-
Notifications
You must be signed in to change notification settings - Fork 0
/
euler_p12.py
68 lines (60 loc) · 2.02 KB
/
euler_p12.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
#Euler - problem 12
"""The sequence of triangle numbers is generated by adding the natural numbers. So the 7th
triangle number would be 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28. The first ten terms would be:
1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ... Let us list the factors of the first seven triangle numbers:
1: 1
3: 1,3
6: 1,2,3,6
10: 1,2,5,10
15: 1,3,5,15
21: 1,3,7,21
28: 1,2,4,7,14,28
We can see that 28 is the first triangle number to have over five divisors. What is the value of the
first triangle number to have over five hundred divisors?"""
# This is a rather slow implementation, but will produce the full prime factorization,
# not just the total number of factors
from math import sqrt
from operator import mul
def isprime(num):
if num in [2, 3, 5, 7, 11, 13, 17, 19, 23]: return True
if num % 2 == 0: return False
i=3
while i**2 <= num:
if num % i == 0: return False
else: i += 2
return True
def mult(table):
values = [value + 1 for value in table.values()]
if len(values) == 0: return 0
else: return reduce(mul, values)
def countdivisors(trianglenum):
bignum = trianglenum
primedivisors = {}
i = 2
while i <= int(sqrt(bignum)):
if isprime(i):
while bignum % i == 0:
if i not in primedivisors.keys(): primedivisors[i] = 0
primedivisors[i] += 1
bignum /= i
if isprime(bignum):
if bignum not in primedivisors.keys(): primedivisors[bignum] = 0
primedivisors[bignum] += 1
break
if isprime(bignum): break
else:
i += 1
else: i += 1
return mult(primedivisors)
num = 9
numdivisors = 0
while numdivisors <= 6:
num = num + 1
trianglenum = num*(num + 1)/2
numdivisors = countdivisors(trianglenum) #IDEA: use prime factorization to count divisors
print num, trianglenum, numdivisors
""""
Notes: number of divisors, d(n*(n+1)/2) =
d(n/2)*d(n+1) if n is evenly
d((n+1)/2)*d(n) if n is odd
"""