forked from borescht/NuMa2-script
-
Notifications
You must be signed in to change notification settings - Fork 0
/
num2.tex
3950 lines (3550 loc) · 149 KB
/
num2.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\documentclass{article}
\usepackage[paper=a4paper,left=40mm,right=40mm,top=25mm,bottom=25mm]{geometry}
\usepackage[english]{babel}
\usepackage[utf8]{inputenc}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{amsthm}
\usepackage{tabularx}
\usepackage{paralist}
\usepackage{hyperref} %klickbares Inhaltsverzeichnis
\usepackage[rgb]{xcolor}
\usepackage{shadethm}
\usepackage{pdfpages}
\mathchardef\ordinarycolon\mathcode`\:
\mathcode`\:=\string"8000
\begingroup \catcode`\:=\active
\gdef:{\mathrel{\mathop\ordinarycolon}}
\endgroup
\definecolor{darkgreen}{rgb}{0.0, 0.5, 0.0}
%\newcommand{\qed}{\hfill $\Box$}
\newcommand{\real}{\textrm{Re}}
\newcommand{\limn}{\lim_{n \to \infty}}
\newcommand{\einhalb}{\frac{1}{2}}
\newcommand{\teinhalb}{\tfrac{1}{2}}
\newcommand{\halbe}[1]{\frac{#1}{2}}
\newcommand{\norm}[1]{\left\Vert #1 \right \Vert}
\newcommand{\scal}[2]{\langle #1, #2 \rangle}
\newcommand{\bignorm}[1]{\big\lVert #1 \big\rVert}
\newcommand{\Bignorm}[1]{\Big\lVert #1 \Big\rVert}
\newcommand{\biggnorm}[1]{\bigg\lVert #1 \bigg\rVert}
\newcommand{\folge}[1]{({#1}_n)_{n \in \mathbb{N}}}
\newcommand{\einsdurch}[1]{\frac{1}{#1}}
\newcommand{\teinsdurch}[1]{\tfrac{1}{#1}}
\newcommand{\R}{\mathbb{R}}
\newcommand{\N}{\mathbb{N}}
\newcommand{\Q}{\mathbb{Q}}
\newcommand{\C}{\mathbb{C}}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\ohnenull}{\setminus\{0\}}
\newcommand{\links}{\glqq$\Leftarrow$\grqq}
\newcommand{\und}{~ \text{and} ~}
\newcommand{\grad}{\text{grad}~}
\newcommand{\gdw}{\Leftrightarrow}
\newcommand{\rot}{\color{red}}
\newcommand{\gr}{\color{darkgreen}}
\newcommand{\blau}{\color{blue}}
\newcommand{\rank}{\text{rank}}
\newcommand{\ipo}{{i+1}}
\newcommand{\partiell}[2]{\frac{\partial #1}{\partial #2}}
\newcommand{\nhn}{\newline\hfill\newline}
\newcommand{\inv}{^{-1}}
\newcommand{\spann}{\textrm{span}~\!}
\newcommand{\supp}{\textrm{supp}~\!}
\newcommand{\labtag}[1]{\label{#1}\tag{#1}}
\newcommand{\ol}[1]{\overline{#1}}
\renewcommand{\l}{\left}
\renewcommand{\r}{\right}
\renewcommand{\P}{\mathbb{P}}
\renewcommand \thesection{\Roman{section}}
\renewcommand \thesubsubsection{\Roman{section}.\arabic{subsubsection}}
\makeatletter
\renewcommand*\env@matrix[1][*\c@MaxMatrixCols c]{%
\hskip -\arraycolsep
\let\@ifnextchar\new@ifnextchar
\array{#1}}
\makeatother
\theoremstyle{plain}
%\newtheorem{theorem}{Theorem}[section]
%\newtheorem{lemma}[theorem]{Lemma}
%\newtheorem{corollary}[theorem]{Corollary}
%\newtheorem{definition}[theorem]{Definition}
%\theoremstyle{remark}
%\newtheorem*{remark}{Remark}
\theoremstyle{definition}
\newshadetheorem{theorem}{Theorem}[section]
\newshadetheorem{lemma}[theorem]{Lemma}
\newshadetheorem{corollary}[theorem]{Corollary}
\newshadetheorem{definition}[theorem]{Definition}
\newshadetheorem{exthm}{Excursion Theorem}
\newshadetheorem{exdef}[exthm]{Excursion Definition}
\newtheorem{motivation}[theorem]{Motivation}
\newtheorem*{remark}{Remark}
\newtheorem*{revision}{Revision}
\newtheorem*{example}{Example}
\definecolor{shadethmcolor}{HTML}{EEEEEE}
\title{Numerical Mathematics II \\ SS 2019}
\author{Lecture by Konstantin Fackeldey}
\begin{document}
\maketitle
\tableofcontents
\newpage
\section{Basic Facts on Ordinary Differential Equations}
\begin{definition}
An ODE of first order in some interval $I\subset \R$ is an equation of the form
\[
y'(t)=f(t,y(t)),~ t \in I
\]
where $y: I \to \C^n ,~~ y\in C^1(I)$ and $f: I\times\C^n\to\C^n$. The order is the highest derivative in the ODE. We call an ODE \textbf{explicit} if we can solve it for $y'$ and \textbf{implicit} otherwise.
\end{definition}
\begin{definition}
An ordinary differential equation of order $n$ is given as
\[
y^{(n)}(t) = f(t,y(t),y'(t),\dots ,y^{(n-1)}(t))
\]
for $t \in I\subset \R$ where $y$ is a $n$-times differentiable function on $I$ and $f:I\times(\C^n)^n\to \C^n$ is a function.
A solution $y$ of an ODE on some $J\subset I$ is a (multiple) continuously differentiable function $y: I\to \C^n$ which solves the ODE
\end{definition}
\begin{remark}
An ODE of order $n$ can be transferred to an ODE of first order by transformation.
\end{remark}
\begin{definition}
We call an ODE
\[
y^{(n)}(t)=f(t,y(t),y'(t),\dots ,y^{(n-1)}(t)), t \in I
\]
an \textbf{initial value problem (IVP)} for $y$ if we have additionally the constraints $y(t_0)=y_0, \dots, y^{(n-1)}(t_0)=y_{n-1}$ for $t_0 \in I$.
\end{definition}
\begin{remark}
An ODE has a swarm of solutions, IVP has specific solutions. The swarm of solutions with all constraints is called general solution.
