forked from RoCaerbannog/GRB_VHE_Detection
-
Notifications
You must be signed in to change notification settings - Fork 1
/
LC_VHE_timing.py
514 lines (432 loc) · 25.9 KB
/
LC_VHE_timing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
import asciitable
import numpy
import matplotlib as mpt
from matplotlib import pyplot
from VOT import *
import operator
from matplotlib.patches import Ellipse
from prettytable import *
import glob
import os
from observatories import *
'''
Ian's NASA Summer 2013 Work
'''
'''
This is the meat and bones of the tool.
'''
class all_bursts:
def __init__(self, eblModel = 'Dominguez', instrument = 'VERITAS', zenith = 20):
self.eblModel = eblModel
self.instrument = instrument
self.zenith = zenith
GRBs = []
myGRB = {}; self.myGRB = myGRB # establishes a dictionary of all GRBs
# accesses list of GRBs
directory = os.getcwd()
os.chdir(directory + '\GRBs')
files = list(glob.glob('*.csv'))
# list of all known redshifts for the current sample of 23 bursts
redshifts = {
'130518580': 2.49,
'130427324': 0.34,
'110731465': 2.83,
'100414097': 1.368,
'091003191': 0.8969,
'090926181': 2.1062,
'090902462': 1.822,
'090510016': 0.903,
'090328401': 0.736,
'090323002': 3.57,
'080916009': 4.35}
for f in files:
GRBs.append(f[:9])
os.chdir(directory)
# establishes the default redshift to be 2.00 if there is no known redshift
for g in GRBs:
if g in redshifts:
pass
else:
redshifts[g] = 2.00
myGRB['{}'.format(g)] = take_data(Burst = g, eblModel = self.eblModel, instrument = self.instrument, zenith = self.zenith, redshift = redshifts[g])
self.redshift = redshifts[g]
'''
Used to analyze individual bursts. Must have corresponding csv file for the burst in the GRB folder.
The tool requires the burst name, eblModel, redshift, instrument, and zenith angle. Default instrument is Veritas.
'''
class take_data:
def __init__(self, Burst = '130427A', date = '2013/4/25 08:05:12', GC = [173.1370800,27.6990200], redshift = 0.34, eblModel = 'Dominguez', instrument = 'VERITAS2'):
#Although it is a bit unclear to me why, you have to put a self. before things so that the code can refer to that piece of code.
self.redshift = redshift
self.eblModel = eblModel
self.instrument = instrument
self.date = date
self.GC = GC
# this finds the GRB file and reads it there is another file I created that will take txt files and convert it to a more friendly csv file
GRB = 'GRBs/'+ Burst +'.csv'
burst = asciitable.read(GRB, delimiter = ',')
# this makes the arrays(tuple) to which we will add values from the GRB table
# this imports the data from the csv files
# It looks specifically for certain header names. It's very picky so I suggest using the converter file I created.
# Now, ideally, we have all the data we could possibly need from the csv files
self.start_time = []
for x_1 in burst['start time']:
self.start_time.append(x_1)
self.stop_time = []
for x_2 in burst['stop time']:
self.stop_time.append(x_2)
self.PF = []
for y in burst['photon flux']:
self.PF.append(y)
self.PF_err = []
for y_1 in burst['photon flux err']:
self.PF_err.append(y_1)
self.PI = []
for p in burst['Photon index']:
self.PI.append(p)
self.PI_err = []
for p_1 in burst['Photon index error']:
self.PI_err.append(p_1)
self.Flux_erg = []
for E_1 in burst['Energy flux (erg/cm2/s)']:
self.Flux_erg.append(E_1)
self.Flux_erg_error = []
for E_e in burst['Energy flux error']:
self.Flux_erg_error.append(E_e)
#photon index error calculator
PIP, PIM = zip(*[(pi+pie, pi-pie) for pi, pie in zip(self.PI, self.PI_err)])
self.PIP = PIP; self.PIM = PIM
# these make new arrays. One is the center of each time bin and the other is the time between the center and edge of each time bin
time,time_err = zip(*[(((y-x)/2)+x,(y-x)/2) for x,y in zip(self.start_time, self.stop_time)])
self.time = time; self.time_err = time_err
# So we have all these time bins and for loops but it would be nice, say if we wanted the differential flux for a single time bin, to call a specific time bin
# well I was nice enough to do it for you
time_bin = range(0, len(time), 1)
self.time_bin = time_bin
# This changes the Flux from the LAT from ergs to GeV
Flux_GeV = [624.150934 * x for x in self.Flux_erg]; self.Flux_GeV = Flux_GeV
Flux_GeV_error = [624.150934 * x for x in self.Flux_erg_error]; self.Flux_GeV_error = Flux_GeV_error
# The effective energy range for the LAT data spans from 0.1 GeV to 100 GeV
E2 = 100 # GeV
E1 = 0.1 # GeV
# This neat little formula saved me a bit of time. Rather than do the calculation and write a new csv file, this does the calculations for the Normalization values N0 here.
