Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Project dependencies may have API risk issues #24

Open
PyDeps opened this issue Oct 26, 2022 · 0 comments
Open

Project dependencies may have API risk issues #24

PyDeps opened this issue Oct 26, 2022 · 0 comments

Comments

@PyDeps
Copy link

PyDeps commented Oct 26, 2022

Hi, In minDALL-E, inappropriate dependency versioning constraints can cause risks.

Below are the dependencies and version constraints that the project is using

torch==1.8.0
torchvision>=0.8.2
tokenizers>=0.10.2
pyflakes>=2.2.0
tqdm>=4.46.0
pytorch-lightning>=1.5
einops
omegaconf
git+https://github.com/openai/CLIP.git
matplotlib

The version constraint == will introduce the risk of dependency conflicts because the scope of dependencies is too strict.
The version constraint No Upper Bound and * will introduce the risk of the missing API Error because the latest version of the dependencies may remove some APIs.

After further analysis, in this project,
The version constraint of dependency tqdm can be changed to >=4.36.0,<=4.64.0.

The above modification suggestions can reduce the dependency conflicts as much as possible,
and introduce the latest version as much as possible without calling Error in the projects.

The invocation of the current project includes all the following methods.

The calling methods from the tqdm
tqdm.tqdm.set_description
tqdm.tqdm
The calling methods from the all methods
self.resid_drop
torch.cuda.manual_seed_all
PIL.Image.fromarray
PIL.Image.fromarray.save
ExpConfig
self.key
hashlib.md5
module.weight.data.normal_
self.head
pytorch_lightning.loggers.TensorBoardLogger
self.lr_schedulers.get_last_lr
text_features.image_features.F.cosine_similarity.squeeze
W.B.device.H.torch.arange.repeat.transpose
numpy.transpose
min
argparse.ArgumentParser.add_argument
self.quantize.get_codebook_entry
self.v
sorted_idx_remove_cond.scatter
self.quant_conv
RuntimeError
self.apply
ImageNetDataModule
self.sos.repeat
pytorch_lightning.Trainer.fit
torchvision.transforms.Compose
self.stage2.sos
AttnBlock
model.stage1.from_ckpt
from_file
reversed
get_positional_encoding
datetime.datetime.now
tokens.to.unsqueeze
torch.nn.functional.cosine_similarity
probs.torch.multinomial.clone
self.encode
pl_module.stage1
self.down.append
Normalize
self.mid.block_1
download
self.conv1
Downsample
z_q.permute.contiguous
self.conv
OptConfig
torch.nn.functional.pad
Stage1Hparams
self.embedding
super
w_.permute.permute
i.images.astype
source.info.get
from_file.enable_truncation
self.norm2
random.seed
numpy.random.seed
os.path.expanduser
x.self.query.view
codes.device.T.torch.arange.repeat
layers.Block
device.args.num_candidates.args.softmax_temperature.args.top_p.args.top_k.args.prompt.model.sampling.cpu
self.conv_in
device.H.torch.arange.repeat
self.mlp.transpose
cutoff_topp_probs.masked_fill
self.norm1
k.reshape.reshape
torch.cuda.amp.autocast
x.contiguous.contiguous
loop.update
argparse.ArgumentParser.parse_args
prompt.clip.tokenize.to
self.tok_emb_txt
device.args.num_candidates.args.softmax_temperature.args.top_p.args.top_k.args.prompt.model.sampling.cpu.numpy
Stage2Hparams
os.path.dirname
torch.tril
self.ln1
pytorch_lightning.callbacks.ModelCheckpoint
cnt.code_.unsqueeze
model_clip.encode_text
y.transpose.contiguous.view
ImageNetDataModule.setup
tuple
enumerate
torch.nn.Linear
self.resid_drop.transpose
tokenizer.build_tokenizer
i_block.i_level.self.down.attn
self.register_buffer
self.dropout
torchvision.utils.make_grid
self.mid.attn_1
x.self.value.view
torch.randn
output.write
self.pos_emb_img
self.n_heads.C.self.n_heads.B.T.x.self.key.view.transpose
self.ln2
self.nin_shortcut
self.stage2.eval
self.lr_schedulers.step
self.blocks
os.path.abspath
model.stage2.from_ckpt
torch.multinomial
self.encoder
quant.permute.permute
min_encoding_indices.self.embedding.view
torch.nn.functional.interpolate
labels.self.sos.unsqueeze
print
torchvision.transforms.Normalize
sys.path.append
self.decoder
torch.einsum
self.norm_out
torch.optim.AdamW
images.self.stage1.get_codes.detach.view
MultiHeadSelfAttention
einops.rearrange
urllib.parse.urlparse
stage2.transformer.Transformer1d
self.stage1.get_codes
DataConfig
self.drop
omegaconf.OmegaConf.structured
dalle.models.Dalle.from_pretrained.sampling
preprocess_clip
