-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtest.py
71 lines (56 loc) · 2.77 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
# -*- coding: utf-8 -*-
import os
import time
import cv2
import numpy as np
import tensorflow as tf
from object_detection.utils import label_map_util
from object_detection.utils import visualization_utils as vis_util
if tf.__version__ != '1.4.0':
raise ImportError('Please upgrade your tensorflow installation to v1.4.0!')
# 模型配置
PATH_TO_CKPT = 'training/export_result/frozen_inference_graph.pb'
PATH_TO_LABELS = 'data/classes_map.pbtxt'
NUM_CLASSES = 10
# 加载模型
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
od_graph_def.ParseFromString(fid.read())
tf.import_graph_def(od_graph_def, name='')
# 加载类别
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES,
use_display_name=True)
category_index = label_map_util.create_category_index(categories)
# 读取图片
def read_image(path):
image_np = cv2.imread(path)
# image_np = cv2.resize(image_np, (780, 540), interpolation=cv2.INTER_CUBIC)
image_np = cv2.cvtColor(image_np, cv2.COLOR_BGR2RGB)
WIDTH = image_np.shape[1]
HEIGHT = image_np.shape[0]
image_np_expanded = np.expand_dims(image_np, axis=0)
return image_np, image_np_expanded, WIDTH, HEIGHT
img_path = 'data/images/G5_47.jpg'
with detection_graph.as_default():
with tf.Session(graph=detection_graph) as sess:
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')
detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
image_np, image_np_expanded, WIDTH, HEIGHT = read_image(img_path)
(boxes, scores, classes, num) = sess.run(
[detection_boxes, detection_scores, detection_classes, num_detections],
feed_dict={image_tensor: image_np_expanded})
boxes = np.reshape(boxes, (-1, boxes.shape[-1]))
scores = np.reshape(scores, (-1))
classes = np.reshape(classes, (-1)).astype(np.int32)
vis_util.visualize_boxes_and_labels_on_image_array(image_np, boxes, classes, scores, category_index,
use_normalized_coordinates=True, line_thickness=8)
# cv2.imwrite('detection.png', cv2.cvtColor(image_np, cv2.COLOR_RGB2BGR))
img_detection = cv2.cvtColor(image_np, cv2.COLOR_RGB2BGR)
cv2.imshow("detection", img_detection)
cv2.waitKey(0)