forked from NxtChg/tsbw
-
Notifications
You must be signed in to change notification settings - Fork 0
/
elliptic.js
638 lines (529 loc) · 18.8 KB
/
elliptic.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
/*!
* Basic Javascript Elliptic Curve implementation
* Ported loosely from BouncyCastle's Java EC code
* Only Fp curves implemented for now
*
* Copyright Tom Wu, bitaddress.org BSD License.
* http://www-cs-students.stanford.edu/~tjw/jsbn/LICENSE
*/
(function ()
{
var ec = window.EllipticCurve = function(){}; // Constructor function of Global EllipticCurve object
// ----------------
// ECFieldElementFp constructor
// q instanceof BigInteger
// x instanceof BigInteger
ec.FieldElementFp = function(q, x)
{
this.x = x; // TODO if(x.compareTo(q) >= 0) error
this.q = q;
};
ec.FieldElementFp.prototype.equals = function(other)
{
if(other == this) return true;
return (this.q.equals(other.q) && this.x.equals(other.x));
};
ec.FieldElementFp.prototype.toBigInteger = function(){ return this.x; };
ec.FieldElementFp.prototype.negate = function( ){ return new ec.FieldElementFp(this.q, this.x.negate().mod(this.q)); };
ec.FieldElementFp.prototype.add = function(b){ return new ec.FieldElementFp(this.q, this.x.add(b.toBigInteger()).mod(this.q)); };
ec.FieldElementFp.prototype.subtract = function(b){ return new ec.FieldElementFp(this.q, this.x.subtract(b.toBigInteger()).mod(this.q)); };
ec.FieldElementFp.prototype.multiply = function(b){ return new ec.FieldElementFp(this.q, this.x.multiply(b.toBigInteger()).mod(this.q)); };
ec.FieldElementFp.prototype.square = function( ){ return new ec.FieldElementFp(this.q, this.x.square().mod(this.q)); };
ec.FieldElementFp.prototype.divide = function(b){ return new ec.FieldElementFp(this.q, this.x.multiply(b.toBigInteger().modInverse(this.q)).mod(this.q)); };
ec.FieldElementFp.prototype.getByteLength = function(){ return Math.floor((this.toBigInteger().bitLength() + 7) / 8); };
// D.1.4 91
/**
* return a sqrt root - the routine verifies that the calculation
* returns the right value - if none exists it returns null.
*
* Copyright (c) 2000 - 2011 The Legion Of The Bouncy Castle (http://www.bouncycastle.org)
* Ported to JavaScript by bitaddress.org
*/
ec.FieldElementFp.prototype.sqrt = function()
{
if(!this.q.testBit(0)) throw new Error("even value of q");
// p mod 4 == 3
if(this.q.testBit(1))
{
// z = g^(u+1) + p, p = 4u + 3
var z = new ec.FieldElementFp(this.q, this.x.modPow(this.q.shiftRight(2).add(BigInteger.ONE), this.q));
return z.square().equals(this) ? z : null;
}
// p mod 4 == 1
var qMinusOne = this.q.subtract(BigInteger.ONE);
var legendreExponent = qMinusOne.shiftRight(1);
if(!(this.x.modPow(legendreExponent, this.q).equals(BigInteger.ONE))) return null;
var u = qMinusOne.shiftRight(2);
var k = u.shiftLeft(1).add(BigInteger.ONE);
var Q = this.x;
var fourQ = Q.shiftLeft(2).mod(this.q);