self.Norm = []; self.Norm_P = []; self.Norm_M = []
for F, F_err, I in zip(self.PF, self.PF_err, self.PI):
self.Norm.append(((F/(E2-E1))*((E2**(1+I)-E1**(1+I))/(1+I))));
self.Norm_P.append((((F+F_err)/(E2-E1))*((E2**(1+I)-E1**(1+I))/(1+I))));
self.Norm_M.append((((F-F_err)/(E2-E1))*((E2**(1+I)-E1**(1+I))/(1+I))));
# This section figures out the zenith angle based on the time of day that the burst went off as well as the positions of the burst and observatory.
tel = VHEtelescope(instrument = self.instrument, time = time_bin, GC = self.GC, date = self.date)
self.tel = tel
# A dictionary so that we can refer to specific time bins later
myVOT = {}; self.myVOT = myVOT
self.One_GeV = []
self.Four_GeV = []
self.One_TeV = []
self.int_flux = []
self.detTimes = []
self.crab_flux = []
# the nominal calculation. No errors involved
for tb, i, v, z in zip(time_bin, self.Norm, self.PI, tel.zenith):
myVOT['{}'.format(tb)] = VOT("custom", eMin = 0.001, emax = 100000, Nbins= 100000, redshift = self.redshift, eblModel = self.eblModel, instrument = self.instrument,
zenith = z , spectralModel = 'PowerLaw', N0 = i, index = v, E0 = 1)
redshift = self.redshift
# makes a boolean array (Trues and Falses) of all the energy bins True if E > minimum safe Energy
mymask = (myVOT['{}'.format(tb)].VS.EBins > 10**myVOT['{}'.format(tb)].VR.EASummary['minSafeE'])
#print np.shape(mymask),type(myVOT['{}'.format(tb)].VS.EBins),type(myVOT['{}'.format(tb)].VS.dNdE)
#print mask
# makes a new array of energies above 10**self.VR.EASummary['minSafeE'] GeV
E_new = [10**myVOT['{}'.format(tb)].VR.EASummary['minSafeE']] + myVOT['{}'.format(tb)].VS.EBins[mymask]
# makes a new differential flux with an interpolated value at 10**self.VR.EASummary['minSafeE'] GeV and all values above (not interpolated)
dNdE_new = [np.interp(10**myVOT['{}'.format(tb)].VR.EASummary['minSafeE'], myVOT['{}'.format(tb)].VS.EBins, myVOT['{}'.format(tb)].VS.dNdE_absorbed)] + np.array(myVOT['{}'.format(tb)].VS.dNdE_absorbed)[mymask]
# interpolates the differential flux at 1 GeV, 400 GeV and 1 TeV
self.One_GeV.append(np.interp(1,myVOT['{}'.format(tb)].VS.EBins, myVOT['{}'.format(tb)].VS.dNdE_absorbed))
self.Four_GeV.append(np.interp(400,myVOT['{}'.format(tb)].VS.EBins, myVOT['{}'.format(tb)].VS.dNdE_absorbed))
self.One_TeV.append(np.interp(1000,myVOT['{}'.format(tb)].VS.EBins, myVOT['{}'.format(tb)].VS.dNdE_absorbed))
# Integrates differential flux with respect to energy bins using the trapezoid rule
self.int_flux.append(np.trapz(dNdE_new, x = E_new))
#checks how long detection takes
crabFlux = 100*myVOT['{}'.format(tb)].rate*60./myVOT['{}'.format(tb)].VR.crabRate
self.crab_flux.append(myVOT['{}'.format(tb)].VR.crabRate)
detTime = np.interp([crabFlux*0.01], myVOT['{}'.format(tb)].VR.SensCurve[:,0], myVOT['{}'.format(tb)].VR.SensCurve[:,1])*60
self.detTimes.append((detTime[0]))
# Only taking into account the difference in positive normalization values
myVOT_PFP = {}; self.myVOT_PFP = myVOT_PFP
'''
Calculates the upper limit of the extrapolation based on the larger normalization value.
