-
Notifications
You must be signed in to change notification settings - Fork 0
/
RF_all_OneHot.py
1063 lines (839 loc) · 34 KB
/
RF_all_OneHot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# -*- coding: utf-8 -*-
"""
Created on Wed Jul 29 16:24:07 2020
We aim to predict the buzz, using supervised machine learning,
based the Random Forest and Logistic Regression models based on 27 features,
feature engineered from accelerometer data and depth data,
then make several plots to compare the quality between the predictions and ground truths.
"""
#%% Functions for Average of Peak Frequency
# https://reader.elsevier.com/reader/sd/pii/S1877050914008643
# https://ieeexplore-ieee-org.ep.fjernadgang.kb.dk/document/5634532
import numpy as np
from numba import jit, njit, float64
# Find local maxima in a 1D array (from SciPy).
# "This function finds all local maxima in a 1D array and returns the indices
# for their edges and midpoints (rounded down for even plateau sizes)"".
# https://github.com/scipy/scipy/blob/master/scipy/signal/_peak_finding_utils.pyx#L19
@njit
def _local_maxima_1d(x):
"""
Find local maxima in a 1D array.
This function finds all local maxima in a 1D array and returns the indices
for their edges and midpoints (rounded down for even plateau sizes).
Parameters
----------
x : ndarray
The array to search for local maxima.
Returns
-------
midpoints : ndarray
Indices of midpoints of local maxima in `x`.
left_edges : ndarray
Indices of edges to the left of local maxima in `x`.
right_edges : ndarray
Indices of edges to the right of local maxima in `x`.
Notes
-----
- Compared to `argrelmax` this function is significantly faster and can
detect maxima that are more than one sample wide. However this comes at
the cost of being only applicable to 1D arrays.
- A maxima is defined as one or more samples of equal value that are
surrounded on both sides by at least one smaller sample.
.. versionadded:: 1.1.0
"""
# cdef:
# np.intp_t[::1] midpoints, left_edges, right_edges
# np.intp_t m, i, i_ahead, i_max
# Preallocate, there can't be more maxima than half the size of `x`
midpoints = np.empty(x.shape[0] // 2, dtype=np.intp)
# left_edges = np.empty(x.shape[0] // 2, dtype=np.intp)
# right_edges = np.empty(x.shape[0] // 2, dtype=np.intp)
m = 0 # Pointer to the end of valid area in allocated arrays
# with nogil:
i = 1 # Pointer to current sample, first one can't be maxima
i_max = x.shape[0] - 1 # Last sample can't be maxima
while i < i_max:
# Test if previous sample is smaller
if x[i - 1] < x[i]:
i_ahead = i + 1 # Index to look ahead of current sample
# Find next sample that is unequal to x[i]
while i_ahead < i_max and x[i_ahead] == x[i]:
i_ahead += 1
# Maxima is found if next unequal sample is smaller than x[i]
# if x[i_ahead] < x[i] and (i + 2 <= i_ahead) :
if x[i_ahead] < x[i] :
# left_edges[m] = i
# right_edges[m] = i_ahead - 1
# midpoints[m] = (left_edges[m] + right_edges[m]) // 2
midpoints[m] = (i + i_ahead - 1) // 2
m += 1
# Skip samples that can't be maximum
i = i_ahead
i += 1
# # Keep only valid part of array memory.
# midpoints.base.resize(m, refcheck=False)
# left_edges.base.resize(m, refcheck=False)
# right_edges.base.resize(m, refcheck=False)
# return midpoints.base, left_edges.base, right_edges.base
return midpoints[:m]
