &cplan); + ggml_opt_acc_grad(np, ps, g, accum_norm); + fx += ggml_get_f32_1d(f, 0); + } + if (cancel) { + return GGML_OPT_DID_NOT_CONVERGE; + } + fx *= accum_norm; opt->loss_before = fx; opt->loss_after = fx; @@ -19036,7 +19768,10 @@ static enum ggml_opt_result ggml_opt_lbfgs( ggml_vec_cpy_f32(nx, xp, x); ggml_vec_cpy_f32(nx, gp, g); - ls = linesearch_backtracking(¶ms, nx, x, &fx, g, d, step, xp, f, gf, gb, &cplan, np, ps, callback, callback_data); + ls = linesearch_backtracking(¶ms, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data); + if (!cancel) { + break; + } if (ls < 0) { // linesearch failed - go back to the previous point and return @@ -19145,7 +19880,7 @@ static enum ggml_opt_result ggml_opt_lbfgs( step[0] = 1.0; } - return GGML_OPT_DID_NOT_CONVERGE; + GGML_UNREACHABLE(); } struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) { @@ -19165,6 +19900,8 @@ struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) { .print_forward_graph = true, .print_backward_graph = true, + .n_gradient_accumulation = 1, + .adam = { .n_iter = 10000, .sched = 1.000f, @@ -19193,6 +19930,8 @@ struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) { .print_forward_graph = true, .print_backward_graph = true, + .n_gradient_accumulation = 1, + .lbfgs = { .m = 6, .n_iter = 100, @@ -19223,13 +19962,32 @@ GGML_API void ggml_opt_init( opt->iter = 0; opt->nx = nx; opt->just_initialized = true; + if (opt->ctx == NULL) { + struct ggml_init_params ctx_opt_params; + if (opt->params.type == GGML_OPT_ADAM) { + ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3; + if (opt->params.past > 0) { + ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past; + } + } else if (opt->params.type == GGML_OPT_LBFGS) { + ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2); + if (opt->params.past > 0) { + ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past; + } + } + ctx_opt_params.mem_buffer = NULL; + ctx_opt_params.no_alloc = false; + + opt->ctx = ggml_init(ctx_opt_params); + } switch (opt->params.type) { case GGML_OPT_ADAM: { - opt->adam.m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx); - opt->adam.v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx); + opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx); + opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx); + opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx); opt->adam.pf = params.past > 0 - ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past) + ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past) : NULL; ggml_set_zero(opt->adam.m); ggml_set_zero(opt->adam.v); @@ -19239,18 +19997,18 @@ GGML_API void ggml_opt_init( } break; case GGML_OPT_LBFGS: { - opt->lbfgs.x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx); - opt->lbfgs.xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx); - opt->lbfgs.g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx); - opt->lbfgs.gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx); - opt->lbfgs.d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx); + opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx); + opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx); + opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx); + opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx); + opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx); opt->lbfgs.pf = params.past > 0 - ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past) + ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past) : NULL; - opt->lbfgs.lmal = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.lbfgs.m); - opt->lbfgs.lmys = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.lbfgs.m); - opt->lbfgs.lms = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, params.lbfgs.m); - opt->lbfgs.lmy = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, params.lbfgs.m); + opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m); + opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m); + opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m); + opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m); ggml_set_zero(opt->lbfgs.x); ggml_set_zero(opt->lbfgs.xp); ggml_set_zero(opt->lbfgs.g); @@ -19856,10 +20614,10 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p } break; case GGUF_TYPE_ARRAY: case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break; - }; + } } break; case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); - }; + } if (!ok) { break; @@ -20099,27 +20857,27 @@ const char * gguf_type_name(enum gguf_type type) { return GGUF_TYPE_NAME[type]; } -int gguf_get_version(struct gguf_context * ctx) { +int gguf_get_version(const struct gguf_context * ctx) { return ctx->header.version; } -size_t gguf_get_alignment(struct gguf_context * ctx) { +size_t gguf_get_alignment(const struct gguf_context * ctx) { return ctx->alignment; } -size_t gguf_get_data_offset(struct gguf_context * ctx) { +size_t gguf_get_data_offset(const struct gguf_context * ctx) { return ctx->offset; } -void * gguf_get_data(struct gguf_context * ctx) { +void * gguf_get_data(const struct gguf_context * ctx) { return ctx->data; } -int gguf_get_n_kv(struct gguf_context * ctx) { +int gguf_get_n_kv(const struct gguf_context * ctx) { return ctx->header.n_kv; } -int gguf_find_key(struct gguf_context * ctx, const char * key) { +int gguf_find_key(const struct gguf_context * ctx, const char * key) { // return -1 if key not found int keyfound = -1; @@ -20135,85 +20893,101 @@ int gguf_find_key(struct gguf_context * ctx, const char * key) { return keyfound; } -const char * gguf_get_key(struct gguf_context * ctx, int i) { - return ctx->kv[i].key.data; +const char * gguf_get_key(const struct gguf_context * ctx, int key_id) { + return ctx->kv[key_id].key.data; } -enum gguf_type gguf_get_kv_type(struct gguf_context * ctx, int i) { - return ctx->kv[i].type; +enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) { + return ctx->kv[key_id].type; } -enum gguf_type gguf_get_arr_type(struct gguf_context * ctx, int i) { - return ctx->kv[i].value.arr.type; +enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) { + GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY); + return ctx->kv[key_id].value.arr.type; } -const void * gguf_get_arr_data(struct gguf_context * ctx, int i) { - return ctx->kv[i].value.arr.data; +const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) { + GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY); + return ctx->kv[key_id].value.arr.data; } -const char * gguf_get_arr_str(struct gguf_context * ctx, int key_id, int i) { +const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) { + GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY); struct gguf_kv * kv = &ctx->kv[key_id]; struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i]; return str->data; } -int gguf_get_arr_n(struct gguf_context * ctx, int i) { - return ctx->kv[i].value.arr.n; +int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) { + GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY); + return ctx->kv[key_id].value.arr.n; } -uint8_t gguf_get_val_u8(struct gguf_context * ctx, int i) { - return ctx->kv[i].value.uint8; +uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) { + GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8); + return ctx->kv[key_id].value.uint8; } -int8_t gguf_get_val_i8(struct gguf_context * ctx, int i) { - return ctx->kv[i].value.int8; +int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) { + GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8); + return ctx->kv[key_id].value.int8; } -uint16_t gguf_get_val_u16(struct gguf_context * ctx, int i) { - return ctx->kv[i].value.uint16; +uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) { + GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16); + return ctx->kv[key_id].value.uint16; } -int16_t gguf_get_val_i16(struct gguf_context * ctx, int i) { - return ctx->kv[i].value.int16; +int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) { + GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16); + return ctx->kv[key_id].value.int16; } -uint32_t gguf_get_val_u32(struct gguf_context * ctx, int i) { - return ctx->kv[i].value.uint32; +uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) { + GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32); + return ctx->kv[key_id].value.uint32; } -int32_t gguf_get_val_i32(struct gguf_context * ctx, int i) { - return ctx->kv[i].value.int32; +int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) { + GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32); + return ctx->kv[key_id].value.int32; } -float gguf_get_val_f32(struct gguf_context * ctx, int i) { - return ctx->kv[i].value.float32; +float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) { + GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32); + return ctx->kv[key_id].value.float32; } -uint64_t gguf_get_val_u64(struct gguf_context * ctx, int i) { - return ctx->kv[i].value.uint64; +uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) { + GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64); + return ctx->kv[key_id].value.uint64; } -int64_t gguf_get_val_i64(struct gguf_context * ctx, int i) { - return ctx->kv[i].value.int64; +int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) { + GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64); + return ctx->kv[key_id].value.int64; } -double gguf_get_val_f64(struct gguf_context * ctx, int i) { - return ctx->kv[i].value.float64; +double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) { + GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64); + return ctx->kv[key_id].value.float64; } -bool gguf_get_val_bool(struct gguf_context * ctx, int i) { - return ctx->kv[i].value.bool_; +bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) { + GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL); + return ctx->kv[key_id].value.bool_; } -const char * gguf_get_val_str (struct gguf_context * ctx, int i) { - return ctx->kv[i].value.str.data; +const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) { + GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING); + return ctx->kv[key_id].value.str.data; } -int gguf_get_n_tensors(struct gguf_context * ctx) { +int gguf_get_n_tensors(const struct gguf_context * ctx) { return ctx->header.n_tensors; } -int gguf_find_tensor(struct gguf_context * ctx, const char * name) { +int gguf_find_tensor(const struct gguf_context * ctx, const char * name) { // return -1 if tensor not found int tensorfound = -1; @@ -20229,11 +21003,11 @@ int gguf_find_tensor(struct gguf_context * ctx, const char * name) { return tensorfound; } -size_t gguf_get_tensor_offset(struct gguf_context * ctx, int i) { +size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) { return ctx->infos[i].offset; } -char * gguf_get_tensor_name(struct gguf_context * ctx, int i) { +char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) { return ctx->infos[i].name.data; } @@ -20516,7 +21290,7 @@ static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_si buf->offset += el_size; } -static void gguf_write_to_buf(struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) { +static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) { // write header gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic)); gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version)); @@ -20571,10 +21345,10 @@ static void gguf_write_to_buf(struct gguf_context * ctx, struct gguf_buf * buf, } break; case GGUF_TYPE_ARRAY: case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break; - }; + } } break; case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); - }; + } } // write tensor infos @@ -20631,7 +21405,7 @@ static void gguf_write_to_buf(struct gguf_context * ctx, struct gguf_buf * buf, } } -void gguf_write_to_file(struct gguf_context * ctx, const char * fname, bool only_meta) { +void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) { FILE * file = fopen(fname, "wb"); if (!file) { GGML_ASSERT(false && "failed to open file for writing"); @@ -20648,7 +21422,7 @@ void gguf_write_to_file(struct gguf_context * ctx, const char * fname, bool only fclose(file); } -size_t gguf_get_meta_size(struct gguf_context * ctx) { +size_t gguf_get_meta_size(const struct gguf_context * ctx) { // no allocs - only compute size struct gguf_buf buf = gguf_buf_init(0); @@ -20657,7 +21431,7 @@ size_t gguf_get_meta_size(struct gguf_context * ctx) { return buf.offset; } -void gguf_get_meta_data(struct gguf_context * ctx, void * data) { +void gguf_get_meta_data(const struct gguf_context * ctx, void * data) { struct gguf_buf buf = gguf_buf_init(16*1024); gguf_write_to_buf(ctx, &buf, true); @@ -20733,6 +21507,14 @@ int ggml_cpu_has_arm_fma(void) { #endif } +int ggml_cpu_has_metal(void) { +#if defined(GGML_USE_METAL) + return 1; +#else + return 0; +#endif +} + int ggml_cpu_has_f16c(void) { #if defined(__F16C__) return 1; diff --git a/ggml.h b/ggml.h index c936823d66140..460857fa4cbd1 100644 --- a/ggml.h +++ b/ggml.h @@ -195,6 +195,14 @@ # define GGML_DEPRECATED(func, hint) func #endif +#ifndef __GNUC__ +# define GGML_ATTRIBUTE_FORMAT(...) +#elif defined(__MINGW32__) +# define GGML_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__))) +#else +# define GGML_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__))) +#endif + #include #include #include @@ -206,8 +214,8 @@ #define GGML_QNT_VERSION_FACTOR 1000 // do not change this #define GGML_MAX_DIMS 4 -#define GGML_MAX_NODES 4096 -#define GGML_MAX_PARAMS 256 +#define GGML_MAX_NODES 16384 +#define GGML_MAX_PARAMS 1024 #define GGML_MAX_CONTEXTS 64 #define GGML_MAX_SRC 6 #define GGML_MAX_NAME 64 @@ -240,6 +248,14 @@ } \ } while (0) +#ifndef NDEBUG +#define GGML_UNREACHABLE() GGML_ASSERT(!"statement should not be reached") +#elif defined(__GNUC__) +#define GGML_UNREACHABLE() __builtin_unreachable() +#else +#define GGML_UNREACHABLE() ((void) 0) +#endif + // used to copy the number of elements and stride in bytes of tensors into local variables. // main purpose is to reduce code duplication and improve readability. // @@ -437,6 +453,12 @@ extern "C" { GGML_OBJECT_WORK_BUFFER }; + enum ggml_log_level { + GGML_LOG_LEVEL_ERROR = 2, + GGML_LOG_LEVEL_WARN = 3, + GGML_LOG_LEVEL_INFO = 4 + }; + // ggml object struct ggml_object { size_t offs; @@ -459,8 +481,8 @@ extern "C" { int n_dims; int64_t ne[GGML_MAX_DIMS]; // number of elements size_t nb[GGML_MAX_DIMS]; // stride in bytes: - // nb[0] = sizeof(type) - // nb[1] = nb[0] * ne[0] + padding + // nb[0] = ggml_type_size(type) + // nb[1] = nb[0] * (ne[0] / ggml_blck_size(type)) + padding // nb[i] = nb[i-1] * ne[i-1] // compute data @@ -512,7 +534,15 @@ extern "C" { // next prime after GGML_MAX_NODES // #define GGML_GRAPH_HASHTABLE_SIZE 4099 // next prime after GGML_MAX_NODES * 2 (nodes + leafs) - #define GGML_GRAPH_HASHTABLE_SIZE 8273 + // #define GGML_GRAPH_HASHTABLE_SIZE 8273 + // #define GGML_GRAPH_HASHTABLE_SIZE 16411 + #define GGML_GRAPH_HASHTABLE_SIZE 32771 + + enum ggml_cgraph_eval_order { + GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT = 0, + GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT, + GGML_CGRAPH_EVAL_ORDER_COUNT + }; // computation graph struct ggml_cgraph { @@ -525,6 +555,8 @@ extern "C" { void * visited_hash_table[GGML_GRAPH_HASHTABLE_SIZE]; + enum ggml_cgraph_eval_order order; + // performance int perf_runs; int64_t perf_cycles; @@ -672,12 +704,21 @@ extern "C" { GGML_API struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value); GGML_API struct ggml_tensor * ggml_set_f32 (struct ggml_tensor * tensor, float value); + // Converts a flat index into coordinates + GGML_API void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3); + GGML_API int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i); GGML_API void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value); + GGML_API int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3); + GGML_API void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value); + GGML_API float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i); GGML_API void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value); + GGML_API float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3); + GGML_API void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value); + GGML_API void * ggml_get_data (const struct ggml_tensor * tensor); GGML_API float * ggml_get_data_f32(const struct ggml_tensor * tensor); @@ -685,6 +726,7 @@ extern "C" { GGML_API const char * ggml_get_name (const struct ggml_tensor * tensor); GGML_API struct ggml_tensor * ggml_set_name ( struct ggml_tensor * tensor, const char * name); + GGML_ATTRIBUTE_FORMAT(2, 3) GGML_API struct ggml_tensor * ggml_format_name( struct ggml_tensor * tensor, const char * fmt, ...); // @@ -710,6 +752,12 @@ extern "C" { struct ggml_tensor * a, struct ggml_tensor * b); + GGML_API struct ggml_tensor * ggml_add_cast( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + enum ggml_type type); + GGML_API struct ggml_tensor * ggml_add1( struct ggml_context * ctx, struct ggml_tensor * a, @@ -819,6 +867,7 @@ extern "C" { struct ggml_tensor * a, struct ggml_tensor * b); + // sums repetitions in a into shape of b GGML_API struct ggml_tensor * ggml_repeat_back( struct ggml_context * ctx, struct ggml_tensor * a, @@ -1040,7 +1089,6 @@ extern "C" { size_t nb1, size_t offset); - // a -> b, return view(b) GGML_API struct ggml_tensor * ggml_cpy( struct ggml_context * ctx, @@ -1063,6 +1111,33 @@ extern "C" { struct ggml_context * ctx, struct ggml_tensor * a); + // make contiguous, with new shape + GGML_API struct ggml_tensor * ggml_cont_1d( + struct ggml_context * ctx, + struct ggml_tensor * a, + int64_t ne0); + + GGML_API struct ggml_tensor * ggml_cont_2d( + struct ggml_context * ctx, + struct ggml_tensor * a, + int64_t ne0, + int64_t ne1); + + GGML_API struct ggml_tensor * ggml_cont_3d( + struct ggml_context * ctx, + struct ggml_tensor * a, + int64_t ne0, + int64_t ne1, + int64_t ne2); + + GGML_API struct ggml_tensor * ggml_cont_4d( + struct ggml_context * ctx, + struct ggml_tensor * a, + int64_t ne0, + int64_t ne1, + int64_t ne2, + int64_t ne3); + // return view(a), b specifies the new shape // TODO: when we start computing gradient, make a copy instead of view GGML_API struct ggml_tensor * ggml_reshape( @@ -1210,14 +1285,15 @@ extern "C" { struct ggml_tensor * b); // rotary position embedding - // if mode & 1 == 1, skip n_past elements + // if mode & 1 == 1, skip n_past elements (DEPRECATED) // if mode & 2 == 1, GPT-NeoX style // if mode & 4 == 1, ChatGLM style - // TODO: avoid creating a new tensor every time + // + // b is an int32 vector with size a->ne[2], it contains the positions GGML_API struct ggml_tensor * ggml_rope( struct ggml_context * ctx, struct ggml_tensor * a, - int n_past, + struct ggml_tensor * b, int n_dims, int mode, int n_ctx); @@ -1226,7 +1302,7 @@ extern "C" { GGML_API struct ggml_tensor * ggml_rope_inplace( struct ggml_context * ctx, struct ggml_tensor * a, - int n_past, + struct ggml_tensor * b, int n_dims, int mode, int n_ctx); @@ -1235,7 +1311,7 @@ extern "C" { GGML_API struct ggml_tensor * ggml_rope_custom( struct ggml_context * ctx, struct ggml_tensor * a, - int n_past, + struct ggml_tensor * b, int n_dims, int mode, int n_ctx, @@ -1246,7 +1322,7 @@ extern "C" { GGML_API struct ggml_tensor * ggml_rope_custom_inplace( struct ggml_context * ctx, struct ggml_tensor * a, - int n_past, + struct ggml_tensor * b, int n_dims, int mode, int n_ctx, @@ -1257,7 +1333,7 @@ extern "C" { GGML_API struct ggml_tensor * ggml_rope_xpos_inplace( struct ggml_context * ctx, struct ggml_tensor * a, - int n_past, + struct ggml_tensor * b, int n_dims, float base, bool down); @@ -1267,7 +1343,7 @@ extern "C" { GGML_API struct ggml_tensor * ggml_rope_back( struct ggml_context * ctx, struct ggml_tensor * a, - int n_past, + struct ggml_tensor * b, int n_dims, int mode, int n_ctx, @@ -1647,6 +1723,16 @@ extern "C" { // dump the graph into a file using the dot format GGML_API void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename); + // build gradient checkpointing backward graph gb for gf using provided checkpoints + // gb_tmp will contain original backward graph with rewritten backward process nodes, + // but without the second forward pass nodes. + GGML_API void ggml_build_backward_gradient_checkpointing( + struct ggml_context * ctx, + struct ggml_cgraph * gf, + struct ggml_cgraph * gb, + struct ggml_cgraph * gb_tmp, + struct ggml_tensor * * checkpoints, + int n_checkpoints); // // optimization // @@ -1681,7 +1767,8 @@ extern "C" { GGML_LINESEARCH_INVALID_PARAMETERS, }; - typedef void (*ggml_opt_callback)(void * data, float * sched); + typedef void (*ggml_opt_callback)(void * data, int accum_step, float * sched, bool * cancel); + typedef void (*ggml_log_callback)(enum ggml_log_level level, const char * text, void * user_data); // optimization parameters // @@ -1712,6 +1799,8 @@ extern "C" { bool print_forward_graph; bool print_backward_graph; + int n_gradient_accumulation; + // ADAM parameters struct { int n_iter; @@ -1757,6 +1846,7 @@ extern "C" { float loss_after; struct { + struct ggml_tensor * g; // current gradient struct ggml_tensor * m; // first moment struct ggml_tensor * v; // second moment struct ggml_tensor * pf; // past function values @@ -1866,39 +1956,39 @@ extern "C" { GGML_API const char * gguf_type_name(enum gguf_type type); - GGML_API int gguf_get_version (struct gguf_context * ctx); - GGML_API size_t gguf_get_alignment (struct gguf_context * ctx); - GGML_API size_t gguf_get_data_offset(struct gguf_context * ctx); - GGML_API void * gguf_get_data (struct gguf_context * ctx); - - GGML_API int gguf_get_n_kv(struct gguf_context * ctx); - GGML_API int gguf_find_key(struct gguf_context * ctx, const char * key); - GGML_API const char * gguf_get_key (struct gguf_context * ctx, int i); - - GGML_API enum gguf_type gguf_get_kv_type (struct gguf_context * ctx, int i); - GGML_API enum gguf_type gguf_get_arr_type(struct gguf_context * ctx, int i); - - // results are undefined if the wrong type is used for the key - GGML_API uint8_t gguf_get_val_u8 (struct gguf_context * ctx, int i); - GGML_API int8_t gguf_get_val_i8 (struct gguf_context * ctx, int i); - GGML_API uint16_t gguf_get_val_u16 (struct gguf_context * ctx, int i); - GGML_API int16_t gguf_get_val_i16 (struct gguf_context * ctx, int i); - GGML_API uint32_t gguf_get_val_u32 (struct gguf_context * ctx, int i); - GGML_API int32_t gguf_get_val_i32 (struct gguf_context * ctx, int i); - GGML_API float gguf_get_val_f32 (struct gguf_context * ctx, int i); - GGML_API uint64_t gguf_get_val_u64 (struct gguf_context * ctx, int i); - GGML_API int64_t gguf_get_val_i64 (struct gguf_context * ctx, int i); - GGML_API double gguf_get_val_f64 (struct gguf_context * ctx, int i); - GGML_API bool gguf_get_val_bool(struct gguf_context * ctx, int i); - GGML_API const char * gguf_get_val_str (struct gguf_context * ctx, int i); - GGML_API int gguf_get_arr_n (struct gguf_context * ctx, int i); - GGML_API const void * gguf_get_arr_data(struct gguf_context * ctx, int i); - GGML_API const char * gguf_get_arr_str (struct gguf_context * ctx, int key_id, int i); - - GGML_API int gguf_get_n_tensors (struct gguf_context * ctx); - GGML_API int gguf_find_tensor (struct gguf_context * ctx, const char * name); - GGML_API size_t gguf_get_tensor_offset(struct gguf_context * ctx, int i); - GGML_API char * gguf_get_tensor_name (struct gguf_context * ctx, int i); + GGML_API int gguf_get_version (const struct gguf_context * ctx); + GGML_API size_t gguf_get_alignment (const struct gguf_context * ctx); + GGML_API size_t gguf_get_data_offset(const struct gguf_context * ctx); + GGML_API void * gguf_get_data (const struct gguf_context * ctx); + + GGML_API int gguf_get_n_kv(const struct gguf_context * ctx); + GGML_API int gguf_find_key(const struct gguf_context * ctx, const char * key); + GGML_API const char * gguf_get_key (const struct gguf_context * ctx, int key_id); + + GGML_API enum gguf_type gguf_get_kv_type (const struct gguf_context * ctx, int key_id); + GGML_API enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id); + + // will abort if the wrong type is used for the key + GGML_API uint8_t gguf_get_val_u8 (const struct gguf_context * ctx, int key_id); + GGML_API int8_t gguf_get_val_i8 (const struct gguf_context * ctx, int key_id); + GGML_API uint16_t gguf_get_val_u16 (const struct gguf_context * ctx, int key_id); + GGML_API int16_t gguf_get_val_i16 (const struct gguf_context * ctx, int key_id); + GGML_API uint32_t gguf_get_val_u32 (const struct gguf_context * ctx, int key_id); + GGML_API int32_t gguf_get_val_i32 (const struct gguf_context * ctx, int key_id); + GGML_API float gguf_get_val_f32 (const struct gguf_context * ctx, int key_id); + GGML_API uint64_t gguf_get_val_u64 (const struct gguf_context * ctx, int key_id); + GGML_API int64_t gguf_get_val_i64 (const struct gguf_context * ctx, int key_id); + GGML_API double gguf_get_val_f64 (const struct gguf_context * ctx, int key_id); + GGML_API bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id); + GGML_API const char * gguf_get_val_str (const struct gguf_context * ctx, int key_id); + GGML_API int gguf_get_arr_n (const struct gguf_context * ctx, int key_id); + GGML_API const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id); + GGML_API const char * gguf_get_arr_str (const struct gguf_context * ctx, int key_id, int i); + + GGML_API int gguf_get_n_tensors (const struct gguf_context * ctx); + GGML_API int gguf_find_tensor (const struct gguf_context * ctx, const char * name); + GGML_API size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i); + GGML_API char * gguf_get_tensor_name (const struct gguf_context * ctx, int i); // overrides existing values or adds a new one GGML_API void gguf_set_val_u8 (struct gguf_context * ctx, const char * key, uint8_t val); @@ -1943,11 +2033,11 @@ extern "C" { // // write the entire context to a binary file - GGML_API void gguf_write_to_file(struct gguf_context * ctx, const char * fname, bool only_meta); + GGML_API void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta); // get the size in bytes of the meta data (header, kv pairs, tensor info) including padding - GGML_API size_t gguf_get_meta_size(struct gguf_context * ctx); - GGML_API void gguf_get_meta_data(struct gguf_context * ctx, void * data); + GGML_API size_t gguf_get_meta_size(const struct gguf_context * ctx); + GGML_API void gguf_get_meta_data(const struct gguf_context * ctx, void * data); // // system info @@ -1961,6 +2051,7 @@ extern "C" { GGML_API int ggml_cpu_has_fma (void); GGML_API int ggml_cpu_has_neon (void); GGML_API int ggml_cpu_has_arm_fma (void); + GGML_API int ggml_cpu_has_metal (void); GGML_API int ggml_cpu_has_f16c (void); GGML_API int ggml_cpu_has_fp16_va (void); GGML_API int ggml_cpu_has_wasm_simd (void); diff --git a/gguf-py/gguf/gguf.py b/gguf-py/gguf/gguf.py index d377cd56d88e7..598cf8e594aa8 100644 --- a/gguf-py/gguf/gguf.py +++ b/gguf-py/gguf/gguf.py @@ -32,7 +32,7 @@ KEY_GENERAL_DESCRIPTION = "general.description" KEY_GENERAL_LICENSE = "general.license" KEY_GENERAL_SOURCE_URL = "general.source.url" -KEY_GENERAL_SOURCE_HF_REPO = "general.source.hugginface.repository" +KEY_GENERAL_SOURCE_HF_REPO = "general.source.huggingface.repository" KEY_GENERAL_FILE_TYPE = "general.file_type" # LLM @@ -77,12 +77,14 @@ class MODEL_ARCH(IntEnum): - LLAMA : int = auto() - FALCON : int = auto() - GPT2 : int = auto() - GPTJ : int = auto() - GPTNEOX: int = auto() - MPT : int = auto() + LLAMA : int = auto() + FALCON : int = auto() + BAICHUAN : int = auto() + GPT2 : int = auto() + GPTJ : int = auto() + GPTNEOX : int = auto() + MPT : int = auto() + STARCODER : int = auto() class MODEL_TENSOR(IntEnum): @@ -106,12 +108,14 @@ class MODEL_TENSOR(IntEnum): MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = { - MODEL_ARCH.LLAMA: "llama", - MODEL_ARCH.FALCON: "falcon", - MODEL_ARCH.GPT2: "gpt2", - MODEL_ARCH.GPTJ: "gptj", - MODEL_ARCH.GPTNEOX: "gptneox", - MODEL_ARCH.MPT: "mpt", + MODEL_ARCH.LLAMA: "llama", + MODEL_ARCH.FALCON: "falcon", + MODEL_ARCH.BAICHUAN: "baichuan", + MODEL_ARCH.GPT2: "gpt2", + MODEL_ARCH.GPTJ: "gptj", + MODEL_ARCH.GPTNEOX: "gptneox", + MODEL_ARCH.MPT: "mpt", + MODEL_ARCH.STARCODER: "starcoder", } MODEL_TENSOR_NAMES: dict[MODEL_ARCH, dict[MODEL_TENSOR, str]] = { @@ -153,6 +157,34 @@ class MODEL_TENSOR(IntEnum): MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down", MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up", }, + MODEL_ARCH.BAICHUAN: { + MODEL_TENSOR.TOKEN_EMBD: "token_embd", + MODEL_TENSOR.OUTPUT_NORM: "output_norm", + MODEL_TENSOR.OUTPUT: "output", + MODEL_TENSOR.ROPE_FREQS: "rope_freqs", + MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm", + MODEL_TENSOR.ATTN_Q: "blk.{bid}.attn_q", + MODEL_TENSOR.ATTN_K: "blk.{bid}.attn_k", + MODEL_TENSOR.ATTN_V: "blk.{bid}.attn_v", + MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output", + MODEL_TENSOR.ATTN_ROT_EMBD: "blk.{bid}.attn_rot_embd", + MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm", + MODEL_TENSOR.FFN_GATE: "blk.{bid}.ffn_gate", + MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down", + MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up", + }, + MODEL_ARCH.STARCODER: { + MODEL_TENSOR.TOKEN_EMBD: "token_embd", + MODEL_TENSOR.POS_EMBD: "position_embd", + MODEL_TENSOR.OUTPUT_NORM: "output_norm", + MODEL_TENSOR.OUTPUT: "output", + MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm", + MODEL_TENSOR.ATTN_QKV: "blk.