-
Notifications
You must be signed in to change notification settings - Fork 0
/
detect_mask_image.py
91 lines (75 loc) · 3.55 KB
/
detect_mask_image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
# python3 detect_mask_image.py --image examples/example_01.png OR python3 detect_mask_image.py -i examples/example_01.png
# @author: greedywind
# Import used packages
from tensorflow.keras.applications.mobilenet_v2 import preprocess_input
from tensorflow.keras.preprocessing.image import img_to_array
from tensorflow.keras.models import load_model
import numpy as np
import argparse
import cv2
import os
# Create a parser for arguments and parse them.
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", required=True,
help="path to input image")
ap.add_argument("-f", "--face", type=str,
default="face_detector",
help="path to face detector model directory")
ap.add_argument("-m", "--model", type=str,
default="mask_detector.model",
help="path to trained face mask detector model")
ap.add_argument("-c", "--confidence", type=float, default=0.5,
help="minimum probability to filter weak detections")
args = vars(ap.parse_args())
# Get the face detector model from the hard drive.
print("[INFO] Loading face detector model...")
prototxtPath = os.path.sep.join([args["face"], "deploy.prototxt"])
weightsPath = os.path.sep.join([args["face"], "res10_300x300_ssd_iter_140000.caffemodel"])
net = cv2.dnn.readNet(prototxtPath, weightsPath)
# Get the face mask detector model from the hard drive.
print("[INFO] Loading face mask detector model...")
model = load_model(args["model"])
# Load the input image from hard drive, copy it, and get the spatial dimensions of the image
image = cv2.imread(args["image"])
orig = image.copy()
(h, w) = image.shape[:2]
# Make a blob out of the picture
blob = cv2.dnn.blobFromImage(image, 1.0, (300, 300),
(104.0, 177.0, 123.0))
# Get the face detections by passing the blob through the network.
print("[INFO] Computing face detections...")
net.setInput(blob)
detections = net.forward()
# Iterate through the face detections.
for i in range(0, detections.shape[2]):
# Get the likelihood (or confidence) [probability] associated with the detection.
confidence = detections[0, 0, i, 2]
# Filter out false positives by ensuring that the confidence level is higher than the minimum confidence level.
if confidence > args["confidence"]:
# Calculate the cartesian coordinates (x, y) of the object's bounding box.
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
(startX, startY, endX, endY) = box.astype("int")
# Make sure the bounding boxes are within the frame's dimensions.
(startX, startY) = (max(0, startX), max(0, startY))
(endX, endY) = (min(w - 1, endX), min(h - 1, endY))
# Select the face ROI, adjust the channel ordering from BGR to RGB, and resize it to 224x224 pixels., and preprocess it
face = image[startY:endY, startX:endX]
face = cv2.cvtColor(face, cv2.COLOR_BGR2RGB)
face = cv2.resize(face, (224, 224))
face = img_to_array(face)
face = preprocess_input(face)
face = np.expand_dims(face, axis=0)
# Run the face through the model to see whether it has a mask on it or not.
(mask, withoutMask) = model.predict(face)[0]
# Choose a class mark and a color to use for the bounding box and text.
label = "Mask" if mask > withoutMask else "No Mask"
color = (0, 255, 0) if label == "Mask" else (0, 0, 255)
# Show the confidence (probability) in the label.
label = "{}: {:.2f}%".format(label, max(mask, withoutMask) * 100)
# On the output panel, show the mark and bounding box rectangle.
cv2.putText(image, label, (startX, startY - 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.45, color, 2)
cv2.rectangle(image, (startX, startY), (endX, endY), color, 2)
# Display the final picture
cv2.imshow("Output", image)
cv2.waitKey(0)