-
Notifications
You must be signed in to change notification settings - Fork 1
/
trajectron.py
269 lines (232 loc) · 11.1 KB
/
trajectron.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
import torch
import numpy as np
from model.mgcvae import MultimodalGenerativeCVAE
from model.dataset import get_timesteps_data, restore
class Trajectron(object):
def __init__(self, model_registrar,
hyperparams, log_writer,
device):
super(Trajectron, self).__init__()
self.hyperparams = hyperparams
self.log_writer = log_writer
self.device = device
self.curr_iter = 0
self.model_registrar = model_registrar
self.node_models_dict = dict()
self.nodes = set()
self.env = None
self.min_ht = self.hyperparams['minimum_history_length']
self.max_ht = self.hyperparams['maximum_history_length']
self.ph = self.hyperparams['prediction_horizon']
self.state = self.hyperparams['state']
self.state_length = dict()
for state_type in self.state.keys():
self.state_length[state_type] = int(
np.sum([len(entity_dims) for entity_dims in self.state[state_type].values()])
)
self.pred_state = self.hyperparams['pred_state']
def set_environment(self, env):
self.env = env
self.node_models_dict.clear()
edge_types = env.get_edge_types()
for node_type in env.NodeType:
# Only add a Model for NodeTypes we want to predict
if node_type in self.pred_state.keys():
self.node_models_dict[node_type] = MultimodalGenerativeCVAE(env,
node_type,
self.model_registrar,
self.hyperparams,
self.device,
edge_types,
log_writer=self.log_writer)
def set_curr_iter(self, curr_iter):
self.curr_iter = curr_iter
for node_str, model in self.node_models_dict.items():
model.set_curr_iter(curr_iter)
def set_annealing_params(self):
for node_str, model in self.node_models_dict.items():
model.set_annealing_params()
def step_annealers(self, node_type=None):
if node_type is None:
for node_type in self.node_models_dict:
self.node_models_dict[node_type].step_annealers()
else:
self.node_models_dict[node_type].step_annealers()
def train_loss(self, batch, node_type):
(first_history_index,
x_t, y_t, x_st_t, y_st_t,
neighbors_data_st,
neighbors_edge_value,
robot_traj_st_t,
map) = batch
x = x_t.to(self.device)
y = y_t.to(self.device)
x_st_t = x_st_t.to(self.device)
y_st_t = y_st_t.to(self.device)
if robot_traj_st_t is not None:
robot_traj_st_t = robot_traj_st_t.to(self.device)
if type(map) == torch.Tensor:
map = map.to(self.device)
# Run forward pass
model = self.node_models_dict[node_type]
loss = model.train_loss(inputs=x,
inputs_st=x_st_t,
first_history_indices=first_history_index,
labels=y,
labels_st=y_st_t,
neighbors=restore(neighbors_data_st),
neighbors_edge_value=restore(neighbors_edge_value),
robot=robot_traj_st_t,
map=map,
prediction_horizon=self.ph)
return loss
def eval_loss(self, batch, node_type):
(first_history_index,
x_t, y_t, x_st_t, y_st_t,
neighbors_data_st,
neighbors_edge_value,
robot_traj_st_t,
map) = batch
x = x_t.to(self.device)
y = y_t.to(self.device)
x_st_t = x_st_t.to(self.device)
y_st_t = y_st_t.to(self.device)
if robot_traj_st_t is not None:
robot_traj_st_t = robot_traj_st_t.to(self.device)
if type(map) == torch.Tensor:
map = map.to(self.device)
# Run forward pass
model = self.node_models_dict[node_type]
nll = model.eval_loss(inputs=x,
inputs_st=x_st_t,
first_history_indices=first_history_index,
labels=y,
labels_st=y_st_t,
neighbors=restore(neighbors_data_st),
neighbors_edge_value=restore(neighbors_edge_value),
robot=robot_traj_st_t,
map=map,
prediction_horizon=self.ph)
return nll.cpu().detach().numpy()
def predict(self,
scene,
timesteps,
ph,
num_samples=1,
min_future_timesteps=0,
min_history_timesteps=1,
z_mode=False,
gmm_mode=False,
full_dist=False,
all_z_sep=False):
predictions_dict = {}
for node_type in self.env.NodeType:
if node_type not in self.pred_state:
continue
model = self.node_models_dict[node_type]
# Get Input data for node type and given timesteps
batch = get_timesteps_data(env=self.env, scene=scene, t=timesteps, node_type=node_type, state=self.state,
pred_state=self.pred_state, edge_types=model.edge_types,
min_ht=min_history_timesteps, max_ht=self.max_ht, min_ft=min_future_timesteps,
max_ft=min_future_timesteps, hyperparams=self.hyperparams)
# There are no nodes of type present for timestep
if batch is None:
continue
(first_history_index,
x_t, y_t, x_st_t, y_st_t,
neighbors_data_st,
neighbors_edge_value,
robot_traj_st_t,
map), nodes, timesteps_o = batch
x = x_t.to(self.device)
x_st_t = x_st_t.to(self.device)
if robot_traj_st_t is not None:
robot_traj_st_t = robot_traj_st_t.to(self.device)
if type(map) == torch.Tensor:
map = map.to(self.device)
# Run forward pass
predictions = model.predict(inputs=x,
inputs_st=x_st_t,
first_history_indices=first_history_index,
neighbors=neighbors_data_st,
neighbors_edge_value=neighbors_edge_value,
robot=robot_traj_st_t,
map=map,
prediction_horizon=ph,
num_samples=num_samples,
z_mode=z_mode,
gmm_mode=gmm_mode,
full_dist=full_dist,
all_z_sep=all_z_sep)
predictions_np = predictions.cpu().detach().numpy()
# Assign predictions to node
for i, ts in enumerate(timesteps_o):
if ts not in predictions_dict.keys():
predictions_dict[ts] = dict()
predictions_dict[ts][nodes[i]] = np.transpose(predictions_np[:, [i]], (1, 0, 2, 3))
return predictions_dict
def predict_actions(self,
scene,
timesteps,
ph,
num_samples=1,
min_future_timesteps=0,
min_history_timesteps=1,
z_mode=False,
gmm_mode=False,
full_dist=False,
all_z_sep=False):
predictions_dict = {}
predictions_sig_dict = {}
for node_type in self.env.NodeType:
if node_type not in self.pred_state:
continue
model = self.node_models_dict[node_type]
# Get Input data for node type and given timesteps
batch = get_timesteps_data(env=self.env, scene=scene, t=timesteps, node_type=node_type, state=self.state,
pred_state=self.pred_state, edge_types=model.edge_types,
min_ht=min_history_timesteps, max_ht=self.max_ht, min_ft=min_future_timesteps,
max_ft=min_future_timesteps, hyperparams=self.hyperparams)
# There are no nodes of type present for timestep
if batch is None:
continue
(first_history_index,
x_t, y_t, x_st_t, y_st_t,
neighbors_data_st,
neighbors_edge_value,
robot_traj_st_t,
map), nodes, timesteps_o = batch
x = x_t.to(self.device)
x_st_t = x_st_t.to(self.device)
if robot_traj_st_t is not None:
robot_traj_st_t = robot_traj_st_t.to(self.device)
if type(map) == torch.Tensor:
map = map.to(self.device)
# Run forward pass
predictions, predictions_sigma = model.predict_actions(inputs=x,
inputs_st=x_st_t,
first_history_indices=first_history_index,
neighbors=neighbors_data_st,
neighbors_edge_value=neighbors_edge_value,
robot=robot_traj_st_t,
map=map,
prediction_horizon=ph,
num_samples=num_samples,
z_mode=z_mode,
gmm_mode=gmm_mode,
full_dist=full_dist,
all_z_sep=all_z_sep)
#print(predictions.mus)
predictions_np = predictions.mode().cpu().detach().numpy()
predictions_sigma_np = predictions_sigma.cpu().detach().numpy()
# Assign predictions to node
for i, ts in enumerate(timesteps_o):
#print(predictions_np[:, [i]])
if ts not in predictions_dict.keys():
predictions_dict[ts] = dict()
predictions_dict[ts][nodes[i]] = np.transpose(predictions_np[:, [i]], (1, 0, 2, 3))
for i, ts in enumerate(timesteps_o):
if ts not in predictions_sig_dict.keys():
predictions_sig_dict[ts] = dict()
predictions_sig_dict[ts][nodes[i]] = np.transpose(predictions_sigma_np[:, [i]], (1, 0, 2, 3, 4, 5))
return predictions_dict, predictions_sig_dict