# Find peaks inside a signal based on peak properties (SciPy).
# "This function takes a 1-D array and finds all local maxima by simple comparison of neighboring values.
# Optionally, a subset of these peaks can be selected by specifying conditions for a peak’s properties".
# https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.find_peaks.html
@njit
def find_peaks_scipy(x, has_height:int=0, hmin:np.float64=0.0, hmax:np.float64=0.0) -> np.ndarray:
# _argmaxima1d expects array of dtype 'float64'
x = x.astype(np.float64)
if x.ndim != 1:
raise ValueError('`x` must be a 1-D array')
peaks = _local_maxima_1d(x)
if has_height :
# Evaluate height condition
peak_heights = x[peaks]
keep = np.full(peak_heights.size, True)
if has_height == 1:
keep &= (hmin <= peak_heights)
if has_height == 2:
keep &= (peak_heights <= hmax)
peaks = peaks[keep]
return peaks
@njit
def peak_freq(peak):
return len(peak)
#%% Function 'feature_extract'
# Features engineering for Random Forest and Logistic Regresion, based on the article
#
@jit(float64[:,:](float64[:, :], float64, float64, float64), nopython=True)
def feature_extract(A:np.ndarray, rate:float64, n_sec:float64, overlap:float64) -> np.ndarray :
Ax = A[:,0]
Ay = A[:,1]
Az = A[:,2]
depth = A[:,3]
divestate = A[:,4]
onehot = np.zeros(4)
B = A[:,-1]
W_l = rate*n_sec
n = A.shape[0]
df = np.full( (round(A.shape[0]//(W_l*(1-overlap))), 24), np.inf, dtype=np.float64)
r = i = n
r = i = 0
while i+W_l <= n:
x = Ax[i : i+W_l]
y = Ay[i : i+W_l]
z = Az[i : i+W_l]
d = depth[i : i+W_l]
state = divestate[i : i+W_l]
onehot[0] = onehot[1] = onehot[2] = onehot[3] = 0
if np.mean(state) > (state[0] + state[-1])/2 :
onehot[round(state[-1])] = 1
else :
onehot[round(state[0])] = 1
buzz = B[i : i+W_l]
a = np.sqrt(x**2 + y**2 + z**2)
x_m = np.mean(x)
y_m = np.mean(y)
z_m = np.mean(z)
# a_m = np.mean(a)
a_minmax = max(a) - min(a)
a_std = np.std(a)
a_rms = np.sqrt( np.mean(a**2) )
x_std = np.std(x)
y_std = np.std(y)
z_std = np.std(z)
x_rms = np.sqrt( np.mean(x**2) )
y_rms = np.sqrt( np.mean(y**2) )
z_rms = np.sqrt( np.mean(z**2) )
# https://stackoverflow.com/a/39098306
r_xy = np.cov(x, y, bias=True)[0][1]/(x_std*y_std)
r_yz = np.cov(z, y, bias=True)[0][1]/(y_std*z_std)
r_zx = np.cov(x, z, bias=True)[0][1]/(z_std*x_std)
x_minmax = max(x) - min(x)
y_minmax = max(y) - min(y)
z_minmax = max(z) - min(z)
depth_mean = np.mean(d)
C = 0.0
if buzz.sum() >= W_l/2 :
C = 1.0
# https://stackoverflow.com/a/33511352
L = [ x_m, y_m, z_m, a_minmax, a_std, a_rms, x_std, y_std, z_std, x_rms, y_rms, z_rms,
r_xy, r_yz, r_zx, x_minmax, y_minmax, z_minmax, depth_mean,
onehot[0], onehot[1], onehot[2], onehot[3], C ]
# L = [ x_m, y_m, z_m, a_minmax, a_std, a_rms, x_std, y_std, z_std, x_rms, y_rms, z_rms,
# r_xy, r_yz, r_zx, x_minmax, y_minmax, z_minmax, C ]
df[r,:] = np.array(L)
# # sma = np.mean(abs(x - x_m)) + np.mean(abs(y - y_m)) + np.mean(abs(z - z_m))
# # H = sum( abs(a-a_m) * np.log10(abs(a-a_m)) )
# # sk = sum( (a-a_m)**3 ) / (W_l*np.std(a)**3)
# # kurtosis = sum( (a-a_m)**4 ) / (W_l*np.std(a)**4)
# # E_a = abs(np.mean(scipy.fft.fft(a)))
i += round(W_l*(1-overlap))
r += 1
return df
#%% Peak extract function
@jit(float64[:,:](float64[:, :], float64, float64, float64), nopython=True)
def peak_extract(A:np.ndarray, rate:float64, n_sec:float64, overlap:float64) -> np.ndarray :
n = A.shape[0]
Ax = A[:,0]
Ay = A[:,1]
Az = A[:,2]
Px = find_peaks_scipy(Ax)
Py = find_peaks_scipy(Ay)
Pz = find_peaks_scipy(Az)
r = i = n
r = i = 0
W_l = round(rate*n_sec)
df = np.full( (round(A.shape[0]//(W_l*(1-overlap))), 7) , np.inf, dtype=np.float64)
while i+W_l <= n:
# find Px s.t. i <= Px <= i + W_l
p = np.searchsorted( Px, np.array([i,i+W_l-1]) )
