-
Notifications
You must be signed in to change notification settings - Fork 0
/
word2vec.py
1771 lines (1458 loc) · 78.5 KB
/
word2vec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Copyright (C) 2013 Radim Rehurek <[email protected]>
# Edited Tom Kocmi 2015
# Licensed under the GNU LGPL v2.1 - http://www.gnu.org/licenses/lgpl.html
"""
Deep learning via word2vec's "skip-gram and CBOW models", using either
hierarchical softmax or negative sampling [1]_ [2]_.
The training algorithms were originally ported from the C package https://code.google.com/p/word2vec/
and extended with additional functionality.
For a blog tutorial on gensim word2vec, with an interactive web app trained on GoogleNews, visit http://radimrehurek.com/2014/02/word2vec-tutorial/
**Make sure you have a C compiler before installing gensim, to use optimized (compiled) word2vec training**
(70x speedup compared to plain NumPy implementation [3]_).
Initialize a model with e.g.::
model = Word2Vec(sentences, size=100, window=5, min_count=5, workers=4)
Persist a model to disk with::
model.save(fname)
model = Word2Vec.load(fname) # you can continue training with the loaded model!
The model can also be instantiated from an existing file on disk in the word2vec C format::
model = Word2Vec.load_word2vec_format('/tmp/vectors.txt', binary=False) # C text format
model = Word2Vec.load_word2vec_format('/tmp/vectors.bin', binary=True) # C binary format
You can perform various syntactic/semantic NLP word tasks with the model. Some of them
are already built-in::
model.most_similar(positive=['woman', 'king'], negative=['man'])
[('queen', 0.50882536), ...]
model.doesnt_match("breakfast cereal dinner lunch".split())
'cereal'
model.similarity('woman', 'man')
0.73723527
model['computer'] # raw numpy vector of a word
array([-0.00449447, -0.00310097, 0.02421786, ...], dtype=float32)
and so on.
If you're finished training a model (=no more updates, only querying), you can do
model.init_sims(replace=True)
to trim unneeded model memory = use (much) less RAM.
Note that there is a :mod:`gensim.models.phrases` module which lets you automatically
detect phrases longer than one word. Using phrases, you can learn a word2vec model
where "words" are actually multiword expressions, such as `new_york_times` or `financial_crisis`:
bigram_transformer = gensim.models.Phrases(sentences)
model = Word2Vec(bigram_transformed[sentences], size=100, ...)
.. [1] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient Estimation of Word Representations in Vector Space. In Proceedings of Workshop at ICLR, 2013.
.. [2] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. Distributed Representations of Words and Phrases and their Compositionality.
In Proceedings of NIPS, 2013.
.. [3] Optimizing word2vec in gensim, http://radimrehurek.com/2013/09/word2vec-in-python-part-two-optimizing/
"""
from __future__ import division # py3 "true division"
import logging
import sys
import os
import heapq
from timeit import default_timer
from copy import deepcopy
from collections import defaultdict
import threading
import itertools
import time
from utils import keep_vocab_item
try:
from queue import Queue, Empty
except ImportError:
from Queue import Queue, Empty
from numpy import exp, log, dot, zeros, add, subtract, outer, random, dtype, float32 as REAL,\
uint32, seterr, array, uint8, vstack, fromstring, sqrt, newaxis,\
ndarray, empty, sum as np_sum, prod, ones, ascontiguousarray
import utils, matutils
#from gensim import utils, matutils # utility fnc for pickling, common scipy operations etc
from six import iteritems, itervalues, string_types
#from six.moves import xrange
from types import GeneratorType
logger = logging.getLogger("gensim.models.word2vec")
#try:
# from gensim.models.word2vec_inner import train_sentence_sg, train_sentence_cbow, FAST_VERSION
#except ImportError:
if True:
# failed... fall back to plain numpy (20-80x slower training than the above)
FAST_VERSION = -1
def train_sentence_sg(model, sentence, alpha, work=None):
"""
Update skip-gram model by training on a single sentence.
The sentence is a list of string tokens, which are looked up in the model's
vocab dictionary. Called internally from `Word2Vec.train()`.
This is the non-optimized6, Python version. If you have cython installed, gensim
will use the optimized version from word2vec_inner instead.
"""
word_vocabs = [model.vocab[w] for w in sentence if w in model.vocab and
model.vocab[w].sample_int > model.random.rand() * 2**32]
for pos, word in enumerate(word_vocabs):
reduced_window = model.random.randint(model.window) # `b` in the original word2vec code
# now go over all words from the (reduced) window, predicting each one in turn
start = max(0, pos - model.window + reduced_window)
for pos2, word2 in enumerate(word_vocabs[start:(pos + model.window + 1 - reduced_window)], start):
# print "word "+str(model.index2word[word.index])
# print "index "+str(word2.index)
# print "alpha "+str(alpha)
# time.sleep(1)
# don't train on the `word` itself
if pos2 != pos:
train_sg_pair(model, model.index2word[word.index], word2.index, alpha)
return len(word_vocabs)
def train_sentence_cbow(model, sentence, alpha, work=None, neu1=None):
"""
Update CBOW model by training on a single sentence.
