-
Notifications
You must be signed in to change notification settings - Fork 73
/
S4_feature_combined.py
174 lines (146 loc) · 7.1 KB
/
S4_feature_combined.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import warnings
warnings.simplefilter('ignore')
import pandas as pd
from tqdm import tqdm
from utils import *
root = args.root
oof = pd.read_csv('./output/LGB_with_series_feature/oof.csv')
sub = pd.read_csv('./output/LGB_with_series_feature/submission.csv.zip')
def pad_target(x):
t = np.zeros(13)
t[:-len(x)] = np.nan
t[-len(x):] = x
return list(t)
tmp1 = oof.groupby('customer_ID',sort=False)['target'].agg(lambda x:pad_target(x))
tmp2 = sub.groupby('customer_ID',sort=False)['prediction'].agg(lambda x:pad_target(x))
tmp = tmp1.append(tmp2)
tmp = pd.DataFrame(data=tmp.tolist(),columns=['target%s'%i for i in range(1,14)])
df = []
for fn in ['cat','num','diff','rank_num','last3_cat','last3_num','last3_diff', 'last6_num','ym_rank_num']:
if len(df) == 0:
df.append(pd.read_feather(f'{root}/{fn}_feature.feather'))
else:
df.append(pd.read_feather(f'{root}/{fn}_feature.feather').drop([id_name],axis=1))
if 'last' in fn :
df[-1] = df[-1].add_prefix('_'.join(fn.split('_')[:-1])+'_')
df.append(tmp)
df = pd.concat(df,axis=1)
print(df.shape)
df.to_feather(f'{root}/all_feature.feather')
del df
def one_hot_encoding(df,cols,is_drop=True):
for col in cols:
print('one hot encoding:',col)
dummies = pd.get_dummies(pd.Series(df[col]),prefix='oneHot_%s'%col)
df = pd.concat([df,dummies],axis=1)
if is_drop:
df.drop(cols,axis=1,inplace=True)
return df
cat_features = ["B_30","B_38","D_114","D_116","D_117","D_120","D_126","D_63","D_64","D_66","D_68"]
df = pd.read_feather(f'./input/train.feather').append(pd.read_feather(f'./input/test.feather')).reset_index(drop=True)
df = df.drop(['S_2'],axis=1)
df = one_hot_encoding(df,cat_features,True)
for col in tqdm(df.columns):
if col not in ['customer_ID','S_2']:
df[col] /= 100
df[col] = df[col].fillna(0)
df.to_feather('./input/nn_series.feather')
def GreedyFindBin(distinct_values, counts,num_distinct_values, max_bin, total_cnt, min_data_in_bin=3):
#INPUT:
# distinct_values 保存特征取值的数组,特征取值单调递增
# counts 特征的取值对应的样本数目
# num_distinct_values 特征取值的数量
# max_bin 分桶的最大数量
# total_cnt 样本数量
# min_data_in_bin 桶包含的最小样本数
# bin_upper_bound就是记录桶分界的数组
bin_upper_bound=list();
assert(max_bin>0)
# 特征取值数比max_bin数量少,直接取distinct_values的中点放置
if num_distinct_values <= max_bin:
cur_cnt_inbin = 0
for i in range(num_distinct_values-1):
cur_cnt_inbin += counts[i]
#若一个特征的取值比min_data_in_bin小,则累积下一个取值,直到比min_data_in_bin大,进入循环。
if cur_cnt_inbin >= min_data_in_bin:
#取当前值和下一个值的均值作为该桶的分界点bin_upper_bound
bin_upper_bound.append((distinct_values[i] + distinct_values[i + 1]) / 2.0)
cur_cnt_inbin = 0
# 对于最后一个桶的上界则为无穷大
cur_cnt_inbin += counts[num_distinct_values - 1];
bin_upper_bound.append(float('Inf'))
