forked from WinVector/PDSwR2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathx0B_Important_statistical_concepts.Rmd
980 lines (633 loc) · 24.4 KB
/
x0B_Important_statistical_concepts.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
---
output: github_document
---
00397_example_B.1_of_section_B.1.1.R
```{r 00397_example_B.1_of_section_B.1.1.R }
# example B.1 of section B.1.1
# (example B.1 of section B.1.1) : Important statistical concepts : Distributions : Normal distribution
# Title: Plotting the theoretical normal density
library(ggplot2)
x <- seq(from=-5, to=5, length.out=100) # the interval [-5 5]
f <- dnorm(x) # normal with mean 0 and sd 1
ggplot(data.frame(x=x,y=f), aes(x=x,y=y)) + geom_line()
```
00398_example_B.2_of_section_B.1.1.R
```{r 00398_example_B.2_of_section_B.1.1.R }
# example B.2 of section B.1.1
# (example B.2 of section B.1.1) : Important statistical concepts : Distributions : Normal distribution
# Title: Plotting an empirical normal density
library(ggplot2)
# draw 1000 points from a normal with mean 0, sd 1
u <- rnorm(1000)
# plot the distribution of points,
# compared to normal curve as computed by dnorm() (dashed line)
ggplot(data.frame(x=u), aes(x=x)) + geom_density() +
geom_line(data=data.frame(x=x,y=f), aes(x=x,y=y), linetype=2)
```
00399_example_B.3_of_section_B.1.1.R
```{r 00399_example_B.3_of_section_B.1.1.R }
# example B.3 of section B.1.1
# (example B.3 of section B.1.1) : Important statistical concepts : Distributions : Normal distribution
# Title: Working with the normal cdf
# --- estimate probabilities (areas) under the curve ---
# 50% of the observations will be less than the mean
pnorm(0)
# [1] 0.5
# about 2.3% of all observations are more than 2 standard
# deviations below the mean
pnorm(-2)
# [1] 0.02275013
# about 95.4% of all observations are within 2 standard deviations
# from the mean
pnorm(2) - pnorm(-2)
# [1] 0.9544997
```
00400_example_B.4_of_section_B.1.1.R
```{r 00400_example_B.4_of_section_B.1.1.R }
# example B.4 of section B.1.1
# (example B.4 of section B.1.1) : Important statistical concepts : Distributions : Normal distribution
# Title: Plotting x < qnorm(0.75)
# --- return the quantiles corresponding to specific probabilities ---
# the median (50th percentile) of a normal is also the mean
qnorm(0.5)
# [1] 0
# calculate the 75th percentile
qnorm(0.75)
# [1] 0.6744898
pnorm(0.6744898)
# [1] 0.75
# --- Illustrate the 75th percentile ---
# create a graph of the normal distribution with mean 0, sd 1
x <- seq(from=-5, to=5, length.out=100)
f <- dnorm(x)
nframe <- data.frame(x=x,y=f)
# calculate the 75th percentile
line <- qnorm(0.75)
xstr <- sprintf("qnorm(0.75) = %1.3f", line)
# the part of the normal distribution to the left
# of the 75th percentile
nframe75 <- subset(nframe, nframe$x < line)
# Plot it.
# The shaded area is 75% of the area under the normal curve
ggplot(nframe, aes(x=x,y=y)) + geom_line() +
geom_area(data=nframe75, aes(x=x,y=y), fill="gray") +
geom_vline(aes(xintercept=line), linetype=2) +
geom_text(x=line, y=0, label=xstr, vjust=1)
```
00401_example_B.5_of_section_B.1.3.R
```{r 00401_example_B.5_of_section_B.1.3.R }
# example B.5 of section B.1.3
# (example B.5 of section B.1.3) : Important statistical concepts : Distributions : Lognormal distribution
# Title: Demonstrating some properties of the lognormal distribution
# draw 1001 samples from a lognormal with meanlog 0, sdlog 1
u <- rlnorm(1001)
# the mean of u is higher than the median
mean(u)
# [1] 1.638628
median(u)
# [1] 1.001051
# the mean of log(u) is approx meanlog=0
mean(log(u))
# [1] -0.002942916
# the sd of log(u) is approx sdlog=1
sd(log(u))
# [1] 0.9820357
# generate the lognormal with meanlog = 0, sdlog = 1
x <- seq(from = 0, to = 25, length.out = 500)
f <- dlnorm(x)
# generate a normal with mean = 0, sd = 1
x2 <- seq(from = -5, to = 5, length.out = 500)
f2 <- dnorm(x2)
# make data frames
lnormframe <- data.frame(x = x, y = f)
normframe <- data.frame(x = x2, y = f2)
dframe <- data.frame(u=u)
# plot densityplots with theoretical curves superimposed
p1 <- ggplot(dframe, aes(x = u)) + geom_density() +
geom_line(data = lnormframe, aes(x = x, y = y), linetype = 2)
p2 <- ggplot(dframe, aes(x = log(u))) + geom_density() +
geom_line(data = normframe, aes(x = x,y = y), linetype = 2)
# functions to plot multiple plots on one page
library(grid)
nplot <- function(plist) {
n <- length(plist)
grid.newpage()
pushViewport(viewport(layout=grid.layout(n, 1)))
vplayout<-function(x,y) { viewport(layout.pos.row = x, layout.pos.col = y) }
for(i in 1:n) {
print(plist[[i]], vp = vplayout(i, 1))
