forked from modelscope/facechain
-
Notifications
You must be signed in to change notification settings - Fork 0
/
partial_fc_exp.py
558 lines (485 loc) · 20 KB
/
partial_fc_exp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
import collections
from typing import Callable
import torch
from torch import distributed
from torch.nn.functional import linear, normalize
import numpy as np
class PartialFC(torch.nn.Module):
"""
https://arxiv.org/abs/2203.15565
A distributed sparsely updating variant of the FC layer, named Partial FC (PFC).
When sample rate less than 1, in each iteration, positive class centers and a random subset of
negative class centers are selected to compute the margin-based softmax loss, all class
centers are still maintained throughout the whole training process, but only a subset is
selected and updated in each iteration.
.. note::
When sample rate equal to 1, Partial FC is equal to model parallelism(default sample rate is 1).
Example:
--------
>>> module_pfc = PartialFC(embedding_size=512, num_classes=8000000, sample_rate=0.2)
>>> for img, labels in data_loader:
>>> embeddings = net(img)
>>> loss = module_pfc(embeddings, labels, optimizer)
>>> loss.backward()
>>> optimizer.step()
"""
_version = 1
def __init__(
self,
margin_loss: Callable,
embedding_size: int,
num_classes: int,
sample_rate: float = 1.0,
fp16: bool = False,
):
"""
Paramenters:
-----------
embedding_size: int
The dimension of embedding, required
num_classes: int
Total number of classes, required
sample_rate: float
The rate of negative centers participating in the calculation, default is 1.0.
"""
super(PartialFC, self).__init__()
assert (
distributed.is_initialized()
), "must initialize distributed before create this"
self.rank = distributed.get_rank()
self.world_size = distributed.get_world_size()
self.dist_cross_entropy = DistCrossEntropy()
self.embedding_size = embedding_size
self.sample_rate: float = sample_rate
self.fp16 = fp16
self.num_local: int = num_classes // self.world_size + int(
self.rank < num_classes % self.world_size
)
self.class_start: int = num_classes // self.world_size * self.rank + min(
self.rank, num_classes % self.world_size
)
self.num_sample: int = int(self.sample_rate * self.num_local)
self.last_batch_size: int = 0
self.weight: torch.Tensor
self.weight_mom: torch.Tensor
self.weight_activated: torch.nn.Parameter
self.weight_activated_mom: torch.Tensor
self.is_updated: bool = True
self.init_weight_update: bool = True
if self.sample_rate < 1:
self.register_buffer("weight",
tensor=torch.normal(0, 0.01, (self.num_local, embedding_size)))
self.register_buffer("weight_mom",
tensor=torch.zeros_like(self.weight))
self.register_parameter("weight_activated",
param=torch.nn.Parameter(torch.empty(0, 0)))
self.register_buffer("weight_activated_mom",
tensor=torch.empty(0, 0))
self.register_buffer("weight_index",
tensor=torch.empty(0, 0))
else:
self.weight_activated = torch.nn.Parameter(torch.normal(0, 0.01, (self.num_local, embedding_size)))
# margin_loss
if isinstance(margin_loss, Callable):
self.margin_softmax = margin_loss
else:
raise
@torch.no_grad()
def sample(self,
labels: torch.Tensor,
index_positive: torch.Tensor,
optimizer: torch.optim.Optimizer):
"""
This functions will change the value of labels
Parameters:
-----------
labels: torch.Tensor
pass
index_positive: torch.Tensor
pass
optimizer: torch.optim.Optimizer
pass
"""
positive = torch.unique(labels[index_positive], sorted=True).cuda()
if self.num_sample - positive.size(0) >= 0:
perm = torch.rand(size=[self.num_local]).cuda()
perm[positive] = 2.0
index = torch.topk(perm, k=self.num_sample)[1].cuda()
index = index.sort()[0].cuda()
else:
index = positive
self.weight_index = index
labels[index_positive] = torch.searchsorted(index, labels[index_positive])
self.weight_activated = torch.nn.Parameter(self.weight[self.weight_index])
self.weight_activated_mom = self.weight_mom[self.weight_index]
if isinstance(optimizer, torch.optim.SGD):
# TODO the params of partial fc must be last in the params list
optimizer.state.pop(optimizer.param_groups[-1]["params"][0], None)
optimizer.param_groups[-1]["params"][0] = self.weight_activated
optimizer.state[self.weight_activated][
"momentum_buffer"
] = self.weight_activated_mom
else:
raise
@torch.no_grad()
def update(self):
""" partial weight to global
"""
if self.init_weight_update:
self.init_weight_update = False
return
if self.sample_rate < 1:
self.weight[self.weight_index] = self.weight_activated
self.weight_mom[self.weight_index] = self.weight_activated_mom
def forward(
self,
local_embeddings: torch.Tensor,
local_labels: torch.Tensor,
optimizer: torch.optim.Optimizer,
):
"""
Parameters:
----------
local_embeddings: torch.Tensor
feature embeddings on each GPU(Rank).
local_labels: torch.Tensor
labels on each GPU(Rank).
Returns:
-------
loss: torch.Tensor
pass
"""
local_labels.squeeze_()
local_labels = local_labels.long()
self.update()
batch_size = local_embeddings.size(0)
if self.last_batch_size == 0:
self.last_batch_size = batch_size
assert self.last_batch_size == batch_size, (
"last batch size do not equal current batch size: {} vs {}".format(
self.last_batch_size, batch_size))
_gather_embeddings = [
torch.zeros((batch_size, self.embedding_size)).cuda()
for _ in range(self.world_size)
]
_gather_labels = [
torch.zeros(batch_size).long().cuda() for _ in range(self.world_size)
]
_list_embeddings = AllGather(local_embeddings, *_gather_embeddings)
distributed.all_gather(_gather_labels, local_labels)
embeddings = torch.cat(_list_embeddings)
labels = torch.cat(_gather_labels)
labels = labels.view(-1, 1)
index_positive = (self.class_start <= labels) & (
labels < self.class_start + self.num_local
)
labels[~index_positive] = -1
labels[index_positive] -= self.class_start
if self.sample_rate < 1:
self.sample(labels, index_positive, optimizer)
with torch.cuda.amp.autocast(self.fp16):
norm_embeddings = normalize(embeddings)
norm_weight_activated = normalize(self.weight_activated)
logits = linear(norm_embeddings, norm_weight_activated)
if self.fp16:
logits = logits.float()
logits = logits.clamp(-1, 1)
logits = self.margin_softmax(logits, labels)
loss = self.dist_cross_entropy(logits, labels)
return loss
def state_dict(self, destination=None, prefix="", keep_vars=False):
if destination is None:
destination = collections.OrderedDict()
destination._metadata = collections.OrderedDict()
for name, module in self._modules.items():
if module is not None:
module.state_dict(destination, prefix + name + ".", keep_vars=keep_vars)
if self.sample_rate < 1:
destination["weight"] = self.weight.detach()
else:
destination["weight"] = self.weight_activated.data.detach()
return destination
def load_state_dict(self, state_dict, strict: bool = True):
if self.sample_rate < 1:
self.weight = state_dict["weight"].to(self.weight.device)
self.weight_mom.zero_()
self.weight_activated.data.zero_()
self.weight_activated_mom.zero_()
self.weight_index.zero_()
else:
self.weight_activated.data = state_dict["weight"].to(self.weight_activated.data.device)
class PartialFCAdamW(torch.nn.Module): # Adam Optimization
def __init__(self,
margin_loss: Callable,
embedding_size: int,
num_classes: int,
sample_rate: float = 1.0,
fp16: bool = False,):
"""
Paramenters:
-----------
embedding_size: int
The dimension of embedding, required
num_classes: int
Total number of classes, required
sample_rate: float
The rate of negative centers participating in the calculation, default is 1.0.
