diff --git a/libs/community/langchain_community/chat_models/kinetica.py b/libs/community/langchain_community/chat_models/kinetica.py index ee98c6f1372a5..78dbf1955a557 100644 --- a/libs/community/langchain_community/chat_models/kinetica.py +++ b/libs/community/langchain_community/chat_models/kinetica.py @@ -293,6 +293,7 @@ class KineticaChatLLM(BaseChatModel): """Kinetica LLM Chat Model API. Prerequisites for using this API: + * The ``gpudb`` and ``typeguard`` packages installed. * A Kinetica DB instance. * Kinetica host specified in ``KINETICA_URL`` diff --git a/libs/community/tests/integration_tests/chat_models/test_kinetica.py b/libs/community/tests/integration_tests/chat_models/test_kinetica.py index d86aa929f8c99..64d875621b34f 100644 --- a/libs/community/tests/integration_tests/chat_models/test_kinetica.py +++ b/libs/community/tests/integration_tests/chat_models/test_kinetica.py @@ -42,11 +42,17 @@ class TestKineticaChatLLM: For more information see https://docs.kinetica.com/7.1/sql-gpt/concepts/. - These integration tests follow a workflow: 1. The `test_setup()` will create a table - with fake user profiles and and a related LLM context for the table. 2. The LLM - context is retrieved from the DB and used to create a chat prompt template. 3. A - chain is constructed from the chat prompt template. 4. The chain is executed to - generate the SQL and execute the query. + These integration tests follow a workflow: + + 1. The `test_setup()` will create a table with fake user profiles and and a related + LLM context for the table. + + 2. The LLM context is retrieved from the DB and used to create a chat prompt + template. + + 3. A chain is constructed from the chat prompt template. + + 4. The chain is executed to generate the SQL and execute the query. """ table_name = "demo.test_profiles"