This is used to create the upper portion of the flux error bars. (i.e. N0 + error)
'''
self.int_flux_p = []
self.detTimes_p = []
self.One_GeV_P = []
self.Four_GeV_P = []
self.One_TeV_P = []
self.crab_flux_p = []
for tb, i, v, z in zip(time_bin, self.Norm_P, self.PI, tel.zenith):
myVOT_PFP['{}'.format(tb)] = VOT("custom", eMin = 0.001, emax = 100000, Nbins= 100000, redshift = self.redshift, eblModel = self.eblModel, instrument = self.instrument,
zenith = z , spectralModel = 'PowerLaw', N0 = i, index = v, E0 = 1)
# makes a boolean array (Trues and Falses) of all the energies above the minimum safe energy range
mymask_p = (myVOT_PFP['{}'.format(tb)].VS.EBins > 10**myVOT_PFP['{}'.format(tb)].VR.EASummary['minSafeE'])
# Limits the energies to only those within the safe energy range
E_new_p = [10**myVOT_PFP['{}'.format(tb)].VR.EASummary['minSafeE']] + myVOT_PFP['{}'.format(tb)].VS.EBins[mymask_p]
# Limits the differential flux values (i.e. y axis )
dNdE_new_p = [np.interp(10**myVOT_PFP['{}'.format(tb)].VR.EASummary['minSafeE'], myVOT_PFP['{}'.format(tb)].VS.EBins, myVOT_PFP['{}'.format(tb)].VS.dNdE_absorbed)] + np.array(myVOT_PFP['{}'.format(tb)].VS.dNdE_absorbed)[mymask_p]
# Uses the interpolation function to determine the differential flux for energies 1 GeV, 400 GeV and 1 TeV
self.One_GeV_P.append(np.interp(1,myVOT_PFP['{}'.format(tb)].VS.EBins, myVOT_PFP['{}'.format(tb)].VS.dNdE_absorbed))
self.Four_GeV_P.append(np.interp(400,myVOT_PFP['{}'.format(tb)].VS.EBins, myVOT_PFP['{}'.format(tb)].VS.dNdE_absorbed))
self.One_TeV_P.append(np.interp(1000,myVOT_PFP['{}'.format(tb)].VS.EBins, myVOT_PFP['{}'.format(tb)].VS.dNdE_absorbed))
# Integrates differential flux with respect to energy bins using the trapezoid rule
self.int_flux_p.append(np.trapz(dNdE_new_p, x = E_new_p))
#checks how long detection takes
crabFlux_p = 100*myVOT_PFP['{}'.format(tb)].rate*60./myVOT_PFP['{}'.format(tb)].VR.crabRate
self.crab_flux_p.append(myVOT_PFP['{}'.format(tb)].VR.crabRate)
detTime_P = np.interp([crabFlux_p*0.01], myVOT_PFP['{}'.format(tb)].VR.SensCurve[:,0], myVOT_PFP['{}'.format(tb)].VR.SensCurve[:,1])*60
self.detTimes_p.append(detTime_P[0])
myVOT_PFM = {}; self.myVOT_PFM = myVOT_PFM
self.int_flux_m = []
self.detTimes_m = []
self.One_GeV_M = []
self.Four_GeV_M = []
self.One_TeV_M = []
self. crab_flux_m = []
# only taking into account the difference in negative normalization error
for tb, i, v, z in zip(time_bin, self.Norm_M, self.PI, tel.zenith):
myVOT_PFM['{}'.format(tb)] = VOT("custom", eMin = 0.001, emax = 100000, Nbins= 100000, redshift = self.redshift, eblModel = self.eblModel, instrument = self.instrument,
zenith = z , spectralModel = 'PowerLaw', N0 = i, index = v, E0 = 1)
# makes a boolean array (Trues and Falses) of all the energy bins depending on whether True if E > 10**self.VR.EASummary['minSafeE'] GeV
mymask_m = (myVOT_PFM['{}'.format(tb)].VS.EBins > 10**myVOT_PFM['{}'.format(tb)].VR.EASummary['minSafeE'])
