-
Notifications
You must be signed in to change notification settings - Fork 7
/
EEIg2015.ado
788 lines (670 loc) · 21.7 KB
/
EEIg2015.ado
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
*! version 1.0.1 27Sep2014
*注意energy要放在第一个投入位置
capture program drop EEIg2015
program define EEIg2015, rclass
version 12.1
// syntax checking and validation-----------------------------------------------
// rts - return to scale, ort - orientation
// -----------------------------------------------------------------------------
// returns 1 if the first nonblank character of local macro `0' is a comma,
// or if `0' is empty.
if replay() {
dis as err "ivars and ovars must be inputed."
exit 198
}
// get and check invarnames
gettoken word 0 : 0, parse(" =:,")
while `"`word'"' != ":" & `"`word'"' != "=" {
if `"`word'"' == "," | `"`word'"'=="" {
error 198
}
local invars `invars' `word'
gettoken word 0 : 0, parse("=:,")
}
unab invars : `invars'
gettoken word 0 : 0, parse(" =:,")
while `"`word'"' != ":" & `"`word'"' != "=" {
if `"`word'"' == "," | `"`word'"'=="" {
error 198
}
local gopvars `gopvars' `word'
gettoken word 0 : 0, parse(" =:,")
}
unab gopvars : `gopvars'
syntax varlist(min=1) [if] [in]
cap drop EEIg1
set matsize 2000
set more off
local bopvars "`varlist'"
local ninp: word count `invars'
local ngo: word count `gopvars'
local nbo: word count `bopvars'
local nout=`ngo'+`nbo'
qui {
order `invars' `gopvars' `bopvars'
}
mat eff=J(_N,1,.)
*cap mat drop Xmat
mkmat `invars' `gopvars' `bopvars', mat(Xmat)
*mat lamd=J(_N,1,1)
mat obj=J(_N,1,0)
mat m2=[obj,Xmat]
mat m2=m2'
*mat temp1=J(2,1,1)
*disp("kerry")
*local i=1
*disp(_N)
local nob=_N
disp "Computing... ..."
disp "Pls wait..."
qui {
forvalues i=1/`nob' {
*disp("kerry")
*disp `i'
*preserve
cap mat drop m1 m3 fobj temp2 temp3 temp4 XZ
* mat list Xmat
mat m3=Xmat[`i',....]
mat m3=[0 \ m3']
mat temp2=Xmat[`i',....]
*disp("kerry1")
*mat temp4=temp2[1,`ninp'+1..`ninp'+`ngo']
*mat list temp4
*mat temp2[1,`ninp'+1]=-temp2[1,`ninp'+1..`ninp'+`ngo']
*mat temp4=temp2[1,`ninp'..`ninp'+`ngo'+`nbo']
*disp("kerry2")
*mat temp4=temp4'
*disp("kerry2")
*mat list temp1
*mat temp3=diag(temp2)
*mat list temp3
*mat list temp1
*mat list temp4
mat m1=[1\ temp2[1,1] \ J(`ninp'-1+`ngo'+`nbo',1,0)]
*disp("kerry3")
mat XZ=[m1,m2]
*disp("kerry")
preserve
clear
svmat XZ
svmat m3, names(rhp)
*local vnames : colfullnames Xmat2
gen rel="<="
replace rel="=" in 1
*replace rel=">=" if _n<=`ninp'+1 & _n>1
replace rel=">=" if _n>=`ninp'+2 & _n<=`ninp'+`ngo'+1
replace rel="=" if _n>=`ninp'+`ngo'+2
*list rel
*mat list m1
*mat list m2
*mat list m3
lp XZ*, max rhs(rhp1)
mat fobj=r(lprslt)
* mat temp4=fobj[1,2..6]
mat eff[`i',1]=1-fobj[1,1]
*list rel
*mat dir
restore
}
}
*svmat d11, names(beta)
cap drop EEIg1
svmat eff, names(EEIg)
display "Computation is completed!"
dis "Results are plasted in the data set!"
dis "Pls check it!"
dis _newline
dis "------------------------------------------"
dis "@This code is written by Kerry@"
dis "@All rights are reserved@"
end
*! version 1.0.0 30OCT2012
capture program drop lp
program define lp, rclass
version 11.0
// syntax checking and validation-----------------------------------------------
// rel - relational
// rhs - right hand side
// example:
// lp x1 x2 x3, min
// lp x1 x2 x3, min rel(rel_var) rhs(rhs_var)
// -----------------------------------------------------------------------------
// returns 1 if the first nonblank character of local macro `0' is a comma,
// or if `0' is empty.
if replay() {
dis as err "vars required."
exit 198
}
#del ;
syntax varlist(min=1) [if] [in] [using/]
[,
REL(varname) // default is "rel", relational
RHS(varname) // default is "rhs"
MIN // the objective is to minimize optimizaion
MAX // the objective is to maximize optimization
INTVARS(varlist) // Integer(Mixed Integer Condition) Variables
TOL1(real 1e-14) // entering or leaving value tolerance
TOL2(real 1e-8) // B inverse tolerance: 2.22e-12
TRACE // Whether or not to do the log
SAVing(string) // result data file name
REPLACE // Whether or not to replace the result data file
];
#del cr
// default rel == "rel"
if ("`rel'" == "") local rel = "rel"
// default rhs == "rel"
if ("`rhs'" == "") local rhs = "rhs"
// optimization check
local opt = "`min'`max'"
if (!("`opt'" == "min" || "`opt'" == "max")) {
dis as err "optimization is must min or max, and exclusively."
exit 198
}
if ("`using'" != "") use "`using'", clear
if (~(`c(N)' > 0 & `c(k)' > 0)) {
dis as err "dataset required!"
exit 198
}
// end of syntax checking and validation ---------------------------------------
set more off
capture log close lp_log
log using "lp.log", replace text name(lp_log)
preserve
if ("`if'" != "" | "`in'" != "") {
qui keep `in' `if' // filtering : keep in range [if exp]
}
// -------------------------------------------------------------------------
// LP Start
// -------------------------------------------------------------------------
if ("`intvars'" == "") {
lpmain `varlist', rel(`rel') rhs(`rhs') opt(`opt') ///
tol1(`tol1') tol2(`tol2') `trace'
}
else {
milp `varlist', rel(`rel') rhs(`rhs') opt(`opt') ///
intvars(`intvars') tol1(`tol1') tol2(`tol2') `trace'
}
tempname tableau lprslt temp_t
matrix `tableau' = r(tableau)
matrix `lprslt' = r(lprslt)
local nvars = r(nvars)
local nslacks = r(nslacks)
local nartificials = r(nartificials)
// setup lprslt colnames and rownames
matrix `temp_t' = `tableau'[1...,1..`=colsof(`lprslt')']
matrix colnames `lprslt' = `: colnames `temp_t''
matrix rownames `lprslt' = "opt_val"
// -------------------------------------------------------------------------
// REPORT
// -------------------------------------------------------------------------
di as result _n(2) "Input Values:"
matrix list `tableau', noblank nohalf noheader f(%9.6g)
di as result _n(2) "LP Results: options(`opt')"
matrix list `lprslt', noblank nohalf noheader f(%9.6g)
di as text _n(2) ""
return matrix tableau = `tableau'
return matrix lprslt = `lprslt'
return local nvars = `nvars'
return local nslacks = `nslacks'
return local narticials = `nartificials'
set more on
restore, preserve
log close lp_log
end
********************************************************************************
* MILP - Mixed Integer Linear Programming
********************************************************************************
program define milp, rclass
#del ;
syntax varlist, rel(varname) rhs(varname) opt(string) intvars(varlist)
[
cnt(integer 0) tol1(real 1e-14) tol2(real 1e-8) trace
];
#del cr
tempname tableau lprslt baseval
// #L0
lpmain `varlist', rel(`rel') rhs(`rhs') opt(`opt') ///
tol1(`tol1') tol2(`tol2') `trace'
matrix `tableau' = r(tableau)
matrix `lprslt' = r(lprslt)
// for debug
di as result _n(2) "MILP L`cnt' Input Values:"
list
matrix list `tableau', noblank nohalf noheader f(%9.6g)
di as result _n(2) "MILP L`cnt' Results: options(`opt')"
matrix list `lprslt', noblank nohalf noheader f(%9.6g)
di as text _n "--------------------------------------------------"
di as text _n
// infeasible
if (`lprslt'[1,1] >= .) {
return add // all results of lpmain
}
else {
// check that all variables is an integer
local max_varname = ""
local max_mantissa = 0
foreach varname of varlist `intvars' {
// because tableau and lprslt are same order
local varvalue = ///
round(`lprslt'[1, colnumb(`tableau',"`varname'")], `tol1')
local mantissa = `varvalue' - floor(`varvalue')
if (`mantissa' > `max_mantissa') {
local max_mantissa = `mantissa'
local max_varname = "`varname'"
local `baseval' = `varvalue'
}
}
// if all variables is an integer
if ("`max_varname'" == "") {
return add // all results of lpmain
}
// some variables is not an integer
else {
// #L1
preserve
qui {
set obs `=c(N)+1'
replace `max_varname' = 1 in `c(N)'
replace `rel' = ">=" in `c(N)'
replace `rhs' = ceil(``baseval'') in `c(N)'
foreach varname of varlist `varlist' {
if ("`max_varname'" != "`varname'") {
replace `varname' = 0 in `c(N)'
}
}
}
// recursive call
milp `varlist', rel(`rel') rhs(`rhs') opt(`opt') cnt(`=`cnt'+1') ///
intvars(`intvars') tol1(`tol1') tol2(`tol2') `trace'
matrix `tableau' = r(tableau)
matrix `lprslt' = r(lprslt)
local nvars = r(nvars)
local nslacks = r(nslacks)
local nartificials = r(nartificials)
// #L2
restore, preserve
qui {
set obs `=c(N)+1'
replace `max_varname' = 1 in `c(N)'
replace `rel' = "<=" in `c(N)'
replace `rhs' = floor(``baseval'') in `c(N)'
foreach varname of varlist `varlist' {
if ("`max_varname'" != "`varname'") {
replace `varname' = 0 in `c(N)'
}
}
}
// recursive call
milp `varlist', rel(`rel') rhs(`rhs') opt(`opt') cnt(`=`cnt'+2') ///
intvars(`intvars') tol1(`tol1') tol2(`tol2') `trace'
// #L1 and #L2 are infeasible or feasible
// if #L1 is infeasible or #L2 > #L1 then select #L2
tempname L2
matrix `L2' = r(lprslt)
if ("`opt'" == "max") {
if (`lprslt'[1,1] >= . | `L2'[1,1] > `lprslt'[1,1]) {
matrix `tableau' = r(tableau)
matrix `lprslt' = r(lprslt)
local nvars = r(nvars)
local nslacks = r(nslacks)
local nartificials = r(nartificials)
}
}
else { // else if ("`opt'" == "min") {
if (`lprslt'[1,1] >= . | `L2'[1,1] < `lprslt'[1,1]) {
matrix `tableau' = r(tableau)
matrix `lprslt' = r(lprslt)
local nvars = r(nvars)
local nslacks = r(nslacks)
local nartificials = r(nartificials)
}
}
restore
// return the final results
return matrix tableau = `tableau'
return matrix lprslt = `lprslt'
return local nvars = `nvars'
return local nslacks = `nslacks'
return local narticials = `nartificials'
}
}
end
********************************************************************************
* LP Main - Linear Programming Main
********************************************************************************
program define lpmain, rclass
#del ;
syntax varlist, rel(varname) rhs(varname) opt(string)
[
tol1(real 1e-14) tol2(real 1e-8) trace
];
#del cr
tempname tableau
// make tableau
mktableau `varlist' `rhs', opt(`opt') rel(`rel') tableau(`tableau')
local nvars : list sizeof varlist // number of variables
local nslacks = r(nslacks) // number of slacks
local nartificials = r(nartificials) // number of artificials
// run lp phase I and II
mata: _lp_phase("`tableau'", "`opt'", ///
`nvars', `nslacks', `nartificials', ///
`tol1', `tol2', "`trace'")
// return results for lp
return local nvars = `nvars'
return local nslacks = `nslacks'
return local narticials = `nartificials'
return matrix tableau = `tableau'
return add // r(lprslt)
end
********************************************************************************
* LP Main - Linear Programming Main
********************************************************************************
program define lpmain_1, rclass
#del ;
syntax varlist, rel(varname) rhs(varname) opt(string) lprslt(name)
tableau(name) vars(real) slacks(real) artificials(real)
[
intvars(varlist) tol1(real 1e-14) tol2(real 1e-8) trace
];
#del cr
mata: _lp_phase("`tableau'", "`opt'", ///
`vars', `slacks', `artificials', ///
`tol1', `tol2', "`trace'")
tempname c_lprslt // current lprslt
matrix `c_lprslt' = r(lprslt)
matrix colnames `c_lprslt' = `: colnames(`lprslt')'
matrix rownames `c_lprslt' = `: rownames(`lprslt')'
// FIXME
// di as result _n "lprslt:"
// matrix list `lprslt', noblank nohalf noheader f(%9.6g)
// di as result _n "c_lprslt:"
// matrix list `c_lprslt', noblank nohalf noheader f(%9.6g)
if ("`intvars'" != "" && `c_lprslt'[1,1] < .) { // if MILP then,
local max_varname = ""
local max_mantissa = 0
foreach varname of varlist `intvars' {
local varvalue = ///
round(`c_lprslt'[1, colnumb(`c_lprslt',"`varname'")], `tol1')
local varvalue = `varvalue' - floor(`varvalue')
if (`varvalue' > `max_mantissa') {
local max_mantissa = `varvalue'
local max_varname = "`varname'"
}
}
if ("`max_varname'" != "") { // variables is not at all integer
tempname t_tableau t_obj t_vars t_slacks t_artificials t_rhs t_st
tempname r1_lprslt r2_lprslt temp_t
local varvalue = `c_lprslt'[1, colnumb(`c_lprslt',"`max_varname'")]
preserve
qui {
set obs `=c(N)+1'
replace `max_varname' = 1 in `c(N)'
replace `rel' = ">=" in `c(N)'
replace `rhs' = ceil(`varvalue') in `c(N)'
foreach varname of varlist `varlist' {
if ("`max_varname'" != "`varname'") {
replace `varname' = 0 in `c(N)'
}
}
}
// make tableau
mktableau `varlist' `rhs', opt(`opt') rel(`rel') tableau(`t_tableau')
local r1_vars = `vars'
local r1_slacks = r(nslacks)
local r1_artificials = r(nartificials)
// make lprslt and setup lprslt colnames and rownames
matrix `r1_lprslt' = J(1, `=(1 + `vars' + `r1_slacks')', .)
matrix `temp_t' = `t_tableau'[1...,1..`=colsof(`r1_lprslt')']
matrix colnames `r1_lprslt' = `: colnames `temp_t''
matrix rownames `r1_lprslt' = "opt_val"
// call the lp main function
lpmain `varlist', rel(`rel') rhs(`rhs') opt(`opt') ///
lprslt(`r1_lprslt') tableau(`t_tableau') ///
vars(`vars') slacks(`r1_slacks') artificials(`r1_artificials') ///
intvars(`intvars') tol1(`tol1') tol2(`tol2') `trace'
// setup result of lprslt
matrix `r1_lprslt' = r(lprslt)
/*
if (`r1_lprslt'[1,1] >= .) {
break
}
*/ restore, preserve
}
else { // select lprslt because all variables are integer
if (`lprslt'[1,1] >= .) {
matrix `lprslt' = `c_lprslt'
}
else if ("`opt'" == "max") {
if (`c_lprslt'[1,1] > `lprslt'[1,1]) {
matrix `lprslt' = `c_lprslt'
}
}
else { // else if ("`opt'" == "min") {
if (`c_lprslt'[1,1] < `lprslt'[1,1]) {
matrix `lprslt' = `c_lprslt'
}
}
}
}
else if (`c_lprslt'[1,1] < .) {
matrix `lprslt' = `c_lprslt'
}
// FIXME
di as result _n "final lprslt:"
matrix list `lprslt', noblank nohalf noheader f(%9.6g)
return matrix lprslt = `lprslt'
end
// Make Tableau Matrix ---------------------------------------------------------
program define mktableau, rclass
syntax varlist(numeric) [if] [in], opt(string) rel(varname) tableau(name)
// make matrix
mkmat `varlist' `if' `in', matrix(`tableau') rownames(`rel')
// r_vec: row vector, s_mat: slacks matrix, a_mat: artificials matrix
tempname r_vec s_mat a_mat
local s_names = ""
local a_names = ""
local rel_values : rownames `tableau'
forvalues i = 2/`=rowsof(`tableau')' {
matrix `r_vec' = J(rowsof(`tableau'), 1, 0)
local rel_value = word("`rel_values'", `i')
if ("`rel_value'" == "<" || "`rel_value'" == "<=" ) {
// slack
matrix `r_vec'[`i', 1] = 1
matrix `s_mat' = nullmat(`s_mat'), `r_vec'
local s_names = "`s_names' s`=colsof(`s_mat')'"
}
else if ("`rel_value'" == ">" || "`rel_value'" == ">=" ) {
// slcak
matrix `r_vec'[`i', 1] = -1
matrix `s_mat' = nullmat(`s_mat'), `r_vec'
local s_names = "`s_names' s`=colsof(`s_mat')'"
// artificial
matrix `r_vec'[1, 1] = 1 // coefficients of aritificial
matrix `r_vec'[`i', 1] = 1
matrix `a_mat' = nullmat(`a_mat'), `r_vec'
local a_names = "`a_names' a`=colsof(`a_mat')'"
}
else if ("`rel_value'" == "=") {
// artificial
matrix `r_vec'[1, 1] = 1 // coefficients of aritificial
matrix `r_vec'[`i', 1] = 1
matrix `a_mat' = nullmat(`a_mat'), `r_vec'
local a_names = "`a_names' a`=colsof(`a_mat')'"
}
else {
di as err "not allowed value of relational. :[`rel_value'] "
exit 198 // TODO error code confirm
}
} // end of forvalues statements
// make return values
tempname ret_tableau
// #01. init objective and variables
matrix `r_vec' = J(rowsof(`tableau'), 1, 0)
matrix `r_vec'[1,1] = 1
matrix colnames `r_vec' = "z" // Objective name
matrix `ret_tableau' = `r_vec', `tableau'[1...,1..(colsof(`tableau')-1)]
// #02. append slacks
if ("`s_names'" != "") {
matrix colnames `s_mat' = `s_names'
matrix `ret_tableau' = `ret_tableau', `s_mat'
return local nslacks = colsof(`s_mat') // number of slacks
}
else return local nslacks = 0
// #03. append artificials
if ("`a_names'" != "") {
matrix colnames `a_mat' = `a_names'
matrix `ret_tableau' = `ret_tableau', `a_mat'
return local nartificials = colsof(`a_mat') // number of artificials
}
else return local nartificials = 0
// #04. append rhs
matrix `ret_tableau' = `ret_tableau', `tableau'[1...,colsof(`tableau')]
// #05. return results
matrix `tableau' = `ret_tableau'
end
// Start of the MATA Definition Area -------------------------------------------
version 10
mata:
mata set matastrict on
void function _lp_phase (
string scalar tableau,
string scalar opt,
real scalar vars,
real scalar slacks,
real scalar artificials,
real scalar tol1,
real scalar tol2,
string scalar trace )
{
real matrix M, VARS
real fcols
struct BoundCond matrix boundM
struct LpParam scalar param
struct LpResultStruct scalar lpresult
// 1st. load matrix and variable indexes
M = st_matrix(tableau)
VARS = (0, 1..vars+slacks, -1..-artificials, 0)
// 2rd. make boundary matrix
// 0 <= weight, slacks, atrificials <= INFINITE
boundM = J(1, cols(M), BoundCond());
for (i=1; i<cols(M); i++) {
boundM[1,i].val = 0; boundM[1,i].lower = 0; boundM[1,i].upper = .
}
// 3th. set the lp's parameters
param.minYn = (opt == "min"); // 0: max, 1: min
param.vars = vars
param.slacks = slacks
param.artificials = artificials
param.tol1 = tol1
param.tol2 = tol2
param.trace = trace
param.tracename = "LP for RSM"
lpresult = lp_phase(M, boundM, VARS, param)
// -------------------------------------------------------------------------
// final.
// -------------------------------------------------------------------------
if(lpresult.rc) {
LPRSLT = J(1, 1+param.vars+param.slacks, .)
}
else {
// lpresult = theta(1) + vars + slacks
LPRSLT = J(1, param.vars+param.slacks, 0)
for (j=1; j<=rows(lpresult.XB) ; j++) {
if (VARS[1,j+1] > 0) LPRSLT[1, VARS[1,j+1]] = lpresult.XB[j, 1]
}
LPRSLT = lpresult.xVal, LPRSLT
}
if (param.trace == "trace") {
msg = sprintf("%s-FINAL", param.tracename);
// printf("\n%s: original VARS.\n", msg); orgVARS
printf("\n%s: VARS.\n", msg); VARS
printf("\n%s: XB.\n", msg); lpresult.XB
printf("\n%s: LPRSLT.\n", msg); LPRSLT
}
st_matrix("r(lprslt)", LPRSLT)
}
/**
* @param VARS - Variable Index Matrix
* [z, B, N, b]'s index in the original Tableau
* @param M - Tableau: [z, A, S, Af, b] --> [z, B, N, b]
* @param phase - if have artificials, then phase 1 and 2,
* otherwise only phase 2
* @param param - parameter struct for Lp RSM
*
* @return result of LP
*/
struct LpResultStruct function lp_phase (
real matrix M,
struct BoundCond matrix boundM,
real matrix VARS,
struct LpParam scalar param )
{
real scalar phase, mrows, mcols, j, idx
string scalar tracename
real vector reorderidx, bfsidx, nonbfsidx
real vector coef_of // coefficient of objective function
struct LpParamStruct scalar lpParam
struct LpResultStruct scalar lpResult
// validation checking.
if (param.minYn >= .) { //
displayas("err");
_error(3351, "You have to set the minimization(1) or maximization(0) "
+ "at the LpParam.minYn")
}
coef_of = M[1, 2..1+param.vars] // keep the objective function
replacesubmat(M, 1, 2, J(1, param.vars, 0))
// initialize matrix.
if (param.trace == "trace") {
displayas("txt")
printf("\n\n%s: initialize matrix.\n", param.tracename); M
}
mrows = rows(M); mcols = cols(M)
// classify basic and nonbasic.
bfsidx = J(1, mrows-1, .); nonbfsidx = J(1, 0, .)
for (j = 2+param.vars; j <= mcols-1; j++) {
T = M[2::mrows,j]
if ((sum(T :!= 0) == 1) && (sum(T) == 1)) {
maxindex(T, 1, i, w); bfsidx[i] = j
}
else nonbfsidx = nonbfsidx, j
}
reorderidx = (1, bfsidx[1,], 2..1+param.vars, nonbfsidx[1,], mcols)
VARS = VARS[,reorderidx];
M = M[,reorderidx]; boundM = boundM[,reorderidx]
if (param.trace == "trace") {
displayas("txt")
printf("\n%s: classify basic and nonbasic.\n", tracename); M; VARS
}
// set the lp's parameters
lpParam.dmus = param.vars
lpParam.slacks = param.slacks
lpParam.artificials = param.artificials
lpParam.tol1 = param.tol1
lpParam.tol2 = param.tol2
lpParam.trace = param.trace
// solve the linear programming(LP): phase I
if (param.artificials > 0) {
phase = 1
lpParam.minYn = 1; // min because of phase 1
tracename = param.tracename + "-PI"
lpResult = lp(M, boundM, VARS, 0, phase, tracename, lpParam)
if (lpResult.rc) return(lpResult)
}
// solve the linear programming(LP): phase II
phase = 2
lpParam.minYn = param.minYn // according to the optimization.
tracename = param.tracename + "-PII"
// set the objective function.
mcols = cols(M)
for (j=2; j<mcols; j++) {
idx = VARS[1,j]
if (0 < idx && idx <= param.vars) {
M[1,j] = coef_of[idx] // according to variable's index
}
}
lpResult = lp(M, boundM, VARS, 0, phase, tracename, lpParam)
// return result.
return(lpResult)
}
end
// End of the MATA Definition Area ---------------------------------------------