-
Notifications
You must be signed in to change notification settings - Fork 222
/
Copy pathutils.py
800 lines (637 loc) · 27.9 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Copyright (C) 2010 Radim Rehurek <[email protected]>
# Licensed under the GNU LGPL v2.1 - http://www.gnu.org/licenses/lgpl.html
"""
This module contains various general utility functions.
"""
from __future__ import with_statement
import logging
logger = logging.getLogger('gensim.utils')
try:
from html.entities import name2codepoint as n2cp
except ImportError:
from htmlentitydefs import name2codepoint as n2cp
try:
import cPickle as _pickle
except ImportError:
import pickle as _pickle
import re
import unicodedata
import os
import random
import itertools
import tempfile
from functools import wraps # for `synchronous` function lock
import multiprocessing
import shutil
import sys
import traceback
from contextlib import contextmanager
import numpy
import scipy.sparse
if sys.version_info[0] >= 3:
unicode = str
from six import iteritems, u, string_types
from six.moves import xrange
try:
from pattern.en import parse
logger.info("'pattern' package found; utils.lemmatize() is available for English")
HAS_PATTERN = True
except ImportError:
HAS_PATTERN = False
PAT_ALPHABETIC = re.compile('(((?![\d])\w)+)', re.UNICODE)
RE_HTML_ENTITY = re.compile(r'&(#?)(x?)(\w+);', re.UNICODE)
def synchronous(tlockname):
"""
A decorator to place an instance-based lock around a method.
Adapted from http://code.activestate.com/recipes/577105-synchronization-decorator-for-class-methods/
"""
def _synched(func):
@wraps(func)
def _synchronizer(self, *args, **kwargs):
tlock = getattr(self, tlockname)
logger.debug("acquiring lock %r for %s" % (tlockname, func.func_name))
with tlock: # use lock as a context manager to perform safe acquire/release pairs
logger.debug("acquired lock %r for %s" % (tlockname, func.func_name))
result = func(self, *args, **kwargs)
logger.debug("releasing lock %r for %s" % (tlockname, func.func_name))
return result
return _synchronizer
return _synched
class NoCM(object):
def acquire(self):
pass
def release(self):
pass
def __enter__(self):
pass
def __exit__(self, type, value, traceback):
pass
nocm = NoCM()
@contextmanager
def file_or_filename(input):
"""
Return a file-like object ready to be read from the beginning. `input` is either
a filename (gz/bz2 also supported) or a file-like object supporting seek.
"""
if isinstance(input, string_types):
# input was a filename: open as text file
with smart_open(input) as fin:
yield fin
else:
input.seek(0)
yield input
def deaccent(text):
"""
Remove accentuation from the given string. Input text is either a unicode string or utf8 encoded bytestring.
Return input string with accents removed, as unicode.
>>> deaccent("Šéf chomutovských komunistů dostal poštou bílý prášek")
u'Sef chomutovskych komunistu dostal postou bily prasek'
"""
if not isinstance(text, unicode):
# assume utf8 for byte strings, use default (strict) error handling
text = text.decode('utf8')
norm = unicodedata.normalize("NFD", text)
result = u('').join(ch for ch in norm if unicodedata.category(ch) != 'Mn')
return unicodedata.normalize("NFC", result)
def copytree_hardlink(source, dest):
"""
Recursively copy a directory ala shutils.copytree, but hardlink files
instead of copying. Available on UNIX systems only.
"""
copy2 = shutil.copy2
try:
shutil.copy2 = os.link
shutil.copytree(source, dest)
finally:
shutil.copy2 = copy2
def tokenize(text, lowercase=False, deacc=False, errors="strict", to_lower=False, lower=False):
"""
Iteratively yield tokens as unicode strings, optionally also lowercasing them
and removing accent marks.
Input text may be either unicode or utf8-encoded byte string.
The tokens on output are maximal contiguous sequences of alphabetic
characters (no digits!).
>>> list(tokenize('Nic nemůže letět rychlostí vyšší, než 300 tisíc kilometrů za sekundu!', deacc = True))
[u'Nic', u'nemuze', u'letet', u'rychlosti', u'vyssi', u'nez', u'tisic', u'kilometru', u'za', u'sekundu']
"""
lowercase = lowercase or to_lower or lower
text = to_unicode(text, errors=errors)
if lowercase:
text = text.lower()
if deacc:
text = deaccent(text)
for match in PAT_ALPHABETIC.finditer(text):
yield match.group()
def simple_preprocess(doc, deacc=False, min_len=2, max_len=15):
"""
Convert a document into a list of tokens.
