forked from turboderp/exllama
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtokenizer.py
189 lines (141 loc) · 7.34 KB
/
tokenizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
from sentencepiece import SentencePieceProcessor
import os
import torch
class ExLlamaTokenizer:
def __init__(self, tokenizer_model_path):
self.path = tokenizer_model_path
self.tokenizer = SentencePieceProcessor(model_file = self.path)
self.unk_token = "<unk>"
self.bos_token = "<s>"
self.eos_token = "</s>"
self.unk_token_id = self.tokenizer.unk_id() # is the same as pad token id...
self.eos_token_id = self.tokenizer.eos_id()
self.bos_token_id = self.tokenizer.bos_id()
self.pad_token_id = 0 # self.tokenizer.pad_id()
self.newline_token_id = 13
self.special_characters = [(self.bos_token, self.bos_token_id), (self.eos_token, self.eos_token_id), (self.unk_token, self.unk_token_id)] # for tokenzier encoding
# Encode string
def encode(self, text, return_mask = False, max_seq_len = 2048, add_bos = False, add_eos = False, encode_special_characters = False):
if isinstance(text, list):
# text is a list of strings
list_ids = self.tokenizer.EncodeAsIds(text)
# pad bos and eos
if add_bos:
for ids in list_ids: ids.insert(0, self.bos_token_id)
if add_eos:
for ids in list_ids: ids.append(self.eos_token_id)
max_length = max([len(ids) for ids in list_ids])
needs_mask = False
padded_ids = []
for ids in list_ids:
if len(ids) != len(list_ids[0]): needs_mask = True
padding = torch.full((max_length - len(ids),), self.pad_token_id)
sequence = torch.tensor(ids)
padded_ids.append(torch.cat((padding, sequence), dim = 0).long())
stacked_ids = torch.stack(padded_ids, dim = 0)
if return_mask:
if needs_mask:
mask_padding = torch.full((stacked_ids.shape[0], max_seq_len - stacked_ids.shape[1]), True, dtype = torch.bool, device = "cpu")
mask = stacked_ids != 0
mask = torch.cat((mask, mask_padding), dim = 1)
return stacked_ids, mask
else:
return stacked_ids, None
else:
return stacked_ids
else:
# text is a single string
split_text = [text]
# look for special characters
if encode_special_characters:
for special_character, special_token_id in self.special_characters:
temp_text = []
for segment in split_text:
if isinstance(segment, str) and special_character in segment:
# for each special character, append the text before the special character, then append the special character ID, then the rest of the text
parts = segment.split(special_character)
new_parts = []
for i, part in enumerate(parts):
new_parts.append(part)
if i < len(parts) - 1: # add the special token id between parts, but not after the last part
new_parts.append(special_token_id)
temp_text.extend(new_parts)
else:
temp_text.append(segment)
split_text = temp_text
ids = []
for text_chunk in split_text:
if isinstance(text_chunk, str):
ids += self.tokenizer.EncodeAsIds(text_chunk)
else:
ids.append(text_chunk)
# pad bos and eos
if add_bos:
ids = [self.bos_token_id] + ids
if add_eos:
ids = ids + [self.eos_token_id]
stacked_ids = torch.tensor(ids).unsqueeze(0)
if return_mask:
return stacked_ids, None
else:
return stacked_ids
def decode(self, ids, decode_special_characters=False):
special_ids = {id_: char for char, id_ in self.special_characters} # create a lookup dictionary
if ids.dim() > 1:
texts = []
for i in range(ids.shape[0]):
seq = ids[i].tolist()
seq = [t for t in seq if t != self.pad_token_id]
if decode_special_characters:
text_parts = []
normal_ids = [] # list of lists
current_normal_ids = [] # current list of normal IDs
for idx, id_ in enumerate(seq):
if id_ in special_ids:
# Save the current list of normal IDs, then start a new one
normal_ids.append(current_normal_ids)
current_normal_ids = []
# Store special token as a string
text_parts.append(special_ids[id_])
else:
current_normal_ids.append(id_)
normal_ids.append(current_normal_ids) # save the last segment of normal IDs
decoded_segments = [self.tokenizer.Decode(segment) for segment in normal_ids]
for idx, decoded_segment in enumerate(decoded_segments):
text_parts.insert(2*idx, decoded_segment)
texts.append("".join(text_parts))
else:
if self.eos_token_id in seq: # to not mess up special char decoding
seq = seq[:seq.index(self.eos_token_id)]
texts.append(self.tokenizer.Decode(seq))
return texts
else:
ids = ids.tolist()
if decode_special_characters:
text_parts = []
normal_ids = [] # list of lists
current_normal_ids = [] # current list of normal IDs
for idx, id_ in enumerate(ids):
if id_ in special_ids:
# Save the current list of normal IDs, then start a new one
normal_ids.append(current_normal_ids)
current_normal_ids = []
# Store special token as a string
text_parts.append(special_ids[id_])
else:
current_normal_ids.append(id_)
normal_ids.append(current_normal_ids) # save the last segment of normal IDs
decoded_segments = [self.tokenizer.Decode(segment) for segment in normal_ids]
for idx, decoded_segment in enumerate(decoded_segments):
text_parts.insert(2*idx, decoded_segment)
text = "".join(text_parts)
else:
text = self.tokenizer.Decode(ids)
return text
def num_tokens(self, text, encode_special_characters = False):
if encode_special_characters:
ids = self.encode(text, encode_special_characters = True)
return ids.size(1)
else:
ids = self.tokenizer.Encode(text)
return len(ids)