var U, V;
do
{
var P, rand = new SecureRandom();
do
{
P = new BigInteger(this.q.bitLength(), rand);
}
while(P.compareTo(this.q) >= 0 || !(P.multiply(P).subtract(fourQ).modPow(legendreExponent, this.q).equals(qMinusOne)));
var result = ec.FieldElementFp.fastLucasSequence(this.q, P, Q, k);
U = result[0];
V = result[1];
if(V.multiply(V).mod(this.q).equals(fourQ))
{
// Integer division by 2, mod q
if(V.testBit(0)) V = V.add(this.q);
V = V.shiftRight(1);
return new ec.FieldElementFp(this.q, V);
}
}
while (U.equals(BigInteger.ONE) || U.equals(qMinusOne));
return null;
};
/*
* Copyright (c) 2000 - 2011 The Legion Of The Bouncy Castle (http://www.bouncycastle.org)
* Ported to JavaScript by bitaddress.org
*/
ec.FieldElementFp.fastLucasSequence = function(p, P, Q, k)
{
// TODO Research and apply "common-multiplicand multiplication here"
var n = k.bitLength();
var s = k.getLowestSetBit();
var Uh = BigInteger.ONE;
var Vl = BigInteger.TWO;
var Vh = P;
var Ql = BigInteger.ONE;
var Qh = BigInteger.ONE;
for(var j = n - 1; j >= s + 1; --j)
{
Ql = Ql.multiply(Qh).mod(p);
if(k.testBit(j))
{
Qh = Ql.multiply(Q).mod(p);
Uh = Uh.multiply(Vh).mod(p);
Vl = Vh.multiply(Vl).subtract(P.multiply(Ql)).mod(p);
Vh = Vh.multiply(Vh).subtract(Qh.shiftLeft(1)).mod(p);
}
else
{
Qh = Ql;
Uh = Uh.multiply(Vl).subtract(Ql).mod(p);
Vh = Vh.multiply(Vl).subtract(P.multiply(Ql)).mod(p);
Vl = Vl.multiply(Vl).subtract(Ql.shiftLeft(1)).mod(p);
}
}
Ql = Ql.multiply(Qh).mod(p);
Qh = Ql.multiply(Q).mod(p);
Uh = Uh.multiply(Vl).subtract(Ql).mod(p);
Vl = Vh.multiply(Vl).subtract(P.multiply(Ql)).mod(p);
Ql = Ql.multiply(Qh).mod(p);
for(var j = 1; j <= s; ++j)
{
Uh = Uh.multiply(Vl).mod(p);
Vl = Vl.multiply(Vl).subtract(Ql.shiftLeft(1)).mod(p);
Ql = Ql.multiply(Ql).mod(p);
}
return [Uh, Vl];
};
// ----------------
// ECPointFp constructor
ec.PointFp = function(curve, x, y, z, compressed)
{
this.curve = curve;
this.x = x;
this.y = y;
// Projective coordinates: either zinv == null or z * zinv == 1
// z and zinv are just BigIntegers, not fieldElements
if(z == null) this.z = BigInteger.ONE; else this.z = z;
this.zinv = null;
// compression flag
this.compressed = !!compressed;
};
ec.PointFp.prototype.getX = function()
{
if(this.zinv == null) this.zinv = this.z.modInverse(this.curve.q);
var r = this.x.toBigInteger().multiply(this.zinv);
this.curve.reduce(r);
return this.curve.fromBigInteger(r);
};
ec.PointFp.prototype.getY = function()
{
if(this.zinv == null) this.zinv = this.z.modInverse(this.curve.q);
var r = this.y.toBigInteger().multiply(this.zinv);
this.curve.reduce(r);
return this.curve.fromBigInteger(r);
};
ec.PointFp.prototype.equals = function(other)
{
if(other == this) return true;
if( this.isInfinity()) return other.isInfinity();
if(other.isInfinity()) return this.isInfinity();
var u, v;
// u = Y2 * Z1 - Y1 * Z2
u = other.y.toBigInteger().multiply(this.z).subtract(this.y.toBigInteger().multiply(other.z)).mod(this.curve.q);
if(!u.equals(BigInteger.ZERO)) return false;
// v = X2 * Z1 - X1 * Z2
v = other.x.toBigInteger().multiply(this.z).subtract(this.x.toBigInteger().multiply(other.z)).mod(this.curve.q);
return v.equals(BigInteger.ZERO);
};
ec.PointFp.prototype.isInfinity = function()
{
if(this.x == null && this.y == null) return true;
return this.z.equals(BigInteger.ZERO) && !this.y.toBigInteger().equals(BigInteger.ZERO);
};
ec.PointFp.prototype.negate = function(){ return new ec.PointFp(this.curve, this.x, this.y.negate(), this.z); };
ec.PointFp.prototype.add = function(b)
{
if(this.isInfinity()) return b;
if( b.isInfinity()) return this;
// u = Y2 * Z1 - Y1 * Z2
var u = b.y.toBigInteger().multiply(this.z).subtract(this.y.toBigInteger().multiply(b.z)).mod(this.curve.q);
// v = X2 * Z1 - X1 * Z2
var v = b.x.toBigInteger().multiply(this.z).subtract(this.x.toBigInteger().multiply(b.z)).mod(this.curve.q);
if(BigInteger.ZERO.equals(v))
{
if(BigInteger.ZERO.equals(u)) return this.twice(); // this == b, so double
return this.curve.getInfinity(); // this = -b, so infinity
}
var THREE = new BigInteger("3");
var x1 = this.x.toBigInteger();
var y1 = this.y.toBigInteger();
var x2 = b.x.toBigInteger();
var y2 = b.y.toBigInteger();
var v2 = v.square();
var v3 = v2.multiply(v);
var x1v2 = x1.multiply(v2);
var zu2 = u.square().multiply(this.z);
// x3 = v * (z2 * (z1 * u^2 - 2 * x1 * v^2) - v^3)
var x3 = zu2.subtract(x1v2.shiftLeft(1)).multiply(b.z).subtract(v3).multiply(v).mod(this.curve.q);
// y3 = z2 * (3 * x1 * u * v^2 - y1 * v^3 - z1 * u^3) + u * v^3
var y3 = x1v2.multiply(THREE).multiply(u).subtract(y1.multiply(v3)).subtract(zu2.multiply(u)).multiply(b.z).add(u.multiply(v3)).mod(this.curve.q);
// z3 = v^3 * z1 * z2
var z3 = v3.multiply(this.z).multiply(b.z).mod(this.curve.q);
return new ec.PointFp(this.curve, this.curve.fromBigInteger(x3), this.curve.fromBigInteger(y3), z3);
};
ec.PointFp.prototype.twice = function()
{
if(this.isInfinity()) return this;
if(this.y.toBigInteger().signum() == 0) return this.curve.getInfinity();
// TODO: optimized handling of constants
var THREE = new BigInteger("3");
var x1 = this.x.toBigInteger();
var y1 = this.y.toBigInteger();
var y1z1 = y1.multiply(this.z);
var y1sqz1 = y1z1.multiply(y1).mod(this.curve.q);
var a = this.curve.a.toBigInteger();
// w = 3 * x1^2 + a * z1^2
var w = x1.square().multiply(THREE);
if(!BigInteger.ZERO.equals(a)) w = w.add(this.z.square().multiply(a));
w = w.mod(this.curve.q);
//this.curve.reduce(w);
// x3 = 2 * y1 * z1 * (w^2 - 8 * x1 * y1^2 * z1)
var x3 = w.square().subtract(x1.shiftLeft(3).multiply(y1sqz1)).shiftLeft(1).multiply(y1z1).mod(this.curve.q);
// y3 = 4 * y1^2 * z1 * (3 * w * x1 - 2 * y1^2 * z1) - w^3
var y3 = w.multiply(THREE).multiply(x1).subtract(y1sqz1.shiftLeft(1)).shiftLeft(2).multiply(y1sqz1).subtract(w.square().multiply(w)).mod(this.curve.q);