This lowercases, tokenizes, stems, normalizes etc. -- the output are final
tokens = unicode strings, that won't be processed any further.
"""
tokens = [token for token in tokenize(doc, lower=True, deacc=deacc, errors='ignore')
if min_len <= len(token) <= max_len and not token.startswith('_')]
return tokens
def any2utf8(text, errors='strict', encoding='utf8'):
"""Convert a string (unicode or bytestring in `encoding`), to bytestring in utf8."""
if isinstance(text, unicode):
return text.encode('utf8')
# do bytestring -> unicode -> utf8 full circle, to ensure valid utf8
return unicode(text, encoding, errors=errors).encode('utf8')
to_utf8 = any2utf8
def any2unicode(text, encoding='utf8', errors='strict'):
"""Convert a string (bytestring in `encoding` or unicode), to unicode."""
if isinstance(text, unicode):
return text
return unicode(text, encoding, errors=errors)
to_unicode = any2unicode
class SaveLoad(object):
"""
Objects which inherit from this class have save/load functions, which un/pickle
them to disk.
This uses pickle for de/serializing, so objects must not contain
unpicklable attributes, such as lambda functions etc.
"""
@classmethod
def load(cls, fname, mmap=None):
"""
Load a previously saved object from file (also see `save`).
If the object was saved with large arrays stored separately, you can load
these arrays via mmap (shared memory) using `mmap='r'`. Default: don't use
mmap, load large arrays as normal objects.
"""
logger.info("loading %s object from %s" % (cls.__name__, fname))
subname = lambda suffix: fname + '.' + suffix + '.npy'
obj = unpickle(fname)
for attrib in getattr(obj, '__numpys', []):
logger.info("loading %s from %s with mmap=%s" % (attrib, subname(attrib), mmap))
setattr(obj, attrib, numpy.load(subname(attrib), mmap_mode=mmap))
for attrib in getattr(obj, '__scipys', []):
logger.info("loading %s from %s with mmap=%s" % (attrib, subname(attrib), mmap))
sparse = unpickle(subname(attrib))
sparse.data = numpy.load(subname(attrib) + '.data.npy', mmap_mode=mmap)
sparse.indptr = numpy.load(subname(attrib) + '.indptr.npy', mmap_mode=mmap)
sparse.indices = numpy.load(subname(attrib) + '.indices.npy', mmap_mode=mmap)
setattr(obj, attrib, sparse)
for attrib in getattr(obj, '__ignoreds', []):
logger.info("setting ignored attribute %s to None" % (attrib))
setattr(obj, attrib, None)
return obj
def save(self, fname, separately=None, sep_limit=10 * 1024**2, ignore=frozenset()):
"""
Save the object to file (also see `load`).
If `separately` is None, automatically detect large numpy/scipy.sparse arrays
in the object being stored, and store them into separate files. This avoids
pickle memory errors and allows mmap'ing large arrays back on load efficiently.
You can also set `separately` manually, in which case it must be a list of attribute
names to be stored in separate files. The automatic check is not performed in this case.
`ignore` is a set of attribute names to *not* serialize (file handles, caches etc). On
subsequent load() these attributes will be set to None.
"""
logger.info("saving %s object under %s, separately %s" % (self.__class__.__name__, fname, separately))
subname = lambda suffix: fname + '.' + suffix + '.npy'
tmp = {}
if separately is None:
separately = []
for attrib, val in iteritems(self.__dict__):
if isinstance(val, numpy.ndarray) and val.size >= sep_limit:
separately.append(attrib)
elif isinstance(val, (scipy.sparse.csr_matrix, scipy.sparse.csc_matrix)) and val.nnz >= sep_limit:
separately.append(attrib)
# whatever's in `separately` or `ignore` at this point won't get pickled anymore
for attrib in separately + list(ignore):
if hasattr(self, attrib):
tmp[attrib] = getattr(self, attrib)
delattr(self, attrib)
try:
numpys, scipys, ignoreds = [], [], []
for attrib, val in iteritems(tmp):
if isinstance(val, numpy.ndarray) and attrib not in ignore:
numpys.append(attrib)
logger.info("storing numpy array '%s' to %s" % (attrib, subname(attrib)))
numpy.save(subname(attrib), numpy.ascontiguousarray(val))
elif isinstance(val, (scipy.sparse.csr_matrix, scipy.sparse.csc_matrix)) and attrib not in ignore:
scipys.append(attrib)
logger.info("storing scipy.sparse array '%s' under %s" % (attrib, subname(attrib)))
numpy.save(subname(attrib) + '.data.npy', val.data)
numpy.save(subname(attrib) + '.indptr.npy', val.indptr)
numpy.save(subname(attrib) + '.indices.npy', val.indices)
data, indptr, indices = val.data, val.indptr, val.indices
val.data, val.indptr, val.indices = None, None, None
try:
pickle(val, subname(attrib)) # store array-less object
finally:
val.data, val.indptr, val.indices = data, indptr, indices
else:
logger.info("not storing attribute %s" % (attrib))
ignoreds.append(attrib)
self.__dict__['__numpys'] = numpys
self.__dict__['__scipys'] = scipys
self.__dict__['__ignoreds'] = ignoreds
pickle(self, fname)
finally:
# restore the attributes
for attrib, val in iteritems(tmp):
setattr(self, attrib, val)
#endclass SaveLoad
def identity(p):
"""Identity fnc, for flows that don't accept lambda (picking etc)."""
return p
def get_max_id(corpus):
"""
Return the highest feature id that appears in the corpus.
For empty corpora (no features at all), return -1.
"""
maxid = -1
for document in corpus:
maxid = max(maxid, max([-1] + [fieldid for fieldid, _ in document])) # [-1] to avoid exceptions from max(empty)
return maxid
class FakeDict(object):
"""
Objects of this class act as dictionaries that map integer->str(integer), for
a specified range of integers <0, num_terms).
This is meant to avoid allocating real dictionaries when `num_terms` is huge, which
is a waste of memory.
"""
def __init__(self, num_terms):
self.num_terms = num_terms
def __str__(self):
return "FakeDict(num_terms=%s)" % self.num_terms
def __getitem__(self, val):
if 0 <= val < self.num_terms:
return str(val)
raise ValueError("internal id out of bounds (%s, expected <0..%s))" %
(val, self.num_terms))
def iteritems(self):
for i in xrange(self.num_terms):
yield i, str(i)
def keys(self):
"""
Override the dict.keys() function, which is used to determine the maximum
internal id of a corpus = the vocabulary dimensionality.
HACK: To avoid materializing the whole `range(0, self.num_terms)`, this returns
the highest id = `[self.num_terms - 1]` only.
"""
return [self.num_terms - 1]
def __len__(self):
return self.num_terms
def get(self, val, default=None):
if 0 <= val < self.num_terms:
return str(val)
return default
def dict_from_corpus(corpus):
"""
Scan corpus for all word ids that appear in it, then construct and return a mapping
which maps each ``wordId -> str(wordId)``.
This function is used whenever *words* need to be displayed (as opposed to just
their ids) but no wordId->word mapping was provided. The resulting mapping
only covers words actually used in the corpus, up to the highest wordId found.
"""
num_terms = 1 + get_max_id(corpus)
id2word = FakeDict(num_terms)
return id2word
def is_corpus(obj):
"""
Check whether `obj` is a corpus. Return (is_corpus, new) 2-tuple, where
`new is obj` if `obj` was an iterable, or `new` yields the same sequence as
`obj` if it was an iterator.
`obj` is a corpus if it supports iteration over documents, where a document
is in turn anything that acts as a sequence of 2-tuples (int, float).
Note: An "empty" corpus (empty input sequence) is ambiguous, so in this case the
result is forcefully defined as `is_corpus=False`.
"""
try:
if 'Corpus' in obj.__class__.__name__: # the most common case, quick hack
return True, obj
except:
pass
try:
if hasattr(obj, 'next'):
# the input is an iterator object, meaning once we call next()
# that element could be gone forever. we must be careful to put
# whatever we retrieve back again
doc1 = next(obj)
obj = itertools.chain([doc1], obj)
else:
doc1 = next(iter(obj)) # empty corpus is resolved to False here
if len(doc1) == 0: # sparse documents must have a __len__ function (list, tuple...)
return True, obj # the first document is empty=>assume this is a corpus
id1, val1 = next(iter(doc1)) # if obj is a numpy array, it resolves to False here
id1, val1 = int(id1), float(val1) # must be a 2-tuple (integer, float)
except:
return False, obj
return True, obj
def get_my_ip():
"""
Try to obtain our external ip (from the pyro nameserver's point of view)
This tries to sidestep the issue of bogus `/etc/hosts` entries and other
local misconfigurations, which often mess up hostname resolution.
