Skip to content

Latest commit

 

History

History
189 lines (147 loc) · 12.1 KB

query.md

File metadata and controls

189 lines (147 loc) · 12.1 KB
layout title nav_order parent grand_parent
default
Query using SPARQL
8
Python
Retrieve statistics value for a place

Query the Data Commons knowledge graph using SPARQL

Returns the results of running a graph query on the Data Commons knowledge graph using SPARQL{: target="_blank"}. Note that Data Commons is only able to support a limited subsection of SPARQL functionality at this time: specifically only the keywords ORDER BY, DISTINCT, and LIMIT.

Note: The Python SPARQL library currently only supports the V1 version of the API.

General information about the query() method

Signature:

datacommons.query(query_string, select=None)

Required arguments:

  • query_string: A SPARQL query string.

How to construct a call to the query() method

This method makes it possible to query the Data Commons knowledge graph using SPARQL. SPARQL is a query language developed to retrieve data from websites. It leverages the graph structure innate in the data it queries to return specific information to an end user. For more information on assembling SPARQL queries, check out the Wikipedia page about SPARQL{: target="_blank"} and the W3C specification information{: target="_blank"}.

This method accepts the additional optional argument select. This function selects rows to be returned by query. Under the hood, the select function examines a row in the results of executing query_string and returns True if and only if the row is to be returned by query. The row passed in as an argument is represented as a dict that maps a query variable in query_string to its value in the given row.

NOTE:

  • In the query, each variable should have a typeOf condition, e.g. "?var typeOf City .".

What to expect in the function return

A correct response will always look like this:

[
  {
    "<field name>": "<field value>",
    ...
  },
 ...
]

The response contains an array of dictionaries, each corresponding to one node matching the conditions of the query. Each dictionary's keys match the variables in the query SELECT clause, and the values in the dictionaries are those associated to the given node's query-specified properties.

Examples and error responses

The following examples and error responses, along with explanations and fixes for the errors, are available in this Python notebook{: target="_blank"}.

Example 1: Retrieve the name of the state associated with DCID geoId/06.

>>> geoId06_name_query = 'SELECT ?name ?dcid WHERE { ?a typeOf Place . ?a name ?name . ?a dcid ("geoId/06" "geoId/21" "geoId/24") . ?a dcid ?dcid }'
>>> datacommons.query(geoId06_name_query)
[{'?name': 'Kentucky', '?dcid': 'geoId/21'}, {'?name': 'California', '?dcid': 'geoId/06'}, {'?name': 'Maryland', '?dcid': 'geoId/24'}]

Example 2: Retrieve a list of ten biological specimens in reverse alphabetical order.

>>> bio_specimens_reverse_alphabetical_order_query = 'SELECT ?name WHERE { ?biologicalSpecimen typeOf BiologicalSpecimen . ?biologicalSpecimen name ?name } ORDER BY DESC(?name) LIMIT 10'
>>> datacommons.query(bio_specimens_reverse_alphabetical_order_query)
[{'?name': 'x Triticosecale'}, {'?name': 'x Silene'}, {'?name': 'x Silene'}, {'?name': 'x Silene'}, {'?name': 'x Pseudelymus saxicola (Scribn. & J.G.Sm.) Barkworth & D.R.Dewey'}, {'?name': 'x Pseudelymus saxicola (Scribn. & J.G.Sm.) Barkworth & D.R.Dewey'}, {'?name': 'x Pseudelymus saxicola (Scribn. & J.G.Sm.) Barkworth & D.R.Dewey'}, {'?name': 'x Pseudelymus saxicola (Scribn. & J.G.Sm.) Barkworth & D.R.Dewey'}, {'?name': 'x Pseudelymus saxicola (Scribn. & J.G.Sm.) Barkworth & D.R.Dewey'}, {'?name': 'x Pseudelymus saxicola (Scribn. & J.G.Sm.) Barkworth & D.R.Dewey'}]

Example 3: Retrieve a list of GNI observations by country.