#print np.shape(mymask),type(myVOT['{}'.format(tb)].VS.EBins),type(myVOT['{}'.format(tb)].VS.dNdE)
#print mask
# makes a new array of energies above the minimum sensitivity
E_new_m = [10**myVOT_PFM['{}'.format(tb)].VR.EASummary['minSafeE']] + myVOT_PFM['{}'.format(tb)].VS.EBins[mymask_m]
# makes a new differential flux with an interpolated value at 10**self.VR.EASummary['minSafeE'] GeV and all values above (not interpolated)
dNdE_new_m = [np.interp(10**myVOT_PFM['{}'.format(tb)].VR.EASummary['minSafeE'], myVOT_PFM['{}'.format(tb)].VS.EBins, myVOT_PFM['{}'.format(tb)].VS.dNdE_absorbed)] + np.array(myVOT_PFM['{}'.format(tb)].VS.dNdE_absorbed)[mymask_m]
# interpolates the differential flux at 1 GeV, 400 GeV and 1 TeV
self.One_GeV_M.append(np.interp(1,myVOT_PFM['{}'.format(tb)].VS.EBins, myVOT_PFM['{}'.format(tb)].VS.dNdE_absorbed))
self.Four_GeV_M.append(np.interp(400,myVOT_PFM['{}'.format(tb)].VS.EBins, myVOT_PFM['{}'.format(tb)].VS.dNdE_absorbed))
self.One_TeV_M.append(np.interp(1000,myVOT_PFM['{}'.format(tb)].VS.EBins, myVOT_PFM['{}'.format(tb)].VS.dNdE_absorbed))
# Integrates differential flux with respect to energy bins using the trapezoid rule
self.int_flux_m.append(np.trapz(dNdE_new_m, x = E_new_m))
#checks how long detection takes
crabFlux_m = 100*myVOT_PFM['{}'.format(tb)].rate*60./myVOT_PFM['{}'.format(tb)].VR.crabRate
self.crab_flux_m.append(myVOT_PFM['{}'.format(tb)].VR.crabRate)
detTime_m = np.interp([crabFlux_m*0.01], myVOT_PFM['{}'.format(tb)].VR.SensCurve[:,0], myVOT_PFM['{}'.format(tb)].VR.SensCurve[:,1])*60
self.detTimes_m.append(detTime_m[0])
self.perror = []
for err, perr in zip(self.int_flux, self.int_flux_p):
self.perror.append(perr - err)
self.merror = []
for err, merr in zip(self.int_flux, self.int_flux_m):
self.merror.append(err-merr)
'''
Performs all calculations taking into account all possible sources of statistical error
(i.e. Normalization error and Photon Index error).
'''
myVOT_PIP = {}; self.myVOT_PIP = myVOT_PIP
self.int_flux_pi = []
self.detTimes_pi = []
self.One_GeV_PI = []
self.Four_GeV_PI = []
self.One_TeV_PI = []
self.crab_flux_pi = []
#positive photon index error and positive normalization error
for tb, i, v, z in zip(time_bin, self.Norm_P, self.PIP, tel.zenith):
myVOT_PIP['{}'.format(tb)] = VOT("custom", eMin = 0.001, emax = 100000, Nbins= 100000, redshift = self.redshift, eblModel = self.eblModel, instrument = self.instrument,
zenith = z , spectralModel = 'PowerLaw', N0 = i, index = v, E0 = 1)
self.index_p = v
# makes a boolean array (Trues and Falses) of all the energy bins True if E > 10**self.VR.EASummary['minSafeE'] GeV
mymask_pi = (myVOT_PIP['{}'.format(tb)].VS.EBins > 10**myVOT_PIP['{}'.format(tb)].VR.EASummary['minSafeE'])
# makes a new array of energies above 10**self.VR.EASummary['minSafeE'] GeV
E_new_pi = [10**myVOT_PIP['{}'.format(tb)].VR.EASummary['minSafeE']] + myVOT_PIP['{}'.format(tb)].VS.EBins[mymask_pi]