if p[0] == p[1] :
x_apf = 0
else :
peak_x = Px[ p[0] : p[1] ]
x_apf = peak_freq(peak_x)
if len(peak_x) > 1 :
elapse_time_x = np.diff(peak_x).mean()
else :
elapse_time_x = 0
# find Py s.t. i <= Py <= i + W_l
p = np.searchsorted( Py, np.array([i,i+W_l-1]) )
if p[0] == p[1] :
y_apf = 0
else :
peak_y = Py[ p[0] : p[1] ]
y_apf = peak_freq(peak_y)
if len(peak_y) > 1 :
elapse_time_y = np.diff(peak_y).mean()
else :
elapse_time_y = 0
# find Pz s.t. i <= Pz <= i + W_l
p = np.searchsorted( Pz, np.array([i,i+W_l-1]) )
if p[0] == p[1] :
z_apf = 0
else :
peak_z = Pz[ p[0] : p[1] ]
z_apf = peak_freq(peak_z)
if len(peak_z) > 1 :
elapse_time_z = np.diff(peak_z).mean()
else :
elapse_time_z = 0
apf_mean = (x_apf+y_apf+z_apf)/3.0
VarAPF = ( (x_apf-apf_mean)**2 + (y_apf-apf_mean)**2 + (z_apf-apf_mean)**2 )/2.0
L = [ x_apf, y_apf, z_apf, VarAPF, elapse_time_x, elapse_time_y, elapse_time_z ]
df[r,:] = np.array(L)
i += round(W_l*(1-overlap))
r += 1
print('r = ', r)
return df
#%% Make datasets to train and test for Random Forest and Logistic Regression
import pandas as pd
pd.set_option('display.max_columns', None)
whale = ['Asgeir','Helge18','Kyrri','Nemo','Siggi']
Acc = [None]*len(whale)
rate = 100
# The ratio for training/test set is 80%:20%
train_ratio = 0.8 # no validation set used since we do not have hyperparmeter selection
test_ratio = 0.8
X_train = [None]*len(whale)
X_test = [None]*len(whale)
y_train = [None]*len(whale)
y_test = [None]*len(whale)
for i in range(len(whale)) :
Acc[i] = pd.read_parquet('data/accel-' + whale[i] + '.csv.parquet')
accel = Acc[i]
A = accel.iloc[:,[1,2,3,4,9,-1]].to_numpy()
n = A.shape[0]
a_train = feature_extract(A[:round(train_ratio*n)], rate, 1, 0.5)
a_train = a_train[np.isfinite(a_train).all(axis=1)]
a_test = feature_extract(A[round(test_ratio*n):], rate, 1, 0)
a_test = a_test[np.isfinite(a_test).all(axis=1)]
b_train = peak_extract(A[:round(train_ratio*n),:3], rate, 1, 0.5)
b_train = b_train[np.isfinite(b_train).all(axis=1)]
b_test = peak_extract(A[round(test_ratio*n):,:3], rate, 1, 0)
b_test = b_test[np.isfinite(b_test).all(axis=1)]
X_train[i] = np.c_[a_train[:,:-1], b_train]
X_test[i] = np.c_[a_test[:,:-1], b_test]
y_train[i] = a_train[:,-1]
y_test[i] = a_test[:,-1]
#%% some functions
# Show the range of array x
def _range(x):
return [min(x), max(x)]
# Divide sequence y to a list of continous sequences
def consecutive(y, thresh=0.0, stepsize=1): # https://stackoverflow.com/a/7353335
data = np.array(np.where(y > thresh ))[0]
return np.split(data, np.where(np.diff(data) != stepsize)[0]+1)
from numba import njit
# Calculate the intersections of sequences begin with s0, end with e0
# with sequences begin with s1, end with e1
@njit
def intersect(s0,e0, s1,e1) :
m = len(s0)
n = len(s1)
if n == 0 :
return None, None
d = np.zeros( (m, n), dtype=np.int64)
ovl = np.zeros( (m, n), dtype=np.float32)
i = j = 0
for j in range(m) :
for i in range(n) :
# https://scicomp.stackexchange.com/a/26260
if s0[j] > e1[i] or s1[i] > e0[j] : # (1) & (2)
if s0[j] > e1[i] : # (1)
d[j][i] = e1[i] - s0[j]
if s1[i] > e0[j] : # (2)
d[j][i] = s1[i] - e0[j]
else: # overlap
s_ovl = max(s0[j], s1[i])
e_ovl = min(e0[j], e1[i])
d[j][i] = 0
ovl[j][i] = (e_ovl-s_ovl)/(e0[j]-s0[j])*100
return d, ovl
# Compute if y and y_t overlap, if not how far between them
def hit_rate(y, y_t, dist=100, ovl_ptg=50, accel=None) :
C = consecutive(y, 0.5)
C_t = consecutive(y_t)
if len(C[0]) == 0 :
return 0, 0, None, None
s1 = np.ravel([ x[0] for x in C ])
e1 = np.ravel([ x[-1] for x in C ]) + 1
s0 = np.ravel([ x[0] for x in C_t ])
e0 = np.ravel([ x[-1] for x in C_t ]) + 1
