Skip to content

Latest commit

 

History

History
114 lines (102 loc) · 3.89 KB

File metadata and controls

114 lines (102 loc) · 3.89 KB

IWSLT 2022 Evaluation Campaign: Simultaneous Translation Baseline (Engilsh-to-Japanese Speech-to-Text)

Table of Contents


Requirements

  • Linux-based system
    • The scripts were tested with Ubuntu 18.04 LTS but would work on 20.04 LTS
  • Bash
  • Python >= 3.7.0
  • (CUDA; not mandatory but highly recommended)
  • PyTorch (the following command installs 1.10.1 working with CUDA 11.3)
    $ pip3 install torch==1.10.1+cu113 -f https://download.pytorch.org/whl/cu113/torch_stable.html

Setup

Clone a repository and install required packages

$ git clone --recursive https://github.com/ksudoh/IWSLT2022_simul_s2t_baseline_enja.git
$ cd IWSLT2022_simul_s2t_baseline_enja
$ pip3 install -r requirements.txt

Setup fairseq (if needed)

$ pushd fairseq
$ python3 setup.py build_ext --inplace
$ popd

(Not avaiable now) Setup fairseq for MMA-IL (if needed)

$ pushd fairseq-mma-il/fairseq
$ python3 setup.py build_ext --inplace
$ popd

Setup SimulEval

$ pushd SimulEval
$ python3 setup.py install --prefix ./
$ popd

Data preparation

  • Download MuST-C v2.0 and extract the package
    • Suppose you put the extracted directory en-ja in /path/to/MuST-C/.

Setting Environment Variables

  • The baseline system scripts use the following environment variables.
    • WORKDIR specifies the directory to be used to store the data and models.
    • You may change the setting of TMPDIR if you would like to use the temporary space other than /tmp. The scripts
$ export SRC=en
$ export TRG=ja
$ export MUSTC_ROOT=/path/to/MuST-C
$ export WORKDIR=/path/to/work

Preprocessing

  • The wrapper script 10-preprocess.sh conducts the required preprocessing
$ bash ./10-preprocess.sh
  • The wrapper script 11-prepare-eval-data.sh prepares the test data
$ bash ./11-prepare-eval-data.sh

ASR pretraining

  • Set a variable CUDA_VISIBLE_DEVICES
  • You may use multiple GPUs, but the batch size becomes larger accordingly.
$ env CUDA_VISIBLE_DEVICES=0 bash ./20-train-pretraining.sh

Wait-K model

  • Set variables K and CUDA_VISIBLE_DEVICES.
  • You may use multiple GPUs, but the batch size becomes larger accordingly.

Training

$ env K=20 CUDA_VISIBLE_DEVICES=0 bash ./30-train-st-wait-k.sh

Test

SimulEval sometimes fails to establish the connection between the server and the client, so please terminate the process and re-run in such a case.

$ env K=20 CUDA_VISIBLE_DEVICES=0 bash ./31-test-wait-k.sh

(Not avaiable now) MMA-IL (Monotonic Multihead Attention with Infinite Lookback) model

  • Set variable CUDA_VISIBLE_DEVICES.
  • You may use multiple GPUs, but the batch size becomes larger accordingly.

Training

$ env CUDA_VISIBLE_DEVICES=0 bash ./40-train-st-mma-il.sh