# makes a new differential flux with an interpolated value at 10**self.VR.EASummary['minSafeE'] GeV and all values above (not interpolated)
dNdE_new_pi = [np.interp(10**myVOT_PIP['{}'.format(tb)].VR.EASummary['minSafeE'], myVOT_PIP['{}'.format(tb)].VS.EBins, myVOT_PIP['{}'.format(tb)].VS.dNdE_absorbed)] + np.array(myVOT_PIP['{}'.format(tb)].VS.dNdE_absorbed)[mymask_pi]
# interpolates the differential flux at 1 GeV, 400 GeV and 1 TeV
self.One_GeV_PI.append(np.interp(1,myVOT_PIP['{}'.format(tb)].VS.EBins, myVOT_PIP['{}'.format(tb)].VS.dNdE_absorbed))
self.Four_GeV_PI.append(np.interp(400,myVOT_PIP['{}'.format(tb)].VS.EBins, myVOT_PIP['{}'.format(tb)].VS.dNdE_absorbed))
self.One_TeV_PI.append(np.interp(1000,myVOT_PIP['{}'.format(tb)].VS.EBins, myVOT_PIP['{}'.format(tb)].VS.dNdE_absorbed))
# Integrates differential flux with respect to energy bins using the trapezoid rule
self.int_flux_pi.append(np.trapz(dNdE_new_pi, x = E_new_pi))
#checks how long detection takes
crabFlux_pi = 100*myVOT_PIP['{}'.format(tb)].rate*60./myVOT_PIP['{}'.format(tb)].VR.crabRate
self.crab_flux_pi.append(myVOT_PIP['{}'.format(tb)].VR.crabRate)
detTime_PI = np.interp([crabFlux_pi*0.01], myVOT_PIP['{}'.format(tb)].VR.SensCurve[:,0], myVOT_PIP['{}'.format(tb)].VR.SensCurve[:,1])*60
self.detTimes_pi.append(detTime_PI[0])
myVOT_PIM = {}; self.myVOT_PIM = myVOT_PIM
self.int_flux_mi = []
self.detTimes_mi = []
self.One_GeV_MI = []
self.Four_GeV_MI = []
self.One_TeV_MI = []
self.crab_flux_mi = []
# negative photon index error and normalization error
for tb, i, v, z in zip(time_bin, self.Norm_M, self.PIM, tel.zenith):
myVOT_PIM['{}'.format(tb)] = VOT("custom", eMin = 0.001, emax = 100000, Nbins= 100000, redshift = self.redshift, eblModel = self.eblModel, instrument = self.instrument,
zenith = z , spectralModel = 'PowerLaw', N0 = i, index = v, E0 = 1)
self.index_m = v
# makes a boolean array (Trues and Falses) of all the energy bins True if E > 10**self.VR.EASummary['minSafeE'] GeV
mymask_mi = (myVOT_PIM['{}'.format(tb)].VS.EBins > 10**myVOT_PIM['{}'.format(tb)].VR.EASummary['minSafeE'])
#print np.shape(mymask),type(myVOT['{}'.format(tb)].VS.EBins),type(myVOT['{}'.format(tb)].VS.dNdE)
#print mask
# makes a new array of energies above 10**self.VR.EASummary['minSafeE'] GeV
E_new_mi = [10**myVOT_PIM['{}'.format(tb)].VR.EASummary['minSafeE']] + myVOT_PIM['{}'.format(tb)].VS.EBins[mymask_m]
# makes a new differential flux with an interpolated value at 10**self.VR.EASummary['minSafeE'] GeV and all values above (not interpolated)
dNdE_new_mi = [np.interp(10**myVOT_PIM['{}'.format(tb)].VR.EASummary['minSafeE'], myVOT_PIM['{}'.format(tb)].VS.EBins, myVOT_PIM['{}'.format(tb)].VS.dNdE_absorbed)] + np.array(myVOT_PIM['{}'.format(tb)].VS.dNdE_absorbed)[mymask_mi]
# interpolates the differential flux at 1 GeV, 400 GeV and 1 TeV
self.One_GeV_MI.append(np.interp(1,myVOT_PIM['{}'.format(tb)].VS.EBins, myVOT_PIM['{}'.format(tb)].VS.dNdE_absorbed))
self.Four_GeV_MI.append(np.interp(400,myVOT_PIM['{}'.format(tb)].VS.EBins, myVOT_PIM['{}'.format(tb)].VS.dNdE_absorbed))