{bid}.attn_qkv", + MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output", + MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm", + MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down", + MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up", + }, MODEL_ARCH.GPT2: { # TODO }, @@ -165,6 +197,10 @@ class MODEL_TENSOR(IntEnum): MODEL_TENSOR.ROPE_FREQS, MODEL_TENSOR.ATTN_ROT_EMBD, ], + MODEL_ARCH.BAICHUAN: [ + MODEL_TENSOR.ROPE_FREQS, + MODEL_TENSOR.ATTN_ROT_EMBD, + ], } @@ -187,7 +223,7 @@ class TensorNameMap: # Output MODEL_TENSOR.OUTPUT: ( "embed_out", # gptneox - "lm_head", # gpt2 mpt falcon llama-hf + "lm_head", # gpt2 mpt falcon llama-hf baichuan "output", # llama-pth ), @@ -195,7 +231,7 @@ class TensorNameMap: MODEL_TENSOR.OUTPUT_NORM: ( "gpt_neox.final_layer_norm", # gptneox "transformer.ln_f", # gpt2 falcon - "model.norm", # llama-hf + "model.norm", # llama-hf baichuan "norm", # llama-pth ), @@ -311,6 +347,7 @@ def __init__(self, arch: MODEL_ARCH, n_blocks: int): tensor_name = tensor_names.get(tensor) if tensor_name is None: continue + mapping[tensor_name] = (tensor, tensor_name) for key in keys: mapping[key] = (tensor, tensor_name) for bid in range(n_blocks): @@ -319,11 +356,12 @@ def __init__(self, arch: MODEL_ARCH, n_blocks: int): if tensor_name is None: continue tensor_name = tensor_name.format(bid = bid) + mapping[tensor_name] = (tensor, tensor_name) for key in keys: key = key.format(bid = bid) mapping[key] = (tensor, tensor_name) - def get_type_and_name(self, key: str, try_suffixes: Sequence[str]) -> tuple[MODEL_TENSOR, str] | None: + def get_type_and_name(self, key: str, try_suffixes: Sequence[str] = ()) -> tuple[MODEL_TENSOR, str] | None: result = self.mapping.get(key) if result is not None: return result @@ -334,13 +372,13 @@ def get_type_and_name(self, key: str, try_suffixes: Sequence[str]) -> tuple[MODE return (result[0], result[1] + suffix) return None - def get_name(self, key: str, try_suffixes: Sequence[str]) -> str | None: + def get_name(self, key: str, try_suffixes: Sequence[str] = ()) -> str | None: result = self.get_type_and_name(key, try_suffixes = try_suffixes) if result is None: return None return result[1] - def get_type(self, key: str, try_suffixes: Sequence[str]) -> MODEL_TENSOR | None: + def get_type(self, key: str, try_suffixes: Sequence[str] = ()) -> MODEL_TENSOR | None: result = self.get_type_and_name(key, try_suffixes = try_suffixes) if result is None: return None diff --git a/gguf-py/pyproject.toml b/gguf-py/pyproject.toml index 8da60de1b3f3f..9489ccd6f2c01 100644 --- a/gguf-py/pyproject.toml +++ b/gguf-py/pyproject.toml @@ -1,6 +1,6 @@ [tool.poetry] name = "gguf" -version = "0.3.2" +version = "0.3.3" description = "Write ML models in GGUF for GGML" authors = ["GGML "] packages = [ diff --git a/k_quants.c b/k_quants.c index eb702ce86acd9..62085882df71c 100644 --- a/k_quants.c +++ b/k_quants.c @@ -2609,7 +2609,10 @@ void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restri memcpy(utmp, x[i].scales, 12); - const uint32x2_t mins8 = {utmp[1] & kmask1, ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4)}; + uint32x2_t mins8 = { 0 }; + mins8 = vset_lane_u32(utmp[1] & kmask1, mins8, 0); + mins8 = vset_lane_u32(((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4), mins8, 1); + utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4); utmp[0] &= kmask1; diff --git a/llama.cpp b/llama.cpp index 2a2a0c9c63cef..bff17135b985f 100644 --- a/llama.cpp +++ b/llama.cpp @@ -1,3 +1,4 @@ +#define LLAMA_API_INTERNAL #include "llama.h" #include "ggml.h" @@ -71,6 +72,7 @@ #include #include #include +#include #if defined(_MSC_VER) #pragma warning(disable: 4244 4267) // possible loss of data @@ -91,12 +93,12 @@ // LLAMA_ATTRIBUTE_FORMAT(2, 3) -static void llama_log_internal (llama_log_level level, const char* format, ...); -static void llama_log_callback_default(llama_log_level level, const char * text, void * user_data); +static void llama_log_internal (ggml_log_level level, const char* format, ...); +static void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data); -#define LLAMA_LOG_INFO(...) llama_log_internal(LLAMA_LOG_LEVEL_INFO , __VA_ARGS__) -#define LLAMA_LOG_WARN(...) llama_log_internal(LLAMA_LOG_LEVEL_WARN , __VA_ARGS__) -#define LLAMA_LOG_ERROR(...) llama_log_internal(LLAMA_LOG_LEVEL_ERROR, __VA_ARGS__) +#define LLAMA_LOG_INFO(...) llama_log_internal(GGML_LOG_LEVEL_INFO , __VA_ARGS__) +#define LLAMA_LOG_WARN(...) llama_log_internal(GGML_LOG_LEVEL_WARN , __VA_ARGS__) +#define LLAMA_LOG_ERROR(...) llama_log_internal(GGML_LOG_LEVEL_ERROR, __VA_ARGS__) // // helpers @@ -108,7 +110,7 @@ static size_t utf8_len(char src) { return lookup[highbits]; } -void replace_all(std::string & s, const std::string & search, const std::string & replace) { +static void replace_all(std::string & s, const std::string & search, const std::string & replace) { std::string result; for (size_t pos = 0; ; pos += search.length()) { auto new_pos = s.find(search, pos); @@ -155,20 +157,24 @@ static std::string format(const char * fmt, ...) { enum llm_arch { LLM_ARCH_LLAMA, LLM_ARCH_FALCON, + LLM_ARCH_BAICHUAN, LLM_ARCH_GPT2, LLM_ARCH_GPTJ, LLM_ARCH_GPTNEOX, LLM_ARCH_MPT, + LLM_ARCH_STARCODER, LLM_ARCH_UNKNOWN, }; static std::map LLM_ARCH_NAMES = { - { LLM_ARCH_LLAMA, "llama" }, - { LLM_ARCH_FALCON, "falcon" }, - { LLM_ARCH_GPT2, "gpt2" }, - { LLM_ARCH_GPTJ, "gptj" }, - { LLM_ARCH_GPTNEOX, "gptneox" }, - { LLM_ARCH_MPT, "mpt" }, + { LLM_ARCH_LLAMA, "llama" }, + { LLM_ARCH_FALCON, "falcon" }, + { LLM_ARCH_GPT2, "gpt2" }, + { LLM_ARCH_GPTJ, "gptj" }, + { LLM_ARCH_GPTNEOX, "gptneox" }, + { LLM_ARCH_MPT, "mpt" }, + { LLM_ARCH_BAICHUAN, "baichuan" }, + { LLM_ARCH_STARCODER, "starcoder" }, }; enum llm_kv { @@ -216,16 +222,16 @@ enum llm_kv { }; static std::map LLM_KV_NAMES = { - { LLM_KV_GENERAL_ARCHITECTURE, "general.architecture" }, - { LLM_KV_GENERAL_QUANTIZATION_VERSION, "general.quantization_version" }, - { LLM_KV_GENERAL_ALIGNMENT, "general.alignment" }, - { LLM_KV_GENERAL_NAME, "general.name" }, - { LLM_KV_GENERAL_AUTHOR, "general.author" }, - { LLM_KV_GENERAL_URL, "general.url" }, - { LLM_KV_GENERAL_DESCRIPTION, "general.description" }, - { LLM_KV_GENERAL_LICENSE, "general.license" }, - { LLM_KV_GENERAL_SOURCE_URL, "general.source_url" }, - { LLM_KV_GENERAL_SOURCE_HF_REPO, "general.source_hf_repo" }, + { LLM_KV_GENERAL_ARCHITECTURE, "general.architecture" }, + { LLM_KV_GENERAL_QUANTIZATION_VERSION, "general.quantization_version" }, + { LLM_KV_GENERAL_ALIGNMENT, "general.alignment" }, + { LLM_KV_GENERAL_NAME, "general.name" }, + { LLM_KV_GENERAL_AUTHOR, "general.author" }, + { LLM_KV_GENERAL_URL, "general.url" }, + { LLM_KV_GENERAL_DESCRIPTION, "general.description" }, + { LLM_KV_GENERAL_LICENSE, "general.license" }, + { LLM_KV_GENERAL_SOURCE_URL, "general.source.url" }, + { LLM_KV_GENERAL_SOURCE_HF_REPO, "general.source.huggingface.repository" }, { LLM_KV_CONTEXT_LENGTH, "%s.context_length" }, { LLM_KV_EMBEDDING_LENGTH, "%s.embedding_length" }, @@ -309,6 +315,25 @@ static std::map> LLM_TENSOR_NAMES = { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, }, }, + { + LLM_ARCH_BAICHUAN, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_OUTPUT, "output" }, + { LLM_TENSOR_ROPE_FREQS, "rope_freqs" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, + { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, + { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" }, + { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, + { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + }, + }, { LLM_ARCH_FALCON, { @@ -355,6 +380,21 @@ static std::map> LLM_TENSOR_NAMES = { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, }, }, + { + LLM_ARCH_STARCODER, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_POS_EMBD, "position_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_OUTPUT, "output" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + }, + }, { LLM_ARCH_UNKNOWN, { @@ -409,7 +449,7 @@ struct LLM_TN { // #define GGUF_GET_KEY(ctx, dst, func, type, req, key) \ -{ \ +do { \ const std::string skey(key); \ const int kid = gguf_find_key(ctx, skey.c_str()); \ if (kid >= 0) { \ @@ -421,7 +461,7 @@ struct LLM_TN { } else if (req) { \ throw std::runtime_error(format("key not found in model: %s", skey.c_str())); \ } \ -} +} while (0) // // ggml helpers @@ -847,10 +887,10 @@ static void llama_nop(struct ggml_tensor * tensor) { // don't offload by default static std::string llama_token_to_str(const struct llama_context * ctx, llama_token token) { std::vector result(8, 0); - const int n_tokens = llama_token_to_piece(ctx, token, result.data(), result.size()); + const int n_tokens = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size()); if (n_tokens < 0) { result.resize(-n_tokens); - int check = llama_token_to_piece(ctx, token, result.data(), result.size()); + int check = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size()); GGML_ASSERT(check == -n_tokens); } else { result.resize(n_tokens); @@ -865,7 +905,7 @@ static std::string llama_token_to_str(const struct llama_context * ctx, llama_to struct llama_state { // We save the log callback globally - llama_log_callback log_callback = llama_log_callback_default; + ggml_log_callback log_callback = llama_log_callback_default; void * log_callback_user_data = nullptr; }; @@ -874,9 +914,11 @@ static llama_state g_state; // available llama models enum e_model { MODEL_UNKNOWN, + MODEL_1B, MODEL_3B, MODEL_7B, MODEL_13B, + MODEL_15B, MODEL_30B, MODEL_34B, MODEL_40B, @@ -886,24 +928,24 @@ enum e_model { static const size_t kB = 1024; static const size_t MB = kB*kB; +static const size_t GB = kB*kB*kB; -// default hparams (LLaMA 7B) struct llama_hparams { - uint32_t n_vocab = 32000; - uint32_t n_ctx_train = 2048; // the context size used during training - uint32_t n_ctx = 512; // the context size used during inference - uint32_t n_embd = 4096; - uint32_t n_head = 32; - uint32_t n_head_kv = 32; - uint32_t n_layer = 32; - uint32_t n_rot = 64; - uint32_t n_ff = 11008; - - float f_norm_eps = 1e-5; - float f_norm_rms_eps = 1e-5; - - float rope_freq_base = 10000.0f; - float rope_freq_scale = 1.0f; + bool vocab_only; + uint32_t n_vocab; + uint32_t n_ctx_train; // context size the model was trained on + uint32_t n_embd; + uint32_t n_head; + uint32_t n_head_kv; + uint32_t n_layer; + uint32_t n_rot; + uint32_t n_ff; + + float f_norm_eps; + float f_norm_rms_eps; + + float rope_freq_base_train; + float rope_freq_scale_train; bool operator!=(const llama_hparams & other) const { return static_cast(memcmp(this, &other, sizeof(llama_hparams))); // NOLINT @@ -920,15 +962,18 @@ struct llama_hparams { uint32_t n_embd_gqa() const { return n_embd/n_gqa(); } +}; - size_t kv_size() const { - size_t result = 2ull; - result *= (size_t) n_embd_gqa(); - result *= (size_t) n_ctx; - result *= (size_t) n_layer; - result *= sizeof(ggml_fp16_t); - return result; - } +struct llama_cparams { + uint32_t n_ctx; // context size used during inference + uint32_t n_batch; + uint32_t n_threads; // number of threads to use for generation + uint32_t n_threads_batch; // number of threads to use for batch processing + + float rope_freq_base; + float rope_freq_scale; + + bool mul_mat_q; }; struct llama_layer { @@ -945,16 +990,47 @@ struct llama_layer { struct ggml_tensor * wo; struct ggml_tensor * wqkv; + // attention bias + struct ggml_tensor * bo; + struct ggml_tensor * bqkv; + // normalization struct ggml_tensor * ffn_norm; + struct ggml_tensor * ffn_norm_b; // ff struct ggml_tensor * w1; // ffn_gate struct ggml_tensor * w2; // ffn_down struct ggml_tensor * w3; // ffn_up + + // ff bias + struct ggml_tensor * b2; // ffn_down + struct ggml_tensor * b3; // ffn_up +}; + +struct llama_kv_cell { + llama_pos pos = -1; + llama_pos delta = 0; + + std::set seq_id; + + bool has_seq_id(const llama_seq_id & id) const { + return seq_id.find(id) != seq_id.end(); + } }; +// ring-buffer of cached KV data struct llama_kv_cache { + bool has_shift = false; + + uint32_t head = 0; + uint32_t size = 0; + + // computed before each graph build + uint32_t n = 0; + + std::vector cells; + struct ggml_tensor * k = NULL; struct ggml_tensor * v = NULL; @@ -962,8 +1038,6 @@ struct llama_kv_cache { llama_buffer buf; - int n; // number of tokens currently in the cache - ~llama_kv_cache() { if (ctx) { ggml_free(ctx); @@ -1025,10 +1099,11 @@ struct llama_model { std::string name = "n/a"; - llama_hparams hparams; + llama_hparams hparams = {}; llama_vocab vocab; struct ggml_tensor * tok_embeddings; + struct ggml_tensor * pos_embeddings; struct ggml_tensor * output_norm; struct ggml_tensor * output_norm_b; @@ -1076,11 +1151,8 @@ struct llama_model { }; struct llama_context { - llama_context(const llama_model & model) : model(model), t_load_us(model.t_load_us), t_start_us(model.t_start_us) {} + llama_context(const llama_model & model) : model(model), t_start_us(model.t_start_us), t_load_us(model.t_load_us) {} ~llama_context() { - if (model_owner) { - delete &model; - } #ifdef GGML_USE_METAL if (ctx_metal) { ggml_metal_free(ctx_metal); @@ -1091,27 +1163,26 @@ struct llama_context { } } + llama_cparams cparams; + + const llama_model & model; + + // key + value cache for the self attention + struct llama_kv_cache kv_self; + std::mt19937 rng; bool has_evaluated_once = false; + int64_t t_start_us; + int64_t t_load_us; int64_t t_sample_us = 0; - int64_t t_eval_us = 0; int64_t t_p_eval_us = 0; + int64_t t_eval_us = 0; int32_t n_sample = 0; // number of tokens sampled - int32_t n_eval = 0; // number of eval calls int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1) - - const llama_model & model; - - bool model_owner = false; - - int64_t t_load_us; - int64_t t_start_us; - - // key + value cache for the self attention - struct llama_kv_cache kv_self; + int32_t n_eval = 0; // number of eval calls // decode output (2-dimensional array: [n_tokens][n_vocab]) std::vector logits; @@ -1146,16 +1217,23 @@ static bool llama_kv_cache_init( const struct llama_hparams & hparams, struct llama_kv_cache & cache, ggml_type wtype, - int n_ctx, + uint32_t n_ctx, int n_gpu_layers) { - const int n_embd = hparams.n_embd_gqa(); - const int n_layer = hparams.n_layer; + const uint32_t n_embd = hparams.n_embd_gqa(); + const uint32_t n_layer = hparams.n_layer; const int64_t n_mem = n_layer*n_ctx; const int64_t n_elements = n_embd*n_mem; + cache.has_shift = false; + + cache.head = 0; + cache.size = n_ctx; + + cache.cells.clear(); + cache.cells.resize(n_ctx); + cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2u*MB); - cache.n = 0; struct ggml_init_params params; params.mem_size = cache.buf.size; @@ -1176,17 +1254,154 @@ static bool llama_kv_cache_init( (void) n_gpu_layers; #ifdef GGML_USE_CUBLAS - if (n_gpu_layers > n_layer + 1) { + size_t vram_kv_cache = 0; + + if (n_gpu_layers > (int)n_layer + 1) { ggml_cuda_assign_buffers_no_scratch(cache.v); + LLAMA_LOG_INFO("%s: offloading v cache to GPU\n", __func__); + vram_kv_cache += ggml_nbytes(cache.v); } - if (n_gpu_layers > n_layer + 2) { + if (n_gpu_layers > (int)n_layer + 2) { ggml_cuda_assign_buffers_no_scratch(cache.k); + LLAMA_LOG_INFO("%s: offloading k cache to GPU\n", __func__); + vram_kv_cache += ggml_nbytes(cache.k); + } + if (vram_kv_cache > 0) { + LLAMA_LOG_INFO("%s: VRAM kv self = %.2f MB\n", __func__, vram_kv_cache / 1024.0 / 1024.0); } #endif // GGML_USE_CUBLAS return true; } +// find an empty slot of size "n_tokens" in the cache +// updates the cache head +static bool llama_kv_cache_find_slot( + struct llama_kv_cache & cache, + const struct llama_batch & batch) { + const uint32_t n_ctx = cache.size; + const uint32_t n_tokens = batch.n_tokens; + + if (n_tokens > n_ctx) { + LLAMA_LOG_ERROR("%s: n_tokens=%d > n_ctx=%d\n", __func__, n_tokens, n_ctx); + return false; + } + + uint32_t n_tested = 0; + + while (true) { + if (cache.head + n_tokens > n_ctx) { + cache.head = 0; + n_tested += n_ctx - cache.head; + continue; + } + + bool found = true; + for (uint32_t i = 0; i < n_tokens; i++) { + if (cache.cells[cache.head + i].pos >= 0) { + found = false; + cache.head += i + 1; + n_tested += i + 1; + break; + } + } + + if (found) { + break; + } + + if (n_tested >= n_ctx) { + //LLAMA_LOG_ERROR("%s: failed to find a slot for %d tokens\n", __func__, n_tokens); + return false; + } + } + + for (uint32_t i = 0; i < n_tokens; i++) { + cache.cells[cache.head + i].pos = batch.pos[i]; + cache.cells[cache.head + i].seq_id.insert(batch.seq_id[i]); + } + + return true; +} + +// find how many cells are currently in use +static int32_t llama_kv_cache_cell_max(const struct llama_kv_cache & cache) { + for (uint32_t i = cache.size - 1; i > 0; --i) { + if (cache.cells[i].pos >= 0 && !cache.cells[i].seq_id.empty()) { + return i + 1; + } + } + + return 0; +} + +static void llama_kv_cache_tokens_rm(struct llama_kv_cache & cache, int32_t c0, int32_t c1) { + if (c0 < 0) c0 = 0; + if (c1 < 0) c1 = cache.size; + + for (int32_t i = c0; i < c1; ++i) { + cache.cells[i].pos = -1; + cache.cells[i].seq_id.clear(); + } +} + +static void llama_kv_cache_seq_rm( + struct llama_kv_cache & cache, + llama_seq_id seq_id, + llama_pos p0, + llama_pos p1) { + for (uint32_t i = 0; i < cache.size; ++i) { + if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) { + cache.cells[i].seq_id.erase(seq_id); + if (cache.cells[i].seq_id.empty()) { + cache.cells[i].pos = -1; + } + } + } +} + +static void llama_kv_cache_seq_cp( + struct llama_kv_cache & cache, + llama_seq_id seq_id_src, + llama_seq_id seq_id_dst, + llama_pos p0, + llama_pos p1) { + for (uint32_t i = 0; i < cache.size; ++i) { + if (cache.cells[i].has_seq_id(seq_id_src) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) { + cache.cells[i].seq_id.insert(seq_id_dst); + } + } +} + +static void llama_kv_cache_seq_keep(struct llama_kv_cache & cache, llama_seq_id seq_id) { + for (uint32_t i = 0; i < cache.size; ++i) { + if (!cache.cells[i].has_seq_id(seq_id)) { + cache.cells[i].pos = -1; + cache.cells[i].seq_id.clear(); + } + } +} + +static void llama_kv_cache_seq_shift( + struct llama_kv_cache & cache, + llama_seq_id seq_id, + llama_pos p0, + llama_pos p1, + llama_pos delta) { + for (uint32_t i = 0; i < cache.size; ++i) { + if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) { + cache.cells[i].pos += delta; + if (cache.cells[i].pos < 0) { + cache.cells[i].pos = -1; + cache.cells[i].seq_id.clear(); + } else { + cache.has_shift = true; + cache.cells[i].delta = delta; + } + } + } +} + // // model loading and saving // @@ -1229,6 +1444,7 @@ struct llama_model_loader { int n_created = 0; int64_t n_elements = 0; + size_t n_bytes = 0; bool use_mmap = false; @@ -1261,6 +1477,7 @@ struct llama_model_loader { const char * name = gguf_get_tensor_name(ctx_gguf, i); struct ggml_tensor * t = ggml_get_tensor(ctx_meta, name); n_elements += ggml_nelements(t); + n_bytes += ggml_nbytes(t); } LLAMA_LOG_INFO("%s: loaded meta data with %d key-value pairs and %d tensors from %s (version %s)\n", @@ -1506,7 +1723,7 @@ struct llama_model_loader { lmlock->grow_to(size_lock); } break; -#if defined(GGML_USE_CUBLAS) +#ifdef GGML_USE_CUBLAS case GGML_BACKEND_GPU: case GGML_BACKEND_GPU_SPLIT: // old code: @@ -1539,7 +1756,15 @@ struct llama_model_loader { // load LLaMA models // -std::string llama_model_ftype_name(enum llama_ftype ftype) { +static std::string llama_model_arch_name(llm_arch arch) { + auto it = LLM_ARCH_NAMES.find(arch); + if (it == LLM_ARCH_NAMES.end()) { + return "unknown"; + } + return it->second; +} + +static std::string llama_model_ftype_name(llama_ftype ftype) { if (ftype & LLAMA_FTYPE_GUESSED) { return llama_model_ftype_name((enum llama_ftype) (ftype & ~LLAMA_FTYPE_GUESSED)) + " (guessed)"; } @@ -1572,9 +1797,11 @@ std::string llama_model_ftype_name(enum llama_ftype ftype) { static const char * llama_model_type_name(e_model type) { switch (type) { + case MODEL_1B: return "1B"; case MODEL_3B: return "3B"; case MODEL_7B: return "7B"; case MODEL_13B: return "13B"; + case MODEL_15B: return "15B"; case MODEL_30B: return "30B"; case MODEL_34B: return "34B"; case MODEL_40B: return "40B"; @@ -1593,10 +1820,7 @@ static void llm_load_arch(llama_model_loader & ml, llama_model & model) { static void llm_load_hparams( llama_model_loader & ml, - llama_model & model, - int n_ctx, - float rope_freq_base, - float rope_freq_scale) { + llama_model & model) { struct gguf_context * ctx = ml.ctx_gguf; const auto kv = LLM_KV(model.arch); @@ -1607,40 +1831,25 @@ static void llm_load_hparams( GGUF_GET_KEY(ctx, model.name, gguf_get_val_str, GGUF_TYPE_STRING, false, kv(LLM_KV_GENERAL_NAME)); // get hparams kv - GGUF_GET_KEY(ctx, hparams.n_vocab, gguf_get_arr_n, GGUF_TYPE_ARRAY, true, kv(LLM_KV_TOKENIZER_LIST)); - GGUF_GET_KEY(ctx, hparams.n_ctx_train, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_CONTEXT_LENGTH)); - GGUF_GET_KEY(ctx, hparams.n_embd, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_EMBEDDING_LENGTH)); - GGUF_GET_KEY(ctx, hparams.n_ff, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_FEED_FORWARD_LENGTH)); - GGUF_GET_KEY(ctx, hparams.n_head, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_ATTENTION_HEAD_COUNT)); - GGUF_GET_KEY(ctx, hparams.n_layer, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_BLOCK_COUNT)); + GGUF_GET_KEY(ctx, hparams.n_vocab, gguf_get_arr_n, GGUF_TYPE_ARRAY, true, kv(LLM_KV_TOKENIZER_LIST)); + GGUF_GET_KEY(ctx, hparams.n_ctx_train, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_CONTEXT_LENGTH)); + GGUF_GET_KEY(ctx, hparams.n_embd, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_EMBEDDING_LENGTH)); + GGUF_GET_KEY(ctx, hparams.n_ff, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_FEED_FORWARD_LENGTH)); + GGUF_GET_KEY(ctx, hparams.n_head, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_ATTENTION_HEAD_COUNT)); + GGUF_GET_KEY(ctx, hparams.n_layer, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_BLOCK_COUNT)); // n_head_kv is optional, default to n_head hparams.n_head_kv = hparams.n_head; GGUF_GET_KEY(ctx, hparams.n_head_kv, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_ATTENTION_HEAD_COUNT_KV)); - // TODO: manually setting rope freq base and scale should override this - // FIXME: partial fix when the param specified is not the default value, but - // will not work for overriding the model value to the params default - - llama_context_params defaults = llama_context_default_params(); - - // rope_freq_base - { - float ropebase = 10000.0f; - GGUF_GET_KEY(ctx, ropebase, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_FREQ_BASE)); - if (ropebase != 10000.0f && rope_freq_base == defaults.rope_freq_base) { - rope_freq_base = ropebase; - } - } + // rope_freq_base (optional) + hparams.rope_freq_base_train = 10000.0f; + GGUF_GET_KEY(ctx, hparams.rope_freq_base_train, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_FREQ_BASE)); // rope_freq_scale (inverse of the kv) is optional - { - float ropescale = 1.0f; - GGUF_GET_KEY(ctx, ropescale, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_SCALE_LINEAR)); - if (ropescale != 1.0f && rope_freq_scale == defaults.rope_freq_scale) { - rope_freq_scale = 1.0f/ropescale; - } - } + float ropescale = 1.0f; + GGUF_GET_KEY(ctx, ropescale, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_SCALE_LINEAR)); + hparams.rope_freq_scale_train = 1.0f/ropescale; // sanity check for n_rot (optional) { @@ -1683,14 +1892,30 @@ static void llm_load_hparams( default: model.type = e_model::MODEL_UNKNOWN; } } break; + case LLM_ARCH_BAICHUAN: + { + GGUF_GET_KEY(ctx, hparams.f_norm_rms_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS)); + switch (hparams.n_layer) { + case 32: model.type = e_model::MODEL_7B; break; + case 40: model.type = e_model::MODEL_13B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } + } break; + case LLM_ARCH_STARCODER: + { + GGUF_GET_KEY(ctx, hparams.f_norm_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_EPS)); + switch (hparams.n_layer) { + case 24: model.type = e_model::MODEL_1B; break; + case 36: model.type = e_model::MODEL_3B; break; + case 42: model.type = e_model::MODEL_7B; break; + case 40: model.type = e_model::MODEL_15B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } + } break; default: (void)0; - }; + } model.ftype = ml.ftype; - - hparams.n_ctx = n_ctx; - hparams.rope_freq_base = rope_freq_base; - hparams.rope_freq_scale = rope_freq_scale; } // TODO: This should probably be in llama.h @@ -1711,20 +1936,18 @@ static void llm_load_vocab( throw std::runtime_error("cannot find tokenizer vocab in model file\n"); } + const float * scores = nullptr; const int score_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_SCORES).c_str()); - if (score_idx == -1) { - throw std::runtime_error("cannot find tokenizer scores in model file\n"); + if (score_idx != -1) { + scores = (const float * ) gguf_get_arr_data(ctx, score_idx); } - const float * scores = (const float * ) gguf_get_arr_data(ctx, score_idx); - + const int * toktypes = nullptr; const int toktype_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_TOKEN_TYPE).c_str()); - if (toktype_idx == -1) { - throw std::runtime_error("cannot find token type list in GGUF file\n"); + if (toktype_idx != -1) { + toktypes = (const int * ) gguf_get_arr_data(ctx, toktype_idx); } - const int * toktypes = (const int * ) gguf_get_arr_data(ctx, toktype_idx); - // determine vocab type { std::string tokenizer_name; @@ -1792,8 +2015,8 @@ static void llm_load_vocab( auto & token_data = vocab.id_to_token[i]; token_data.text = std::move(word); - token_data.score = scores[i]; - token_data.type = (llama_token_type) toktypes[i]; + token_data.score = scores ? scores[i] : 0.0f; + token_data.type = toktypes ? (llama_token_type) toktypes[i] : LLAMA_TOKEN_TYPE_NORMAL; } // determine the newline token: LLaMA "<0x0A>" == 10 == '\n', Falcon 193 == '\n' @@ -1816,27 +2039,31 @@ static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) { const auto & vocab = model.vocab; // hparams - LLAMA_LOG_INFO("%s: format = %s\n", __func__, llama_file_version_name(ml.fver)); - LLAMA_LOG_INFO("%s: arch = %s\n", __func__, LLM_ARCH_NAMES.at(model.arch).c_str()); - LLAMA_LOG_INFO("%s: vocab type = %s\n", __func__, vocab.type == LLAMA_VOCAB_TYPE_SPM ? "SPM" : "BPE"); // TODO: fix - LLAMA_LOG_INFO("%s: n_vocab = %u\n", __func__, hparams.n_vocab); - LLAMA_LOG_INFO("%s: n_merges = %u\n", __func__, (int) vocab.bpe_ranks.size()); - LLAMA_LOG_INFO("%s: n_ctx_train = %u\n", __func__, hparams.n_ctx_train); - LLAMA_LOG_INFO("%s: n_ctx = %u\n", __func__, hparams.n_ctx); - LLAMA_LOG_INFO("%s: n_embd = %u\n", __func__, hparams.n_embd); - LLAMA_LOG_INFO("%s: n_head = %u\n", __func__, hparams.n_head); - LLAMA_LOG_INFO("%s: n_head_kv = %u\n", __func__, hparams.n_head_kv); - LLAMA_LOG_INFO("%s: n_layer = %u\n", __func__, hparams.n_layer); - LLAMA_LOG_INFO("%s: n_rot = %u\n", __func__, hparams.n_rot); // a.k.a. n_embd_head, n_head_dim - LLAMA_LOG_INFO("%s: n_gqa = %u\n", __func__, hparams.n_gqa()); - LLAMA_LOG_INFO("%s: f_norm_eps = %.1e\n", __func__, hparams.f_norm_eps); - LLAMA_LOG_INFO("%s: f_norm_rms_eps = %.1e\n", __func__, hparams.f_norm_rms_eps); - LLAMA_LOG_INFO("%s: n_ff = %u\n", __func__, hparams.n_ff); - LLAMA_LOG_INFO("%s: freq_base = %.1f\n", __func__, hparams.rope_freq_base); - LLAMA_LOG_INFO("%s: freq_scale = %g\n", __func__, hparams.rope_freq_scale); - LLAMA_LOG_INFO("%s: model type = %s\n", __func__, llama_model_type_name(model.type)); - LLAMA_LOG_INFO("%s: model ftype = %s\n", __func__, llama_model_ftype_name(model.ftype).c_str()); - LLAMA_LOG_INFO("%s: model size = %.2f B\n", __func__, ml.n_elements*1e-9); + LLAMA_LOG_INFO("%s: format = %s\n", __func__, llama_file_version_name(ml.fver)); + LLAMA_LOG_INFO("%s: arch = %s\n", __func__, LLM_ARCH_NAMES.at(model.arch).c_str()); + LLAMA_LOG_INFO("%s: vocab type = %s\n", __func__, vocab.type == LLAMA_VOCAB_TYPE_SPM ? "SPM" : "BPE"); // TODO: fix + LLAMA_LOG_INFO("%s: n_vocab = %u\n", __func__, hparams.n_vocab); + LLAMA_LOG_INFO("%s: n_merges = %u\n", __func__, (int) vocab.bpe_ranks.size()); + LLAMA_LOG_INFO("%s: n_ctx_train = %u\n", __func__, hparams.n_ctx_train); + LLAMA_LOG_INFO("%s: n_embd = %u\n", __func__, hparams.n_embd); + LLAMA_LOG_INFO("%s: n_head = %u\n", __func__, hparams.n_head); + LLAMA_LOG_INFO("%s: n_head_kv = %u\n", __func__, hparams.n_head_kv); + LLAMA_LOG_INFO("%s: n_layer = %u\n", __func__, hparams.n_layer); + LLAMA_LOG_INFO("%s: n_rot = %u\n", __func__, hparams.n_rot); // a.k.a. n_embd_head, n_head_dim + LLAMA_LOG_INFO("%s: n_gqa = %u\n", __func__, hparams.n_gqa()); + LLAMA_LOG_INFO("%s: f_norm_eps = %.1e\n", __func__, hparams.f_norm_eps); + LLAMA_LOG_INFO("%s: f_norm_rms_eps = %.1e\n", __func__, hparams.f_norm_rms_eps); + LLAMA_LOG_INFO("%s: n_ff = %u\n", __func__, hparams.n_ff); + LLAMA_LOG_INFO("%s: freq_base_train = %.1f\n", __func__, hparams.rope_freq_base_train); + LLAMA_LOG_INFO("%s: freq_scale_train = %g\n", __func__, hparams.rope_freq_scale_train); + LLAMA_LOG_INFO("%s: model type = %s\n", __func__, llama_model_type_name(model.type)); + LLAMA_LOG_INFO("%s: model ftype = %s\n", __func__, llama_model_ftype_name(model.ftype).c_str()); + LLAMA_LOG_INFO("%s: model params = %.2f B\n", __func__, ml.n_elements*1e-9); + if (ml.n_bytes < GB) { + LLAMA_LOG_INFO("%s: model size = %.2f MiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements); + } else { + LLAMA_LOG_INFO("%s: model size = %.2f GiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements); + } // general kv LLAMA_LOG_INFO("%s: general.name = %s\n", __func__, model.name.c_str()); @@ -1853,13 +2080,9 @@ static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) { static void llm_load_tensors( llama_model_loader & ml, llama_model & model, - int n_batch, int n_gpu_layers, int main_gpu, const float * tensor_split, - const bool mul_mat_q, - bool low_vram, - ggml_type memory_type, bool use_mlock, llama_progress_callback progress_callback, void * progress_callback_user_data) { @@ -1898,11 +2121,9 @@ static void llm_load_tensors( } (void) main_gpu; - (void) mul_mat_q; -#if defined(GGML_USE_CUBLAS) +#ifdef GGML_USE_CUBLAS LLAMA_LOG_INFO("%s: using " GGML_CUDA_NAME " for GPU acceleration\n", __func__); ggml_cuda_set_main_device(main_gpu); - ggml_cuda_set_mul_mat_q(mul_mat_q); #define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_GPU #define LLAMA_BACKEND_OFFLOAD_SPLIT GGML_BACKEND_GPU_SPLIT #elif defined(GGML_USE_CLBLAST) @@ -1923,7 +2144,6 @@ static void llm_load_tensors( const int64_t n_vocab = hparams.n_vocab; const auto tn = LLM_TN(model.arch); - switch (model.arch) { case LLM_ARCH_LLAMA: { @@ -1938,9 +2158,75 @@ static void llm_load_tensors( // norm is not performance relevant on its own but keeping it in VRAM reduces data copying // on Windows however this is detrimental unless everything is on the GPU #ifndef _WIN32 - backend_norm = low_vram ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; + backend_norm = LLAMA_BACKEND_OFFLOAD; +#else + backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; +#endif // _WIN32 + + backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT; + } else { + backend_norm = GGML_BACKEND_CPU; + backend_output = GGML_BACKEND_CPU; + } + + model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm); + model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output); + + if (backend_norm == GGML_BACKEND_GPU) { + vram_weights += ggml_nbytes(model.output_norm); + } + if (backend_output == GGML_BACKEND_GPU_SPLIT) { + vram_weights += ggml_nbytes(model.output); + } + } + + const uint32_t n_ff = hparams.n_ff; + + const int i_gpu_start = n_layer - n_gpu_layers; + + model.layers.resize(n_layer); + + for (uint32_t i = 0; i < n_layer; ++i) { + const ggml_backend backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT + const ggml_backend backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT + + auto & layer = model.layers[i]; + + layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend); + + layer.wq = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, backend_split); + layer.wk = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, backend_split); + layer.wv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, backend_split); + layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split); + + layer.ffn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend); + + layer.w1 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, backend_split); + layer.w2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, backend_split); + layer.w3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split); + + if (backend == GGML_BACKEND_GPU) { + vram_weights += + ggml_nbytes(layer.attn_norm) + ggml_nbytes(layer.wq) + ggml_nbytes(layer.wk) + + ggml_nbytes(layer.wv) + ggml_nbytes(layer.wo) + ggml_nbytes(layer.ffn_norm) + + ggml_nbytes(layer.w1) + ggml_nbytes(layer.w2) + ggml_nbytes(layer.w3); + } + } + } break; + case LLM_ARCH_BAICHUAN: + { + model.tok_embeddings = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU); + { + ggml_backend backend_norm; + ggml_backend backend_output; + + if (n_gpu_layers > int(n_layer)) { + // norm is not performance relevant on its own but keeping it in VRAM reduces data copying + // on Windows however this is detrimental unless everything is on the GPU +#ifndef _WIN32 + backend_norm = LLAMA_BACKEND_OFFLOAD; #else - backend_norm = low_vram || n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; + backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; #endif // _WIN32 backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT; @@ -2008,9 +2294,9 @@ static void llm_load_tensors( // norm is not performance relevant on its own but keeping it in VRAM reduces data copying // on Windows however this is detrimental unless everything is on the GPU #ifndef _WIN32 - backend_norm = low_vram ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; + backend_norm = LLAMA_BACKEND_OFFLOAD; #else - backend_norm = low_vram || n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; + backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; #endif // _WIN32 backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT; @@ -2071,29 +2357,100 @@ static void llm_load_tensors( } } } break; - default: - throw std::runtime_error("unknown architecture"); - }; - } + case LLM_ARCH_STARCODER: + { + model.tok_embeddings = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU); + model.pos_embeddings = ml.create_tensor(ctx, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train}, GGML_BACKEND_CPU); - ml.done_getting_tensors(); + // output + { + ggml_backend backend_norm; + ggml_backend backend_output; - // print memory requirements - { - const size_t scale = memory_type == GGML_TYPE_F32 ? 