forked from cvxgrp/cvxpylayers
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcvxpy_examples.py
executable file
·214 lines (166 loc) · 5.04 KB
/
cvxpy_examples.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
#!/usr/bin/env python3
import cvxpy as cp
import numpy as np
import numpy.random as npr
import scipy.sparse as sp
import torch
from cvxpylayers.torch.cvxpylayer import CvxpyLayer
def simple_qp():
# print(f'--- {sys._getframe().f_code.co_name} ---')
print('simple qp')
npr.seed(0)
nx, ncon = 2, 3
G = cp.Parameter((ncon, nx))
h = cp.Parameter(ncon)
x = cp.Variable(nx)
obj = cp.Minimize(0.5 * cp.sum_squares(x - 1))
cons = [G * x <= h]
prob = cp.Problem(obj, cons)
data, chain, inv_data = prob.get_problem_data(solver=cp.SCS)
param_prob = data[cp.settings.PARAM_PROB]
print(param_prob.A.A)
x0 = npr.randn(nx)
s0 = npr.randn(ncon)
G.value = npr.randn(ncon, nx)
h.value = G.value.dot(x0) + s0
prob.solve(solver=cp.SCS)
delC = npr.randn(param_prob.c.shape[0])[:-1]
delA = npr.randn(param_prob.A.shape[0])
num_con = delA.size // (param_prob.x.size + 1)
delb = delA[-num_con:]
delA = delA[:-num_con]
delA = sp.csc_matrix(np.reshape(delA, (num_con, param_prob.x.size)))
del_param_dict = param_prob.apply_param_jac(delC, delA, delb)
print(del_param_dict)
var_map = param_prob.split_solution(npr.randn(param_prob.x.size))
print(var_map)
print(param_prob.split_adjoint(var_map))
print(x.value)
def full_qp():
# print(f'--- {sys._getframe().f_code.co_name} ---')
print('full qp')
npr.seed(0)
nx, ncon_eq, ncon_ineq = 5, 2, 3
Q = cp.Parameter((nx, nx))
p = cp.Parameter((nx, 1))
A = cp.Parameter((ncon_eq, nx))
b = cp.Parameter(ncon_eq)
G = cp.Parameter((ncon_ineq, nx))
h = cp.Parameter(ncon_ineq)
x = cp.Variable(nx)
# obj = cp.Minimize(0.5*cp.quad_form(x, Q) + p.T * x)
obj = cp.Minimize(0.5 * cp.sum_squares(Q@x) + p.T * x)
cons = [A * x == b, G * x <= h]
prob = cp.Problem(obj, cons)
x0 = npr.randn(nx)
s0 = npr.randn(ncon_ineq)
G.value = npr.randn(ncon_ineq, nx)
h.value = G.value.dot(x0) + s0
A.value = npr.randn(ncon_eq, nx)
b.value = A.value.dot(x0)
L = npr.randn(nx, nx)
Q.value = L.T # L.dot(L.T)
p.value = npr.randn(nx, 1)
prob.solve(solver=cp.SCS)
print(x.value)
def ball_con():
# print(f'--- {sys._getframe().f_code.co_name} ---')
print('ball con')
npr.seed(0)
n = 2
A = cp.Parameter((n, n))
z = cp.Parameter(n)
p = cp.Parameter(n)
x = cp.Variable(n)
t = cp.Variable(n)
obj = cp.Minimize(0.5 * cp.sum_squares(x - p))
# TODO automate introduction of variables.
cons = [0.5 * cp.sum_squares(A * t) <= 1, t == (x - z)]
prob = cp.Problem(obj, cons)
L = npr.randn(n, n)
A.value = L.T
z.value = npr.randn(n)
p.value = npr.randn(n)
prob.solve(solver=cp.SCS)
print(x.value)
def relu():
# print(f'--- {sys._getframe().f_code.co_name} ---')
print('relu')
npr.seed(0)
n = 4
_x = cp.Parameter(n)
_y = cp.Variable(n)
obj = cp.Minimize(cp.sum_squares(_y - _x))
cons = [_y >= 0]
prob = cp.Problem(obj, cons)
_x.value = npr.randn(n)
prob.solve(solver=cp.SCS)
print(_y.value)
def sigmoid():
# print(f'--- {sys._getframe().f_code.co_name} ---')
print('sigmoid')
npr.seed(0)
n = 4
_x = cp.Parameter((n, 1))
_y = cp.Variable(n)
obj = cp.Minimize(-_x.T * _y - cp.sum(cp.entr(_y) + cp.entr(1. - _y)))
prob = cp.Problem(obj)
_x.value = npr.randn(n, 1)
prob.solve(solver=cp.SCS)
print(_y.value)
def softmax():
# print(f'--- {sys._getframe().f_code.co_name} ---')
print('softmax')
npr.seed(0)
d = 4
_x = cp.Parameter((d, 1))
_y = cp.Variable(d)
obj = cp.Minimize(-_x.T * _y - cp.sum(cp.entr(_y)))
cons = [sum(_y) == 1.]
prob = cp.Problem(obj, cons)
_x.value = npr.randn(d, 1)
prob.solve(solver=cp.SCS)
print(_y.value)
def sdp():
print('sdp')
npr.seed(0)
d = 2
X = cp.Variable((d, d), PSD=True)
Y = cp.Parameter((d, d))
obj = cp.Minimize(cp.trace(Y * X))
prob = cp.Problem(obj, [X >= 1])
Y.value = np.abs(npr.randn(d, d))
print(Y.value.sum())
prob.solve(solver=cp.SCS, verbose=True)
print(X.value)
def running_example():
print("running example")
m = 20
n = 10
x = cp.Variable((n, 1))
F = cp.Parameter((m, n))
g = cp.Parameter((m, 1))
lambd = cp.Parameter((1, 1), nonneg=True)
objective_fn = cp.norm(F @ x - g) + lambd * cp.norm(x)
constraints = [x >= 0]
problem = cp.Problem(cp.Minimize(objective_fn), constraints)
assert problem.is_dcp()
assert problem.is_dpp()
print("is_dpp: ", problem.is_dpp())
F_t = torch.randn(m, n, requires_grad=True)
g_t = torch.randn(m, 1, requires_grad=True)
lambd_t = torch.rand(1, 1, requires_grad=True)
layer = CvxpyLayer(problem, parameters=[F, g, lambd], variables=[x])
x_star, = layer(F_t, g_t, lambd_t)
x_star.sum().backward()
print("F_t grad: ", F_t.grad)
print("g_t grad: ", g_t.grad)
if __name__ == '__main__':
simple_qp()
full_qp()
ball_con()
relu()
sigmoid()
softmax()
running_example()
# sdp()