-
Notifications
You must be signed in to change notification settings - Fork 351
/
capgen.py
1390 lines (1201 loc) · 55.4 KB
/
capgen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
'''
Source code for an attention based image caption generation system described
in:
Show, Attend and Tell: Neural Image Caption Generation with Visual Attention
International Conference for Machine Learning (2015)
http://arxiv.org/abs/1502.03044
Comments in square brackets [] indicate references to the equations/
more detailed explanations in the above paper.
'''
import theano
import theano.tensor as tensor
from theano.sandbox.rng_mrg import MRG_RandomStreams as RandomStreams
import cPickle as pkl
import numpy
import copy
import os
import time
from collections import OrderedDict
from sklearn.cross_validation import KFold
import warnings
# [see Section (4.3) for explanation]
from homogeneous_data import HomogeneousData
# supported optimizers
from optimizers import adadelta, adam, rmsprop, sgd
# dataset iterators
import flickr8k
import flickr30k
import coco
# datasets: 'name', 'load_data: returns iterator', 'prepare_data: some preprocessing'
datasets = {'flickr8k': (flickr8k.load_data, flickr8k.prepare_data),
'flickr30k': (flickr30k.load_data, flickr30k.prepare_data),
'coco': (coco.load_data, coco.prepare_data)}
def get_dataset(name):
return datasets[name][0], datasets[name][1]
'''
Theano uses shared variables for parameters, so to
make this code more portable, these two functions
push and pull variables between a shared
variable dictionary and a regular numpy
dictionary
'''
# push parameters to Theano shared variables
def zipp(params, tparams):
for kk, vv in params.iteritems():
tparams[kk].set_value(vv)
# pull parameters from Theano shared variables
def unzip(zipped):
new_params = OrderedDict()
for kk, vv in zipped.iteritems():
new_params[kk] = vv.get_value()
return new_params
# get the list of parameters: Note that tparams must be OrderedDict
def itemlist(tparams):
return [vv for kk, vv in tparams.iteritems()]
# dropout in theano
def dropout_layer(state_before, use_noise, trng):
"""
tensor switch is like an if statement that checks the
value of the theano shared variable (use_noise), before
either dropping out the state_before tensor or
computing the appropriate activation. During training/testing
use_noise is toggled on and off.
"""
proj = tensor.switch(use_noise,
state_before *
trng.binomial(state_before.shape, p=0.5, n=1, dtype=state_before.dtype),
state_before * 0.5)
return proj
# make prefix-appended name
def _p(pp, name):
return '%s_%s' % (pp, name)
# initialize Theano shared variables according to the initial parameters
def init_tparams(params):
tparams = OrderedDict()
for kk, pp in params.iteritems():
tparams[kk] = theano.shared(params[kk], name=kk)
return tparams
# load parameters
def load_params(path, params):
pp = numpy.load(path)
for kk, vv in params.iteritems():
if kk not in pp:
raise Warning('%s is not in the archive' % kk)
params[kk] = pp[kk]
return params
# some utilities
def ortho_weight(ndim):
"""
Random orthogonal weights
Used by norm_weights(below), in which case, we
are ensuring that the rows are orthogonal
(i.e W = U \Sigma V, U has the same
# of rows, V has the same # of cols)
"""
W = numpy.random.randn(ndim, ndim)
u, _, _ = numpy.linalg.svd(W)
return u.astype('float32')
def norm_weight(nin,nout=None, scale=0.01, ortho=True):
"""
Random weights drawn from a Gaussian
"""
if nout is None:
nout = nin
if nout == nin and ortho:
W = ortho_weight(nin)
else:
W = scale * numpy.random.randn(nin, nout)
return W.astype('float32')
# some useful shorthands
def tanh(x):
return tensor.tanh(x)
def rectifier(x):
return tensor.maximum(0., x)
def linear(x):
return x
"""
Neural network layer definitions.
The life-cycle of each of these layers is as follows
1) The param_init of the layer is called, which creates
the weights of the network.
2) The fprop is called which builds that part of the Theano graph
using the weights created in step 1). This automatically links
these variables to the graph.
Each prefix is used like a key and should be unique
to avoid naming conflicts when building the graph.
"""
# layers: 'name': ('parameter initializer', 'fprop')
layers = {'ff': ('param_init_fflayer', 'fflayer'),
'lstm': ('param_init_lstm', 'lstm_layer'),
'lstm_cond': ('param_init_lstm_cond', 'lstm_cond_layer'),
}
def get_layer(name):
fns = layers[name]
return (eval(fns[0]), eval(fns[1]))
# feedforward layer: affine transformation + point-wise nonlinearity
def param_init_fflayer(options, params, prefix='ff', nin=None, nout=None):
if nin is None:
nin = options['dim_proj']
if nout is None:
nout = options['dim_proj']
params[_p(prefix, 'W')] = norm_weight(nin, nout, scale=0.01)
params[_p(prefix, 'b')] = numpy.zeros((nout,)).astype('float32')
return params
def fflayer(tparams, state_below, options, prefix='rconv', activ='lambda x: tensor.tanh(x)', **kwargs):
return eval(activ)(tensor.dot(state_below, tparams[_p(prefix,'W')])+tparams[_p(prefix,'b')])
# LSTM layer
def param_init_lstm(options, params, prefix='lstm', nin=None, dim=None):
if nin is None:
nin = options['dim_proj']
if dim is None:
dim = options['dim_proj']
"""
Stack the weight matricies for all the gates
for much cleaner code and slightly faster dot-prods
"""
# input weights
W = numpy.concatenate([norm_weight(nin,dim),
norm_weight(nin,dim),
norm_weight(nin,dim),
norm_weight(nin,dim)], axis=1)
params[_p(prefix,'W')] = W
# for the previous hidden activation
U = numpy.concatenate([ortho_weight(dim),
ortho_weight(dim),
ortho_weight(dim),
ortho_weight(dim)], axis=1)
params[_p(prefix,'U')] = U
params[_p(prefix,'b')] = numpy.zeros((4 * dim,)).astype('float32')
return params
# This function implements the lstm fprop
def lstm_layer(tparams, state_below, options, prefix='lstm', mask=None, **kwargs):
nsteps = state_below.shape[0]
dim = tparams[_p(prefix,'U')].shape[0]
# if we are dealing with a mini-batch
if state_below.ndim == 3:
n_samples = state_below.shape[1]
init_state = tensor.alloc(0., n_samples, dim)
init_memory = tensor.alloc(0., n_samples, dim)
# during sampling
else:
n_samples = 1
init_state = tensor.alloc(0., dim)
init_memory = tensor.alloc(0., dim)
# if we have no mask, we assume all the inputs are valid
if mask == None:
mask = tensor.alloc(1., state_below.shape[0], 1)
# use the slice to calculate all the different gates
def _slice(_x, n, dim):
if _x.ndim == 3:
return _x[:, :, n*dim:(n+1)*dim]
elif _x.ndim == 2:
return _x[:, n*dim:(n+1)*dim]
return _x[n*dim:(n+1)*dim]
# one time step of the lstm
def _step(m_, x_, h_, c_):
preact = tensor.dot(h_, tparams[_p(prefix, 'U')])
preact += x_
i = tensor.nnet.sigmoid(_slice(preact, 0, dim))
f = tensor.nnet.sigmoid(_slice(preact, 1, dim))
o = tensor.nnet.sigmoid(_slice(preact, 2, dim))
c = tensor.tanh(_slice(preact, 3, dim))
c = f * c_ + i * c
h = o * tensor.tanh(c)
return h, c, i, f, o, preact
state_below = tensor.dot(state_below, tparams[_p(prefix, 'W')]) + tparams[_p(prefix, 'b')]
rval, updates = theano.scan(_step,
sequences=[mask, state_below],
outputs_info=[init_state, init_memory, None, None, None, None],
name=_p(prefix, '_layers'),
n_steps=nsteps, profile=False)
return rval
# Conditional LSTM layer with Attention
def param_init_lstm_cond(options, params, prefix='lstm_cond', nin=None, dim=None, dimctx=None):
if nin is None:
nin = options['dim']
if dim is None:
dim = options['dim']
if dimctx is None:
dimctx = options['dim']
# input to LSTM, similar to the above, we stack the matricies for compactness, do one
# dot product, and use the slice function below to get the activations for each "gate"
W = numpy.concatenate([norm_weight(nin,dim),
norm_weight(nin,dim),
norm_weight(nin,dim),
norm_weight(nin,dim)], axis=1)
params[_p(prefix,'W')] = W
# LSTM to LSTM
U = numpy.concatenate([ortho_weight(dim),
ortho_weight(dim),
ortho_weight(dim),
ortho_weight(dim)], axis=1)
params[_p(prefix,'U')] = U
# bias to LSTM
params[_p(prefix,'b')] = numpy.zeros((4 * dim,)).astype('float32')
# context to LSTM
Wc = norm_weight(dimctx,dim*4)
params[_p(prefix,'Wc')] = Wc
# attention: context -> hidden
Wc_att = norm_weight(dimctx, ortho=False)
params[_p(prefix,'Wc_att')] = Wc_att
# attention: LSTM -> hidden
Wd_att = norm_weight(dim,dimctx)
params[_p(prefix,'Wd_att')] = Wd_att
# attention: hidden bias
b_att = numpy.zeros((dimctx,)).astype('float32')
params[_p(prefix,'b_att')] = b_att
# optional "deep" attention
if options['n_layers_att'] > 1:
for lidx in xrange(1, options['n_layers_att']):
params[_p(prefix,'W_att_%d'%lidx)] = ortho_weight(dimctx)
params[_p(prefix,'b_att_%d'%lidx)] = numpy.zeros((dimctx,)).astype('float32')
# attention:
U_att = norm_weight(dimctx,1)
params[_p(prefix,'U_att')] = U_att
c_att = numpy.zeros((1,)).astype('float32')
params[_p(prefix, 'c_tt')] = c_att
if options['selector']:
# attention: selector
W_sel = norm_weight(dim, 1)
params[_p(prefix, 'W_sel')] = W_sel
b_sel = numpy.float32(0.)
params[_p(prefix, 'b_sel')] = b_sel
return params
def lstm_cond_layer(tparams, state_below, options, prefix='lstm',
mask=None, context=None, one_step=False,
init_memory=None, init_state=None,
trng=None, use_noise=None, sampling=True,
argmax=False, **kwargs):
assert context, 'Context must be provided'
if one_step:
assert init_memory, 'previous memory must be provided'
assert init_state, 'previous state must be provided'
nsteps = state_below.shape[0]
if state_below.ndim == 3:
n_samples = state_below.shape[1]
else:
n_samples = 1
# mask
if mask is None:
mask = tensor.alloc(1., state_below.shape[0], 1)
# infer lstm dimension
dim = tparams[_p(prefix, 'U')].shape[0]
# initial/previous state
if init_state is None:
init_state = tensor.alloc(0., n_samples, dim)
# initial/previous memory
if init_memory is None:
init_memory = tensor.alloc(0., n_samples, dim)
# projected context
pctx_ = tensor.dot(context, tparams[_p(prefix,'Wc_att')]) + tparams[_p(prefix, 'b_att')]
if options['n_layers_att'] > 1:
for lidx in xrange(1, options['n_layers_att']):
pctx_ = tensor.dot(pctx_, tparams[_p(prefix,'W_att_%d'%lidx)])+tparams[_p(prefix, 'b_att_%d'%lidx)]
# note to self: this used to be options['n_layers_att'] - 1, so no extra non-linearity if n_layers_att < 3
if lidx < options['n_layers_att']:
pctx_ = tanh(pctx_)
# projected x
# state_below is timesteps*num samples by d in training (TODO change to notation of paper)
# this is n * d during sampling
state_below = tensor.dot(state_below, tparams[_p(prefix, 'W')]) + tparams[_p(prefix, 'b')]
# additional parameters for stochastic hard attention
if options['attn_type'] == 'stochastic':
# temperature for softmax
temperature = options.get("temperature", 1)
# [see (Section 4.1): Stochastic "Hard" Attention]
semi_sampling_p = options.get("semi_sampling_p", 0.5)
temperature_c = theano.shared(numpy.float32(temperature), name='temperature_c')
h_sampling_mask = trng.binomial((1,), p=semi_sampling_p, n=1, dtype=theano.config.floatX).sum()
def _slice(_x, n, dim):
if _x.ndim == 3:
return _x[:, :, n*dim:(n+1)*dim]
return _x[:, n*dim:(n+1)*dim]
def _step(m_, x_, h_, c_, a_, as_, ct_, pctx_, dp_=None, dp_att_=None):
""" Each variable is one time slice of the LSTM
m_ - (mask), x_- (previous word), h_- (hidden state), c_- (lstm memory),
a_ - (alpha distribution [eq (5)]), as_- (sample from alpha dist), ct_- (context),
pctx_ (projected context), dp_/dp_att_ (dropout masks)
"""
# attention computation
# [described in equations (4), (5), (6) in
# section "3.1.2 Decoder: Long Short Term Memory Network]
pstate_ = tensor.dot(h_, tparams[_p(prefix,'Wd_att')])
pctx_ = pctx_ + pstate_[:,None,:]
pctx_list = []
pctx_list.append(pctx_)
pctx_ = tanh(pctx_)
alpha = tensor.dot(pctx_, tparams[_p(prefix,'U_att')])+tparams[_p(prefix, 'c_tt')]
alpha_pre = alpha
alpha_shp = alpha.shape
if options['attn_type'] == 'deterministic':
alpha = tensor.nnet.softmax(alpha.reshape([alpha_shp[0],alpha_shp[1]])) # softmax
ctx_ = (context * alpha[:,:,None]).sum(1) # current context
alpha_sample = alpha # you can return something else reasonable here to debug
else:
alpha = tensor.nnet.softmax(temperature_c*alpha.reshape([alpha_shp[0],alpha_shp[1]])) # softmax
# TODO return alpha_sample
if sampling:
alpha_sample = h_sampling_mask * trng.multinomial(pvals=alpha,dtype=theano.config.floatX)\
+ (1.-h_sampling_mask) * alpha
else:
if argmax:
alpha_sample = tensor.cast(tensor.eq(tensor.arange(alpha_shp[1])[None,:],
tensor.argmax(alpha,axis=1,keepdims=True)), theano.config.floatX)
else:
alpha_sample = alpha
ctx_ = (context * alpha_sample[:,:,None]).sum(1) # current context
if options['selector']:
sel_ = tensor.nnet.sigmoid(tensor.dot(h_, tparams[_p(prefix, 'W_sel')])+tparams[_p(prefix,'b_sel')])