\end{remark}
\begin{theorem}[Picard-Lindelöf]
For $t_0\in\R,~ y_0\in\C^n,~a,b>0$ we set \[
I=[t_0 -a, t_0+a] \und Q=\{z\in\C^n ~|~ \norm{z-y_0}_\infty \leq b\}.\] Let furthermore $F:I\times Q\to\C^n$ be continuous, with bounded components by some constant $R$ and Lipschitz-continuous in the second argument, i.e.
\[
\big|F_j(t,u)-F(t,v)\big| \leq L \sum_{k=1}^n |u_k - v_k|, ~~j=1,\dots,n~,~~ t\in I,~~u,v \in Q.
\]
Then the IVP $y'(t)=F(t,y(t)),~ y(b)=y_0$ has on $J=[t_0-\alpha, t_0 + \alpha]\subset I$ with $\alpha=\min\{a,\frac b R\}$ exactly one differentiable solution.
\end{theorem}
\begin{proof}
No Proof.
\end{proof}
\begin{remark}
The existence is local around $t_0$.
\end{remark}
\subsection{Systems of linear ODEs}
\begin{definition}
The system $y'(t)=A(t)y(t)+f(t)$ for some interval $I\subset\R$ with $A(t)=(a_{ij}(t))_{ij}\in\C^{n,n},~ a_{ij}:I\to\C \text{ for } i,j \in \{1,\dots, n\},~n\in\N, ~y: I\to \C^n$ and $f:I\to \C^n$ is a linear system of ODEs.
The function $f$ is called inhomogeneity.
The system is called \textbf{homogeneous} if $f=0$ and \textbf{inhomogeneous} otherwise.
\end{definition}
\begin{theorem}
Let $y_1,y_n$ be two solutions of the homogeneous ODE \[
y'(t)=A(t)y(t),~t\in I\subset\R.\] Then each linear combination \[
\alpha y_1 + \beta y_2,~\alpha,\beta\in\C\] of $y_1$ and $y_2$ is also a solution
\end{theorem}
\begin{proof}
\[
(\alpha y_1(t)+\beta y_2(t))'=\alpha y_1'(t)+\beta y_2'(t)=\alpha A(t)y_1(t)+\beta A(t)y_2(t)=A(t)(\alpha y_1(t)+\beta y_2(t))\]
\end{proof}
\begin{remark}
The set of all solutions of homogeneous linear ODEs $y'(t)=A(t)y(t)$ form an $n$-dimensional subspace of the vector space $C^1(I,\C^n)$.
Terms of linear dependence/independence in the context of vector valued functions.
\end{remark}
\begin{definition}
Let $y_1,\dots,y_n$ be $\C^n$ valued functions. We call these functions \textbf{linear independent} on $I\subset\R$ if \[
c_1 y_1(t)+\dots+c_n y_n(t)=0 \forall t\in I\] has the only solution $c_1=\dots=c_n=0$. Otherwise we call them \textbf{linear dependent}.
\end{definition}
It is unclear, how to decide if functions are linear independent. We can make use of the so called \textit{Wronski-determinant}, which for vector valued functions $y_1,\dots y_n$ is given by
\[
W[y_1,\dots,y_n](t) := \det \l( \begin{bmatrix}
y_{11}(t) & \cdots & y_{n1}(t) \\
\vdots & & \vdots \\
y_{n1}(t) & \cdots & y_{nn}(t)
\end{bmatrix} \r).
\]
Let us assume
\[
W[y_1,\dots,y_n](t_0)\neq 0, ~ t_0 \in I
\]
and consider the linear system
\[
\sum_{i=1}^{n }c_i y_i(t_0) = 0 \labtag{I.1}
\]
with unknown $c_1,\dots,c_n$. Due to our assumptions, $c_1=\dots=c_n=0$ is the only solution to \eqref{I.1}. Thus, $c_1=\dots,c_n=0$ is also the only solution of
\[
\sum_{i=1}^{n}c_i y_i(t) = 0 ~\forall t\in I.
\]
We have thus shown that the functions $y_1,\dots,y_n$ are also linear independent on the whole interval $I$. Hence, we have proven the following theorem.
\begin{theorem}
Let $y_1,\dots,y_n$ be linear independent solutions of $y'(t)=f(t,y(t))$. Then $W[y_1,\dots,y_n](t) \neq 0 ~\forall t\in I$.
\end{theorem}
\begin{definition}
A set of linear independent $y_1,\dots,y_n$ of $y'(t) = A(t) y(t)$ forms a \textbf{fundamental system}. The matrix
\[
Y(t) = \begin{bmatrix}
y_{11}(t) & \cdots & y_{1n}(t) \\
\vdots & & \vdots \\
y_{nn}(t) & \cdots & y_{nn}(t)
\end{bmatrix}
\]
is called \textbf{fundamental matrix}.
\end{definition}
\begin{example}
The ODE
\[
y'(t) = \begin{bmatrix} 1 & -1 \\ -2 & 0 \end{bmatrix} y(t)
\]
has the solutions
\[
y_1(t) = \begin{bmatrix} e^{2t} \\ - e^{2t} \end{bmatrix} \und y_2(t) = \begin{bmatrix} e^{-1} \\ 2 e^{-t} \end{bmatrix}.
\]
In this case, we have
\[
W[y_1,y_2](t) = \det \l( \begin{bmatrix} e^{2t} & e^{-t} \\ -e^{2t} & 2 e^{-t} \end{bmatrix} \r) = 3 e^t \neq 0.
\]
\end{example}
\begin{theorem}
Each linear differential system $y'(t) = A(t) y(t)$ has a fundamental system. The general solution of the system is given as
\[
y= c_1 y_1 + \dots + c_n y_n = Yc,
\]
where $Y=[y_1,\dots,y_n]$ is the fundamental matrix and $c\in \C^n$.
\end{theorem}
\begin{proof}
No proof.
\end{proof}
\begin{theorem}[Picard-Lindel\"{o}f for linear systems]
Let $A$ and $f$ be continuous on $I\subseteq \R$. Then, the IVP $y'(t) = A(t) y(t) + f(t),~ y(t_0) = y_0$ has a unique solution.
\end{theorem}
\begin{proof}
We only give a sketch of the proof. Since for a solution $y$ it holds
\[
y'(t) = A(t) y(t) + f(t),
\]
by integration we obtain
\[
\int_{t_0}^{t}y'(s)~ ds = \int_{t_0 }^{t }A(s) y(s) + f(s) ~ds.
\]
Hence,
\[
y(t) = y(t_0) + \int_{t_0 }^{t }A(s) y(s) + f(s) ~ ds.
\]
Now, by a fixpoint iteration, we get the \textit{Picard iteration} by
\begin{align*}
y_0(t) & = y(t_0) \\
y_1(t) & = y(t_0) + \int_{t_0 }^{t }A(s) y_0(s) + f(s) ~ds \\
& \vdots \\
y_{n+1}(t) & = y_(t_0) + \int_{t_0 }^{t }A(s) y_n(s) + f(s) ~ ds.