}
}
# this is the plot that leads this section.
nplot(list(p1, p2))
```
00402_example_B.6_of_section_B.1.3.R
```{r 00402_example_B.6_of_section_B.1.3.R }
# example B.6 of section B.1.3
# (example B.6 of section B.1.3) : Important statistical concepts : Distributions : Lognormal distribution
# Title: Plotting the lognormal distribution
# the 50th percentile (or median) of the lognormal with
# meanlog=0 and sdlog=10
qlnorm(0.5)
# [1] 1
# the probability of seeing a value x less than 1
plnorm(1)
# [1] 0.5
# the probability of observing a value x less than 10:
plnorm(10)
# [1] 0.9893489
# -- show the 75th percentile of the lognormal
# use lnormframe from previous example: the
# theoretical lognormal curve
line <- qlnorm(0.75)
xstr <- sprintf("qlnorm(0.75) = %1.3f", line)
lnormframe75 <- subset(lnormframe, lnormframe$x < line)
# Plot it
# The shaded area is 75% of the area under the lognormal curve
ggplot(lnormframe, aes(x = x, y = y)) + geom_line() +
geom_area(data=lnormframe75, aes(x = x, y = y), fill = "gray") +
geom_vline(aes(xintercept = line), linetype = 2) +
geom_text(x = line, y = 0, label = xstr, hjust = 0, vjust = 1)
```
00403_example_B.7_of_section_B.1.4.R
```{r 00403_example_B.7_of_section_B.1.4.R }
# example B.7 of section B.1.4
# (example B.7 of section B.1.4) : Important statistical concepts : Distributions : Binomial distribution
# Title: Plotting the binomial distribution
library(ggplot2)
#
# use dbinom to produce the theoretical curves
#
numflips <- 50
# x is the number of heads that we see
x <- 0:numflips
# probability of heads for several different coins
p <- c(0.05, 0.15, 0.5, 0.75)
plabels <- paste("p =", p)
# calculate the probability of seeing x heads in numflips flips
# for all the coins. This probably isn't the most elegant
# way to do this, but at least it's easy to read
flips <- NULL
for(i in 1:length(p)) {
coin <- p[i]
label <- plabels[i]
tmp <- data.frame(number_of_heads=x,
probability = dbinom(x, numflips, coin),
coin_type = label)
flips <- rbind(flips, tmp)
}
# plot it
# this is the plot that leads this section
ggplot(flips, aes(x = number_of_heads, y = probability)) +
geom_point(aes(color = coin_type, shape = coin_type)) +
geom_line(aes(color = coin_type))
```
00404_example_B.8_of_section_B.1.4.R
```{r 00404_example_B.8_of_section_B.1.4.R }
# example B.8 of section B.1.4
# (example B.8 of section B.1.4) : Important statistical concepts : Distributions : Binomial distribution
# Title: Working with the theoretical binomial distribution
p = 0.5 # the percentage of females in this student population
class_size <- 20 # size of a classroom
numclasses <- 100 # how many classrooms we observe
# what might a typical outcome look like?
numFemales <- rbinom(numclasses, class_size, p) # Note: 1
# the theoretical counts (not necessarily integral)
probs <- dbinom(0:class_size, class_size, p)
tcount <- numclasses*probs
# the obvious way to plot this is with histogram or geom_bar
# but this might just look better
zero <- function(x) {0} # a dummy function that returns only 0
ggplot(data.frame(number_of_girls = numFemales, dummy = 1),
aes(x = number_of_girls, y = dummy)) +
# count the number of times you see x heads
stat_summary(fun.y = "sum", geom = "point", size=2) + # Note: 2
stat_summary(fun.ymax = "sum", fun.ymin = "zero", geom = "linerange") +
# superimpose the theoretical number of times you see x heads
geom_line(data = data.frame(x = 0:class_size, y = tcount),
aes(x = x, y = y), linetype = 2) +
scale_x_continuous(breaks = 0:class_size, labels = 0:class_size) +
scale_y_continuous("number of classrooms")
# Note 1:
# Because we didn’t call set.seed, we
# expect different results each time we run this line.
# Note 2:
# stat_summary is one of the ways to
# control data aggregation during plotting. In this case, we’re using it to
# place the dot and bar measured from the empirical data in with the
# theoretical density curve.
```
00405_example_B.9_of_section_B.1.4.R
```{r 00405_example_B.9_of_section_B.1.4.R }
# example B.9 of section B.1.4
# (example B.9 of section B.1.4) : Important statistical concepts : Distributions : Binomial distribution
# Title: Simulating a binomial distribution
# use rbinom to simulate flipping a coin of probability p N times
p75 <- 0.75 # a very unfair coin (mostly heads)
N <- 1000 # flip it several times
flips_v1 <- rbinom(N, 1, p75)
# Another way to generate unfair flips is to use runif:
# the probability that a uniform random number from [0 1)
# is less than p is exactly p. So "less than p" is "heads".
flips_v2 <- as.numeric(runif(N) < p75)
prettyprint_flips <- function(flips) {
outcome <- ifelse(flips==1, "heads", "tails")
table(outcome)
}
prettyprint_flips(flips_v1)
# outcome
# heads tails
# 756 244
prettyprint_flips(flips_v2)
# outcome
# heads tails
# 743 257
```
00406_example_B.10_of_section_B.1.4.R
```{r 00406_example_B.10_of_section_B.1.4.R }
# example B.10 of section B.1.4
# (example B.10 of section B.1.4) : Important statistical concepts : Distributions : Binomial distribution
# Title: Working with the binomial distribution
# pbinom example
nflips <- 100
nheads <- c(25, 45, 50, 60) # number of heads
# what are the probabilities of observing at most that
# number of heads on a fair coin?
left.tail <- pbinom(nheads, nflips, 0.5)
sprintf("%2.2f", left.tail)
# [1] "0.00" "0.18" "0.54" "0.98"
# the probabilities of observing more than that
# number of heads on a fair coin?
right.tail <- pbinom(nheads, nflips, 0.5, lower.tail = FALSE)
sprintf("%2.2f", right.tail)
# [1] "1.00" "0.82" "0.46" "0.02"
# as expected:
left.tail+right.tail
# [1] 1 1 1 1
# so if you flip a fair coin 100 times,
# you are guaranteed to see more than 10 heads,
# almost guaranteed to see fewer than 60, and
# probably more than 45.
# qbinom example
nflips <- 100
# what's the 95% "central" interval of heads that you
# would expect to observe on 100 flips of a fair coin?
left.edge <- qbinom(0.025, nflips, 0.5)
right.edge <- qbinom(0.025, nflips, 0.5, lower.tail = FALSE)
c(left.edge, right.edge)
# [1] 40 60
# so with 95% probability you should see between 40 and 60 heads
```
00407_example_B.11_of_section_B.1.4.R
```{r 00407_example_B.11_of_section_B.1.4.R }
# example B.11 of section B.1.4
# (example B.11 of section B.1.4) : Important statistical concepts : Distributions : Binomial distribution
# Title: Working with the binomial CDF
# because this is a discrete probability distribution,
# pbinom and qbinom are not exact inverses of each other
# this direction works
pbinom(45, nflips, 0.5)
# [1] 0.1841008
qbinom(0.1841008, nflips, 0.5)
# [1] 45
# this direction won't be exact
qbinom(0.75, nflips, 0.5)
# [1] 53
pbinom(53, nflips, 0.5)
# [1] 0.7579408
```
00409_example_B.12_of_section_B.2.2.R
```{r 00409_example_B.12_of_section_B.2.2.R }
# example B.12 of section B.2.2
# (example B.12 of section B.2.2) : Important statistical concepts : Statistical theory : A/B tests
# Title: Building simulated A/B test data
set.seed(123515)
d <- rbind( # Note: 1
data.frame(group = 'A', converted = rbinom(100000, size = 1, p = 0.05)), # Note: 2
data.frame(group = 'B', converted = rbinom(10000, size = 1, p = 0.055)) # Note: 3
)
# Note 1:
# Build a data frame to store simulated
# examples.
# Note 2:
# Add 100,000 examples from the A group
# simulating a conversion rate of 5%.
# Note 3:
# Add 10,000 examples from the B group
# simulating a conversion rate of 5.5%.
```
00410_example_B.13_of_section_B.2.2.R
```{r 00410_example_B.13_of_section_B.2.2.R }
# example B.13 of section B.2.2
# (example B.13 of section B.2.2) : Important statistical concepts : Statistical theory : A/B tests
# Title: Summarizing the A/B test into a contingency table
tab <- table(d)
print(tab)
## converted
## group 0 1
## A 94979 5021
## B 9398 602
```
00411_example_B.14_of_section_B.2.2.R
```{r 00411_example_B.14_of_section_B.2.2.R }
# example B.14 of section B.2.2
# (example B.14 of section B.2.2) : Important statistical concepts : Statistical theory : A/B tests
# Title: Calculating the observed A and B rates
aConversionRate <- tab['A','1']/sum(tab['A',])
print(aConversionRate)
## [1] 0.05021
bConversionRate <- tab['B', '1'] / sum(tab['B', ])
print(bConversionRate)
## [1] 0.0602
commonRate <- sum(tab[, '1']) / sum(tab)
print(commonRate)
## [1] 0.05111818
```
00412_example_B.15_of_section_B.2.2.R
```{r 00412_example_B.15_of_section_B.2.2.R }
# example B.15 of section B.2.2
# (example B.15 of section B.2.2) : Important statistical concepts : Statistical theory : A/B tests
# Title: Calculating the significance of the observed difference in rates
fisher.test(tab)
## Fisher's Exact Test for Count Data
##
## data: tab
## p-value = 2.469e-05
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 1.108716 1.322464
## sample estimates:
## odds ratio
## 1.211706
```
00413_example_B.16_of_section_B.2.2.R
```{r 00413_example_B.16_of_section_B.2.2.R }
# example B.16 of section B.2.2
# (example B.16 of section B.2.2) : Important statistical concepts : Statistical theory : A/B tests
# Title: Computing frequentist significance
print(pbinom( # Note: 1
lower.tail = FALSE, # Note: 2
q = tab['B', '1'] - 1, # Note: 3
size = sum(tab['B', ]), # Note: 4
prob = commonRate # Note: 5
))
## [1] 3.153319e-05
# Note 1:
# Use the pbinom() call to calculate how
# likely different observed counts are.
# Note 2:
# Signal we want the probability of being
# greater than a given q.
# Note 3:
# Ask for the probability of seeing at least as many conversions as our observed B groups
# did. We subtract one to make the comparison inclusive (greater or equal to tab['B', '1']).
# Note 4:
# Specify the total number of trials as
# equal to what we saw in our B group.
# Note 5:
# Specify the conversion probability at the
# estimated common rate.
```
00414_informalexample_B.2_of_section_B.2.3.R
```{r 00414_informalexample_B.2_of_section_B.2.3.R }
# informalexample B.2 of section B.2.3
# (informalexample B.2 of section B.2.3) : Important statistical concepts : Statistical theory : Power of tests
library(pwr)
pwr.p.test(h = ES.h(p1 = 0.045, p2 = 0.04),
sig.level = 0.05,
power = 0.8,
alternative = "greater")
# proportion power calculation for binomial distribution (arcsine transformation)
#
# h = 0.02479642
# n = 10055.18
# sig.level = 0.05
# power = 0.8
# alternative = greater
```
00415_example_B.17_of_section_B.2.4.R
```{r 00415_example_B.17_of_section_B.2.4.R }
# example B.17 of section B.2.4
# (example B.17 of section B.2.4) : Important statistical concepts : Statistical theory : Specialized statistical tests
# Title: Building synthetic uncorrelated income example
set.seed(235236) # Note: 1
d <- data.frame(EarnedIncome = 100000 * rlnorm(100),
CapitalGains = 100000 * rlnorm(100)) # Note: 2
print(with(d, cor(EarnedIncome, CapitalGains)))
# [1] -0.01066116 # Note: 3
# Note 1:
# Set the pseudo-random seed to a known
# value so the demonstration is repeatable.
# Note 2:
# Generate our synthetic data.
# Note 3:
# The correlation is -0.01, which is very near 0—indicating (as designed) no relation.
```
00416_example_B.18_of_section_B.2.4.R
```{r 00416_example_B.18_of_section_B.2.4.R }
# example B.18 of section B.2.4
# (example B.18 of section B.2.4) : Important statistical concepts : Statistical theory : Specialized statistical tests
# Title: Calculating the (non)significance of the observed correlation
with(d, cor(EarnedIncome, CapitalGains, method = 'spearman'))
# [1] 0.03083108
(ctest <- with(d, cor.test(EarnedIncome, CapitalGains, method = 'spearman')))
#
# Spearman's rank correlation rho
#
#data: EarnedIncome and CapitalGains
#S = 161512, p-value = 0.7604
#alternative hypothesis: true rho is not equal to 0
#sample estimates:
# rho
#0.03083108
```
00417_informalexample_B.3_of_section_B.2.4.R
```{r 00417_informalexample_B.3_of_section_B.2.4.R }
# informalexample B.3 of section B.2.4
# (informalexample B.3 of section B.2.4) : Important statistical concepts : Statistical theory : Specialized statistical tests
sigr::wrapCorTest(ctest)
# [1] "Spearman's rank correlation rho: (r=0.03083, p=n.s.)."
```
00418_example_B.19_of_section_B.3.1.R
```{r 00418_example_B.19_of_section_B.3.1.R }
# example B.19 of section B.3.1
# (example B.19 of section B.3.1) : Important statistical concepts : Examples of the statistical view of data : Sampling bias
# Title: Misleading significance result from biased observations
veryHighIncome <- subset(d, EarnedIncome+CapitalGains>=500000)
print(with(veryHighIncome,cor.test(EarnedIncome,CapitalGains,
method='spearman')))
#
# Spearman's rank correlation rho
#
#data: EarnedIncome and CapitalGains
#S = 1046, p-value < 2.2e-16
#alternative hypothesis: true rho is not equal to 0
#sample estimates:
# rho
#-0.8678571
```
00419_example_B.20_of_section_B.3.1.R
```{r 00419_example_B.20_of_section_B.3.1.R }
# example B.20 of section B.3.1
# (example B.20 of section B.3.1) : Important statistical concepts : Examples of the statistical view of data : Sampling bias
# Title: Plotting biased view of income and capital gains
library(ggplot2)
ggplot(data=d,aes(x=EarnedIncome,y=CapitalGains)) +
geom_point() + geom_smooth(method='lm') +
coord_cartesian(xlim=c(0,max(d)),ylim=c(0,max(d))) # Note: 1
ggplot(data=veryHighIncome,aes(x=EarnedIncome,y=CapitalGains)) +
geom_point() + geom_smooth(method='lm') +
geom_point(data=subset(d,EarnedIncome+CapitalGains<500000),
aes(x=EarnedIncome,y=CapitalGains),
shape=4,alpha=0.5,color='red') +
geom_segment(x=0,xend=500000,y=500000,yend=0,
linetype=2,alpha=0.5,color='red') +
coord_cartesian(xlim=c(0,max(d)),ylim=c(0,max(d))) # Note: 2
print(with(subset(d,EarnedIncome+CapitalGains<500000),
cor.test(EarnedIncome,CapitalGains,method='spearman'))) # Note: 3
#
# Spearman's rank correlation rho
#
#data: EarnedIncome and CapitalGains
#S = 107664, p-value = 0.6357
#alternative hypothesis: true rho is not equal to 0
#sample estimates:
# rho
#-0.05202267
# Note 1:
# Plot all of the income data with linear
# trend line (and uncertainty band).
# Note 2:
# Plot the very high income data and linear
# trend line (also include cut-off and portrayal of suppressed data).
# Note 3:
# Compute correlation of suppressed
# data.
```
00420_example_B.21_of_section_B.3.2.R
```{r 00420_example_B.21_of_section_B.3.2.R }
# example B.21 of section B.3.2
# (example B.21 of section B.3.2) : Important statistical concepts : Examples of the statistical view of data : Omitted variable bias
# Title: Summarizing our synthetic biological data
load('../bioavailability/synth.RData')
print(summary(s))
## week Caco2A2BPapp FractionHumanAbsorption
## Min. : 1.00 Min. :6.994e-08 Min. :0.09347
## 1st Qu.: 25.75 1st Qu.:7.312e-07 1st Qu.:0.50343
## Median : 50.50 Median :1.378e-05 Median :0.86937
## Mean : 50.50 Mean :2.006e-05 Mean :0.71492
## 3rd Qu.: 75.25 3rd Qu.:4.238e-05 3rd Qu.:0.93908
## Max. :100.00 Max. :6.062e-05 Max. :0.99170
head(s)
## week Caco2A2BPapp FractionHumanAbsorption
## 1 1 6.061924e-05 0.11568186
## 2 2 6.061924e-05 0.11732401
## 3 3 6.061924e-05 0.09347046
## 4 4 6.061924e-05 0.12893540
## 5 5 5.461941e-05 0.19021858
## 6 6 5.370623e-05 0.14892154
# View(s) # Note: 1
# Note 1:
# Display a date in spreadsheet like
# window. View is one of the commands that has a much better implementation in
# RStudio than in basic R.
```
00421_example_B.22_of_section_B.3.2.R
```{r 00421_example_B.22_of_section_B.3.2.R }
# example B.22 of section B.3.2
# (example B.22 of section B.3.2) : Important statistical concepts : Examples of the statistical view of data : Omitted variable bias
# Title: Building data that improves over time
set.seed(2535251)
s <- data.frame(week = 1:100)
s$Caco2A2BPapp <- sort(sample(d$Caco2A2BPapp,100,replace=T),
decreasing=T)
sigmoid <- function(x) {1/(1 + exp(-x))}
s$FractionHumanAbsorption <- # Note: 1
sigmoid(
7.5 + 0.5 * log(s$Caco2A2BPapp) + # Note: 2
s$week / 10 - mean(s$week / 10) + # Note: 3
rnorm(100) / 3 # Note: 4
)
write.table(s, 'synth.csv', sep=',',
quote = FALSE, row.names = FALSE)
# Note 1:
# Build synthetic examples.
# Note 2:
# Add in Caco2 to absorption relation learned from original dataset. Note the relation is
# positive: better Caco2 always drives better absorption in our
# synthetic dataset. We’re log transforming Caco2, as it has over 3
# decades of range.
# Note 3:
# Add in a mean-0 term that depends on time to simulate the effects of improvements as the
# project moves forward.
# Note 4:
# Add in a mean-0 noise term.
```
00422_example_B.23_of_section_B.3.2.R
```{r 00422_example_B.23_of_section_B.3.2.R }
# example B.23 of section B.3.2
# (example B.23 of section B.3.2) : Important statistical concepts : Examples of the statistical view of data : Omitted variable bias
# Title: A bad model (due to omitted variable bias)
print(summary(glm(data = s,
FractionHumanAbsorption ~ log(Caco2A2BPapp),
family = binomial(link = 'logit'))))
## Warning: non-integer #successes in a binomial glm!
##
## Call:
## glm(formula = FractionHumanAbsorption ~ log(Caco2A2BPapp),
## family = binomial(link = "logit"),
## data = s)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.609 -0.246 -0.118 0.202 0.557
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -10.003 2.752 -3.64 0.00028 ***
## log(Caco2A2BPapp) -0.969 0.257 -3.77 0.00016 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 43.7821 on 99 degrees of freedom
## Residual deviance: 9.4621 on 98 degrees of freedom
## AIC: 64.7
##
## Number of Fisher Scoring iterations: 6
```
00423_example_B.24_of_section_B.3.2.R
```{r 00423_example_B.24_of_section_B.3.2.R }
# example B.24 of section B.3.2
# (example B.24 of section B.3.2) : Important statistical concepts : Examples of the statistical view of data : Omitted variable bias
# Title: A better model
print(summary(glm(data=s,
FractionHumanAbsorption~week+log(Caco2A2BPapp),
family=binomial(link='logit'))))
## Warning: non-integer #successes in a binomial glm!
##
## Call:
## glm(formula = FractionHumanAbsorption ~ week + log(Caco2A2BPapp),
## family = binomial(link = "logit"), data = s)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.3474 -0.0568 -0.0010 0.0709 0.3038
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 3.1413 4.6837 0.67 0.5024
## week 0.1033 0.0386 2.68 0.0074 **
## log(Caco2A2BPapp) 0.5689 0.5419 1.05 0.2938
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 43.7821 on 99 degrees of freedom
## Residual deviance: 1.2595 on 97 degrees of freedom
## AIC: 47.82
##
## Number of Fisher Scoring iterations: 6
```