sel_ = sel_.reshape([sel_.shape[0]])
ctx_ = sel_[:,None] * ctx_
preact = tensor.dot(h_, tparams[_p(prefix, 'U')])
preact += x_
preact += tensor.dot(ctx_, tparams[_p(prefix, 'Wc')])
# Recover the activations to the lstm gates
# [equation (1)]
i = _slice(preact, 0, dim)
f = _slice(preact, 1, dim)
o = _slice(preact, 2, dim)
if options['use_dropout_lstm']:
i = i * _slice(dp_, 0, dim)
f = f * _slice(dp_, 1, dim)
o = o * _slice(dp_, 2, dim)
i = tensor.nnet.sigmoid(i)
f = tensor.nnet.sigmoid(f)
o = tensor.nnet.sigmoid(o)
c = tensor.tanh(_slice(preact, 3, dim))
# compute the new memory/hidden state
# if the mask is 0, just copy the previous state
c = f * c_ + i * c
c = m_[:,None] * c + (1. - m_)[:,None] * c_
h = o * tensor.tanh(c)
h = m_[:,None] * h + (1. - m_)[:,None] * h_
rval = [h, c, alpha, alpha_sample, ctx_]
if options['selector']:
rval += [sel_]
rval += [pstate_, pctx_, i, f, o, preact, alpha_pre]+pctx_list
return rval
if options['use_dropout_lstm']:
if options['selector']:
_step0 = lambda m_, x_, dp_, h_, c_, a_, as_, ct_, sel_, pctx_: \
_step(m_, x_, h_, c_, a_, as_, ct_, pctx_, dp_)
else:
_step0 = lambda m_, x_, dp_, h_, c_, a_, as_, ct_, pctx_: \
_step(m_, x_, h_, c_, a_, as_, ct_, pctx_, dp_)
dp_shape = state_below.shape
if one_step:
dp_mask = tensor.switch(use_noise,
trng.binomial((dp_shape[0], 3*dim),
p=0.5, n=1, dtype=state_below.dtype),
tensor.alloc(0.5, dp_shape[0], 3 * dim))
else:
dp_mask = tensor.switch(use_noise,
trng.binomial((dp_shape[0], dp_shape[1], 3*dim),
p=0.5, n=1, dtype=state_below.dtype),
tensor.alloc(0.5, dp_shape[0], dp_shape[1], 3*dim))
else:
if options['selector']:
_step0 = lambda m_, x_, h_, c_, a_, as_, ct_, sel_, pctx_: _step(m_, x_, h_, c_, a_, as_, ct_, pctx_)
else:
_step0 = lambda m_, x_, h_, c_, a_, as_, ct_, pctx_: _step(m_, x_, h_, c_, a_, as_, ct_, pctx_)
if one_step:
if options['use_dropout_lstm']:
if options['selector']:
rval = _step0(mask, state_below, dp_mask, init_state, init_memory, None, None, None, None, pctx_)
else:
rval = _step0(mask, state_below, dp_mask, init_state, init_memory, None, None, None, pctx_)
else:
if options['selector']:
rval = _step0(mask, state_below, init_state, init_memory, None, None, None, None, pctx_)
else:
rval = _step0(mask, state_below, init_state, init_memory, None, None, None, pctx_)
return rval
else:
seqs = [mask, state_below]
if options['use_dropout_lstm']:
seqs += [dp_mask]
outputs_info = [init_state,
init_memory,
tensor.alloc(0., n_samples, pctx_.shape[1]),
tensor.alloc(0., n_samples, pctx_.shape[1]),
tensor.alloc(0., n_samples, context.shape[2])]
if options['selector']:
outputs_info += [tensor.alloc(0., n_samples)]
outputs_info += [None,
None,
None,
None,
None,
None,
None] + [None] # *options['n_layers_att']
rval, updates = theano.scan(_step0,
sequences=seqs,
outputs_info=outputs_info,
non_sequences=[pctx_],
name=_p(prefix, '_layers'),
n_steps=nsteps, profile=False)
return rval, updates
# parameter initialization
# [roughly in the same order as presented in section 3.1.2]
def init_params(options):
params = OrderedDict()
# embedding: [matrix E in paper]
params['Wemb'] = norm_weight(options['n_words'], options['dim_word'])
ctx_dim = options['ctx_dim']
if options['lstm_encoder']: # potential feature that runs an LSTM over the annotation vectors
# encoder: LSTM
params = get_layer('lstm')[0](options, params, prefix='encoder',
nin=options['ctx_dim'], dim=options['dim'])
params = get_layer('lstm')[0](options, params, prefix='encoder_rev',
nin=options['ctx_dim'], dim=options['dim'])
ctx_dim = options['dim'] * 2
# init_state, init_cell: [top right on page 4]
for lidx in xrange(1, options['n_layers_init']):
params = get_layer('ff')[0](options, params, prefix='ff_init_%d'%lidx, nin=ctx_dim, nout=ctx_dim)