# 特征取值数比max_bin来得大,说明几个特征值要共用一个bin
else:
if min_data_in_bin>0:
max_bin=min(max_bin,total_cnt//min_data_in_bin)
max_bin=max(max_bin,1)
#mean size for one bin
mean_bin_size=total_cnt/max_bin
rest_bin_cnt = max_bin
rest_sample_cnt = total_cnt
#定义is_big_count_value数组:初始设定特征每一个不同的值的数量都小(false)
is_big_count_value=[False]*num_distinct_values
#如果一个特征值的数目比mean_bin_size大,那么这些特征需要单独一个bin
for i in range(num_distinct_values):
#如果一个特征值的数目比mean_bin_size大,则设定这个特征值对应的is_big_count_value为真。。
if counts[i] >= mean_bin_size:
is_big_count_value[i] = True
rest_bin_cnt-=1
rest_sample_cnt -= counts[i]
#剩下的特征取值的样本数平均每个剩下的bin:mean size for one bin
mean_bin_size = rest_sample_cnt/rest_bin_cnt
upper_bounds=[float('Inf')]*max_bin
lower_bounds=[float('Inf')]*max_bin
bin_cnt = 0
lower_bounds[bin_cnt] = distinct_values[0]
cur_cnt_inbin = 0
#重新遍历所有的特征值(包括数目大和数目小的)
for i in range(num_distinct_values-1):
#如果当前的特征值数目是小的
if not is_big_count_value[i]:
rest_sample_cnt -= counts[i]
cur_cnt_inbin += counts[i]
# 若cur_cnt_inbin太少,则累积下一个取值,直到满足条件,进入循环。
# need a new bin 当前的特征如果是需要单独成一个bin,或者当前几个特征计数超过了mean_bin_size,或者下一个是需要独立成桶的
if is_big_count_value[i] or cur_cnt_inbin >= mean_bin_size or \
is_big_count_value[i + 1] and cur_cnt_inbin >= max(1.0, mean_bin_size * 0.5):
upper_bounds[bin_cnt] = distinct_values[i] # 第i个bin的最大就是 distinct_values[i]了
bin_cnt+=1
lower_bounds[bin_cnt] = distinct_values[i + 1] # 下一个bin的最小就是distinct_values[i + 1],注意先++bin了
if bin_cnt >= max_bin - 1:
break
cur_cnt_inbin = 0
if not is_big_count_value[i]:
rest_bin_cnt-=1
mean_bin_size = rest_sample_cnt / rest_bin_cnt
# bin_cnt+=1
# update bin upper bound 与特征取值数比max_bin数量少的操作类似,取当前值和下一个值的均值作为该桶的分界点
for i in range(bin_cnt-1):
bin_upper_bound.append((upper_bounds[i] + lower_bounds[i + 1]) / 2.0)
bin_upper_bound.append(float('Inf'))
return bin_upper_bound
cat_features = ["B_30","B_38","D_114","D_116","D_117","D_120","D_126","D_63","D_64","D_66","D_68"]
eps = 1e-3
dfs = []
for fn in ['cat','num','diff','rank_num','last3_cat','last3_num','last3_diff', 'last6_num','ym_rank_num']:
if len(dfs) == 0:
dfs.append(pd.read_feather(f'{root}/{fn}_feature.feather'))
else:
dfs.append(pd.read_feather(f'{root}/{fn}_feature.feather').drop(['customer_ID'],axis=1))
if 'last' in fn:
dfs[-1] = dfs[-1].add_prefix('_'.join(fn.split('_')[:-1])+'_')
for df in dfs:
for col in tqdm(df.columns):
if col not in ['customer_ID','S_2']:
# v_min = df[col].min()
# v_max = df[col].max()
# df[col] = (df[col]-v_min+eps) / (v_max-v_min+eps)
vc = df[col].value_counts().sort_index()
bins = GreedyFindBin(vc.index.values,vc.values,len(vc),255,vc.sum())
df[col] = np.digitize(df[col],[-np.inf]+bins)
df.loc[df[col]==len(bins)+1,col] = 0
df[col] = df[col] / df[col].max()
tmp = tmp.fillna(0)
dfs.append(tmp)
df = pd.concat(dfs,axis=1)
df.to_feather('./input/nn_all_feature.feather')