-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathWGANgp.py
239 lines (185 loc) · 11.5 KB
/
WGANgp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
# -*- coding: utf-8 -*-
import time
import datetime
import os
import random
from glob import glob
import pickle
import numpy as np
import pandas as pd
from keras.models import Model, load_model
from keras.layers import Input
from keras import optimizers
import keras.backend as K
import utils
import net_utils
class WGANgp():
def __init__(self, config):
self.config = config
def build_model(self, discriminator_path=None, generator_path=None):
if discriminator_path:
self.discriminator = load_model(discriminator_path)
else:
self.discriminator = net_utils.discriminator(self.config.IMAGE_SHAPE, base_name="discriminator",
use_res=self.config.USE_RES)
if generator_path:
self.generator = load_model(generator_path)
else:
self.generator = net_utils.generator_3(self.config.LATENT_DIM, self.config.IMAGE_SHAPE,
self.config.NUMBER_RESIDUAL_BLOCKS, base_name="generator")
#self.generator = net_utils.generator(self.config.LATENT_DIM, self.config.IMAGE_SHAPE,
# self.config.NUMBER_RESIDUAL_BLOCKS, base_name="generator")
D_real_input = Input(shape=self.config.IMAGE_SHAPE)
noise_vector = Input(shape=(self.config.LATENT_DIM, ))
D_fake_input = self.generator(noise_vector)
epsilon = K.placeholder(shape=(None, 1, 1, 1))
D_merged_input = Input(shape=self.config.IMAGE_SHAPE,
tensor=epsilon * D_real_input
+ (1 - epsilon) * D_fake_input)
loss_real = K.mean(self.discriminator(D_real_input))
loss_fake = K.mean(self.discriminator(D_fake_input))
grad_mixed = K.gradients(self.discriminator(D_merged_input), [D_merged_input])[0]
norm_grad_mixed = K.sqrt(K.sum(K.square(grad_mixed), axis=[1, 2, 3]))
grad_penalty = K.mean(K.square(norm_grad_mixed - 1))
loss_d = loss_fake - loss_real + self.config.LAMBDA * grad_penalty
self.optimizer_d = optimizers.Adam(lr=self.config.D_LEARNING_RATE,
beta_1=self.config.BETA_1,
beta_2=self.config.BETA_2)
D_training_updates = self.optimizer_d.get_updates(self.discriminator.trainable_weights,[],loss_d)
self.D_train = K.function([D_real_input, noise_vector, epsilon],
[loss_real, loss_fake],
D_training_updates)
self.optimizer_g = optimizers.Adam(lr=self.config.G_LEARNING_RATE,
beta_1=self.config.BETA_1,
beta_2=self.config.BETA_2)
loss_g = - loss_fake
G_training_updates = self.optimizer_g.get_updates(self.generator.trainable_weights,[],loss_g)
self.G_train = K.function([noise_vector], [loss_g], G_training_updates)
def train(self):
self.build_model()
print(self.generator.layers)
print(self.discriminator.layers)
self.train_iterations()
def resume_train(self, discriminator_path, generator_path, counter):
self.build_model(discriminator_path, generator_path)
print(self.generator.layers)
print(self.discriminator.layers)
self.train_iterations(counter)
def train_iterations(self, counter=0):
now = datetime.datetime.now()
datetime_sequence = "{0}{1:02d}{2:02d}_{3:02}{4:02d}".format(str(now.year)[-2:], now.month, now.day ,
now.hour, now.minute)
file_list = glob(os.path.join(self.config.DATA_DIR, self.config.DATASET, self.config.DATA_EXT))
random.seed(42)
random.shuffle(file_list)
val_ratio = 0.1
train_file_list = file_list[round(len(file_list) * val_ratio):]
val_file_list = file_list[:round(len(file_list) * val_ratio)]
dataset = utils.data_generator(train_file_list, self.config.BATCH_SIZE)
experiment_dir = os.path.join(self.config.RESULT_DIR, datetime_sequence + "_" + self.config.COMMENT)
sample_output_dir = os.path.join(experiment_dir, "sample", self.config.DATASET)
weights_output_dir = os.path.join(experiment_dir, "weights", self.config.DATASET)
weights_output_dir_resume = os.path.join(experiment_dir, "weights", "resume")
os.makedirs(sample_output_dir, exist_ok=True)
os.makedirs(weights_output_dir, exist_ok=True)
os.makedirs(weights_output_dir_resume, exist_ok=True)
self.config.output_config(os.path.join(experiment_dir, "config.txt"))
start_time = time.time()
met_curve = pd.DataFrame(columns=["counter", "loss_d", "loss_d_real", "loss_d_fake",
"loss_g"])
train_val_curve = pd.DataFrame(columns=["counter", "train_loss_d", "val_loss_d"])
fixed_noise = np.random.normal(size=(16, self.config.LATENT_DIM)).astype('float32')
for epoch in range(self.config.EPOCH):
for iter in range(self.config.ITER_PER_EPOCH):
for _ in range(self.config.NUM_CRITICS):
batch_files = next(dataset)
real_batch = np.array([utils.get_image(file, input_hw=self.config.IMAGE_SHAPE[0])
for file in batch_files])
noise = np.random.normal(size=(self.config.BATCH_SIZE, self.config.LATENT_DIM))
epsilon = np.random.uniform(size=(self.config.BATCH_SIZE, 1, 1, 1))
errD_real, errD_fake = self.D_train([real_batch, noise, epsilon])
errD = errD_real - errD_fake
noise = np.random.normal(size=(self.config.BATCH_SIZE, self.config.LATENT_DIM))
errG, = self.G_train([noise])
elapsed = time.time() - start_time
print("epoch {0} {1}/{2} loss_d:{3:.4f} loss_d_real:{4:.4f} "
"loss_d_fake:{5:.4f}, loss_g:{6:.4f}, {7:.2f}秒".