2 : 1; + if (n_gpu_layers > int(n_layer)) { + // norm is not performance relevant on its own but keeping it in VRAM reduces data copying + // on Windows however this is detrimental unless everything is on the GPU +#ifndef _WIN32 + backend_norm = LLAMA_BACKEND_OFFLOAD; +#else + backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; +#endif // _WIN32 - // this is the total memory required to run the inference - size_t mem_required = - ctx_size + - mmapped_size - vram_weights; // weights in VRAM not in memory + backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT; + } else { + backend_norm = GGML_BACKEND_CPU; + backend_output = GGML_BACKEND_CPU; + } + + model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm); + model.output_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, backend_norm); + model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output); + + if (backend_norm == GGML_BACKEND_GPU) { + vram_weights += ggml_nbytes(model.output_norm); + vram_weights += ggml_nbytes(model.output_norm_b); + } + if (backend_output == GGML_BACKEND_GPU_SPLIT) { + vram_weights += ggml_nbytes(model.output); + } + } + + const uint32_t n_ff = hparams.n_ff; + + const int i_gpu_start = n_layer - n_gpu_layers; + + model.layers.resize(n_layer); + + for (uint32_t i = 0; i < n_layer; ++i) { + const ggml_backend backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT + const ggml_backend backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT + + auto & layer = model.layers[i]; + + layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend); + layer.attn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, backend); + + layer.wqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, backend_split); + layer.bqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, backend_split); + + layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split); + layer.bo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, backend_split); + + layer.ffn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend); + layer.ffn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, backend); + + layer.w2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, backend_split); + layer.b2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, backend_split); + + layer.w3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split); + layer.b3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, backend_split); + + if (backend == GGML_BACKEND_GPU) { + vram_weights += + ggml_nbytes(layer.attn_norm) + ggml_nbytes(layer.attn_norm_b) + + ggml_nbytes(layer.wqkv) + ggml_nbytes(layer.bqkv) + + ggml_nbytes(layer.wo) + ggml_nbytes(layer.bo) + + ggml_nbytes(layer.ffn_norm) + ggml_nbytes(layer.ffn_norm_b) + + ggml_nbytes(layer.w2) + ggml_nbytes(layer.b2) + + ggml_nbytes(layer.w3) + ggml_nbytes(layer.b3); + } + } + } break; + default: + throw std::runtime_error("unknown architecture"); + } + } - // this is the memory required by one llama_state - const size_t mem_required_state = scale*hparams.kv_size(); + ml.done_getting_tensors(); - LLAMA_LOG_INFO("%s: mem required = %7.2f MB (+ %7.2f MB per state)\n", __func__, - mem_required / 1024.0 / 1024.0, mem_required_state / 1024.0 / 1024.0); + // print memory requirements + { + // this is the total memory required to run the inference + size_t mem_required = + ctx_size + + mmapped_size - vram_weights; // weights in VRAM not in memory - (void) n_batch; + LLAMA_LOG_INFO("%s: mem required = %7.2f MB\n", __func__, mem_required / 1024.0 / 1024.0); #if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer)); @@ -2102,36 +2459,17 @@ static void llm_load_tensors( if (n_gpu_layers > (int) hparams.n_layer) { LLAMA_LOG_INFO("%s: offloading non-repeating layers to GPU\n", __func__); } - size_t vram_kv_cache = 0; #ifdef GGML_USE_CUBLAS const int max_backend_supported_layers = hparams.n_layer + 3; - const int max_offloadable_layers = low_vram ? hparams.n_layer + 1 : hparams.n_layer + 3; - if (n_gpu_layers > (int) hparams.n_layer + 1) { - if (low_vram) { - LLAMA_LOG_INFO("%s: cannot offload v cache to GPU due to low VRAM option\n", __func__); - } else { - LLAMA_LOG_INFO("%s: offloading v cache to GPU\n", __func__); - vram_kv_cache += hparams.kv_size() / 2; - } - } - if (n_gpu_layers > (int) hparams.n_layer + 2) { - if (low_vram) { - LLAMA_LOG_WARN("%s: cannot offload k cache to GPU due to low VRAM option\n", __func__); - } else { - LLAMA_LOG_INFO("%s: offloading k cache to GPU\n", __func__); - vram_kv_cache += hparams.kv_size() / 2; - } - } + const int max_offloadable_layers = hparams.n_layer + 3; #elif defined(GGML_USE_CLBLAST) const int max_backend_supported_layers = hparams.n_layer + 1; const int max_offloadable_layers = hparams.n_layer + 1; #endif // GGML_USE_CUBLAS - LLAMA_LOG_INFO("%s: offloaded %d/%d layers to GPU\n", - __func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers); - LLAMA_LOG_INFO("%s: VRAM used: %zu MB\n", - __func__, (vram_weights + vram_kv_cache + MB - 1) / MB); // round up + LLAMA_LOG_INFO("%s: offloaded %d/%d layers to GPU\n", __func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers); + LLAMA_LOG_INFO("%s: VRAM used: %.2f MB\n", __func__, vram_weights / 1024.0 / 1024.0); #else (void) n_gpu_layers; #endif // defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) @@ -2144,7 +2482,7 @@ static void llm_load_tensors( } (void) tensor_split; -#if defined(GGML_USE_CUBLAS) +#ifdef GGML_USE_CUBLAS { ggml_cuda_set_tensor_split(tensor_split); } @@ -2166,29 +2504,24 @@ static void llm_load_tensors( static bool llama_model_load( const std::string & fname, llama_model & model, - int n_ctx, - int n_batch, int n_gpu_layers, int main_gpu, const float * tensor_split, - const bool mul_mat_q, - float rope_freq_base, - float rope_freq_scale, - bool low_vram, - ggml_type memory_type, bool use_mmap, bool use_mlock, bool vocab_only, llama_progress_callback progress_callback, void *progress_callback_user_data) { try { - std::unique_ptr ml(new llama_model_loader(fname, use_mmap)); + llama_model_loader ml(fname, use_mmap); - llm_load_arch (*ml, model); - llm_load_hparams(*ml, model, n_ctx, rope_freq_base, rope_freq_scale); - llm_load_vocab (*ml, model); + model.hparams.vocab_only = vocab_only; - llm_load_print_meta(*ml, model); + llm_load_arch (ml, model); + llm_load_hparams(ml, model); + llm_load_vocab (ml, model); + + llm_load_print_meta(ml, model); if (model.hparams.n_vocab != model.vocab.id_to_token.size()) { throw std::runtime_error("vocab size mismatch"); @@ -2200,8 +2533,8 @@ static bool llama_model_load( } llm_load_tensors( - *ml, model, n_batch, n_gpu_layers, - main_gpu, tensor_split, mul_mat_q, low_vram, memory_type, + ml, model, n_gpu_layers, + main_gpu, tensor_split, use_mlock, progress_callback, progress_callback_user_data); } catch (const std::exception & err) { LLAMA_LOG_ERROR("error loading model: %s\n", err.what()); @@ -2213,17 +2546,10 @@ static bool llama_model_load( static struct ggml_cgraph * llm_build_llama( llama_context & lctx, - const llama_token * tokens, - const float * embd, - int n_tokens, - int n_past) { - - GGML_ASSERT((!tokens && embd) || (tokens && !embd)); // NOLINT - - const int N = n_tokens; - + const llama_batch & batch) { const auto & model = lctx.model; const auto & hparams = model.hparams; + const auto & cparams = lctx.cparams; const auto & kv_self = lctx.kv_self; @@ -2231,7 +2557,7 @@ static struct ggml_cgraph * llm_build_llama( const int64_t n_embd = hparams.n_embd; const int64_t n_layer = hparams.n_layer; - const int64_t n_ctx = hparams.n_ctx; + const int64_t n_ctx = cparams.n_ctx; const int64_t n_head = hparams.n_head; const int64_t n_head_kv = hparams.n_head_kv; const int64_t n_embd_head = hparams.n_embd_head(); @@ -2239,12 +2565,20 @@ static struct ggml_cgraph * llm_build_llama( GGML_ASSERT(n_embd_head == hparams.n_rot); - const float freq_base = hparams.rope_freq_base; - const float freq_scale = hparams.rope_freq_scale; + const float freq_base = cparams.rope_freq_base; + const float freq_scale = cparams.rope_freq_scale; const float norm_rms_eps = hparams.f_norm_rms_eps; const int n_gpu_layers = model.n_gpu_layers; + const int32_t n_tokens = batch.n_tokens; + const int32_t n_kv = ggml_allocr_is_measure(lctx.alloc) ? n_ctx : kv_self.n; + const int32_t kv_head = ggml_allocr_is_measure(lctx.alloc) ? n_ctx - n_tokens : kv_self.head; + + const bool do_rope_shift = ggml_allocr_is_measure(lctx.alloc) || kv_self.has_shift; + + //printf("n_kv = %d\n", n_kv); + auto & buf_compute = lctx.buf_compute; struct ggml_init_params params = { @@ -2262,12 +2596,12 @@ static struct ggml_cgraph * llm_build_llama( struct ggml_tensor * cur; struct ggml_tensor * inpL; - if (tokens) { - struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N); + if (batch.token) { + struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens); ggml_allocr_alloc(lctx.alloc, inp_tokens); if (!ggml_allocr_is_measure(lctx.alloc)) { - memcpy(inp_tokens->data, tokens, N*ggml_element_size(inp_tokens)); + memcpy(inp_tokens->data, batch.token, n_tokens*ggml_element_size(inp_tokens)); } ggml_set_name(inp_tokens, "inp_tokens"); @@ -2277,11 +2611,11 @@ static struct ggml_cgraph * llm_build_llama( GGML_ASSERT(false && "not implemented"); #endif - inpL = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N); + inpL = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_tokens); ggml_allocr_alloc(lctx.alloc, inpL); if (!ggml_allocr_is_measure(lctx.alloc)) { - memcpy(inpL->data, embd, N * n_embd * ggml_element_size(inpL)); + memcpy(inpL->data, batch.embd, n_tokens * n_embd * ggml_element_size(inpL)); } } @@ -2290,9 +2624,6 @@ static struct ggml_cgraph * llm_build_llama( // offload functions set the tensor output backend to GPU // tensors are GPU-accelerated if any input or the output has been offloaded - // - // with the low VRAM option VRAM scratch is disabled in llama_load_model_internal - // in that case ggml_cuda_assign_buffers has no effect offload_func_t offload_func_nr = llama_nop; // nr = non-repeating offload_func_t offload_func_kq = llama_nop; offload_func_t offload_func_v = llama_nop; @@ -2309,12 +2640,75 @@ static struct ggml_cgraph * llm_build_llama( } #endif // GGML_USE_CUBLAS + // KQ_scale struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1); + ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)"); ggml_allocr_alloc(lctx.alloc, KQ_scale); if (!ggml_allocr_is_measure(lctx.alloc)) { - ggml_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd)/n_head)); + ggml_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd_head))); + } + + // KQ_mask (mask for 1 head, it will be broadcasted to all heads) + struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1); + offload_func_kq(KQ_mask); + ggml_set_name(KQ_mask, "KQ_mask"); + ggml_allocr_alloc(lctx.alloc, KQ_mask); + if (!ggml_allocr_is_measure(lctx.alloc)) { + float * data = (float *) KQ_mask->data; + memset(data, 0, ggml_nbytes(KQ_mask)); + + for (int h = 0; h < 1; ++h) { + for (int j = 0; j < n_tokens; ++j) { + const llama_pos pos = batch.pos[j]; + const llama_seq_id seq_id = batch.seq_id[j]; + + for (int i = 0; i < n_kv; ++i) { + if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) { + data[h*(n_kv*n_tokens) + j*n_kv + i] = -INFINITY; + } + } + } + } + } + + // KQ_pos - contains the positions + struct ggml_tensor * KQ_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens); + offload_func_kq(KQ_pos); + ggml_set_name(KQ_pos, "KQ_pos"); + ggml_allocr_alloc(lctx.alloc, KQ_pos); + if (!ggml_allocr_is_measure(lctx.alloc)) { + int * data = (int *) KQ_pos->data; + for (int i = 0; i < n_tokens; ++i) { + data[i] = batch.pos[i]; + } + } + + // shift the entire K-cache if needed + if (do_rope_shift) { + struct ggml_tensor * K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx); + offload_func_kq(K_shift); + ggml_set_name(K_shift, "K_shift"); + ggml_allocr_alloc(lctx.alloc, K_shift); + if (!ggml_allocr_is_measure(lctx.alloc)) { + int * data = (int *) K_shift->data; + for (int i = 0; i < n_ctx; ++i) { + data[i] = kv_self.cells[i].delta; + } + } + + for (int il = 0; il < n_layer; ++il) { + struct ggml_tensor * tmp = + ggml_rope_custom_inplace(ctx0, + ggml_view_3d(ctx0, kv_self.k, + n_embd_head, n_head_kv, n_ctx, + ggml_element_size(kv_self.k)*n_embd_head, + ggml_element_size(kv_self.k)*n_embd_gqa, + ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il), + K_shift, n_embd_head, 0, 0, freq_base, freq_scale); + offload_func_kq(tmp); + ggml_build_forward_expand(gf, tmp); + } } - ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)"); for (int il = 0; il < n_layer; ++il) { ggml_format_name(inpL, "layer_inp_%d", il); @@ -2352,33 +2746,33 @@ static struct ggml_cgraph * llm_build_llama( offload_func_kq(tmpq); ggml_set_name(tmpq, "tmpq"); - struct ggml_tensor * Kcur = ggml_rope_custom_inplace(ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd_head, n_head_kv, N), n_past, n_embd_head, 0, 0, freq_base, freq_scale); + struct ggml_tensor * Kcur = ggml_rope_custom(ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd_head, n_head_kv, n_tokens), KQ_pos, n_embd_head, 0, 0, freq_base, freq_scale); offload_func_kq(Kcur); ggml_set_name(Kcur, "Kcur"); - struct ggml_tensor * Qcur = ggml_rope_custom_inplace(ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd_head, n_head, N), n_past, n_embd_head, 0, 0, freq_base, freq_scale); + struct ggml_tensor * Qcur = ggml_rope_custom(ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd_head, n_head, n_tokens), KQ_pos, n_embd_head, 0, 0, freq_base, freq_scale); offload_func_kq(Qcur); ggml_set_name(Qcur, "Qcur"); // store key and value to memory { - // compute the transposed [N, n_embd] V matrix + // compute the transposed [n_tokens, n_embd] V matrix struct ggml_tensor * tmpv = ggml_mul_mat(ctx0, model.layers[il].wv, cur); offload_func_v(tmpv); ggml_set_name(tmpv, "tmpv"); - struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, tmpv, n_embd_gqa, N)); + struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, tmpv, n_embd_gqa, n_tokens)); offload_func_v(Vcur); ggml_set_name(Vcur, "Vcur"); - struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, N*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + n_past)); + struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, n_tokens*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + kv_head)); offload_func_kq(k); ggml_set_name(k, "k"); - struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, N, n_embd_gqa, + struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, n_tokens, n_embd_gqa, ( n_ctx)*ggml_element_size(kv_self.v), - (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + n_past*ggml_element_size(kv_self.v)); + (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + kv_head*ggml_element_size(kv_self.v)); offload_func_v(v); ggml_set_name(v, "v"); @@ -2393,7 +2787,7 @@ static struct ggml_cgraph * llm_build_llama( struct ggml_tensor * K = ggml_view_3d(ctx0, kv_self.k, - n_embd_head, n_past + N, n_head_kv, + n_embd_head, n_kv, n_head_kv, ggml_element_size(kv_self.k)*n_embd_gqa, ggml_element_size(kv_self.k)*n_embd_head, ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il); @@ -2406,25 +2800,25 @@ static struct ggml_cgraph * llm_build_llama( ggml_set_name(KQ, "KQ"); // KQ_scaled = KQ / sqrt(n_embd_head) - // KQ_scaled shape [n_past + N, N, n_head, 1] - struct ggml_tensor * KQ_scaled = ggml_scale_inplace(ctx0, KQ, KQ_scale); + // KQ_scaled shape [n_kv, n_tokens, n_head, 1] + struct ggml_tensor * KQ_scaled = ggml_scale(ctx0, KQ, KQ_scale); offload_func_kq(KQ_scaled); ggml_set_name(KQ_scaled, "KQ_scaled"); // KQ_masked = mask_past(KQ_scaled) - struct ggml_tensor * KQ_masked = ggml_diag_mask_inf_inplace(ctx0, KQ_scaled, n_past); + struct ggml_tensor * KQ_masked = ggml_add(ctx0, KQ_scaled, KQ_mask); offload_func_kq(KQ_masked); ggml_set_name(KQ_masked, "KQ_masked"); // KQ = soft_max(KQ_masked) - struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ_masked); + struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked); offload_func_v(KQ_soft_max); ggml_set_name(KQ_soft_max, "KQ_soft_max"); // split cached V into n_head heads struct ggml_tensor * V = ggml_view_3d(ctx0, kv_self.v, - n_past + N, n_embd_head, n_head_kv, + n_kv, n_embd_head, n_head_kv, ggml_element_size(kv_self.v)*n_ctx, ggml_element_size(kv_self.v)*n_ctx*n_embd_head, ggml_element_size(kv_self.v)*n_ctx*n_embd_gqa*il); @@ -2439,7 +2833,7 @@ static struct ggml_cgraph * llm_build_llama( // make V contiguous in memory to speed up the matmul, however we waste time on the copy // on M1 this is faster for the perplexity computation, but ~5% slower for the single-token generation // is there a better way? - struct ggml_tensor * V_cont = ggml_cpy(ctx0, V, ggml_new_tensor_3d(ctx0, kv_self.v->type, n_past + N, n_embd_head, n_head)); + struct ggml_tensor * V_cont = ggml_cpy(ctx0, V, ggml_new_tensor_3d(ctx0, kv_self.v->type, n_ctx, n_embd_head, n_head)); struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_cont, KQ_soft_max); #endif @@ -2448,10 +2842,8 @@ static struct ggml_cgraph * llm_build_llama( offload_func_v(KQV_merged); ggml_set_name(KQV_merged, "KQV_merged"); - // cur = KQV_merged.contiguous().view(n_embd, N) - cur = ggml_cpy(ctx0, - KQV_merged, - ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N)); + // cur = KQV_merged.contiguous().view(n_embd, n_tokens) + cur = ggml_cont_2d(ctx0, KQV_merged, n_embd, n_tokens); offload_func_v(cur); ggml_set_name(cur, "KQV_merged_contiguous"); @@ -2542,19 +2934,12 @@ static struct ggml_cgraph * llm_build_llama( return gf; } -static struct ggml_cgraph * llm_build_falcon( +static struct ggml_cgraph * llm_build_baichaun( llama_context & lctx, - const llama_token * tokens, - const float * embd, - int n_tokens, - int n_past) { - - GGML_ASSERT((!tokens && embd) || (tokens && !embd)); // NOLINT - - const int N = n_tokens; - + const llama_batch & batch) { const auto & model = lctx.model; const auto & hparams = model.hparams; + const auto & cparams = lctx.cparams; const auto & kv_self = lctx.kv_self; @@ -2562,7 +2947,7 @@ static struct ggml_cgraph * llm_build_falcon( const int64_t n_embd = hparams.n_embd; const int64_t n_layer = hparams.n_layer; - const int64_t n_ctx = hparams.n_ctx; + const int64_t n_ctx = cparams.n_ctx; const int64_t n_head = hparams.n_head; const int64_t n_head_kv = hparams.n_head_kv; const int64_t n_embd_head = hparams.n_embd_head(); @@ -2570,12 +2955,18 @@ static struct ggml_cgraph * llm_build_falcon( GGML_ASSERT(n_embd_head == hparams.n_rot); - const float freq_base = hparams.rope_freq_base; - const float freq_scale = hparams.rope_freq_scale; - const float norm_eps = hparams.f_norm_eps; + const float freq_base = cparams.rope_freq_base; + const float freq_scale = cparams.rope_freq_scale; + const float norm_rms_eps = hparams.f_norm_rms_eps; const int n_gpu_layers = model.n_gpu_layers; + const int32_t n_tokens = batch.n_tokens; + const int32_t n_kv = ggml_allocr_is_measure(lctx.alloc) ? n_ctx : kv_self.n; + const int32_t kv_head = ggml_allocr_is_measure(lctx.alloc) ? n_ctx - n_tokens : kv_self.head; + + const bool do_rope_shift = ggml_allocr_is_measure(lctx.alloc) || kv_self.has_shift; + auto & buf_compute = lctx.buf_compute; struct ggml_init_params params = { @@ -2593,12 +2984,12 @@ static struct ggml_cgraph * llm_build_falcon( struct ggml_tensor * cur; struct ggml_tensor * inpL; - if (tokens) { - struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N); + if (batch.token) { + struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens); ggml_allocr_alloc(lctx.alloc, inp_tokens); if (!ggml_allocr_is_measure(lctx.alloc)) { - memcpy(inp_tokens->data, tokens, N*ggml_element_size(inp_tokens)); + memcpy(inp_tokens->data, batch.token, n_tokens*ggml_element_size(inp_tokens)); } ggml_set_name(inp_tokens, "inp_tokens"); @@ -2608,11 +2999,11 @@ static struct ggml_cgraph * llm_build_falcon( GGML_ASSERT(false && "not implemented"); #endif - inpL = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N); + inpL = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_tokens); ggml_allocr_alloc(lctx.alloc, inpL); if (!ggml_allocr_is_measure(lctx.alloc)) { - memcpy(inpL->data, embd, N * n_embd * ggml_element_size(inpL)); + memcpy(inpL->data, batch.embd, n_tokens * n_embd * ggml_element_size(inpL)); } } @@ -2621,9 +3012,6 @@ static struct ggml_cgraph * llm_build_falcon( // offload functions set the tensor output backend to GPU // tensors are GPU-accelerated if any input or the output has been offloaded - // - // with the low VRAM option VRAM scratch is disabled in llama_load_model_internal - // in that case ggml_cuda_assign_buffers has no effect offload_func_t offload_func_nr = llama_nop; // nr = non-repeating offload_func_t offload_func_kq = llama_nop; offload_func_t offload_func_v = llama_nop; @@ -2640,15 +3028,78 @@ static struct ggml_cgraph * llm_build_falcon( } #endif // GGML_USE_CUBLAS + // KQ_scale struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1); + ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)"); ggml_allocr_alloc(lctx.alloc, KQ_scale); if (!ggml_allocr_is_measure(lctx.alloc)) { ggml_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd)/n_head)); } - ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)"); + + // KQ_mask (mask for 1 head, it will be broadcasted to all heads) + struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1); + offload_func_kq(KQ_mask); + ggml_set_name(KQ_mask, "KQ_mask"); + ggml_allocr_alloc(lctx.alloc, KQ_mask); + if (!ggml_allocr_is_measure(lctx.alloc)) { + float * data = (float *) KQ_mask->data; + memset(data, 0, ggml_nbytes(KQ_mask)); + + for (int h = 0; h < 1; ++h) { + for (int j = 0; j < n_tokens; ++j) { + const llama_pos pos = batch.pos[j]; + const llama_seq_id seq_id = batch.seq_id[j]; + + for (int i = 0; i < n_kv; ++i) { + if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) { + data[h*(n_kv*n_tokens) + j*n_kv + i] = -INFINITY; + } + } + } + } + } + + // KQ_pos - contains the positions + struct ggml_tensor * KQ_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens); + offload_func_kq(KQ_pos); + ggml_set_name(KQ_pos, "KQ_pos"); + ggml_allocr_alloc(lctx.alloc, KQ_pos); + if (!ggml_allocr_is_measure(lctx.alloc)) { + int * data = (int *) KQ_pos->data; + for (int i = 0; i < n_tokens; ++i) { + data[i] = batch.pos[i]; + } + } + + // shift the entire K-cache if needed + if (do_rope_shift) { + struct ggml_tensor * K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx); + offload_func_kq(K_shift); + ggml_set_name(K_shift, "K_shift"); + ggml_allocr_alloc(lctx.alloc, K_shift); + if (!ggml_allocr_is_measure(lctx.alloc)) { + int * data = (int *) K_shift->data; + for (int i = 0; i < n_ctx; ++i) { + data[i] = kv_self.cells[i].delta; + } + } + + for (int il = 0; il < n_layer; ++il) { + struct ggml_tensor * tmp = + ggml_rope_custom_inplace(ctx0, + ggml_view_3d(ctx0, kv_self.k, + n_embd_head, n_head_kv, n_ctx, + ggml_element_size(kv_self.k)*n_embd_head, + ggml_element_size(kv_self.k)*n_embd_gqa, + ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il), + K_shift, n_embd_head, 0, 0, freq_base, freq_scale); + offload_func_kq(tmp); + ggml_build_forward_expand(gf, tmp); + } + } for (int il = 0; il < n_layer; ++il) { - struct ggml_tensor * attn_norm; + ggml_format_name(inpL, "layer_inp_%d", il); offload_func_t offload_func = llama_nop; @@ -2658,91 +3109,75 @@ static struct ggml_cgraph * llm_build_falcon( } #endif // GGML_USE_CUBLAS - // self-attention - // TODO: refactor into common function (shared with LLaMA) - { - attn_norm = ggml_norm(ctx0, inpL, norm_eps); - offload_func(attn_norm); - - attn_norm = ggml_add(ctx0, - ggml_mul(ctx0, attn_norm, model.layers[il].attn_norm), - model.layers[il].attn_norm_b); - offload_func(attn_norm->src[0]); - offload_func(attn_norm); - - if (model.layers[il].attn_norm_2) { // Falcon-40B - cur = ggml_norm(ctx0, inpL, norm_eps); - offload_func(cur); - - cur = ggml_add(ctx0, - ggml_mul(ctx0, cur, model.layers[il].attn_norm_2), - model.layers[il].attn_norm_2_b); - offload_func(cur->src[0]); - offload_func(cur); - } else { // Falcon 7B - cur = attn_norm; - } - - // compute QKV + struct ggml_tensor * inpSA = inpL; - cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur); - offload_func_kq(cur); + // norm + { + cur = ggml_rms_norm(ctx0, inpL, norm_rms_eps); + offload_func(cur); + ggml_set_name(cur, "rms_norm_0"); - // Note that the strides for Kcur, Vcur are set up so that the - // resulting views are misaligned with the tensor's storage - // (by applying the K/V offset we shift the tensor's original - // view to stick out behind the viewed QKV tensor's allocated - // memory, so to say). This is ok because no actual accesses - // happen to that out-of-range memory, but it can require some - // trickery when trying to accurately dump these views for - // debugging. + // cur = cur*attn_norm(broadcasted) + cur = ggml_mul(ctx0, cur, model.layers[il].attn_norm); + offload_func(cur); + ggml_set_name(cur, "attention_norm_0"); + } - const size_t wsize = ggml_type_size(cur->type); + // self-attention + { + // compute Q and K and RoPE them + struct ggml_tensor * tmpk = ggml_mul_mat(ctx0, model.layers[il].wk, cur); + offload_func_kq(tmpk); + ggml_set_name(tmpk, "tmpk"); - // TODO: these 2 ggml_conts are technically not needed, but we add them until CUDA support for - // non-contiguous views is added for the rope operator - struct ggml_tensor * tmpq = ggml_cont(ctx0, ggml_view_3d( - ctx0, cur, n_embd_head, n_head, N, - wsize * n_embd_head, - wsize * n_embd_head * (n_head + 2 * n_head_kv), - 0)); + struct ggml_tensor * tmpq = ggml_mul_mat(ctx0, model.layers[il].wq, cur); offload_func_kq(tmpq); + ggml_set_name(tmpq, "tmpq"); - struct ggml_tensor * tmpk = ggml_cont(ctx0, ggml_view_3d( - ctx0, cur, n_embd_head, n_head_kv, N, - wsize * n_embd_head, - wsize * n_embd_head * (n_head + 2 * n_head_kv), - wsize * n_embd_head * n_head)); - offload_func_kq(tmpk); + struct ggml_tensor * Kcur; + struct ggml_tensor * Qcur; + switch (model.type) { + case MODEL_7B: + Kcur = ggml_rope_custom(ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd_head, n_head_kv, n_tokens), KQ_pos, n_embd_head, 0, 0, freq_base, freq_scale); + Qcur = ggml_rope_custom(ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd_head, n_head, n_tokens), KQ_pos, n_embd_head, 0, 0, freq_base, freq_scale); + break; + case MODEL_13B: + Kcur = ggml_reshape_3d(ctx0, tmpk, n_embd/n_head, n_head, n_tokens); + Qcur = ggml_reshape_3d(ctx0, tmpq, n_embd/n_head, n_head, n_tokens); + break; + default: + GGML_ASSERT(false); + } - struct ggml_tensor * tmpv = ggml_view_3d( - ctx0, cur, n_embd_head, n_head_kv, N, - wsize * n_embd_head, - wsize * n_embd_head * (n_head + 2 * n_head_kv), - wsize * n_embd_head * (n_head + n_head_kv)); - offload_func_v(tmpv); + offload_func_kq(Kcur); + ggml_set_name(Kcur, "Kcur"); - // using mode = 2 for neox mode - struct ggml_tensor * Qcur = ggml_rope_custom_inplace(ctx0, tmpq, n_past, n_embd_head, 2, 0, freq_base, freq_scale); offload_func_kq(Qcur); - struct ggml_tensor * Kcur = ggml_rope_custom_inplace(ctx0, tmpk, n_past, n_embd_head, 2, 0, freq_base, freq_scale); - offload_func_kq(Kcur); + ggml_set_name(Qcur, "Qcur"); + // store key and value to memory { - struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, ggml_cont(ctx0, tmpv), n_embd_gqa, N)); + // compute the transposed [n_tokens, n_embd] V matrix + + struct ggml_tensor * tmpv = ggml_mul_mat(ctx0, model.layers[il].wv, cur); + offload_func_v(tmpv); + ggml_set_name(tmpv, "tmpv"); + + struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, tmpv, n_embd_gqa, n_tokens)); offload_func_v(Vcur); - offload_func_v(Vcur->src[0]->src[0]); ggml_set_name(Vcur, "Vcur"); - struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, N*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + n_past)); + struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, n_tokens*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + kv_head)); offload_func_kq(k); ggml_set_name(k, "k"); - struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, N, n_embd_gqa, + struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, n_tokens, n_embd_gqa, ( n_ctx)*ggml_element_size(kv_self.v), - (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + n_past*ggml_element_size(kv_self.v)); + (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + kv_head*ggml_element_size(kv_self.v)); offload_func_v(v); + ggml_set_name(v, "v"); + // important: storing RoPE-ed version of K in the KV cache! ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k)); ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v)); } @@ -2753,32 +3188,50 @@ static struct ggml_cgraph * llm_build_falcon( struct ggml_tensor * K = ggml_view_3d(ctx0, kv_self.k, - n_embd_head, n_past + N, n_head_kv, + n_embd_head, n_kv, n_head_kv, ggml_element_size(kv_self.k)*n_embd_gqa, ggml_element_size(kv_self.k)*n_embd_head, ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il); offload_func_kq(K); ggml_set_name(K, "K"); + // K * Q struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); offload_func_kq(KQ); ggml_set_name(KQ, "KQ"); - struct ggml_tensor * KQ_scaled = ggml_scale_inplace(ctx0, KQ, KQ_scale); + // KQ_scaled = KQ / sqrt(n_embd_head) + // KQ_scaled shape [n_past + n_tokens, n_tokens, n_head, 1] + struct ggml_tensor * KQ_scaled = ggml_scale(ctx0, KQ, KQ_scale); offload_func_kq(KQ_scaled); ggml_set_name(KQ_scaled, "KQ_scaled"); - struct ggml_tensor * KQ_masked = ggml_diag_mask_inf_inplace(ctx0, KQ_scaled, n_past); - offload_func_kq(KQ_masked); - ggml_set_name(KQ_masked, "KQ_masked"); + struct ggml_tensor * KQ_masked; + struct ggml_tensor * KQ_scaled_alibi; - struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ_masked); + switch (model.type) { + case MODEL_7B: + KQ_masked = ggml_add(ctx0, KQ_scaled, KQ_mask); + break; + case MODEL_13B: + // TODO: replace with ggml_add() + KQ_scaled_alibi = ggml_alibi(ctx0, KQ_scaled, /*n_past*/ 0, n_head, 8); + ggml_set_name(KQ_scaled_alibi, "KQ_scaled_alibi"); + KQ_masked = ggml_add(ctx0, KQ_scaled_alibi, KQ_mask); + break; + default: + GGML_ASSERT(false); + } + + // KQ = soft_max(KQ_masked) + struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked); offload_func_v(KQ_soft_max); ggml_set_name(KQ_soft_max, "KQ_soft_max"); + // split cached V into n_head heads struct ggml_tensor * V = ggml_view_3d(ctx0, kv_self.v, - n_past + N, n_embd_head, n_head_kv, + n_kv, n_embd_head, n_head_kv, ggml_element_size(kv_self.v)*n_ctx, ggml_element_size(kv_self.v)*n_ctx*n_embd_head, ggml_element_size(kv_self.v)*n_ctx*n_embd_gqa*il); @@ -2789,27 +3242,433 @@ static struct ggml_cgraph * llm_build_falcon( offload_func_v(KQV); ggml_set_name(KQV, "KQV"); + // KQV_merged = KQV.permute(0, 2, 1, 3) struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3); offload_func_v(KQV_merged); ggml_set_name(KQV_merged, "KQV_merged"); - cur = ggml_cpy(ctx0, KQV_merged, ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N)); + // cur = KQV_merged.contiguous().view(n_embd, n_tokens) + cur = ggml_cont_2d(ctx0, KQV_merged, n_embd, n_tokens); offload_func_v(cur); ggml_set_name(cur, "KQV_merged_contiguous"); - cur = ggml_mul_mat(ctx0, model.layers[il].wo, cur); + // projection (no bias) + cur = ggml_mul_mat(ctx0, + model.layers[il].wo, + cur); offload_func(cur); ggml_set_name(cur, "result_wo"); } - struct ggml_tensor * attn_out = cur; + struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpSA); + offload_func(inpFF); + ggml_set_name(inpFF, "inpFF"); - // feed forward + // feed-forward network { - struct ggml_tensor * inpFF = attn_norm; - - cur = ggml_mul_mat(ctx0, model.layers[il].w3, inpFF); - offload_func(cur); + // norm + { + cur = ggml_rms_norm(ctx0, inpFF, norm_rms_eps); + offload_func(cur); + ggml_set_name(cur, "rms_norm_1"); + + // cur = cur*ffn_norm(broadcasted) + cur = ggml_mul(ctx0, cur, model.layers[il].ffn_norm); + offload_func(cur); + ggml_set_name(cur, "ffn_norm"); + } + + struct ggml_tensor * tmp = ggml_mul_mat(ctx0, + model.layers[il].w3, + cur); + offload_func(tmp); + ggml_set_name(tmp, "result_w3"); + + cur = ggml_mul_mat(ctx0, + model.layers[il].w1, + cur); + offload_func(cur); + ggml_set_name(cur, "result_w1"); + + // SILU activation + cur = ggml_silu(ctx0, cur); + offload_func(cur); + ggml_set_name(cur, "silu"); + + cur = ggml_mul(ctx0, cur, tmp); + offload_func(cur); + ggml_set_name(cur, "silu_x_result_w3"); + + cur = ggml_mul_mat(ctx0, + model.layers[il].w2, + cur); + offload_func(cur); + ggml_set_name(cur, "result_w2"); + } + + cur = ggml_add(ctx0, cur, inpFF); + offload_func(cur); + ggml_set_name(cur, "inpFF_+_result_w2"); + + // input for next layer + inpL = cur; + } + + cur = inpL; + + // norm + { + cur = ggml_rms_norm(ctx0, cur, norm_rms_eps); + offload_func_nr(cur); + ggml_set_name(cur, "rms_norm_2"); + + // cur = cur*norm(broadcasted) + cur = ggml_mul(ctx0, cur, model.output_norm); + // offload_func_nr(cur); // TODO CPU + GPU mirrored backend + ggml_set_name(cur, "result_norm"); + } + + // lm_head + cur = ggml_mul_mat(ctx0, model.output, cur); + ggml_set_name(cur, "result_output"); + + ggml_build_forward_expand(gf, cur); + + ggml_free(ctx0); + + return gf; +} + +static struct ggml_cgraph * llm_build_falcon( + llama_context & lctx, + const llama_batch & batch) { + const auto & model = lctx.model; + const auto & hparams = model.hparams; + const auto & cparams = lctx.cparams; + + const auto & kv_self = lctx.kv_self; + + GGML_ASSERT(!!kv_self.ctx); + + const int64_t n_embd = hparams.n_embd; + const int64_t n_layer = hparams.n_layer; + const int64_t n_ctx = cparams.n_ctx; + const int64_t n_head = hparams.n_head; + const int64_t n_head_kv = hparams.n_head_kv; + const int64_t n_embd_head = hparams.n_embd_head(); + const int64_t n_embd_gqa = hparams.n_embd_gqa(); + + GGML_ASSERT(n_embd_head == hparams.n_rot); + + const float freq_base = cparams.rope_freq_base; + const float freq_scale = cparams.rope_freq_scale; + const float norm_eps = hparams.f_norm_eps; + + const int n_gpu_layers = model.n_gpu_layers; + + const int32_t n_tokens = batch.n_tokens; + const int32_t n_kv = ggml_allocr_is_measure(lctx.alloc) ? n_ctx : kv_self.n; + const int32_t kv_head = ggml_allocr_is_measure(lctx.alloc) ? n_ctx - n_tokens : kv_self.head; + + const bool do_rope_shift = ggml_allocr_is_measure(lctx.alloc) || kv_self.has_shift; + + //printf("kv_head = %d, n_kv = %d, n_tokens = %d, n_ctx = %d, is_measure = %d, has_shift = %d\n", + // kv_head, n_kv, n_tokens, n_ctx, ggml_allocr_is_measure(lctx.alloc), kv_self.has_shift); + + auto & buf_compute = lctx.buf_compute; + + struct ggml_init_params params = { + /*.mem_size =*/ buf_compute.size, + /*.mem_buffer =*/ buf_compute.data, + /*.no_alloc =*/ false, + }; + + params.no_alloc = true; + + struct ggml_context * ctx0 = ggml_init(params); + + ggml_cgraph * gf = ggml_new_graph(ctx0); + + struct ggml_tensor * cur; + struct ggml_tensor * inpL; + + if (batch.token) { + struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens); + + ggml_allocr_alloc(lctx.alloc, inp_tokens); + if (!ggml_allocr_is_measure(lctx.alloc)) { + memcpy(inp_tokens->data, batch.token, n_tokens*ggml_element_size(inp_tokens)); + } + ggml_set_name(inp_tokens, "inp_tokens"); + + inpL = ggml_get_rows(ctx0, model.tok_embeddings, inp_tokens); + } else { +#ifdef GGML_USE_MPI + GGML_ASSERT(false && "not implemented"); +#endif + + inpL = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_tokens); + + ggml_allocr_alloc(lctx.alloc, inpL); + if (!ggml_allocr_is_measure(lctx.alloc)) { + memcpy(inpL->data, batch.embd, n_tokens * n_embd * ggml_element_size(inpL)); + } + } + + const int i_gpu_start = n_layer - n_gpu_layers; + (void) i_gpu_start; + + // offload functions set the tensor output backend to GPU + // tensors are GPU-accelerated if any input or the output has been offloaded + offload_func_t offload_func_nr = llama_nop; // nr = non-repeating + offload_func_t offload_func_kq = llama_nop; + offload_func_t offload_func_v = llama_nop; + +#ifdef GGML_USE_CUBLAS + if (n_gpu_layers > n_layer) { + offload_func_nr = ggml_cuda_assign_buffers_no_alloc; + } + if (n_gpu_layers > n_layer + 1) { + offload_func_v = ggml_cuda_assign_buffers_no_alloc; + } + if (n_gpu_layers > n_layer + 2) { + offload_func_kq = ggml_cuda_assign_buffers_no_alloc; + } +#endif // GGML_USE_CUBLAS + + // KQ_scale + struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1); + ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)"); + ggml_allocr_alloc(lctx.alloc, KQ_scale); + if (!ggml_allocr_is_measure(lctx.alloc)) { + ggml_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd)/n_head)); + } + + // KQ_mask (mask for 1 head, it will be broadcasted to all heads) + struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1); + offload_func_kq(KQ_mask); + ggml_set_name(KQ_mask, "KQ_mask"); + ggml_allocr_alloc(lctx.alloc, KQ_mask); + if (!ggml_allocr_is_measure(lctx.alloc)) { + float * data = (float *) KQ_mask->data; + memset(data, 0, ggml_nbytes(KQ_mask)); + + for (int h = 0; h < 1; ++h) { + for (int j = 0; j < n_tokens; ++j) { + const llama_pos pos = batch.pos[j]; + const llama_seq_id seq_id = batch.seq_id[j]; + + for (int i = 0; i < n_kv; ++i) { + if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) { + data[h*(n_kv*n_tokens) + j*n_kv + i] = -INFINITY; + } + } + } + } + } + + // KQ_pos - contains the positions + struct ggml_tensor * KQ_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens); + offload_func_kq(KQ_pos); + ggml_set_name(KQ_pos, "KQ_pos"); + ggml_allocr_alloc(lctx.alloc, KQ_pos); + if (!ggml_allocr_is_measure(lctx.alloc)) { + int * data = (int *) KQ_pos->data; + for (int i = 0; i < n_tokens; ++i) { + data[i] = batch.pos[i]; + } + } + + // shift the entire K-cache if needed + if (do_rope_shift) { + struct ggml_tensor * K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx); + offload_func_kq(K_shift); + ggml_set_name(K_shift, "K_shift"); + ggml_allocr_alloc(lctx.alloc, K_shift); + if (!ggml_allocr_is_measure(lctx.alloc)) { + int * data = (int *) K_shift->data; + for (int i = 0; i < n_ctx; ++i) { + data[i] = kv_self.cells[i].delta; + } + } + + for (int il = 0; il < n_layer; ++il) { + struct ggml_tensor * tmp = + ggml_rope_custom_inplace(ctx0, + ggml_view_3d(ctx0, kv_self.k, + n_embd_head, n_head_kv, n_ctx, + ggml_element_size(kv_self.k)*n_embd_head, + ggml_element_size(kv_self.k)*n_embd_gqa, + ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il), + K_shift, n_embd_head, 2, 0, freq_base, freq_scale); + offload_func_kq(tmp); + ggml_build_forward_expand(gf, tmp); + } + } + + for (int il = 0; il < n_layer; ++il) { + struct ggml_tensor * attn_norm; + + offload_func_t offload_func = llama_nop; + +#ifdef GGML_USE_CUBLAS + if (il >= i_gpu_start) { + offload_func = ggml_cuda_assign_buffers_no_alloc; + } +#endif // GGML_USE_CUBLAS + + // self-attention + // TODO: refactor into common function (shared with LLaMA) + { + attn_norm = ggml_norm(ctx0, inpL, norm_eps); + offload_func(attn_norm); + + attn_norm = ggml_add(ctx0, + ggml_mul(ctx0, attn_norm, model.layers[il].attn_norm), + model.layers[il].attn_norm_b); + offload_func(attn_norm->src[0]); + offload_func(attn_norm); + + if (model.layers[il].attn_norm_2) { // Falcon-40B + cur = ggml_norm(ctx0, inpL, norm_eps); + offload_func(cur); + + cur = ggml_add(ctx0, + ggml_mul(ctx0, cur, model.layers[il].attn_norm_2), + model.layers[il].attn_norm_2_b); + offload_func(cur->src[0]); + offload_func(cur); + } else { // Falcon 7B + cur = attn_norm; + } + + // compute QKV + + cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur); + offload_func_kq(cur); + + // Note that the strides for Kcur, Vcur are set up so that the + // resulting views are misaligned with the tensor's storage + // (by applying the K/V offset we shift the tensor's original + // view to stick out behind the viewed QKV tensor's allocated + // memory, so to say). This is ok because no actual accesses + // happen to that out-of-range memory, but it can require some + // trickery when trying to accurately dump these views for + // debugging. + + const size_t wsize = ggml_type_size(cur->type); + + // TODO: these 2 ggml_conts are technically not needed, but we add them until CUDA support for + // non-contiguous views is added for the rope operator + struct ggml_tensor * tmpq = ggml_cont(ctx0, ggml_view_3d( + ctx0, cur, n_embd_head, n_head, n_tokens, + wsize * n_embd_head, + wsize * n_embd_head * (n_head + 2 * n_head_kv), + 0)); + offload_func_kq(tmpq); + + struct ggml_tensor * tmpk = ggml_cont(ctx0, ggml_view_3d( + ctx0, cur, n_embd_head, n_head_kv, n_tokens, + wsize * n_embd_head, + wsize * n_embd_head * (n_head + 2 * n_head_kv), + wsize * n_embd_head * n_head)); + offload_func_kq(tmpk); + + struct ggml_tensor * tmpv = ggml_view_3d( + ctx0, cur, n_embd_head, n_head_kv, n_tokens, + wsize * n_embd_head, + wsize * n_embd_head * (n_head + 2 * n_head_kv), + wsize * n_embd_head * (n_head + n_head_kv)); + offload_func_v(tmpv); + + // using mode = 2 for neox mode + struct ggml_tensor * Qcur = ggml_rope_custom(ctx0, tmpq, KQ_pos, n_embd_head, 2, 0, freq_base, freq_scale); + offload_func_kq(Qcur); + struct ggml_tensor * Kcur = ggml_rope_custom(ctx0, tmpk, KQ_pos, n_embd_head, 2, 0, freq_base, freq_scale); + offload_func_kq(Kcur); + + { + struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, ggml_cont(ctx0, tmpv), n_embd_gqa, n_tokens)); + offload_func_v(Vcur); + offload_func_v(Vcur->src[0]->src[0]); + ggml_set_name(Vcur, "Vcur"); + + struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, n_tokens*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + kv_head)); + offload_func_kq(k); + ggml_set_name(k, "k"); + + struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, n_tokens, n_embd_gqa, + ( n_ctx)*ggml_element_size(kv_self.v), + (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + kv_head*ggml_element_size(kv_self.v)); + offload_func_v(v); + + ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k)); + ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v)); + } + + struct ggml_tensor * Q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3); + offload_func_kq(Q); + ggml_set_name(Q, "Q"); + + struct ggml_tensor * K = + ggml_view_3d(ctx0, kv_self.k, + n_embd_head, n_kv, n_head_kv, + ggml_element_size(kv_self.k)*n_embd_gqa, + ggml_element_size(kv_self.k)*n_embd_head, + ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il); + offload_func_kq(K); + ggml_set_name(K, "K"); + + struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); + offload_func_kq(KQ); + ggml_set_name(KQ, "KQ"); + + struct ggml_tensor * KQ_scaled = ggml_scale(ctx0, KQ, KQ_scale); + offload_func_kq(KQ_scaled); + ggml_set_name(KQ_scaled, "KQ_scaled"); + + struct ggml_tensor * KQ_masked = ggml_add(ctx0, KQ_scaled, KQ_mask); + offload_func_kq(KQ_masked); + ggml_set_name(KQ_masked, "KQ_masked"); + + struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked); + offload_func_v(KQ_soft_max); + ggml_set_name(KQ_soft_max, "KQ_soft_max"); + + struct ggml_tensor * V = + ggml_view_3d(ctx0, kv_self.v, + n_kv, n_embd_head, n_head_kv, + ggml_element_size(kv_self.v)*n_ctx, + ggml_element_size(kv_self.v)*n_ctx*n_embd_head, + ggml_element_size(kv_self.v)*n_ctx*n_embd_gqa*il); + offload_func_v(V); + ggml_set_name(V, "V"); + + struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max); + offload_func_v(KQV); + ggml_set_name(KQV, "KQV"); + + struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3); + offload_func_v(KQV_merged); + ggml_set_name(KQV_merged, "KQV_merged"); + + cur = ggml_cont_2d(ctx0, KQV_merged, n_embd, n_tokens); + offload_func_v(cur); + ggml_set_name(cur, "KQV_merged_contiguous"); + + cur = ggml_mul_mat(ctx0, model.layers[il].wo, cur); + offload_func(cur); + ggml_set_name(cur, "result_wo"); + } + + struct ggml_tensor * attn_out = cur; + + // feed forward + { + struct ggml_tensor * inpFF = attn_norm; + + cur = ggml_mul_mat(ctx0, model.layers[il].w3, inpFF); + offload_func(cur); cur = ggml_gelu(ctx0, cur); offload_func(cur); @@ -2822,28 +3681,275 @@ static struct ggml_cgraph * llm_build_falcon( cur = ggml_add(ctx0, cur, inpL); offload_func(cur); - // input for next layer - inpL = cur; - } + // input for next layer + inpL = cur; + } + + cur = inpL; + + // norm + { + cur = ggml_norm(ctx0, cur, norm_eps); + offload_func_nr(cur); + + cur = ggml_add(ctx0, + ggml_mul(ctx0, cur, model.output_norm), + model.output_norm_b); + ggml_set_name(cur, "result_norm"); + } + + cur = ggml_mul_mat(ctx0, model.output, cur); + ggml_set_name(cur, "result_output"); + + ggml_build_forward_expand(gf, cur); + + ggml_free(ctx0); + + return gf; +} + +static struct ggml_cgraph * llm_build_starcoder( + llama_context & lctx, + const llama_batch & batch) { + const auto & model = lctx.model; + const auto & hparams = model.hparams; + const auto & cparams = lctx.cparams; + + const auto & kv_self = lctx.kv_self; + + GGML_ASSERT(!!kv_self.ctx); + + const int64_t n_embd = hparams.n_embd; + const int64_t n_layer = hparams.n_layer; + const int64_t n_ctx = cparams.n_ctx; + const int64_t n_head = hparams.n_head; + const int64_t n_head_kv = hparams.n_head_kv; + const int64_t n_embd_head = hparams.n_embd_head(); + const int64_t n_embd_gqa = hparams.n_embd_gqa(); + + GGML_ASSERT(n_embd_head == hparams.n_rot); + + const float norm_eps = hparams.f_norm_eps; + + const int32_t n_tokens = batch.n_tokens; + const int32_t n_kv = ggml_allocr_is_measure(lctx.alloc) ? n_ctx : kv_self.n; + const int32_t kv_head = ggml_allocr_is_measure(lctx.alloc) ? n_ctx - n_tokens : kv_self.head; + + auto & buf_compute = lctx.buf_compute; + + struct ggml_init_params params = { + /*.mem_size =*/ buf_compute.size, + /*.mem_buffer =*/ buf_compute.data, + /*.no_alloc =*/ false, + }; + + params.no_alloc = true; + + struct ggml_context * ctx0 = ggml_init(params); + + ggml_cgraph * gf = ggml_new_graph(ctx0); + + struct ggml_tensor * cur; + struct ggml_tensor * token; + struct ggml_tensor * position; + struct ggml_tensor * inpL; + + if (batch.token) { + struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens); + + ggml_allocr_alloc(lctx.alloc, inp_tokens); + if (!ggml_allocr_is_measure(lctx.alloc)) { + memcpy(inp_tokens->data, batch.token, n_tokens*ggml_element_size(inp_tokens)); + } + ggml_set_name(inp_tokens, "inp_tokens"); + + token = ggml_get_rows(ctx0, model.tok_embeddings, inp_tokens); + } else { +#ifdef GGML_USE_MPI + GGML_ASSERT(false && "not implemented"); +#endif + + token = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_tokens); + + ggml_allocr_alloc(lctx.alloc, token); + if (!ggml_allocr_is_measure(lctx.alloc)) { + memcpy(token->data, batch.embd, n_tokens * n_embd * ggml_element_size(token)); + } + } + + { + // Compute position embeddings. + struct ggml_tensor * inp_positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens); + ggml_allocr_alloc(lctx.alloc, inp_positions); + if (!ggml_allocr_is_measure(lctx.alloc)) { + for (int i = 0; i < n_tokens; ++i) { + ((int32_t *) inp_positions->data)[i] = batch.pos[i]; + } + } + ggml_set_name(inp_positions, "inp_positions"); + + position = ggml_get_rows(ctx0, model.pos_embeddings, inp_positions); + } + + // KQ_scale + struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1); + ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)"); + ggml_allocr_alloc(lctx.alloc, KQ_scale); + if (!ggml_allocr_is_measure(lctx.alloc)) { + ggml_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd)/n_head)); + } + + // KQ_mask (mask for 1 head, it will be broadcasted to all heads) + struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1); + ggml_set_name(KQ_mask, "KQ_mask"); + ggml_allocr_alloc(lctx.alloc, KQ_mask); + if (!ggml_allocr_is_measure(lctx.alloc)) { + float * data = (float *) KQ_mask->data; + memset(data, 0, ggml_nbytes(KQ_mask)); + + for (int h = 0; h < 1; ++h) { + for (int j = 0; j < n_tokens; ++j) { + const llama_pos pos = batch.pos[j]; + const llama_seq_id seq_id = batch.seq_id[j]; + + for (int i = 0; i < n_kv; ++i) { + if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) { + data[h*(n_kv*n_tokens) + j*n_kv + i] = -INFINITY; + } + } + } + } + } + + inpL = ggml_add(ctx0, token, position); + ggml_set_name(inpL, "inpL"); + + for (int il = 0; il < n_layer; ++il) { + { + // Norm + cur = ggml_norm(ctx0, inpL, norm_eps); + cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].attn_norm), model.layers[il].attn_norm_b); + } + + { + // Self Attention + cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wqkv, cur), model.layers[il].bqkv); + + struct ggml_tensor * tmpq = ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*n_embd); + struct ggml_tensor * tmpk = ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], sizeof(float)*n_embd); + struct ggml_tensor * tmpv = ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], sizeof(float)*(n_embd + n_embd_gqa)); + + struct ggml_tensor * Qcur = tmpq; + struct ggml_tensor * Kcur = tmpk; + + { + struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, ggml_cont(ctx0, tmpv), n_embd_gqa, n_tokens)); + ggml_set_name(Vcur, "Vcur"); + + struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, n_tokens*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + kv_head)); + ggml_set_name(k, "k"); + + struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, n_tokens, n_embd_gqa, + ( n_ctx)*ggml_element_size(kv_self.v), + (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + kv_head*ggml_element_size(kv_self.v)); + + ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k)); + ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v)); + } + + struct ggml_tensor * Q = + ggml_permute(ctx0, + ggml_cpy(ctx0, + Qcur, + ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_embd_head, n_head, n_tokens)), + 0, 2, 1, 3); + ggml_set_name(Q, "Q"); + + struct ggml_tensor * K = + ggml_view_3d(ctx0, kv_self.k, + n_embd_head, n_kv, n_head_kv, + ggml_element_size(kv_self.k)*n_embd_gqa, + ggml_element_size(kv_self.k)*n_embd_head, + ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il); + ggml_set_name(K, "K"); + + // K * Q + struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); + ggml_set_name(KQ, "KQ"); + + // KQ_scaled = KQ / sqrt(n_embd_head) + // KQ_scaled shape [n_past + n_tokens, n_tokens, n_head, 1] + struct ggml_tensor * KQ_scaled = ggml_scale_inplace(ctx0, KQ, KQ_scale); + ggml_set_name(KQ_scaled, "KQ_scaled"); + + // KQ_masked = mask_past(KQ_scaled) + struct ggml_tensor * KQ_masked = ggml_add(ctx0, KQ_scaled, KQ_mask); + ggml_set_name(KQ_masked, "KQ_masked"); + + // KQ = soft_max(KQ_masked) + struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ_masked); + ggml_set_name(KQ_soft_max, "KQ_soft_max"); + + // split cached V into n_head heads + struct ggml_tensor * V = + ggml_view_3d(ctx0, kv_self.v, + n_kv, n_embd_head, n_head_kv, + ggml_element_size(kv_self.v)*n_ctx, + ggml_element_size(kv_self.v)*n_ctx*n_embd_head, + ggml_element_size(kv_self.v)*n_ctx*n_embd_gqa*il); + ggml_set_name(V, "V"); + + struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max); + ggml_set_name(KQV, "KQV"); + + // KQV_merged = KQV.permute(0, 2, 1, 3) + struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3); + ggml_set_name(KQV_merged, "KQV_merged"); + + // cur = KQV_merged.contiguous().view(n_embd, n_tokens) + cur = ggml_cont_2d(ctx0, KQV_merged, n_embd, n_tokens); + ggml_set_name(cur, "KQV_merged_contiguous"); + } + + // Projection + cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wo, cur), model.layers[il].bo); + + // Add the input + cur = ggml_add(ctx0, cur, inpL); + + struct ggml_tensor * inpFF = cur; + + // FF + { + // Norm + { + cur = ggml_norm(ctx0, inpFF, norm_eps); + cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ffn_norm), model.layers[il].ffn_norm_b); + } + + cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].w3, cur), model.layers[il].b3); + + // GELU activation + cur = ggml_gelu(ctx0, cur); - cur = inpL; + // Projection + cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].w2, cur), model.layers[il].b2); + } - // norm - { - cur = ggml_norm(ctx0, cur, norm_eps); - offload_func_nr(cur); + inpL = ggml_add(ctx0, cur, inpFF); + } - cur = ggml_add(ctx0, - ggml_mul(ctx0, cur, model.output_norm), - model.output_norm_b); - ggml_set_name(cur, "result_norm"); + // Output Norm + { + cur = ggml_norm(ctx0, inpL, norm_eps); + cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.output_norm), model.output_norm_b); } + ggml_set_name(cur, "result_norm"); cur = ggml_mul_mat(ctx0, model.output, cur); ggml_set_name(cur, "result_output"); ggml_build_forward_expand(gf, cur); - ggml_free(ctx0); return gf; @@ -2851,10 +3957,7 @@ static struct ggml_cgraph * llm_build_falcon( static struct ggml_cgraph * llama_build_graph( llama_context & lctx, - const llama_token * tokens, - const float * embd, - int n_tokens, - int n_past) { + const llama_batch & batch) { const auto & model = lctx.model; struct ggml_cgraph * result = NULL; @@ -2862,68 +3965,117 @@ static struct ggml_cgraph * llama_build_graph( switch (model.arch) { case LLM_ARCH_LLAMA: { - result = llm_build_llama(lctx, tokens, embd, n_tokens, n_past); + result = llm_build_llama(lctx, batch); + } break; + case LLM_ARCH_BAICHUAN: + { + result = llm_build_baichaun(lctx, batch); } break; case LLM_ARCH_FALCON: { - result = llm_build_falcon(lctx, tokens, embd, n_tokens, n_past); + result = llm_build_falcon(lctx, batch); + } break; + case LLM_ARCH_STARCODER: + { + result = llm_build_starcoder(lctx, batch); } break; default: GGML_ASSERT(false); - }; + } return result; } -// evaluate the transformer +// decode a batch of tokens by evaluating the transformer // // - lctx: llama context -// - tokens: new batch of tokens to process -// - embd embeddings input -// - n_tokens number of tokens -// - n_past: the context size so far +// - batch: batch to evaluate // - n_threads: number of threads to use // -static bool llama_eval_internal( +// return 0 on success +// return positive int on warning +// return negative int on error +// +static int llama_decode_internal( llama_context & lctx, - const llama_token * tokens, - const float * embd, - int n_tokens, - int n_past, - int n_threads, - const char * cgraph_fname) { + llama_batch batch) { + const uint32_t n_tokens = batch.n_tokens; - GGML_ASSERT((!tokens && embd) || (tokens && !embd)); // NOLINT + if (n_tokens == 0) { + LLAMA_LOG_ERROR("%s: n_tokens == 0", __func__); + return -1; + } + + const auto & model = lctx.model; + const auto & hparams = model.hparams; + const auto & cparams = lctx.cparams; - GGML_ASSERT(n_tokens > 0); - GGML_ASSERT(n_past >= 0); - // TODO: keep the values of n_batch and n_ctx - // GGML_ASSERT(n_tokens <= n_batch); - // GGML_ASSERT(n_past + n_tokens <= n_ctx); + const auto n_batch = cparams.n_batch; + + GGML_ASSERT(n_tokens <= n_batch); + + int n_threads = n_tokens == 1 ? cparams.n_threads : cparams.n_threads_batch; + GGML_ASSERT((!batch.token && batch.embd) || (batch.token && !batch.embd)); // NOLINT const int64_t t_start_us = ggml_time_us(); #ifdef GGML_USE_MPI - ggml_mpi_eval_init(lctx.ctx_mpi, &n_tokens, &n_past, &n_threads); + // TODO: needs fix after #3228 + GGML_ASSERT(false && "not implemented"); + //ggml_mpi_eval_init(lctx.ctx_mpi, &n_tokens, &n_past, &n_threads); #endif GGML_ASSERT(n_threads > 0); - const int N = n_tokens; - - const auto & model = lctx.model; - const auto & hparams = model.hparams; - - const auto & kv_self = lctx.kv_self; + auto & kv_self = lctx.kv_self; GGML_ASSERT(!!kv_self.ctx); const int64_t n_embd = hparams.n_embd; const int64_t n_vocab = hparams.n_vocab; + // helpers for smoother batch API transistion + // after deprecating the llama_eval calls, these will be removed + std::vector pos; + std::vector seq_id; + + if (batch.pos == nullptr) { + pos.resize(n_tokens); + for (uint32_t i = 0; i < n_tokens; i++) { + pos[i] = batch.all_pos_0 + i*batch.all_pos_1; + } + + batch.pos = pos.data(); + } + + if (batch.seq_id == nullptr) { + seq_id.resize(n_tokens); + for (uint32_t i = 0; i < n_tokens; i++) { + seq_id[i] = batch.all_seq_id; + } + + batch.seq_id = seq_id.data(); + } + + // we always start to search for a free slot from the start of the cache + // TODO: better strategies can be implemented + kv_self.head = 0; + + if (!llama_kv_cache_find_slot(kv_self, batch)) { + return 1; + } + + // a heuristic, to avoid attending the full cache if it is not yet utilized + // after enough generations, the benefit from this heuristic disappears + // if we start defragmenting the cache, the benefit from this will be more important + //kv_self.n = std::max(32, GGML_PAD(llama_kv_cache_cell_max(kv_self), 32)); // TODO: this might be better for CUDA? + kv_self.n = std::min((int32_t) cparams.n_ctx, std::max(32, llama_kv_cache_cell_max(kv_self))); + + //printf("kv_self.n = %d\n", kv_self.n); + ggml_allocr_reset(lctx.alloc); - ggml_cgraph * gf = llama_build_graph(lctx, tokens, embd, n_tokens, n_past); + ggml_cgraph * gf = llama_build_graph(lctx, batch); ggml_allocr_alloc_graph(lctx.alloc, gf); @@ -2932,6 +4084,7 @@ static bool llama_eval_internal( ggml_tensor * node = gf->leafs[i]; if (node->backend == GGML_BACKEND_GPU && node->extra == NULL) { ggml_cuda_assign_scratch_offset(node, (char*)node->data - (char *) lctx.buf_alloc.data); + ggml_cuda_copy_to_device(node); } } @@ -2941,6 +4094,8 @@ static bool llama_eval_internal( ggml_cuda_assign_scratch_offset(node, (char*)node->data - (char *) lctx.buf_alloc.data); } } + + ggml_cuda_set_mul_mat_q(cparams.mul_mat_q); #endif // LLAMA_LOG_INFO("graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs); @@ -2950,10 +4105,19 @@ static bool llama_eval_internal( // TODO: this is mostly important for Apple Silicon where CBLAS is still performing very well // we still need some threads to process all non-mul_mat ops, but not too much to avoid interfering // with the BLAS calls. need a better solution - if (N >= 32 && ggml_cpu_has_blas() && !ggml_cpu_has_gpublas()) { + if (n_tokens >= 32 && ggml_cpu_has_blas() && !ggml_cpu_has_gpublas()) { n_threads = std::min(4, n_threads); } + // If all tensors can be run on the GPU then using more than 1 thread is detrimental. + const bool full_offload_supported = model.arch == LLM_ARCH_LLAMA || + model.arch == LLM_ARCH_BAICHUAN || + model.arch == LLM_ARCH_FALCON; + const bool fully_offloaded = model.n_gpu_layers >= (int) hparams.n_layer + 3; + if (ggml_cpu_has_cublas() && full_offload_supported && fully_offloaded) { + n_threads = 1; + } + struct ggml_tensor * res = gf->nodes[gf->n_nodes - 1]; struct ggml_tensor * embeddings = gf->nodes[gf->n_nodes - 2]; @@ -2969,10 +4133,6 @@ static bool llama_eval_internal( if (lctx.ctx_metal) { ggml_metal_set_n_cb (lctx.ctx_metal, n_threads); ggml_metal_graph_compute(lctx.ctx_metal, gf); - ggml_metal_get_tensor (lctx.ctx_metal, res); - if (!lctx.embedding.empty()) { - ggml_metal_get_tensor(lctx.ctx_metal, embeddings); - } } else { ggml_graph_compute_helper(lctx.work_buffer, gf, n_threads); } @@ -2984,12 +4144,9 @@ static bool llama_eval_internal( ggml_mpi_graph_compute_post(lctx.ctx_mpi, gf, n_layer); #endif - // update kv token count - lctx.kv_self.n = n_past + N; - - if (cgraph_fname) { - ggml_graph_export(gf, cgraph_fname); - } + // update the kv ring buffer + lctx.kv_self.head += n_tokens; + lctx.kv_self.has_shift = false; #ifdef GGML_PERF // print timing information per ggml operation (for debugging purposes) @@ -3006,13 +4163,20 @@ static bool llama_eval_internal( { auto & logits_out = lctx.logits; - if (lctx.logits_all) { - logits_out.resize(n_vocab * N); - memcpy(logits_out.data(), (float *) ggml_get_data(res), sizeof(float)*n_vocab*N); + if (batch.logits) { + logits_out.resize(n_vocab * n_tokens); + for (uint32_t i = 0; i < n_tokens; i++) { + if (batch.logits[i] == 0) { + continue; + } + memcpy(logits_out.data() + (n_vocab*i), (float *) ggml_get_data(res) + (n_vocab*i), sizeof(float)*n_vocab); + } + } else if (lctx.logits_all) { + logits_out.resize(n_vocab * n_tokens); + memcpy(logits_out.data(), (float *) ggml_get_data(res), sizeof(float)*n_vocab*n_tokens); } else { - // return result for just the last token logits_out.resize(n_vocab); - memcpy(logits_out.data(), (float *) ggml_get_data(res) + (n_vocab*(N-1)), sizeof(float)*n_vocab); + memcpy(logits_out.data(), (float *) ggml_get_data(res) + (n_vocab*(n_tokens - 1)), sizeof(float)*n_vocab); } } @@ -3021,20 +4185,27 @@ static bool llama_eval_internal( auto & embedding_out = lctx.embedding; embedding_out.resize(n_embd); - memcpy(embedding_out.data(), (float *) ggml_get_data(embeddings) + (n_embd*(N - 1)), sizeof(float)*n_embd); + memcpy(embedding_out.data(), (float *) ggml_get_data(embeddings) + (n_embd*(n_tokens - 1)), sizeof(float)*n_embd); } // measure the performance only for the single-token evals - if (N == 1) { + if (n_tokens == 1) { lctx.t_eval_us += ggml_time_us() - t_start_us; lctx.n_eval++; } - else if (N > 1) { + else if (n_tokens > 1) { lctx.t_p_eval_us += ggml_time_us() - t_start_us; - lctx.n_p_eval += N; + lctx.n_p_eval += n_tokens; } - return true; + // get a more accurate load time, upon first eval + // TODO: fix this + if (!lctx.has_evaluated_once) { + lctx.t_load_us = ggml_time_us() - lctx.t_start_us; + lctx.has_evaluated_once = true; + } + + return 0; } // @@ -3121,10 +4292,9 @@ struct llm_tokenizer_spm { while (offs < text.size()) { llm_symbol sym; size_t len = utf8_len(text[offs]); - GGML_ASSERT(offs + len <= text.size()); sym.text = text.c_str() + offs; - sym.n = len; - offs += len; + sym.n = std::min(len, text.size() - offs); + offs += sym.n; sym.prev = index - 1; sym.next = offs == text.size() ? -1 : index + 1; index++; @@ -3456,7 +4626,7 @@ static std::vector llama_tokenize_internal(const llama_vocab & llm_tokenizer_bpe tokenizer(vocab); tokenizer.tokenize(raw_text, output); } break; - }; + } return output; } @@ -3486,7 +4656,7 @@ struct llama_grammar_candidate { // Decodes a UTF-8 string which may end in an incomplete sequence. Adds a terminating 0 for use as // pointer. If an invalid sequence is encountered, returns `llama_partial_utf8.n_remain == -1`. -std::pair, llama_partial_utf8> decode_utf8( +static std::pair, llama_partial_utf8> decode_utf8( const char * src, llama_partial_utf8 partial_start) { static const int lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 2, 2, 3, 4 }; @@ -3860,6 +5030,13 @@ struct llama_grammar * llama_grammar_copy(const struct llama_grammar * grammar) // sampling // +void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed) { + if (seed == LLAMA_DEFAULT_SEED) { + seed = time(NULL); + } + ctx->rng.seed(seed); +} + void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates) { GGML_ASSERT(candidates->size > 0); @@ -4068,7 +5245,7 @@ void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * c } } -void llama_sample_temperature(struct llama_context * ctx, llama_token_data_array * candidates_p, float temp) { +void llama_sample_temp(struct llama_context * ctx, llama_token_data_array * candidates_p, float temp) { const int64_t t_start_sample_us = ggml_time_us(); for (size_t i = 0; i < candidates_p->size; ++i) { @@ -4080,6 +5257,10 @@ void llama_sample_temperature(struct llama_context * ctx, llama_token_data_array } } +void llama_sample_temperature(struct llama_context * ctx, llama_token_data_array * candidates_p, float temp) { + llama_sample_temp(ctx, candidates_p, temp); +} + void llama_sample_repetition_penalty(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens, size_t last_tokens_size, float penalty) { if (last_tokens_size == 0 || penalty == 1.0f) { return; @@ -4203,7 +5384,7 @@ void llama_sample_classifier_free_guidance( GGML_ASSERT(ctx); - auto n_vocab = llama_n_vocab(ctx); + auto n_vocab = llama_n_vocab(llama_get_model(ctx)); GGML_ASSERT(n_vocab == (int)candidates->size); GGML_ASSERT(!candidates->sorted); @@ -4232,7 +5413,7 @@ void llama_sample_classifier_free_guidance( llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int m, float * mu) { GGML_ASSERT(ctx); - auto N = float(llama_n_vocab(ctx)); + auto N = float(llama_n_vocab(llama_get_model(ctx))); int64_t t_start_sample_us; t_start_sample_us = ggml_time_us(); @@ -4419,7 +5600,7 @@ struct llama_logit_info { }; llama_logit_info(llama_context * ctx) : logits(llama_get_logits(ctx)) - , n_vocab(llama_n_vocab(ctx)) + , n_vocab(llama_n_vocab(llama_get_model(ctx))) , max_l(*std::max_element(logits, logits + n_vocab)) , normalizer(1.0f / std::accumulate(logits, logits + n_vocab, 0.0f, sum_exp{max_l})) { } @@ -4457,7 +5638,6 @@ struct llama_beam_search_data { size_t n_beams; int n_past; int n_predict; - int n_threads; std::vector beams; std::vector next_beams; @@ -4467,12 +5647,11 @@ struct llama_beam_search_data { // Used to communicate to/from callback on beams state. std::vector beam_views; - llama_beam_search_data(llama_context * ctx, size_t n_beams, int n_past, int n_predict, int n_threads) + llama_beam_search_data(llama_context * ctx, size_t n_beams, int n_past, int n_predict) : ctx(ctx) , n_beams(n_beams) , n_past(n_past) , n_predict(n_predict) - , n_threads(n_threads) , beam_views(n_beams) { beams.reserve(n_beams); next_beams.reserve(n_beams); @@ -4509,7 +5688,7 @@ struct llama_beam_search_data { } else { // beam is not at end-of-sentence, so branch with next top_k tokens. if (!beam.tokens.empty()) { - llama_eval(ctx, beam.tokens.data(), beam.tokens.size(), n_past, n_threads); + llama_decode(ctx, llama_batch_get_one(beam.tokens.data(), beam.tokens.size(), n_past, 0)); } llama_logit_info logit_info(ctx); std::vector next_tokens = logit_info.top_k(n_beams); @@ -4583,7 +5762,7 @@ struct llama_beam_search_data { callback(callback_data, get_beams_state(false)); // Sets common_prefix_length update_beams_from_beam_views(); // Update values (p,eob) that callback may have changed. if (common_prefix_length) { - llama_eval(ctx, beams[0].tokens.data(), common_prefix_length, n_past, n_threads); + llama_decode(ctx, llama_batch_get_one(beams[0].tokens.data(), common_prefix_length, n_past, 0)); n_past += common_prefix_length; } // Zero-out next_beam probabilities to place them last in following min-heap. @@ -4624,11 +5803,11 @@ struct llama_beam_search_data { void llama_beam_search(llama_context * ctx, llama_beam_search_callback_fn_t callback, void * callback_data, - size_t n_beams, int n_past, int n_predict, int n_threads) { + size_t n_beams, int n_past, int n_predict) { assert(ctx); const int64_t t_start_sample_us = ggml_time_us(); - llama_beam_search_data beam_search_data(ctx, n_beams, n_past, n_predict, n_threads); + llama_beam_search_data beam_search_data(ctx, n_beams, n_past, n_predict); beam_search_data.loop(callback, callback_data); @@ -4640,7 +5819,16 @@ void llama_beam_search(llama_context * ctx, // quantization // -static void llama_convert_tensor_internal(struct ggml_tensor * tensor, std::vector & output, const size_t nelements, const int nthread) { +template +struct no_init { + T value; + no_init() { /* do nothing */ } +}; + +static void llama_convert_tensor_internal( + struct ggml_tensor * tensor, std::vector> & output, std::vector & workers, + const size_t nelements, const int nthread +) { if (output.size() < nelements) { output.resize(nelements); } @@ -4675,7 +5863,6 @@ static void llama_convert_tensor_internal(struct ggml_tensor * tensor, std::vect auto blocks_per_thread = nblocks / nthread; auto spare_blocks = nblocks - (blocks_per_thread * nthread); // if blocks aren't divisible by thread count - std::vector workers; for (auto tnum = 0, in_buff_offs = 0, out_buff_offs = 0; tnum < nthread; tnum++) { auto thr_blocks = blocks_per_thread + (tnum == nthread - 1 ? spare_blocks : 0); // num blocks for this thread auto thr_elems = thr_blocks * block_size; // number of elements for this thread @@ -4688,14 +5875,123 @@ static void llama_convert_tensor_internal(struct ggml_tensor * tensor, std::vect qtype.to_float(inbuf, outbuf, nels); } }; - workers.push_back(std::thread(compute, tensor->type, (uint8_t *) tensor->data + in_buff_offs, f32_output + out_buff_offs, thr_elems)); + workers.emplace_back(compute, tensor->type, (uint8_t *) tensor->data + in_buff_offs, f32_output + out_buff_offs, thr_elems); in_buff_offs += thr_block_bytes; out_buff_offs += thr_elems; } - for (auto & worker : workers) { - worker.join(); + for (auto & w : workers) { w.join(); } + workers.clear(); +} + +#ifdef GGML_USE_K_QUANTS +static ggml_type get_k_quant_type( + ggml_type new_type, const ggml_tensor * tensor, const llama_model & model, llama_ftype ftype, int * i_attention_wv, + int n_attention_wv, int * i_feed_forward_w2, int n_feed_forward_w2 +) { + const std::string name = ggml_get_name(tensor); + // TODO: avoid hardcoded tensor names - use the TN_* constants + const auto tn = LLM_TN(model.arch); + + auto use_more_bits = [](int i_layer, int num_layers) -> bool { + return i_layer < num_layers/8 || i_layer >= 7*num_layers/8 || (i_layer - num_layers/8)%3 == 2; + }; + + if (name == tn(LLM_TENSOR_OUTPUT, "weight")) { + int nx = tensor->ne[0]; + if (model.arch == LLM_ARCH_FALCON || nx % QK_K != 0) { + new_type = GGML_TYPE_Q8_0; + } + else if (new_type != GGML_TYPE_Q8_0) { + new_type = GGML_TYPE_Q6_K; + } + } else if (name.find("attn_v.weight") != std::string::npos) { + if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K; + else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) { + new_type = *i_attention_wv < 2 ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K; + } + else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K; + else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) && + use_more_bits(*i_attention_wv, n_attention_wv)) new_type = GGML_TYPE_Q6_K; + else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && *i_attention_wv < 4) new_type = GGML_TYPE_Q5_K; + else if (QK_K == 64 && (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S) && + (*i_attention_wv < n_attention_wv/8 || *i_attention_wv >= 7*n_attention_wv/8)) new_type = GGML_TYPE_Q6_K; + if (model.type == MODEL_70B) { + // In the 70B model we have 8 heads sharing the same attn_v weights. As a result, the attn_v.weight tensor is + // 8x smaller compared to attn_q.weight. Hence, we can get a nice boost in quantization accuracy with + // nearly negligible increase in model size by quantizing this tensor with more bits: + if (new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K) new_type = GGML_TYPE_Q5_K; + } + ++*i_attention_wv; + } else if (name.find("ffn_down.weight") != std::string::npos) { + if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K; + else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) { + new_type = *i_feed_forward_w2 < 2 ? GGML_TYPE_Q5_K + : model.arch != LLM_ARCH_FALCON || use_more_bits(*i_feed_forward_w2, n_feed_forward_w2) ? GGML_TYPE_Q4_K + : GGML_TYPE_Q3_K; + } + else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) { + new_type = model.arch == LLM_ARCH_FALCON ? GGML_TYPE_Q4_K : GGML_TYPE_Q5_K; + } + else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) { + if (model.arch == LLM_ARCH_FALCON) { + new_type = *i_feed_forward_w2 < 2 ? GGML_TYPE_Q6_K : + use_more_bits(*i_feed_forward_w2, n_feed_forward_w2) ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K; + } else { + if (use_more_bits(*i_feed_forward_w2, n_feed_forward_w2)) new_type = GGML_TYPE_Q6_K; + } + } + else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M && use_more_bits(*i_feed_forward_w2, n_feed_forward_w2)) new_type = GGML_TYPE_Q6_K; + else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && model.arch != LLM_ARCH_FALCON && *i_feed_forward_w2 < 4) { + new_type = GGML_TYPE_Q5_K; + } + ++*i_feed_forward_w2; + } else if (name.find("attn_output.weight") != std::string::npos) { + if (model.arch != LLM_ARCH_FALCON) { + if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K ) new_type = GGML_TYPE_Q3_K; + else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) new_type = GGML_TYPE_Q4_K; + else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K; + } else { + if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q4_K; + } + } + else if (name.find("attn_qkv.weight") != std::string::npos) { + if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q4_K; + else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) new_type = GGML_TYPE_Q5_K; + else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) new_type = GGML_TYPE_Q6_K; + } + else if (name.find("ffn_gate.weight") != std::string::npos || name.find("ffn_up.weight") != std::string::npos) { + if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K; + } + // This can be used to reduce the size of the Q5_K_S model. + // The associated PPL increase is fully in line with the size reduction + //else { + // if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_S) new_type = GGML_TYPE_Q4_K; + //} + bool convert_incompatible_tensor = false; + if (new_type == GGML_TYPE_Q2_K || new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K || + new_type == GGML_TYPE_Q5_K || new_type == GGML_TYPE_Q6_K) { + int nx = tensor->ne[0]; + int ny = tensor->ne[1]; + if (nx % QK_K != 0) { + LLAMA_LOG_WARN("\n\n%s : tensor cols %d x %d are not divisible by %d, required for k-quants\n", __func__, nx, ny, QK_K); + convert_incompatible_tensor = true; + } + } + if (convert_incompatible_tensor) { + if (name == tn(LLM_TENSOR_OUTPUT, "weight")) { + new_type = GGML_TYPE_F16; //fall back to F16 instead of just failing. + LLAMA_LOG_WARN("F16 will be used for this tensor instead.\n"); + } else if (name == tn(LLM_TENSOR_TOKEN_EMBD, "weight")) { + new_type = GGML_TYPE_Q4_0; //fall back to Q4_0 instead of just failing. + LLAMA_LOG_WARN("Q4_0 will be used for this tensor instead.\n"); + } else { + throw std::runtime_error("Unsupported tensor size encountered\n"); + } } + + return new_type; } +#endif static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, const llama_model_quantize_params * params) { ggml_type quantized_type; @@ -4731,11 +6027,22 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s nthread = std::thread::hardware_concurrency(); } - std::unique_ptr ml(new llama_model_loader(fname_inp, /*use_mmap*/ false)); + // mmap consistently increases speed Linux, and also increases speed on Windows with + // hot cache. It may cause a slowdown on macOS, possibly related to free memory. +#if defined(__linux__) || defined(_WIN32) + constexpr bool use_mmap = true; +#else + constexpr bool use_mmap = false; +#endif + + llama_model_loader ml(fname_inp, use_mmap); + if (ml.use_mmap) { + ml.mapping.reset(new llama_mmap(&ml.file, /* prefetch */ 0, ggml_is_numa())); + } llama_model model; - llm_load_arch(*ml, model); - llm_load_hparams(*ml, model, 0, 0, 0); + llm_load_arch(ml, model); + llm_load_hparams(ml, model); if (params->only_copy) { ftype = model.ftype; @@ -4745,7 +6052,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s struct gguf_context * ctx_out = gguf_init_empty(); // copy the KV pairs from the input file - gguf_set_kv (ctx_out, ml->ctx_gguf); + gguf_set_kv (ctx_out, ml.ctx_gguf); gguf_set_val_u32(ctx_out, "general.quantization_version", GGML_QNT_VERSION); gguf_set_val_u32(ctx_out, "general.file_type", ftype); @@ -4753,8 +6060,8 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s int n_attention_wv = 0; int n_feed_forward_w2 = 0; - for (int i = 0; i < ml->n_tensors; ++i) { - struct ggml_tensor * meta = ml->get_tensor_meta(i); + for (int i = 0; i < ml.n_tensors; ++i) { + struct ggml_tensor * meta = ml.get_tensor_meta(i); const std::string name = ggml_get_name(meta); @@ -4780,22 +6087,18 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s std::vector hist_all(1 << 4, 0); std::vector workers; + workers.reserve(nthread); std::mutex mutex; -#ifdef GGML_USE_K_QUANTS - auto use_more_bits = [] (int i_layer, int num_layers) -> bool { - return i_layer < num_layers/8 || i_layer >= 7*num_layers/8 || (i_layer - num_layers/8)%3 == 2; - }; -#endif - int idx = 0; - std::vector read_data; - std::vector work; + std::vector> read_data; + std::vector> work; + std::vector> f32_conv_buf; // populate the original tensors so we get an initial meta data - for (int i = 0; i < ml->n_tensors; ++i) { - struct ggml_tensor * meta = ml->get_tensor_meta(i); + for (int i = 0; i < ml.n_tensors; ++i) { + struct ggml_tensor * meta = ml.get_tensor_meta(i); gguf_add_tensor(ctx_out, meta); } @@ -4808,17 +6111,21 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s // placeholder for the meta data ::zeros(fout, meta_size); - for (int i = 0; i < ml->n_tensors; ++i) { - struct ggml_tensor * tensor = ml->get_tensor_meta(i); + for (int i = 0; i < ml.n_tensors; ++i) { + struct ggml_tensor * tensor = ml.get_tensor_meta(i); const std::string name = ggml_get_name(tensor); - read_data.resize(ggml_nbytes(tensor)); - tensor->data = read_data.data(); - ml->load_data_for(tensor); + if (!ml.use_mmap) { + if (read_data.size() < ggml_nbytes(tensor)) { + read_data.resize(ggml_nbytes(tensor)); + } + tensor->data = read_data.data(); + } + ml.load_data_for(tensor); LLAMA_LOG_INFO("[%4d/%4d] %36s - [%s], type = %6s, ", - ++idx, ml->n_tensors, + ++idx, ml.n_tensors, ggml_get_name(tensor), llama_format_tensor_shape(tensor).c_str(), ggml_type_name(tensor->type)); @@ -4838,101 +6145,9 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s if (quantize) { new_type = quantized_type; #ifdef GGML_USE_K_QUANTS - // TODO: avoid hardcoded tensor names - use the TN_* constants - const auto tn = LLM_TN(ml->get_arch()); - - if (name == tn(LLM_TENSOR_OUTPUT, "weight")) { - int nx = tensor->ne[0]; - if (model.arch == LLM_ARCH_FALCON || nx % QK_K != 0) { - new_type = GGML_TYPE_Q8_0; - } - else if (new_type != GGML_TYPE_Q8_0) { - new_type = GGML_TYPE_Q6_K; - } - } else if (name.find("attn_v.weight") != std::string::npos) { - if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K; - else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) { - new_type = i_attention_wv < 2 ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K; - } - else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K; - else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) && - use_more_bits(i_attention_wv, n_attention_wv)) new_type = GGML_TYPE_Q6_K; - else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && i_attention_wv < 4) new_type = GGML_TYPE_Q5_K; - else if (QK_K == 64 && (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S) && - (i_attention_wv < n_attention_wv/8 || i_attention_wv >= 7*n_attention_wv/8)) new_type = GGML_TYPE_Q6_K; - if (model.type == MODEL_70B) { - // In the 70B model we have 8 heads sharing the same attn_v weights. As a result, the attn_v.weight tensor is - // 8x smaller compared to attn_q.weight. Hence, we can get a nice boost in quantization accuracy with - // nearly negligible increase in model size by quantizing this tensor with more bits: - if (new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K) new_type = GGML_TYPE_Q5_K; - } - ++i_attention_wv; - } else if (name.find("ffn_down.weight") != std::string::npos) { - if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K; - else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) { - new_type = i_feed_forward_w2 < 2 ? GGML_TYPE_Q5_K - : model.arch != LLM_ARCH_FALCON || use_more_bits(i_feed_forward_w2, n_feed_forward_w2) ? GGML_TYPE_Q4_K - : GGML_TYPE_Q3_K; - } - else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) { - new_type = model.arch == LLM_ARCH_FALCON ? GGML_TYPE_Q4_K : GGML_TYPE_Q5_K; - } - else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) { - if (model.arch == LLM_ARCH_FALCON) { - new_type = i_feed_forward_w2 < 2 ? GGML_TYPE_Q6_K : - use_more_bits(i_feed_forward_w2, n_feed_forward_w2) ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K; - } else { - if (use_more_bits(i_feed_forward_w2, n_feed_forward_w2)) new_type = GGML_TYPE_Q6_K; - } - } - else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M && use_more_bits(i_feed_forward_w2, n_feed_forward_w2)) new_type = GGML_TYPE_Q6_K; - else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && model.arch != LLM_ARCH_FALCON && i_feed_forward_w2 < 4) { - new_type = GGML_TYPE_Q5_K; - } - ++i_feed_forward_w2; - } else if (name.find("attn_output.weight") != std::string::npos) { - if (model.arch != LLM_ARCH_FALCON) { - if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K ) new_type = GGML_TYPE_Q3_K; - else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) new_type = GGML_TYPE_Q4_K; - else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K; - } else { - if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q4_K; - } - } - else if (name.find("attn_qkv.weight") != std::string::npos) { - if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q4_K; - else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) new_type = GGML_TYPE_Q5_K; - else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) new_type = GGML_TYPE_Q6_K; - } - else if (name.find("ffn_gate.weight") != std::string::npos || name.find("ffn_up.weight") != std::string::npos) { - if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K; - } - // This can be used to reduce the size of the Q5_K_S model. - // The associated PPL increase is fully in line with the size reduction - //else { - // if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_S) new_type = GGML_TYPE_Q4_K; - //} - bool convert_incompatible_tensor = false; - if (new_type == GGML_TYPE_Q2_K || new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K || - new_type == GGML_TYPE_Q5_K || new_type == GGML_TYPE_Q6_K) { - int nx = tensor->ne[0]; - int ny = tensor->ne[1]; - if (nx % QK_K != 0) { - LLAMA_LOG_WARN("\n\n%s : tensor cols %d x %d are not divisible by %d, required for k-quants\n", __func__, nx, ny, QK_K); - convert_incompatible_tensor = true; - } - } - if (convert_incompatible_tensor) { - if (name == tn(LLM_TENSOR_OUTPUT, "weight")) { - new_type = GGML_TYPE_F16; //fall back to F16 instead of just failing. - LLAMA_LOG_WARN("F16 will be used for this tensor instead.\n"); - } else if (name == tn(LLM_TENSOR_TOKEN_EMBD, "weight")) { - new_type = GGML_TYPE_Q4_0; //fall back to Q4_0 instead of just failing. - LLAMA_LOG_WARN("Q4_0 will be used for this tensor instead.\n"); - } else { - throw std::runtime_error("Unsupported tensor size encountered\n"); - } - } + new_type = get_k_quant_type( + new_type, tensor, model, ftype, &i_attention_wv, n_attention_wv, &i_feed_forward_w2, n_feed_forward_w2 + ); #endif // If we've decided to quantize to the same type the tensor is already // in then there's nothing to do. @@ -4947,23 +6162,24 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s const size_t nelements = ggml_nelements(tensor); float * f32_data; - std::vector f32_conv_buf; if (tensor->type == GGML_TYPE_F32) { f32_data = (float *) tensor->data; } else if (ggml_is_quantized(tensor->type) && !params->allow_requantize) { throw std::runtime_error(format("requantizing from type %s is disabled", ggml_type_name(tensor->type))); } else { - llama_convert_tensor_internal(tensor, f32_conv_buf, nelements, nthread); + llama_convert_tensor_internal(tensor, f32_conv_buf, workers, nelements, nthread); f32_data = (float *) f32_conv_buf.data(); } LLAMA_LOG_INFO("quantizing to %s .. ", ggml_type_name(new_type)); fflush(stdout); - work.resize(nelements * 4); // upper bound on size + if (work.size() < nelements * 4) { + work.resize(nelements * 4); // upper bound on size + } new_data = work.data(); - std::vector hist_cur(1 << 4, 0); + std::array hist_cur = {}; static const int chunk_size = 32 * 512; const int nchunk = (nelements + chunk_size - 1)/chunk_size; @@ -4974,13 +6190,13 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s size_t counter = 0; new_size = 0; auto compute = [&mutex, &counter, &hist_cur, &new_size, new_type, f32_data, new_data, nelements]() { - std::vector local_hist; + std::array local_hist = {}; size_t local_size = 0; while (true) { std::unique_lock lock(mutex); size_t first = counter; counter += chunk_size; if (first >= nelements) { - if (!local_hist.empty()) { + if (local_size > 0) { for (int j=0; j %8.2f MB | hist: ", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0); @@ -5066,8 +6275,9 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s } } -// TODO: after the GGUF PR, this likely won't work and needs to be updated -int llama_apply_lora_from_file_internal(const struct llama_model & model, const char * path_lora, const char * path_base_model, int n_threads) { +static int llama_apply_lora_from_file_internal( + const struct llama_model & model, const char * path_lora, float scale, const char * path_base_model, int n_threads +) { LLAMA_LOG_INFO("%s: applying lora adapter from '%s' - please wait ...\n", __func__, path_lora); const int64_t t_start_lora_us = ggml_time_us(); @@ -5095,7 +6305,7 @@ int llama_apply_lora_from_file_internal(const struct llama_model & model, const int32_t lora_alpha; fin.read((char *) &lora_r, sizeof(lora_r)); fin.read((char *) &lora_alpha, sizeof(lora_alpha)); - float scaling = (float)lora_alpha / (float)lora_r; + float scaling = scale * (float)lora_alpha / (float)lora_r; LLAMA_LOG_INFO("%s: r = %d, alpha = %d, scaling = %.2f\n", __func__, lora_r, lora_alpha, scaling); @@ -5311,9 +6521,10 @@ int llama_apply_lora_from_file_internal(const struct llama_model & model, const ggml_set_name(r, "r_cpy"); } - struct ggml_cgraph gf = ggml_build_forward(r); + struct ggml_cgraph * gf = ggml_new_graph(lora_ctx); + ggml_build_forward_expand(gf, r); - ggml_graph_compute_helper(work_buffer, &gf, n_threads); + ggml_graph_compute_helper(work_buffer, gf, n_threads); // we won't need these tensors again, reset the context to save memory ggml_free(lora_ctx); @@ -5342,27 +6553,16 @@ int llama_apply_lora_from_file_internal(const struct llama_model & model, const // // interface implementation // - -struct llama_context_params llama_context_default_params() { - struct llama_context_params result = { - /*.seed =*/ LLAMA_DEFAULT_SEED, - /*.n_ctx =*/ 512, - /*.n_batch =*/ 512, +struct llama_model_params llama_model_default_params() { + struct llama_model_params result = { /*.n_gpu_layers =*/ 0, /*.main_gpu =*/ 0, /*.tensor_split =*/ nullptr, - /*.rope_freq_base =*/ 10000.0f, - /*.rope_freq_scale =*/ 1.0f, /*.progress_callback =*/ nullptr, /*.progress_callback_user_data =*/ nullptr, - /*.low_vram =*/ false, - /*.mul_mat_q =*/ true, - /*.f16_kv =*/ true, - /*.logits_all =*/ false, /*.vocab_only =*/ false, /*.use_mmap =*/ true, /*.use_mlock =*/ false, - /*.embedding =*/ false, }; #ifdef GGML_USE_METAL @@ -5372,6 +6572,24 @@ struct llama_context_params llama_context_default_params() { return result; } +struct llama_context_params llama_context_default_params() { + struct llama_context_params result = { + /*.seed =*/ LLAMA_DEFAULT_SEED, + /*.n_ctx =*/ 512, + /*.n_batch =*/ 512, + /*.n_threads =*/ GGML_DEFAULT_N_THREADS, // TODO: better default + /*.n_threads_batch =*/ GGML_DEFAULT_N_THREADS, + /*.rope_freq_base =*/ 0.0f, + /*.rope_freq_scale =*/ 0.0f, + /*.mul_mat_q =*/ true, + /*.f16_kv =*/ true, + /*.logits_all =*/ false, + /*.embedding =*/ false, + }; + + return result; +} + struct llama_model_quantize_params llama_model_quantize_default_params() { struct llama_model_quantize_params result = { /*.nthread =*/ 0, @@ -5427,13 +6645,11 @@ int64_t llama_time_us(void) { struct llama_model * llama_load_model_from_file( const char * path_model, - struct llama_context_params params) { + struct llama_model_params params) { ggml_time_init(); llama_model * model = new llama_model; - ggml_type memory_type = params.f16_kv ? GGML_TYPE_F16 : GGML_TYPE_F32; - unsigned cur_percentage = 0; if (params.progress_callback == NULL) { params.progress_callback_user_data = &cur_percentage; @@ -5450,9 +6666,9 @@ struct llama_model * llama_load_model_from_file( }; } - if (!llama_model_load(path_model, *model, params.n_ctx, params.n_batch, params.n_gpu_layers, - params.main_gpu, params.tensor_split, params.mul_mat_q, params.rope_freq_base, params.rope_freq_scale, - params.low_vram, memory_type, params.use_mmap, params.use_mlock, params.vocab_only, + if (!llama_model_load(path_model, *model, params.n_gpu_layers, + params.main_gpu, params.tensor_split, + params.use_mmap, params.use_mlock, params.vocab_only, params.progress_callback, params.progress_callback_user_data)) { LLAMA_LOG_ERROR("%s: failed to load model\n", __func__); delete model; @@ -5476,18 +6692,33 @@ struct llama_context * llama_new_context_with_model( llama_context * ctx = new llama_context(*model); + const auto & hparams = model->hparams; + auto & cparams = ctx->cparams; + + cparams.n_batch = params.n_batch; + cparams.n_ctx = params.n_ctx == 0 ? hparams.n_ctx_train : params.n_ctx; + cparams.rope_freq_base = params.rope_freq_base == 0 ? hparams.rope_freq_base_train : params.rope_freq_base; + cparams.rope_freq_scale = params.rope_freq_scale == 0 ? hparams.rope_freq_scale_train : params.rope_freq_scale; + cparams.n_threads = params.n_threads; + cparams.n_threads_batch = params.n_threads_batch; + cparams.mul_mat_q = params.mul_mat_q; + if (params.seed == LLAMA_DEFAULT_SEED) { params.seed = time(NULL); } + LLAMA_LOG_INFO("%s: n_ctx = %u\n", __func__, cparams.n_ctx); + LLAMA_LOG_INFO("%s: freq_base = %.1f\n", __func__, cparams.rope_freq_base); + LLAMA_LOG_INFO("%s: freq_scale = %g\n", __func__, cparams.rope_freq_scale); + ctx->rng = std::mt19937(params.seed); ctx->logits_all = params.logits_all; ggml_type memory_type = params.f16_kv ? GGML_TYPE_F16 : GGML_TYPE_F32; // reserve memory for context buffers - if (!params.vocab_only) { - if (!llama_kv_cache_init(ctx->model.hparams, ctx->kv_self, memory_type, ctx->model.hparams.n_ctx, params.n_gpu_layers)) { + if (!hparams.vocab_only) { + if (!llama_kv_cache_init(ctx->model.hparams, ctx->kv_self, memory_type, cparams.n_ctx, model->n_gpu_layers)) { LLAMA_LOG_ERROR("%s: llama_kv_cache_init() failed for self-attention cache\n", __func__); llama_free(ctx); return nullptr; @@ -5498,11 +6729,9 @@ struct llama_context * llama_new_context_with_model( LLAMA_LOG_INFO("%s: kv self size = %7.2f MB\n", __func__, memory_size / 1024.0 / 1024.0); } - const auto & hparams = ctx->model.hparams; - // resized during inference if (params.logits_all) { - ctx->logits.reserve(hparams.n_ctx*hparams.n_vocab); + ctx->logits.reserve(cparams.n_ctx*hparams.n_vocab); } else { ctx->logits.reserve(hparams.n_vocab); } @@ -5520,26 +6749,28 @@ struct llama_context * llama_new_context_with_model( ctx->alloc = ggml_allocr_new_measure(tensor_alignment); // build worst-case graph - int n_tokens = std::min((int)hparams.n_ctx, params.n_batch); - int n_past = hparams.n_ctx - n_tokens; + int n_tokens = (int)std::min(cparams.n_ctx, cparams.n_batch); + int n_past = cparams.n_ctx - n_tokens; llama_token token = llama_token_bos(ctx); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph - ggml_cgraph * gf = llama_build_graph(*ctx, &token, NULL, n_tokens, n_past); + ggml_cgraph * gf = llama_build_graph(*ctx, llama_batch_get_one(&token, n_tokens, n_past, 0)); + #ifdef GGML_USE_METAL - if (params.n_gpu_layers > 0) { + if (model->n_gpu_layers > 0) { ctx->ctx_metal = ggml_metal_init(1); if (!ctx->ctx_metal) { LLAMA_LOG_ERROR("%s: ggml_metal_init() failed\n", __func__); llama_free(ctx); return NULL; } - ggml_metal_graph_find_concurrency(ctx->ctx_metal, gf, false); - ggml_allocr_set_parse_seq(ctx->alloc, ggml_metal_get_concur_list(ctx->ctx_metal), ggml_metal_if_optimized(ctx->ctx_metal)); + ggml_metal_log_set_callback(llama_log_callback_default, NULL); + //ggml_metal_graph_find_concurrency(ctx->ctx_metal, gf, false); + //ggml_allocr_set_parse_seq(ctx->alloc, ggml_metal_get_concur_list(ctx->ctx_metal), ggml_metal_if_optimized(ctx->ctx_metal)); } #endif // measure memory requirements for the graph size_t alloc_size = ggml_allocr_alloc_graph(ctx->alloc, gf) + tensor_alignment; - LLAMA_LOG_INFO("%s: compute buffer total size = %7.2f MB\n", __func__, (ctx->buf_compute.size + alloc_size) / 1024.0 / 1024.0); + LLAMA_LOG_INFO("%s: compute buffer total size = %.2f MB\n", __func__, (ctx->buf_compute.size + alloc_size) / 1024.0 / 1024.0); // recreate allocator with exact memory requirements ggml_allocr_free(ctx->alloc); @@ -5548,28 +6779,46 @@ struct llama_context * llama_new_context_with_model( ctx->alloc = ggml_allocr_new(ctx->buf_alloc.data, ctx->buf_alloc.size, tensor_alignment); #ifdef GGML_USE_METAL if (ctx->ctx_metal) { - ggml_allocr_set_parse_seq(ctx->alloc, ggml_metal_get_concur_list(ctx->ctx_metal), ggml_metal_if_optimized(ctx->ctx_metal)); + //ggml_allocr_set_parse_seq(ctx->alloc, ggml_metal_get_concur_list(ctx->ctx_metal), ggml_metal_if_optimized(ctx->ctx_metal)); } #endif #ifdef GGML_USE_CUBLAS - if (params.low_vram) { - LLAMA_LOG_INFO("%s: not allocating a VRAM scratch buffer due to low VRAM option\n", __func__); - ggml_cuda_set_scratch_size(0); // disable scratch - } else { - ggml_cuda_set_scratch_size(alloc_size); - LLAMA_LOG_INFO("%s: VRAM scratch buffer: %.2f MB\n", __func__, alloc_size / 1024.0 / 1024.0); + ggml_cuda_set_scratch_size(alloc_size); + LLAMA_LOG_INFO("%s: VRAM scratch buffer: %.2f MB\n", __func__, alloc_size / 1024.0 / 1024.0); + + // calculate total VRAM usage + auto add_tensor = [](const ggml_tensor * t, size_t & size) { + if (t->backend == GGML_BACKEND_GPU || t->backend == GGML_BACKEND_GPU_SPLIT) { + size += ggml_nbytes(t); + } + }; + size_t model_vram_size = 0; + for (const auto & kv : model->tensors_by_name) { + add_tensor(kv.second, model_vram_size); } + + size_t kv_vram_size = 0; + add_tensor(ctx->kv_self.k, kv_vram_size); + add_tensor(ctx->kv_self.v, kv_vram_size); + + size_t ctx_vram_size = alloc_size + kv_vram_size; + size_t total_vram_size = model_vram_size + ctx_vram_size; + + LLAMA_LOG_INFO("%s: total VRAM used: %.2f MB (model: %.2f MB, context: %.2f MB)\n", __func__, + total_vram_size / 1024.0 / 1024.0, + model_vram_size / 1024.0 / 1024.0, + ctx_vram_size / 1024.0 / 1024.0); #endif } #ifdef GGML_USE_METAL - if (params.n_gpu_layers > 0) { + if (model->n_gpu_layers > 0) { // this allocates all Metal resources and memory buffers void * data_ptr = NULL; size_t data_size = 0; - if (params.use_mmap) { + if (ctx->model.mapping) { data_ptr = ctx->model.mapping->addr; data_size = ctx->model.mapping->size; } else { @@ -5588,11 +6837,8 @@ struct llama_context * llama_new_context_with_model( return NULL; \ } - LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "data", data_ptr, data_size, max_size)); - - LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "eval", ctx->buf_compute.data, ctx->buf_compute.size, 0)); - LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "kv", ctx->kv_self.buf.data, ctx->kv_self.buf.size, 0)); - + LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "data", data_ptr, data_size, max_size)); + LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "kv", ctx->kv_self.buf.data, ctx->kv_self.buf.size, 0)); LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "alloc", ctx->buf_alloc.data, ctx->buf_alloc.size, 0)); #undef LLAMA_METAL_CHECK_BUF } @@ -5604,8 +6850,10 @@ struct llama_context * llama_new_context_with_model( if (ggml_mpi_rank(ctx->ctx_mpi) > 0) { // Enter a blocking eval loop with dummy input, letting rank=0 drive the process - const std::vector tmp(ctx->model.hparams.n_ctx, llama_token_bos(ctx)); - while (!llama_eval(ctx, tmp.data(), tmp.size(), 0, 0)) {}; + // TODO: needs fix after #3228 + GGML_ASSERT(false && "not implemented"); + //const std::vector tmp(ctx->model.hparams.n_ctx, llama_token_bos(ctx)); + //while (!llama_eval(ctx, tmp.data(), tmp.size(), 0, 0)) {}; llama_backend_free(); exit(1); } @@ -5614,63 +6862,37 @@ struct llama_context * llama_new_context_with_model( return ctx; } -struct llama_context * llama_init_from_file( - const char * path_model, - struct llama_context_params params) { - struct llama_model * model = llama_load_model_from_file(path_model, params); - if (!model) { - return nullptr; - } - - struct llama_context * ctx = llama_new_context_with_model(model, params); - ctx->model_owner = true; - - return ctx; -} - void llama_free(struct llama_context * ctx) { delete ctx; } -int llama_n_vocab(const struct llama_context * ctx) { - return llama_model_n_vocab(&ctx->model); +const llama_model * llama_get_model(const struct llama_context * ctx) { + return &ctx->model; } int llama_n_ctx(const struct llama_context * ctx) { - return llama_model_n_ctx(&ctx->model); -} - -int llama_n_ctx_train(const struct llama_context * ctx) { - return llama_model_n_ctx_train(&ctx->model); + return ctx->cparams.n_ctx; } -int llama_n_embd(const struct llama_context * ctx) { - return llama_model_n_embd(&ctx->model); +enum llama_vocab_type llama_vocab_type(const struct llama_model * model) { + return model->vocab.type; } -enum llama_vocab_type llama_vocab_type(const struct llama_context * ctx) { - return ctx->model.vocab.type; -} - -int llama_model_n_vocab(const struct llama_model * model) { +int llama_n_vocab(const struct llama_model * model) { return model->vocab.id_to_token.size(); } -int llama_model_n_ctx(const struct llama_model * model) { - return model->hparams.n_ctx; -} - -int llama_model_n_ctx_train(const struct llama_model * model) { +int llama_n_ctx_train(const struct llama_model * model) { return model->hparams.n_ctx_train; } -int llama_model_n_embd(const struct llama_model * model) { +int llama_n_embd(const struct llama_model * model) { return model->hparams.n_embd; } int llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size) { return snprintf(buf, buf_size, "%s %s %s", - model->name.c_str(), + llama_model_arch_name(model->arch).c_str(), llama_model_type_name(model->type), llama_model_ftype_name(model->ftype).c_str()); } @@ -5691,6 +6913,10 @@ uint64_t llama_model_n_params(const struct llama_model * model) { return nparams; } +struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name) { + return ggml_get_tensor(model->ctx, name); +} + int llama_model_quantize( const char * fname_inp, const char * fname_out, @@ -5704,18 +6930,18 @@ int llama_model_quantize( } } -int llama_apply_lora_from_file(struct llama_context * ctx, const char * path_lora, const char * path_base_model, int n_threads) { +int llama_apply_lora_from_file(struct llama_context * ctx, const char * path_lora, float scale, const char * path_base_model, int n_threads) { try { - return llama_apply_lora_from_file_internal(ctx->model, path_lora, path_base_model, n_threads); + return llama_apply_lora_from_file_internal(ctx->model, path_lora, scale, path_base_model, n_threads); } catch (const std::exception & err) { LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what()); return 1; } } -int llama_model_apply_lora_from_file(const struct llama_model * model, const char * path_lora, const char * path_base_model, int n_threads) { +int llama_model_apply_lora_from_file(const struct llama_model * model, const char * path_lora, float scale, const char * path_base_model, int n_threads) { try { - return llama_apply_lora_from_file_internal(*model, path_lora, path_base_model, n_threads); + return llama_apply_lora_from_file_internal(*model, path_lora, scale, path_base_model, n_threads); } catch (const std::exception & err) { LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what()); return 1; @@ -5723,16 +6949,27 @@ int llama_model_apply_lora_from_file(const struct llama_model * model, const cha } int llama_get_kv_cache_token_count(const struct llama_context * ctx) { - return ctx->kv_self.n; + return ctx->kv_self.head; } -#define LLAMA_MAX_RNG_STATE (64*1024) +void llama_kv_cache_tokens_rm(struct llama_context * ctx, int32_t c0, int32_t c1) { + llama_kv_cache_tokens_rm(ctx->kv_self, c0, c1); +} -void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed) { - if (seed == LLAMA_DEFAULT_SEED) { - seed = time(NULL); - } - ctx->rng.seed(seed); +void llama_kv_cache_seq_rm(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1) { + llama_kv_cache_seq_rm(ctx->kv_self, seq_id, p0, p1); +} + +void llama_kv_cache_seq_cp(struct llama_context * ctx, llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) { + llama_kv_cache_seq_cp(ctx->kv_self, seq_id_src, seq_id_dst, p0, p1); +} + +void llama_kv_cache_seq_keep(struct llama_context * ctx, llama_seq_id seq_id) { + llama_kv_cache_seq_keep(ctx->kv_self, seq_id); +} + +void llama_kv_cache_seq_shift(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos delta) { + llama_kv_cache_seq_shift(ctx->kv_self, seq_id, p0, p1, delta); } // Returns the *maximum* size of the state @@ -5819,7 +7056,17 @@ struct llama_data_file_context : llama_data_context { * llama_copy_state_data(ctx, &data_ctx); * */ -void llama_copy_state_data_internal(struct llama_context * ctx, llama_data_context * data_ctx) { +static void llama_copy_state_data_internal(struct llama_context * ctx, llama_data_context * data_ctx) { + // TODO: does not support multi-sequence states + { + const auto & kv_self = ctx->kv_self; + for (uint32_t i = 0; i < kv_self.head; ++i) { + GGML_ASSERT(kv_self.cells[i].pos == (int32_t) i); + GGML_ASSERT(kv_self.cells[i].seq_id.size() == 1); + GGML_ASSERT(kv_self.cells[i].has_seq_id(0)); + } + } + // copy rng { std::stringstream rng_ss; @@ -5870,12 +7117,14 @@ void llama_copy_state_data_internal(struct llama_context * ctx, llama_data_conte { const auto & kv_self = ctx->kv_self; const auto & hparams = ctx->model.hparams; + const auto & cparams = ctx->cparams; + const int n_layer = hparams.n_layer; const int n_embd = hparams.n_embd_gqa(); - const int n_ctx = hparams.n_ctx; + const int n_ctx = cparams.n_ctx; const size_t kv_size = kv_self.buf.size; - const int kv_ntok = llama_get_kv_cache_token_count(ctx); + const int kv_ntok = kv_self.head; data_ctx->write(&kv_size, sizeof(kv_size)); data_ctx->write(&kv_ntok, sizeof(kv_ntok)); @@ -5978,9 +7227,11 @@ size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src) { { const auto & kv_self = ctx->kv_self; const auto & hparams = ctx->model.hparams; + const auto & cparams = ctx->cparams; + const int n_layer = hparams.n_layer; const int n_embd = hparams.n_embd_gqa(); - const int n_ctx = hparams.n_ctx; + const int n_ctx = cparams.n_ctx; size_t kv_size; int kv_ntok; @@ -6019,7 +7270,8 @@ size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src) { ggml_free(cpy_ctx); } - ctx->kv_self.n = kv_ntok; + ctx->kv_self.head = kv_ntok; + ctx->kv_self.size = kv_size; } const size_t nread = inp - src; @@ -6114,64 +7366,102 @@ bool llama_save_session_file(struct llama_context * ctx, const char * path_sessi int llama_eval( struct llama_context * ctx, - const llama_token * tokens, - int n_tokens, - int n_past, - int n_threads) { - if (!llama_eval_internal(*ctx, tokens, nullptr, n_tokens, n_past, n_threads, nullptr)) { - LLAMA_LOG_ERROR("%s: failed to eval\n", __func__); - return 1; - } + llama_token * tokens, + int32_t n_tokens, + int n_past) { + llama_kv_cache_tokens_rm(ctx->kv_self, n_past, -1); - // get a more accurate load time, upon first eval - // TODO: fix this - if (!ctx->has_evaluated_once) { - ctx->t_load_us = ggml_time_us() - ctx->t_start_us; - ctx->has_evaluated_once = true; + const int ret = llama_decode_internal(*ctx, llama_batch_get_one(tokens, n_tokens, n_past, 0)); + if (ret < 0) { + LLAMA_LOG_ERROR("%s: failed to decode, ret = %d\n", __func__, ret); } - return 0; + return ret; } int llama_eval_embd( struct llama_context * ctx, - const float * embd, - int n_tokens, - int n_past, - int n_threads) { - if (!llama_eval_internal(*ctx, nullptr, embd, n_tokens, n_past, n_threads, nullptr)) { - LLAMA_LOG_ERROR("%s: failed to eval\n", __func__); - return 1; - } + float * embd, + int32_t n_tokens, + int n_past) { + llama_kv_cache_tokens_rm(ctx->kv_self, n_past, -1); - // get a more accurate load time, upon first eval - // TODO: fix this - if (!ctx->has_evaluated_once) { - ctx->t_load_us = ggml_time_us() - ctx->t_start_us; - ctx->has_evaluated_once = true; + llama_batch batch = { n_tokens, nullptr, embd, nullptr, nullptr, nullptr, n_past, 1, 0, }; + + const int ret = llama_decode_internal(*ctx, batch); + if (ret < 0) { + LLAMA_LOG_ERROR("%s: failed to decode, ret = %d\n", __func__, ret); } - return 0; + return ret; } -int llama_eval_export(struct llama_context * ctx, const char * fname) { - const int n_batch = 1; - const int n_ctx = 512 - n_batch; +void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_t n_threads_batch) { + ctx->cparams.n_threads = n_threads; + ctx->cparams.n_threads_batch = n_threads_batch; +} + +struct llama_batch llama_batch_get_one( + llama_token * tokens, + int32_t n_tokens, + llama_pos pos_0, + llama_seq_id seq_id) { + return { + /*n_tokens =*/ n_tokens, + /*tokens =*/ tokens, + /*embd =*/ nullptr, + /*pos =*/ nullptr, + /*seq_id =*/ nullptr, + /*logits =*/ nullptr, + /*all_pos_0 =*/ pos_0, + /*all_pos_1 =*/ 1, + /*all_seq_id =*/ seq_id, + }; +} - const std::vector tmp(n_batch, llama_token_bos(ctx)); +struct llama_batch llama_batch_init(int32_t n_tokens, int32_t embd) { + llama_batch batch = { -1, nullptr, nullptr, nullptr, nullptr, nullptr, 0, 0, 0, }; - if (!llama_eval_internal(*ctx, tmp.data(), nullptr, tmp.size(), n_ctx, 1, fname)) { - LLAMA_LOG_ERROR("%s: failed to eval\n", __func__); - return 1; + if (embd) { + batch.embd = (float *) malloc(sizeof(float) * n_tokens * embd); + } else { + batch.token = (llama_token *) malloc(sizeof(llama_token) * n_tokens); } - return 0; + batch.pos = (llama_pos *) malloc(sizeof(llama_pos) * n_tokens); + batch.seq_id = (llama_seq_id *) malloc(sizeof(llama_seq_id) * n_tokens); + batch.logits = (int8_t *) malloc(sizeof(int8_t) * n_tokens); + + return batch; +} + +void llama_batch_free(struct llama_batch batch) { + if (batch.token) free(batch.token); + if (batch.embd) free(batch.embd); + if (batch.pos) free(batch.pos); + if (batch.seq_id) free(batch.seq_id); + if (batch.logits) free(batch.logits); +} + +int llama_decode( + struct llama_context * ctx, + struct llama_batch batch) { + const int ret = llama_decode_internal(*ctx, batch); + if (ret < 0) { + LLAMA_LOG_ERROR("%s: failed to decode, ret = %d\n", __func__, ret); + } + + return ret; } float * llama_get_logits(struct llama_context * ctx) { return ctx->logits.data(); } +float * llama_get_logits_ith(struct llama_context * ctx, int32_t i) { + return ctx->logits.data() + i*ctx->model.hparams.n_vocab; +} + float * llama_get_embeddings(struct llama_context * ctx) { return ctx->embedding.data(); } @@ -6201,24 +7491,16 @@ llama_token llama_token_nl(const struct llama_context * ctx) { } int llama_tokenize( - struct llama_context * ctx, - const char * text, - llama_token * tokens, - int n_max_tokens, - bool add_bos) { - return llama_tokenize_with_model(&ctx->model, text, tokens, n_max_tokens, add_bos); -} - -int llama_tokenize_with_model( const struct llama_model * model, const char * text, + int text_len, llama_token * tokens, int n_max_tokens, bool add_bos) { - auto res = llama_tokenize_internal(model->vocab, text, add_bos); + auto res = llama_tokenize_internal(model->vocab, std::string(text, text_len), add_bos); if (n_max_tokens < (int) res.size()) { - LLAMA_LOG_ERROR("%s: too many tokens\n", __func__); + // LLAMA_LOG_ERROR("%s: too many tokens\n", __func__); return -((int) res.size()); } @@ -6229,13 +7511,9 @@ int llama_tokenize_with_model( return res.size(); } -int llama_token_to_piece(const struct llama_context * ctx, llama_token token, char * buf, int length) { - return llama_token_to_piece_with_model(&ctx->model, token, buf, length); -} - // does not write null-terminator to buf -int llama_token_to_piece_with_model(const struct llama_model * model, llama_token token, char * buf, int length) { - if (0 <= token && token < llama_model_n_vocab(model)) { +int llama_token_to_piece(const struct llama_model * model, llama_token token, char * buf, int length) { + if (0 <= token && token < llama_n_vocab(model)) { if (llama_is_normal_token(model->vocab, token)) { std::string result = model->vocab.id_to_token[token].text; if (llama_vocab_get_type(model->vocab) == LLAMA_VOCAB_TYPE_SPM) { @@ -6255,7 +7533,7 @@ int llama_token_to_piece_with_model(const struct llama_model * model, llama_toke buf[2] = '\x85'; return 3; } else if (llama_is_control_token(model->vocab, token)) { - ; + // do nothing } else if (llama_is_byte_token(model->vocab, token)) { if (length < 1) { return -1; @@ -6357,16 +7635,18 @@ void llama_dump_timing_info_yaml(FILE * stream, const llama_context * ctx) { } // For internal test use -const std::vector>& llama_internal_get_tensor_map(struct llama_context * ctx) { +const std::vector> & llama_internal_get_tensor_map( + struct llama_context * ctx +) { return ctx->model.tensors_by_name; } -void llama_log_set(llama_log_callback log_callback, void * user_data) { +void llama_log_set(ggml_log_callback log_callback, void * user_data) { g_state.log_callback = log_callback ? log_callback : llama_log_callback_default; g_state.log_callback_user_data = user_data; } -static void llama_log_internal_v(llama_log_level level, const char * format, va_list args) { +static void llama_log_internal_v(ggml_log_level level, const char * format, va_list args) { va_list args_copy; va_copy(args_copy, args); char buffer[128]; @@ -6383,14 +7663,14 @@ static void llama_log_internal_v(llama_log_level level, const char * format, va_ va_end(args_copy); } -static void llama_log_internal(llama_log_level level, const char * format, ...) { +static void llama_log_internal(ggml_log_level level, const char * format, ...) { va_list args; va_start(args, format); llama_log_internal_v(level, format, args); va_end(args); } -static void llama_log_callback_default(llama_log_level level, const char * text, void * user_data) { +static void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data) { (void) level; (void) user_data; fputs(text, stderr); diff --git a/llama.h b/llama.h index 37975bebed22e..fde4d6eca0d20 100644 --- a/llama.h +++ b/llama.h @@ -37,6 +37,8 @@ #define LLAMA_DEFAULT_SEED 0xFFFFFFFF +#define LLAMA_MAX_RNG_STATE (64*1024) + #define LLAMA_FILE_MAGIC_GGSN 0x6767736eu // 'ggsn' #define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN @@ -60,13 +62,9 @@ extern "C" { struct llama_model; struct llama_context; - typedef int llama_token; - - enum llama_log_level { - LLAMA_LOG_LEVEL_ERROR = 2, - LLAMA_LOG_LEVEL_WARN = 3, - LLAMA_LOG_LEVEL_INFO = 4 - }; + typedef int32_t llama_pos; + typedef int32_t llama_token; + typedef int32_t llama_seq_id; enum llama_vocab_type { LLAMA_VOCAB_TYPE_SPM = 0, // SentencePiece @@ -86,24 +84,24 @@ extern "C" { // model file types enum llama_ftype { LLAMA_FTYPE_ALL_F32 = 0, - LLAMA_FTYPE_MOSTLY_F16 = 1, // except 1d tensors - LLAMA_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors - LLAMA_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors - LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16 - // LLAMA_FTYPE_MOSTLY_Q4_2 = 5, // support has been removed - // LLAMA_FTYPE_MOSTLY_Q4_3 = 6, // support has been removed - LLAMA_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors - LLAMA_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors - LLAMA_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors - LLAMA_FTYPE_MOSTLY_Q2_K = 10,// except 1d tensors - LLAMA_FTYPE_MOSTLY_Q3_K_S = 11,// except 1d tensors - LLAMA_FTYPE_MOSTLY_Q3_K_M = 12,// except 1d tensors - LLAMA_FTYPE_MOSTLY_Q3_K_L = 13,// except 1d tensors - LLAMA_FTYPE_MOSTLY_Q4_K_S = 14,// except 1d tensors - LLAMA_FTYPE_MOSTLY_Q4_K_M = 15,// except 1d tensors - LLAMA_FTYPE_MOSTLY_Q5_K_S = 16,// except 1d tensors - LLAMA_FTYPE_MOSTLY_Q5_K_M = 17,// except 1d tensors - LLAMA_FTYPE_MOSTLY_Q6_K = 18,// except 1d tensors + LLAMA_FTYPE_MOSTLY_F16 = 1, // except 1d tensors + LLAMA_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors + LLAMA_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors + LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16 + // LLAMA_FTYPE_MOSTLY_Q4_2 = 5, // support has been removed + // LLAMA_FTYPE_MOSTLY_Q4_3 = 6, // support has been removed + LLAMA_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors + LLAMA_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors + LLAMA_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors + LLAMA_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors + LLAMA_FTYPE_MOSTLY_Q3_K_S = 11, // except 1d tensors + LLAMA_FTYPE_MOSTLY_Q3_K_M = 12, // except 1d tensors + LLAMA_FTYPE_MOSTLY_Q3_K_L = 13, // except 1d tensors + LLAMA_FTYPE_MOSTLY_Q4_K_S = 14, // except 1d tensors + LLAMA_FTYPE_MOSTLY_Q4_K_M = 15, // except 1d tensors + LLAMA_FTYPE_MOSTLY_Q5_K_S = 16, // except 1d tensors + LLAMA_FTYPE_MOSTLY_Q5_K_M = 17, // except 1d tensors + LLAMA_FTYPE_MOSTLY_Q6_K = 18, // except 1d tensors LLAMA_FTYPE_GUESSED = 1024, // not specified in the model file }; @@ -122,41 +120,68 @@ extern "C" { typedef void (*llama_progress_callback)(float progress, void *ctx); - struct llama_context_params { - uint32_t seed; // RNG seed, -1 for random - int32_t n_ctx; // text context - int32_t n_batch; // prompt processing batch size - int32_t n_gpu_layers; // number of layers to store in VRAM - int32_t main_gpu; // the GPU that is used for scratch and small tensors - + // Input data for llama_decode + // A llama_batch object can contain input about one or many sequences + // The provided arrays (i.e. token, embd, pos, etc.) must have size of n_tokens + // + // - token : the token ids of the input (used when embd is NULL) + // - embd : token embeddings (i.e. float vector of size n_embd) (used when token is NULL) + // - pos : the positions of the respective token in the sequence + // - seq_id : the sequence to which the respective token belongs + // - logits : if zero, the logits for the respective token will not be output + // + typedef struct llama_batch { + int32_t n_tokens; + + llama_token * token; + float * embd; + llama_pos * pos; + llama_seq_id * seq_id; + int8_t * logits; + + // NOTE: helpers for smooth API transition - can be deprecated in the future + // for future-proof code, use the above fields instead and ignore everything below + // + // pos[i] = all_pos_0 + i*all_pos_1 + // + llama_pos all_pos_0; // used if pos == NULL + llama_pos all_pos_1; // used if pos == NULL + llama_seq_id all_seq_id; // used if seq_id == NULL + } llama_batch; + + struct llama_model_params { + int32_t n_gpu_layers; // number of layers to store in VRAM + int32_t main_gpu; // the GPU that is used for scratch and small tensors const float * tensor_split; // how to split layers across multiple GPUs (size: LLAMA_MAX_DEVICES) - // ref: https://github.com/ggerganov/llama.cpp/pull/2054 - float rope_freq_base; // RoPE base frequency - float rope_freq_scale; // RoPE frequency scaling factor - // called with a progress value between 0 and 1, pass NULL to disable llama_progress_callback progress_callback; // context pointer passed to the progress callback void * progress_callback_user_data; // Keep the booleans together to avoid misalignment during copy-by-value. - bool low_vram; // if true, reduce VRAM usage at the cost of performance - bool mul_mat_q; // if true, use experimental mul_mat_q kernels - bool f16_kv; // use fp16 for KV cache - bool logits_all; // the llama_eval() call computes all logits, not just the last one bool vocab_only; // only load the vocabulary, no weights bool use_mmap; // use mmap if possible bool use_mlock; // force system to keep model in RAM - bool embedding; // embedding mode only }; - // Signature for logging events - // Note that text includes the new line character at the end for most events. - // If your logging mechanism cannot handle that, check if the last character is '\n' and strip it - // if it exists. - // It might not exist for progress report where '.' is output repeatedly. - typedef void (*llama_log_callback)(enum llama_log_level level, const char * text, void * user_data); + struct llama_context_params { + uint32_t seed; // RNG seed, -1 for random + uint32_t n_ctx; // text context, 0 = from model + uint32_t n_batch; // prompt processing maximum batch size + uint32_t n_threads; // number of threads to use for generation + uint32_t n_threads_batch; // number of threads to use for batch processing + + // ref: https://github.com/ggerganov/llama.cpp/pull/2054 + float rope_freq_base; // RoPE base frequency, 0 = from model + float rope_freq_scale; // RoPE frequency scaling factor, 0 = from model + + // Keep the booleans together to avoid misalignment during copy-by-value. + bool mul_mat_q; // if true, use experimental mul_mat_q kernels + bool f16_kv; // use fp16 for KV cache, fp32 otherwise + bool logits_all; // the llama_eval() call computes all logits, not just the last one + bool embedding; // embedding mode only + }; // model quantization parameters typedef struct llama_model_quantize_params { @@ -215,6 +240,8 @@ extern "C" { int32_t n_eval; }; + // Helpers for getting default parameters + LLAMA_API struct llama_model_params llama_model_default_params(void); LLAMA_API struct llama_context_params llama_context_default_params(void); LLAMA_API struct llama_model_quantize_params llama_model_quantize_default_params(void); @@ -228,7 +255,7 @@ extern "C" { LLAMA_API struct llama_model * llama_load_model_from_file( const char * path_model, - struct llama_context_params params); + struct llama_model_params params); LLAMA_API void llama_free_model(struct llama_model * model); @@ -245,25 +272,28 @@ extern "C" { LLAMA_API bool llama_mmap_supported (void); LLAMA_API bool llama_mlock_supported(void); - LLAMA_API int llama_n_vocab (const struct llama_context * ctx); + LLAMA_API const struct llama_model * llama_get_model(const struct llama_context * ctx); + LLAMA_API int llama_n_ctx (const struct llama_context * ctx); - LLAMA_API int llama_n_ctx_train(const struct llama_context * ctx); - LLAMA_API int llama_n_embd (const struct llama_context * ctx); - LLAMA_API enum llama_vocab_type llama_vocab_type(const struct llama_context * ctx); + LLAMA_API enum llama_vocab_type llama_vocab_type(const struct llama_model * model); - LLAMA_API int llama_model_n_vocab (const struct llama_model * model); - LLAMA_API int llama_model_n_ctx (const struct llama_model * model); - LLAMA_API int llama_model_n_ctx_train(const struct llama_model * model); - LLAMA_API int llama_model_n_embd (const struct llama_model * model); + LLAMA_API int llama_n_vocab (const struct llama_model * model); + LLAMA_API int llama_n_ctx_train(const struct llama_model * model); + LLAMA_API int llama_n_embd (const struct llama_model * model); // Get a string describing the model type LLAMA_API int llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size); + // Returns the total size of all the tensors in the model in bytes LLAMA_API uint64_t llama_model_size(const struct llama_model * model); + // Returns the total number of parameters in the model LLAMA_API uint64_t llama_model_n_params(const struct llama_model * model); + // Get a llama model tensor + LLAMA_API struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name); + // Returns 0 on success LLAMA_API int llama_model_quantize( const char * fname_inp, @@ -279,21 +309,65 @@ extern "C" { LLAMA_API DEPRECATED(int llama_apply_lora_from_file( struct llama_context * ctx, const char * path_lora, + float scale, const char * path_base_model, int n_threads), - "please use llama_model_apply_lora_from_file instead"); + "use llama_model_apply_lora_from_file instead"); LLAMA_API int llama_model_apply_lora_from_file( const struct llama_model * model, - const char * path_lora, - const char * path_base_model, - int n_threads); + const char * path_lora, + float scale, + const char * path_base_model, + int n_threads); + + // + // KV cache + // // Returns the number of tokens in the KV cache - LLAMA_API int llama_get_kv_cache_token_count(const struct llama_context * ctx); + LLAMA_API DEPRECATED(int llama_get_kv_cache_token_count(const struct llama_context * ctx), + "avoid using this, it will be removed in the future, instead - count the tokens in user code"); - // Sets the current rng seed. - LLAMA_API void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed); + // Remove all tokens data of cells in [c0, c1) + LLAMA_API void llama_kv_cache_tokens_rm( + struct llama_context * ctx, + int32_t c0, + int32_t c1); + + // Removes all tokens that belong to the specified sequence and have positions in [p0, p1) + LLAMA_API void llama_kv_cache_seq_rm( + struct llama_context * ctx, + llama_seq_id seq_id, + llama_pos p0, + llama_pos p1); + + // Copy all tokens that belong to the specified sequence to another sequence + // Note that this does not allocate extra KV cache memory - it simply assigns the tokens to the new sequence + LLAMA_API void llama_kv_cache_seq_cp( + struct llama_context * ctx, + llama_seq_id seq_id_src, + llama_seq_id seq_id_dst, + llama_pos p0, + llama_pos p1); + + // Removes all tokens that do not belong to the specified sequence + LLAMA_API void llama_kv_cache_seq_keep( + struct llama_context * ctx, + llama_seq_id seq_id); + + // Adds relative position "delta" to all tokens that belong to the specified sequence and have positions in [p0, p1) + // If the KV cache is RoPEd, the KV data is updated accordingly + LLAMA_API void llama_kv_cache_seq_shift( + struct llama_context * ctx, + llama_seq_id seq_id, + llama_pos p0, + llama_pos p1, + llama_pos delta); + + // + // State / sessions + // // Returns the maximum size in bytes of the state (rng, logits, embedding // and kv_cache) - will often be smaller after compacting tokens @@ -302,48 +376,102 @@ extern "C" { // Copies the state to the specified destination address. // Destination needs to have allocated enough memory. // Returns the number of bytes copied - LLAMA_API size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst); + LLAMA_API size_t llama_copy_state_data( + struct llama_context * ctx, + uint8_t * dst); // Set the state reading from the specified address // Returns the number of bytes read - LLAMA_API size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src); + LLAMA_API size_t llama_set_state_data( + struct llama_context * ctx, + uint8_t * src); // Save/load session file - LLAMA_API bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out); - LLAMA_API bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count); + LLAMA_API bool llama_load_session_file( + struct llama_context * ctx, + const char * path_session, + llama_token * tokens_out, + size_t n_token_capacity, + size_t * n_token_count_out); + + LLAMA_API bool llama_save_session_file( + struct llama_context * ctx, + const char * path_session, + const llama_token * tokens, + size_t n_token_count); + + // + // Decoding + // - // Run the llama inference to obtain the logits and probabilities for the next token. + // Run the llama inference to obtain the logits and probabilities for the next token(s). // tokens + n_tokens is the provided batch of new tokens to process // n_past is the number of tokens to use from previous eval calls // Returns 0 on success - LLAMA_API int llama_eval( + // DEPRECATED: use llama_decode() instead + LLAMA_API DEPRECATED(int llama_eval( struct llama_context * ctx, - const llama_token * tokens, - int n_tokens, - int n_past, - int n_threads); + llama_token * tokens, + int32_t n_tokens, + int n_past), + "use llama_decode() instead"); // Same as llama_eval, but use float matrix input directly. - LLAMA_API int llama_eval_embd( + // DEPRECATED: use llama_decode() instead + LLAMA_API DEPRECATED(int llama_eval_embd( struct llama_context * ctx, - const float * embd, - int n_tokens, - int n_past, - int n_threads); + float * embd, + int32_t n_tokens, + int n_past), + "use llama_decode() instead"); + + // Return batch for single sequence of tokens starting at pos_0 + // + // NOTE: this is a helper function to facilitate transition to the new batch API - avoid using it + // + LLAMA_API struct llama_batch llama_batch_get_one( + llama_token * tokens, + int32_t n_tokens, + llama_pos pos_0, + llama_seq_id seq_id); + + // Allocates a batch of tokens on the heap + // The batch has to be freed with llama_batch_free() + // If embd != 0, llama_batch.embd will be allocated with size of n_tokens * embd * sizeof(float) + // Otherwise, llama_batch.token will be allocated to store n_tokens llama_token + // The rest of the llama_batch members are allocated with size n_tokens + // All members are left uninitialized + LLAMA_API struct llama_batch llama_batch_init( + int32_t n_tokens, + int32_t embd); + + // Frees a batch of tokens allocated with llama_batch_init() + LLAMA_API void