The sentence is a list of string tokens, which are looked up in the model's
vocab dictionary. Called internally from `Word2Vec.train()`.
This is the non-optimized, Python version. If you have cython installed, gensim
will use the optimized version from word2vec_inner instead.
"""
word_vocabs = [model.vocab[w] for w in sentence if w in model.vocab and
model.vocab[w].sample_int > model.random.rand() * 2**32]
for pos, word in enumerate(word_vocabs):
logger.info("BEWARE YOU ARE TRAINING WITH CBOW WHICH IS NOT SUPPORTED IN SUBGRAM")
reduced_window = model.random.randint(model.window) # `b` in the original word2vec code
start = max(0, pos - model.window + reduced_window)
window_pos = enumerate(word_vocabs[start:(pos + model.window + 1 - reduced_window)], start)
word2_indices = [word2.index for pos2, word2 in window_pos if (word2 is not None and pos2 != pos)]
l1 = np_sum(model.syn0[word2_indices], axis=0) # 1 x vector_size
if word2_indices and model.cbow_mean:
l1 /= len(word2_indices)
train_cbow_pair(model, word, word2_indices, l1, alpha)
return len(word_vocabs)
def train_sg_pair(model, word, context_index, alpha, learn_vectors=True, learn_hidden=True,
context_vectors=None, context_locks=None):
if context_vectors is None:
context_vectors = model.syn0
if context_locks is None:
context_locks = model.syn0_lockf
if word not in model.vocab:
return
predict_word = model.vocab[word] # target word (NN output)
l1 = np_sum(model.syn0[model.vocab[word].substrings], axis=0) # 1 x vector_size
# the substrings contain also id of the word itself
l1 /= len(model.vocab[word].substrings)
# l1 = context_vectors[context_index] # input word (NN input/projection layer)
# lock_factor = context_locks[context_index]
neu1e = zeros(l1.shape)
if model.hs:
# work on the entire tree at once, to push as much work into numpy's C routines as possible (performance)
l2a = deepcopy(model.syn1[predict_word.point]) # 2d matrix, codelen x layer1_size
fa = 1.0 / (1.0 + exp(-dot(l1, l2a.T))) # propagate hidden -> output
ga = (1 - predict_word.code - fa) * alpha # vector of error gradients multiplied by the learning rate
if learn_hidden:
model.syn1[predict_word.point] += outer(ga, l1) # learn hidden -> output
# print str(len(l2a))+" "+str(len(l2a[0]))
neu1e += dot(ga, l2a) # save error
if model.negative:
logger.info("THIS PART OF CODE IS NOT SUPORTED BY SUBGRAM")
# use this word (label = 1) + `negative` other random words not from this sentence (label = 0)
word_indices = [predict_word.index]
while len(word_indices) < model.negative + 1:
w = model.cum_table.searchsorted(model.random.randint(model.cum_table[-1]))
if w != predict_word.index:
word_indices.append(w)
l2b = model.syn1neg[word_indices] # 2d matrix, k+1 x layer1_size
fb = 1. / (1. + exp(-dot(l1, l2b.T))) # propagate hidden -> output
gb = (model.neg_labels - fb) * alpha # vector of error gradients multiplied by the learning rate
if learn_hidden:
model.syn1neg[word_indices] += outer(gb, l1) # learn hidden -> output
neu1e += dot(gb, l2b) # save error
if learn_vectors:
# learn input -> hidden, here for all subgrams in the window separately
#if not model.cbow_mean and input_word_indices:
neu1e /= len(model.vocab[word].substrings)
for i in model.vocab[word].substrings:
#TODO i don't know what the lock is for
#model.syn0[i] += neu1e * model.syn0_lockf[i]
model.syn0[i] += neu1e
#l1 += neu1e * lock_factor # learn input -> hidden (mutates model.syn0[word2.index], if that is l1)
return neu1e
def train_cbow_pair(model, word, input_word_indices, l1, alpha, learn_vectors=True, learn_hidden=True):
neu1e = zeros(l1.shape)
if model.hs:
l2a = model.syn1[word.point] # 2d matrix, codelen x layer1_size
fa = 1. / (1. + exp(-dot(l1, l2a.T))) # propagate hidden -> output
ga = (1. - word.code - fa) * alpha # vector of error gradients multiplied by the learning rate
if learn_hidden:
model.syn1[word.point] += outer(ga, l1) # learn hidden -> output
neu1e += dot(ga, l2a) # save error
if model.negative:
# use this word (label = 1) + `negative` other random words not from this sentence (label = 0)
word_indices = [word.index]
while len(word_indices) < model.negative + 1:
w = model.cum_table.searchsorted(model.random.randint(model.cum_table[-1]))
if w != word.index:
word_indices.append(w)
l2b = model.syn1neg[word_indices] # 2d matrix, k+1 x layer1_size
fb = 1. / (1. + exp(-dot(l1, l2b.T))) # propagate hidden -> output
gb = (model.neg_labels - fb) * alpha # vector of error gradients multiplied by the learning rate
if learn_hidden:
model.syn1neg[word_indices] += outer(gb, l1) # learn hidden -> output
neu1e += dot(gb, l2b) # save error
if learn_vectors:
# learn input -> hidden, here for all words in the window separately
if not model.cbow_mean and input_word_indices:
neu1e /= len(input_word_indices)
for i in input_word_indices:
model.syn0[i] += neu1e * model.syn0_lockf[i]
return neu1e
# could move this import up to where train_* is imported,
# but for now just do it separately incase there are unforseen bugs in score_
try:
from gensim.models.word2vec_inner import score_sentence_sg, score_sentence_cbow
except ImportError:
def score_sentence_sg(model, sentence, work=None):
"""
Obtain likelihood score for a single sentence in a fitted skip-gram representaion.
