-
Notifications
You must be signed in to change notification settings - Fork 0
/
summarise_snp_differences.R
675 lines (619 loc) · 27.2 KB
/
summarise_snp_differences.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
################################################################################
#### Summarise pairwise SNP differences #####
#### #####
#### An R script to summarise pairwise SNP differences from nullabor #####
#### output. #####
#### #####
#### Minimum input: #####
#### - cat: a CSV or tab-delimited file with a column of sequence IDs #####
#### that match the IDs in the FASTA file, and one or more columns #####
#### indicating to which group the sequence belongs to. #####
#### - seqs: a FASTA alignment file with all the SNP differences #####
#### outputted by nullabor <optional> #####
#### - diff: a CSV file containing the pairwise SNP difference count #####
#### outputted by nullabor <optional> #####
#### #####
#### Output: #####
#### - tab: a table with summary information for eqch possible #####
#### pairwise category comparison, including: #####
#### -mu: mean differences #####
#### -sd: standard deviation #####
#### -min: minimum difference observed #####
#### -max: maximum difference observed #####
#### - fig: a figure depicting the information in the table #####
#### #####
#### Running from the command line: #####
#### #####
#### Rscript summarise_snp_differences.R cat <seqs | diff> #####
#### #####
#### Running from within R: #####
#### #####
#### Change the appropriate parameters below to point to the #####
#### necessary files. #####
#### #####
#### History: #####
#### - version 0.1: 27 August 2015 #####
################################################################################
################################################################################
# If not running off the command line, change these parameters to point to the
# approriate files, e.g.:
# cat = '/home/user/cat.csv'
#
# To test the script substitute below as follows:
#
# cat_file = 'test/woodm_grouping.csv'
# seq_file = 'test/woodm.fa'
cat_file = NULL
# Only one of these files needs to be specified. If both are specified, the
# diff file will have precedence
seq_file = NULL
diff_file = NULL
# Options:
# Change the following options to set output
#
out_basename = 'snp_diff'
model = 'N' # model to use when calculating pairwise differences between
# sequences when an alignment is supplied. Options:
# 'N': count of SNP differences
# 'raw': proportion of SNP differences
# 'JC69': Jukes-Cantor 1969
# 'K80': Kimura 1980
# additional options specified in ape::dist.dna() function
tab_fmt = "csv" # options are "csv" or "md"
tab_type = "raw" # options "pretty" or "raw" --- "pretty" formats numbers in
# scientific format (e.g., 1.05e-9), while "raw" gives
# raw value outputs
fig_fmt = "png" # options are "png" or "pdf"
fig_type = "median" # option to print out mean +/- sd and range ("mean") or
# median +/- interquartile range ("median")
fig_minmax = TRUE # whether to plot the min/max in the plot. Plotting
# the min/max can lead to difficult to read plots,
# espectially if the max is very different from
# the median.
fig_filter = "both" # produce plot with either "inter" or "intra" or "both"
# comparisons
# it will also accept "specific". If this flag is set
# then comparison below must also be set. This flag
# will limit to plotting only comparisons that include
# the group specified in "comp" below.
fig_comp = NULL # A string that specifies a unique cat:group pair found in your
# categories file.
# here cat refers to a column name heading, and group refers
# to one of the grouping units within that column.
# (e.g., 'clade:clade_a' in the test file). Note it must be
# specified with the colon mark.
exclude_ids = NULL # a string to a path to a file with one sequence ID per
# line. these sequences will be excluded from the
# analysis.
save_long = FALSE #
################################################################################
################################################################################
# for testing purposes
# cat_file = 'test/woodm_grouping.csv'
# seq_file = 'test/woodm.fa'
# fig_filter = 'specific'
# fig_comp = 'clade:clade_a'
# save_long = TRUE
################################################################################
################################################################################
# The function that summarises the data
#
summ_distances <- function(categories, dist_obj, save_long, outfile){
#dist_obj is a distance object produced by using the dist.dna() function of ape
#categories is a data.frame with two columns:
# - seq_id: that matches the sequence ids in dist_obj
# - groups: that assigns the individual seq_ids to a group
# some sanity checks
if(class(dist_obj) != 'dist' & class(dist_obj) != 'matrix') {
stop("dist_obj is not an object of type dist or matrix!
Please use dist.dna() to create a distance object first OR
input a CSV file with count of differences produced by
nullabor")
}
if(!is.data.frame(categories)){
stop("categories must be a data.frame!
Please create a data.frame with the metadata first.")
}
if(ncol(categories) > 2) {
warning("Number of colums in categories is >2,
taking the first two columns only")
categories <- categories[,c(1,2)]
}
if(!all(sort(names(categories)) == sort(c("seq_id", "groups")))) {
warning("The columns of categories do not have names this function
recognizes. It will assume that the first column contains seq_ids,
and the second column the relevant categories.")
names(categories) <- c("seq_id", "groups")
}
# calculations
dat <- as.matrix(dist_obj)
taxa <- unique(as.character(categories[,'groups']))
n_taxa <- length(taxa)
total_comp <- (n_taxa^2 + n_taxa)/2
out <- data.frame(grp1 = character(total_comp),
grp2 = character(total_comp),
comp = character(total_comp),
N = numeric(total_comp),
type = rep("inter-group", total_comp),
mu = numeric(total_comp), # store the mean
sd = numeric(total_comp), # store the standard deviation
med = numeric(total_comp), # store the median
lqr = numeric(total_comp), # store the lower quartile
uqr = numeric(total_comp), # store the upper quartile
min_dist = numeric(total_comp), # store the min value
max_dist = numeric(total_comp), # store the maximum value
stringsAsFactors = F)
if (save_long) {
n_inds <- nrow(dat)
n_entries = n_inds^2
out_long <- data.frame(taxa1 = character(n_entries),
taxa2 = character(n_entries),
grp1 = character(n_entries),
grp2 = character(n_entries),
type = rep("inter-group", n_entries),
count = numeric(n_entries),
stringsAsFactors = F)
outlong_fn = paste(outfile, "_long.csv", sep = "")
count_entries = 1
}
n_comp = 1
for(i in 1:n_taxa){
g1 <- taxa[i]
seq_1 <- as.character(categories[categories$groups == g1, 'seq_id'])
for(j in i:n_taxa){
g2 <- taxa[j]
seq_2 <- as.character(categories[categories$groups == g2, 'seq_id'])
tmp_dat <- dat[seq_1, seq_2]
if (save_long) {
for (ii in 1:length(seq_1)) {
for (jj in 1:length(seq_2)) {
out_long[count_entries,'taxa1'] = seq_1[ii]
out_long[count_entries,'taxa2'] = seq_2[jj]
out_long[count_entries,'grp1'] = g1
out_long[count_entries,'grp2'] = g2
if (i == j) {
out_long[count_entries,'type'] = 'intra-group'
}
out_long[count_entries,'count'] = dat[seq_1[ii], seq_2[jj]]
count_entries = count_entries + 1
}
}
if (n_entries - count_entries < 100) {
# in case we start to run out of space
tmp_long <- data.frame(taxa1 = character(n_entries),
taxa2 = character(n_entries),
grp1 = character(n_entries),
grp2 = character(n_entries),
type = rep("inter-group", n_entries),
count = numeric(n_entries),
stringsAsFactors = F)
out_long <- rbind(out_long, tmp_long)
}
}
out[n_comp, "grp1"] <- g1
out[n_comp, "grp2"] <- g2
out[n_comp, "N"] <- length(tmp_dat)
out[n_comp, "comp"] <- paste(g1, g2, sep='_')
if(i == j) {
if(length(tmp_dat) > 1){
#if length is one, this results in a empty set.