llama_batch_free(struct llama_batch batch); + + // Positive return values does not mean a fatal error, but rather a warning. + // 0 - success + // 1 - could not find a KV slot for the batch (try reducing the size of the batch or increase the context) + // < 0 - error + LLAMA_API int llama_decode( + struct llama_context * ctx, + struct llama_batch batch); - // Export a static computation graph for context of 511 and batch size of 1 - // NOTE: since this functionality is mostly for debugging and demonstration purposes, we hardcode these - // parameters here to keep things simple - // IMPORTANT: do not use for anything else other than debugging and testing! - LLAMA_API int llama_eval_export(struct llama_context * ctx, const char * fname); + // Set the number of threads used for decoding + // n_threads is the number of threads used for generation (single token) + // n_threads_batch is the number of threads used for prompt and batch processing (multiple tokens) + LLAMA_API void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_t n_threads_batch); // Token logits obtained from the last call to llama_eval() // The logits for the last token are stored in the last row - // Can be mutated in order to change the probabilities of the next token - // Rows: n_tokens + // Logits for which llama_batch.logits[i] == 0 are undefined + // Rows: n_tokens provided with llama_batch // Cols: n_vocab LLAMA_API float * llama_get_logits(struct llama_context * ctx); + // Logits for the ith token. Equivalent to: + // llama_get_logits(ctx) + i*n_vocab + LLAMA_API float * llama_get_logits_ith(struct llama_context * ctx, int32_t i); + // Get the embeddings for the input // shape: [n_embd] (1-dimensional) LLAMA_API float * llama_get_embeddings(struct llama_context * ctx); @@ -372,15 +500,9 @@ extern "C" { // Returns the number of tokens on success, no more than n_max_tokens // Returns a negative number on failure - the number of tokens that would have been returned LLAMA_API int llama_tokenize( - struct llama_context * ctx, - const char * text, - llama_token * tokens, - int n_max_tokens, - bool add_bos); - - LLAMA_API int llama_tokenize_with_model( const struct llama_model * model, const char * text, + int text_len, llama_token * tokens, int n_max_tokens, bool add_bos); @@ -390,12 +512,6 @@ extern "C" { // Does not write null terminator to the buffer. // User code is responsible to remove the leading whitespace of the first non-BOS token when decoding multiple tokens. LLAMA_API int llama_token_to_piece( - const struct llama_context * ctx, - llama_token token, - char * buf, - int length); - - LLAMA_API int llama_token_to_piece_with_model( const struct llama_model * model, llama_token token, char * buf, @@ -418,11 +534,25 @@ extern "C" { // Sampling functions // + // Sets the current rng seed. + LLAMA_API void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed); + /// @details Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix. - LLAMA_API void llama_sample_repetition_penalty(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens, size_t last_tokens_size, float penalty); + LLAMA_API void llama_sample_repetition_penalty( + struct llama_context * ctx, + llama_token_data_array * candidates, + const llama_token * last_tokens, + size_t last_tokens_size, + float penalty); /// @details Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details. - LLAMA_API void llama_sample_frequency_and_presence_penalties(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens, size_t last_tokens_size, float alpha_frequency, float alpha_presence); + LLAMA_API void llama_sample_frequency_and_presence_penalties( + struct llama_context * ctx, + llama_token_data_array * candidates, + const llama_token * last_tokens, + size_t last_tokens_size, + float alpha_frequency, + float alpha_presence); /// @details Apply classifier-free guidance to the logits as described in academic paper "Stay on topic with Classifier-Free Guidance" https://arxiv.org/abs/2306.17806 /// @param candidates A vector of `llama_token_data` containing the candidate tokens, the logits must be directly extracted from the original generation context without being sorted. @@ -435,23 +565,54 @@ extern "C" { float scale); /// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits. - LLAMA_API void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates); + LLAMA_API void llama_sample_softmax( + struct llama_context * ctx, + llama_token_data_array * candidates); /// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751 - LLAMA_API void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int k, size_t min_keep); + LLAMA_API void llama_sample_top_k( + struct llama_context * ctx, + llama_token_data_array * candidates, + int k, + size_t min_keep); /// @details Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751 - LLAMA_API void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep); + LLAMA_API void llama_sample_top_p( + struct llama_context * ctx, + llama_token_data_array * candidates, + float p, + size_t min_keep); /// @details Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/. - LLAMA_API void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep); + LLAMA_API void llama_sample_tail_free( + struct llama_context * ctx, + llama_token_data_array * candidates, + float z, + size_t min_keep); /// @details Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666. - LLAMA_API void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep); - LLAMA_API void llama_sample_temperature(struct llama_context * ctx, llama_token_data_array * candidates, float temp); + LLAMA_API void llama_sample_typical( + struct llama_context * ctx, + llama_token_data_array * candidates, + float p, + size_t min_keep); + + LLAMA_API void llama_sample_temp( + struct llama_context * ctx, + llama_token_data_array * candidates, + float temp); + + LLAMA_API DEPRECATED(void llama_sample_temperature( + struct llama_context * ctx, + llama_token_data_array * candidates, + float temp), + "use llama_sample_temp instead"); /// @details Apply constraints from grammar - LLAMA_API void llama_sample_grammar(struct llama_context * ctx, llama_token_data_array * candidates, const struct llama_grammar * grammar); + LLAMA_API void llama_sample_grammar( + struct llama_context * ctx, + llama_token_data_array * candidates, + const struct llama_grammar * grammar); /// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words. /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text. @@ -459,23 +620,41 @@ extern "C" { /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates. /// @param m The number of tokens considered in the estimation of `s_hat`. This is an arbitrary value that is used to calculate `s_hat`, which in turn helps to calculate the value of `k`. In the paper, they use `m = 100`, but you can experiment with different values to see how it affects the performance of the algorithm. /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal. - LLAMA_API llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int m, float * mu); + LLAMA_API llama_token llama_sample_token_mirostat( + struct llama_context * ctx, + llama_token_data_array * candidates, + float tau, + float eta, + int m, + float * mu); /// @details Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words. /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text. /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text. /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates. /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal. - LLAMA_API llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu); + LLAMA_API llama_token llama_sample_token_mirostat_v2( + struct llama_context * ctx, + llama_token_data_array * candidates, + float tau, + float eta, + float * mu); /// @details Selects the token with the highest probability. - LLAMA_API llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates); + LLAMA_API llama_token llama_sample_token_greedy( + struct llama_context * ctx, + llama_token_data_array * candidates); /// @details Randomly selects a token from the candidates based on their probabilities. - LLAMA_API llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates); + LLAMA_API llama_token llama_sample_token( + struct llama_context * ctx, + llama_token_data_array * candidates); /// @details Accepts the sampled token into the grammar - LLAMA_API void llama_grammar_accept_token(struct llama_context * ctx, struct llama_grammar * grammar, llama_token token); + LLAMA_API void llama_grammar_accept_token( + struct llama_context * ctx, + struct llama_grammar * grammar, + llama_token token); // // Beam search @@ -483,9 +662,10 @@ extern "C" { struct llama_beam_view { const llama_token * tokens; + size_t n_tokens; - float p; // Cumulative beam probability (renormalized relative to all beams) - bool eob; // Callback should set this to true when a beam is at end-of-beam. + float p; // Cumulative beam probability (renormalized relative to all beams) + bool eob; // Callback should set this to true when a beam is at end-of-beam. }; // Passed to beam_search_callback function. @@ -494,9 +674,10 @@ extern "C" { // These pointers are valid only during the synchronous callback, so should not be saved. struct llama_beams_state { struct llama_beam_view * beam_views; + size_t n_beams; // Number of elements in beam_views[]. size_t common_prefix_length; // Current max length of prefix tokens shared by all beams. - bool last_call; // True iff this is the last callback invocation. + bool last_call; // True iff this is the last callback invocation. }; // Type of pointer to the beam_search_callback function. @@ -511,11 +692,17 @@ extern "C" { /// @param n_beams Number of beams to use. /// @param n_past Number of tokens already evaluated. /// @param n_predict Maximum number of tokens to predict. EOS may occur earlier. - /// @param n_threads Number of threads as passed to llama_eval(). - LLAMA_API void llama_beam_search(struct llama_context * ctx, llama_beam_search_callback_fn_t callback, void * callback_data, size_t n_beams, int n_past, int n_predict, int n_threads); + LLAMA_API void llama_beam_search( + struct llama_context * ctx, + llama_beam_search_callback_fn_t callback, + void * callback_data, + size_t n_beams, + int n_past, + int n_predict); // Performance information LLAMA_API struct llama_timings llama_get_timings(struct llama_context * ctx); + LLAMA_API void llama_print_timings(struct llama_context * ctx); LLAMA_API void llama_reset_timings(struct llama_context * ctx); @@ -524,7 +711,7 @@ extern "C" { // Set callback for all future logging events. // If this is not called, or NULL is supplied, everything is output on stderr. - LLAMA_API void llama_log_set(llama_log_callback log_callback, void * user_data); + LLAMA_API void llama_log_set(ggml_log_callback log_callback, void * user_data); LLAMA_API void llama_dump_timing_info_yaml(FILE * stream, const struct llama_context * ctx); @@ -540,7 +727,9 @@ extern "C" { struct ggml_tensor; -const std::vector>& llama_internal_get_tensor_map(struct llama_context * ctx); +const std::vector> & llama_internal_get_tensor_map( + struct llama_context * ctx +); #endif // LLAMA_API_INTERNAL diff --git a/pocs/vdot/q8dot.cpp b/pocs/vdot/q8dot.cpp index 4e0e023575322..111770d5519cb 100644 --- a/pocs/vdot/q8dot.cpp +++ b/pocs/vdot/q8dot.cpp @@ -43,7 +43,7 @@ static_assert(QK4_1 == QK8_0, "QK4_1 and QK8_0 must be the same"); static_assert(QK4_0 == QK8_0, "QK4_0 and QK8_0 must be the same"); template -void fillQ4blocks(std::vector& blocks, std::mt19937& rndm) { +static void fillQ4blocks(std::vector& blocks, std::mt19937& rndm) { for (auto& b : blocks) { b.d = 1; for (int i=0; i& blocks, std::mt19937& rndm) { } } -void fillQ80blocks(std::vector& blocks, std::mt19937& rndm) { +static void fillQ80blocks(std::vector& blocks, std::mt19937& rndm) { for (auto& b : blocks) { b.d = 1; int sum = 0; @@ -66,7 +66,7 @@ void fillQ80blocks(std::vector& blocks, std::mt19937& rndm) { } } -float simpleDot(const block_q4_0& x, const block_q8_0& y) { +static float simpleDot(const block_q4_0& x, const block_q8_0& y) { int s1 = 0; //, s2 = 0; for (int i=0; i& values, std::mt19937& rndm, float mean = 0) { + +static void fillRandomGaussianFloats(std::vector& values, std::mt19937& rndm, float mean = 0) { for (auto& v : values) v = mean + drawFromGaussianPdf(rndm); } diff --git a/prompts/chat-with-baichuan.txt b/prompts/chat-with-baichuan.txt new file mode 100644 index 0000000000000..11626b692531f --- /dev/null +++ b/prompts/chat-with-baichuan.txt @@ -0,0 +1,4 @@ +以下内容为人类用户与与一位智能助手的对话。 + +用户:你好! +助手: diff --git a/run_with_preset.py b/run_with_preset.py index 8f90f52a9586e..9b4d7ecbe82d4 100755 --- a/run_with_preset.py +++ b/run_with_preset.py @@ -13,7 +13,7 @@ "hellaswag-tasks", "ignore-eos", "in-prefix", "in-prefix-bos", "in-suffix", "instruct", "interactive", "interactive-first", "keep", "logdir", "logit-bias", "lora", "lora-base", "low-vram", "main-gpu", "memory-f32", "mirostat", "mirostat-ent", "mirostat-lr", "mlock", - "model", "mtest", "multiline-input", "n-gpu-layers", "n-predict", "no-mmap", "no-mul-mat-q", + "model", "multiline-input", "n-gpu-layers", "n-predict", "no-mmap", "no-mul-mat-q", "np-penalize-nl", "numa", "ppl-output-type", "ppl-stride", "presence-penalty", "prompt", "prompt-cache", "prompt-cache-all", "prompt-cache-ro", "random-prompt", "repeat-last-n", "repeat-penalty", "reverse-prompt", "rope-freq-base", "rope-freq-scale", "rope-scale", "seed", diff --git a/scripts/LlamaConfig.cmake.in b/scripts/LlamaConfig.cmake.in new file mode 100644 index 0000000000000..e1fadc3610802 --- /dev/null +++ b/scripts/LlamaConfig.cmake.in @@ -0,0 +1,69 @@ +set(LLAMA_VERSION @LLAMA_INSTALL_VERSION@) +set(LLAMA_BUILD_COMMIT @LLAMA_BUILD_COMMIT@) +set(LLAMA_BUILD_NUMBER @LLAMA_BUILD_NUMBER@) +set(LLAMA_SHARED_LIB @BUILD_SHARED_LIBS@) +set(LLAMA_BLAS @LLAMA_BLAS@) +set(LLAMA_CUBLAS @LLAMA_CUBLAS@) +set(LLAMA_METAL @LLAMA_METAL@) +set(LLAMA_MPI @LLAMA_MPI@) +set(LLAMA_CLBLAST @LLAMA_CLBLAST@) +set(LLAMA_HIPBLAS @LLAMA_HIPBLAS@) +set(LLAMA_ACCELERATE @LLAMA_ACCELERATE@) + +@PACKAGE_INIT@ + +set_and_check(LLAMA_INCLUDE_DIR "@PACKAGE_LLAMA_INCLUDE_INSTALL_DIR@") +set_and_check(LLAMA_LIB_DIR "@PACKAGE_LLAMA_LIB_INSTALL_DIR@") +set_and_check(LLAMA_BIN_DIR "@PACKAGE_LLAMA_BIN_INSTALL_DIR@") + +# Ensure transient dependencies satisfied + +find_package(Threads REQUIRED) +if (APPLE AND LLAMA_ACCELERATE) + find_library(ACCELERATE_FRAMEWORK Accelerate REQUIRED) +endif() + +if (LLAMA_BLAS) + find_package(BLAS REQUIRED) +endif() + +if (LLAMA_CUBLAS) + find_package(CUDAToolkit REQUIRED) +endif() + +if (LLAMA_METAL) + find_library(FOUNDATION_LIBRARY Foundation REQUIRED) + find_library(METAL_FRAMEWORK Metal REQUIRED) + find_library(METALKIT_FRAMEWORK MetalKit REQUIRED) +endif() + +if (LLAMA_MPI) + find_package(MPI REQUIRED) +endif() + +if (LLAMA_CLBLAST) + find_package(CLBlast REQUIRED) +endif() + +if (LLAMA_HIPBLAS) + find_package(hip REQUIRED) + find_package(hipblas REQUIRED) + find_package(rocblas REQUIRED) +endif() + +find_library(llama_LIBRARY llama + REQUIRED + HINTS ${LLAMA_LIB_DIR}) + +set(_llama_link_deps "Threads::Threads" "@LLAMA_EXTRA_LIBS@") +add_library(llama UNKNOWN IMPORTED) +set_target_properties(llama + PROPERTIES + INTERFACE_INCLUDE_DIRECTORIES "${LLAMA_INCLUDE_DIR}" + INTERFACE_LINK_LIBRARIES "${_llama_link_deps}" + IMPORTED_LINK_INTERFACE_LANGUAGES "CXX" + IMPORTED_LOCATION "${llama_LIBRARY}" + INTERFACE_COMPILE_FEATURES cxx_std_11 + POSITION_INDEPENDENT_CODE ON ) + +check_required_components(Llama) diff --git a/scripts/build-info.cmake b/scripts/build-info.cmake index 5023b77abf95e..c86ab43790c75 100644 --- a/scripts/build-info.cmake +++ b/scripts/build-info.cmake @@ -2,20 +2,18 @@ set(TEMPLATE_FILE "${CMAKE_CURRENT_SOURCE_DIR}/scripts/build-info.h.in") set(HEADER_FILE "${CMAKE_CURRENT_SOURCE_DIR}/build-info.h") set(BUILD_NUMBER 0) set(BUILD_COMMIT "unknown") +set(BUILD_COMPILER "unknown") +set(BUILD_TARGET "unknown") # Look for git find_package(Git) if(NOT Git_FOUND) - execute_process( - COMMAND which git - OUTPUT_VARIABLE GIT_EXECUTABLE - OUTPUT_STRIP_TRAILING_WHITESPACE - ) - if(NOT GIT_EXECUTABLE STREQUAL "") + find_program(GIT_EXECUTABLE NAMES git git.exe) + if(GIT_EXECUTABLE) set(Git_FOUND TRUE) - message(STATUS "Found Git using 'which': ${GIT_EXECUTABLE}") + message(STATUS "Found Git: ${GIT_EXECUTABLE}") else() - message(WARNING "Git not found using 'find_package' or 'which'. Build info will not be accurate. Consider installing Git or ensuring it is in the PATH.") + message(WARNING "Git not found. Build info will not be accurate.") endif() endif() @@ -26,26 +24,49 @@ if(Git_FOUND) WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR} OUTPUT_VARIABLE HEAD OUTPUT_STRIP_TRAILING_WHITESPACE - RESULT_VARIABLE GIT_HEAD_RESULT ) execute_process( COMMAND ${GIT_EXECUTABLE} rev-list --count HEAD WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR} OUTPUT_VARIABLE COUNT OUTPUT_STRIP_TRAILING_WHITESPACE - RESULT_VARIABLE GIT_COUNT_RESULT ) - if(GIT_HEAD_RESULT EQUAL 0 AND GIT_COUNT_RESULT EQUAL 0) - set(BUILD_COMMIT ${HEAD}) - set(BUILD_NUMBER ${COUNT}) - endif() + set(BUILD_COMMIT ${HEAD}) + set(BUILD_NUMBER ${COUNT}) +endif() + +if(MSVC) + set(BUILD_COMPILER "${CMAKE_C_COMPILER_ID} ${CMAKE_C_COMPILER_VERSION}") + set(BUILD_TARGET ${CMAKE_VS_PLATFORM_NAME}) +else() + execute_process( + COMMAND sh -c "$@ --version | head -1" _ ${CMAKE_C_COMPILER} + OUTPUT_VARIABLE OUT + OUTPUT_STRIP_TRAILING_WHITESPACE + ) + set(BUILD_COMPILER ${OUT}) + execute_process( + COMMAND ${CMAKE_C_COMPILER} -dumpmachine + OUTPUT_VARIABLE OUT + OUTPUT_STRIP_TRAILING_WHITESPACE + ) + set(BUILD_TARGET ${OUT}) endif() # Only write the header if it's changed to prevent unnecessary recompilation if(EXISTS ${HEADER_FILE}) - file(STRINGS ${HEADER_FILE} CONTENTS REGEX "BUILD_COMMIT \"([^\"]*)\"") - list(GET CONTENTS 0 EXISTING) - if(NOT EXISTING STREQUAL "#define BUILD_COMMIT \"${BUILD_COMMIT}\"") + file(READ ${HEADER_FILE} CONTENTS) + string(REGEX MATCH "BUILD_COMMIT \"([^\"]*)\"" _ ${CONTENTS}) + set(OLD_COMMIT ${CMAKE_MATCH_1}) + string(REGEX MATCH "BUILD_COMPILER \"([^\"]*)\"" _ ${CONTENTS}) + set(OLD_COMPILER ${CMAKE_MATCH_1}) + string(REGEX MATCH "BUILD_TARGET \"([^\"]*)\"" _ ${CONTENTS}) + set(OLD_TARGET ${CMAKE_MATCH_1}) + if ( + NOT OLD_COMMIT STREQUAL BUILD_COMMIT OR + NOT OLD_COMPILER STREQUAL BUILD_COMPILER OR + NOT OLD_TARGET STREQUAL BUILD_TARGET + ) configure_file(${TEMPLATE_FILE} ${HEADER_FILE}) endif() else() diff --git a/scripts/build-info.h.in b/scripts/build-info.h.in index 75d1e16fd039c..e996faef03974 100644 --- a/scripts/build-info.h.in +++ b/scripts/build-info.h.in @@ -3,5 +3,7 @@ #define BUILD_NUMBER @BUILD_NUMBER@ #define BUILD_COMMIT "@BUILD_COMMIT@" +#define BUILD_COMPILER "@BUILD_COMPILER@" +#define BUILD_TARGET "@BUILD_TARGET@" #endif // BUILD_INFO_H diff --git a/scripts/build-info.sh b/scripts/build-info.sh index ed0d6c56a23f8..3c8b1fb850eef 100755 --- a/scripts/build-info.sh +++ b/scripts/build-info.sh @@ -1,23 +1,35 @@ #!/bin/sh -BUILD_NUMBER="0" -BUILD_COMMIT="unknown" +CC=$1 -REV_LIST=$(git rev-list --count HEAD) -if [ $? -eq 0 ]; then - BUILD_NUMBER=$REV_LIST +build_number="0" +build_commit="unknown" +build_compiler="unknown" +build_target="unknown" + +if out=$(git rev-list --count HEAD); then + # git is broken on WSL so we need to strip extra newlines + build_number=$(printf '%s' "$out" | tr -d '\n') +fi + +if out=$(git rev-parse --short HEAD); then + build_commit=$(printf '%s' "$out" | tr -d '\n') +fi + +if out=$($CC --version | head -1); then + build_compiler=$out fi -REV_PARSE=$(git rev-parse --short HEAD) -if [ $? -eq 0 ]; then - BUILD_COMMIT=$REV_PARSE +if out=$($CC -dumpmachine); then + build_target=$out fi echo "#ifndef BUILD_INFO_H" echo "#define BUILD_INFO_H" -echo "" -echo "#define BUILD_NUMBER $BUILD_NUMBER" | tr -d '\n' -echo "" -echo "#define BUILD_COMMIT \"$BUILD_COMMIT\"" | tr -d '\n' -echo "" +echo +echo "#define BUILD_NUMBER $build_number" +echo "#define BUILD_COMMIT \"$build_commit\"" +echo "#define BUILD_COMPILER \"$build_compiler\"" +echo "#define BUILD_TARGET \"$build_target\"" +echo echo "#endif // BUILD_INFO_H" diff --git a/scripts/verify-checksum-models.py b/scripts/verify-checksum-models.py index 307b7c08d86da..dff4b47340133 100755 --- a/scripts/verify-checksum-models.py +++ b/scripts/verify-checksum-models.py @@ -1,4 +1,4 @@ -#!/bin/env python3 +#!/usr/bin/env python3 import os import hashlib diff --git a/tests/CMakeLists.txt b/tests/CMakeLists.txt index 483210d7b8906..a19e1376ed389 100644 --- a/tests/CMakeLists.txt +++ b/tests/CMakeLists.txt @@ -29,15 +29,16 @@ llama_build_executable(test-tokenizer-0-llama.cpp) llama_test_executable (test-tokenizer-0-llama test-tokenizer-0-llama.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-llama.gguf) llama_build_executable(test-tokenizer-0-falcon.cpp) #llama_test_executable (test-tokenizer-0-falcon test-tokenizer-0-falcon.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-falcon.gguf) -llama_build_executable(test-tokenizer-1.cpp) -# test-tokenizer-1 requires a BPE vocab. re-enable when we have one. -#llama_test_executable (test-tokenizer-1.llama test-tokenizer-1.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-falcon.gguf) +llama_build_executable(test-tokenizer-1-llama.cpp) +llama_test_executable (test-tokenizer-1-llama test-tokenizer-1-llama.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-llama.gguf) #llama_test_executable(test-tokenizer-1.aquila test-tokenizer-1.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-aquila.gguf) llama_build_and_test_executable(test-grammar-parser.cpp) llama_build_and_test_executable(test-llama-grammar.cpp) llama_build_and_test_executable(test-grad0.cpp) # SLOW # llama_build_and_test_executable(test-opt.cpp) # SLOW +llama_build_and_test_executable(test-rope.cpp) + # dummy executable - not installed get_filename_component(TEST_TARGET test-c.c NAME_WE) add_executable(${TEST_TARGET} test-c.c) diff --git a/tests/test-grad0.cpp b/tests/test-grad0.cpp index 468cde66adc65..c3cd73bcbed2b 100644 --- a/tests/test-grad0.cpp +++ b/tests/test-grad0.cpp @@ -107,7 +107,7 @@ static struct ggml_tensor * get_random_tensor_f32( break; default: assert(false); - }; + } return result; } @@ -155,7 +155,7 @@ static struct ggml_tensor * get_random_tensor_f16( break; default: assert(false); - }; + } return result; } @@ -203,7 +203,7 @@ static struct ggml_tensor * get_random_tensor_i32( break; default: assert(false); - }; + } return result; } @@ -251,18 +251,20 @@ static bool check_gradient( printf("GGML_N_THREADS = %d\n", n_threads); } - struct ggml_cgraph gf = ggml_build_forward (f); - struct ggml_cgraph gb = ggml_build_backward(ctx0, &gf, false); + struct ggml_cgraph * gf = ggml_build_forward_ctx(ctx0, f); + struct ggml_cgraph * gb = ggml_new_graph(ctx0); + *gb = *gf; + ggml_build_backward_expand(ctx0, gf, gb, false); - ggml_graph_compute_with_ctx(ctx0, &gf, n_threads); + ggml_graph_compute_with_ctx(ctx0, gf, n_threads); - ggml_graph_reset (&gf); + ggml_graph_reset (gf); ggml_set_f32 (f->grad, 1.0f); - ggml_graph_compute_with_ctx(ctx0, &gb, n_threads); + ggml_graph_compute_with_ctx(ctx0, gb, n_threads); - // ggml_graph_dump_dot(&gf, NULL, "test-grad0-forward.dot"); - // ggml_graph_dump_dot(&gb, &gf, "test-grad0-backward.dot"); + // ggml_graph_dump_dot(gf, NULL, "test-grad0-forward.dot"); + // ggml_graph_dump_dot(gb, gf, "test-grad0-backward.dot"); for (int i = 0; i < nargs; ++i) { const int nelements = ggml_nelements(x[i]); @@ -273,13 +275,13 @@ static bool check_gradient( const float xp = x0 + eps; ggml_set_f32_1d(x[i], k, xp); - ggml_graph_compute_with_ctx(ctx0, &gf, n_threads); + ggml_graph_compute_with_ctx(ctx0, gf, n_threads); const double f0 = ggml_get_f32_1d(f, 0); ggml_set_f32_1d(x[i], k, xm); - ggml_graph_compute_with_ctx(ctx0, &gf, n_threads); + ggml_graph_compute_with_ctx(ctx0, gf, n_threads); const double f1 = ggml_get_f32_1d(f, 0); const double g0 = (f0 - f1)/(2.0*(double) eps); @@ -287,10 +289,10 @@ static bool check_gradient( ggml_set_f32_1d(x[i], k, x0); // compute gradient using backward graph - ggml_graph_reset (&gf); + ggml_graph_reset (gf); ggml_set_f32 (f->grad, 1.0f); - ggml_graph_compute_with_ctx(ctx0, &gb, n_threads); + ggml_graph_compute_with_ctx(ctx0, gb, n_threads); const double g1 = ggml_get_f32_1d(x[i]->grad, k); @@ -373,7 +375,7 @@ static bool check_mat_mul( int main(int argc, const char ** argv) { struct ggml_init_params params = { - /* .mem_size = */ 128*1024*1024, + /* .mem_size = */ 256*1024*1024, /* .mem_buffer = */ NULL, /* .no_alloc = */ false, }; @@ -405,6 +407,7 @@ int main(int argc, const char ** argv) { } } + unsigned seed_iter = 1; // original loop: 1000 int niter = 4; @@ -416,6 +419,10 @@ int main(int argc, const char ** argv) { niter = atoi(argv[1]); } for (int iter = 0; iter < niter; ++iter) { + srand(seed_iter); + seed_iter = rand(); + unsigned seed = rand(); + printf("test-grad0: iter:%d/%d\n", iter, niter); struct ggml_context * ctx0 = ggml_init(params); @@ -425,6 +432,7 @@ int main(int argc, const char ** argv) { // add f32 { + srand(seed); const int nargs = 2; for (int ndims = 1; ndims <= 4; ++ndims) { @@ -441,6 +449,7 @@ int main(int argc, const char ** argv) { // add f16 { + srand(seed); const int nargs = 2; for (int ndims = 1; ndims <= 4; ++ndims) { @@ -457,6 +466,7 @@ int main(int argc, const char ** argv) { // sub { + srand(seed); const int nargs = 2; for (int ndims = 1; ndims <= 4; ++ndims) { @@ -473,6 +483,7 @@ int main(int argc, const char ** argv) { // mul { + srand(seed); const int nargs = 2; for (int ndims = 1; ndims <= 4; ++ndims) { @@ -489,6 +500,7 @@ int main(int argc, const char ** argv) { // div { + srand(seed); const int nargs = 2; for (int ndims = 1; ndims <= 4; ++ndims) { @@ -505,6 +517,7 @@ int main(int argc, const char ** argv) { // sqr { + srand(seed); const int nargs = 1; for (int ndims = 1; ndims <= 2; ++ndims) { @@ -521,6 +534,7 @@ int main(int argc, const char ** argv) { // sqrt { + srand(seed); const int nargs = 1; for (int ndims = 1; ndims <= 2; ++ndims) { @@ -537,6 +551,7 @@ int main(int argc, const char ** argv) { // log { + srand(seed); const int nargs = 1; for (int ndims = 1; ndims <= 2; ++ndims) { @@ -553,6 +568,7 @@ int main(int argc, const char ** argv) { // sum { + srand(seed); const int nargs = 1; for (int ndims = 1; ndims <= 2; ++ndims) { @@ -570,6 +586,7 @@ int main(int argc, const char ** argv) { // sum_rows { + srand(seed); const int nargs = 1; for (int ndims = 1; ndims <= 4; ++ndims) { @@ -587,6 +604,7 @@ int main(int argc, const char ** argv) { // mean, not yet fully implemented if(0) { + srand(seed); const int nargs = 1; for (int ndims = 1; ndims <= 4; ++ndims) { @@ -604,6 +622,7 @@ int main(int argc, const char ** argv) { // argmax if (0) { + srand(seed); const int nargs = 1; for (int ndims = 1; ndims <= 4; ++ndims) { @@ -620,6 +639,7 @@ int main(int argc, const char ** argv) { // repeat { + srand(seed); int64_t ne2[4]; get_random_dims(ne2, 4); @@ -642,6 +662,7 @@ int main(int argc, const char ** argv) { // repeat back { + srand(seed); int64_t ne2[4]; get_random_dims(ne2, 4); @@ -680,6 +701,7 @@ int main(int argc, const char ** argv) { // sgn { + srand(seed); const int nargs = 1; for (int ndims = 1; ndims <= 4; ++ndims) { @@ -696,6 +718,7 @@ int main(int argc, const char ** argv) { // neg { + srand(seed); const int nargs = 1; for (int ndims = 1; ndims <= 4; ++ndims) { @@ -712,6 +735,7 @@ int main(int argc, const char ** argv) { // step { + srand(seed); const int nargs = 1; for (int ndims = 1; ndims <= 4; ++ndims) { @@ -729,6 +753,7 @@ int main(int argc, const char ** argv) { // tanh, not yet fully implemented if(0) { + srand(seed); const int nargs = 1; for (int ndims = 1; ndims <= 4; ++ndims) { @@ -745,33 +770,45 @@ int main(int argc, const char ** argv) { // mul_mat { + srand(seed); const int nargs = 2; - for (int ndims = 2; ndims <= 2; ++ndims) { + for (int ndims = 2; ndims <= 4; ++ndims) { + int max_nrep = (ndims >= 3) ? 