The sentence is a list of Vocab objects (or None, when the corresponding
word is not in the vocabulary). Called internally from `Word2Vec.score()`.
This is the non-optimized, Python version. If you have cython installed, gensim
will use the optimized version from word2vec_inner instead.
"""
log_prob_sentence = 0.0
if model.negative:
raise RuntimeError("scoring is only available for HS=True")
word_vocabs = [model.vocab[w] for w in sentence if w in model.vocab]
for pos, word in enumerate(word_vocabs):
if word is None:
continue # OOV word in the input sentence => skip
# now go over all words from the window, predicting each one in turn
start = max(0, pos - model.window)
for pos2, word2 in enumerate(sentence[start:(pos + model.window + 1)], start):
# don't train on OOV words and on the `word` itself
if word2 and not (pos2 == pos):
log_prob_sentence += score_sg_pair(model, word, word2)
return log_prob_sentence
def score_sentence_cbow(model, sentence, alpha, work=None, neu1=None):
"""
Obtain likelihood score for a single sentence in a fitted CBOW representaion.
The sentence is a list of Vocab objects (or None, where the corresponding
word is not in the vocabulary. Called internally from `Word2Vec.score()`.
This is the non-optimized, Python version. If you have cython installed, gensim
will use the optimized version from word2vec_inner instead.
"""
log_prob_sentence = 0.0
if model.negative:
raise RuntimeError("scoring is only available for HS=True")
word_vocabs = [model.vocab[w] for w in sentence if w in model.vocab]
for pos, word in enumerate(word_vocabs):
if word is None:
continue # OOV word in the input sentence => skip
start = max(0, pos - model.window)
window_pos = enumerate(sentence[start:(pos + model.window + 1)], start)
word2_indices = [word2.index for pos2, word2 in window_pos if (word2 is not None and pos2 != pos)]
l1 = np_sum(model.syn0[word2_indices], axis=0) # 1 x layer1_size
if word2_indices and model.cbow_mean:
l1 /= len(word2_indices)
log_prob_sentence += score_cbow_pair(model, word, word2_indices, l1)
return log_prob_sentence
def score_sg_pair(model, word, word2):
l1 = model.syn0[word2.index]
l2a = deepcopy(model.syn1[word.point]) # 2d matrix, codelen x layer1_size
sgn = -1.0**word.code # ch function, 0-> 1, 1 -> -1
lprob = -log(1.0 + exp(-sgn*dot(l1, l2a.T)))
return sum(lprob)
def score_cbow_pair(model, word, word2_indices, l1):
l2a = model.syn1[word.point] # 2d matrix, codelen x layer1_size
sgn = -1.0**word.code # ch function, 0-> 1, 1 -> -1
lprob = -log(1.0 + exp(-sgn*dot(l1, l2a.T)))
return sum(lprob)
class Vocab(object):
"""
A single vocabulary item, used internally for collecting per-word frequency/sampling info,
and for constructing binary trees (incl. both word leaves and inner nodes).
"""
def __init__(self, **kwargs):
self.count = 0
self.__dict__.update(kwargs)
def __lt__(self, other): # used for sorting in a priority queue
return self.count < other.count
def __str__(self):
vals = ['%s:%r' % (key, self.__dict__[key]) for key in sorted(self.__dict__) if not key.startswith('_')]
return "%s(%s)" % (self.__class__.__name__, ', '.join(vals))
class Word2Vec(utils.SaveLoad):
"""
Class for training, using and evaluating neural networks described in https://code.google.com/p/word2vec/
The model can be stored/loaded via its `save()` and `load()` methods, or stored/loaded in a format
compatible with the original word2vec implementation via `save_word2vec_format()` and `load_word2vec_format()`.