\end{align*}
It can be shown that this sequence converges to the solution pointwise.
\end{proof}
\begin{remark}
For linear ODEs, the existence and uniqueness of the solution is not local but global. Consider the special solution $y_p$ of
\[
y'(t) = A(t) y(t) + f(t) \labtag{I.2}
\]
and the homogeneous solution $y_h$ of
\[
y'(t) = A(t) y(t). \labtag{I.3}
\]
Then we can write all the solutions $y$ of \eqref{I.2} as
\[
y = y_h + y_p = Yc + y_p.
\]
The special solution $y_p$ can be found using \textit{variation of constants}, i.e. choosing $c=c(t)$. {\rot The ansatz is missing.}
\end{remark}
\begin{theorem}
The IVP
\begin{align*}
y'(t) & = A(t) y(t) + f(t) \\
y(t_0) & = y_0
\end{align*}
has the unique solution
\[
y(t) = Y(t) \cdot Y\inv(t_0) y_0 + Y(t) \cdot \int_{t_0 }^{t } Y^{-1}(s)f(s)~ds,
\]
where $Y(t)$ is the fundamental solution of the corresponding homogeneous system.
\end{theorem}
\begin{proof}
No proof.
\end{proof}
\subsection{Separated ODEs}
\begin{definition}
A ODE of the form
\[
y'(t) = g(y(t)) h(t),~ t \in I\subseteq \R,
\]
where $g,h$ are continuous functions is called \textbf{separable}.
\end{definition}
\begin{remark}
The function $g(y)$ depends only on $y$, whereas $h(t)$ depends only on $t$. We can thus integrate separatly. This gives the so called \textit{separation of variables}. In an autonomous case, i.e. $f(y,t) = f(y)$, we have no dependence on $t$ and hence $h(t) = 1$ for all $t$. In this sense, an autonomous system is always separable.
\end{remark}
\setcounter{subsection}{2}
\subsection{Qualitative Behaviour of ODEs}
\begin{example}
Let us consider the $n$-dimensional non autonomous system of first order
\begin{align*}
y'(t)&=f(t,y(t))\\
y(t_0)&=y_0
\end{align*}
where $f: D \to \R^n, ~D\subset I\times \R^n,~ t_0 \in I,~ I\subset \R$. The questions we are dealing with are:
\begin{enumerate}
\item Why only first order?
\item What is the relation between a non-autonomous and an autonomous system?
\end{enumerate}
\end{example}
The reason behind 1. is that any ODE of $n$-th order can be transformed into a $n$-dimensional ODE of first order. Consider the ODE
\[
x^{(n)}=F(t,x(t),x'(t),\dots,x^{(n-1)}(t))
\]
and define a vector $y$ with its components $y_i, ~ i=1,\dots,n$ by
\[
y_i(t)=x^{(i-1)}(t)
\]
and a vector field $f(t,y)$ by
\[
f(t,y) = \Big(t,y_1,y_2,\dots,y_n,F(t,y_1,y_2,\dots,y_n)\Big)^T
\]
Then the ODE of $n$-th order is equivalent to $y'(t)=f(t,y)$.\newline
A system of the form $y'(t)=f(t,y)$ is called an \textbf{non-autonomous system}, a system of the form $y=f(y)$ is called \textbf{autonomous}. We can transform a non-autonomous system to an autonomous system.
Consider the ODE
\[
y'(t)=f(t,y) \und y(t_0) = y_0.
\]
We set
\[
z=\begin{bmatrix} y \\ s \end{bmatrix} \und \hat{f}=\begin{bmatrix} f(s,y) \\ 1 \end{bmatrix}, ~~ s\in \R
\]
Then
\[
z'(t)=\hat{f}(z(t)), ~ z(t_0)=z_0=\begin{bmatrix} y_0\\t_0 \end{bmatrix}
\]
is an autonomous system.
In short, each ODE in $\R^n$ can be transformed to an autonomous ODE in $\R^{n+1}$
\begin{remark}
In the theorem of Picard-Lindelöf the ODE is of the form $f(t,y)$, where $y$ has to be Lipschitz-continuous.
In the autonomous system the right hand side looks like $f(y(t))$, where $t$ and $y$ have to be Lipschitz-continuous.
\end{remark}
\subsubsection*{Analytic Continuation}
"Local solutions can be spread onto a maximum time interval."\newline
\setcounter{theorem}{13}
\begin{definition}[Local Lipschitz]
A function $f: X \to Y$ is local Lipschitz in $x\in X$ if the exists a neighbourhood $U_x \subseteq X$ around $x$ such that $f|_{U_x}$ is Lipschitz-continuous.
\end{definition}
For $G:=I\times Q$ with $I=[t_0-a, t_0+a], ~ Q=\{z\in\C~|~ \norm{z-y_0}\leq b\}$ with $a,b>0$ the theorem of Picard-Lindelöf gives for local Lipschitz $f$ the existence of a solution $y_0(t)$ of the IVP
\begin{align}
y'(t)&=f(t,y(t)) \tag{1.4}\\
y(t_0)&=y_0\notag
\end{align}
on some (small) inverval $I_0=[t_0-a_0,t_0+a_0]$ with $a_0=a>0$.
We will have a look at what happens if we apply the theorem of Picard-Lindelöf on one side of the interval $I_0$. Let now be $t_1:=t_0+a_0$ and $y_1 = y_0(t_1)$. We then have that $(y_1,t_1)\in G$ and according to Picard-Lindelöf we know that the IVP with $y(t_1)=y_1$ has a unique solution $y_1(t)$ on $I_1:=[t_1-a_0,t_1+a_1]$ where $a_1>0$.
Due to the uniqueness of the solution if hold $y_0(t)=y_1(t)$ on $I_0\cap I_1$ we are defining a continuoation of our solution on the greater interval.
It holds
\[
y_{+}(t)=y_0(t) ~\text{for}~ t\in[t_0,t_1]
\]
and
\[
y_{+}(t)=y_1(t) ~\text{for}~ t \in (t_1,t_1+a_1]
\]
analogue for $y_{-}(t)$. Thus there exists a unique solution on the interval $[t_0, t_0+a_0+a_1+\dots]$ if $\sum_{k=0}^{\infty}a_k<\infty$. If $\sum_{k=0}^{\infty}a_k$ diverges, the solution exists globally in forward time.
\begin{remark}
It can happen that $a_n$ can arbitrary small when $(t_k,y_{+}(t_k))$ approaches the boundary of $G$. Then either $\norm{f((t_k),y_{+}(t_k))}$ or the Lipschitz-constant $L$ might get arbitrary large.