a, ovl = intersect(s0,e0, s1,e1)
hit = np.where( abs(a).min(axis=1) <= dist )[0]
missed = np.sort(np.array( list(set(range(len(s0)))-set(hit)) ))
hit_ovl = np.where( ovl.max(axis=1) > ovl_ptg )[0]
return len(hit)/len(s0), len(hit_ovl)/len(s0), hit, missed
#%% Train with Random Forest
# [https://mljar.com/blog/random-forest-overfitting/]
# [https://stackoverflow.com/a/35012011]
# [https://datascience.stackexchange.com/a/6430]
# [https://stats.stackexchange.com/a/376785]
x_tr = np.vstack(X_train)
y_tr = np.concatenate(y_train)
# Select number of tree for Random Forest
# n_tree = 500
# n_tree = 1000
n_tree = 2000
# Fit the model with sklearn
from sklearn.ensemble import RandomForestClassifier
clf = RandomForestClassifier(n_estimators = n_tree, random_state=0,
class_weight='balanced_subsample', n_jobs=16)
clf.fit( x_tr, y_tr )
#%% Save/Load model [https://stackoverflow.com/a/33500427]
import joblib
# Save the fitted model
with open('data/all_OneHot_' + str(n_tree) + '.rf' , 'wb') as f:
joblib.dump(clf, f, 5)
# Load the fitted model
with open('data/all_OneHot_' + str(n_tree) + '.rf', 'rb') as f:
clf = joblib.load(f)
#%% Confusion matrix of RF for each whale
from sklearn.metrics import confusion_matrix
for i in range(len(whale)) :
y_pred = clf.predict(X_test[i])
print ( i, ':', confusion_matrix(y_test[i], y_pred).ravel() )
# (tn, fp, fn, tp):
# 0 : [45654 16 234 11]
# 1 : [45357 12 1463 48]
# 2 : [54876 9 756 32]
# 3 : [13653 1 64 0]
# 4 : [13052 0 124 1]
# 0 : [22888 0 69 0]
# 1 : [23242 0 197 1]
# 2 : [27721 1 111 3]
# 3 : [6800 1 58 0]
# 4 : [6511 0 76 1]
# 500 trees
# 0 : [22888 0 69 0]
# 1 : [23242 0 197 1]
# 2 : [27718 4 103 11]
# 3 : [6799 2 58 0]
# 4 : [6509 2 76 1]
# 1000 trees
# 0 : [22888 0 69 0]
# 1 : [23242 0 197 1]
# 2 : [27718 4 102 12]
# 3 : [6799 2 58 0]
# 4 : [6509 2 76 1]
# 2000 trees
# 0 : [22888 0 69 0]
# 1 : [23242 0 197 1]
# 2 : [27718 4 100 14]
# 3 : [6799 2 58 0]
# 4 : [6509 2 76 1]
#%% Count predicted buzz and ground true buzz per dive
# Also calculate the sum of length of predicted buzz vs length of ground true buzz,
# and write to a dataframe
df = [None]*len(whale)
for i in range(len(whale)) :
y_pred = clf.predict(X_test[i])
C = consecutive(y_pred)
C_t = consecutive(y_test[i])
if len(C[0]) :
s1 = np.ravel([ x[0] for x in C ])
e1 = np.ravel([ x[-1] for x in C ]) + 1
s1 *= rate; e1 *= rate
if len(C_t[0]) :
s0 = np.ravel([ x[0] for x in C_t ])
e0 = np.ravel([ x[-1] for x in C_t ]) + 1
s0 *= rate; e0 *= rate
dt = Acc[i].iloc[round( test_ratio*Acc[i].shape[0] ):,:] # [1371800 rows x 13 columns]
dif_dive = np.diff(dt['Dive_no'].to_numpy())
dive_st = np.where(dif_dive > 0)[0] + 1
dive_end = np.where(dif_dive < 0)[0] + 1
if len(dive_st) < len(dive_end) :
dive_st = np.r_[0, dive_st]
if len(dive_st) > len(dive_end) :
dive_end = np.r_[dive_end, dt.shape[0]]
buzz_dive = np.zeros( (len(dive_st), 8) )
for k in range(len(dive_st)) :
depth = dt.iloc[dive_st[k]:dive_end[k],4].to_numpy()
buzz_dive[k, 0] = i
buzz_dive[k, 1] = k
buzz_dive[k, 2] = depth.max()
buzz_dive[k, 3] = depth.shape[0]/100
if len(C_t[0]) :
buzz_dive_0 = np.where( (s0 >= dive_st[k]) & (s0 < dive_end[k]) )[0]
buzz_dive[k, 4] = len(buzz_dive_0)
buzz_dive[k, 6] = (e0[buzz_dive_0] - s0[buzz_dive_0]).sum()
if len(C[0]) :
buzz_dive_1 = np.where( (s1 >= dive_st[k]) & (s1 < dive_end[k]) )[0]
buzz_dive[k, 5] = len(buzz_dive_1)
buzz_dive[k, 7] = (e1[buzz_dive_1] - s1[buzz_dive_1]).sum()
df[i] = pd.DataFrame(data = buzz_dive ,
columns = ['ID','Dive_no','MaxDepth','Duration',
'True','Prediction','Len_true','Len_pred'] )
df[i]['Name'] = pd.Series(np.repeat(whale[i], len(dive_st)))
Dive_res = pd.concat(df)
from collections import Counter
# https://stackoverflow.com/a/57739795
Dive_res['hash'] = pd.util.hash_pandas_object(Dive_res.loc[:,['True','Prediction']],
index=False)
Dive_res['Num_point'] = Dive_res['hash'].map(dict(Counter(Dive_res['hash'].to_numpy())))
Dive_res['Diff'] = Dive_res['Prediction'].to_numpy() - Dive_res['True'].to_numpy()
Dive_res['Diff_len'] = Dive_res['Len_pred'].to_numpy() - Dive_res['Len_true'].to_numpy()
Dive_res.to_csv( 'data/Dive_res_RF.csv', index=False )
#%% For each whale
Res = np.zeros( (6,9))
for i in range(len(whale)) :
y_pred = clf.predict(X_test[i])
L0 = []
for p in [99, 50, 25, 0] :
_, ptg, _, _ = hit_rate(y_pred, y_test[i], ovl_ptg=p)
if ptg is not None :
L0.append( round(ptg, 2) )
else :
L0.append( None )
for t in [1, 2, 3, 4, 5] :
R, _, hit, missed = hit_rate(y_pred, y_test[i], t)
if R is not None :
L0.append( round(R, 2) )
else :
L0.append( None )
Res[i,:] = np.ravel(L0)
pd.DataFrame(data=Res.T, columns = whale,
index=np.ravel(['> 99%', '> 50%', '> 25%', '> 0%',
'1 s', '2 s', '3 s', '4 s', '5 s']) ).to_html()
#%% We calcuate for all whales the overlap/distance between predicted buzzes and ground true buzzes
y_pred_all = clf.predict(np.vstack(X_test))
y_test_all = np.hstack(y_test)
L0 = []
for p in [99, 50, 25, 0] :
_, ptg, _, _ = hit_rate(y_pred_all, y_test_all, ovl_ptg=p)
if ptg is not None :
L0.append( round(ptg, 2) )
else :
L0.append( None )
for t in [1, 2, 3, 4, 5] :
R, _, hit, missed = hit_rate(y_pred_all, y_test_all, t)
if R is not None :
L0.append( round(R, 2) )
else :
L0.append( None )
Res[-1,:] = np.ravel(L0)
res = pd.DataFrame(data= {'index': np.tile(np.ravel(['> 99%', '> 50%', '> 25%', '> 0%',
'1 s', '2 s', '3 s', '4 s', '5 s']), Res.shape[0] ) ,
'val': Res.ravel() ,
'whale': np.repeat(whale + ['All'],Res.shape[1]) })
res['method'] = 'Random Forest'
# Save the result to file
res.to_csv( 'B:/Codes/Data/Fieldwork 2018/res_RF.csv', index=False )
# Then we can plot Fig.7 with plotnine
from plotnine import *
ggplot(res) + geom_line(aes(x='index',y='val',color='whale', group=1))
#%% Plot Fig. 11 (Random Forest)
# https://matplotlib.org/3.1.0/api/_as_gen/matplotlib.pyplot.figure.html
import matplotlib
import matplotlib.pyplot as plt
matplotlib.rcParams["figure.dpi"] = 300
matplotlib.rcParams["figure.figsize"] = [11, 5]
matplotlib.rcParams['svg.fonttype'] = 'none'
plt.style.use('ggplot')
import matplotlib.patches as patches
# Select 2nd whale (ID 20158) and its 6th dive to plot the prediction and ground true buzz on the same dive
i = 2; k = 6
y_pred = clf.predict(X_test[i])
C = consecutive(y_pred)
C_t = consecutive(y_test[i])
if len(C[0]) :
s1 = np.ravel([ x[0] for x in C ])
e1 = np.ravel([ x[-1] for x in C ]) + 1
s1 *= rate; e1 *= rate
if len(C_t[0]) :
s0 = np.ravel([ x[0] for x in C_t ])
e0 = np.ravel([ x[-1] for x in C_t ]) + 1
s0 *= rate; e0 *= rate
dt = Acc[i].iloc[round( test_ratio*Acc[i].shape[0] ):,:].copy() # [1371800 rows x 13 columns]
dif_dive = np.diff(dt['Dive_no'].to_numpy())
dive_st = np.where(dif_dive > 0)[0] + 1
dive_end = np.where(dif_dive < 0)[0] + 1
if len(dive_st) < len(dive_end) :
dive_st = np.r_[0, dive_st]
if len(dive_st) > len(dive_end) :
dive_end = np.r_[dive_end, dt.shape[0]]
depth = dt.iloc[dive_st[k]:dive_end[k],4].to_numpy()
if len(C_t[0]) :
buzz_dive_0 = np.where( (s0 >= dive_st[k]) & (s0 < dive_end[k]) )[0]
if len(C[0]) :
buzz_dive_1 = np.where( (s1 >= dive_st[k]) & (s1 < dive_end[k]) )[0]
fig, ax = plt.subplots()
ax.tick_params(axis='both', which='major', labelsize=15)
plt.gca().invert_yaxis()
X_axis = np.arange(dive_st[k], dive_end[k])[::10]
tick_locs = np.arange(X_axis[0], X_axis[-1], 2*60*rate)
