diff --git a/polya/_src/polya.py b/polya/_src/polya.py index d1d33da..f1ac26b 100644 --- a/polya/_src/polya.py +++ b/polya/_src/polya.py @@ -11,8 +11,10 @@ class Polya: """Class to get Polya's pattern inventory. ```python + from polya import Polya polya = Polya(graph_name="fcc", ntypes=3) - poly, inms = polya.get_gt() + p_g, nms = polya.get_gt() + print(p_g) ``` """ @@ -20,10 +22,70 @@ def __init__(self, graph_name, ntypes): """Class to get Polya's pattern inventory. ```python + from polya import Polya polya = Polya(graph_name="fcc", ntypes=3) - poly, inms = polya.get_gt() + p_g, nms = polya.get_gt() + print(p_g) ``` """ + self.graph = Graph(graph_name) + self.ntypes = ntypes + + def get_cycle_index(self, permgroup): + cycle_types = [p.cycle_structure for p in permgroup] + monomials = [ + np.prod( + [sp.symbols(f"s_{ctype}") ** cycle[ctype] for ctype in cycle.keys()] + ) + for cycle in cycle_types + ] + nnodes = np.sum([key * value for key, value in cycle_types[0].items()]) + group_size = len(permgroup) + 1 # add identity + cycle_index = np.sum(monomials) + sp.symbols(f"s_1") ** nnodes + return cycle_index / group_size # need divided size of group + + def get_gt(self): + self.g = self.graph.graph_generator() + + nnodes = self.g.vcount() + + # Compute the automorphism group + permgroup = np.array(self.g.get_automorphisms_vf2()) + + # Get the permutation representation of the group + permgroup = PermutationGroup(permgroup) + cycle_index = self.get_cycle_index(permgroup) + + # define symbolic variables for d1 to d10 + types = sp.symbols(f"t1:{self.ntypes+1}") + + # replace s_i with the sum of the powers of the d variables and factorize + dpoly = sp.factor( + cycle_index.subs( + [ + ( + sp.symbols(f"s_{i}"), + np.sum([types[j] ** i for j in range(self.ntypes)]), + ) + for i in range(1, nnodes + 1) + ] + ) + ) + + # replace s_i with the sum of the powers of 1 for each variable and factorize + onepoly = sp.factor( + cycle_index.subs( + [ + (sp.symbols(f"s_{i}"), sum([1**i for _ in range(self.ntypes)])) + for i in range(1, nnodes + 1) + ] + ) + ) + return dpoly, onepoly + + +class Graph: + def __init__(self, graph_name): self.graph_generators = { "fcc": self.get_fcc_1nn_graph, "bcc": self.get_bcc_1nn_graph, @@ -33,9 +95,18 @@ def __init__(self, graph_name, ntypes): "bcc_1nn2nn": self.get_bcc_1nn_2nn_graph, } self.graph_name = graph_name - self.ntypes = ntypes self.graph_generator = self.graph_generators[self.graph_name] + def generate_permutations(self, values, coords): + signs = list(itertools.product([1, -1], repeat=len(values))) + permutations = [] + for sign in signs: + value = tuple(val * s for val, s in zip(values, sign)) + permutations.extend(list((itertools.permutations(value, 3)))) + coords = np.vstack((coords, np.array(list(set(permutations))))) + + return coords + def get_edges(self, vertexpositions, nn_dst, atol=0.1): # Subtract each point from all the other points diff = vertexpositions[:, np.newaxis, :] - vertexpositions[np.newaxis, :, :] @@ -48,16 +119,21 @@ def get_edges(self, vertexpositions, nn_dst, atol=0.1): edges = np.unique(np.sort(edges), axis=0) return edges, distances - def generate_permutations(self, values, coords): - signs = list(itertools.product([1, -1], repeat=len(values))) - permutations = [] - for sign in signs: - value = tuple(val * s for val, s in zip(values, sign)) - permutations.extend(list((itertools.permutations(value, 3)))) - coords = np.vstack((coords, np.array(list(set(permutations))))) + def plot(self, g, save_name): + # Quick viz plotting + # import matplotlib.pyplot as plt + fig, ax = plt.subplots(nrows=1, ncols=1) - return coords + h = g + # igraph draw + # ax1.set_title("Plot with igraph plot") + layout = h.layout_kamada_kawai() + igraph.plot(h, layout=layout, target=ax) + ax.set_title(self.graph_name) + plt.axis("off") + plt.savefig(save_name) + # IMPLEMENT YOUR GRAPHS HERE def get_fcc_1nn_2nn_3nn_graph(self): # Central atom (Origin) coords = np.zeros((1, 3)) @@ -198,69 +274,3 @@ def get_hcp_1nn_graph(self): g.vs["pos"] = vertexpositions return g - - def get_cycle_index(self, permgroup): - cycle_types = [p.cycle_structure for p in permgroup] - monomials = [ - np.prod( - [sp.symbols(f"s_{ctype}") ** cycle[ctype] for ctype in cycle.keys()] - ) - for cycle in cycle_types - ] - nnodes = np.sum([key * value for key, value in cycle_types[0].items()]) - group_size = len(permgroup) + 1 # add identity - cycle_index = np.sum(monomials) + sp.symbols(f"s_1") ** nnodes - return cycle_index / group_size # need divided size of group - - def get_gt(self): - self.g = self.graph_generator() - - nnodes = self.g.vcount() - - # Compute the automorphism group - permgroup = np.array(self.g.get_automorphisms_vf2()) - - # Get the permutation representation of the group - permgroup = PermutationGroup(permgroup) - cycle_index = self.get_cycle_index(permgroup) - - # define symbolic variables for d1 to d10 - types = sp.symbols(f"t1:{self.ntypes+1}") - - # replace s_i with the sum of the powers of the d variables and factorize - dpoly = sp.factor( - cycle_index.subs( - [ - ( - sp.symbols(f"s_{i}"), - np.sum([types[j] ** i for j in range(self.ntypes)]), - ) - for i in range(1, nnodes + 1) - ] - ) - ) - - # replace s_i with the sum of the powers of 1 for each variable and factorize - onepoly = sp.factor( - cycle_index.subs( - [ - (sp.symbols(f"s_{i}"), sum([1**i for _ in range(self.ntypes)])) - for i in range(1, nnodes + 1) - ] - ) - ) - return dpoly, onepoly - - def plot(self, g, save_name): - # Quick viz plotting - # import matplotlib.pyplot as plt - fig, ax = plt.subplots(nrows=1, ncols=1) - - h = g - # igraph draw - # ax1.set_title("Plot with igraph plot") - layout = h.layout_kamada_kawai() - igraph.plot(h, layout=layout, target=ax) - ax.set_title(self.graph_name) - plt.axis("off") - plt.savefig(save_name)