self.One_TeV_MI.append(np.interp(1000,myVOT_PIM['{}'.format(tb)].VS.EBins, myVOT_PIM['{}'.format(tb)].VS.dNdE_absorbed))
# Integrates differential flux with respect to energy bins using the trapezoid rule
self.int_flux_mi.append(np.trapz(dNdE_new_mi, x = E_new_mi))
#checks how long detection takes
crabFlux_mi = 100*myVOT_PIM['{}'.format(tb)].rate*60./myVOT_PIM['{}'.format(tb)].VR.crabRate
self.crab_flux_mi.append(myVOT_PIM['{}'.format(tb)].VR.crabRate)
detTime_MI = np.interp([crabFlux_mi*0.01], myVOT_PIM['{}'.format(tb)].VR.SensCurve[:,0], myVOT_PIM['{}'.format(tb)].VR.SensCurve[:,1])*60
self.detTimes_mi.append(detTime_MI[0])
# Lots and lots of error calculations
One_GeV_M_error,Four_GeV_M_error, One_TeV_M_error = zip(*[((x-s),(y-t),(z-u)) for s,t,u,x,y,z in zip(self.One_GeV_M, self.Four_GeV_M, self.One_TeV_M, self.One_GeV, self.Four_GeV, self.One_TeV)])
self.One_GeV_M_error = One_GeV_M_error; self.Four_GeV_M_error = Four_GeV_M_error; self.One_TeV_M_error = One_TeV_M_error
One_GeV_P_error,Four_GeV_P_error, One_TeV_P_error = zip(*[((s-x),(t-y),(u-z)) for s,t,u,x,y,z in zip(self.One_GeV_M, self.Four_GeV_M, self.One_TeV_M, self.One_GeV, self.Four_GeV, self.One_TeV)])
self.One_GeV_P_error = One_GeV_P_error; self.Four_GeV_P_error = Four_GeV_P_error; self.One_TeV_P_error = One_TeV_P_error
# percent error
def error(self, timebin = 1):
pp_error = (np.absolute(self.int_flux_pi[timebin] - self.int_flux[timebin])/self.int_flux[timebin])*100
pm_error = (np.absolute(self.int_flux_mi[timebin] - self.int_flux[timebin])/self.int_flux[timebin])*100
self.pp_error = pp_error
self.pm_error = pm_error
# a plot of the integrated flux
def intplot(self):
fig2 = pyplot.figure(figsize=(16,8))
fig2ax1 = fig2.add_subplot(111)
#fig2ax2 = fig2.add_subplot(112)
fig2ax1.set_ylabel(r'Integral Flux [cm$^{-2}$ s$^{-1}$ ]', fontsize = '20')
fig2ax1.set_xlabel('Time [s]', fontsize = '20')
fig2ax1.set_xscale('log')
fig2ax1.set_yscale('log')
msk1 = 2*np.array(self.time_err) > np.array(self.detTimes)
msk2 = 2*np.array(self.time_err) < np.array(self.detTimes)
l1 = fig2ax1.errorbar(np.array(self.time)[msk1], np.array(self.int_flux)[msk1], xerr = np.array(self.time_err)[msk1],
yerr = [np.array(self.merror)[msk1], np.array(self.perror)[msk1]], fmt='_', color = 'g', label = 'Detectable')
l11 = fig2ax1.errorbar(np.array(self.time)[msk2], np.array(self.int_flux)[msk2], xerr = np.array(self.time_err)[msk2],
yerr = [np.array(self.merror)[msk2], np.array(self.perror)[msk2]], fmt='_', color = 'r', label = 'Detectable')
#l2 = fig2ax1.scatter(np.array(self.time)[msk1], np.array(self.int_flux)[msk1], color = 'g')
#l22 = fig2ax1.scatter(np.array(self.time)[msk2], np.array(self.int_flux)[msk2], color = 'r')
fig2ax2 = fig2ax1.twinx()
fig2ax1.legend(fontsize = '18')
#fig2ax1.set_xlim(1,1e6)
#fig2ax1.set_ylim(1e-12,1e-2)
fig2ax1.axvline(100, color = 'k')
# a plot of LAT flux, photon index, and Predicted telescope flux
def plotcompare(self):