"""
def __init__(
self, sentences=None, size=100, alpha=0.025, window=5, min_count=5,
max_vocab_size=None, sample=0, seed=1, workers=1, min_alpha=0.0001,
sg=1, hs=1, negative=0, cbow_mean=0, hashfxn=hash, iter=1, null_word=0,
trim_rule=None, sorted_vocab=1, min_count_sub=500):
"""
Initialize the model from an iterable of `sentences`. Each sentence is a
list of words (unicode strings) that will be used for training.
The `sentences` iterable can be simply a list, but for larger corpora,
consider an iterable that streams the sentences directly from disk/network.
See :class:`BrownCorpus`, :class:`Text8Corpus` or :class:`LineSentence` in
this module for such examples.
If you don't supply `sentences`, the model is left uninitialized -- use if
you plan to initialize it in some other way.
`sg` defines the training algorithm. By default (`sg=1`), skip-gram is used.
Otherwise, `cbow` is employed.
`size` is the dimensionality of the feature vectors.
`window` is the maximum distance between the current and predicted word within a sentence.
`alpha` is the initial learning rate (will linearly drop to zero as training progresses).
`seed` = for the random number generator. Initial vectors for each
word are seeded with a hash of the concatenation of word + str(seed).
`min_count` = ignore all words with total frequency lower than this.
`max_vocab_size` = limit RAM during vocabulary building; if there are more unique
words than this, then prune the infrequent ones. Every 10 million word types
need about 1GB of RAM. Set to `None` for no limit (default).
`sample` = threshold for configuring which higher-frequency words are randomly downsampled;
default is 0 (off), useful value is 1e-5.
`workers` = use this many worker threads to train the model (=faster training with multicore machines).
`hs` = if 1 (default), hierarchical sampling will be used for model training (else set to 0).
`negative` = if > 0, negative sampling will be used, the int for negative
specifies how many "noise words" should be drawn (usually between 5-20).
`cbow_mean` = if 0 (default), use the sum of the context word vectors. If 1, use the mean.
Only applies when cbow is used.
`hashfxn` = hash function to use to randomly initialize weights, for increased
training reproducibility. Default is Python's rudimentary built in hash function.
`iter` = number of iterations (epochs) over the corpus.
`trim_rule` = vocabulary trimming rule, specifies whether certain words should remain
in the vocabulary, be trimmed away, or handled using the default (discard if word count < min_count).
Can be None (min_count will be used), or a callable that accepts parameters (word, count, min_count) and
returns either util.RULE_DISCARD, util.RULE_KEEP or util.RULE_DEFAULT.
Note: The rule, if given, is only used prune vocabulary during build_vocab() and is not stored as part
of the model.
`sorted_vocab` = if 1 (default), sort the vocabulary by descending frequency before
assigning word indexes.
"""
self.vocab = {} # mapping from a word (string) to a Vocab object
self.index2word = [] # map from a word's matrix index (int) to word (string)
self.sg = int(sg)
self.cum_table = None # for negative sampling
self.vector_size = int(size)
self.layer1_size = int(size)
if size % 4 != 0:
logger.warning("consider setting layer size to a multiple of 4 for greater performance")
self.alpha = float(alpha)
self.window = int(window)
self.max_vocab_size = max_vocab_size
self.seed = seed
self.random = random.RandomState(seed)
self.min_count = min_count
self.sample = sample
self.workers = workers
self.min_alpha = min_alpha
self.hs = hs
self.negative = negative
self.cbow_mean = int(cbow_mean)
self.hashfxn = hashfxn
self.iter = iter
self.null_word = null_word
self.train_count = 0
self.total_train_time = 0
self.sorted_vocab = sorted_vocab
self.min_count_sub = min_count_sub
if sentences is not None:
if isinstance(sentences, GeneratorType):
raise TypeError("You can't pass a generator as the sentences argument. Try an iterator.")
self.build_vocab(sentences, trim_rule=trim_rule)
self.train(sentences)
def make_cum_table(self, power=0.75, domain=2**31 - 1):
"""
Create a cumulative-distribution table using stored vocabulary word counts for
drawing random words in the negative-sampling training routines.
To draw a word index, choose a random integer up to the maximum value in the
table (cum_table[-1]), then finding that integer's sorted insertion point
(as if by bisect_left or ndarray.searchsorted()). That insertion point is the
drawn index, coming up in proportion equal to the increment at that slot.
Called internally from 'build_vocab()'.