"""
super(PartialFCAdamW, self).__init__()
assert (
distributed.is_initialized()
), "must initialize distributed before create this"
self.rank = distributed.get_rank()
self.world_size = distributed.get_world_size()
self.dist_cross_entropy = DistCrossEntropy()
self.embedding_size = embedding_size
self.sample_rate: float = sample_rate
self.fp16 = fp16
self.num_local: int = num_classes // self.world_size + int(
self.rank < num_classes % self.world_size
)
self.class_start: int = num_classes // self.world_size * self.rank + min(
self.rank, num_classes % self.world_size
)
self.num_sample: int = int(self.sample_rate * self.num_local)
self.last_batch_size: int = 0
self.weight: torch.Tensor
self.weight_exp_avg: torch.Tensor
self.weight_exp_avg_sq: torch.Tensor
self.weight_activated: torch.nn.Parameter
self.weight_activated_exp_avg: torch.Tensor
self.weight_activated_exp_avg_sq: torch.Tensor
self.is_updated: bool = True
self.init_weight_update: bool = True
if self.sample_rate < 1:
self.register_buffer("weight",
tensor=torch.normal(0, 0.01, (self.num_local, embedding_size)))
self.register_buffer("weight_exp_avg",
tensor=torch.zeros_like(self.weight))
self.register_buffer("weight_exp_avg_sq",
tensor=torch.zeros_like(self.weight))
self.register_parameter("weight_activated",
param=torch.nn.Parameter(torch.empty(0, 0)))
self.register_buffer("weight_activated_exp_avg",
tensor=torch.empty(0, 0))
self.register_buffer("weight_activated_exp_avg_sq",
tensor=torch.empty(0, 0))
else:
self.weight_activated = torch.nn.Parameter(
torch.normal(0, 0.01, (self.num_local, embedding_size))
)
self.step = 0
if isinstance(margin_loss, Callable):
self.margin_softmax = margin_loss
else:
raise
@torch.no_grad()
def sample(self, labels, index_positive, optimizer):
self.step += 1
positive = torch.unique(labels[index_positive], sorted=True).cuda()
if self.num_sample - positive.size(0) >= 0:
perm = torch.rand(size=[self.num_local]).cuda()
perm[positive] = 2.0
index = torch.topk(perm, k=self.num_sample)[1].cuda()
index = index.sort()[0].cuda()
else:
index = positive
self.weight_index = index
labels[index_positive] = torch.searchsorted(index, labels[index_positive])
self.weight_activated = torch.nn.Parameter(self.weight[self.weight_index])
self.weight_activated_exp_avg = self.weight_exp_avg[self.weight_index]
self.weight_activated_exp_avg_sq = self.weight_exp_avg_sq[self.weight_index]
if isinstance(optimizer, (torch.optim.Adam, torch.optim.AdamW)):
# TODO the params of partial fc must be last in the params list
optimizer.state.pop(optimizer.param_groups[-1]["params"][0], None)
optimizer.param_groups[-1]["params"][0] = self.weight_activated
optimizer.state[self.weight_activated]["exp_avg"] = self.weight_activated_exp_avg
optimizer.state[self.weight_activated]["exp_avg_sq"] = self.weight_activated_exp_avg_sq
optimizer.state[self.weight_activated]["step"] = self.step
else:
raise
@torch.no_grad()
def update(self):
""" partial weight to global
"""
if self.init_weight_update:
self.init_weight_update = False
return
if self.sample_rate < 1:
self.weight[self.weight_index] = self.weight_activated
self.weight_exp_avg[self.weight_index] = self.weight_activated_exp_avg
self.weight_exp_avg_sq[self.weight_index] = self.weight_activated_exp_avg_sq
def forward(
self,
local_embeddings: torch.Tensor,
local_labels: torch.Tensor,
optimizer: torch.optim.Optimizer,
local_patch_entropy_: torch.Tensor,
):
global G_weight
"""
Parameters:
----------
local_embeddings: torch.Tensor
feature embeddings on each GPU(Rank).
local_labels: torch.Tensor
labels on each GPU(Rank).
Returns:
-------
loss: torch.Tensor
pass
"""
local_labels.squeeze_()
local_labels = local_labels.long()
self.update()
batch_size = local_embeddings.size(0)
if self.last_batch_size == 0:
self.last_batch_size = batch_size
assert self.last_batch_size == batch_size, (
"last batch size do not equal current batch size: {} vs {}".format(
self.last_batch_size, batch_size))
_gather_embeddings = [
torch.zeros((batch_size, self.embedding_size)).cuda()
for _ in range(self.world_size)
]
_gather_labels = [
torch.zeros(batch_size).long().cuda() for _ in range(self.world_size)
]
_list_embeddings = AllGather(local_embeddings, *_gather_embeddings)
distributed.all_gather(_gather_labels, local_labels)
_gather_patch_entropy_ = [
torch.zeros((batch_size, 144)).cuda()
for _ in range(self.world_size)
]
_list_patch_entropy_ = AllGather(local_patch_entropy_, *_gather_patch_entropy_)