\end{remark}
\begin{definition}
Let $f:G \to \R^n$ be continuous and local Lipschitz with respect to $y$ and let $(t_0,y_0)\in G$. Let furthermore $t_{\pm}:=t_{\pm}(t_0,y_0)\in\R$ be defined as
\begin{align*}
t_{+}&=\sup \{\tau>t_0 ~|~ \text{there exists a continuation}~ y_+ \text{ of (1.4) on } [t_0,\tau]\}\\
t_{-}&=~\inf \{\tau>t_0 ~|~ \text{there exists a continuation}~ y_- \text{ of (1.4) on } [t_0,\tau]\}.
\end{align*}
The interval $(t_-,t_+)$ is the largest interval of existence of the IVP with some initial point $y(t_0)=y_0$.
The \textbf{maximum solution} $y(t)$ is
\[
y(t)=\begin{cases} y_+(t) \text{ for } t\in[t_0,t_+) \\ y_-(t) \text{ for } t\in (t_-,t_0].\end{cases}
\]
\end{definition}
\begin{example}
Consider
\[
y'=y^2, ~ y(t_0)=y(0)=1, ~ y(t)=\frac{1}{1-t}.
\]
Then we have $(t_-,t_+)=(-\infty, 1) \text{ or } (1,\infty)$.
\end{example}
\begin{remark}
In case of $t_+<\infty$ the maximum solution approches for $t\to t_+$, it can then happen that $\norm{y(t)}$ is unbounded. This is also called "blow up".
\end{remark}
\subsubsection*{Solutions and Initial Data}
"What is the influence of a perturbation in $f,~y_0$ or $t_0$ on the solution?"\newline
To consider this, we need the following Lemma.
\begin{lemma}[Grönwall-Lemma]
Let $I=[a,b]\subseteq \R$ and $g:I\to\R$ be a continuous function. If
\[
0\leq g(t)\leq \delta+\gamma \int_{a}^{t }g(x)~dx
\]
holds for all $t\in I, ~\delta,\gamma >0$, then it holds
\[
g(t)\leq\delta e^{\gamma(t-a)}.
\]
\end{lemma}
\begin{proof}
We set
\[
\varphi(t)=\delta+\gamma \int_{a}^{t }g(x)~dx.
\]
Then we have
\[
\varphi'(t)=\gamma\cdot g(t) \leq \gamma\varphi(t).
\]
Since
\[
\Big(\varphi\cdot e^{-\gamma t}\Big)' = \varphi'\cdot e^{-\gamma t} + \varphi \cdot (-\gamma) e^{-\gamma t}= e^{-\gamma t}\Big(\varphi'(t)-\gamma\varphi(t)\Big)\leq 0
\]
we have that $\varphi e^{-\gamma t}$ is monotone falling. It thus follows
\[
g(t)\cdot e^{-\gamma t}\leq \varphi(t)\cdot e^{\gamma t} \leq \varphi(a)\cdot e^{-\gamma a}= \delta \cdot e^{-\gamma a}
\]
for all $t\geq a$.
\end{proof}
The Grönwall-Lemma allows us to prove the following theorem.
\begin{theorem}[Dependence on initial data]
Let $D\subset I\times \R^n$ be open, $f:D\to\R^n$ continuous and local Lipschitz with respect to $y$ and $(t_0,y_0) \in D$. If the solution of
\begin{align*}
y'(t)&=f(t,y(t))\\
y(t_0)&=y_0, ~y_0\in\R^n
\end{align*}
exists for all $t\in I=[a,b]$ then for each $\varepsilon>0$ there exists a $\delta>0$ such that \begin{enumerate}[(i)]
\item If $\norm{y_0-z_0}<\delta$ there also exists a solution of
\begin{align*}
z'(t)&=f(t,z(t))\\
z(t_0)&=z_0, ~z_0\in\R^n
\end{align*}
for $t \in I$.
\item It holds
\[
\max_{t\in I}\norm{y(t)-z(t)}<\varepsilon.
\]
\end{enumerate}
\end{theorem}
\begin{proof}
Since $D$ is open, there exists a $\bar\delta>0$ and a compact set
\[
K:=\{(t,z(t))~|~t\in I, ~ \norm{y(t)-z(t)}\leq\bar\delta\}\subset D.
\]
On $K$ the function $f$ is Lipschitz (with respect to $y$) with a Lipschitz-constant $L$. Let now $\delta<\bar\delta$ and $\norm{y_0-z_0}<\delta$. Then for all $t_0,t\in[a,b]$ it holds
\[
\norm{z(t)-y(t)}\leq \delta+L \int_{t_0}^{t }\norm{y(x)-z(x)}~dx.
\]
This can be seen by the integral representation of $y(t)$. Applying Grönwall's Lemma with $\gamma=L$ yields
\begin{equation}
\norm{y(t)-z(t)}\leq\delta\cdot e^{L(t-t_0)} \labtag{I.5}
\end{equation}
and by choosing $\delta\leq\bar\delta\cdot e^{L(a-b)}$ it holds $\norm{y(t)-z(t)}\leq \bar\delta$ for all $t\in I$. Thus it holds $(t,z(t))\in K$ for $t\in[a,b]$ and hence we have shown \textit{(i)}.
By choosing $\delta<\varepsilon\cdot e^{L(a-b)}$ it follows \textit{(ii)}.
\end{proof}
\begin{remark}
We have thus shown, that the solution $y(t)$ of the IVP with initial value $y(t_0)=y_0$ depends continuously on the initial data. The solution is often written as $y(t;t_0,y_0,f)$.
\end{remark}
\begin{example}
Let us consider the ODE
\begin{align*}
y'&=\lambda y, ~ \lambda \in \R\\
y(0)&=y_0
\end{align*}
Here we have $L=|\lambda|$. The equation \eqref{I.5} gives
\[
|y(t)-z(t)|\leq e^{|\lambda|\cdot t} |y_0-z_0|.
\]
For $\lambda<0$ we know that $|y(t)-z(t)|$ decreases exponentially.
\end{example}
\subsection{Stability and Flow}
\subsubsection*{Vector field}
A solution of an ODE is a function $y:I\to\R^n$ which is differentiable on $I$. Its graph $\{(t,y(t))~|~t\in I\}$ is a differentiable curve in $\R^{n+1}$ also known as \textit{solution curve} or \textit{integral curve}. In each point $(t,y(t))$ the direction of the tangent is given by the $(1,f(t,y(t)))$. In other words, $f$ is assigning a direction to each point.
\subsubsection*{Stability and small perturbations}
Consider
\[
y'(t)=f(t,y(t)), ~ y(t_0)=y_0.
\]
We are now interested in a comparison of different solutions for $t\in[t_0,\infty)$ with respect to the initial condition. We denote the solution by $y(t)=y(t,t_0)$.
Stability means that $y(t_0)=\tilde y$ with $\tilde y$ near by $y_0$. The question we are dealing with is "How does $y(t,\tilde y)$ behave in comparison with $y(t,y_0)$?".\newline
Let us consider an autonomous ODE, i.e. an ODE of the form $y'(t)=f(y(t))$.
\begin{definition}[Equilibrium Point]
A point $\bar y\in D\subset\R^n$ is called an equilibrium point of a mapping $f:D\to\R^n$ if $f(\bar y)=0$. The constant solution $y(t)=\bar y$ is the only solution with $y(t_0)=\bar y$.
\end{definition}
\begin{remark}
Other names for equilibrium points are fixed points, equilibria and stationary points.
\end{remark}
\begin{definition}[Stability and asymptotic stability]
An equilibrium point is \textbf{stable} (in the sense of Ljapunov) if for each $\varepsilon>0$ there exists a $\delta>0$ such that for $t\geq t_0$ and for all trajectories $y(t)$ with $\norm{y(t_0)-\bar y}\leq \delta$ it holds that
\[
\norm{y(t)-\bar y}\leq \varepsilon.
\]
An equilibrium point is \textbf{instable} if it is not stable.
An equilibrium point $\bar y$ is \textbf{asymptotic stable} if there exists a neighbourhood $U_{\bar y}$ of $\bar y$ such that
\[
y(t_0)\in U_{\bar y} \Rightarrow \lim_{t\to\infty} y(t)=\bar y.
\]
In this case $\bar y$ is called a \textbf{sink}.
An equilibrium point $\bar y$ is a \textbf{spring} if for each solution $y(t)$ with $y(t_0)\in U_{\bar y}$ and $y(t_0)\neq \bar y$ there exists a $t_1>t_0$ such that $y(t)\not \in U_{\bar y}$ for all $t\geq t_1$.
\end{definition}
\begin{example}
Consider an ODE in $\R^1$ given by $y'(t)=f(t,y(t))$. The equilibrium point is asymptotic stable if in $U_{\bar y}$ it holds that
\[
f(y)<0 \text{ for } y<\bar y ~~\und~~ f(y)>0 \text{ for } y>\bar y.
\]
\end{example}
\begin{definition}[Stability of solutions]
Let $y(t;y_0)$ be a solution of $y'(t)=f(y(t)), ~y(t_0)=y_0 ~\forall t\geq t_0$. Then the solution is \textbf{stable} if for each $\varepsilon>0$ there exists a $\delta>0$ such that
\[
\norm{y_0-\tilde y_0}\leq \delta \Rightarrow \norm{y(t;y_0)-y(t,\tilde y_0)}<\varepsilon
\]
for all $t>t_0$.
The solution is \textbf{attractive} if there exists a $\delta >0$ such that
\[
\norm{y_0-\tilde y_0}<\delta \Rightarrow \lim_{t\to\infty}\norm{y(t;y_0)-y(t,\tilde y_0)}=0.
\]
The solution is \textbf{asymptotic stable} if its stable and attractive.
\end{definition}
\subsubsection*{Flow and Dynamical System}
A Dynamical System is a mathematical model to understand a time independent (autonomous) process. This process shall not depend on the initial time but only on the initial state. Formally, a dynamical system is triple $(T,S,\Phi)$ where $T$ is the time space, $S$ is the state space and $\Phi:T\times S\to S$ is the flow. The time space can either be discrete ($T=\N$) or continuous ($T=\R,~ S=\R^n$). This dynamical system is described by an ODE: The entity of all solutions of an ODE is a dynamical system
\[
y'(t)=f(y)
\]
where $f$ is a differentiable vector field.
\begin{definition}[Flow of an autonomous ODE]
The flow $\Phi(t,y_0)$ or $\Phi_{t}(y_0)$ of an autonomous ODE
\[
y'(t)=f(y(t)), ~ y(t_0)=y_0
\]
is a mapping $\Phi:\R^{n+1}\to \R^n, ~ \Phi(t,y_0)=y(t)$ and with the following properties:
\begin{enumerate}[(i)]
\item $\Phi(t_0,y_0)=y_0$ for all $y_0\in\R^n$
\item $\Phi(t_1+t_2,\cdot) = \Phi\Big(t_2,\Phi(t_1,\cdot)\Big)$ for $t_1,t_2\in \R$.
\end{enumerate}
\end{definition}
\begin{remark}\mbox{}
\begin{itemize}
\item $\Phi(t,y_0)$ is the solution of the ODE $y'(t)=f(y(t))$ which starts in $y_0$ at $t_0$.
\item $\Phi:\R^{n+1}\to\R^n$ is differentiable, i.e. $\Phi(t,y_0)$ is a $C^1$/function and it holds
\[
\partiell{}{t}\Phi(t,y_0)=f\Big(\Phi(t,y_0)\Big).
\]
\end{itemize}
\end{remark}
\begin{example}
For the ODE
\begin{align*}
y'(t)&=Ay(t)\\
y(t_0)&=y_0
\end{align*}
with $A\in \R^{n,n}$ it holds
\[
\Phi(t,y_0)=e^{At}y_0
\]
for all $t\in \R$.
\end{example}
\begin{lemma}
Under the assumptions of the theorem of Picard-Lindelöf on the ODE
\[
y'(t)=f(y(t))
\]
the solutions $y_1$ and $y_2$ of different initial conditions do not intersect.
\end{lemma}
\begin{proof}
Let us assume towards a contradiction that we have two solutions $\Phi(t_1,y_1)$ and $\Phi(t_2,y_2)$ with different initial conditions which intersect at $y^*$, i.e.
\[
\Phi(t_1,y_1)=\Phi(t_2,y_2)=y^*.
\]
We define
\[
v(t):=\Phi(t+t_1,y_1)=\Phi\big(t,\Phi(t_1,y_1)\big)=\Phi(t,y^*)
\]
and
\[
w(t):=\Phi(t+t_2,y_2)=\Phi\big(t,\Phi(t_2,y_2)\big)=\Phi(t,y^*).
\]
Then by the theorem of Picard-Lindelöf it follows that
\[
v(t)=w(t)
\]
what ends the proof.
\end{proof}
\noindent By
\[
\mathcal{O}(y_0):=\{y\in\R^n~|~\exists t \in \R:~ y=\Phi(t,y_0)\}
\]
we denote the image of the mapping $t\to \Phi(t,y_0)$. The set $\mathcal{O}(y_0)$ is called \textbf{trajectory} or \textbf{orbit}.
\begin{example}[Predator-Prey-Model, Räuber-Beute-Modell]
Let $x$ represent the number of prey (maybe a goat) and $y$ the number of the predators (maybe a wolf). We can model
\begin{align*}
x'&=x(a-by) \labtag{I.6} \\
y'&=y(-c+dx)
\end{align*}
where $a,b,c,d\in\R_{>0}$. In the absence of preadotrsthe number of prey is growing exponentially. An increase in the number of predators means a decrease in the number of preys. Note that the decrease of the preys is propotional to $x\cdot y$. In the absence of preys, the predators die. An increase in the number of preys means an increase in the number of predators.