"""
vocab_size = len(self.index2word)
self.cum_table = zeros(vocab_size, dtype=uint32)
# compute sum of all power (Z in paper)
train_words_pow = float(sum([self.vocab[word].count**power for word in self.vocab]))
cumulative = 0.0
for word_index in range(vocab_size):
cumulative += self.vocab[self.index2word[word_index]].count**power / train_words_pow
self.cum_table[word_index] = round(cumulative * domain)
if len(self.cum_table) > 0:
assert self.cum_table[-1] == domain
def create_binary_tree(self):
"""
Create a binary Huffman tree using stored vocabulary word counts. Frequent words
will have shorter binary codes. Called internally from `build_vocab()`.
"""
logger.info("constructing a huffman tree from %i words", len(self.vocab))
# build the huffman tree
heap = list(itervalues(self.vocab))
heapq.heapify(heap)
for i in xrange(len(self.vocab) - 1):
min1, min2 = heapq.heappop(heap), heapq.heappop(heap)
heapq.heappush(heap, Vocab(count=min1.count + min2.count, index=i + len(self.vocab), left=min1, right=min2))
# recurse over the tree, assigning a binary code to each vocabulary word
if heap:
max_depth, stack = 0, [(heap[0], [], [])]
while stack:
node, codes, points = stack.pop()
if node.index < len(self.vocab):
# leaf node => store its path from the root
node.code, node.point = codes, points
max_depth = max(len(codes), max_depth)
else:
# inner node => continue recursion
#print str(node.index)+" "+ str(len(self.vocab)) +" - "+str(node.index - len(self.vocab))
points = array(list(points) + [node.index - len(self.vocab)], dtype=uint32)
stack.append((node.left, array(list(codes) + [0], dtype=uint8), points))
stack.append((node.right, array(list(codes) + [1], dtype=uint8), points))
logger.info("built huffman tree with maximum node depth %i", max_depth)
def build_vocab(self, sentences, keep_raw_vocab=False, trim_rule=None):
"""
Build vocabulary from a sequence of sentences (can be a once-only generator stream).
Each sentence must be a list of unicode strings.
"""
self.scan_vocab(sentences, trim_rule=trim_rule) # initial survey
self.scale_vocab(keep_raw_vocab, trim_rule=trim_rule) # trim by min_count & precalculate downsampling
self.finalize_vocab() # build tables & arrays
def scan_vocab(self, sentences, progress_per=10000, trim_rule=None):
"""Do an initial scan of all words appearing in sentences."""
logger.info("collecting all words and their counts")
sentence_no = -1
total_words = 0
min_reduce = 1
vocab = defaultdict(int)
substrings = defaultdict(int)
for sentence_no, sentence in enumerate(sentences):
if sentence_no % progress_per == 0:
logger.info("PROGRESS: at sentence #%i, processed %i words, keeping %i word types",
sentence_no, sum(itervalues(vocab)) + total_words, len(vocab))
for word in sentence:
if len(word) < 100:
vocab[word] += 1
if self.max_vocab_size and len(vocab) > self.max_vocab_size:
total_words += utils.prune_vocab(vocab, min_reduce, trim_rule=trim_rule)
min_reduce += 1
for word in vocab:
self.word2substrings(word, substrings, 2, vocab[word], True)
total_words += sum(itervalues(vocab))
logger.info("collected %i word types from a corpus of %i raw words and %i sentences",
len(vocab), total_words, sentence_no + 1)
logger.info("created %i substrings from %i words",
len(substrings),len(vocab))
self.corpus_count = sentence_no + 1
self.raw_vocab = vocab
self.raw_substrings = substrings
def word2substrings(self, word, substrings, length, occurence, abbrevite):
if(abbrevite):
word = "$"+word+"#";
if length >= len(word):
return
for i in range(0, len(word)-length+1):
s = word[i:i+length]
substrings[s]+=occurence
self.word2substrings(word, substrings, length+1, occurence, False)
def scale_vocab(self, min_count=None, sample=None, dry_run=False, keep_raw_vocab=False, trim_rule=None):
"""
Apply vocabulary settings for `min_count` (discarding less-frequent words)
and `sample` (controlling the downsampling of more-frequent words).
Calling with `dry_run=True` will only simulate the provided settings and
report the size of the retained vocabulary, effective corpus length, and
estimated memory requirements. Results are both printed via logging and
returned as a dict.
Delete the raw vocabulary after the scaling is done to free up RAM,
unless `keep_raw_vocab` is set.
"""
min_count = min_count or self.min_count
sample = sample or self.sample
# Discard words less-frequent than min_count
if not dry_run:
self.index2word = []
# make stored settings match these applied settings
self.min_count = min_count
self.sample = sample
self.vocab = {}
drop_unique, drop_total, retain_total, original_total = 0, 0, 0, 0
retain_words = []
for word, v in iteritems(self.raw_vocab):
if keep_vocab_item(word, v, min_count, trim_rule=trim_rule):
retain_words.append(word)
retain_total += v
original_total += v
if not dry_run:
self.vocab[word] = Vocab(count=v, index=len(self.index2word))
self.index2word.append(word)
else:
drop_unique += 1
drop_total += v
original_total += v
logger.info("min_count=%d retains %i unique words (drops %i)",
min_count, len(retain_words), drop_unique)
logger.info("min_count leaves %i word corpus (%i%% of original %i)",
retain_total, retain_total * 100 / max(original_total, 1), original_total)
# Discard substring less-frequent than min_count_subs
drop_unique_sub = 0
min_count_sub = self.min_count_sub
retain_subs = []
for sub, v in iteritems(self.raw_substrings):
if v >= min_count_sub:
retain_subs.append(sub)
#self.vocab[word] = Vocab(count=v, index=len(self.index2word))
#self.index2word.append(word)
else:
drop_unique_sub += 1
logger.info("min_count_sub=%d retains %i unique substrings (drops %i)",
min_count_sub, len(retain_subs), drop_unique_sub)
self.raw_substrings=retain_subs
#create substring2index
sub2index = {}
i=0
for sub in retain_subs:
sub2index[sub] = i;
i+=1
#insert indices of subgrams into vocab ... add size of vocabulary since all subgrams weights are after words
for word in self.vocab:
indices = []
substrings = defaultdict(int)
self.word2substrings(word, substrings, 2, 0, True)
for sub in substrings:
if sub in sub2index:
indices.append(sub2index[sub]+len(self.vocab))
self.vocab[word].substrings = indices;
# Precalculate each vocabulary item's threshold for sampling
if not sample:
# no words downsampled
threshold_count = retain_total
elif sample < 1.0:
# traditional meaning: set parameter as proportion of total
threshold_count = sample * retain_total
else:
# new shorthand: sample >= 1 means downsample all words with higher count than sample
threshold_count = int(sample * (3 + sqrt(5)) / 2)
downsample_total, downsample_unique = 0, 0
for w in retain_words:
v = self.raw_vocab[w]
word_probability = (sqrt(v / threshold_count) + 1) * (threshold_count / v)
if word_probability < 1.0:
downsample_unique += 1
downsample_total += word_probability * v
else:
word_probability = 1.0
downsample_total += v
if not dry_run:
self.vocab[w].sample_int = int(round(word_probability * 2**32))
if not dry_run and not keep_raw_vocab:
logger.info("deleting the raw counts dictionary of %i items", len(self.raw_vocab))
self.raw_vocab = defaultdict(int)
logger.info("sample=%g downsamples %i most-common words", sample, downsample_unique)
logger.info("downsampling leaves estimated %i word corpus (%.1f%% of prior %i)",
downsample_total, downsample_total * 100.0 / max(retain_total, 1), retain_total)
# return from each step: words-affected, resulting-corpus-size
report_values = {'drop_unique': drop_unique, 'retain_total': retain_total,
'downsample_unique': downsample_unique, 'downsample_total': int(downsample_total)}
# print extra memory estimates
report_values['memory'] = self.estimate_memory(vocab_size=len(retain_words))
return report_values
def finalize_vocab(self):
"""Build tables and model weights based on final vocabulary settings."""
if not self.index2word:
self.scale_vocab()
if self.sorted_vocab:
self.sort_vocab()
if self.hs:
# add info about each word's Huffman encoding
self.create_binary_tree()
if self.negative:
# build the table for drawing random words (for negative sampling)
self.make_cum_table()
if self.null_word:
# create null pseudo-word for padding when using concatenative L1 (run-of-words)
# this word is only ever input – never predicted – so count, huffman-point, etc doesn't matter
word, v = '\0', Vocab(count=1, sample_int=0)
v.index = len(self.vocab)
self.index2word.append(word)
self.vocab[word] = v
# set initial input/projection and hidden weights
self.reset_weights()
def sort_vocab(self):
"""Sort the vocabulary so the most frequent words have the lowest indexes."""
if hasattr(self, 'syn0'):
raise RuntimeError("must sort before initializing vectors/weights")
self.index2word.sort(key=lambda word: self.vocab[word].count, reverse=True)
for i, word in enumerate(self.index2word):
self.vocab[word].index = i
# this is a hack because substrings contain even the index of a word
self.vocab[word].substrings.append(i)
def reset_from(self, other_model):
"""
Borrow shareable pre-built structures (like vocab) from the other_model. Useful
if testing multiple models in parallel on the same corpus.
