diff --git a/tune/cli.py b/tune/cli.py index 8779a50..8eb5b71 100644 --- a/tune/cli.py +++ b/tune/cli.py @@ -371,15 +371,15 @@ def local( # noqa: C901 ) root_logger.info(f"Current optimum:\n{best_point_dict}") root_logger.info( - f"Estimated value: {np.around(best_value, 4)} +- " - f"{np.around(best_std, 4).item()}" + f"Estimated Elo: {np.around(-best_value * 100, 4)} +- " + f"{np.around(best_std * 100, 4).item()}" ) confidence_val = settings.get("confidence", confidence) confidence_mult = erfinv(confidence_val) * np.sqrt(2) root_logger.info( - f"{confidence_val * 100}% confidence interval of the value: " - f"({np.around(best_value - confidence_mult * best_std, 4).item()}, " - f"{np.around(best_value + confidence_mult * best_std, 4).item()})" + f"{confidence_val * 100}% confidence interval of the Elo value: " + f"({np.around(-best_value * 100 - confidence_mult * best_std * 100, 4).item()}, " + f"{np.around(-best_value * 100 + confidence_mult * best_std * 100, 4).item()})" ) confidence_out = confidence_intervals( optimizer=opt, @@ -457,7 +457,7 @@ def local( # noqa: C901 root_logger.info(f"Experiment finished ({difference}s elapsed).") score, error_variance = parse_experiment_result(out_exp, **settings) - root_logger.info("Got score: {} +- {}".format(score, np.sqrt(error_variance))) + root_logger.info("Got Elo: {} +- {}".format(-score * 100, np.sqrt(error_variance) * 100)) root_logger.info("Updating model") while True: try: