-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
86 lines (70 loc) · 2.99 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import os
import datetime
from youtube_transcript_api import YouTubeTranscriptApi
from langchain_google_genai import GoogleGenerativeAIEmbeddings
from langchain_community.document_loaders import UnstructuredFileLoader
from langchain_community.vectorstores import Chroma
from langchain_text_splitters import CharacterTextSplitter
import requests
if "GOOGLE_API_KEY" not in os.environ:
os.environ["GOOGLE_API_KEY"] = input("Provide your Google API key here: ")
class Document:
def __init__(self, page_content):
self.page_content = page_content
def get_youtube_transcript(video_id):
try:
transcript = YouTubeTranscriptApi.get_transcript(video_id)
transcript_text = " ".join(entry['text'] for entry in transcript)
# Generate timestamp for unique file name
timestamp = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
file_name = f"temp_{timestamp}.txt"
with open(file_name, 'w', encoding='utf-8') as file:
file.write(transcript_text)
return file_name, transcript_text.strip()
except Exception as e:
print(f"Error fetching transcript: {e}")
return None, "Transcript not found"
def embed_and_query_chroma(query, file_name):
loader = UnstructuredFileLoader(file_name)
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.split_documents(documents)
embedding_function = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
db = Chroma.from_documents(docs, embedding_function)
docs = db.similarity_search(query)
return docs[0].page_content
def generate_response(user_message, relevant_part):
response = requests.post(
"https://api.naga.ac/v1/chat/completions",
headers={
"Content-Type": "application/json",
"Authorization": "Bearer ng-z0E45NH0iumvObnSpUt5BAeboEWw1",
},
json={
"model": "gpt-3.5-turbo",
"messages": [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": user_message},
{"role": "assistant", "content": relevant_part},
],
"temperature": 0.7,
},
)
if response.status_code == 200:
return response.json()["choices"][0]["message"]["content"].strip()
else:
return f"Error {response.status_code}: {response.text}"
if __name__ == "__main__":
youtube_url = input("Enter a YouTube URL: ")
video_id = youtube_url.split('v=')[-1]
file_name, full_transcript = get_youtube_transcript(video_id)
while True:
user_message = input("You: ")
if user_message.lower() == "exit":
if file_name:
os.remove(file_name)
break
relevant_part = embed_and_query_chroma(user_message, file_name)
print(f"Relevant part:\n{relevant_part}\n")
response = generate_response(user_message, relevant_part)
print(f"AI: {response}\n")