fig = mpt.pyplot.gcf()
fig.set_size_inches(18.5,10.5)
ax1 = fig.add_subplot(3,1,1)
ax2 = fig.add_subplot(3,1,2)
ax3 = fig.add_subplot(3,1,3)
fig.tight_layout()
ax1.set_ylabel(r'LAT Flux [GeV$^{-1}$cm$^{-2}$ s$^{-1}$ ]', fontsize = '20')
ax2.set_ylabel(r'Photon Index', fontsize = '20')
ax3.set_ylabel(r'Predicted Veritas Flux [cm$^{-2}$ s$^{-1}$ ]', fontsize = '20')
ax3.set_xlabel('Time [s]', fontsize = '30')
#ax1.set_title('Sharing both axes')
ax1.set_xscale('log')
ax1.set_yscale('log')
ax2.set_xscale('log')
ax3.set_xscale('log')
ax3.set_yscale('log')
msk1 = 2*np.array(self.time_err) > np.array(self.detTimes)
msk2 = 2*np.array(self.time_err) < np.array(self.detTimes)
#ax3.annotate('Photon Index error ranges from',(0.8, 0.5),
# xycoords="axes fraction", va="bottom", ha="center",
# bbox=dict(boxstyle="round, pad=1", fc="w"))
ax1.errorbar(self.time, self.Flux_GeV, xerr = self.time_err, yerr = self.Flux_GeV_error, fmt = '_', color = 'k')
ax2.errorbar(self.time, self.PI, xerr = self.time_err, yerr = self.PI_err, fmt = '_', color = 'k')
l1 = ax3.errorbar(np.array(self.time)[msk1], np.array(self.int_flux)[msk1], xerr = np.array(self.time_err)[msk1],
yerr = [np.array(self.merror)[msk1], np.array(self.perror)[msk1]], fmt='_', color = 'g', label = 'Detectable')
l2 = ax3.errorbar(np.array(self.time)[msk2], np.array(self.int_flux)[msk2], xerr = np.array(self.time_err)[msk2],
yerr = [np.array(self.merror)[msk2], np.array(self.perror)[msk2]], fmt='_', color = 'r', label = 'Undetectable')
ax3.axvline(100, color = 'k')
el = Ellipse((2, -1), 0.5, 0.5)
ax3.legend(fontsize = '20')
# Fine-tune figure; make subplots close to each other and hide x ticks for
# all but bottom plot.
fig.subplots_adjust(hspace = 0.1)
pyplot.setp([a.get_xticklabels() for a in fig.axes[:-1]], visible=False)
def bnplot(self, timebin = '5'):
fig2 = mpt.pyplot.gcf()
fig2.set_size_inches(18.5,10.5)
fig2ax1 = fig2.add_subplot(111)
fig2ax1.set_ylabel(r'Differential Flux [cm$^{-2}$ s$^{-1}$ GeV$^{-1}$]', fontsize = '20')
fig2ax1.set_xlabel('Energy [GeV]', fontsize = '30')
fig2ax1.set_ylim(1e-25, 10e6)
fig2ax1.set_xlim(1,1e6)
l1 = fig2ax1.loglog(self.myVOT[timebin].VS.EBins, self.myVOT[timebin].VS.dNdE, 'b', linestyle = '--')
l2 = fig2ax1.loglog(self.myVOT_PIP[timebin].VS.EBins, self.myVOT_PIP[timebin].VS.dNdE, 'g', linestyle = '--')
l3 = fig2ax1.loglog(self.myVOT_PIM[timebin].VS.EBins, self.myVOT_PIM[timebin].VS.dNdE, 'r', linestyle = '--')
l1a = fig2ax1.loglog(self.myVOT[timebin].VS.EBins, self.myVOT[timebin].VS.dNdE_absorbed, 'b')
l2a = fig2ax1.loglog(self.myVOT_PIP[timebin].VS.EBins, self.myVOT_PIP[timebin].VS.dNdE_absorbed, 'g')
l3a = fig2ax1.loglog(self.myVOT_PIM[timebin].VS.EBins, self.myVOT_PIM[timebin].VS.dNdE_absorbed, 'r')
fig2ax2 = fig2ax1.twinx()
l0 = fig2ax2.loglog((10**self.myVOT[timebin].VR.EACurve[0:,0])[::2],(self.myVOT[timebin].VR.EACurve[0:,1])[::2],'ko')
fig2ax2.set_ylabel(r'Effective Area [cm$^2$]', fontsize = '17')
