You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Hello, I use python 3.6 + tensorflow 1.9.0 to do a classification task by finetuning Alexnet. In kratzert's srouce code, the range of data is [0,255] and the image is substracted
by meanfile[103,116,123]. However, in my case, I perform better accrucy when the input images divide by 255 after substracted mean(distribution is [-0.5,0.5]). If the input images did not divide by 255 (distrubution is [-128, 128]), the results is bad and more easily to suffer Nan problem in summary operation when the learning rate is higher then 0.001.
The question is should I scale the image ?
The text was updated successfully, but these errors were encountered:
You probably should, yes. Not sure why I missed to do this here, since I'm doing this usually. But better than dividing by 255 you should divide by the per-channel standard deviation.
Hello, I use python 3.6 + tensorflow 1.9.0 to do a classification task by finetuning Alexnet. In kratzert's srouce code, the range of data is [0,255] and the image is substracted
by meanfile[103,116,123]. However, in my case, I perform better accrucy when the input images divide by 255 after substracted mean(distribution is [-0.5,0.5]). If the input images did not divide by 255 (distrubution is [-128, 128]), the results is bad and more easily to suffer Nan problem in summary operation when the learning rate is higher then 0.001.
The question is should I scale the image ?
The text was updated successfully, but these errors were encountered: