-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmodel.py
293 lines (240 loc) · 12 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
import torch.nn as nn
import torch.autograd as ag
import torch
import os
import pdb
import math
import time
import torch.utils.model_zoo as model_zoo
from utils import BasicBlock, Bottleneck, BBoxTransform, ClipBoxes,calc_iou
from anchors import Anchors
from modules.ClassificationModel import ClassificationModel
from modules.RegressionModel import RegressionModel
from modules.PyramidFeatures import PyramidFeatures
from modules.BoxSampler import BoxSampler
from modules.RecognitionModel import RecognitionModel
from modules.NERModel import NERModel
import losses
from modules.RoIPooling import roi_pooling, adaptive_max_pool,AdaptiveMaxPool2d
import cv2
import numpy as np
#import pagexml
model_urls = {
'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
}
class BidirectionalLSTM(nn.Module):
# Module to extract BLSTM features from convolutional feature map
def __init__(self, nIn, nHidden, nOut):
super(BidirectionalLSTM, self).__init__()
self.rnn = nn.LSTM(nIn, nHidden, bidirectional=True)
self.embedding = nn.Linear(nHidden * 2, nOut)
self.rnn.cuda()
self.embedding.cuda()
def forward(self, input):
recurrent, _ = self.rnn(input)
T, b, h = recurrent.size()
t_rec = recurrent.view(T * b, h)
output = self.embedding(t_rec) # [T * b, nOut]
output = output.view(T, b, -1)
return output
class ResNet(nn.Module):
def __init__(self, num_classes, block, layers,max_boxes,score_threshold,seg_level,alphabet,train_htr,htr_gt_box,two_step=False):
self.inplanes = 64
self.pool_h = 4
self.pool_w = 280
self.forward_transcription=False
self.max_boxes = max_boxes
super(ResNet, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
self.downsampling_factors = [8,16,32,64,128]
self.epochs_only_det = 1
self.score_threshold = score_threshold
self.alphabet=alphabet
self.train_htr=train_htr
self.htr_gt_box =htr_gt_box
self.two_step = two_step
if block == BasicBlock:
fpn_sizes = [self.layer2[layers[1]-1].conv2.out_channels, self.layer3[layers[2]-1].conv2.out_channels, self.layer4[layers[3]-1].conv2.out_channels]
elif block == Bottleneck:
fpn_sizes = [self.layer2[layers[1]-1].conv3.out_channels, self.layer3[layers[2]-1].conv3.out_channels, self.layer4[layers[3]-1].conv3.out_channels]
self.fpn = PyramidFeatures(fpn_sizes[0], fpn_sizes[1], fpn_sizes[2])
self.anchors = Anchors(seg_level=seg_level)
self.regressionModel = RegressionModel(num_features_in=256,num_anchors=self.anchors.num_anchors)
self.recognitionModel = RecognitionModel(feature_size=256,pool_h=self.pool_h,alphabet_len=len(alphabet))
self.nerModel = NERModel(feature_size=256,pool_h=self.pool_h,n_classes=num_classes)
self.classificationModel = ClassificationModel(num_features_in=256,num_anchors=self.anchors.num_anchors, num_classes=num_classes)
self.boxSampler = BoxSampler('train',self.score_threshold)
#self.sorter = SortRois()
self.regressBoxes = BBoxTransform()
self.clipBoxes = ClipBoxes()
self.focalLoss = losses.FocalLoss()
self.nerLoss = losses.NERLoss()
self.transcriptionLoss = losses.TranscriptionLoss()
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
prior = 0.01
self.classificationModel.output.weight.data.fill_(0)
self.classificationModel.output.bias.data.fill_(-math.log((1.0-prior)/prior))
self.regressionModel.output.weight.data.fill_(0)
self.regressionModel.output.bias.data.fill_(0)
self.recognitionModel.output.weight.data.fill_(0)
self.recognitionModel.output.bias.data.fill_(-math.log((1.0-prior)/prior))
self.freeze_bn()
def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
def freeze_bn(self):
'''Freeze BatchNorm layers.'''
for layer in self.modules():
if isinstance(layer, nn.BatchNorm2d):
layer.eval()
def forward(self, inputs):
if self.training:
img_batch, annotations,criterion,iter_num = inputs
elif self.htr_gt_box:
img_batch, annotations = inputs
iter_num = 100000
else:
img_batch = inputs
iter_num = 1000000
x = self.conv1(img_batch)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x1 = self.layer1(x)
x2 = self.layer2(x1)
x3 = self.layer3(x2)
x4 = self.layer4(x3)
features = self.fpn([x2, x3, x4])
regression = torch.cat([self.regressionModel(feature) for feature in features], dim=1)
classification = torch.cat([self.classificationModel(feature) for feature in features], dim=1)
anchors = self.anchors(img_batch)
if self.htr_gt_box:
rois = annotations[0,:,:4].clone()
selected_indices=[]
transformed_anchors = rois.clone()
else:
scores,classes,transformed_anchors,selected_indices = self.boxSampler(img_batch,anchors,regression,classification,self.score_threshold)
rois = transformed_anchors.clone()
n_boxes_predicted=transformed_anchors.shape[0]
# Only calculate the recognition branch forward if there's a limited amount of positive rois and after a predifined
# amount of epochs only trained with detection (it works with 0 epochs only detection)
if (iter_num>=self.epochs_only_det and (n_boxes_predicted>1 and n_boxes_predicted<self.max_boxes)) or self.htr_gt_box:
self.forward_transcription=True
pooled_features=[]
pooled_feat_indices=[]
transcriptions=[]
probs_sizes=[]
feature = features[0]
downsampling_factor=self.downsampling_factors[0]
# calculate pooled features and transcritpion for each box:
for j in range(rois.shape[0]):
pooled_feature,probs_size = roi_pooling(feature,rois[j,:4],size = (self.pool_w,self.pool_h),spatial_scale=1./downsampling_factor)
'''roi=rois[j,:4].clone()
roi=roi.view(1,1,4,1)
roi=roi.repeat(1,256,1,1)'''
transcription = self.recognitionModel(pooled_feature)
transcriptions.append(transcription)
#pooled_feature=torch.cat([pooled_feature,roi],dim=3)
pooled_features.append(pooled_feature)
probs_sizes.append(probs_size[0])
for j in range(self.max_boxes-rois.shape[0]):
pooled_features.append(torch.zeros([1,256, self.pool_h, self.pool_w]).cuda())
pooled_features= torch.stack(pooled_features,dim=0).squeeze()
transcription = torch.stack(transcriptions,dim=0).squeeze()
ner_tags = self.nerModel(pooled_features)
else:
self.forward_transcription=False
transcription = torch.zeros((transformed_anchors.shape[0],1,1))
ner_tags = torch.zeros((transformed_anchors.shape[0],1,1))
probs_sizes=[]
if self.training:
focal_loss= self.focalLoss(classification, regression, anchors, annotations,criterion,transcription,selected_indices,probs_sizes,self.pool_w,self.htr_gt_box)
if self.forward_transcription:
ctc_loss=self.transcriptionLoss(classification, regression, anchors, annotations,criterion,transcription,selected_indices,probs_sizes,self.pool_w,self.htr_gt_box)
ner_loss = self.nerLoss(classification, regression, anchors, annotations,criterion,ner_tags,selected_indices,n_boxes_predicted,self.pool_w,self.htr_gt_box)
else:
ctc_loss=torch.tensor(30.).cuda()
ner_loss=torch.tensor(30.).cuda()
return focal_loss[0],focal_loss[1],ctc_loss,ner_loss
else:
if self.htr_gt_box:
scores = torch.ones((annotations.shape[1],1))
classes = torch.zeros((annotations.shape[1],1))
return [scores,classes,annotations[0,:,:4],transcription]
#return [scores,classes,transformed_anchors,transcription]
ner_tags=torch.argmax(ner_tags,dim=-1)[:n_boxes_predicted,...]
ner_tags = ner_tags.view(ner_tags.numel())
return [scores,ner_tags,transformed_anchors,transcription]
def resnet18(num_classes, pretrained=False, **kwargs):
"""Constructs a ResNet-18 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(num_classes, BasicBlock, [2, 2, 2, 2], **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['resnet18'], model_dir='.'), strict=False)
return model
def resnet34(num_classes, pretrained=False, **kwargs):
"""Constructs a ResNet-34 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(num_classes, BasicBlock, [3, 4, 6, 3], **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['resnet34'], model_dir='.'), strict=False)
return model
def resnet50(num_classes, pretrained=False, **kwargs):
"""Constructs a ResNet-50 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(num_classes, Bottleneck, [3, 4, 6, 3], **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['resnet50'], model_dir='.'), strict=False)
return model
def resnet101(num_classes, pretrained=False, **kwargs):
"""Constructs a ResNet-101 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(num_classes, Bottleneck, [3, 4, 23, 3], **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['resnet101'], model_dir='.'), strict=False)
return model
def resnet152(num_classes, pretrained=False, **kwargs):
"""Constructs a ResNet-152 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(num_classes, Bottleneck, [3, 8, 36, 3], **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['resnet152'], model_dir='.'), strict=False)
return model