diff --git a/detector/calorimeter/ECalBarrel_NobleLiquid_InclinedTrapezoids_o1_v02_geo.cpp b/detector/calorimeter/ECalBarrel_NobleLiquid_InclinedTrapezoids_o1_v02_geo.cpp index bdb269ed6..6d9525da3 100644 --- a/detector/calorimeter/ECalBarrel_NobleLiquid_InclinedTrapezoids_o1_v02_geo.cpp +++ b/detector/calorimeter/ECalBarrel_NobleLiquid_InclinedTrapezoids_o1_v02_geo.cpp @@ -656,9 +656,70 @@ static dd4hep::detail::Ref_t createECalBarrelInclined(dd4hep::Detector& aLcdd, caloData->layoutType = dd4hep::rec::LayeredCalorimeterData::BarrelLayout; caloDetElem.addExtension(caloData); + caloData->extent[0] = Rmin; + caloData->extent[1] = Rmax; // or r_max ? + caloData->extent[2] = 0.; // NN: for barrel detectors this is 0 + caloData->extent[3] = caloDim.dz(); + // Set type flags dd4hep::xml::setDetectorTypeFlag(xmlDetElem, caloDetElem); - + dd4hep::rec::MaterialManager matMgr(envelopeVol); + dd4hep::rec::LayeredCalorimeterData::Layer caloLayer; + + double rad_first = Rmin; + double rad_last = 0; + double scale_fact = dR / (-Rmin * cos(angle) + sqrt(pow(Rmax, 2) - pow(Rmin * sin(angle), 2))); + // since the layer height is given along the electrode and not along the radius it needs to be scaled to get the values of layer height radially + std::cout << "Scaling factor " << scale_fact << std::endl; + for (size_t il = 0; il < layerHeight.size(); il++) { + double thickness_sen = 0.; + double absorberThickness = 0.; + + rad_last = rad_first + (layerHeight[il] * scale_fact); + dd4hep::rec::Vector3D ivr1 = dd4hep::rec::Vector3D(0., rad_first, 0); // defining starting vector points of the given layer + dd4hep::rec::Vector3D ivr2 = dd4hep::rec::Vector3D(0., rad_last, 0); // defining end vector points of the given layer + + std::cout << "radius first " << rad_first << " radius last " << rad_last << std::endl; + const dd4hep::rec::MaterialVec &materials = matMgr.materialsBetween(ivr1, ivr2); // calling material manager to get material info between two points + auto mat = matMgr.createAveragedMaterial(materials); // creating average of all the material between two points to calculate X0 and lambda of averaged material + const double nRadiationLengths = mat.radiationLength(); + const double nInteractionLengths = mat.interactionLength(); + const double difference_bet_r1r2 = (ivr1 - ivr2).r(); + const double value_of_x0 = layerHeight[il] / nRadiationLengths; + const double value_of_lambda = layerHeight[il] / nInteractionLengths; + std::string str1("LAr"); + + for (size_t imat = 0; imat < materials.size(); imat++) { + + std::string str2(materials.at(imat).first.name()); + if (str1.compare(str2) == 0){ + thickness_sen += materials.at(imat).second; + } + else { + absorberThickness += materials.at(imat).second; + } + } + rad_first = rad_last; + std::cout << "The sensitive thickness is " << thickness_sen << std::endl; + std::cout << "The absorber thickness is " << absorberThickness << std::endl; + std::cout << "The radiation length is " << value_of_x0 << " and the interaction length is " << value_of_lambda << std::endl; + + caloLayer.distance = rad_first; + caloLayer.sensitive_thickness = thickness_sen; + caloLayer.inner_nRadiationLengths = value_of_x0 / 2.0; + caloLayer.inner_nInteractionLengths = value_of_lambda / 2.0; + caloLayer.inner_thickness = difference_bet_r1r2 / 2.0; + + caloLayer.outer_nRadiationLengths = value_of_x0 / 2.0; + caloLayer.outer_nInteractionLengths = value_of_lambda / 2.0; + caloLayer.outer_thickness = difference_bet_r1r2 / 2; + + caloLayer.absorberThickness = absorberThickness; + caloLayer.cellSize0 = 20 * dd4hep::mm; + caloLayer.cellSize1 = 20 * dd4hep::mm; + + caloData->layers.push_back(caloLayer); + } return caloDetElem; } } // namespace det