format(epoch, iter, 1000, errD, errD_real, errD_fake, errG, elapsed))
if counter % 10 == 0:
temp_df = pd.DataFrame({"counter":[counter], "loss_d":[errD],
"loss_d_real":[errD_real], "loss_d_fake":[errD_fake],
"loss_g":[errG]})
met_curve = pd.concat([met_curve, temp_df], axis=0)
if counter % 500 == 0:
# validation lossの計算
val_D_real = 0
val_D_fake = 0
val_size = len(val_file_list)
for i in range(val_size//self.config.BATCH_SIZE):
val_files = val_file_list[i*self.config.BATCH_SIZE:(i+1)*self.config.BATCH_SIZE]
val_batch = np.array([utils.get_image(file, input_hw=self.config.IMAGE_SHAPE[0])
for file in val_files])
val_D_real += np.mean(self.discriminator.predict(val_batch))
noise = np.random.normal(size=(self.config.BATCH_SIZE, self.config.LATENT_DIM))
val_D_fake += np.mean(self.discriminator.predict(self.generator.predict(noise)))
if not val_size % self.config.BATCH_SIZE == 0:
val_files = val_file_list[-val_size%self.config.BATCH_SIZE:]
val_batch = np.array([utils.get_image(file, input_hw=self.config.IMAGE_SHAPE[0])
for file in val_files])
val_D_real += np.mean(self.discriminator.predict(val_batch))
noise = np.random.normal(size=(val_size%self.config.BATCH_SIZE, self.config.LATENT_DIM))
val_D_fake += np.mean(self.discriminator.predict(self.generator.predict(noise)))
val_loss = (val_D_real - val_D_fake) / val_size
temp_df = pd.DataFrame({"counter":[counter], "train_loss_d":[errD], "val_loss_d":[val_loss]})
train_val_curve = pd.concat([train_val_curve, temp_df], axis=0)
train_val_curve.to_csv(os.path.join(experiment_dir, self.config.DATASET+"_val.csv"), index=False)
# sample の出力
sample = self.generator.predict(fixed_noise)
h, w, c = self.config.IMAGE_SHAPE
sample_array = np.zeros((4*h, 4*w, 3))
for n in range(16):
i = n // 4
j = n % 4
sample_array[i*h:(i+1)*h, j*w:(j+1)*w, :] = sample[n, :, :, :]
file = "{0}_{1}.jpg".format(epoch, counter)
utils.output_sample_image(os.path.join(sample_output_dir, file), sample_array)
if counter % 5000 == 0:
self.generator.save(os.path.join(weights_output_dir, "generator" + str(counter) + ".hdf5"))
self.discriminator.save(os.path.join(weights_output_dir, "discriminator" + str(counter) + ".hdf5"))
met_curve.to_csv(os.path.join(experiment_dir,
self.config.DATASET+".csv"), index=False)
counter += 1
sample = generator.predict(fixed_noise)
h, w, c = self.config.IMAGE_SHAPE
sample_array = np.zeros((4 * h, 4 * w, 3))
for n in range(16):
i = n // 4
j = n % 4
sample_array[i * h:(i + 1) * h, j * w:(j + 1) * w, 3] = sample[n, :, :, :]
file = "{0}_{1}.jpg".format(self.config.EPOCH, counter)
utils.output_sample_image(os.path.join(sample_output_dir, file), sample_array)
self.generator.save(os.path.join(weights_output_dir, "generator" + str(counter) + ".hdf5"))
self.discriminator.save(os.path.join(weights_output_dir, "discriminator" + str(counter) + ".hdf5"))
met_curve.to_csv(os.path.join(experiment_dir,
self.config.DATASET_A + "_"
+ self.config.DATASET_B + ".csv"),
index=False)
def generate(self,weights_path, number_images=100):
generator = net_utils.generator(self.config.LATENT_DIM, self.config.IMAGE_SHAPE,
self.config.NUMBER_RESIDUAL_BLOCKS, base_name="generator")
generator.load_weights(weights_path)
now = datetime.datetime.now()
datetime_sequence = "{0}{1:02d}{2:02d}_{3:02}{4:02d}".format(str(now.year)[-2:], now.month, now.day ,
now.hour, now.minute)
output_dir = os.path.join("generated", datetime_sequence)
os.makedirs(output_dir, exist_ok=True)
counter = 0
while counter < number_images:
noise = np.random.normal(size=(16, self.config.LATENT_DIM)).astype('float32')
generated_images = generator.predict(noise)
for i in range(16):
file = "{}.jpg".format(counter)
utils.output_sample_image(os.path.join(output_dir, file), generated_images[i, :, :, :])
counter += 1
if counter >= number_images:
break