forked from turboderp/exllama
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_benchmark_inference.py
312 lines (219 loc) · 9 KB
/
test_benchmark_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
from model import ExLlama, ExLlamaCache, ExLlamaConfig
from tokenizer import ExLlamaTokenizer
from generator import ExLlamaGenerator
from lora import ExLlamaLora
import perplexity
from perplexity import Perplexity
import time
import torch
import torch.nn.functional as F
import argparse
import json
import math
import sys
import os
import glob
import model_init
torch.cuda._lazy_init()
# torch.backends.cuda.matmul.allow_tf32 = True
# torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = True
torch.set_printoptions(precision = 10)
torch_devices = [f"cuda:{i}" for i in range(torch.cuda.device_count())]
cache = None
model = None
def begin():
global model, cache
if cache is None: cache = ExLlamaCache(model)
else: cache.current_seq_len = 0
def next_logits(input_ids, apply_lora, last_id_only = True, input_mask = None):
global model, cache
# n_logits = None
# a = 0
# while a < input_ids.shape[-1]:
# b = min(input_ids.shape[-1], a + 2048)
# n_logits = model.forward(input_ids[:, a:b], cache, last_id_only, lora = apply_lora, input_mask = input_mask)
# a = b
n_logits = model.forward(input_ids, cache, last_id_only, lora=apply_lora, input_mask=input_mask)
return n_logits
def tokenize(text):
global tokenizer
return tokenizer.encode(text)
def timer(name, func):
t = time.time()
ret = func()
t = time.time() - t
print(f" ** Time, {name}: {t:.2f} seconds")
return ret
mem_base = {}
mem_last = {}
for dev in torch_devices:
torch.cuda.reset_peak_memory_stats(dev)
mem_base[dev] = mem_last[dev] = torch.cuda.max_memory_allocated(dev)
def mem(name, total = False):
global mem_base, mem_last
res = f" ** VRAM, {name}: "
first = True
for device in torch_devices:
mem_c = torch.cuda.max_memory_allocated(device)
mem_this = mem_c - mem_last[device] if not total else mem_c - mem_base[device]
mem_last[device] = mem_c
if not first: res += " - "
first = False
res += f"[{device}] {mem_this / (1024 ** 2):,.2f} MB"
print(res)
# Parse arguments
parser = argparse.ArgumentParser(description = "Benchmark tests for ExLlama")
model_init.add_args(parser)
perplexity.add_args(parser)
parser.add_argument("-p", "--perf", action = "store_true", help = "Benchmark speed and VRAM usage")
parser.add_argument("-v", "--validate", action = "count", help = "Run validation check and generate some sample output; specify twice for a more thorough test")
parser.add_argument("-lora", "--lora", type = str, help = "Path to LoRA binary to use during benchmark")
parser.add_argument("-loracfg", "--lora_config", type = str, help = "Path to LoRA config to use during benchmark")
parser.add_argument("-ld", "--lora_dir", type = str, help = "Path to LoRA config and binary. to use during benchmark")
args = parser.parse_args()
model_init.post_parse(args)
perplexity.post_parse(args)
model_init.get_model_files(args)
# Paths
if args.lora_dir is not None:
args.lora_config = os.path.join(args.lora_dir, "adapter_config.json")
args.lora = os.path.join(args.lora_dir, "adapter_model.bin")
# Feedback
print_opts = []
if args.perf: print_opts.append("perf")
if args.validate: print_opts.append("validate")
if args.perplexity: print_opts.append("perplexity")
if args.perplexity_token: print_opts.append("perplexity_token")
model_init.print_options(args, print_opts)
# Globals
model_init.set_globals(args)
# Instantiate model
config = model_init.make_config(args)
model = timer("Load model", lambda: ExLlama(config))
tokenizer = timer("Load tokenizer", lambda: ExLlamaTokenizer(args.tokenizer))
model_init.print_stats(model)
torch.cuda.reset_peak_memory_stats("cuda")
mem("Model")
cache = ExLlamaCache(model)
mem("Cache")
# Load LoRA
lora = None
if args.lora:
print(f" -- LoRA config: {args.lora_config}")
print(f" -- Loading LoRA: {args.lora}")
if args.lora_config is None:
print(f" ## Error: please specify lora path to adapter_config.json")
sys.exit()
lora = ExLlamaLora(model, args.lora_config, args.lora)
if lora.bias_ignored:
print(f" !! Warning: LoRA zero bias ignored")
# Test sequence
gen_tokens = 128
max_seq_len = args.length
ids = torch.randint(0, 31999, (1, max_seq_len - gen_tokens)).cuda()
# Benchmark memory and performance
if args.perf:
# Warming up apparently makes a huge difference
for i in range(1, 3):
print(f" -- Warmup pass {i}...")
begin()
logits = timer("Warmup", lambda: next_logits(ids, lora))
# Do the actual benchmark
begin()
t = time.time()
print(" -- Inference, first pass.")
logits = timer("Inference", lambda: next_logits(ids, lora))
t = time.time() - t
print(f" ** Speed: {ids.shape[-1] / t:.2f} tokens/second")
for j in range(2):
t = time.time()
print(f" -- Generating {gen_tokens} tokens, {ids.shape[-1]} token prompt...")
for i in range(gen_tokens):
logits = logits[0, -1, :]
token = torch.argmax(logits)
next_id = token.unsqueeze(0).unsqueeze(0)
logits = next_logits(next_id, lora)
t = time.time() - t
print(f" ** Speed: {gen_tokens / t:.2f} tokens/second")
ids = ids[:, :4]
cache.current_seq_len = 4
mem("Inference")
mem("Total", total = True)
# Benchmark perplexity
if args.perplexity:
ppl = Perplexity(args.perplexity, model, cache, tokenizer)
print(" -- Loading dataset...")
ppl.load(dataset_path = args.perplexity_dataset,
chunk_size = args.perplexity_chunk_size,
chunk_truncate = args.perplexity_chunk_truncate,
overlap = args.perplexity_chunk_overlap,
minlength = args.perplexity_chunk_min,
json_key = args.perplexity_json_key)
begin()
ppl.test(args.perplexity_chunk_num,
lora = lora,
ppl_token = args.perplexity_token)
# Validate file
if args.validate:
ppl = Perplexity(args.perplexity, model, cache, tokenizer)
ppl.load(dataset_path = "datasets/wikitext2_val_sample.jsonl",
chunk_size = 2048,
chunk_truncate = 2048,
overlap = 0,
minlength = 50,
json_key = "text")
# Short perplexity tests in switched and quant mode, should produce roughly equal results
begin()
ppl.cache.zero()
model.config.matmul_recons_thd = 1
ppl.test(8, lora = lora, tag = " (reconstruct)")
ppl.cache.zero()
model.config.matmul_recons_thd = 0
ppl.test(8, lora = lora, tag = " (quant, token)", ppl_token = True)
# Do a short, easy topk=1 completion to see if we're generating garbage. Should run in switched mode
# for the prompt and quant for individual tokens
model.config.matmul_recons_thd = 4
generator = ExLlamaGenerator(model, tokenizer, cache)
generator.settings.top_k = 1
generator.lora = lora
text = generator.generate_simple("To be or not to be, that is the", max_new_tokens = 20 * args.validate)
print(f" ** Generation: {repr(text)}")
if args.validate > 1:
# Test batched generation
bsz = 8
gen_len = 20
torch.manual_seed(42)
torch.cuda.manual_seed_all(42)
# Bigger cache for the batch
del cache
cache = ExLlamaCache(model, batch_size = bsz)
# Create tokenized batch and attention mask
identical_batch_prompt = "When you have eliminated the impossible, whatever remains,"
continuations = [
" must be considered",
" ought to be",
" (and some scholars say this is",
" however improbable, is a banana.",
]
prompts = [identical_batch_prompt] * (bsz - len(continuations))
for cont in continuations:
prompts.append(identical_batch_prompt + cont)
ids = tokenizer.encode(prompts)
assert ids.shape[1] < model.config.max_seq_len, f"Max length {ids.shape[1]} exceeds model limit {model.config.max_seq_len}"
mask = ids.ne(tokenizer.pad_token_id)
# Batched generation with greedy sampling
sequence = torch.empty((bsz, 0), dtype = torch.long, device = "cpu")
logits = next_logits(ids, lora, input_mask = mask)
for i in range(gen_len):
logits = logits[:, -1, :]
id_per_batch = torch.argmax(logits, dim=-1)
assert id_per_batch.shape == (bsz,), f"{id_per_batch.shape} != {(bsz,)}"
next_id_per_batch = id_per_batch.unsqueeze(-1)
sequence = torch.cat((sequence, next_id_per_batch), dim = -1)
logits = next_logits(next_id_per_batch, lora)
# Print output batch
print(f"\n ** Batching sanity check: 1-{bsz - len(continuations)} should be identical. All should be reasonable for the model you're using.\n")
outputs = tokenizer.decode(sequence)
for b in range(bsz):
print(f"{b + 1} {repr(prompts[b])} -> {repr(outputs[b])}")
# TODO Save the logits and then rerun each prompt with a batch size of 1, same input. The logits should be identical.