If all else fails, fall back to simple `socket.gethostbyname()` lookup.
"""
import socket
try:
import Pyro4
# we know the nameserver must exist, so use it as our anchor point
ns = Pyro4.naming.locateNS()
s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
s.connect((ns._pyroUri.host, ns._pyroUri.port))
result, port = s.getsockname()
except:
try:
# see what ifconfig says about our default interface
import commands
result = commands.getoutput("ifconfig").split("\n")[1].split()[1][5:]
if len(result.split('.')) != 4:
raise Exception()
except:
# give up, leave the resolution to gethostbyname
result = socket.gethostbyname(socket.gethostname())
return result
class RepeatCorpus(SaveLoad):
"""
Used in the tutorial on distributed computing and likely not useful anywhere else.
"""
def __init__(self, corpus, reps):
"""
Wrap a `corpus` as another corpus of length `reps`. This is achieved by
repeating documents from `corpus` over and over again, until the requested
length `len(result)==reps` is reached. Repetition is done
on-the-fly=efficiently, via `itertools`.
>>> corpus = [[(1, 0.5)], []] # 2 documents
>>> list(RepeatCorpus(corpus, 5)) # repeat 2.5 times to get 5 documents
[[(1, 0.5)], [], [(1, 0.5)], [], [(1, 0.5)]]
"""
self.corpus = corpus
self.reps = reps
def __iter__(self):
return itertools.islice(itertools.cycle(self.corpus), self.reps)
def decode_htmlentities(text):
"""
Decode HTML entities in text, coded as hex, decimal or named.
Adapted from http://github.com/sku/python-twitter-ircbot/blob/321d94e0e40d0acc92f5bf57d126b57369da70de/html_decode.py
>>> u = u'E tu vivrai nel terrore - L'aldilà (1981)'
>>> print(decode_htmlentities(u).encode('UTF-8'))
E tu vivrai nel terrore - L'aldilà (1981)
>>> print(decode_htmlentities("l'eau"))
l'eau
>>> print(decode_htmlentities("foo < bar"))
foo < bar
"""
def substitute_entity(match):
ent = match.group(3)
if match.group(1) == "#":
# decoding by number
if match.group(2) == '':
# number is in decimal
return unichr(int(ent))
elif match.group(2) == 'x':
# number is in hex
return unichr(int('0x' + ent, 16))
else:
# they were using a name
cp = n2cp.get(ent)
if cp:
return unichr(cp)
else:
return match.group()
try:
return RE_HTML_ENTITY.sub(substitute_entity, text)
except:
# in case of errors, return input
# e.g., ValueError: unichr() arg not in range(0x10000) (narrow Python build)
return text
def chunkize_serial(iterable, chunksize, as_numpy=False):
"""
Return elements from the iterable in `chunksize`-ed lists. The last returned
element may be smaller (if length of collection is not divisible by `chunksize`).
>>> print(list(grouper(range(10), 3)))
[[0, 1, 2], [3, 4, 5], [6, 7, 8], [9]]
"""
import numpy
it = iter(iterable)
while True:
if as_numpy:
# convert each document to a 2d numpy array (~6x faster when transmitting
# chunk data over the wire, in Pyro)
wrapped_chunk = [[numpy.array(doc) for doc in itertools.islice(it, int(chunksize))]]
else:
wrapped_chunk = [list(itertools.islice(it, int(chunksize)))]
if not wrapped_chunk[0]:
break
# memory opt: wrap the chunk and then pop(), to avoid leaving behind a dangling reference
yield wrapped_chunk.pop()
grouper = chunkize_serial
class InputQueue(multiprocessing.Process):
def __init__(self, q, corpus, chunksize, maxsize, as_numpy):
super(InputQueue, self).__init__()
self.q = q
self.maxsize = maxsize
self.corpus = corpus
self.chunksize = chunksize
self.as_numpy = as_numpy
def run(self):
if self.as_numpy:
import numpy # don't clutter the global namespace with a dependency on numpy
it = iter(self.corpus)
while True:
chunk = itertools.islice(it, self.chunksize)
if self.as_numpy:
# HACK XXX convert documents to numpy arrays, to save memory.
# This also gives a scipy warning at runtime:
# "UserWarning: indices array has non-integer dtype (float64)"
wrapped_chunk = [[numpy.asarray(doc) for doc in chunk]]
else:
wrapped_chunk = [list(chunk)]
if not wrapped_chunk[0]:
self.q.put(None, block=True)
break
try:
qsize = self.q.qsize()
except NotImplementedError:
qsize = '?'
logger.debug("prepared another chunk of %i documents (qsize=%s)" %
(len(wrapped_chunk[0]), qsize))
self.q.put(wrapped_chunk.pop(), block=True)
#endclass InputQueue
if os.name == 'nt':
logger.info("detected Windows; aliasing chunkize to chunkize_serial")
def chunkize(corpus, chunksize, maxsize=0, as_numpy=False):
for chunk in chunkize_serial(corpus, chunksize, as_numpy=as_numpy):
yield chunk
else:
def chunkize(corpus, chunksize, maxsize=0, as_numpy=False):
"""
Split a stream of values into smaller chunks.
Each chunk is of length `chunksize`, except the last one which may be smaller.
A once-only input stream (`corpus` from a generator) is ok, chunking is done
efficiently via itertools.
If `maxsize > 1`, don't wait idly in between successive chunk `yields`, but
rather keep filling a short queue (of size at most `maxsize`) with forthcoming
chunks in advance. This is realized by starting a separate process, and is
meant to reduce I/O delays, which can be significant when `corpus` comes
from a slow medium (like harddisk).
If `maxsize==0`, don't fool around with parallelism and simply yield the chunksize
via `chunkize_serial()` (no I/O optimizations).
>>> for chunk in chunkize(range(10), 4): print(chunk)
[0, 1, 2, 3]
[4, 5, 6, 7]
[8, 9]
"""
assert chunksize > 0
if maxsize > 0:
q = multiprocessing.Queue(maxsize=maxsize)
worker = InputQueue(q, corpus, chunksize, maxsize=maxsize, as_numpy=as_numpy)
worker.daemon = True
worker.start()
while True:
chunk = [q.get(block=True)]
if chunk[0] is None:
break
yield chunk.pop()
else:
for chunk in chunkize_serial(corpus, chunksize, as_numpy=as_numpy):
yield chunk
def make_closing(base, **attrs):
"""
Add support for `with Base(attrs) as fout:` to the base class if it's missing.
The base class' `close()` method will be called on context exit, to always close the file properly.
This is needed for gzip.GzipFile, bz2.BZ2File etc in older Pythons (<=2.6), which otherwise
raise "AttributeError: GzipFile instance has no attribute '__exit__'".
"""
if not hasattr(base, '__enter__'):
attrs['__enter__'] = lambda self: self
if not hasattr(base, '__exit__'):
attrs['__exit__'] = lambda self, type, value, traceback: self.close()
return type('Closing' + base.__name__, (base, object), attrs)
def smart_open(fname, mode='rb'):
_, ext = os.path.splitext(fname)
if ext == '.bz2':
from bz2 import BZ2File
return make_closing(BZ2File)(fname, mode)
if ext == '.gz':
from gzip import GzipFile
return make_closing(GzipFile)(fname, mode)
return open(fname, mode)
def pickle(obj, fname, protocol=-1):
"""Pickle object `obj` to file `fname`."""
with smart_open(fname, 'wb') as fout: # 'b' for binary, needed on Windows
_pickle.dump(obj, fout, protocol=protocol)
def unpickle(fname):
"""Load pickled object from `fname`"""
with smart_open(fname) as f:
return _pickle.load(f)
def revdict(d):
"""
Reverse a dictionary mapping.
When two keys map to the same value, only one of them will be kept in the
result (which one is kept is arbitrary).
"""
return dict((v, k) for (k, v) in iteritems(d))
def toptexts(query, texts, index, n=10):
"""
Debug fnc to help inspect the top `n` most similar documents (according to a
similarity index `index`), to see if they are actually related to the query.
`texts` is any object that can return something insightful for each document
via `texts[docid]`, such as its fulltext or snippet.
Return a list of 3-tuples (docid, doc's similarity to the query, texts[docid]).
"""
sims = index[query] # perform a similarity query against the corpus
sims = sorted(enumerate(sims), key=lambda item: -item[1])
result = []
for topid, topcosine in sims[:n]: # only consider top-n most similar docs
result.append((topid, topcosine, texts[topid]))
return result
def randfname(prefix='gensim'):
randpart = hex(random.randint(0, 0xffffff))[2:]
return os.path.join(tempfile.gettempdir(), prefix + randpart)
def upload_chunked(server, docs, chunksize=1000, preprocess=None):
"""
Memory-friendly upload of documents to a SimServer (or Pyro SimServer proxy).
Use this function to train or index large collections -- avoid sending the
entire corpus over the wire as a single Pyro in-memory object. The documents
will be sent in smaller chunks, of `chunksize` documents each.
"""
start = 0
for chunk in grouper(docs, chunksize):
end = start + len(chunk)
logger.info("uploading documents %i-%i" % (start, end - 1))
if preprocess is not None:
pchunk = []
for doc in chunk:
doc['tokens'] = preprocess(doc['text'])
del doc['text']
pchunk.append(doc)
chunk = pchunk
server.buffer(chunk)
start = end
def getNS():
"""
Return a Pyro name server proxy. If there is no name server running,
start one on 0.0.0.0 (all interfaces), as a background process.
"""
import Pyro4
try:
return Pyro4.locateNS()
except Pyro4.errors.NamingError:
logger.info("Pyro name server not found; starting a new one")
os.system("python -m Pyro4.naming -n 0.0.0.0 &")
# TODO: spawn a proper daemon ala http://code.activestate.com/recipes/278731/ ?
# like this, if there's an error somewhere, we'll never know... (and the loop
# below will block). And it probably doesn't work on windows, either.
while True:
try:
return Pyro4.locateNS()
except:
pass
def pyro_daemon(name, obj, random_suffix=False, ip=None, port=None):
"""
Register object with name server (starting the name server if not running
yet) and block until the daemon is terminated. The object is registered under
`name`, or `name`+ some random suffix if `random_suffix` is set.
"""
if random_suffix:
name += '.' + hex(random.randint(0, 0xffffff))[2:]
import Pyro4
with getNS() as ns:
with Pyro4.Daemon(ip or get_my_ip(), port or 0) as daemon:
# register server for remote access
uri = daemon.register(obj, name)
ns.remove(name)
ns.register(name, uri)
logger.info("%s registered with nameserver (URI '%s')" % (name, uri))
daemon.requestLoop()
if HAS_PATTERN:
def lemmatize(content, allowed_tags=re.compile('(NN|VB|JJ|RB)'), light=False):
"""
This function is only available when the optional 'pattern' package is installed.
Use the English lemmatizer from `pattern` to extract tokens in
their base form=lemma, e.g. "are, is, being" -> "be" etc.
This is a smarter version of stemming, taking word context into account.
Only considers nouns, verbs, adjectives and adverbs by default (=all other lemmas are discarded).
>>> lemmatize('Hello World! How is it going?! Nonexistentword, 21')
['world/NN', 'be/VB', 'go/VB', 'nonexistentword/NN']
>>> lemmatize('The study ranks high.')
['study/NN', 'rank/VB', 'high/JJ']
>>> lemmatize('The ranks study hard.')
['rank/NN', 'study/VB', 'hard/RB']
"""
if light:
import warnings
warnings.warn("The light flag is no longer supported by pattern.")
# tokenization in `pattern` is weird; it gets thrown off by non-letters,
# producing '==relate/VBN' or '**/NN'... try to preprocess the text a little
# FIXME this throws away all fancy parsing cues, including sentence structure,
# abbreviations etc.
content = u(' ').join(tokenize(content, lower=True, errors='ignore'))
parsed = parse(content, lemmata=True, collapse=False)
result = []
for sentence in parsed:
for token, tag, _, _, lemma in sentence:
if 2 <= len(lemma) <= 15 and not lemma.startswith('_'):
if allowed_tags.match(tag):
lemma += "/" + tag[:2]
result.append(lemma.encode('utf8'))
return result
#endif HAS_PATTERN