forked from hephaex/deeplearning-note
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsin.py
174 lines (141 loc) · 5.13 KB
/
sin.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import numpy as np # 配列
import time # 時間
from matplotlib import pyplot as plt # グラフ
import os # フォルダ作成のため
# pytorch
import torch as T
import torch.nn as nn
import torch.nn.functional as F
from torch import optim
# y=sin(x)のデータセットをN個分作成
def get_data(N, Nte):
x = np.linspace(0, 2 * np.pi, N+Nte)
# 学習データとテストデータに分ける
ram = np.random.permutation(N+Nte)
x_train = np.sort(x[ram[:N]])
x_test = np.sort(x[ram[N:]])
t_train = np.sin(x_train)
t_test = np.sin(x_test)
return x_train, t_train, x_test, t_test
# Neural Network
class SIN_NN(nn.Module):
def __init__(self, h_units, act):
super(SIN_NN, self).__init__()
self.l1=nn.Linear(1, h_units[0])
self.l2=nn.Linear(h_units[0], h_units[1])
self.l3=nn.Linear(h_units[1], 1)
if act == "relu":
self.act = F.relu
elif act == "sig":
self.act = F.sigmoid
def __call__(self, x, t):
x = T.from_numpy(x.astype(np.float32).reshape(x.shape[0],1))
t = T.from_numpy(t.astype(np.float32).reshape(t.shape[0],1))
y = self.forward(x)
return y, t
def forward(self, x):
h = self.act(self.l1(x))
h = self.act(self.l2(h))
h = self.l3(h)
return h
def predict(self, x):
x = T.from_numpy(x.astype(np.float32).reshape(x.shape[0],1))
y = self.forward(x)
return y.data
def training(N, Nte, bs, n_epoch, h_units, act):
# データセットの取得
x_train, t_train, x_test, t_test = get_data(N, Nte)
x_test_torch = T.from_numpy(x_test.astype(np.float32).reshape(x_test.shape[0],1))
t_test_torch = T.from_numpy(t_test.astype(np.float32).reshape(t_test.shape[0],1))
# モデルセットアップ
model = SIN_NN(h_units, act)
optimizer = optim.Adam(model.parameters())
MSE = nn.MSELoss()
# loss格納配列
tr_loss = []
te_loss = []
# ディレクトリを作成
if os.path.exists("Results/{}/Pred".format(act)) == False:
os.makedirs("Results/{}/Pred".format(act))
# 時間を測定
start_time = time.time()
print("START")
# 学習回数分のループ
for epoch in range(1, n_epoch + 1):
model.train()
perm = np.random.permutation(N)
sum_loss = 0
for i in range(0, N, bs):
x_batch = x_train[perm[i:i + bs]]
t_batch = t_train[perm[i:i + bs]]
optimizer.zero_grad()
y_batch, t_batch = model(x_batch, t_batch)
loss = MSE(y_batch, t_batch)
loss.backward()
optimizer.step()
sum_loss += loss.data * bs
# 学習誤差の平均を計算
ave_loss = sum_loss / N
tr_loss.append(ave_loss)
# テスト誤差
model.eval()
y_test_torch = model.forward(x_test_torch)
loss = MSE(y_test_torch, t_test_torch)
te_loss.append(loss.data)
# 学習過程を出力
if epoch % 100 == 1:
print("Ep/MaxEp tr_loss te_loss")
if epoch % 10 == 0:
print("{:4}/{} {:10.5} {:10.5}".format(epoch, n_epoch, ave_loss, float(loss.data)))
# 誤差をリアルタイムにグラフ表示
plt.plot(tr_loss, label = "training")
plt.plot(te_loss, label = "test")
plt.yscale('log')
plt.legend()
plt.grid(True)
plt.xlabel("epoch")
plt.ylabel("loss (MSE)")
plt.pause(0.1) # このコードによりリアルタイムにグラフが表示されたように見える
plt.clf()
if epoch % 20 == 0:
# epoch20ごとのテスト予測結果
plt.figure(figsize=(5, 4))
y_test = model.predict(x_test)
plt.plot(x_test, t_test, label = "target")
plt.plot(x_test, y_test, label = "predict")
plt.legend()
plt.grid(True)
plt.xlim(0, 2 * np.pi)
plt.ylim(-1.2, 1.2)
plt.xlabel("x")
plt.ylabel("y")
plt.savefig("Results/{}/Pred/ep{}.png".format(act,epoch))
plt.clf()
plt.close()
print("END")
# 経過時間
total_time = int(time.time() - start_time)
print("Time : {} [s]".format(total_time))
# 誤差のグラフ作成
plt.figure(figsize=(5, 4))
plt.plot(tr_loss, label = "training")
plt.plot(te_loss, label = "test")
plt.yscale('log')
plt.legend()
plt.grid(True)
plt.xlabel("epoch")
plt.ylabel("loss (MSE)")
plt.savefig("Results/{}/loss_history.png".format(act))
plt.clf()
plt.close()
# 学習済みモデルの保存
T.save(model, "Results/model.pt")
if __name__ == "__main__":
# 設定
N = 1000 # 学習データ
Nte = 200 # テストデータ数
bs = 10 # バッチサイズ
n_epoch = 200 # 学習回数
h_units = [10, 10] # ユニット数 [中間層1 中間層2]
act = "relu" # 活性化関数(ReLU関数にしたい場合は、"relu")
training(N, Nte, bs, n_epoch, h_units, act)