Skip to content

Latest commit

 

History

History
63 lines (48 loc) · 1.4 KB

schedule.md

File metadata and controls

63 lines (48 loc) · 1.4 KB

Schedule

Day 1

Session 0: Installation (0900 - 0930)

Session 1: (0930 - 1115)

  • Introduction to Machine Learning
  • Data Science Pipeline: Frame - Acquire - Refine - Explore - Model - Insight
  • Types of ML Problems
  • Features and Targets
  • ML Thought Process: Regression & Classification

Session 2: (1130 - 1315)

  • ML Thought Process (contd.)
  • Measurement & Metrics
  • Overfitting, Bias & Variance
  • Regularization
  • Evaluation and Cross Validation

Session 3: (1400 - 1530)

  • Hands-on Session: Linear Regression

Session 4: (1545 - 1700)

  • Hands-on Session: Logistic Regression

Day 2

Session 1: (0930 - 1115)

  • Simple Trees and Challenges
  • Ensembles - Bagging, Patching, Random Subspace
  • Random Forest
  • Measurement: Variable Importance, OOB
  • Gradient Boosting

Session 2: (1130 - 1315)

  • Hands-on Session: Trees
  • Hands-on Session: Random Forest
  • Hands-on Session: Gradient Boosting

Session 3: (1400 - 1530)

  • Feature Engineering
  • Unbalanced Classes (Advanced)
  • Model Pipelines
  • Hands-on Session: Pipelines

Session 4: (1545 - 1700)

  • Hands-on Session: Pipelines (contd.)
  • Practical Guidelines for ML
  • Next Steps
  • Wrap-up and Feedback

Optional Session (1700 - 1800)

  • Office Hours

===================================================================

Food and Hydration

  • 0900 - 0930: Breakfast
  • 1115 - 1130: Tea Break
  • 1315 - 1400: Lunch
  • 1530 - 1545: Tea Break