In this tutorial, we'll network boot and provision a Kubernetes cluster on bare-metal with Flatcar Container Linux.
First, we'll deploy a Matchbox service and setup a network boot environment. Then, we'll declare a Kubernetes cluster using the Lokomotive Terraform module and power on machines. On PXE boot, machines will install Flatcar Container Linux to disk, reboot into the disk install, and provision themselves as Kubernetes controllers or workers via Ignition.
Controllers are provisioned to run an etcd-member
peer and a kubelet
service. Workers run just a kubelet
service. A one-time bootkube bootstrap schedules the apiserver
, scheduler
, controller-manager
, and coredns
on controllers and schedules kube-proxy
and calico
(or flannel
) on every node. A generated kubeconfig
provides kubectl
access to the cluster.
- Machines with 2GB RAM, 30GB disk, PXE-enabled NIC, IPMI
- PXE-enabled network boot environment (with HTTPS support)
- Matchbox v0.6+ deployment with API enabled
- Matchbox credentials
client.crt
,client.key
,ca.crt
- Terraform v0.12.x, terraform-provider-matchbox, and terraform-provider-ct installed locally
Collect a MAC address from each machine. For machines with multiple PXE-enabled NICs, pick one of the MAC addresses. MAC addresses will be used to match machines to profiles during network boot.
- 52:54:00:a1:9c:ae (node1)
- 52:54:00:b2:2f:86 (node2)
- 52:54:00:c3:61:77 (node3)
Configure each machine to boot from the disk through IPMI or the BIOS menu.
ipmitool -H node1 -U USER -P PASS chassis bootdev disk options=persistent
During provisioning, you'll explicitly set the boot device to pxe
for the next boot only. Machines will install (overwrite) the operating system to disk on PXE boot and reboot into the disk install.
!!! tip ""
Ask your hardware vendor to provide MACs and preconfigure IPMI, if possible. With it, you can rack new servers, terraform apply
with new info, and power on machines that network boot and provision into clusters.
Create a DNS A (or AAAA) record for each node's default interface. Create a record that resolves to each controller node (or re-use the node record if there's one controller).
- node1.example.com (node1)
- node2.example.com (node2)
- node3.example.com (node3)
- myk8s.example.com (node1)
Cluster nodes will be configured to refer to the control plane and themselves by these fully qualified names and they'll be used in generated TLS certificates.
Matchbox is an open-source app that matches network-booted bare-metal machines (based on labels like MAC, UUID, etc.) to profiles to automate cluster provisioning.
Install Matchbox on a Kubernetes cluster or dedicated server.
- Installing on Kubernetes (recommended)
- Installing on a server
!!! tip Deploy Matchbox as service that can be accessed by all of your bare-metal machines globally. This provides a single endpoint to use Terraform to manage bare-metal clusters at different sites. Lokomotive will never include secrets in provisioning user-data so you may even deploy matchbox publicly.
Matchbox provides a TLS client-authenticated API that clients, like Terraform, can use to manage machine matching and profiles. Think of it like a cloud provider API, but for creating bare-metal instances.
Generate TLS client credentials. Save the ca.crt
, client.crt
, and client.key
where they can be referenced in Terraform configs.
mv ca.crt client.crt client.key ~/.config/matchbox/
Verify the matchbox read-only HTTP endpoints are accessible (port is configurable).
$ curl http://matchbox.example.com:8080
matchbox
Verify your TLS client certificate and key can be used to access the Matchbox API (port is configurable).
$ openssl s_client -connect matchbox.example.com:8081 \
-CAfile ~/.config/matchbox/ca.crt \
-cert ~/.config/matchbox/client.crt \
-key ~/.config/matchbox/client.key
Create an iPXE-enabled network boot environment. Configure PXE clients to chainload iPXE firmware compiled to support HTTPS downloads. Instruct iPXE clients to chainload from your Matchbox service's /boot.ipxe
endpoint.
For networks already supporting iPXE clients, you can add a default.ipxe
config.
# /var/www/html/ipxe/default.ipxe
chain http://matchbox.foo:8080/boot.ipxe
For networks with Ubiquiti Routers, you can configure the router itself to chainload machines to iPXE and Matchbox.
Read about the many ways to setup a compliant iPXE-enabled network. There is quite a bit of flexibility:
- Continue using existing DHCP, TFTP, or DNS services
- Configure specific machines, subnets, or architectures to chainload from Matchbox
- Place Matchbox behind a menu entry (timeout and default to Matchbox)
!!! note "" TFTP chainloading to modern boot firmware, like iPXE, avoids issues with old NICs and allows faster transfer protocols like HTTP to be used.
!!! warning
Compile iPXE from source with support for HTTPS downloads. iPXE's pre-built firmware binaries do not enable this. If you cannot enable HTTPS downloads, set download_protocol = "http"
(discouraged).
Install Terraform v0.12.x on your system.
$ terraform version
Terraform v0.12.17
Add the terraform-provider-matchbox plugin binary for your system to ~/.terraform.d/plugins/
, noting the final name.
wget https://github.com/poseidon/terraform-provider-matchbox/releases/download/v0.3.0/terraform-provider-matchbox-v0.3.0-linux-amd64.tar.gz
tar xzf terraform-provider-matchbox-v0.3.0-linux-amd64.tar.gz
mv terraform-provider-matchbox-v0.3.0-linux-amd64/terraform-provider-matchbox ~/.terraform.d/plugins/terraform-provider-matchbox_v0.3.0
Add the terraform-provider-ct plugin binary for your system to ~/.terraform.d/plugins/
, noting the final name.
wget https://github.com/poseidon/terraform-provider-ct/releases/download/v0.4.0/terraform-provider-ct-v0.4.0-linux-amd64.tar.gz
tar xzf terraform-provider-ct-v0.4.0-linux-amd64.tar.gz
mv terraform-provider-ct-v0.4.0-linux-amd64/terraform-provider-ct ~/.terraform.d/plugins/terraform-provider-ct_v0.4.0
Read concepts to learn about Terraform, modules, and organizing resources. Change to your infrastructure repository (e.g. infra
).
cd infra/clusters
Configure the Matchbox provider to use your Matchbox API endpoint and client certificate in a providers.tf
file.
provider "matchbox" {
version = "0.3.0"
endpoint = "matchbox.example.com:8081"
client_cert = "${file("~/.config/matchbox/client.crt")}"
client_key = "${file("~/.config/matchbox/client.key")}"
ca = "${file("~/.config/matchbox/ca.crt")}"
}
Define a Kubernetes cluster using the module bare-metal/flatcar-linux/kubernetes
.
module "bare-metal-mercury" {
source = "git::https://github.com/kinvolk/lokomotive-kubernetes//bare-metal/flatcar-linux/kubernetes?ref=<hash>"
# bare-metal
cluster_name = "mercury"
matchbox_http_endpoint = "http://matchbox.example.com"
os_channel = "flatcar-stable"
os_version = "1632.3.0"
# configuration
k8s_domain_name = "node1.example.com"
ssh_keys = [
"ssh-rsa AAAAB3Nz...",
"ssh-rsa AAAAB3Nz...",
]
asset_dir = "/home/user/.secrets/clusters/mercury"
# machines
controller_names = ["node1"]
controller_macs = ["52:54:00:a1:9c:ae"]
controller_domains = ["node1.example.com"]
worker_names = [
"node2",
"node3",
]
worker_macs = [
"52:54:00:b2:2f:86",
"52:54:00:c3:61:77",
]
worker_domains = [
"node2.example.com",
"node3.example.com",
]
# set to http only if you cannot chainload to iPXE firmware with https support
# download_protocol = "http"
}
Reference the variables docs or the variables.tf source.
Initial bootstrapping requires bootkube.service
be started on one controller node. Terraform uses ssh-agent
to automate this step. Add your SSH private key to ssh-agent
.
ssh-add ~/.ssh/id_rsa
ssh-add -L
Initialize the config directory if this is the first use with Terraform.
terraform init
Plan the resources to be created.
$ terraform plan
Plan: 55 to add, 0 to change, 0 to destroy.
Apply the changes. Terraform will generate bootkube assets to asset_dir
and create Matchbox profiles (e.g. controller, worker) and matching rules via the Matchbox API.
$ terraform apply
module.bare-metal-mercury.null_resource.copy-kubeconfig.0: Provisioning with 'file'...
module.bare-metal-mercury.null_resource.copy-etcd-secrets.0: Provisioning with 'file'...
module.bare-metal-mercury.null_resource.copy-kubeconfig.0: Still creating... (10s elapsed)
module.bare-metal-mercury.null_resource.copy-etcd-secrets.0: Still creating... (10s elapsed)
...
Apply will then loop until it can successfully copy credentials to each machine and start the one-time Kubernetes bootstrap service. Proceed to the next step while this loops.
Power on each machine with the boot device set to pxe
for the next boot only.
ipmitool -H node1.example.com -U USER -P PASS chassis bootdev pxe
ipmitool -H node1.example.com -U USER -P PASS power on
Machines will network boot, install Flatcar Container Linux to disk, reboot into the disk install, and provision themselves as controllers or workers.
!!! tip "" If this is the first test of your PXE-enabled network boot environment, watch the SOL console of a machine to spot any misconfigurations.
Wait for the bootkube-start
step to finish bootstrapping the Kubernetes control plane. This may take 5-15 minutes depending on your network.
module.bare-metal-mercury.null_resource.bootkube-start: Still creating... (6m10s elapsed)
module.bare-metal-mercury.null_resource.bootkube-start: Still creating... (6m20s elapsed)
module.bare-metal-mercury.null_resource.bootkube-start: Still creating... (6m30s elapsed)
module.bare-metal-mercury.null_resource.bootkube-start: Still creating... (6m40s elapsed)
module.bare-metal-mercury.null_resource.bootkube-start: Creation complete (ID: 5441741360626669024)
Apply complete! Resources: 55 added, 0 changed, 0 destroyed.
To watch the install to disk (until machines reboot from disk), SSH to port 2222.
# before v1.14.1
$ ssh [email protected]
# after v1.14.1
$ ssh -p 2222 [email protected]
To watch the bootstrap process in detail, SSH to the first controller and journal the logs.
$ ssh [email protected]
$ journalctl -f -u bootkube
bootkube[5]: Pod Status: pod-checkpointer Running
bootkube[5]: Pod Status: kube-apiserver Running
bootkube[5]: Pod Status: kube-scheduler Running
bootkube[5]: Pod Status: kube-controller-manager Running
bootkube[5]: All self-hosted control plane components successfully started
bootkube[5]: Tearing down temporary bootstrap control plane...
Install kubectl on your system. Use the generated kubeconfig
credentials to access the Kubernetes cluster and list nodes.
$ export KUBECONFIG=/home/user/.secrets/clusters/mercury/auth/kubeconfig
$ kubectl get nodes
NAME STATUS ROLES AGE VERSION
node1.example.com Ready controller,master 10m v1.14.1
node2.example.com Ready node 10m v1.14.1
node3.example.com Ready node 10m v1.14.1
List the pods.
$ kubectl get pods --all-namespaces
NAMESPACE NAME READY STATUS RESTARTS AGE
kube-system calico-node-6qp7f 2/2 Running 1 11m
kube-system calico-node-gnjrm 2/2 Running 0 11m
kube-system calico-node-llbgt 2/2 Running 0 11m
kube-system coredns-1187388186-dj3pd 1/1 Running 0 11m
kube-system coredns-1187388186-mx9rt 1/1 Running 0 11m
kube-system kube-apiserver-7336w 1/1 Running 0 11m
kube-system kube-controller-manager-3271970485-b9chx 1/1 Running 0 11m
kube-system kube-controller-manager-3271970485-v30js 1/1 Running 1 11m
kube-system kube-proxy-50sd4 1/1 Running 0 11m
kube-system kube-proxy-bczhp 1/1 Running 0 11m
kube-system kube-proxy-mp2fw 1/1 Running 0 11m
kube-system kube-scheduler-3895335239-fd3l7 1/1 Running 1 11m
kube-system kube-scheduler-3895335239-hfjv0 1/1 Running 0 11m
kube-system pod-checkpointer-wf65d 1/1 Running 0 11m
kube-system pod-checkpointer-wf65d-node1.example.com 1/1 Running 0 11m
Learn about maintenance.
Check the variables.tf source.
Name | Description | Example |
---|---|---|
cluster_name | Unique cluster name | "mercury" |
matchbox_http_endpoint | Matchbox HTTP read-only endpoint | http://matchbox.example.com:port |
os_channel | Channel for Flatcar Container Linux | "flatcar-stable", "flatcar-beta", "flatcar-alpha" |
os_version | Version of Flatcar Container Linux to PXE and install | "1632.3.0" |
k8s_domain_name | FQDN resolving to the controller(s) nodes. Workers and kubectl will communicate with this endpoint | "myk8s.example.com" |
ssh_keys | List of SSH public keys for user 'core' | ["ssh-rsa AAAAB3NZ..."] |
asset_dir | Path to a directory where generated assets should be placed (contains secrets) | "/home/user/.secrets/clusters/mercury" |
controller_names | Ordered list of controller short names | ["node1"] |
controller_macs | Ordered list of controller identifying MAC addresses | ["52:54:00:a1:9c:ae"] |
controller_domains | Ordered list of controller FQDNs | ["node1.example.com"] |
worker_names | Ordered list of worker short names | ["node2", "node3"] |
worker_macs | Ordered list of worker identifying MAC addresses | ["52:54:00:b2:2f:86", "52:54:00:c3:61:77"] |
worker_domains | Ordered list of worker FQDNs | ["node2.example.com", "node3.example.com"] |
Name | Description | Default | Example |
---|---|---|---|
download_protocol | Protocol iPXE uses to download the kernel and initrd. iPXE must be compiled with crypto support for https. Unused if cached_install is true | "https" | "http" |
cached_install | PXE boot and install from the Matchbox /assets cache. Admin MUST have downloaded Flatcar Container Linux images into the cache |
false | true |
install_disk | Disk device where Flatcar Container Linux should be installed | "/dev/sda" | "/dev/sdb" |
networking | Choice of networking provider | "calico" | "calico" or "flannel" |
network_mtu | CNI interface MTU (calico-only) | 1480 | - |
clc_snippets | Map from machine names to lists of Container Linux Config snippets | {} | example |
network_ip_autodetection_method | Method to detect host IPv4 address (calico-only) | first-found | can-reach=10.0.0.1 |
pod_cidr | CIDR IPv4 range to assign to Kubernetes pods | "10.2.0.0/16" | "10.22.0.0/16" |
service_cidr | CIDR IPv4 range to assign to Kubernetes services | "10.3.0.0/16" | "10.3.0.0/24" |
cluster_domain_suffix | FQDN suffix for Kubernetes services answered by coredns. | "cluster.local" | "k8s.example.com" |
kernel_args | Additional kernel args to provide at PXE boot | [] | "kvm-intel.nested=1" |
certs_validity_period_hours | Validity of all the certificates in hours | 8760 | 17520 |