forked from OptimalScale/DetGPT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
demo_detgpt.py
394 lines (343 loc) · 17.5 KB
/
demo_detgpt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
import argparse
import os
import random
import numpy as np
import torch
import torch.backends.cudnn as cudnn
import gradio as gr
import argparse
import cv2
from PIL import Image
import numpy as np
from detgpt.common.config import Config
from detgpt.common.dist_utils import get_rank
from detgpt.common.registry import registry
from detgpt.conversation.conversation import Chat, Conversation, SeparatorStyle # , CONV_VISION
from GroundingDINO.groundingdino.models import build_model
from GroundingDINO.groundingdino.util.slconfig import SLConfig
from GroundingDINO.groundingdino.util.utils import clean_state_dict
from GroundingDINO.groundingdino.util.inference import annotate, load_image, predict
import GroundingDINO.groundingdino.datasets.transforms as T
from huggingface_hub import hf_hub_download
import re
def parse_args():
parser = argparse.ArgumentParser(description="Demo")
parser.add_argument("--cfg-path", required=True, help="path to configuration file.")
parser.add_argument("--system-path", type=str, default=None, help="path to system prompt file.")
parser.add_argument("--dino-version", type=str, default="swinb", help="path to system prompt file.")
parser.add_argument("--gpu-id", type=int, nargs='+', default=0, help="specify the gpu to load the model.")
parser.add_argument(
"--options",
nargs="+",
help="override some settings in the used config, the key-value pair "
"in xxx=yyy format will be merged into config file (deprecate), "
"change to --cfg-options instead.",
)
parser.add_argument("--disable_detector", action="store_true", help="using detector mode")
parser.add_argument("--enable_system", action="store_true", help="editable system message mode")
args = parser.parse_args()
return args
args = parse_args()
print('Initializing Chat')
cfg = Config(args)
cuda_llm = f"cuda:1"
cuda_detector = f"cuda:0"
ckpt_repo_id = "ShilongLiu/GroundingDINO"
if args.dino_version == "swinb":
config_file = "GroundingDINO/groundingdino/config/GroundingDINO_SwinB_cfg.py"
ckpt_filenmae = "groundingdino_swinb_cogcoor.pth"
else:
config_file = "GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py"
ckpt_filenmae = "groundingdino_swint_ogc.pth"
if args.system_path:
with open(args.system_path, 'r') as file:
system_message = file.read()
print(f"system message: \n {system_message}")
else:
system_message = "You must strictly answer the question step by step:\n" \
"Step-1. describe the given image in detail.\n" \
"Step-2. find all the objects related to user input, and concisely explain why these objects meet the requirement.\n" \
"Step-3. list out all related objects existing in the image strictly as follows: <Therefore the answer is: [object_names]>.\n" \
"Complete all 3 steps as detailed as possible.\n" \
"You must finish the answer with complete sentences."
CONV_VISION = Conversation(
system=system_message,
roles=("Human", "Assistant"),
messages=[],
offset=2,
sep_style=SeparatorStyle.SINGLE,
sep="###",
)
def load_model_hf(model_config_path, repo_id, filename, device='cpu'):
model_args = SLConfig.fromfile(model_config_path)
model = build_model(model_args)
cache_file = hf_hub_download(repo_id=repo_id, filename=filename)
checkpoint = torch.load(cache_file, map_location='cpu')
log = model.load_state_dict(clean_state_dict(checkpoint['model']), strict=False)
print("Model loaded from {} \n => {}".format(cache_file, log))
_ = model.eval()
return model
def image_transform_grounding(init_image):
transform = T.Compose([
T.RandomResize([800], max_size=1333),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
image, _ = transform(init_image, None) # 3, h, w
return init_image, image
def image_transform_grounding_for_vis(init_image):
transform = T.Compose([
T.RandomResize([800], max_size=1333),
])
image, _ = transform(init_image, None) # 3, h, w
return image
def print_format(message):
print(f"*" * 20)
print(f"\n{message}\n")
def list_to_str(cat_list, sep=". "):
result = ""
for cat in cat_list:
result += cat
result += sep
return result[:-1]
def run_grounding(input_image, llm_message_original, box_threshold, text_threshold):
init_image = input_image.convert("RGB")
original_size = init_image.size
_, image_tensor = image_transform_grounding(init_image)
image_pil: Image = image_transform_grounding_for_vis(init_image)
response_message = llm_message_original[-1]
print_format(f"From run grounding, oringinal response message {response_message}")
pattern1 = r"(?i)therefore,?\s+the\s+answer\s+is:?[\s\[\],]*(\w+[\s,]*)+([ ,]\w+[\s,]*)*"
pattern2 = r"(?i)therefore,?\s+the\s+target\s+objects?\s+are:?[\s\[\],]*(\w+[\s,]*)+([ ,]\w+[\s,]*)*"
# Use re.search() to find the match
match1 = re.search(pattern1, response_message)
match2 = re.search(pattern2, response_message)
# Extract the matched substring
if match1:
substr = match1.group(0)
# Remove the unnecessary characters
substr = re.sub(r"(?i)therefore,?\s+the\s+answer\s+is:?[\s\[\],]*", "", substr)
categories = re.sub(r"[\[\]]", "", substr)
cat_list = [c.strip() for c in categories.split(',')]
# remove duplicate
cat_list = list(set(cat_list))
categories = list_to_str(cat_list)
# Print the result
print_format(f"Detected categores: {categories}")
elif match2:
substr = match2.group(0)
# Remove the unnecessary characters
substr = re.sub(r"(?i)therefore,?\s+the\s+target\s+objects?\s+are:?[\s\[\],]*", "", substr)
categories = re.sub(r"[\[\]]", "", substr)
cat_list = [c.strip() for c in categories.split(',')]
# remove duplicate
cat_list = list(set(cat_list))
categories = list_to_str(cat_list)
# Print the result
print_format(f"Detected categores: {categories}")
else:
print_format("No match found.")
categories = ""
# run grounidng
# boxes, logits, phrases = predict(detector, image_tensor, categories, box_threshold, text_threshold, device=f"cuda:{args.gpu_id[0]}")
boxes, logits, phrases = predict(detector, image_tensor, categories, box_threshold, text_threshold,
device=cuda_detector)
print_format(f"Detector predicted phrases {phrases}")
annotated_frame = annotate(image_source=np.asarray(image_pil), boxes=boxes, logits=logits, phrases=phrases)
image_with_box = Image.fromarray(cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB))
return image_with_box, f"{categories}"
def setup_seeds(config):
seed = config.run_cfg.seed + get_rank()
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
cudnn.benchmark = False
cudnn.deterministic = True
# ========================================
# Model Initialization
# ========================================
### detector
detector = load_model_hf(config_file, ckpt_repo_id, ckpt_filenmae)
# detector = detector.to(f"cuda:{args.gpu_id[0]}")
detector = detector.to(cuda_detector)
print_format(f"loaded detector")
### language model
model_config = cfg.model_cfg
model_config.device_8bit = cuda_llm
model_cls = registry.get_model_class(model_config.arch)
model_llm = model_cls.from_config(model_config).to(cuda_llm)
vis_processor_cfg = cfg.datasets_cfg.coco_align.vis_processor.train
vis_processor = registry.get_processor_class(vis_processor_cfg.name).from_config(vis_processor_cfg)
chat = Chat(model_llm, vis_processor, device=cuda_llm)
print_format('Initialization Finished')
# ========================================
# Gradio Setting
# ========================================
def gradio_reset(chat_state, img_list, llm_message_original):
if chat_state is not None:
chat_state.messages = []
if img_list is not None:
img_list = []
if llm_message_original is not None:
llm_message_original = []
return None, gr.update(value=None, interactive=True), gr.update(placeholder='Please upload your image first',
interactive=False), gr.update(
value="1. Upload Image", interactive=True), chat_state, img_list, llm_message_original, gr.update(
value='Detected objects will be shown here.', interactive=False)
def upload_img(gr_img, text_input, chat_state, system_prompt=None):
if gr_img is None:
return None, None, gr.update(interactive=True), chat_state, None
chat_state = CONV_VISION.copy()
if system_prompt is not None:
chat_state.system = system_prompt
print(f"system prompt: {chat_state.system}")
else:
chat_state.system = system_message
print(f"system prompt: {chat_state.system}")
img_list = []
llm_message = chat.upload_img(gr_img, chat_state, img_list)
return gr.update(interactive=False), gr.update(interactive=True, placeholder='Type and press Enter'), gr.update(
value="Start Chatting", interactive=False), chat_state, img_list
def gradio_ask(user_message, chatbot, chat_state):
if len(user_message) == 0:
return gr.update(interactive=True, placeholder='Input should not be empty!'), chatbot, chat_state
user_prompt = "\nAnswer me with several sentences. End the answer by listing out target objects to my question strictly as follows: <Therefore the answer is: [object_names]>."
print(user_message)
chat.ask(user_message + user_prompt, chat_state)
chatbot = chatbot + [[user_message, None]]
return '', chatbot, chat_state
def gradio_answer(chatbot, chat_state, img_list, num_beams, temperature, length_penalty, do_sample,
llm_message_original):
llm_message_old = chat.answer(conv=chat_state,
img_list=img_list,
num_beams=num_beams,
temperature=temperature,
length_penalty=length_penalty,
do_sample=do_sample,
max_new_tokens=300,
max_length=2000)[0]
pattern1 = r"(?:Therefore, the answer is|Therefore the answer is).*"
pattern2 = r"(?:Therefore, the target objects are|Therefore the target objects are).*"
llm_message = re.sub(pattern1, "", llm_message_old)
llm_message = re.sub(pattern2, "", llm_message)
chatbot[-1][1] = llm_message
llm_message_original.append(llm_message_old)
return chatbot, chat_state, img_list, llm_message_original
title = """<h1 align="center">DetGPT</h1>"""
description = """<h3>This is the demo of DetGPT. Tell me your goal and I'll find stuff to help you!</h3>"""
restart = """<h5>Press restart before trying a new image!</h5>"""
feature = """<h4>Why DetGPT is appealing?</h4>
<ol>
<li>DetGPT locates target objects, not just describing images.</li>
<li>DetGPT understands complex instructions (e.g., it can locate food that relieves high blood pressure)</li>
<li>DetGPT accurately localizes target objects via LLM reasoning. (e.g., it identifies bananas as a potassium-rich food to alleviate high blood pressure)</li>
<li>DetGPT provides answers beyond human common sense. (e.g., bananas being rich in potassium is rarely known)</li>
</ol>
Out of respect for privacy and ethical considerations, our model refrains from disclosing specific names of individuals and locations.
"""
# article = """<p><a href='https://minigpt-4.github.io'><img src='https://img.shields.io/badge/Project-Page-Green'></a></p><p><a href='https://github.com/Vision-CAIR/MiniGPT-4'><img src='https://img.shields.io/badge/Github-Code-blue'></a></p><p><a href='https://raw.githubusercontent.com/Vision-CAIR/MiniGPT-4/main/MiniGPT_4.pdf'><img src='https://img.shields.io/badge/Paper-PDF-red'></a></p>
# """
# TODO show examples below
with gr.Blocks() as demo:
gr.Markdown(title)
gr.Markdown(description)
gr.Markdown(feature)
# gr.Markdown(article)
with gr.Row():
with gr.Column():
image = gr.Image(type="pil")
with gr.Accordion("Parameters", open=False):
num_beams = gr.Slider(
minimum=1,
maximum=10,
value=5,
step=1,
interactive=True,
label="beam search numbers",
)
temperature = gr.Slider(
minimum=0.1,
maximum=2.0,
value=1.0,
step=0.1,
interactive=True,
label="Temperature",
)
length_penalty = gr.Slider(
minimum=0.1,
maximum=2.0,
value=0.5,
step=0.1,
interactive=True,
label="Length penalty",
)
do_sample = gr.Radio([True, False], value=False, label="do_sample", interactive=True)
upload_button = gr.Button(value="1. Upload Image", interactive=True, variant="primary")
text_input = gr.Textbox(label='User', placeholder='Input Text Here (Please upload your image first)',
interactive=False)
text_button = gr.Button(value="2. Submit Question", interactive=True, variant="primary")
clear = gr.Button("Restart")
gr.Markdown(restart)
with gr.Column():
chat_state = gr.State()
img_list = gr.State()
llm_message_original = gr.State([])
chatbot = gr.Chatbot(label='Assistant')
detected_objects = gr.Textbox(label='Detected Objects', value="Detected objects will be shown here.",
interactive=False)
if args.enable_system:
system_prompt = gr.Textbox(label='System', placeholder=system_message, interactive=True,
value=system_message)
cur_dir = os.path.dirname(os.path.abspath(__file__))
gr.Examples(examples=[
[f"{cur_dir}/examples/big_kitchen.jpg", "I want to have a cold beverage." ],
[f"{cur_dir}/examples/banana.jpg", "Find food that can relieve high blood pressure."],
[f"{cur_dir}/examples/foods.jpg", "Find the foods high in protein."],
[f"{cur_dir}/examples/wine.jpg", "Find items appropriate for a romantic dinner."],
[f"{cur_dir}/examples/smoking.jpg", "Find an item inappropriate for children."],
[f"{cur_dir}/examples/bird.jpeg", "find what’s interesting about the image."],
], inputs=[image, text_input])
with gr.Column():
gallery = gr.outputs.Image(
type="pil",
# label="grounding results"
).style(full_width=True, full_height=True)
with gr.Accordion("Advanced options", open=False):
box_threshold = gr.Slider(
label="Box Threshold", minimum=0.0, maximum=1.0, value=0.25, step=0.001
)
text_threshold = gr.Slider(
label="Text Threshold", minimum=0.0, maximum=1.0, value=0.25, step=0.001
)
if args.enable_system:
upload_button.click(upload_img, [image, text_input, chat_state, system_prompt],
[image, text_input, upload_button, chat_state, img_list])
else:
upload_button.click(upload_img, [image, text_input, chat_state],
[image, text_input, upload_button, chat_state, img_list])
if not args.disable_detector:
text_input.submit(gradio_ask, [text_input, chatbot, chat_state], [text_input, chatbot, chat_state]).then(
gradio_answer,
[chatbot, chat_state, img_list, num_beams, temperature, length_penalty, do_sample, llm_message_original],
[chatbot, chat_state, img_list, llm_message_original]
).then(fn=run_grounding, inputs=[image, llm_message_original, box_threshold, text_threshold],
outputs=[gallery, detected_objects])
text_button.click(gradio_ask, [text_input, chatbot, chat_state], [text_input, chatbot, chat_state]).then(
gradio_answer,
[chatbot, chat_state, img_list, num_beams, temperature, length_penalty, do_sample, llm_message_original],
[chatbot, chat_state, img_list, llm_message_original]
).then(fn=run_grounding, inputs=[image, llm_message_original, box_threshold, text_threshold],
outputs=[gallery, detected_objects])
else:
text_input.submit(gradio_ask, [text_input, chatbot, chat_state], [text_input, chatbot, chat_state]).then(
gradio_answer, [chatbot, chat_state, img_list, num_beams, temperature, length_penalty, do_sample],
[chatbot, chat_state, img_list]
)
text_button.click(gradio_ask, [text_input, chatbot, chat_state], [text_input, chatbot, chat_state]).then(
gradio_answer, [chatbot, chat_state, img_list, num_beams, temperature, length_penalty, do_sample],
[chatbot, chat_state, img_list]
)
clear.click(gradio_reset, [chat_state, img_list, llm_message_original],
[chatbot, image, text_input, upload_button, chat_state, img_list, llm_message_original,
detected_objects], queue=False)
demo.launch(share=True, enable_queue=True)