"""
self.vocab = other_model.vocab
self.index2word = other_model.index2word
self.cum_table = other_model.cum_table
self.corpus_count = other_model.corpus_count
self.reset_weights()
def _do_train_job(self, job, alpha, inits):
work, neu1 = inits
tally = 0
raw_tally = 0
for sentence in job:
if self.sg:
tally += train_sentence_sg(self, sentence, alpha, work)
else:
tally += train_sentence_cbow(self, sentence, alpha, work, neu1)
raw_tally += len(sentence)
return (tally, raw_tally)
def _raw_word_count(self, items):
return sum(len(item) for item in items)
def train(self, sentences, total_words=None, word_count=0, chunksize=100, total_examples=None, queue_factor=2, report_delay=1):
"""
Update the model's neural weights from a sequence of sentences (can be a once-only generator stream).
For Word2Vec, each sentence must be a list of unicode strings. (Subclasses may accept other examples.)
To support linear learning-rate decay from (initial) alpha to min_alpha, either total_examples
(count of sentences) or total_words (count of raw words in sentences) should be provided, unless the
sentences are the same as those that were used to initially build the vocabulary.
"""
if FAST_VERSION < 0:
import warnings
warnings.warn("C extension not loaded for Word2Vec, training will be slow. "
"Install a C compiler and reinstall gensim for fast training.")
self.neg_labels = []
if self.negative > 0:
# precompute negative labels optimization for pure-python training
self.neg_labels = zeros(self.negative + 1)
self.neg_labels[0] = 1.
logger.info(
"training model with %i workers on %i vocabulary and %i features, "
"using sg=%s hs=%s sample=%s and negative=%s",
self.workers, len(self.vocab), self.layer1_size, self.sg,
self.hs, self.sample, self.negative)
if not self.vocab:
raise RuntimeError("you must first build vocabulary before training the model")
if not hasattr(self, 'syn0'):
raise RuntimeError("you must first finalize vocabulary before training the model")
if total_words is None and total_examples is None:
if self.corpus_count:
total_examples = self.corpus_count
logger.info("expecting %i examples, matching count from corpus used for vocabulary survey", total_examples)
else:
raise ValueError("you must provide either total_words or total_examples, to enable alpha and progress calculations")
if self.iter > 1:
sentences = utils.RepeatCorpusNTimes(sentences, self.iter)
total_words = total_words and total_words * self.iter
total_examples = total_examples and total_examples * self.iter
def worker_init():
work = matutils.zeros_aligned(self.layer1_size, dtype=REAL) # per-thread private work memory
neu1 = matutils.zeros_aligned(self.layer1_size, dtype=REAL)
return (work, neu1)
def worker_one_job(job, inits):
items, alpha = job
if items is None: # signal to finish
return False
# train & return tally
tally, raw_tally = self._do_train_job(items, alpha, inits)
progress_queue.put((len(items), tally, raw_tally)) # report progress
return True
def worker_loop():
"""Train the model, lifting lists of sentences from the jobs queue."""
init = worker_init()
while True:
job = job_queue.get()
if not worker_one_job(job, init):
break
start, next_report = default_timer(), 1.0
# buffer ahead only a limited number of jobs.. this is the reason we can't simply use ThreadPool :(
if self.workers > 0:
job_queue = Queue(maxsize=queue_factor * self.workers)
else:
job_queue = FakeJobQueue(worker_init, worker_one_job)
progress_queue = Queue(maxsize=(queue_factor + 1) * self.workers)
workers = [threading.Thread(target=worker_loop) for _ in xrange(self.workers)]
for thread in workers:
thread.daemon = True # make interrupting the process with ctrl+c easier
thread.start()
pushed_words = 0
pushed_examples = 0
example_count = 0
trained_word_count = 0
raw_word_count = word_count
push_done = False
done_jobs = 0
next_alpha = self.alpha
jobs_source = enumerate(utils.grouper(sentences, chunksize))
job_no = -1
# fill jobs queue with (sentence, alpha) job tuples
while True:
try:
job_no, items = next(jobs_source)
logger.debug("putting job #%i in the queue at alpha %.05f", job_no, next_alpha)
job_queue.put((items, next_alpha))
# update the learning rate before every next job
if self.min_alpha < next_alpha:
if total_examples:
# examples-based decay
pushed_examples += len(items)
next_alpha = self.alpha - (self.alpha - self.min_alpha) * (pushed_examples / total_examples)
else:
# words-based decay
pushed_words += self._raw_word_count(items)
next_alpha = self.alpha - (self.alpha - self.min_alpha) * (pushed_words / total_words)
next_alpha = max(next_alpha, self.min_alpha)
except StopIteration:
if job_no == -1 and self.train_count == 0:
logger.warning(
"train() called with empty iterator (if not intended, "
"be sure to provide a corpus that offers restartable "
"iteration)."