// z3 = 8 * (y1 * z1)^3
var z3 = y1z1.square().multiply(y1z1).shiftLeft(3).mod(this.curve.q);
return new ec.PointFp(this.curve, this.curve.fromBigInteger(x3), this.curve.fromBigInteger(y3), z3);
};
// Simple NAF (Non-Adjacent Form) multiplication algorithm
// TODO: modularize the multiplication algorithm
ec.PointFp.prototype.multiply = function(k)
{
if(this.isInfinity()) return this;
if(k.signum() == 0) return this.curve.getInfinity();
var e = k, h = e.multiply(new BigInteger("3"));
var neg = this.negate(), R = this;
for(var i = h.bitLength() - 2; i > 0; --i)
{
R = R.twice();
var hBit = h.testBit(i);
var eBit = e.testBit(i);
if(hBit != eBit) R = R.add(hBit ? this : neg);
}
return R;
};
// Compute this*j + x*k (simultaneous multiplication)
ec.PointFp.prototype.multiplyTwo = function(j, x, k)
{
var i;
if(j.bitLength() > k.bitLength())
i = j.bitLength() - 1;
else
i = k.bitLength() - 1;
var R = this.curve.getInfinity();
var both = this.add(x);
while(i >= 0)
{
R = R.twice();
if(j.testBit(i))
{
if(k.testBit(i)) R = R.add(both); else R = R.add(this);
}
else
{
if(k.testBit(i)) R = R.add(x);
}
i--;
}
return R;
};
// patched by bitaddress.org and Casascius for use with Bitcoin.ECKey
// patched by coretechs to support compressed public keys
ec.PointFp.prototype.getEncoded = function(compressed)
{
var x = this.getX().toBigInteger();
var y = this.getY().toBigInteger();
var len = 32; // integerToBytes will zero pad if integer is less than 32 bytes. 32 bytes length is required by the Bitcoin protocol.
var enc = ec.integerToBytes(x, len);
// when compressed prepend byte depending if y point is even or odd
if(compressed)
{
enc.unshift(y.isEven() ? 0x02 : 0x03);
}
else
{
enc.unshift(0x04);
enc = enc.concat(ec.integerToBytes(y, len)); // uncompressed public key appends the bytes of the y point
}
return enc;
};
ec.PointFp.decodeFrom = function(curve, enc)
{
var type = enc[0];
var dataLen = enc.length - 1;
// Extract x and y as byte arrays
var xBa = enc.slice(1, 1 + dataLen / 2);
var yBa = enc.slice(1 + dataLen / 2, 1 + dataLen);
// Prepend zero byte to prevent interpretation as negative integer
xBa.unshift(0);
yBa.unshift(0);
// Convert to BigIntegers
var x = new BigInteger(xBa);
var y = new BigInteger(yBa);
// Return point
return new ec.PointFp(curve, curve.fromBigInteger(x), curve.fromBigInteger(y));
};
ec.PointFp.prototype.add2D = function(b)
{
if(this.isInfinity()) return b;
if( b.isInfinity()) return this;
if(this.x.equals(b.x))
{
if(this.y.equals(b.y)) return this.twice(); // this = b, i.e. this must be doubled
// this = -b, i.e. the result is the point at infinity
return this.curve.getInfinity();
}
var x_x = b.x.subtract(this.x);
var y_y = b.y.subtract(this.y);
var gamma = y_y.divide(x_x);
var x3 = gamma.square().subtract(this.x).subtract(b.x);
var y3 = gamma.multiply(this.x.subtract(x3)).subtract(this.y);
return new ec.PointFp(this.curve, x3, y3);
};
ec.PointFp.prototype.twice2D = function()
{
if(this.isInfinity()) return this;
if(this.y.toBigInteger().signum() == 0)
{
// if y1 == 0, then (x1, y1) == (x1, -y1)
// and hence this = -this and thus 2(x1, y1) == infinity
return this.curve.getInfinity();
}
var TWO = this.curve.fromBigInteger(BigInteger.valueOf(2));
var THREE = this.curve.fromBigInteger(BigInteger.valueOf(3));
var gamma = this.x.square().multiply(THREE).add(this.curve.a).divide(this.y.multiply(TWO));
var x3 = gamma.square().subtract(this.x.multiply(TWO));
var y3 = gamma.multiply(this.x.subtract(x3)).subtract(this.y);
return new ec.PointFp(this.curve, x3, y3);
};
ec.PointFp.prototype.multiply2D = function(k)
{
if(this.isInfinity()) return this;
if(k.signum() == 0) return this.curve.getInfinity();
var e = k, h = e.multiply(new BigInteger("3"));
var neg = this.negate(), R = this;
for(var i = h.bitLength() - 2; i > 0; i--)
{
R = R.twice();
var hBit = h.testBit(i);
var eBit = e.testBit(i);
if(hBit != eBit) R = R.add2D(hBit ? this : neg);
}
return R;
};
ec.PointFp.prototype.isOnCurve = function()
{
var x = this.getX().toBigInteger();
var y = this.getY().toBigInteger();
var a = this.curve.getA().toBigInteger();
var b = this.curve.getB().toBigInteger();
var n = this.curve.getQ();
var lhs = y.multiply(y).mod(n);
var rhs = x.multiply(x).multiply(x).add(a.multiply(x)).add(b).mod(n);
return lhs.equals(rhs);
};
ec.PointFp.prototype.toString = function(){ return '(' + this.getX().toBigInteger().toString() + ',' + this.getY().toBigInteger().toString() + ')'; };
/**
* Validate an elliptic curve point.
*
* See SEC 1, section 3.2.2.1: Elliptic Curve Public Key Validation Primitive
*/
ec.PointFp.prototype.validate = function()
{
var n = this.curve.getQ();
// Check Q != O
if(this.isInfinity()) throw new Error("Point is at infinity.");
// Check coordinate bounds
var x = this.getX().toBigInteger();
var y = this.getY().toBigInteger();
if(x.compareTo(BigInteger.ONE) < 0 || x.compareTo(n.subtract(BigInteger.ONE)) > 0)
{
throw new Error('x coordinate out of bounds');
}
if(y.compareTo(BigInteger.ONE) < 0 || y.compareTo(n.subtract(BigInteger.ONE)) > 0)
{
throw new Error('y coordinate out of bounds');
}
// Check y^2 = x^3 + ax + b (mod n)
if(!this.isOnCurve()) throw new Error("Point is not on the curve.");
// Check nQ = 0 (Q is a scalar multiple of G)
if(this.multiply(n).isInfinity())
{
// TODO: This check doesn't work - fix.
throw new Error("Point is not a scalar multiple of G.");
}
return true;
};
// ----------------
// ECCurveFp constructor
ec.CurveFp = function(q, a, b)
{
this.q = q;
this.a = this.fromBigInteger(a);
this.b = this.fromBigInteger(b);
this.infinity = new ec.PointFp(this, null, null);
this.reducer = new Barrett(this.q);
}
ec.CurveFp.prototype.getQ = function(){ return this.q; }; // NxtChg: God, I hate retarded people...
ec.CurveFp.prototype.getA = function(){ return this.a; };
ec.CurveFp.prototype.getB = function(){ return this.b; };
ec.CurveFp.prototype.equals = function(other)
{
if(other == this) return true;
return (this.q.equals(other.q) && this.a.equals(other.a) && this.b.equals(other.b));
};
ec.CurveFp.prototype.getInfinity = function(){ return this.infinity; };
ec.CurveFp.prototype.fromBigInteger = function(x){ return new ec.FieldElementFp(this.q, x); };
ec.CurveFp.prototype.reduce = function(x){ this.reducer.reduce(x); };
// for now, work with hex strings because they're easier in JS
// compressed support added by bitaddress.org
ec.CurveFp.prototype.decodePointHex = function(s)
{
var firstByte = parseInt(s.substr(0, 2), 16);
switch(firstByte)
{
case 0:
return this.infinity;
case 2: // compressed
case 3: // compressed
var yTilde = firstByte & 1;
var xHex = s.substr(2, s.length - 2);
var X1 = new BigInteger(xHex, 16);
return this.decompressPoint(yTilde, X1);
case 4: // uncompressed
case 6: // hybrid
case 7: // hybrid
var len = (s.length - 2) / 2;
var xHex = s.substr(2, len);
var yHex = s.substr(len + 2, len);
return new ec.PointFp(this,
this.fromBigInteger(new BigInteger(xHex, 16)),
this.fromBigInteger(new BigInteger(yHex, 16)));
default: // unsupported
return null;
}
};
ec.CurveFp.prototype.encodePointHex = function(p)
{
if(p.isInfinity()) return "00";
var xHex = p.getX().toBigInteger().toString(16);
var yHex = p.getY().toBigInteger().toString(16);
var oLen = this.getQ().toString(16).length;
if((oLen % 2) != 0) oLen++;
while(xHex.length < oLen){ xHex = "0" + xHex; }
while(yHex.length < oLen){ yHex = "0" + yHex; }
return "04" + xHex + yHex;
};
/*
* Copyright (c) 2000 - 2011 The Legion Of The Bouncy Castle (http://www.bouncycastle.org)
* Ported to JavaScript by bitaddress.org
*
* Number yTilde
* BigInteger X1
*/
ec.CurveFp.prototype.decompressPoint = function(yTilde, X1)
{
var x = this.fromBigInteger(X1);
var alpha = x.multiply(x.square().add(this.getA())).add(this.getB());
var beta = alpha.sqrt();
// if we can't find a sqrt we haven't got a point on the curve - run!
if(beta == null) throw new Error("Invalid point compression");
var betaValue = beta.toBigInteger();
var bit0 = betaValue.testBit(0) ? 1 : 0;
if(bit0 != yTilde)
{
// Use the other root
beta = this.fromBigInteger(this.getQ().subtract(betaValue));
}
return new ec.PointFp(this, x, beta, null, true);
};
ec.fromHex = function(s){ return new BigInteger(s, 16); };
ec.integerToBytes = function(i, len)
{
var bytes = i.toByteArrayUnsigned();
if(len < bytes.length) bytes = bytes.slice(bytes.length - len);
else while(len > bytes.length)
{
bytes.unshift(0);
}
return bytes;
};
// Named EC curves
// ----------------
// X9ECParameters constructor
ec.X9Parameters = function(curve, g, n, h)
{
this.curve = curve;
this.g = g;
this.n = n;
this.h = h;
}
ec.X9Parameters.prototype.getCurve = function(){ return this.curve; };
ec.X9Parameters.prototype.getG = function(){ return this.g; };
ec.X9Parameters.prototype.getN = function(){ return this.n; };
ec.X9Parameters.prototype.getH = function(){ return this.h; };
// secp256k1 is the Curve used by Bitcoin
ec.secNamedCurves = {
// used by Bitcoin
"secp256k1": function(){
// p = 2^256 - 2^32 - 2^9 - 2^8 - 2^7 - 2^6 - 2^4 - 1
var p = ec.fromHex("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F");
var a = BigInteger.ZERO;
var b = ec.fromHex("7");
var n = ec.fromHex("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141");
var h = BigInteger.ONE;
var curve = new ec.CurveFp(p, a, b);
var G = curve.decodePointHex("04"
+ "79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798"
+ "483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8");
return new ec.X9Parameters(curve, G, n, h);
}
};
// secp256k1 called by Bitcoin's ECKEY
ec.getSECCurveByName = function(name)
{
if(ec.secNamedCurves[name] == undefined) return null;
return ec.secNamedCurves[name]();
}
})();