patch_entropy_ = torch.cat(_list_patch_entropy_)
embeddings = torch.cat(_list_embeddings)
labels = torch.cat(_gather_labels)
labels = labels.view(-1, 1)
index_positive = (self.class_start <= labels) & (
labels < self.class_start + self.num_local
)
labels[~index_positive] = -1
labels[index_positive] -= self.class_start
if self.sample_rate < 1:
self.sample(labels, index_positive, optimizer)
with torch.cuda.amp.autocast(self.fp16):
norm_embeddings = normalize(embeddings)
norm_weight_activated = normalize(self.weight_activated)
logits = linear(norm_embeddings, norm_weight_activated)
if self.fp16:
logits = logits.float()
logits = logits.clamp(-1, 1)
logits = self.margin_softmax(logits, labels)
gamma = 1.0
K_ = 144
entropy_topK, _ = torch.topk(patch_entropy_, k = K_, dim=1)
entropy = gamma * torch.mean(entropy_topK, dim=1)
sample_weight = 1 + torch.exp(-entropy)
G_weight = sample_weight
loss = self.dist_cross_entropy(logits, labels)
return loss
def state_dict(self, destination=None, prefix="", keep_vars=False):
if destination is None:
destination = collections.OrderedDict()
destination._metadata = collections.OrderedDict()
for name, module in self._modules.items():
if module is not None:
module.state_dict(destination, prefix + name + ".", keep_vars=keep_vars)
if self.sample_rate < 1:
destination["weight"] = self.weight.detach()
else:
destination["weight"] = self.weight_activated.data.detach()
return destination
def load_state_dict(self, state_dict, strict: bool = True):
if self.sample_rate < 1:
self.weight = state_dict["weight"].to(self.weight.device)
self.weight_exp_avg.zero_()
self.weight_exp_avg_sq.zero_()
self.weight_activated.data.zero_()
self.weight_activated_exp_avg.zero_()
self.weight_activated_exp_avg_sq.zero_()
else:
self.weight_activated.data = state_dict["weight"].to(self.weight_activated.data.device)
class DistCrossEntropyFunc(torch.autograd.Function):
"""
CrossEntropy loss is calculated in parallel, allreduce denominator into single gpu and calculate softmax.
Implemented of ArcFace (https://arxiv.org/pdf/1801.07698v1.pdf):
"""
@staticmethod
def forward(ctx, logits: torch.Tensor, label: torch.Tensor):
""" """
global G_weight
G_weight = G_weight.cuda()
batch_size = logits.size(0)
# for numerical stability
max_logits, _ = torch.max(logits, dim=1, keepdim=True)
# local to global
distributed.all_reduce(max_logits, distributed.ReduceOp.MAX)
logits.sub_(max_logits)
logits.exp_()
sum_logits_exp = torch.sum(logits, dim=1, keepdim=True)
# local to global
distributed.all_reduce(sum_logits_exp, distributed.ReduceOp.SUM)
logits.div_(sum_logits_exp)
index = torch.where(label != -1)[0]
# loss
loss = torch.zeros(batch_size, 1, device=logits.device)
loss[index] = logits[index].gather(1, label[index])
distributed.all_reduce(loss, distributed.ReduceOp.SUM)
ctx.save_for_backward(index, logits, label)
return ( (loss.clamp_min_(1e-30).log_())* (G_weight.view(-1, 1) ) ).mean() * (-1)
@staticmethod
def backward(ctx, loss_gradient):
global G_weight
"""
Args:
loss_grad (torch.Tensor): gradient backward by last layer
Returns:
gradients for each input in forward function
`None` gradients for one-hot label
"""
(
index,
logits,
label,
) = ctx.saved_tensors
batch_size = logits.size(0)
one_hot = torch.zeros(
size=[index.size(0), logits.size(1)], device=logits.device
)
one_hot.scatter_(1, label[index], 1)
logits[index] -= one_hot
logits = logits * (G_weight.view(-1,1) )
logits.div_(batch_size)
return logits * loss_gradient.item(), None
class DistCrossEntropy(torch.nn.Module):
def __init__(self):
super(DistCrossEntropy, self).__init__()
def forward(self, logit_part, label_part):
return DistCrossEntropyFunc.apply(logit_part, label_part)
class AllGatherFunc(torch.autograd.Function):
"""AllGather op with gradient backward"""
@staticmethod
def forward(ctx, tensor, *gather_list):
gather_list = list(gather_list)
distributed.all_gather(gather_list, tensor)
return tuple(gather_list)
@staticmethod
def backward(ctx, *grads):
grad_list = list(grads)
rank = distributed.get_rank()
grad_out = grad_list[rank]
dist_ops = [
distributed.reduce(grad_out, rank, distributed.ReduceOp.SUM, async_op=True)
if i == rank
else distributed.reduce(
grad_list[i], i, distributed.ReduceOp.SUM, async_op=True
)
for i in range(distributed.get_world_size())
]
for _op in dist_ops:
_op.wait()
grad_out *= len(grad_list) # cooperate with distributed loss function
return (grad_out, *[None for _ in range(len(grad_list))])
AllGather = AllGatherFunc.apply