)
logger.info(
"reached end of input; waiting to finish %i outstanding jobs",
job_no - done_jobs + 1)
for _ in xrange(self.workers):
job_queue.put((None, 0)) # give the workers heads up that they can finish -- no more work!
push_done = True
try:
while done_jobs < (job_no+1) or not push_done:
examples, trained_words, raw_words = progress_queue.get(push_done) # only block after all jobs pushed
example_count += examples
trained_word_count += trained_words # only words in vocab & sampled
raw_word_count += raw_words
done_jobs += 1
elapsed = default_timer() - start
if elapsed >= next_report:
if total_examples:
# examples-based progress %
logger.info(
"PROGRESS: at %.2f%% examples, %.0f words/s",
100.0 * example_count / total_examples, trained_word_count / elapsed)
else:
# words-based progress %
logger.info(
"PROGRESS: at %.2f%% words, %.0f words/s",
100.0 * raw_word_count / total_words, trained_word_count / elapsed)
next_report = elapsed + report_delay # don't flood log, wait report_delay seconds
else:
# loop ended by job count; really done
break
except Empty:
pass # already out of loop; continue to next push
elapsed = default_timer() - start
logger.info(
"training on %i raw words took %.1fs, %.0f trained words/s",
raw_word_count, elapsed, trained_word_count / elapsed if elapsed else 0.0)
if total_examples and total_examples != example_count:
logger.warn("supplied example count (%i) did not equal expected count (%i)", example_count, total_examples)
if total_words and total_words != raw_word_count:
logger.warn("supplied raw word count (%i) did not equal expected count (%i)", raw_word_count, total_words)
self.train_count += 1 # number of times train() has been called
self.total_train_time += elapsed
self.clear_sims()
return trained_word_count
def _score_job_words(self, sentence, inits):
work, neu1 = inits
if self.sg:
return score_sentence_sg(self, sentence, work)
else:
return score_sentence_cbow(self, sentence, work, neu1)
# basics copied from the train() function
def score(self, sentences, total_sentences=int(1e9), chunksize=100, queue_factor=2, report_delay=1):
"""
Score the log probability for a sequence of sentences (can be a once-only generator stream).
Each sentence must be a list of unicode strings.
This does not change the fitted model in any way (see Word2Vec.train() for that)
Note that you should specify total_sentences; we'll run into problems if you ask to score more than the default
See the article by Taddy [taddy]_ for examples of how to use such scores in document classification.
.. [taddy] Taddy, Matt. Document Classification by Inversion of Distributed Language Representations, in Proceedings of the 2015 Conference of the Association of Computational Linguistics.
"""
if FAST_VERSION < 0:
import warnings
warnings.warn("C extension compilation failed, scoring will be slow. "
"Install a C compiler and reinstall gensim for fastness.")
logger.info(
"scoring sentences with %i workers on %i vocabulary and %i features, "
"using sg=%s hs=%s sample=%s and negative=%s",
self.workers, len(self.vocab), self.layer1_size, self.sg, self.hs, self.sample, self.negative)
if not self.vocab:
raise RuntimeError("you must first build vocabulary before scoring new data")
if not self.hs:
raise RuntimeError("we have only implemented score for hs")
def worker_init():
work = zeros(1, dtype=REAL) # for sg hs, we actually only need one memory loc (running sum)
neu1 = matutils.zeros_aligned(self.layer1_size, dtype=REAL)
return (work, neu1)
def worker_one_job(job, inits):
if job is None: # signal to finish
return False
ns = 0
for (id, sentence) in job:
sentence_scores[id] = self._score_job_words(sentence, inits)
ns += 1
progress_queue.put(ns) # report progress
return True
def worker_loop():
"""Train the model, lifting lists of sentences from the jobs queue."""
init = worker_init()
while True:
job = job_queue.get()
if not worker_one_job(job, init):
break
start, next_report = default_timer(), 1.0
# buffer ahead only a limited number of jobs.. this is the reason we can't simply use ThreadPool :(
if self.workers > 0:
job_queue = Queue(maxsize=queue_factor * self.workers)
else:
job_queue = FakeJobQueue(worker_init, worker_one_job)
progress_queue = Queue(maxsize=(queue_factor + 1) * self.workers)
workers = [threading.Thread(target=worker_loop) for _ in xrange(self.workers)]
for thread in workers:
thread.daemon = True # make interrupting the process with ctrl+c easier
thread.start()
sentence_count = 0
sentence_scores = matutils.zeros_aligned(total_sentences, dtype=REAL)
push_done = False
done_jobs = 0
jobs_source = enumerate(utils.grouper(enumerate(sentences), chunksize))
# fill jobs queue with (id, sentence) job items
while True:
try:
job_no, items = next(jobs_source)
logger.debug("putting job #%i in the queue", job_no)
job_queue.put(items)
except StopIteration:
logger.info(
"reached end of input; waiting to finish %i outstanding jobs",
job_no - done_jobs + 1)
for _ in xrange(self.workers):