params = get_layer('ff')[0](options, params, prefix='ff_state', nin=ctx_dim, nout=options['dim'])
params = get_layer('ff')[0](options, params, prefix='ff_memory', nin=ctx_dim, nout=options['dim'])
# decoder: LSTM: [equation (1)/(2)/(3)]
params = get_layer('lstm_cond')[0](options, params, prefix='decoder',
nin=options['dim_word'], dim=options['dim'],
dimctx=ctx_dim)
# potentially deep decoder (warning: should work but somewhat untested)
if options['n_layers_lstm'] > 1:
for lidx in xrange(1, options['n_layers_lstm']):
params = get_layer('ff')[0](options, params, prefix='ff_state_%d'%lidx, nin=options['ctx_dim'], nout=options['dim'])
params = get_layer('ff')[0](options, params, prefix='ff_memory_%d'%lidx, nin=options['ctx_dim'], nout=options['dim'])
params = get_layer('lstm_cond')[0](options, params, prefix='decoder_%d'%lidx,
nin=options['dim'], dim=options['dim'],
dimctx=ctx_dim)
# readout: [equation (7)]
params = get_layer('ff')[0](options, params, prefix='ff_logit_lstm', nin=options['dim'], nout=options['dim_word'])
if options['ctx2out']:
params = get_layer('ff')[0](options, params, prefix='ff_logit_ctx', nin=ctx_dim, nout=options['dim_word'])
if options['n_layers_out'] > 1:
for lidx in xrange(1, options['n_layers_out']):
params = get_layer('ff')[0](options, params, prefix='ff_logit_h%d'%lidx, nin=options['dim_word'], nout=options['dim_word'])
params = get_layer('ff')[0](options, params, prefix='ff_logit', nin=options['dim_word'], nout=options['n_words'])
return params
# build a training model
def build_model(tparams, options, sampling=True):
""" Builds the entire computational graph used for training
[This function builds a model described in Section 3.1.2 onwards
as the convolutional feature are precomputed, some extra features
which were not used are also implemented here.]
Parameters
----------
tparams : OrderedDict
maps names of variables to theano shared variables
options : dict
big dictionary with all the settings and hyperparameters
sampling : boolean
[If it is true, when using stochastic attention, follows
the learning rule described in section 4. at the bottom left of
page 5]
Returns
-------
trng: theano random number generator
Used for dropout, stochastic attention, etc
use_noise: theano shared variable
flag that toggles noise on and off
[x, mask, ctx]: theano variables
Represent the captions, binary mask, and annotations
for a single batch (see dimensions below)
alphas: theano variables
Attention weights
alpha_sample: theano variable
Sampled attention weights used in REINFORCE for stochastic
attention: [see the learning rule in eq (12)]
cost: theano variable
negative log likelihood
opt_outs: OrderedDict
extra outputs required depending on configuration in options
"""
trng = RandomStreams(1234)
use_noise = theano.shared(numpy.float32(0.))
# description string: #words x #samples,
x = tensor.matrix('x', dtype='int64')
mask = tensor.matrix('mask', dtype='float32')
# context: #samples x #annotations x dim
ctx = tensor.tensor3('ctx', dtype='float32')
n_timesteps = x.shape[0]
n_samples = x.shape[1]
# index into the word embedding matrix, shift it forward in time
emb = tparams['Wemb'][x.flatten()].reshape([n_timesteps, n_samples, options['dim_word']])
emb_shifted = tensor.zeros_like(emb)
emb_shifted = tensor.set_subtensor(emb_shifted[1:], emb[:-1])
emb = emb_shifted
if options['lstm_encoder']:
# encoder
ctx_fwd = get_layer('lstm')[1](tparams, ctx.dimshuffle(1,0,2),
options, prefix='encoder')[0].dimshuffle(1,0,2)
ctx_rev = get_layer('lstm')[1](tparams, ctx.dimshuffle(1,0,2)[:,::-1,:],
options, prefix='encoder_rev')[0][:,::-1,:].dimshuffle(1,0,2)
ctx0 = tensor.concatenate((ctx_fwd, ctx_rev), axis=2)
else:
ctx0 = ctx
# initial state/cell [top right on page 4]
ctx_mean = ctx0.mean(1)
for lidx in xrange(1, options['n_layers_init']):
ctx_mean = get_layer('ff')[1](tparams, ctx_mean, options,
prefix='ff_init_%d'%lidx, activ='rectifier')
if options['use_dropout']:
ctx_mean = dropout_layer(ctx_mean, use_noise, trng)
init_state = get_layer('ff')[1](tparams, ctx_mean, options, prefix='ff_state', activ='tanh')
init_memory = get_layer('ff')[1](tparams, ctx_mean, options, prefix='ff_memory', activ='tanh')
# lstm decoder
# [equation (1), (2), (3) in section 3.1.2]
attn_updates = []
proj, updates = get_layer('lstm_cond')[1](tparams, emb, options,
prefix='decoder',
mask=mask, context=ctx0,
one_step=False,
init_state=init_state,
init_memory=init_memory,
trng=trng,
use_noise=use_noise,
sampling=sampling)
attn_updates += updates
proj_h = proj[0]
# optional deep attention
if options['n_layers_lstm'] > 1:
for lidx in xrange(1, options['n_layers_lstm']):
init_state = get_layer('ff')[1](tparams, ctx_mean, options, prefix='ff_state_%d'%lidx, activ='tanh')
init_memory = get_layer('ff')[1](tparams, ctx_mean, options, prefix='ff_memory_%d'%lidx, activ='tanh')
proj, updates = get_layer('lstm_cond')[1](tparams, proj_h, options,
prefix='decoder_%d'%lidx,
mask=mask, context=ctx0,
one_step=False,
init_state=init_state,
init_memory=init_memory,
trng=trng,
use_noise=use_noise,
sampling=sampling)
attn_updates += updates
proj_h = proj[0]
alphas = proj[2]
alpha_sample = proj[3]
ctxs = proj[4]
# [beta value explained in note 4.2.1 "doubly stochastic attention"]
if options['selector']:
sels = proj[5]
if options['use_dropout']:
proj_h = dropout_layer(proj_h, use_noise, trng)
# compute word probabilities
# [equation (7)]
logit = get_layer('ff')[1](tparams, proj_h, options, prefix='ff_logit_lstm', activ='linear')
if options['prev2out']:
logit += emb
if options['ctx2out']:
logit += get_layer('ff')[1](tparams, ctxs, options, prefix='ff_logit_ctx', activ='linear')
logit = tanh(logit)
if options['use_dropout']:
logit = dropout_layer(logit, use_noise, trng)
if options['n_layers_out'] > 1:
for lidx in xrange(1, options['n_layers_out']):
logit = get_layer('ff')[1](tparams, logit, options, prefix='ff_logit_h%d'%lidx, activ='rectifier')
if options['use_dropout']:
logit = dropout_layer(logit, use_noise, trng)
# compute softmax
logit = get_layer('ff')[1](tparams, logit, options, prefix='ff_logit', activ='linear')
logit_shp = logit.shape
probs = tensor.nnet.softmax(logit.reshape([logit_shp[0]*logit_shp[1], logit_shp[2]]))
# Index into the computed probability to give the log likelihood
x_flat = x.flatten()
p_flat = probs.flatten()
cost = -tensor.log(p_flat[tensor.arange(x_flat.shape[0])*probs.shape[1]+x_flat]+1e-8)
cost = cost.reshape([x.shape[0], x.shape[1]])
masked_cost = cost * mask
cost = (masked_cost).sum(0)
# optional outputs
opt_outs = dict()
if options['selector']:
opt_outs['selector'] = sels
if options['attn_type'] == 'stochastic':
opt_outs['masked_cost'] = masked_cost # need this for reinforce later
opt_outs['attn_updates'] = attn_updates # this is to update the rng
return trng, use_noise, [x, mask, ctx], alphas, alpha_sample, cost, opt_outs
# build a sampler
def build_sampler(tparams, options, use_noise, trng, sampling=True):
""" Builds a sampler used for generating from the model
Parameters
----------
See build_model function above
Returns
-------
f_init : theano function
Input: annotation, Output: initial lstm state and memory
(also performs transformation on ctx0 if using lstm_encoder)
f_next: theano function
Takes the previous word/state/memory + ctx0 and runs ne
step through the lstm (used for beam search)
"""
# context: #annotations x dim
ctx = tensor.matrix('ctx_sampler', dtype='float32')
if options['lstm_encoder']:
# encoder
ctx_fwd = get_layer('lstm')[1](tparams, ctx,
options, prefix='encoder')[0]
ctx_rev = get_layer('lstm')[1](tparams, ctx[::-1,:],
options, prefix='encoder_rev')[0][::-1,:]
ctx = tensor.concatenate((ctx_fwd, ctx_rev), axis=1)
# initial state/cell
ctx_mean = ctx.mean(0)
for lidx in xrange(1, options['n_layers_init']):
ctx_mean = get_layer('ff')[1](tparams, ctx_mean, options,
prefix='ff_init_%d'%lidx, activ='rectifier')
if options['use_dropout']:
ctx_mean = dropout_layer(ctx_mean, use_noise, trng)
init_state = [get_layer('ff')[1](tparams, ctx_mean, options, prefix='ff_state', activ='tanh')]
init_memory = [get_layer('ff')[1](tparams, ctx_mean, options, prefix='ff_memory', activ='tanh')]
if options['n_layers_lstm'] > 1:
for lidx in xrange(1, options['n_layers_lstm']):
init_state.append(get_layer('ff')[1](tparams, ctx_mean, options, prefix='ff_state_%d'%lidx, activ='tanh'))
init_memory.append(get_layer('ff')[1](tparams, ctx_mean, options, prefix='ff_memory_%d'%lidx, activ='tanh'))
print 'Building f_init...',
f_init = theano.function([ctx], [ctx]+init_state+init_memory, name='f_init', profile=False)
print 'Done'
# build f_next
ctx = tensor.matrix('ctx_sampler', dtype='float32')
x = tensor.vector('x_sampler', dtype='int64')
init_state = [tensor.matrix('init_state', dtype='float32')]
init_memory = [tensor.matrix('init_memory', dtype='float32')]
if options['n_layers_lstm'] > 1:
for lidx in xrange(1, options['n_layers_lstm']):
init_state.append(tensor.matrix('init_state', dtype='float32'))
init_memory.append(tensor.matrix('init_memory', dtype='float32'))
# for the first word (which is coded with -1), emb should be all zero
emb = tensor.switch(x[:,None] < 0, tensor.alloc(0., 1, tparams['Wemb'].shape[1]),
tparams['Wemb'][x])
proj = get_layer('lstm_cond')[1](tparams, emb, options,
prefix='decoder',
mask=None, context=ctx,
one_step=True,
init_state=init_state[0],
init_memory=init_memory[0],
trng=trng,
use_noise=use_noise,
sampling=sampling)
next_state, next_memory, ctxs = [proj[0]], [proj[1]], [proj[4]]
proj_h = proj[0]
if options['n_layers_lstm'] > 1:
for lidx in xrange(1, options['n_layers_lstm']):
proj = get_layer('lstm_cond')[1](tparams, proj_h, options,
prefix='decoder_%d'%lidx,
context=ctx,
one_step=True,
init_state=init_state[lidx],
init_memory=init_memory[lidx],
trng=trng,
use_noise=use_noise,
sampling=sampling)
next_state.append(proj[0])
next_memory.append(proj[1])
ctxs.append(proj[4])
proj_h = proj[0]
if options['use_dropout']:
proj_h = dropout_layer(proj[0], use_noise, trng)
else:
proj_h = proj[0]
logit = get_layer('ff')[1](tparams, proj_h, options, prefix='ff_logit_lstm', activ='linear')
if options['prev2out']:
logit += emb
if options['ctx2out']:
logit += get_layer('ff')[1](tparams, ctxs[-1], options, prefix='ff_logit_ctx', activ='linear')
logit = tanh(logit)
if options['use_dropout']:
logit = dropout_layer(logit, use_noise, trng)
if options['n_layers_out'] > 1:
for lidx in xrange(1, options['n_layers_out']):
logit = get_layer('ff')[1](tparams, logit, options, prefix='ff_logit_h%d'%lidx, activ='rectifier')
if options['use_dropout']:
logit = dropout_layer(logit, use_noise, trng)
logit = get_layer('ff')[1](tparams, logit, options, prefix='ff_logit', activ='linear')
logit_shp = logit.shape
next_probs = tensor.nnet.softmax(logit)
next_sample = trng.multinomial(pvals=next_probs).argmax(1)
# next word probability
f_next = theano.function([x, ctx]+init_state+init_memory, [next_probs, next_sample]+next_state+next_memory, name='f_next', profile=False)
return f_init, f_next
# generate sample
def gen_sample(tparams, f_init, f_next, ctx0, options,
trng=None, k=1, maxlen=30, stochastic=False):
"""Generate captions with beam search.
This function uses the beam search algorithm to conditionally
generate candidate captions. Supports beamsearch and stochastic
sampling.