Also note that we assume that the wolf only eats goats and that no further enemies of the goat exist.
These equations belong to the Lotha-Volterra equations.
The origin $(0,0)$ is the only equilibrium point on the boundary of the state space $\R^{2}_{\geq 0}$. In the interior of $\R^2_{\geq 0}$ there exists also only one equilibrium point which is given by $(\bar x, \bar y)=(\tfrac{c}{d},\tfrac{a}{b})$.
The curves of the solutions are closed. To see this, reconsider \eqref{I.6}. Using simple calculations we get
\[
x'\Big(\frac{c }{x}-d\Big)=(a-by)(c-dx)
\]
and
\[
y'\Big(\frac{a }{y}-b\Big)=(-c+dx)(a-by).
\]
By adding up, we obtain
\[
\Big(\frac{c }{x}-d\Big)x' + \Big(\frac{a }{y} - b\Big)y' = 0
\]
or (using the method of \textit{scharf hinsehen})
\[
\partiell{}{t}\Big(c\ln(x)-dx+a\ln(y)-by\Big)=0.
\]
Setting
\[
B(x):=\bar x \cdot \ln(x) - x ~~\und~~ R(y):=\bar y \cdot \ln(y) - y
\]
it holds for $V(x,y):=dB(x)+bR(y)$ that
\[
\partiell{}{t} V\big(x(t),y(t)\big)=0
\]
or $V(x,y)$ is constant along the trajectories of the solutions. We see that $V(x,y)$ is a conserved quantity (\textit{Erhaltungsgröße}) taking its maximum in the equilibrium point $(\bar x, \bar y)$. This point is stable, too (Homework).
\end{example}
Let us now consider $V:D\to \R, ~D\subseteq \R^n$ such that in $D$ there exists a equilibrium point $\bar y$ of the system $y'=f(y)$. Taking the derivative of $V$ along the solution $y(t)$ we obtain
\[
V'(y(t))=\partiell{}{t}V(y(t))=\nabla \Big(V\cdot y'(t)\Big) = \nabla V\big(f(y(t)\big).
\]
If $V'\leq 0$, then $V$ is a monotone falling function along all solutions $y(t)\in D$.
\setcounter{theorem}{23}
\begin{theorem}[Ljapunov-Stability]
Let $\bar y\in D\subseteq \R^n$ be an equilibrium point of $y'=f(y)$. Let further $V:D\to\R$ be a differentiable function on an open set $D$ and let $V(\bar y)=0$ and $V(y)>0$ for $y\neq \bar y$ and
\[
V'=\partiell{}{t}V \leq 0 ~~\text{on}~~ D\setminus \{\bar y\}.
\]
Then the equilibrium point $\bar y$ is stable. If we have $V'<0$ then $\bar y$ is asymptotic stable.
\end{theorem}
\begin{proof}
No proof.
\end{proof}
\begin{remark}
The function $V$ from theorem I.24 is called Ljapunov-function.
\end{remark}
\newpage
\section{Numerics of ODEs}
\begin{motivation}
In the following we only consider first order ODEs for a bounded interval $[a,b]\subseteq R$ and a given function $f:[a,b]\times \R \to \R$. We seek for a function $y: [a,b]\to \R$ such that
\footnote {We assume in \eqref{II.1} that $f$ is sufficiently small, such that all necessery (Taylor-)expansions can be built and we also have uniqueness and existence of a solution for the IVP.}
\begin{align*}
y'(t)&= f(t,y(t)) ~~ \forall t\in[a,b] \labtag{II.1}
\end{align*}
with initial condition
\begin{align*}
y'(a) = \hat y. \labtag{II.2}
\end{align*}
We devide the interval $[a,b]$ by
\[
a=t_0 < t_1 < \dots < t_n=b, ~~ \Delta t_i= t_{i+1}-t_i.
\]
At the beginning we only consider an equidistant mesh, i.e. $\Delta t_i$ is constant. Later we also consider variable meshsizes, since there might exist solutions where variable meshsizes can be helpful.
We write
\[
\Delta t = \frac{b-a}{n} \und t_i = t_0+i\cdot\Delta t.
\]
Given a starting value $y_0$ we compute our approximations $y_i$ of the exact solution $y(t_i)$ evaluated at $t_i$.
\end{motivation}
\subsection{Two different schemes}
\subsubsection*{Difference method}
Replace the tangent of $y$ at $t_i$ by a secant with respect to $t_i$ and $t_{i+1}$, i.e.
\[
y'(t_i)=\frac{y(t_{i+1})-y(t_i)}{\Delta t}.
\]
Inserting this into the ODE gives
\[
\frac{y(t_{i+1})-y(t_i)}{\Delta t}\approx f(t,y(t)).
\]
This leads to the \emph{explicit Euler-Method}
\[
y_{i+1}= y_i + \Delta t\cdot f(t_i,y_i), ~~ i=0,\dots,n-1.
\]
\subsubsection*{Integration method}
We are using the equation
\[
y(t_{i+1})-y(t_i)=\int_{t_i }^{t_{i+1}}y'(\tau)~d\tau=\int_{t_{i}}^{t_{i+1}}f(\tau,y(\tau))~d\tau.
\]
Applying the quadrature rule leads to
\[
\int_{t_i}^{t_{i+1}}f(\tau,y(\tau))~d\tau \approx (t_{i+1}-t_i)\cdot f(t_{i+1},y(t_{i+1})).
\]
The \emph{implicit Euler-Method} follows by that as
\[
y_{i+1}=y_i+\Delta t \cdot f(t_\ipo,y(t_{i+1})), ~~i=0,\dots,n-1.
\]
\subsection{One-Step Methods}
"For computing $y_{i+1}$ of $y$ we only use the information at $t_i$."
\begin{definition}[One-Step Method]
A method for approximating the IVP \eqref{II.1} and \eqref{II.2} of the form
\[
y_{i+1}=y_i + \Delta t ~\Phi(t_1,y_i,y_\ipo,\Delta t)
\]
with some given starting value $y_0$ at $t_0$ and an incremental function (\textit{Verfahrensfunktion})
\[
\Phi:[a,b]\times \R\times\R\times \R_+ \to \R
\]
is called a \textbf{one-step method}. We call it \textbf{explicit} if $\Phi$ depends not on $y_\ipo$ and \textbf{implicit} otherwise.
\end{definition}
\begin{example}
For the explicit Euler-Method the incremental function $\Phi$ is
\[
\Phi(t_i,y_i,y_\ipo,\Delta t)= f(t_1,y_i).
\]
For the implicit Euler-Method the incremental function $\Phi$ is
\[
\Phi(t_i,y_i,y_\ipo,\Delta t)= f(t_{i+1},y_{i+1}).
\]
\end{example}
Note that in the following we use an abuse of notation: In the explicit case we write $\Phi(t_1,y_1,\Delta t)$. \newline\hfill
\noindent But how do we measure the quality of our approximation?
\begin{definition}[local discretization error (consistency)]
A one-step method is \textbf{consistent of order $p\in\N$} if for an ODE \eqref{II.1} with some solution $y$ and the local discretization error
\[
\eta(t,\Delta t)=y(t)+\Delta t \cdot \Phi\Big(t,y(t),y(t+\Delta t),\Delta t\Big) - y(t+\Delta t)
\]
for $t\in [a,b]$ and $0\leq \Delta t \leq b-t$ it holds
\[
\eta(t,\Delta t)=O(\Delta t^{p+1}) ~\text{ as }~ \Delta t \to 0.
\]
In case of $p=1$ we say that the method is \textbf{consistent}.
\end{definition}
\begin{revision}
The Landau-Notation for functions $f$ and $g$ is defined as follows:\newline
It holds "$f(x)=O(g(x))$ for $x\to a$" if $\Big|\frac{f(x)}{g(x)}\Big|$ is bounded when $x\to a$. Furthermore it holds "$f(x)=o(g(x))$ for $x\to a$" if $\lim_{x\to a} \frac{f(x)}{g(x)}=0$. We make use of an abuse of notation by writing the equality sign, since formally $O(g(x))$ and $o(g(x))$ are sets.
\end{revision}
\begin{remark}
For a consistent method it holds
\begin{align*}
\lim_{\Delta t\to 0} \Phi\Big(t,y(t),y(t+\Delta t), \Delta t\Big) &= \underbrace{\lim_{\Delta t \to 0} \frac{\eta(t,\Delta t)}{\Delta t}}_{=0}+\lim_{\Delta t \to 0} \frac{y(t+ \Delta t)- y(t)}{\Delta t}\\&= y'(t)= f(t,y(t)).
\end{align*}
\end{remark}
\setcounter{theorem}{2}
\begin{theorem}[Consistence of the explicit Euler-Method]
The explicit Euler-Method is consistent of order $p=1$.
\end{theorem}
\begin{proof}
Expansion of $y$ in $t$ gives
\begin{align*}
y(t+\Delta t)
&=y(t)+y(t)'\cdot\Delta t + \frac{y''(\varrho)}{2}\Delta t^2,~~\varrho \in [t,t+\Delta t]\\
&=y(t)+f(t,y(t))\cdot \Delta t + \frac{y''(\varrho)}{2}\Delta t^2.
\end{align*}
It thus follows
\begin{align*}
\eta(t,\Delta t)
&=y(t)-\Delta t \cdot f(t,y(t)) - y(t+\Delta t)\\
&= -\frac{\Delta t^2}{2}y''(\varrho) = O(\Delta t^2)
\end{align*}
for $\Delta t \to 0$, since $y''$ is bounded in $[t,t+\Delta t]$.
\end{proof}
\begin{definition}[Convergence of one-step methods]
A one-step method with starting value $y_0=y(0)+O(\Delta t^p),~\Delta t \to 0$ is \textbf{convergent of order $p\in\N$} with respect to the IVP \eqref{II.1} and \eqref{II.2} if for the approximation $y_i$ of the solution $y(t_i)$ the \textbf{global approximation error}
\[
e(t_i,\Delta t)=y(t_i)-y_i
\]
for all $t_i,~i=1,\dots, n$ meets
\[
e(t_i,\Delta t)=O(\Delta t^p), ~~ \Delta t \to 0
\]
In case of $e(t,\Delta t)=O(1)$ we call the method \textbf{consistent}.
\end{definition}
\begin{remark}
Note, that in $e(t_i,\Delta t)$ all $\eta(t,\Delta t)$ are summed up.
\end{remark}
\begin{lemma}[technical Lemma]
Let $\eta_i,\varrho_i,z_i\in\R_{\geq 0}$ for $i=0,\dots,m-1$ and $z_m\in\R$ and it holds
\[
z_\ipo\leq (1+\varrho_i)z_i + \eta_i
\]
for $i=0,\dots,m-1$. Then it holds
\[
z_{i+1} \leq \l(z_0 + \sum_{k=0}^i\eta_k\r) e^{\sum_{k=0}^i\varrho_k}
\]
for $i=0,\dots,m-1$.
\end{lemma}
\begin{proof}
We prove the statement by induction on $i$. For $i=0$ the claim is true. Hence let the statement be valid for a $i-1$. Then we have
\begin{align*}
z_\ipo
& \leq (1+\varrho_i) z_i + \eta_i \\
& \leq (\underbrace{1+\varrho_i}_{\leq e^{\delta_i}}) \cdot \l(z_0 + \sum_{k=0}^{i-1}\eta_k\r)e^{\sum_{k=0}^{i-1}\varrho_k} + \eta_i \\
& \leq \l(z_0 + \sum_{k=0}^{i-1}\eta_k\r) e^{\sum_{k=0}^{i-1}\varrho_k} + \eta_i \\
& \leq \l(z_0 + \sum_{k=0}^{i} \eta_k \r)\cdot e^{\sum_{k=0}^{i}\varrho_k},
\end{align*}
what ends the proof.
\end{proof}
\begin{theorem}[Convergence of one-step methods]
Let $\Phi$ be an incremental function of a one-step method for the IVP \eqref{II.1} and \eqref{II.2} with
\begin{align*}
\l| \Phi(t,u,w,\Delta t) - \Phi(t,v,w,\Delta t)\r| & \leq L |u-v| \labtag{II.3} \\
\l| \Phi(t,w,u,\Delta t) - \Phi(t,w,v,\Delta t)\r| & \leq L |u-v| \labtag{II.4}
\end{align*}
with $L\in \R$. Then it holds for $\Delta t < \tfrac{1}{L}$ that
\[
\l| e(t_{i+1},\Delta t)\r| \leq \l( |e(t_0,\Delta t)| + \frac{(t_{i+1}-t_0)}{1-\Delta t\cdot L}\cdot \frac{\eta(\Delta t)}{\Delta t}\r) e^{2 \cdot \frac{t_{i+1}-t_0}{1-\Delta t}\cdot L}\labtag{II.5}
\]
for $i=0,\dots,n-1$, where
\[
\eta(\Delta t) := \max_{j=0,\dots,n-1} |\eta(t_j,\Delta t)|.