tick_lbls = ((tick_locs-X_axis[0])/(60*rate)).round().astype(int)
plt.xticks(tick_locs.tolist(), [])
ax.tick_params(axis='x', length=0, width=2)
plt.plot(np.arange(dive_st[k], dive_end[k])[::10],
dt.iloc[dive_st[k]:dive_end[k],4].to_numpy()[::10],
label='_nolegend_', c='k', alpha=0.25, linewidth=6)
for j in buzz_dive_0 :
plt.plot( np.arange(s0[j], e0[j])[::10],
dt.iloc[ s0[j]:e0[j], 4 ].to_numpy()[::10], c='#D55E00', linewidth=6)
for j in buzz_dive_1 :
plt.plot( np.arange(s1[j], e1[j])[::10],
dt.iloc[ s1[j]:e1[j], 4 ].to_numpy()[::10], c='#0072B2', alpha=0.5, linewidth=6)
offset1 = 6000
offset2 = 24000
st = min(s0[min(buzz_dive_0)],s1[min(buzz_dive_1)])
en = max(e0[max(buzz_dive_0)],e1[max(buzz_dive_1)])
st += offset1
en -= offset2
plt.plot( [st, en], [440, 440], linestyle=':', color='black')
plt.plot( [st, en], [530, 530], linestyle=':', color='black')
plt.plot( [st, st], [440, 530], linestyle=':', color='black')
plt.plot( [en, en], [440, 530], linestyle=':', color='black')
h = 0.62
t = 0.17
plt.plot( [st, int( (1-t)*dive_st[k] + t*dive_end[k] )],
[440, int(h*max(dt.iloc[dive_st[k]:dive_end[k],4].to_numpy()))],
linestyle=':', color='black')
t2 = t + 0.64
plt.plot( [en, int( (1-t2)*dive_st[k] + t2*dive_end[k] )],
[440, int(h*max(dt.iloc[dive_st[k]:dive_end[k],4].to_numpy()))],
linestyle=':', color='black')
plt.xlabel(' ', fontsize=20, labelpad=20)
plt.ylabel('Depth (m)', fontsize=20, labelpad=20)
title = ax.set_title('Random Forest', fontsize=20, position=(.5, 1.01),
backgroundcolor='#D9D9D9', color='black',
verticalalignment="bottom", horizontalalignment="center")
title._bbox_patch._mutation_aspect = 0.04
title.get_bbox_patch().set_boxstyle("square", pad=11.5)
a = plt.axes([.28, .45, .45, .4])
plt.gca().invert_yaxis()
plt.plot(np.arange( st, en )[::10],
dt.iloc[st:en,4].to_numpy()[::10],
label='_nolegend_ ', c='k', alpha=0.25, linewidth=4)
for j in buzz_dive_0[1:] :
if (st <= s0[j]) and (e0[j] <= en) :
plt.plot( np.arange(s0[j], e0[j])[::10],
dt.iloc[ s0[j]:e0[j], 4 ].to_numpy()[::10], c='#D55E00', linewidth=4)
for j in buzz_dive_1[1:] :
if (st <= s1[j]) and (e1[j] <= en) :
plt.plot( np.arange(s1[j], e1[j])[::10],
dt.iloc[ s1[j]:e1[j], 4 ].to_numpy()[::10], c='#0072B2', alpha=0.5, linewidth=4)
plt.plot( np.arange( st, en )[::10],
np.repeat( max(dt.iloc[ st:en,4 ].to_numpy()[::10]) + 3, (en-st)//10) ,
c='k', alpha=0.25, linewidth=6)
for j in buzz_dive_0[1:] :
if (st <= s0[j]) and (e0[j] <= en) :
plt.plot( np.arange(s0[j], e0[j])[::10],
np.repeat( max(dt.iloc[ st:en,4 ].to_numpy()[::10]) + 3, (e0[j]-s0[j])//10) , c='#D55E00', linewidth=6)
plt.plot( np.arange( st, en )[::10],
np.repeat( max(dt.iloc[ st:en,4 ].to_numpy()[::10]) + 6, (en-st)//10) ,
c='k', alpha=0.25, linewidth=6 )
for j in buzz_dive_1 :
if (st <= s1[j]) and (e1[j] <= en) :
plt.plot( np.arange(s1[j], e1[j])[::10],
np.repeat( max(dt.iloc[ st:en,4 ].to_numpy()[::10]) + 6, (e1[j]-s1[j])//10) , c='#0072B2', linewidth=6)
plt.xticks([])
plt.yticks([])
plt.ylim(max(dt.iloc[st:en,4].to_numpy()[::10]) + 8,
min(dt.iloc[st:en,4].to_numpy()[::10]) - 5)
plt.savefig('plot/pred_RF.svg', bbox_inches='tight')
plt.show()
#%% We do the same procedure of fitting and plotting with logistic regression (LR)
from sklearn.linear_model import LogisticRegression
# Note that 'sag' and 'saga' fast convergence is only guaranteed on features with approximately the same scale.
# You can preprocess the data with a scaler from sklearn.preprocessing.
# LR = LogisticRegression(solver='saga', class_weight='balanced', max_iter=500, n_jobs=16)
# The problem is not specifically the rarity of events, but rather the possibility of a small number of cases on the rarer of the two outcomes.
# If you have a sample size of 1000 but only 20 events, you have a problem.
# If you have a sample size of 10,000 with 200 events, you may be OK.
# If your sample has 100,000 cases with 2000 events, you’re golden.
# [https://stats.stackexchange.com/a/227082]
LR = LogisticRegression(solver='saga', max_iter=500)
# https://datascience.stackexchange.com/a/27616
# https://datascience.stackexchange.com/a/12346
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
x_tr = scaler.fit_transform( x_tr )
for w in range(len(whale)) :
X_test[w] = scaler.transform( X_test[w] )
LR.fit(x_tr, y_tr)
#%% Save/Load model [https://stackoverflow.com/a/33500427]
import joblib
with open('data/all_OneHot_no-correct.LR' , 'wb') as f:
joblib.dump(LR, f, 5)
with open('data/all_OneHot_no-correct.LR', 'rb') as f:
LR = joblib.load(f)
with open('data/all_OneHot.LR' , 'wb') as f:
joblib.dump(LR, f, 5)
with open('data/all_OneHot.LR', 'rb') as f:
LR = joblib.load(f)
#%% Confusion matrix of LR
from sklearn.metrics import confusion_matrix
for i in range(len(whale)) :
y_pred = LR.predict(X_test[i])
print ( i, ':', confusion_matrix(y_test[i], y_pred).ravel() )
# (tn, fp, fn, tp): no rare event correction
# 0 : [22874 14 69 0]
# 1 : [23211 31 186 12]
# 2 : [27711 11 82 32]
# 3 : [6800 1 58 0]
# 4 : [6511 0 76 1]
# vs. rare event correction
# (tn, fp, fn, tp):
# 0 : [36044 9626 14 231]
# 1 : [35937 9432 377 1134]
# 2 : [50119 4766 62 726]
# 3 : [12302 1352 21 43]
# 4 : [10621 2431 16 109]
#%% Count buzz per dive and plot
df = [None]*len(whale)
for i in range(len(whale)) :
y_pred = LR.predict(X_test[i])
C = consecutive(y_pred)
C_t = consecutive(y_test[i])
if len(C_t[0]) :
s0 = np.ravel([ x[0] for x in C_t ])
e0 = np.ravel([ x[-1] for x in C_t ]) + 1
s0 *= rate; e0 *= rate
if len(C[0]) :
s1 = np.ravel([ x[0] for x in C ])
e1 = np.ravel([ x[-1] for x in C ]) + 1
s1 *= rate; e1 *= rate
dt = Acc[i].iloc[round( test_ratio*Acc[i].shape[0] ):,:]
dif_dive = np.diff(dt.iloc[:,-3].to_numpy())
dive_st = np.where(dif_dive > 0)[0] + 1
dive_end = np.where(dif_dive < 0)[0] + 1
if len(dive_st) < len(dive_end) :
dive_st = np.r_[0, dive_st]
if len(dive_st) > len(dive_end) :
dive_end = np.r_[dive_end, dt.shape[0]]
buzz_dive = np.zeros( (len(dive_st), 8) )
for k in range(len(dive_st)) :
depth = dt.iloc[dive_st[k]:dive_end[k],4].to_numpy()
buzz_dive[k, 0] = i
buzz_dive[k, 1] = k
buzz_dive[k, 2] = depth.max()
buzz_dive[k, 3] = depth.shape[0]/100
if len(C_t[0]) :
buzz_dive_0 = np.where( (s0 >= dive_st[k]) & (s0 < dive_end[k]) )[0]
buzz_dive[k, 4] = len(buzz_dive_0)
buzz_dive[k, 6] = (e0[buzz_dive_0] - s0[buzz_dive_0]).sum()
if len(C[0]) :
buzz_dive_1 = np.where( (s1 >= dive_st[k]) & (s1 < dive_end[k]) )[0]
buzz_dive[k, 5] = len(buzz_dive_1)
buzz_dive[k, 7] = (e1[buzz_dive_1] - s1[buzz_dive_1]).sum()
df[i] = pd.DataFrame(data = buzz_dive ,
columns = ['ID','Dive_no','MaxDepth','Duration',
'True','Prediction','Len_true','Len_pred'] )
df[i]['Name'] = pd.Series(np.repeat(whale[i], len(dive_st)))
Dive_res = pd.concat(df)
from collections import Counter
# https://stackoverflow.com/a/57739795
Dive_res['hash'] = pd.util.hash_pandas_object(Dive_res.loc[:,['True','Prediction']],
index=False)
# https://stackoverflow.com/a/41678874
Dive_res['Num_point'] = Dive_res['hash'].map(dict(Counter(Dive_res['hash'].to_numpy())))
Dive_res['Diff'] = Dive_res['Prediction'].to_numpy() - Dive_res['True'].to_numpy()
Dive_res['Diff_len'] = Dive_res['Len_pred'].to_numpy() - Dive_res['Len_true'].to_numpy()
#%% For each whale
Res = np.zeros( (6,9))
for i in range(len(whale)) :
y_pred = LR.predict(X_test[i])
L0 = []
for p in [99, 50, 25, 0] :
_, ptg, _, _ = hit_rate(y_pred, y_test[i], ovl_ptg=p)
if ptg is not None :
L0.append( round(ptg, 2) )
else :
L0.append( None )
for t in [1, 2, 3, 4, 5] :
R, _, hit, missed = hit_rate(y_pred, y_test[i], t)
if R is not None :
L0.append( round(R, 2) )