2 : 1; x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f); - { - int64_t ne2[4]; - get_random_dims(ne2, 4); - ne2[0] = ne[0]; - x[1] = get_random_tensor_f32(ctx0, ndims, ne2, -1.0f, 1.0f); - } + for (int nrep2 = 1; nrep2 < max_nrep; ++nrep2) { + for (int nrep3 = 1; nrep3 < max_nrep; ++nrep3) { + { + int64_t ne2[4]; + get_random_dims(ne2, 4); + ne2[0] = ne[0]; + ne2[2] = nrep2 * ne[2]; + ne2[3] = nrep3 * ne[3]; + x[1] = get_random_tensor_f32(ctx0, ndims, ne2, -1.0f, 1.0f); + } - ggml_set_param(ctx0, x[0]); - ggml_set_param(ctx0, x[1]); + ggml_set_param(ctx0, x[0]); + ggml_set_param(ctx0, x[1]); - struct ggml_tensor * m = ggml_mul_mat(ctx0, x[1], x[0]); - struct ggml_tensor * f = ggml_sum(ctx0, m); + struct ggml_tensor * m = ggml_mul_mat(ctx0, x[1], x[0]); + struct ggml_tensor * f = ggml_sum(ctx0, m); - GGML_PRINT_DEBUG("testing: mul_mat, [%lld, %lld] (%d) * [%lld, %lld] (%d)\n", x[1]->ne[0], x[1]->ne[1], x[1]->n_dims, x[0]->ne[0], x[0]->ne[1], x[0]->n_dims); + GGML_PRINT_DEBUG("testing: mul_mat, [%lld, %lld] (%d) * [%lld, %lld] (%d)\n", x[1]->ne[0], x[1]->ne[1], x[1]->n_dims, x[0]->ne[0], x[0]->ne[1], x[0]->n_dims); - check_gradient("mul_mat", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY); - check_mat_mul(m, x[1], x[0]); + check_gradient("mul_mat", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY); + if (ndims == 2) { + // check_mat_mul does not support ndims > 2 + check_mat_mul(m, x[1], x[0]); + } + } + } } } // elu, not yet fully implemented if(0) { + srand(seed); const int nargs = 1; for (int ndims = 1; ndims <= 4; ++ndims) { @@ -788,6 +825,7 @@ int main(int argc, const char ** argv) { // relu { + srand(seed); const int nargs = 1; for (int ndims = 1; ndims <= 4; ++ndims) { @@ -805,6 +843,7 @@ int main(int argc, const char ** argv) { // gelu, not yet fully implemented if(0) { + srand(seed); const int nargs = 1; for (int ndims = 1; ndims <= 4; ++ndims) { @@ -821,6 +860,7 @@ int main(int argc, const char ** argv) { // silu { + srand(seed); const int nargs = 1; for (int ndims = 1; ndims <= 2; ++ndims) { @@ -842,6 +882,7 @@ int main(int argc, const char ** argv) { // rms_norm { + srand(seed); const int nargs = 1; for (int ndims = 1; ndims <= 2; ++ndims) { @@ -858,6 +899,7 @@ int main(int argc, const char ** argv) { // scale { + srand(seed); const int nargs = 2; int64_t ne2[4]; @@ -878,6 +920,7 @@ int main(int argc, const char ** argv) { // cpy f32 { + srand(seed); const int nargs = 2; for (int ndims = 1; ndims <= 2; ++ndims) { @@ -895,6 +938,7 @@ int main(int argc, const char ** argv) { // cpy f16 { + srand(seed); const int nargs = 2; for (int ndims = 1; ndims <= 2; ++ndims) { @@ -912,6 +956,7 @@ int main(int argc, const char ** argv) { // reshape (1d->nd) { + srand(seed); const int nargs = 1; for (int ndims = 1; ndims <= 2; ++ndims) { @@ -935,6 +980,7 @@ int main(int argc, const char ** argv) { // reshape (nd->1d) { + srand(seed); const int nargs = 1; for (int ndims = 1; ndims <= 2; ++ndims) { @@ -958,6 +1004,7 @@ int main(int argc, const char ** argv) { // acc 1d { + srand(seed); int64_t ne2[4] = { 1, 1, 1, 1 }; const int nargs = 2; @@ -985,6 +1032,7 @@ int main(int argc, const char ** argv) { // acc 2d { + srand(seed); int64_t ne2[4] = { 1, 1, 1, 1 }; int64_t max_offsets[4] = { 0, 0, 0, 0 }; int64_t offsets[4] = { 0, 0, 0, 0 }; @@ -1017,6 +1065,7 @@ int main(int argc, const char ** argv) { // acc 3d { + srand(seed); int64_t ne2[4] = { 1, 1, 1, 1 }; int64_t max_offsets[4] = { 0, 0, 0, 0 }; int64_t offsets[4] = { 0, 0, 0, 0 }; @@ -1051,6 +1100,7 @@ int main(int argc, const char ** argv) { // acc 4d { + srand(seed); int64_t ne2[4] = { 1, 1, 1, 1 }; int64_t max_offsets[4] = { 0, 0, 0, 0 }; int64_t offsets[4] = { 0, 0, 0, 0 }; @@ -1087,6 +1137,7 @@ int main(int argc, const char ** argv) { // set_1d { + srand(seed); int64_t ne2[4]; const int nargs = 2; @@ -1114,6 +1165,7 @@ int main(int argc, const char ** argv) { // set_2d { + srand(seed); int64_t ne2[4]; int64_t max_offsets[4] = { 0, 0, 0, 0 }; int64_t offsets[4] = { 0, 0, 0, 0 }; @@ -1146,6 +1198,7 @@ int main(int argc, const char ** argv) { // view_1d { + srand(seed); const int nargs = 1; for (int ndims = 1; ndims <= 4; ++ndims) { @@ -1169,6 +1222,7 @@ int main(int argc, const char ** argv) { // view_2d { + srand(seed); int64_t ne2[4]; int64_t nb2[4]; @@ -1199,6 +1253,7 @@ int main(int argc, const char ** argv) { // view_3d { + srand(seed); int64_t ne2[4] = {1,1,1,1}; int64_t nb2[4] = {0,0,0,0}; @@ -1230,6 +1285,7 @@ int main(int argc, const char ** argv) { // permute { + srand(seed); int64_t ne2[4]; const int nargs = 1; @@ -1263,6 +1319,7 @@ int main(int argc, const char ** argv) { // transpose { + srand(seed); int64_t ne2[4]; const int nargs = 1; @@ -1290,6 +1347,7 @@ int main(int argc, const char ** argv) { // get_rows { + srand(seed); int64_t ne2[4] = {ne[0], ne[1], 1, 1}; int64_t ne3[4] = {1+irand(ne[1]), 1, 1, 1}; const int nargs = 1; @@ -1306,6 +1364,7 @@ int main(int argc, const char ** argv) { // diag_mask_inf { + srand(seed); const int nargs = 1; const int ndims = 2; @@ -1321,6 +1380,7 @@ int main(int argc, const char ** argv) { // diag_mask_zero { + srand(seed); const int nargs = 1; const int ndims = 2; @@ -1336,6 +1396,7 @@ int main(int argc, const char ** argv) { // softmax { + srand(seed); const int nargs = 1; int64_t ne2[4]; @@ -1357,11 +1418,16 @@ int main(int argc, const char ** argv) { ggml_new_f32(ctx0, eps)))); check_gradient("softmax", ctx0, x, f, ndims, nargs, 1e-3f, 2e-1f, INFINITY); + // NOTE: softmax forward is computed using f16 table lookup instead of using actual expf, but backward assumes actual expf. + // this may result in different gradients too finite differences. + // when this test reports errors, first try to replace the table lookup with actual expf and test again to see if just that was the cause. + // if only the table lookup causes gradients to differ this is acceptable. } } // cross_entropy_loss { + srand(seed); const int nargs = 1; int64_t ne2[4]; @@ -1392,6 +1458,7 @@ int main(int argc, const char ** argv) { // rope f32 { + srand(seed); const int nargs = 1; int64_t ne2[4]; @@ -1404,6 +1471,11 @@ int main(int argc, const char ** argv) { for (int n_past = 1; n_past < ne2[2]; ++n_past) { x[0] = get_random_tensor_f32(ctx0, ndims, ne2, -1.0f, 1.0f); + struct ggml_tensor * p = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ne2[2]); + for (int i = 0; i < ne2[2]; ++i) { + ((int32_t *) p->data)[i] = n_past + i; + } + ggml_set_param(ctx0, x[0]); const bool skip_past = (mode & 1); @@ -1415,7 +1487,7 @@ int main(int argc, const char ** argv) { continue; } - struct ggml_tensor * f = ggml_sum(ctx0, ggml_rope(ctx0, x[0], n_past, n_rot, mode, 0)); + struct ggml_tensor * f = ggml_sum(ctx0, ggml_rope(ctx0, x[0], p, n_rot, mode, 0)); GGML_PRINT_DEBUG("rope f32: n_past: %d n_rot: %d mode: %d\n", n_past, n_rot, mode); check_gradient("rope f32", ctx0, x, f, ndims, nargs, 1e-2f, 1e-3f, INFINITY); @@ -1426,6 +1498,7 @@ int main(int argc, const char ** argv) { // rope f16 { + srand(seed); const int nargs = 1; int64_t ne2[4]; @@ -1438,6 +1511,11 @@ int main(int argc, const char ** argv) { for (int n_past = 1; n_past < ne2[2]; ++n_past) { x[0] = get_random_tensor_f16(ctx0, ndims, ne2, -1.0f, 1.0f); + struct ggml_tensor * p = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ne2[2]); + for (int i = 0; i < ne2[2]; ++i) { + ((int32_t *) p->data)[i] = n_past + i; + } + ggml_set_param(ctx0, x[0]); const bool skip_past = (mode & 1); @@ -1449,7 +1527,7 @@ int main(int argc, const char ** argv) { continue; } - struct ggml_tensor * f = ggml_sum(ctx0, ggml_rope(ctx0, x[0], n_past, n_rot, mode, 0)); + struct ggml_tensor * f = ggml_sum(ctx0, ggml_rope(ctx0, x[0], p, n_rot, mode, 0)); GGML_PRINT_DEBUG("rope f16: n_past: %d n_rot: %d mode: %d\n", n_past, n_rot, mode); check_gradient("rope f16", ctx0, x, f, ndims, nargs, 1e-1f, 1e-1f, INFINITY); @@ -1460,6 +1538,7 @@ int main(int argc, const char ** argv) { // flash_attn f32 { + srand(seed); const int nargs = 3; int64_t ne2[4]; @@ -1472,28 +1551,31 @@ int main(int argc, const char ** argv) { for (int masked = 0; masked <= 1; ++masked) { for (int ndims = 2; ndims <= 4; ++ndims) { - int64_t neq[4] = { D, N, B, ne[3] }; - int64_t nek[4] = { D, M, B, ne[3] }; - int64_t nev[4] = { M, D, B, ne[3] }; - if (ndims == 2) { - neq[2] = 1; neq[3] = 1; - nek[2] = 1; nek[3] = 1; - nev[2] = 1; nev[3] = 1; - } else if (ndims == 3) { - neq[3] = 1; - nek[3] = 1; - nev[3] = 1; - } - x[0] = get_random_tensor_f32(ctx0, ndims, neq, -0.1250f, 0.1250f); - x[1] = get_random_tensor_f32(ctx0, ndims, nek, -0.1250f, 0.1250f); - x[2] = get_random_tensor_f32(ctx0, ndims, nev, -0.1250f, 0.1250f); - ggml_set_param(ctx0, x[0]); - ggml_set_param(ctx0, x[1]); - ggml_set_param(ctx0, x[2]); + int max_nrep = (ndims >= 3) ? 2 : 1; + for (int nrep = 1; nrep < max_nrep; ++nrep) { + int64_t neq[4] = { D, N, B*nrep, ne[3] }; + int64_t nek[4] = { D, M, B, ne[3] }; + int64_t nev[4] = { M, D, B, ne[3] }; + if (ndims == 2) { + neq[2] = 1; neq[3] = 1; + nek[2] = 1; nek[3] = 1; + nev[2] = 1; nev[3] = 1; + } else if (ndims == 3) { + neq[3] = 1; + nek[3] = 1; + nev[3] = 1; + } + x[0] = get_random_tensor_f32(ctx0, ndims, neq, -0.1250f, 0.1250f); + x[1] = get_random_tensor_f32(ctx0, ndims, nek, -0.1250f, 0.1250f); + x[2] = get_random_tensor_f32(ctx0, ndims, nev, -0.1250f, 0.1250f); + ggml_set_param(ctx0, x[0]); + ggml_set_param(ctx0, x[1]); + ggml_set_param(ctx0, x[2]); - struct ggml_tensor * f = ggml_sum(ctx0, ggml_flash_attn(ctx0, x[0], x[1], x[2], (masked == 0))); + struct ggml_tensor * f = ggml_sum(ctx0, ggml_flash_attn(ctx0, x[0], x[1], x[2], (masked == 0))); - check_gradient("flash_attn f32", ctx0, x, f, ndims, nargs, 1.5e-4f, 1e-3f, INFINITY); + check_gradient("flash_attn f32", ctx0, x, f, ndims, nargs, 1.5e-4f, 1e-3f, INFINITY); + } } } } @@ -1501,6 +1583,7 @@ int main(int argc, const char ** argv) { // flash_attn f16, not yet fully implemented if(0) { + srand(seed); const int nargs = 3; int64_t ne2[4]; diff --git a/tests/test-opt.cpp b/tests/test-opt.cpp index 8ab240202a585..fb4e0be98d4bc 100644 --- a/tests/test-opt.cpp +++ b/tests/test-opt.cpp @@ -36,15 +36,15 @@ #define GGML_PRINT(...) printf(__VA_ARGS__) -float frand(void) { +static float frand(void) { return (float)rand()/(float)RAND_MAX; } -int irand(int n) { +static int irand(int n) { return rand()%n; } -void get_random_dims(int64_t * dims, int ndims) { +static void get_random_dims(int64_t * dims, int ndims) { dims[0] = dims[1] = dims[2] = dims[3] = 1; for (int i = 0; i < ndims; i++) { @@ -52,7 +52,7 @@ void get_random_dims(int64_t * dims, int ndims) { } } -void get_random_dims_minmax(int64_t * dims, int ndims, int min, int max) { +static void get_random_dims_minmax(int64_t * dims, int ndims, int min, int max) { dims[0] = dims[1] = dims[2] = dims[3] = 1; for (int i = 0; i < ndims; i++) { @@ -61,12 +61,9 @@ void get_random_dims_minmax(int64_t * dims, int ndims, int min, int max) { } -struct ggml_tensor * get_random_tensor( - struct ggml_context * ctx0, - int ndims, - int64_t ne[], - float fmin, - float fmax) { +static struct ggml_tensor * get_random_tensor( + struct ggml_context * ctx0, int ndims, int64_t ne[], float fmin, float fmax +) { struct ggml_tensor * result = ggml_new_tensor(ctx0, GGML_TYPE_F32, ndims, ne); switch (ndims) { @@ -104,16 +101,16 @@ struct ggml_tensor * get_random_tensor( break; default: assert(false); - }; + } return result; } -float get_element(const struct ggml_tensor * t, int idx) { +static float get_element(const struct ggml_tensor * t, int idx) { return ((float *)t->data)[idx]; } -void set_element(struct ggml_tensor * t, int idx, float value) { +static void set_element(struct ggml_tensor * t, int idx, float value) { ((float *)t->data)[idx] = value; } @@ -127,7 +124,7 @@ int main(void) { struct ggml_context * ctx = ggml_init(params); int64_t ne1[4] = {4, 128, 1, 1}; - int64_t ne2[4] = {4, 256, 1, 1};; + int64_t ne2[4] = {4, 256, 1, 1}; int64_t ne3[4] = {128, 256, 1, 1}; struct ggml_tensor * a = get_random_tensor(ctx, 2, ne1, -1, +1); diff --git a/tests/test-quantize-fns.cpp b/tests/test-quantize-fns.cpp index 8d3c162d2bfa0..884af40548fb7 100644 --- a/tests/test-quantize-fns.cpp +++ b/tests/test-quantize-fns.cpp @@ -13,24 +13,24 @@ #pragma warning(disable: 4244 4267) // possible loss of data #endif -const float MAX_QUANTIZATION_REFERENCE_ERROR = 0.0001f; -const float MAX_QUANTIZATION_TOTAL_ERROR = 0.002f; -const float MAX_QUANTIZATION_TOTAL_ERROR_2BITS = 0.0075f; -const float MAX_QUANTIZATION_TOTAL_ERROR_3BITS = 0.0040f; -const float MAX_DOT_PRODUCT_ERROR = 0.02f; +constexpr float MAX_QUANTIZATION_REFERENCE_ERROR = 0.0001f; +constexpr float MAX_QUANTIZATION_TOTAL_ERROR = 0.002f; +constexpr float MAX_QUANTIZATION_TOTAL_ERROR_2BITS = 0.0075f; +constexpr float MAX_QUANTIZATION_TOTAL_ERROR_3BITS = 0.0040f; +constexpr float MAX_DOT_PRODUCT_ERROR = 0.02f; -const char* RESULT_STR[] = {"ok", "FAILED"}; +static const char* RESULT_STR[] = {"ok", "FAILED"}; // Generate synthetic data -void generate_data(float offset, size_t n, float * dst) { +static void generate_data(float offset, size_t n, float * dst) { for (size_t i = 0; i < n; i++) { dst[i] = 0.1 + 2*cosf(i + offset); } } // Calculate RMSE between two float arrays -float array_rmse(const float * a1, const float * a2, size_t n) { +static float array_rmse(const float * a1, const float * a2, size_t n) { double sum = 0; for (size_t i = 0; i < n; i++) { double diff = a1[i] - a2[i]; @@ -40,7 +40,7 @@ float array_rmse(const float * a1, const float * a2, size_t n) { } // Total quantization error on test data -float total_quantization_error(ggml_type_traits_t & qfns, size_t test_size, const float * test_data) { +static float total_quantization_error(ggml_type_traits_t & qfns, size_t test_size, const float * test_data) { std::vector tmp_q(2*test_size); std::vector tmp_out(test_size); @@ -50,7 +50,7 @@ float total_quantization_error(ggml_type_traits_t & qfns, size_t test_size, cons } // Total quantization error on test data -float reference_quantization_error(ggml_type_traits_t & qfns, size_t test_size, const float * test_data) { +static float reference_quantization_error(ggml_type_traits_t & qfns, size_t test_size, const float * test_data) { std::vector tmp_q(2*test_size); std::vector tmp_out(test_size); std::vector tmp_out_ref(test_size); @@ -64,7 +64,7 @@ float reference_quantization_error(ggml_type_traits_t & qfns, size_t test_size, return array_rmse(tmp_out.data(), tmp_out_ref.data(), test_size); } -float dot_product(const float * a1, const float * a2, size_t test_size) { +static float dot_product(const float * a1, const float * a2, size_t test_size) { double sum = 0; for (size_t i = 0; i < test_size; i++) { sum += a1[i] * a2[i]; @@ -73,7 +73,9 @@ float dot_product(const float * a1, const float * a2, size_t test_size) { } // Total dot product error -float dot_product_error(ggml_type_traits_t & qfns, size_t test_size, const float * test_data1, const float *test_data2) { +static float dot_product_error( + ggml_type_traits_t & qfns, size_t test_size, const float * test_data1, const float *test_data2 +) { std::vector tmp_q1(2*test_size); std::vector tmp_q2(2*test_size); diff --git a/tests/test-quantize-perf.cpp b/tests/test-quantize-perf.cpp index cbea7d4525ca4..01aa6987731bb 100644 --- a/tests/test-quantize-perf.cpp +++ b/tests/test-quantize-perf.cpp @@ -61,22 +61,22 @@ inline int64_t cpu_cycles() { // Generate synthetic data -void generate_data(float offset, size_t n, float * dst) { +static void generate_data(float offset, size_t n, float * dst) { for (size_t i = 0; i < n; i++) { dst[i] = 0.1 + 2*cosf(i + offset); } } -float gigabytes_per_second(size_t bytes, int64_t usecs) { +static float gigabytes_per_second(size_t bytes, int64_t usecs) { return bytes / (float) usecs * 1000000 / (1024*1024*1024); } -void * align_with_offset(void * ptr, int offset) { +static void * align_with_offset(void * ptr, int offset) { size_t dummy_size = MAX_ALIGNMENT * 4; return (char *) std::align(MAX_ALIGNMENT, MAX_ALIGNMENT, ptr, dummy_size) + offset; } -void benchmark_function(size_t size, size_t q_size, int64_t iterations, const std::function & function) { +static void benchmark_function(size_t size, size_t q_size, int64_t iterations, const std::function & function) { int64_t min_time_us = INT64_MAX; int64_t total_time_us = 0; int64_t min_time_cycles = INT64_MAX; @@ -108,7 +108,7 @@ void benchmark_function(size_t size, size_t q_size, int64_t iterations, const st printf(" quantized throughput : %9.2f GB/s\n", gigabytes_per_second(q_size * iterations, total_time_us)); } -void usage(char * argv[]) { +static void usage(char * argv[]) { printf("Benchmark quantization specific functions on synthetic data\n"); printf("\n"); printf("usage: %s [options]\n", argv[0]); diff --git a/tests/test-rope.cpp b/tests/test-rope.cpp new file mode 100644 index 0000000000000..26c1f42dc0e95 --- /dev/null +++ b/tests/test-rope.cpp @@ -0,0 +1,221 @@ +#include "ggml.h" + +#include +#include +#include +#include +#include + +#if defined(_MSC_VER) +#pragma warning(disable: 4244 4267) // possible loss of data +#endif + +#if defined(__GNUC__) +#pragma GCC diagnostic ignored "-Wdouble-promotion" +#endif + +#define MAX_NARGS 3 + +#undef MIN +#undef MAX +#define MIN(a, b) ((a) < (b) ? (a) : (b)) +#define MAX(a, b) ((a) > (b) ? (a) : (b)) + +#define GGML_SILU_FP16 + +// +// logging +// + +#if (GGML_DEBUG >= 1) +#define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__) +#else +#define GGML_PRINT_DEBUG(...) +#endif + +#if (GGML_DEBUG >= 5) +#define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__) +#else +#define GGML_PRINT_DEBUG_5(...) +#endif + +#if (GGML_DEBUG >= 10) +#define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__) +#else +#define GGML_PRINT_DEBUG_10(...) +#endif + +#define GGML_PRINT(...) printf(__VA_ARGS__) + +static float frand(void) { + return (float)rand()/(float)RAND_MAX; +} + +static int irand(int n) { + if (n == 0) return 0; + return rand()%n; +} + +static void get_random_dims(int64_t * dims, int ndims) { + dims[0] = dims[1] = dims[2] = dims[3] = 1; + + for (int i = 0; i < ndims; i++) { + dims[i] = 1 + irand(4); + } +} + +static struct ggml_tensor * get_random_tensor_f32( + struct ggml_context * ctx0, + int ndims, + const int64_t ne[], + float fmin, + float fmax) { + struct ggml_tensor * result = ggml_new_tensor(ctx0, GGML_TYPE_F32, ndims, ne); + + switch (ndims) { + case 1: + for (int i0 = 0; i0 < ne[0]; i0++) { + ((float *)result->data)[i0] = frand()*(fmax - fmin) + fmin; + } + break; + case 2: + for (int i1 = 0; i1 < ne[1]; i1++) { + for (int i0 = 0; i0 < ne[0]; i0++) { + ((float *)result->data)[i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin; + } + } + break; + case 3: + for (int i2 = 0; i2 < ne[2]; i2++) { + for (int i1 = 0; i1 < ne[1]; i1++) { + for (int i0 = 0; i0 < ne[0]; i0++) { + ((float *)result->data)[i2*ne[1]*ne[0] + i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin; + } + } + } + break; + case 4: + for (int i3 = 0; i3 < ne[3]; i3++) { + for (int i2 = 0; i2 < ne[2]; i2++) { + for (int i1 = 0; i1 < ne[1]; i1++) { + for (int i0 = 0; i0 < ne[0]; i0++) { + ((float *)result->data)[i3*ne[2]*ne[1]*ne[0] + i2*ne[1]*ne[0] + i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin; + } + } + } + } + break; + default: + assert(false); + }; + + return result; +} + +static void ggml_graph_compute_helper(std::vector & buf, ggml_cgraph * graph, int n_threads) { + struct ggml_cplan plan = ggml_graph_plan(graph, n_threads); + + if (plan.work_size > 0) { + buf.resize(plan.work_size); + plan.work_data = buf.data(); + } + + ggml_graph_compute(graph, &plan); +} + +int main(int /*argc*/, const char ** /*argv*/) { + struct ggml_init_params params = { + /* .mem_size = */ 128*1024*1024, + /* .mem_buffer = */ NULL, + /* .no_alloc = */ false, + }; + + std::vector work_buffer; + + struct ggml_context * ctx0 = ggml_init(params); + + struct ggml_tensor * x; + + // rope f32 + for (int m = 0; m < 3; ++m) { + const int ndims = 4; + + const int64_t n_rot = 128; + const int64_t ne[4] = { 2*n_rot, 32, 73, 1 }; + + const int n_past_0 = 100; + const int n_past_2 = 33; + + struct ggml_tensor * p0 = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ne[2]); + struct ggml_tensor * p1 = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ne[2]); + struct ggml_tensor * p2 = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ne[2]); + + for (int i = 0; i < ne[2]; ++i) { + ((int32_t *) p0->data)[i] = n_past_0 + i; + ((int32_t *) p1->data)[i] = n_past_2 - n_past_0; + ((int32_t *) p2->data)[i] = n_past_2 + i; + } + + // test mode 0, 2, 4 (standard, GPT-NeoX, GLM) + const int mode = m == 0 ? 0 : m == 1 ? 2 : 4; + + x = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f); + + // 100, 101, 102, ..., 172 + struct ggml_tensor * r0 = ggml_rope(ctx0, x, p0, n_rot, mode, 1024); + // -67, -67, -67, ..., -67 + struct ggml_tensor * r1 = ggml_rope(ctx0, r0, p1, n_rot, mode, 1024); // "context swap", i.e. forget n_past_0 - n_past_2 tokens + + // 33, 34, 35, ..., 105 + struct ggml_tensor * r2 = ggml_rope(ctx0, x, p2, n_rot, mode, 1024); + + ggml_cgraph * gf = ggml_new_graph(ctx0); + + ggml_build_forward_expand(gf, r0); + ggml_build_forward_expand(gf, r1); + ggml_build_forward_expand(gf, r2); + + ggml_graph_compute_helper(work_buffer, gf, 4); + + // check that r1 and r2 are the same + { + double sum0 = 0.0f; + double sum1 = 0.0f; + double diff = 0.0f; + + const float * r1_data = (float *) r1->data; + const float * r2_data = (float *) r2->data; + + const int n_elements = ggml_nelements(r1); + + for (int i = 0; i < n_elements; ++i) { + sum0 += fabs(r1_data[i]); + sum1 += fabs(r2_data[i]); + diff += fabs(r1_data[i] - r2_data[i]); + //if (fabs(r1_data[i] - r2_data[i]) > 0.0001f) { + // printf("%d: %f %f\n", i, r1_data[i], r2_data[i]); + // printf("diff: %f\n", fabs(r1_data[i] - r2_data[i])); + //} + } + + //for (int i = 4096; i < 4096 + 128; ++i) { + // printf("%f %f\n", r1_data[i], r2_data[i]); + //} + + printf("mode: %d\n", mode); + printf("sum0: %f\n", sum0); + printf("sum1: %f\n", sum1); + printf("diff: %f\n", diff); + printf("rel err: %f\n", diff / sum0); + printf("rel err: %f\n", diff / sum1); + + GGML_ASSERT(diff / sum0 < 0.0001f); + GGML_ASSERT(diff / sum1 < 0.0001f); + } + } + + ggml_free(ctx0); + + return 0; +} + diff --git a/tests/test-sampling.cpp b/tests/test-sampling.cpp index 4437c39488e7a..019c0d46269fa 100644 --- a/tests/test-sampling.cpp +++ b/tests/test-sampling.cpp @@ -12,7 +12,8 @@ #include #include -void dump(const llama_token_data_array * candidates) { + +static void dump(const llama_token_data_array * candidates) { for (size_t i = 0; i < candidates->size; i++) { printf("%d: %f (%f)\n", candidates->data[i].id, candidates->data[i].p, candidates->data[i].logit); } @@ -21,9 +22,7 @@ void dump(const llama_token_data_array * candidates) { #define DUMP(__candidates) do { printf("%s:%d (%s)\n", __FILE__, __LINE__, __func__); dump((__candidates)); printf("-\n"); } while(0) -void test_top_k(const std::vector & probs, - const std::vector & expected_probs, - int k) { +static void test_top_k(const std::vector & probs, const std::vector & expected_probs, int k) { size_t n_vocab = probs.size(); std::vector candidates; candidates.reserve(n_vocab); @@ -45,10 +44,7 @@ void test_top_k(const std::vector & probs, } -void test_top_p(const std::vector & probs, - const std::vector & expected_probs, - float p) { - +static void test_top_p(const std::vector & probs, const std::vector & expected_probs, float p) { size_t n_vocab = probs.size(); std::vector candidates; candidates.reserve(n_vocab); @@ -70,9 +66,7 @@ void test_top_p(const std::vector & probs, } -void test_tfs(const std::vector & probs, - const std::vector & expected_probs, - float z) { +static void test_tfs(const std::vector & probs, const std::vector & expected_probs, float z) { size_t n_vocab = probs.size(); std::vector candidates; candidates.reserve(n_vocab); @@ -93,9 +87,7 @@ void test_tfs(const std::vector & probs, } -void test_typical(const std::vector & probs, - const std::vector & expected_probs, - float p) { +static void test_typical(const std::vector & probs, const std::vector & expected_probs, float p) { size_t n_vocab = probs.size(); std::vector candidates; candidates.reserve(n_vocab); @@ -116,11 +108,10 @@ void test_typical(const std::vector & probs, } -void test_repetition_penalty( - const std::vector & probs, - const std::vector & last_tokens, - const std::vector & expected_probs, - float penalty) { +static void test_repetition_penalty( + const std::vector & probs, const std::vector & last_tokens, + const std::vector & expected_probs, float penalty +) { assert(probs.size() == expected_probs.size()); size_t n_vocab = probs.size(); @@ -145,11 +136,10 @@ void test_repetition_penalty( } -void test_frequency_presence_penalty( - const std::vector & probs, - const std::vector & last_tokens, - const std::vector & expected_probs, - float alpha_frequency, float alpha_presence) { +static void test_frequency_presence_penalty( + const std::vector & probs, const std::vector & last_tokens, + const std::vector & expected_probs, float alpha_frequency, float alpha_presence +) { assert(probs.size() == expected_probs.size()); size_t n_vocab = probs.size(); diff --git a/tests/test-tokenizer-0-falcon.cpp b/tests/test-tokenizer-0-falcon.cpp index 836fb8ad27109..d51851e20822e 100644 --- a/tests/test-tokenizer-0-falcon.cpp +++ b/tests/test-tokenizer-0-falcon.cpp @@ -62,18 +62,20 @@ int main(int argc, char **argv) { // load the vocab { - auto lparams = llama_context_default_params(); + auto mparams = llama_model_default_params(); - lparams.vocab_only = true; + mparams.vocab_only = true; - model = llama_load_model_from_file(fname.c_str(), lparams); + model = llama_load_model_from_file(fname.c_str(), mparams); if (model == NULL) { fprintf(stderr, "%s: error: failed to load vocab '%s'\n", __func__, fname.c_str()); return 1; } - ctx = llama_new_context_with_model(model, lparams); + auto cparams = llama_context_default_params(); + + ctx = llama_new_context_with_model(model, cparams); if (ctx == NULL) { fprintf(stderr, "%s: error: failed to load vocab '%s'\n", __func__, fname.c_str()); @@ -82,7 +84,7 @@ int main(int argc, char **argv) { } } - if (llama_vocab_type(ctx) != LLAMA_VOCAB_TYPE_BPE) { + if (llama_vocab_type(model) != LLAMA_VOCAB_TYPE_BPE) { fprintf(stderr, "%s : error: vocab type is not SPM\n", __func__); llama_free_model(model); llama_free(ctx); diff --git a/tests/test-tokenizer-0-llama.cpp b/tests/test-tokenizer-0-llama.cpp index 8630742c612bf..91c841f7bba8f 100644 --- a/tests/test-tokenizer-0-llama.cpp +++ b/tests/test-tokenizer-0-llama.cpp @@ -1,5 +1,6 @@ #include "llama.h" #include "common.h" +#include "console.h" #include #include @@ -35,6 +36,7 @@ static const std::map> & k_tests() { { " Hello" , { 1678, 15043, }, }, { " Hello" , { 268, 15043, }, }, { " Hello\n Hello" , { 268, 15043, 13, 1678, 15043, }, }, + { " (" , { 29871, 313, }, }, }; return _k_tests; @@ -62,18 +64,20 @@ int main(int argc, char **argv) { // load the vocab { - auto lparams = llama_context_default_params(); + auto mparams = llama_model_default_params(); - lparams.vocab_only = true; + mparams.vocab_only = true; - model = llama_load_model_from_file(fname.c_str(), lparams); + model = llama_load_model_from_file(fname.c_str(), mparams); if (model == NULL) { fprintf(stderr, "%s: error: failed to load vocab '%s'\n", __func__, fname.c_str()); return 1; } - ctx = llama_new_context_with_model(model, lparams); + auto cparams = llama_context_default_params(); + + ctx = llama_new_context_with_model(model, cparams); if (ctx == NULL) { fprintf(stderr, "%s: error: failed to load vocab '%s'\n", __func__, fname.c_str()); @@ -82,13 +86,19 @@ int main(int argc, char **argv) { } } - if (llama_vocab_type(ctx) != LLAMA_VOCAB_TYPE_SPM) { + if (llama_vocab_type(model) != LLAMA_VOCAB_TYPE_SPM) { fprintf(stderr, "%s : error: vocab type is not SPM\n", __func__); llama_free_model(model); llama_free(ctx); return 2; } +#ifdef _WIN32 + // We need this for unicode console support + console::init(false, false); + atexit([]() { console::cleanup(); }); +#endif + bool success = true; for (const auto & test_kv : k_tests()) { diff --git a/tests/test-tokenizer-1-llama.cpp b/tests/test-tokenizer-1-llama.cpp new file mode 100644 index 0000000000000..3b2fc87ac48d8 --- /dev/null +++ b/tests/test-tokenizer-1-llama.cpp @@ -0,0 +1,127 @@ +#include "llama.h" +#include "common.h" +#include "console.h" + +#include +#include +#include +#include +#include +#include +#include +#include + +typedef int codepoint; + +static std::string codepoint_to_utf8(codepoint cp) { + std::string result; + if (0x00 <= cp && cp <= 0x7f) { + result.push_back(cp); + } else if (0x80 <= cp && cp <= 0x7ff) { + result.push_back(0xc0 | ((cp >> 6) & 0x1f)); + result.push_back(0x80 | (cp & 0x3f)); + } else if (0x800 <= cp && cp <= 0xffff) { + result.push_back(0xe0 | ((cp >> 12) & 0x0f)); + result.push_back(0x80 | ((cp >> 6) & 0x3f)); + result.push_back(0x80 | (cp & 0x3f)); + } else if (0x10000 <= cp && cp <= 0x10ffff) { + result.push_back(0xf0 | ((cp >> 18) & 0x07)); + result.push_back(0x80 | ((cp >> 12) & 0x3f)); + result.push_back(0x80 | ((cp >> 6) & 0x3f)); + result.push_back(0x80 | (cp & 0x3f)); + } else { + throw std::invalid_argument("invalid codepoint"); + } + return result; +} + +int main(int argc, char **argv) { + if (argc < 2) { + fprintf(stderr, "Usage: %s \n", argv[0]); + return 1; + } + + const std::string fname = argv[1]; + + fprintf(stderr, "%s : reading vocab from: '%s'\n", __func__, fname.c_str()); + + llama_model * model; + llama_context * ctx; + + llama_backend_init(false); + + // load the vocab + { + auto mparams = llama_model_default_params(); + + mparams.vocab_only = true; + + model = llama_load_model_from_file(fname.c_str(), mparams); + + if (model == NULL) { + fprintf(stderr, "%s: error: failed to load vocab '%s'\n", __func__, fname.c_str()); + return 1; + } + + auto cparams = llama_context_default_params(); + + ctx = llama_new_context_with_model(model, cparams); + + if (ctx == NULL) { + fprintf(stderr, "%s: error: failed to load vocab '%s'\n", __func__, fname.c_str()); + llama_free_model(model); + return 1; + } + } + + GGML_ASSERT(llama_vocab_type(model) == LLAMA_VOCAB_TYPE_SPM); + +#ifdef _WIN32 + // We need this for unicode console support + console::init(false, false); + atexit([]() { console::cleanup(); }); +#endif + + const int n_vocab = llama_n_vocab(model); + + for (int i = 0; i < n_vocab; ++i) { + std::string str = llama_detokenize_spm(ctx, std::vector(1, i)); + std::vector tokens = llama_tokenize(ctx, str, false); + std::string check = llama_detokenize_spm(ctx, tokens); + if (check != str) { + fprintf(stderr, "%s : error: token %d detokenizes to '%s'(%zu) but tokenization of this detokenizes to '%s'(%zu)\n", + __func__, i, str.c_str(), str.length(), check.c_str(), check.length()); + return 2; + } + } + + for (codepoint cp = 0x0000; cp < 0xffff; ++cp) { + if (cp < 0xd800 || cp > 0xdfff) { + std::string str = codepoint_to_utf8(cp); + std::vector tokens = llama_tokenize(ctx, str, false); + std::string check = llama_detokenize_spm(ctx, tokens); + if (cp != 9601 && str != check) { + fprintf(stderr, "%s : error: codepoint %d detokenizes to '%s'(%zu) instead of '%s'(%zu)\n", + __func__, cp, check.c_str(), check.length(), str.c_str(), str.length()); + return 3; + } + } + } + for (codepoint cp = 0x10000; cp < 0x0010ffff; ++cp) { + std::string str = codepoint_to_utf8(cp); + std::vector tokens = llama_tokenize(ctx, str, false); + std::string check = llama_detokenize_spm(ctx, tokens); + if (str != check) { + fprintf(stderr, "%s : error: codepoint %d detokenizes to '%s'(%zu) instead of '%s'(%zu)\n", + __func__, cp, check.c_str(), check.length(), str.c_str(), str.length()); + return 4; + } + } + + llama_free_model(model); + llama_free(ctx); + + llama_backend_free(); + + return 0; +} diff --git a/tests/test-tokenizer-1.cpp b/tests/test-tokenizer-1.cpp deleted file mode 100644 index ce4f2898ce49a..0000000000000 --- a/tests/test-tokenizer-1.cpp +++ /dev/null @@ -1,108 +0,0 @@ -#include "llama.h" -#include "common.h" - -#include -#include -#include -#include -#include -#include -#include -#include - -static std::string escape_whitespace(const std::string& text) { - std::string result = "\xe2\x96\x81"; - for (size_t offs = 0; offs < text.length(); ++offs) { - if (text[offs] == ' ') { - result += "\xe2\x96\x81"; - } else { - result += text[offs]; - } - } - return result; -} - -int main(int argc, char **argv) { - if (argc < 2) { - fprintf(stderr, "Usage: %s \n", argv[0]); - return 1; - } - - const std::string fname = argv[1]; - - fprintf(stderr, "%s : reading vocab from: '%s'\n", __func__, fname.c_str()); - - llama_model * model; - llama_context * ctx; - - llama_backend_init(false); - - // load the vocab - { - auto lparams = llama_context_default_params(); - - lparams.vocab_only = true; - - model = llama_load_model_from_file(fname.c_str(), lparams); - - if (model == NULL) { - fprintf(stderr, "%s: error: failed to load vocab '%s'\n", __func__, fname.c_str()); - return 1; - } - - ctx = llama_new_context_with_model(model, lparams); - - if (ctx == NULL) { - fprintf(stderr, "%s: error: failed to load vocab '%s'\n", __func__, fname.c_str()); - llama_free_model(model); - return 1; - } - } - - GGML_ASSERT(llama_vocab_type(ctx) == LLAMA_VOCAB_TYPE_BPE); - - const int n_vocab = llama_n_vocab(ctx); - - for (int i = 0; i < n_vocab; ++i) { - std::string forward = llama_token_to_piece(ctx, i); - std::vector tokens = llama_tokenize(ctx, forward, false); - if (tokens.size() == 1) { - if (i != tokens[0]) { - std::string backward = llama_token_to_piece(ctx, tokens[0]); - fprintf(stderr, "%s : error: token %d is string %s but bpe returns token %d %s\n", - __func__, i, llama_token_to_piece(ctx, i).c_str(), tokens[0], backward.c_str()); - return 2; - } - } - } - -#ifdef _WIN32 - std::wstring_convert, char16_t> u16converter; - for (char16_t ch = 0x0000; ch < 0xffff; ++ch) { - std::u16string u16str(1, ch); - std::string str = u16converter.to_bytes(u16str); - std::vector tokens = llama_tokenize(ctx, escape_whitespace(str).c_str(), false); - if (tokens.size() == 1) { - fprintf(stderr, "%s : info: %s tokenized to %d \n", - __func__, str.c_str(), tokens[0]); - } - } - - std::wstring_convert, char32_t> u32converter; - for (char32_t ch = 0x0000; ch < 0x0010ffff; ++ch) { - std::u32string u32str(1, ch); - std::string str = u32converter.to_bytes(u32str); - std::vector tokens = llama_tokenize(ctx, escape_whitespace(str).c_str(), false); - if (tokens.size() == 1) { - fprintf(stderr, "%s : info: %s tokenized to %d \n", __func__, str.c_str(), tokens[0]); - } - } -#endif - - llama_free_model(model); - llama_free(ctx); - - llama_backend_free(); - - return 0; -}