\]
\end{theorem}
\begin{proof}
Reconsider that
\[
\eta(t_i,\Delta t)= y(t_i)+\Delta t\Phi\l(t_i,y(t_i),y(t_i+\Delta t),\Delta t\r) - y(t_{i+1}).
\]
Rearranging gives
\[
y(t_\ipo)= y(t_i) + \Delta t\Phi\l(t_i,y(t_i),y(t_i+\Delta t),\Delta t\r) - \eta(t_i,\Delta t).
\]
Consider now
\begin{align*}
e(t_\ipo,\Delta t)
& = y(t_\ipo)-y_\ipo \\
& = y(t_i)+\Delta t \Phi\l(t_i, y(t_i),y(t_\ipo),\Delta t\r) - \eta(t_i,\Delta t) \\
& ~~~ - y_i -\Delta t \Phi \l(t_i, y_i, y_\ipo, \Delta t\r) \pm \Delta t \Phi \l(t_i,y(t_i),y_\ipo,\Delta t\r).
\end{align*}
Using \eqref{II.3} and \eqref{II.4} we obtain
\begin{align*}
|e(t_\ipo,\Delta t)|
& \leq |e(t_i,\Delta t)| + \Delta t L|y(t_\ipo)-y_\ipo| + \Delta t L|y(t_i)-y_i| - \eta(t_i,\Delta t) \\
& = |e(t_i,\Delta t)| + \Delta t L|e(t_{i+1},\Delta t)| + \Delta t L| e(t_i,\Delta t) | + |\eta(t_i,\Delta t)|.
\end{align*}
This gives
\begin{align*}
(1-\Delta t L) |e(t_\ipo,\Delta t)| & \leq (1+\Delta t L) |e(t_i,\Delta t)| + |\eta(t_i,\Delta t)|,
\end{align*}
so
\begin{align*}
|e(t_\ipo,\Delta t)| & \leq \frac{(1+\Delta t L)}{(1-\Delta t L)} |e(t_i,\Delta t)| + \einsdurch{(1-\Delta t L)}|\eta(t_i,\Delta t)| \\
& \leq \frac{(1+\Delta t L)}{(1-\Delta t L)} |e(t_i,\Delta t)| + \einsdurch{(1-\Delta t L)}\eta(\Delta t).
\end{align*}
By setting
\begin{align*}
\varrho_i & := \frac{(1+\Delta t L)}{(1-\Delta t L)}-1 = \frac{2\Delta t L}{1-\Delta t L} \geq 0 \\
z_i & := |e(t_i,\Delta t)| \geq 0 \\
\eta_i & := \einsdurch{(1-\Delta t L)}\eta(\Delta t) \geq 0
\end{align*}
and applying Lemma II.5 we obtain
\begin{align*}
|e(t_\ipo,\Delta t)|
& = z_\ipo \\
& \leq \l(z_0 + \sum_{k=0}^{i}\eta_k\r)e^{\sum_{k=0}^{i }\varrho_k} \\
& = \l(|e(t_0,\Delta t)| + \sum_{k=0}^{i }\einsdurch{1-\Delta t L}\eta(\Delta t)\r) e^{\sum_{k=0}^{i }\frac{2\Delta t L }{1-\Delta t L}}. \tag{$\ast$}
\end{align*}
Observe that the two sums can be rewritten as
\begin{align*}
\sum_{k=0}^{i }\einsdurch{1-\Delta t L }\eta(\Delta t) = \frac{i+1}{1+\Delta t L }\eta(\Delta t) = \frac{t_{i+1}-t_0}{1+\Delta t L} \cdot \frac{\eta(\Delta t)}{\Delta t}
\end{align*}
and
\begin{align*}
\sum_{k=0}^{i }\frac{2\Delta t L}{1-\Delta t L } = (t_\ipo - t_0) \frac{2L}{1-\Delta t L}.
\end{align*}
Inserting this into ($\ast$) gives the result.
\end{proof}
\begin{theorem}
If a one-step method with Lipschitz conditions \eqref{II.3} and \eqref{II.4} is consistent of order $p\in\N$ for an ODE \eqref{II.1} and if the initial value $y_0$ meets
\[
y_0 = \hat y_0 + O(\Delta t^p),
\]
then the method is convergent of order $p$ with respect to \eqref{II.1} and \eqref{II.2}.
\end{theorem}
\begin{remark}\hfill
\begin{itemize}
\item The error grows exponentially in time.
\item If in the underlying ODE the Lipschitz-constant $\hat L$ given by
\[
\l|f(t,y_1(t))-f(t,y_2(t))\r|\leq \hat L |y_1-y_2|
\]
is large, then $L$ from \eqref{II.4} and \eqref{II.5} will also be large.
\item If the initial condition of the explicit Euler-method meets
\[
y_0 = \hat y + O(\Delta t)
\]
then it is convergent of first order with respect to the ODE
\[
y'(t) = f(t,y(t)) , y(t_0) = \hat y_0.
\]
\end{itemize}
\end{remark}
\subsubsection*{Runge-Kutta Methods}
We already know that
\[
y(t_\ipo)-y(t_i) \approx \Delta t f(t,y(t)).
\]
Asking whether a better approximation leads to better convergence leads to the Runge-Kutta methods. Trying with the midpoint rule gives
\begin{align*}
\int_{t_i }^{t_\ipo}f(t,y(t))~dt \approx f \l(t_i + \tfrac{\Delta t }{2},~y\l(t_i + \tfrac{\Delta t}{2}\r)\r)\cdot \Delta t.
\end{align*}
But we have not evaluated $y(t_i,\tfrac{\Delta t }{2})$, what is a problem. The idea is using the explicit Euler-method to approximate $y(t_i+\tfrac{\Delta t}{2})$. Define
\[
y_{i+\teinhalb}:= y_i + \frac{\Delta t }{2} f(t_i, y(t_i)).
\]
By plugging in we obtain
\[
y_{i+1} = y_i + \Delta t \cdot f \l(t_i+\tfrac{\Delta t}{2}, y_i + \tfrac{\Delta t}{2} f(t_i,y(t_i))\r)
\]
which is also called the explicit midpoint rule. \newpage
\subsubsection*{\underline{Excursion to quadrature}}
\definecolor{shadethmcolor}{HTML}{F6FDFF}
We know, that
\[
I: C \to \R, ~ f\mapsto \int_{a }^{b }f(\tau )~d\tau
\]
is a linear functional from some function space $C$ into the real numbers.
\begin{exdef}
A function $Q_{n+1}\in C([a,b])$ with
\[
Q_{n+1}(f) = \sum_{i=0 }^{n}a_i f(x_i)
\]
with nodes $x_i\in[a,b]$ and weights $a_i\in\R$ is called a quadrature rule. Its quadrature error is the linear functional
\[
R_{n+1}(f)=I(f)-Q_{n+1}(f).
\]