else :
L0.append( None )
Res[i,:] = np.ravel(L0)
# https://codebeautify.org/htmlviewer/
pd.DataFrame(data=Res.T, columns = whale,
index=np.ravel(['> 99%', '> 50%', '> 25%', '> 0%',
'1 s', '2 s', '3 s', '4 s', '5 s']) ).to_html()
#%% For all whales
y_pred_all = LR.predict(np.vstack(X_test))
y_test_all = np.hstack(y_test)
L0 = []
for p in [99, 50, 25, 0] :
_, ptg, _, _ = hit_rate(y_pred_all, y_test_all, ovl_ptg=p)
if ptg is not None :
L0.append( round(ptg, 2) )
else :
L0.append( None )
for t in [1, 2, 3, 4, 5] :
R, _, hit, missed = hit_rate(y_pred_all, y_test_all, t)
if R is not None :
L0.append( round(R, 2) )
else :
L0.append( None )
Res[-1,:] = np.ravel(L0)
res = pd.DataFrame(data= {'index': np.tile(np.ravel(['> 99%', '> 50%', '> 25%', '> 0%',
'1 s', '2 s', '3 s', '4 s', '5 s']), Res.shape[0] ) ,
'val': Res.ravel() ,
'whale': np.repeat(whale + ['All'],Res.shape[1]) })
res['method'] = 'Logistic Regression'
# https://matplotlib.org/3.1.0/api/_as_gen/matplotlib.pyplot.figure.html
import matplotlib
import matplotlib.pyplot as plt
matplotlib.rcParams["figure.dpi"] = 300
matplotlib.rcParams["figure.figsize"] = [11, 5]
matplotlib.rcParams['svg.fonttype'] = 'none'
plt.style.use('ggplot')
i = 2; k = 6
y_pred = LR.predict(X_test[i])
C = consecutive(y_pred)
C_t = consecutive(y_test[i])
if len(C[0]) :
s1 = np.ravel([ x[0] for x in C ])
e1 = np.ravel([ x[-1] for x in C ]) + 1
s1 *= rate; e1 *= rate
if len(C_t[0]) :
s0 = np.ravel([ x[0] for x in C_t ])
e0 = np.ravel([ x[-1] for x in C_t ]) + 1
s0 *= rate; e0 *= rate
dt = Acc[i].iloc[round( test_ratio*Acc[i].shape[0] ):,:].copy() # [1371800 rows x 13 columns]
from collections import Counter as cnt
dif_dive = np.diff(dt.iloc[:,-3].to_numpy())
pd.DataFrame.from_dict(cnt(dif_dive), orient='index').reset_index()
dive_st = np.where(dif_dive > 0)[0] + 1
dive_end = np.where(dif_dive < 0)[0] + 1
if len(dive_st) < len(dive_end) :
dive_st = np.r_[0, dive_st]
if len(dive_st) > len(dive_end) :
dive_end = np.r_[dive_end, dt.shape[0]]
if len(C_t[0]) :
buzz_dive_0 = np.where( (s0 >= dive_st[k]) & (s0 < dive_end[k]) )[0]
if len(C[0]) :
buzz_dive_1 = np.where( (s1 >= dive_st[k]) & (s1 < dive_end[k]) )[0]
fig, ax = plt.subplots()
ax.tick_params(axis='both', which='major', labelsize=15)
plt.gca().invert_yaxis()
# https://stackoverflow.com/a/1144137
X_axis = np.arange(dive_st[k], dive_end[k])[::10]
tick_locs = np.arange(X_axis[0], X_axis[-1], 2*60*rate)
tick_lbls = ((tick_locs-X_axis[0])/(60*rate)).round().astype(int)
plt.xticks(tick_locs.tolist(), tick_lbls.tolist() )
plt.plot(np.arange(dive_st[k], dive_end[k])[::10],
dt.iloc[dive_st[k]:dive_end[k],4].to_numpy()[::10],
label='_nolegend_', c='k', alpha=0.25, linewidth=6)
for j in buzz_dive_0 :
plt.plot( np.arange(s0[j], e0[j])[::10],
dt.iloc[ s0[j]:e0[j], 4 ].to_numpy()[::10], c='#D55E00', linewidth=6)
for j in buzz_dive_1 :
plt.plot( np.arange(s1[j], e1[j])[::10],
dt.iloc[ s1[j]:e1[j], 4 ].to_numpy()[::10], c='#0072B2', alpha=0.5, linewidth=6)
plt.xlabel('Time (minutes)', fontsize=20, labelpad=20)
plt.ylabel(' ', fontsize=20, labelpad=20)
title = ax.set_title('Logistic Regression', fontsize=20, position=(.5, 1.01),
backgroundcolor='#D9D9D9', color='black',
verticalalignment="bottom", horizontalalignment="center")
title._bbox_patch._mutation_aspect = 0.04
title.get_bbox_patch().set_boxstyle("square", pad=10.46)
offset1 = 6000
offset2 = 24000
st = min(s0[min(buzz_dive_0)],s1[min(buzz_dive_1)])
en = max(e0[max(buzz_dive_0)],e1[max(buzz_dive_1)])
st += offset1
en -= offset2
# plt.axline((en-10, 520), (en, 520))
plt.plot( [st, en], [440, 440], linestyle=':', color='black')
plt.plot( [st, en], [530, 530], linestyle=':', color='black')
plt.plot( [st, st], [440, 530], linestyle=':', color='black')
plt.plot( [en, en], [440, 530], linestyle=':', color='black')
h = 0.62
t = 0.17
plt.plot( [st, int( (1-t)*dive_st[k] + t*dive_end[k] )],