>>> gni_by_country_query = 'SELECT ?observation ?place WHERE { ?observation typeOf StatVarObservation . ?observation variableMeasured Amount_EconomicActivity_GrossNationalIncome_PurchasingPowerParity_PerCapita . ?observation observationAbout ?place . ?place typeOf Country . } ORDER BY ASC (?place) LIMIT 10'
>>> datacommons.query(gni_by_country_query)
[{'?observation': 'dc/o/syrpc3m8q34z7', '?place': 'country/ABW'}, {'?observation': 'dc/o/bqtfmc351v0f2', '?place': 'country/ABW'}, {'?observation': 'dc/o/md36fx6ty4d64', '?place': 'country/ABW'}, {'?observation': 'dc/o/bm28zvchsyf4b', '?place': 'country/ABW'}, {'?observation': 'dc/o/3nleez1feevw6', '?place': 'country/ABW'}, {'?observation': 'dc/o/x2yg38d0xecnf', '?place': 'country/ABW'}, {'?observation': 'dc/o/7swdqf6yjdyw8', '?place': 'country/ABW'}, {'?observation': 'dc/o/yqmsmbx1qskfg', '?place': 'country/ABW'}, {'?observation': 'dc/o/6hlhrz3k8p5wf', '?place': 'country/ABW'}, {'?observation': 'dc/o/txfw505ydg629', '?place': 'country/ABW'}]

Example 4: Retrieve a sample list of observations with the unit InternationalDollar.

>>> internationalDollar_obs_query = 'SELECT ?observation WHERE {   ?observation typeOf StatVarObservation .   ?observation unit InternationalDollar  } LIMIT 10'
>>> datacommons.query(internationalDollar_obs_query)
[{'?observation': 'dc/o/s3gzszzvj34f1'}, {'?observation': 'dc/o/gd41m7qym86d4'}, {'?observation': 'dc/o/wq62twxx902p4'}, {'?observation': 'dc/o/d93kzvns8sq4c'}, {'?observation': 'dc/o/6s741lstdqrg4'}, {'?observation': 'dc/o/2kcq1xjkmrzmd'}, {'?observation': 'dc/o/ced6jejwv224f'}, {'?observation': 'dc/o/q31my0dmcryzd'}, {'?observation': 'dc/o/96frt9w0yjwxf'}, {'?observation': 'dc/o/rvjz5xn9mlg73'}]

Example 5: Retrieve a list of ten distinct annual estimates of life expectancy, along with the year of estimation, for forty-seven-year-old Hungarians.

>>> life_expectancy_query = 'SELECT DISTINCT ?LifeExpectancy ?year WHERE { ?o typeOf StatVarObservation . ?o variableMeasured LifeExpectancy_Person_47Years . ?o observationAbout country/HUN . ?o value ?LifeExpectancy . ?o observationDate ?year } ORDER BY ASC(?LifeExpectancy) LIMIT 10'
>>> datacommons.query(life_expectancy_query)
[{'?LifeExpectancy': '26.4', '?year': '1993'}, {'?LifeExpectancy': '26.5', '?year': '1992'}, {'?LifeExpectancy': '26.7', '?year': '1990'}, {'?LifeExpectancy': '26.7', '?year': '1994'}, {'?LifeExpectancy': '26.8', '?year': '1991'}, {'?LifeExpectancy': '26.9', '?year': '1995'}, {'?LifeExpectancy': '27.2', '?year': '1996'}, {'?LifeExpectancy': '27.4', '?year': '1999'}, {'?LifeExpectancy': '27.5', '?year': '1997'}, {'?LifeExpectancy': '27.5', '?year': '1998'}]

Example 6: Use the select function to filter returns based on name.

>>> names_for_places_query = 'SELECT ?name ?dcid WHERE {  ?a typeOf Place .  ?a name ?name .  ?a dcid ("geoId/06" "geoId/21" "geoId/24") .  ?a dcid ?dcid }'
>>> maryland_selector = lambda row: row['?name'] == 'Maryland'
>>> result = datacommons.query(names_for_places_query, select=maryland_selector)
>>> for r in result:
...     print(r)
...
{'?name': 'Maryland', '?dcid': 'geoId/24'}

Error response 1: Malformed SPARQL query

>>> gni_by_country_query = 'SELECT ?observation WHERE { ?observation typeOf StatVarObservation . ?observation variableMeasured Amount_EconomicActivity_GrossNationalIncome_PurchasingPowerParity_PerCapita . ?observation observationAbout ?place . ?place typeOf Country . } ORDER BY ASC (?place) LIMIT 10'
>>> datacommons.query(gni_by_country_query)
Traceback (most recent call last):
  File "/home/porpentina/miniconda3/lib/python3.7/site-packages/datacommons/query.py", line 102, in query
    res = six.moves.urllib.request.urlopen(req)
  File "/home/porpentina/miniconda3/lib/python3.7/urllib/request.py", line 222, in urlopen
    return opener.open(url, data, timeout)
  File "/home/porpentina/miniconda3/lib/python3.7/urllib/request.py", line 531, in open
    response = meth(req, response)
  File "/home/porpentina/miniconda3/lib/python3.7/urllib/request.py", line 641, in http_response
    'http', request, response, code, msg, hdrs)
  File "/home/porpentina/miniconda3/lib/python3.7/urllib/request.py", line 569, in error
    return self._call_chain(*args)
  File "/home/porpentina/miniconda3/lib/python3.7/urllib/request.py", line 503, in _call_chain
    result = func(*args)
  File "/home/porpentina/miniconda3/lib/python3.7/urllib/request.py", line 649, in http_error_default
    raise HTTPError(req.full_url, code, msg, hdrs, fp)
urllib.error.HTTPError: HTTP Error 500: Internal Server Error

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "/home/porpentina/miniconda3/lib/python3.7/site-packages/datacommons/query.py", line 104, in query
    raise ValueError('Response error {}:\n{}'.format(e.code, e.read()))
ValueError: Response error 500:
b'{\n "code": 2,\n "message": "googleapi: Error 400: Unrecognized name: place; Did you mean name? at [1:802], invalidQuery",\n "details": [\n  {\n   "@type": "type.googleapis.com/google.rpc.DebugInfo",\n   "stackEntries": [],\n   "detail": "internal"\n  }\n ]\n}\n'

Error response 2: Malformed SPARQL query string

>>> gni_by_country_query = 'SELECT ?observation WHERE { ?observation typeOf StatVarObservation . ?observation variableMeasured Amount_EconomicActivity_GrossNationalIncome_PurchasingPowerParity_PerCapita . ?observation observationAbout ?place . ?place typeOf Country . } ORDER BY ASC (?place) LIMIT 10'
>>> datacommons.query(gni_by_country_query)
Traceback (most recent call last):
  File "/home/porpentina/miniconda3/lib/python3.7/site-packages/datacommons/query.py", line 102, in query
    res = six.moves.urllib.request.urlopen(req)
  File "/home/porpentina/miniconda3/lib/python3.7/urllib/request.py", line 222, in urlopen
    return opener.open(url, data, timeout)
  File "/home/porpentina/miniconda3/lib/python3.7/urllib/request.py", line 531, in open
    response = meth(req, response)
  File "/home/porpentina/miniconda3/lib/python3.7/urllib/request.py", line 641, in http_response
    'http', request, response, code, msg, hdrs)
  File "/home/porpentina/miniconda3/lib/python3.7/urllib/request.py", line 569, in error
    return self._call_chain(*args)
  File "/home/porpentina/miniconda3/lib/python3.7/urllib/request.py", line 503, in _call_chain
    result = func(*args)
  File "/home/porpentina/miniconda3/lib/python3.7/urllib/request.py", line 649, in http_error_default
    raise HTTPError(req.full_url, code, msg, hdrs, fp)
urllib.error.HTTPError: HTTP Error 500: Internal Server Error

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "/home/porpentina/miniconda3/lib/python3.7/site-packages/datacommons/query.py", line 104, in query
    raise ValueError('Response error {}:\n{}'.format(e.code, e.read()))
ValueError: Response error 500:
b'{\n "code": 2,\n "message": "googleapi: Error 400: Unrecognized name: place; Did you mean name? at [1:802], invalidQuery",\n "details": [\n  {\n   "@type": "type.googleapis.com/google.rpc.DebugInfo",\n   "stackEntries": [],\n   "detail": "internal"\n  }\n ]\n}\n'
>>> gni_by_country_query = 'SELECT ?observation WHERE { ?observation typeOf StatVarObservation . \\\\\ ?observation variableMeasured Amount_EconomicActivity_GrossNationalIncome_PurchasingPowerParity_PerCapita . ?observation observationAbout ?place . ?place typeOf Country . } ORDER BY ASC (?place) LIMIT 10'

Error response 3: Bad selector

>>> names_for_places_query = 'SELECT ?name ?dcid WHERE {  ?a typeOf Place .  ?a name ?name .  ?a dcid ("geoId/06" "geoId/21" "geoId/24") .  ?a dcid ?dcid }'
>>> bad_selector = lambda row: row['?earthquake'] == 'Nonexistent'
>>> result = datacommons.query(names_for_places_query, select=bad_selector)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "/home/porpentina/miniconda3/lib/python3.7/site-packages/datacommons/query.py", line 127, in query
    if select is None or select(row_map):
  File "<stdin>", line 1, in <lambda>
KeyError: '?earthquake'