-
Notifications
You must be signed in to change notification settings - Fork 8
/
mask_detect_image.py
executable file
·82 lines (66 loc) · 3.06 KB
/
mask_detect_image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
# USAGE
# python mask_detect_image.py --image demo_image/1.jpeg
from tensorflow.keras.applications.mobilenet_v2 import preprocess_input
from tensorflow.keras.preprocessing.image import img_to_array
from tensorflow.keras.models import load_model
import numpy as np
import argparse
import cv2
import os
def mask_image():
# construct the argument parser and parse the arguments
parser = argparse.ArgumentParser()
parser.add_argument("-i", "--image", required=True,
help="Path to input image")
parser.add_argument("-f", "--face", type=str, default="face_detector",
help="Path to face detector model directory")
parser.add_argument("-m", "--model", type=str, default="mask_detector.model",
help="Path to trained face mask detector model")
parser.add_argument('-s', '--size', type=int, default=64,
help="Size of face image")
parser.add_argument("-c", "--confidence", type=float, default=0.5,
help="Minimum probability to filter weak detections")
args = parser.parse_args()
# load our serialized face detector model from disk
prototxtPath = os.path.sep.join([args.face, "deploy.prototxt"])
weightsPath = os.path.sep.join([args.face, "res10_300x300_ssd_iter_140000.caffemodel"])
net = cv2.dnn.readNet(prototxtPath, weightsPath)
# load the face mask detector model from disk
model = load_model(args.model)
image = cv2.imread(args.image)
if image is None:
print('Can not read file: %s' % args.image)
return
(h, w) = image.shape[:2]
blob = cv2.dnn.blobFromImage(image, scalefactor=1.0, mean=(104.0, 177.0, 123.0))
net.setInput(blob)
detections = net.forward()
for i in range(0, detections.shape[2]):
confidence = detections[0, 0, i, 2]
if confidence < args.confidence:
# Drop low confidence detections
continue
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
(startX, startY, endX, endY) = box.astype("int")
(startX, startY) = (max(0, startX), max(0, startY))
(endX, endY) = (min(w - 1, endX), min(h - 1, endY))
try:
face = image[startY:endY, startX:endX]
face = cv2.cvtColor(face, cv2.COLOR_BGR2RGB)
face = cv2.resize(face, (args.size, args.size))
face = img_to_array(face)
face = preprocess_input(face)
face = np.expand_dims(face, axis=0)
mask = model.predict(face)[0]
label = "Mask" if mask < 0.5 else "No Mask"
color = (0, 255, 0) if label == "Mask" else (0, 0, 255)
# display the label and bounding box rectangle on the output frame
cv2.putText(image, label, (startX, startY - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.45, color, 1)
cv2.rectangle(image, (startX, startY), (endX, endY), color, 2)
except Exception as e:
print(e)
# show the output image
cv2.imshow("Output", image)
cv2.waitKey(0)
if __name__ == "__main__":
mask_image()