Parameters
----------
tparams : OrderedDict()
dictionary of theano shared variables represented weight
matricies
f_init : theano function
input: annotation, output: initial lstm state and memory
(also performs transformation on ctx0 if using lstm_encoder)
f_next: theano function
takes the previous word/state/memory + ctx0 and runs one
step through the lstm
ctx0 : numpy array
annotation from convnet, of dimension #annotations x # dimension
[e.g (196 x 512)]
options : dict
dictionary of flags and options
trng : random number generator
k : int
size of beam search
maxlen : int
maximum allowed caption size
stochastic : bool
if True, sample stochastically
Returns
-------
sample : list of list
each sublist contains an (encoded) sample from the model
sample_score : numpy array
scores of each sample
"""
if k > 1:
assert not stochastic, 'Beam search does not support stochastic sampling'
sample = []
sample_score = []
if stochastic:
sample_score = 0
live_k = 1
dead_k = 0
hyp_samples = [[]] * live_k
hyp_scores = numpy.zeros(live_k).astype('float32')
hyp_states = []
hyp_memories = []
# only matters if we use lstm encoder
rval = f_init(ctx0)
ctx0 = rval[0]
next_state = []
next_memory = []
# the states are returned as a: (dim,) and this is just a reshape to (1, dim)
for lidx in xrange(options['n_layers_lstm']):
next_state.append(rval[1+lidx])
next_state[-1] = next_state[-1].reshape([1, next_state[-1].shape[0]])
for lidx in xrange(options['n_layers_lstm']):
next_memory.append(rval[1+options['n_layers_lstm']+lidx])
next_memory[-1] = next_memory[-1].reshape([1, next_memory[-1].shape[0]])
# reminder: if next_w = -1, the switch statement
# in build_sampler is triggered -> (empty word embeddings)
next_w = -1 * numpy.ones((1,)).astype('int64')
for ii in xrange(maxlen):
# our "next" state/memory in our previous step is now our "initial" state and memory
rval = f_next(*([next_w, ctx0]+next_state+next_memory))
next_p = rval[0]
next_w = rval[1]
# extract all the states and memories
next_state = []
next_memory = []
for lidx in xrange(options['n_layers_lstm']):
next_state.append(rval[2+lidx])
next_memory.append(rval[2+options['n_layers_lstm']+lidx])
if stochastic:
sample.append(next_w[0]) # if we are using stochastic sampling this easy
sample_score += next_p[0,next_w[0]]
if next_w[0] == 0:
break
else:
cand_scores = hyp_scores[:,None] - numpy.log(next_p)
cand_flat = cand_scores.flatten()
ranks_flat = cand_flat.argsort()[:(k-dead_k)] # (k-dead_k) numpy array of with min nll
voc_size = next_p.shape[1]
# indexing into the correct selected captions
trans_indices = ranks_flat / voc_size
word_indices = ranks_flat % voc_size
costs = cand_flat[ranks_flat] # extract costs from top hypothesis
# a bunch of lists to hold future hypothesis
new_hyp_samples = []
new_hyp_scores = numpy.zeros(k-dead_k).astype('float32')
new_hyp_states = []
for lidx in xrange(options['n_layers_lstm']):
new_hyp_states.append([])
new_hyp_memories = []
for lidx in xrange(options['n_layers_lstm']):
new_hyp_memories.append([])
# get the corresponding hypothesis and append the predicted word
for idx, [ti, wi] in enumerate(zip(trans_indices, word_indices)):
new_hyp_samples.append(hyp_samples[ti]+[wi])
new_hyp_scores[idx] = copy.copy(costs[idx]) # copy in the cost of that hypothesis
for lidx in xrange(options['n_layers_lstm']):
new_hyp_states[lidx].append(copy.copy(next_state[lidx][ti]))
for lidx in xrange(options['n_layers_lstm']):
new_hyp_memories[lidx].append(copy.copy(next_memory[lidx][ti]))
# check the finished samples for <eos> character
new_live_k = 0
hyp_samples = []
hyp_scores = []
hyp_states = []
for lidx in xrange(options['n_layers_lstm']):
hyp_states.append([])
hyp_memories = []
for lidx in xrange(options['n_layers_lstm']):
hyp_memories.append([])
for idx in xrange(len(new_hyp_samples)):
if new_hyp_samples[idx][-1] == 0:
sample.append(new_hyp_samples[idx])
sample_score.append(new_hyp_scores[idx])
dead_k += 1 # completed sample!
else:
new_live_k += 1 # collect collect correct states/memories
hyp_samples.append(new_hyp_samples[idx])
hyp_scores.append(new_hyp_scores[idx])
for lidx in xrange(options['n_layers_lstm']):
hyp_states[lidx].append(new_hyp_states[lidx][idx])
for lidx in xrange(options['n_layers_lstm']):
hyp_memories[lidx].append(new_hyp_memories[lidx][idx])
hyp_scores = numpy.array(hyp_scores)
live_k = new_live_k
if new_live_k < 1:
break
if dead_k >= k:
break
next_w = numpy.array([w[-1] for w in hyp_samples])
next_state = []
for lidx in xrange(options['n_layers_lstm']):
next_state.append(numpy.array(hyp_states[lidx]))
next_memory = []
for lidx in xrange(options['n_layers_lstm']):
next_memory.append(numpy.array(hyp_memories[lidx]))
if not stochastic:
# dump every remaining one
if live_k > 0:
for idx in xrange(live_k):
sample.append(hyp_samples[idx])
sample_score.append(hyp_scores[idx])
return sample, sample_score
def pred_probs(f_log_probs, options, worddict, prepare_data, data, iterator, verbose=False):
""" Get log probabilities of captions
Parameters