-
Notifications
You must be signed in to change notification settings - Fork 47
/
spring006.py
338 lines (278 loc) · 11 KB
/
spring006.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
from typing import List, Union
import numpy as np
from IPython.display import clear_output
import time
import os
import random
BLACK = -1
WHITE = 1
EMPTY = 0
def init_board(N:int=8):
# Initialize the board with an 8x8 numpy array
board = np.zeros((N, N), dtype=int)
# Set up the initial four stones
C0 = N//2
C1 = C0-1
board[C1, C1], board[C0, C0] = WHITE, WHITE # White
board[C1, C0], board[C0, C1] = BLACK, BLACK # Black
return board
def count_board(board, piece=EMPTY):
return np.sum(board == piece)
# Emoji representations for the pieces
BG_EMPTY = "\x1b[42m"
BG_RESET = "\x1b[0m"
stone_codes = [
f'{BG_EMPTY}⚫️{BG_RESET}',
f'{BG_EMPTY}🟩{BG_RESET}',
f'{BG_EMPTY}⚪️{BG_RESET}',
]
def stone(piece):
return stone_codes[piece+1]
def display_clear():
os.system('clear')
clear_output(wait=True)
BLACK_NAME=''
WHITE_NAME=''
def display_board(board, clear=True, sleep=0, black=None, white=None):
"""
Display the Othello board with emoji representations.
"""
global BLACK_NAME, WHITE_NAME
if clear:
clear_output(wait=True)
if black:
BLACK_NAME=black
if white:
WHITE_NAME=white
for i, row in enumerate(board):
for piece in row:
print(stone(piece), end='')
if i == 1:
print(f' {BLACK_NAME}')
elif i == 2:
print(f' {stone(BLACK)}: {count_board(board, BLACK):2d}')
elif i == 3:
print(f' {WHITE_NAME}')
elif i == 4:
print(f' {stone(WHITE)}: {count_board(board, WHITE):2d}')
else:
print() # New line after each row
if sleep > 0:
time.sleep(sleep)
def all_positions(board):
N = len(board)
return [(r, c) for r in range(N) for c in range(N)]
# Directions to check (vertical, horizontal)
directions = [(0, 1), (1, 0), (0, -1), (-1, 0), (1, 1), (1, -1), (-1, -1), (-1, 1)]
def is_valid_move(board, row, col, player):
# Check if the position is within the board and empty
N = len(board)
if row < 0 or row >= N or col < 0 or col >= N or board[row, col] != 0:
return False
for dr, dc in directions:
r, c = row + dr, col + dc
if 0 <= r < N and 0 <= c < N and board[r, c] == -player:
while 0 <= r < N and 0 <= c < N and board[r, c] == -player:
r, c = r + dr, c + dc
if 0 <= r < N and 0 <= c < N and board[r, c] == player:
return True
return False
def get_valid_moves(board, player):
return [(r, c) for r, c in all_positions(board) if is_valid_move(board, r, c, player)]
def flip_stones(board, row, col, player):
N = len(board)
stones_to_flip = []
for dr, dc in directions:
directional_stones_to_flip = []
r, c = row + dr, col + dc
while 0 <= r < N and 0 <= c < N and board[r, c] == -player:
directional_stones_to_flip.append((r, c))
r, c = r + dr, c + dc
if 0 <= r < N and 0 <= c < N and board[r, c] == player:
stones_to_flip.extend(directional_stones_to_flip)
return stones_to_flip
def display_move(board, row, col, player):
stones_to_flip = flip_stones(board, row, col, player)
board[row, col] = player
display_board(board, sleep=0.3)
for r, c in stones_to_flip:
board[r, c] = player
display_board(board, sleep=0.1)
display_board(board, sleep=0.6)
def find_eagar_move(board, player):
valid_moves = get_valid_moves(board, player)
max_flips = 0
best_result = None
for r, c in valid_moves:
stones_to_flip = flip_stones(board, r, c, player)
if max_flips < len(stones_to_flip):
best_result = (r, c)
max_flips = len(stones_to_flip)
return best_result
class OthelloAI(object):
def __init__(self, face, name):
self.face = face
self.name = name
def __repr__(self):
return f"{self.face}{self.name}"
def move(self, board: np.array, color: int)->tuple[int, int]:
"""
ボードの状態と色(color)が与えられたとき、
どこに置くか返す(row, col)
"""
valid_moves = get_valid_moves(board, color)
return valid_moves[0]
def say(self, board: np.array, piece: int)->str:
if count_board(board, piece) >= count_board(board, -piece):
return 'やったー'
else:
return 'がーん'
class OchibiAI(OthelloAI):
def __init__(self, face, name):
self.face = face
self.name = name
def move(self, board: np.array, piece: int)->tuple[int, int]:
valid_moves = get_valid_moves(board, piece)
return valid_moves[0]
def board_play(player: OthelloAI, board, piece: int):
display_board(board, sleep=0)
if len(get_valid_moves(board, piece)) == 0:
print(f"{player}は、置けるところがありません。スキップします。")
return True
try:
start_time = time.time()
r, c = player.move(board.copy(), piece)
end_time = time.time()
except:
print(f"{player.face}{player.name}は、エラーを発生させました。反則まけ")
return False
if not is_valid_move(board, r, c, piece):
print(f"{player}が返した({r},{c})には、置けません。反則負け。")
return False
display_move(board, r, c, piece)
return True
def comment(player1: OthelloAI, player2: OthelloAI, board):
try:
print(f"{player1}: {player1.say(board, BLACK)}")
except:
pass
try:
print(f"{player2}: {player2.say(board, WHITE)}")
except:
pass
def game(player1: OthelloAI, player2: OthelloAI,N=6):
board = init_board(N)
display_board(board, black=f'{player1}', white=f'{player2}')
while count_board(board, EMPTY) > 0:
if not board_play(player1, board, BLACK):
break
if not board_play(player2, board, WHITE):
break
comment(player1, player2, board)
import random
class springAI(OthelloAI):
class Node:
def __init__(self, board, move, color):
self.board = board
self.move = move
self.color = color
self.children = []
self.visits = 0
self.wins = 0
self.face = "🌸"
self.name = "spring"
def is_leaf(self):
return not self.children
def is_fully_expanded(self):
return len(self.children) == len(get_valid_moves(self.board, self.color))
def is_terminal(self):
return len(get_valid_moves(self.board, self.color)) == 0
def select_child(self):
# ノードの選択ロジックを実装する
return random.choice(self.children)
def expand(self):
# ノードの展開ロジックを実装する
valid_moves = get_valid_moves(self.board, self.color)
move = random.choice(valid_moves)
new_board = self.board.copy()
new_board[move[0], move[1]] = self.color
new_node = Node(new_board, move, -self.color)
self.children.append(new_node)
return new_node
def simulate(self):
# シミュレーションロジックを実装する
simulated_board = self.board.copy()
simulated_color = self.color
while len(get_valid_moves(simulated_board, simulated_color)) > 0:
valid_moves = get_valid_moves(simulated_board, simulated_color)
# 評価関数を使用して次の手を選択
move = self.select_simulation_move(valid_moves, simulated_board, simulated_color)
simulated_board[move[0], move[1]] = simulated_color
simulated_color = -simulated_color # プレイヤーを交代する
return count_board(simulated_board, self.color)
def select_simulation_move(self, valid_moves, board, color):
# シミュレーションで使うランダム性を残しつつ、より良い手を選択するロジックを追加
# 例: ランダムに手を選ぶ代わりに、各手を評価してより有利な手を選択
best_move = valid_moves[0]
best_score = float('-inf')
for move in valid_moves:
temp_board = board.copy()
temp_board[move[0], move[1]] = color
score = self.evaluate_board(temp_board, color)
if score > best_score or (score == best_score and random.random() < 0.8):
best_score = score
best_move = move
return best_move
def evaluate_board(self, board, color):
# ボードの状態を評価するロジックを追加
evaluation = 0
for r in range(len(board)):
for c in range(len(board[0])):
if board[r, c] == color:
evaluation += 1
elif board[r, c] == -color:
evaluation -= 1
# 例: 角の占有を高く評価
if (r, c) in [(0, 0), (0, len(board) - 1), (len(board) - 1, 0), (len(board) - 1, len(board[0]) - 1)]:
evaluation += 5 * color
return evaluation
def backpropagate(self, result):
# バックプロパゲーションロジックを実装する
self.visits += 1
self.wins += result
def best_child(self):
# 最良の子ノードを返すロジックを実装する
return max(self.children, key=lambda child: child.wins / child.visits)
def __init__(self, iterations=2000):
self.face = "🌸"
self.name = "spring"
super().__init__(self.face, self.name)
self.iterations = iterations
def monte_carlo_tree_search(self, board, color):
root_node = self.board.copy(), None, self.color
for _ in range(self.iterations):
node = root_node
# 選択フェーズ
while not node.is_leaf() and node.is_fully_expanded():
node = node.select_child()
# 展開フェーズ
if not node.is_terminal():
node = node.expand()
# シミュレーションフェーズ
result = node.simulate()
# バックプロパゲーションフェーズ
node.backpropagate(result)
best_child = root_node.best_child()
return best_child.move
def move(self, board, color: int) -> tuple[int, int]:
valid_moves = get_valid_moves(board, color)
if not valid_moves:
return random.choice(all_positions(board))
return random.choice(valid_moves)
# MCTSを使用して新しい手を取得
mcts_move = self.monte_carlo_tree_search(board, color)
# Alpha-Beta法を使用して新しい手を取得
alpha_beta_move = super().move(board, color)
# 例えば、MCTSとAlpha-Beta法の結果を比較し、どちらかを選択するロジックを追加
selected_move = mcts_move if random.random() < 0.5 else alpha_beta_move
return selected_move