images.torch.stack.to
tqdm.tqdm.set_description
utils.config.get_base_config
tqdm.tqdm
x.self.key.view
self.n_heads.C.self.n_heads.B.T.x.self.query.view.transpose
torch.cat.clone
self.decode
self.stage2
self.query
i_level.self.up.upsample
urllib.request.urlopen
torch.nn.ModuleList.append
self.conv2
source.info
self.n_heads.C.self.n_heads.B.T.x.self.value.view.transpose
self.lr_schedulers
layers.Encoder
tarfile.open
images.self.stage1.get_codes.detach
model_clip.encode_image
cutoff_topk_logits
utils.sampling.sampling
torch.nn.Sequential
torch.nn.ModuleList
setup_callbacks
self.value
tokens.to.to
self.log
math.sqrt
isinstance
omegaconf.OmegaConf.merge
open
torch.cat
torch.ones
torch.topk
self.proj_out.reshape
torch.argmin
self.q
self.stage1.parameters
os.path.join
os.path.exists
torch.utils.data.DataLoader
self.embedding.weight.data.uniform_
scores.torch.argsort.cpu
torch.nn.Module
cutoff_topk_logits.to
dalle.utils.utils.clip_score
int
cutoff_topk_logits.clone
N.x.contiguous
f.extract
torch.stack
torch.sort
self.attn_drop.masked_fill
torchvision.datasets.ImageNet
torchvision.transforms.CenterCrop
optimizer.step
download_target.open.read
cnt.pos_enc_code_.unsqueeze
args.config_downstream.os.path.basename.split
self
torch.optim.lr_scheduler.CosineAnnealingLR
stage1.vqgan.VQGAN
ValueError
torch.argsort
Stage1Config
range
torch.nn.functional.avg_pool2d
omegaconf.OmegaConf.load
self.sos
x.transpose.contiguous
torch.manual_seed
os.path.isfile
image.astype
present.torch.stack.clone
pl_module.logger.experiment.add_image
os.path.basename
ImageLogger
self.stage1.eval
pytorch_lightning.seed_everything
torch.cat.size
v.reshape.reshape
sos.self.stage2.sos.unsqueeze
torchvision.transforms.Resize
url.split
clip.tokenize
datetime.datetime.now.strftime
device.W.torch.arange.repeat
torch.nn.Conv2d
torch.nn.LayerNorm
dalle.utils.utils.set_seed
cls_idx.torch.LongTensor.to
torch.nn.functional.softmax
i_block.i_level.self.up.attn
ResnetBlock
torch.nn.functional.cross_entropy
probs.torch.multinomial.clone.detach
float
images.texts.torch.cat.contiguous
f.getmembers
z_q.permute.contiguous.view
dalle.models.Dalle.from_pretrained
source.read
VectorQuantizer
pytorch_lightning.Trainer
torch.sigmoid
self.tok_emb_img
i_block.i_level.self.down.block
torch.clamp
self.tokenizer.encode
h.self.quantize.view
self.conv_out
nonlinearity
model_clip.to
self.ln_f
q.permute.reshape
torch.arange
self.load_state_dict
q.permute.permute
self.k
functools.partial
torch.sum
self.stage2.sos.repeat
self.norm
self.mid.block_2
self.head_txt
cls
utils.realpath_url_or_path
torch.load
torch.no_grad
format
past.append
torchvision.transforms.ToTensor
device.N.torch.arange.repeat
presents.append
self.stage1.decode_code
self.quantize
from_file.token_to_id
os.makedirs
self.pos_emb_txt
torch.nn.Embedding
utils.sampling.sampling_igpt
code.clone.detach
dalle.models.ImageGPT.from_pretrained
z_q.permute.contiguous.permute
torchvision.transforms.RandomCrop
self.attn
Upsample
stage2.transformer.iGPT
self.post_quant_conv
torch.cumsum
super.__init__
download_target.open.read.hashlib.md5.hexdigest
self.proj_out
i_level.self.down.downsample
h.sos.torch.cat.contiguous
ImageNetDataModule.train_dataloader
self.stage2.view
self.head_img
self.proj
ImageNetDataModule.valid_dataloader
self.parameters
len
z.rearrange.contiguous
torch.clip
torch.nn.GroupNorm
torch.nn.Parameter
model.sampling
argparse.ArgumentParser
torch.nn.Dropout
sorted_idx_remove_cond.clone
block.sample
torch.LongTensor
self.log_img
from_file.enable_padding
torch.bmm
self.mlp
self.conv_shortcut
y.transpose.contiguous
recons.cpu.cpu
module.bias.data.zero_
GELU
self.up.insert
dataclasses.field
module.weight.data.fill_
clip.load
torch.nn.functional.gelu
i_block.i_level.self.up.block
present.torch.stack.clone.detach
from_file.add_special_tokens
Stage2Config
torch.repeat_interleave
dalle.models.Dalle.from_pretrained.to
layers.Decoder
scores.torch.argsort.cpu.numpy
cutoff_topp_probs
self.mask.torch.tril.view
sos.self.stage2.sos.unsqueeze.repeat
torch.cat.transpose
images.cpu.cpu
self.attn_drop
quant.rearrange.contiguous
z.rearrange.contiguous.view

@developer
Could please help me check this issue?
May I pull a request to fix it?
Thank you very much.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant