Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Bug]: stuck while generating #234

Open
2 tasks done
operationairstrike opened this issue Oct 21, 2023 · 0 comments
Open
2 tasks done

[Bug]: stuck while generating #234

operationairstrike opened this issue Oct 21, 2023 · 0 comments
Labels
bug Something isn't working

Comments

@operationairstrike
Copy link

Is there an existing issue for this?

  • I have searched the existing issues and checked the recent builds/commits of both this extension and the webui

Are you using the latest version of the extension?

  • I have the modelscope text2video extension updated to the lastest version and I still have the issue.

What happened?

text2video — The model selected is: (VideoCrafter (WIP)-like)
text2video extension for auto1111 webui
Git commit: 01e41fd
VideoCrafter config:
{'model': {'target': 'lvdm.models.ddpm3d.LatentDiffusion', 'params': {'linear_start': 0.00085, 'linear_end': 0.012, 'num_timesteps_cond': 1, 'log_every_t': 200, 'timesteps': 1000, 'first_stage_key': 'video', 'cond_stage_key': 'caption', 'image_size': [32, 32], 'video_length': 16, 'channels': 4, 'cond_stage_trainable': False, 'conditioning_key': 'crossattn', 'scale_by_std': False, 'scale_factor': 0.18215, 'unet_config': {'target': 'lvdm.models.modules.openaimodel3d.UNetModel', 'params': {'image_size': 32, 'in_channels': 4, 'out_channels': 4, 'model_channels': 320, 'attention_resolutions': [4, 2, 1], 'num_res_blocks': 2, 'channel_mult': [1, 2, 4, 4], 'num_heads': 8, 'transformer_depth': 1, 'context_dim': 768, 'use_checkpoint': True, 'legacy': False, 'kernel_size_t': 1, 'padding_t': 0, 'temporal_length': 16, 'use_relative_position': True}}, 'first_stage_config': {'target': 'lvdm.models.autoencoder.AutoencoderKL', 'params': {'embed_dim': 4, 'monitor': 'val/rec_loss', 'ddconfig': {'double_z': True, 'z_channels': 4, 'resolution': 256, 'in_channels': 3, 'out_ch': 3, 'ch': 128, 'ch_mult': [1, 2, 4, 4], 'num_res_blocks': 2, 'attn_resolutions': [], 'dropout': 0.0}, 'lossconfig': {'target': 'torch.nn.Identity'}}}, 'cond_stage_config': {'target': 'lvdm.models.modules.condition_modules.FrozenCLIPEmbedder'}}}}
Loading model from C:\Users\user\Desktop\stable-diffusion-webui\models/VideoCrafter/model.ckpt
LatentDiffusion: Running in eps-prediction mode
Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is None and using 8 heads.
Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is 768 and using 8 heads.
Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is None and using 8 heads.
Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is 768 and using 8 heads.
Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is None and using 8 heads.
Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is 768 and using 8 heads.
Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is None and using 8 heads.
Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is 768 and using 8 heads.
Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is None and using 8 heads.
Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is 768 and using 8 heads.
Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is None and using 8 heads.
Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is 768 and using 8 heads.
Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is None and using 8 heads.
Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is 768 and using 8 heads.
Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is None and using 8 heads.
Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is 768 and using 8 heads.
Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is None and using 8 heads.
Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is 768 and using 8 heads.
Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is None and using 8 heads.
Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is 768 and using 8 heads.
Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is None and using 8 heads.
Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is 768 and using 8 heads.
Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is None and using 8 heads.
Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is 768 and using 8 heads.
Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is None and using 8 heads.
Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is 768 and using 8 heads.
Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is None and using 8 heads.
Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is 768 and using 8 heads.
Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is None and using 8 heads.
Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is 768 and using 8 heads.
Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is None and using 8 heads.
Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is 768 and using 8 heads.
Successfully initialize the diffusion model !
DiffusionWrapper has 958.92 M params.
making attention of type 'vanilla' with 512 in_channels
Working with z of shape (1, 4, 32, 32) = 4096 dimensions.
making attention of type 'vanilla' with 512 in_channels
Downloading (…)olve/main/vocab.json: 100%|██████████████████████████████████████████| 961k/961k [00:00<00:00, 5.75MB/s]
Downloading (…)olve/main/merges.txt: 100%|██████████████████████████████████████████| 525k/525k [00:00<00:00, 26.6MB/s]
Downloading (…)cial_tokens_map.json: 100%|████████████████████████████████████████████████████| 389/389 [00:00<?, ?B/s]
Downloading (…)okenizer_config.json: 100%|████████████████████████████████████████████████████| 905/905 [00:00<?, ?B/s]
Downloading (…)lve/main/config.json: 100%|████████████████████████████████████████| 4.52k/4.52k [00:00<00:00, 4.45MB/s]
Downloading model.safetensors: 100%|██████████████████████████████████████████████| 1.71G/1.71G [02:12<00:00, 12.9MB/s]
0%| | 0/1 [00:00<?, ?it/s]
Sampling Batches (text-to-video): 0%| | 0/1 [00:00<?, ?it/s]

Steps to reproduce the problem

  1. Install Extension
  2. Put videocrafter model from gdrive into folder mentioned
  3. run on web ui

What should have happened?

No response

WebUI and Deforum extension Commit IDs

webui commit id - 5ef669de080814067961f28357256e8fe27544f4
txt2vid commit id - 01e41fd

Torch version

2.0.1+cu118

What GPU were you using for launching?

Nvidia rtx 4060 mobile

On which platform are you launching the webui backend with the extension?

Local PC setup (Windows)

Settings

Screenshot 2023-10-21 225611

Console logs

text2video — The model selected is: <videocrafter> (VideoCrafter (WIP)-like)
 text2video extension for auto1111 webui
Git commit: 01e41fd4
VideoCrafter config:
 {'model': {'target': 'lvdm.models.ddpm3d.LatentDiffusion', 'params': {'linear_start': 0.00085, 'linear_end': 0.012, 'num_timesteps_cond': 1, 'log_every_t': 200, 'timesteps': 1000, 'first_stage_key': 'video', 'cond_stage_key': 'caption', 'image_size': [32, 32], 'video_length': 16, 'channels': 4, 'cond_stage_trainable': False, 'conditioning_key': 'crossattn', 'scale_by_std': False, 'scale_factor': 0.18215, 'unet_config': {'target': 'lvdm.models.modules.openaimodel3d.UNetModel', 'params': {'image_size': 32, 'in_channels': 4, 'out_channels': 4, 'model_channels': 320, 'attention_resolutions': [4, 2, 1], 'num_res_blocks': 2, 'channel_mult': [1, 2, 4, 4], 'num_heads': 8, 'transformer_depth': 1, 'context_dim': 768, 'use_checkpoint': True, 'legacy': False, 'kernel_size_t': 1, 'padding_t': 0, 'temporal_length': 16, 'use_relative_position': True}}, 'first_stage_config': {'target': 'lvdm.models.autoencoder.AutoencoderKL', 'params': {'embed_dim': 4, 'monitor': 'val/rec_loss', 'ddconfig': {'double_z': True, 'z_channels': 4, 'resolution': 256, 'in_channels': 3, 'out_ch': 3, 'ch': 128, 'ch_mult': [1, 2, 4, 4], 'num_res_blocks': 2, 'attn_resolutions': [], 'dropout': 0.0}, 'lossconfig': {'target': 'torch.nn.Identity'}}}, 'cond_stage_config': {'target': 'lvdm.models.modules.condition_modules.FrozenCLIPEmbedder'}}}}
Loading model from C:\Users\user\Desktop\stable-diffusion-webui\models/VideoCrafter/model.ckpt
LatentDiffusion: Running in eps-prediction mode
Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is None and using 8 heads.
Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is 768 and using 8 heads.
Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is None and using 8 heads.
Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is 768 and using 8 heads.
Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is None and using 8 heads.
Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is 768 and using 8 heads.
Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is None and using 8 heads.
Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is 768 and using 8 heads.
Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is None and using 8 heads.
Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is 768 and using 8 heads.
Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is None and using 8 heads.
Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is 768 and using 8 heads.
Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is None and using 8 heads.
Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is 768 and using 8 heads.
Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is None and using 8 heads.
Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is 768 and using 8 heads.
Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is None and using 8 heads.
Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is 768 and using 8 heads.
Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is None and using 8 heads.
Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is 768 and using 8 heads.
Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is None and using 8 heads.
Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is 768 and using 8 heads.
Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is None and using 8 heads.
Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is 768 and using 8 heads.
Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is None and using 8 heads.
Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is 768 and using 8 heads.
Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is None and using 8 heads.
Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is 768 and using 8 heads.
Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is None and using 8 heads.
Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is 768 and using 8 heads.
Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is None and using 8 heads.
Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is 768 and using 8 heads.
Successfully initialize the diffusion model !
DiffusionWrapper has 958.92 M params.
making attention of type 'vanilla' with 512 in_channels
Working with z of shape (1, 4, 32, 32) = 4096 dimensions.
making attention of type 'vanilla' with 512 in_channels
Downloading (…)olve/main/vocab.json: 100%|██████████████████████████████████████████| 961k/961k [00:00<00:00, 5.75MB/s]
Downloading (…)olve/main/merges.txt: 100%|██████████████████████████████████████████| 525k/525k [00:00<00:00, 26.6MB/s]
Downloading (…)cial_tokens_map.json: 100%|████████████████████████████████████████████████████| 389/389 [00:00<?, ?B/s]
Downloading (…)okenizer_config.json: 100%|████████████████████████████████████████████████████| 905/905 [00:00<?, ?B/s]
Downloading (…)lve/main/config.json: 100%|████████████████████████████████████████| 4.52k/4.52k [00:00<00:00, 4.45MB/s]
Downloading model.safetensors: 100%|██████████████████████████████████████████████| 1.71G/1.71G [02:12<00:00, 12.9MB/s]
  0%|                                                                                            | 0/1 [00:00<?, ?it/s]
Sampling Batches (text-to-video):   0%|                                                          | 0/1 [00:00<?, ?it/s]

Additional information

No response

@operationairstrike operationairstrike added the bug Something isn't working label Oct 21, 2023
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
bug Something isn't working
Projects
None yet
Development

No branches or pull requests

1 participant