fig2ax2.axvline(10**self.myVOT[timebin].VR.EASummary['minSafeE'],color='k')
fig2ax2.axvline(10**self.myVOT[timebin].VR.EASummary['maxSafeE'],color='k')
fig2.legend([l1a[0], l2a[0], l3a[0], l1[0], l2[0], l3[0], l0[0]], ['Nominal value','Positive photon index error','Negative photon index error','Nominal unabsorbed','Positive unabsorbed', 'negative unabsorbed', 'EA'], 1, fontsize = '18')
pyplot.show()
def dnplot(self):
fig2 = pyplot.figure(figsize=(16,8))
fig2ax1 = fig2.add_subplot(111)
fig2ax1.set_ylabel(r'Differential Flux [cm$^{-2}$ s$^{-1}$ GeV$^{-1}$]')
fig2ax1.set_xlabel('Time [s]')
fig2ax1.set_xscale('log')
fig2ax1.set_yscale('log')
timer = np.arange(1, 10000, 1)
x = 1 # 1 GeV
y = 400 # 400 GeV
z = 1000 # 1000 GeV
crab_flux_1 = 2.83e-11*(x/1000.)**(-2.62)
crab_flux_2 = 2.83e-11*(y/1000.)**(-2.62)
crab_flux_3 = 2.83e-11*(z/1000.)**(-2.62)
cflux1 = []
cflux2 = []
cflux3 = []
for t in timer:
cflux1.append(crab_flux_1)
cflux2.append(crab_flux_2)
cflux3.append(crab_flux_3)
l20 = fig2ax1.errorbar(np.array(self.time), np.array(self.One_GeV), xerr = self.time_err, yerr = [np.array(self.One_GeV_M_error), np.array(self.One_GeV_P_error)], fmt = '+', color = 'b')
l21 = fig2ax1.errorbar(np.array(self.time), np.array(self.Four_GeV), xerr = self.time_err, yerr = [np.array(self.Four_GeV_M_error), np.array(self.Four_GeV_P_error)], fmt = '+', color = 'g')
l22 = fig2ax1.errorbar(np.array(self.time), np.array(self.One_TeV), xerr = self.time_err, yerr = [np.array(self.One_TeV_M_error), np.array(self.One_TeV_P_error)], fmt = '+', color = 'r')
l31 = fig2ax1.plot(timer, cflux1)
l32 = fig2ax1.plot(timer, cflux2)
l33 = fig2ax1.plot(timer, cflux3)
fig2.legend([l20[0],l21[0],l22[0]], ['1 GeV', '400 GeV','1 TeV '], 1)
fig2ax1.set_xlim(1e-2,1e6)
fig2ax1.set_ylim(1e-15,1e4)
fig2ax1.axvline(100, color = 'k')
pyplot.show()
def make_table(self, timebin = 6):
if 2*self.time_err[timebin] >= self.detTimes[timebin]:
detection = 'Detectable'
else:
detection = 'Not Detectable'
if 2*self.time_err[timebin] >= self.detTimes_pi[timebin]:
detection_p = 'Detectable'
else:
detection_p = 'Not Detectable'
if 2*self.time_err[timebin] >= self.detTimes_mi[timebin]:
detection_m = 'Detectable'
else:
detection_m = 'Not Detectable'
self.detection = detection
self.detection_p = detection_p
self.detection_m = detection_m
pp_error = (np.absolute(self.int_flux_pi[timebin] - self.int_flux[timebin])/self.int_flux[timebin])*100
pm_error = (np.absolute(self.int_flux_mi[timebin] - self.int_flux[timebin])/self.int_flux[timebin])*100
self.pp_error = pp_error
self.pm_error = pm_error
t = PrettyTable(["Photon Index","Integrated Flux","Percent Error", "detection"])
#t.align["Photon Index"] = "l" #left align photon indicies
t.add_row([self.PI[timebin], self.int_flux[timebin], 'N/A', self.detection])
t.add_row([self.PIP[timebin], self.int_flux_pi[timebin], str(self.pp_error)+'%', self.detection_p])
t.add_row([self.PIM[timebin], self.int_flux_mi[timebin], str(self.pm_error)+'%', self.detection_m])
print t