#so, added this condition to fix the problem
tmp_dat <- tmp_dat[lower.tri(tmp_dat)]
}
out[n_comp, 'type'] <- 'intra-group'
out[n_comp, "comp"] <- g1
}
if (length(tmp_dat) > 1 & max(tmp_dat) > min(tmp_dat)) {
out[n_comp, "mu"] <- mean(tmp_dat)
out[n_comp, "sd"] <- sd(tmp_dat)
out[n_comp, "med"] <- quantile(tmp_dat, p = 0.50)
out[n_comp, "lqr"] <- quantile(tmp_dat, p = 0.25)
out[n_comp, "uqr"] <- quantile(tmp_dat, p = 0.75)
out[n_comp, "min_dist"] <- min(tmp_dat)
out[n_comp, "max_dist"] <- max(tmp_dat)
} else {
out[n_comp, "mu"] <- mean(tmp_dat)
out[n_comp, "sd"] <- 0
out[n_comp, "med"] <- quantile(tmp_dat, p = 0.50)
out[n_comp, "lqr"] <- quantile(tmp_dat, p = 0.25)
out[n_comp, "uqr"] <- quantile(tmp_dat, p = 0.75)
out[n_comp, "min_dist"] <- min(tmp_dat)
out[n_comp, "max_dist"] <- max(tmp_dat)
}
n_comp = n_comp + 1
}
}
out$type <- factor(out$type, levels = c("intra-group", "inter-group"))
out$comp <- factor(out$comp, levels = out$comp[order(out$type, out$comp)])
if (save_long) {
out_long <- out_long[1:(count_entries-1),]
write.table(x = out_long, file = outlong_fn, quote = F, sep = ",", row.names = F)
}
return(out)
}
################################################################################
################################################################################
# read the categories table
#
read_cat_file <- function(categories, exclude_ids = NULL) {
if(!file.exists(categories)) {
stop(paste("Could not find file:", categories, "\n"))
}
if(!is.null(exclude_ids) && !file.exists(exclude_ids)) {
stop(paste("Could not find file:", exclude_ids, "\n"))
}
file_sep = ','
if(!grepl(pattern = 'csv', x = tolower(categories))) {
file_sep = '\t'
}
cat_df <- read.table(file = categories,
header = TRUE,
check.names = F,
sep = file_sep,
stringsAsFactors = F,
## added to remove any white spaces that might
## cause problems when comparing with sequence data
strip.white = TRUE)
if(!is.null(exclude_ids)) {
exclude_ids <- read.table(file = exclude_ids,
header = F,
stringsAsFactors = F)
}
#if file is an mlst.tab output from nullabor
if(all(c("FILE", "ST") %in% names(cat_df))) {
seq_id <- gsub(pattern = "\\/contigs\\.fa", replacement = "", cat_df$FILE)
ST <- cat_df$ST
ix_calls <- which(ST != "-")
cat_df <- data.frame(seq_id = seq_id[ix_calls], ST = ST[ix_calls], stringsAsFactors = F)
if(!is.null(exclude_ids)) {
cat_df <- cat_df[!(cat_df[,1] %in% exclude_ids), ]
}
cat_list <- list(ST = cat_df)
return(cat_list)
}
#otherwise, treat as a file prepared by the user
if(!is.null(exclude_ids)) {
cat_df <- cat_df[!(cat_df[,1] %in% exclude_ids), ]
}
if(ncol(cat_df) == 2) {
cat_list <- list(cat_df)
names(cat_list) <- names(cat_df)[2]
} else if(ncol(cat_df) > 2) {
warning("Number of identified columns in category file is >2,
assuming that the first column contains the sequence IDs")
cats <- names(cat_df)[-1]
# added gsub to strip any white spaces. found it causes error when
# matching cats to sequence data
seqid <- names(cat_df)[1]
cat_list <- lapply(cats, function(cat) subset(cat_df, select = c(seqid, cat)))
names(cat_list) <- cats
}
return(cat_list)
}
################################################################################
################################################################################
# if running off a FASTA file, it is necessary to calculate the pairwise distance
# matrix.
calc_pairwise_distance <- function(seq_file, model = 'N') {
# this function takes as input a string defining a path to a FASTA file
# and a string to pass on to the function dna.dist() specifying the distance
# model to use.
# The model is normally assumed to be 'raw', which means it takes the
# proportional pairwise differences. In most cases at MDU, this is a reasonable
# measure if, however, finite mutation models are required to account for
# mutation saturation, other methods can be used. Type ?dna.dist to read the
# manual page.
if(!file.exists(seq_file)) {
stop(paste("Could not find file:", seq_file, "\n"))
}
seq_data <- read.FASTA(file = seq_file)
raw_dist <- dist.dna(x = seq_data, model = model)
return(raw_dist)
}
################################################################################
# if running off a CSV/TSV file with counts of SNP differences
#
read_diff_file <- function(diff_file) {
if(!file.exists(diff_file)) {
stop(paste("Could not find file:", diff_file, "\n"))
}
file_sep = ','
if(!grepl(pattern = 'csv', x = tolower(diff_file))) {
file_sep = '\t'
}
diff_mat <- as.matrix(
read.table(file = diff_file,
header = TRUE,
row.names = 1,
check.names = F,
sep = file_sep)
)
return(diff_mat)
}
################################################################################
################################################################################
# output the results to a pretty table
#
write_summ_table <- function(summ_table,
outfile,
file_type = 'csv',
method = "pretty") {
# here, we take the output from the summarise_snp_differences function and
# make a CSV table, which can be read into EXCEL, or someother spreadsheet
# application.
# If the file_type is 'md', the table will be outputted in markdown format.
outfile = paste(outfile, file_type, sep = ".")
if(method == 'pretty') {
pretty_column_names <- c("Group 1", "Group 2", "N", "Comparison", "Mean (±SD)", "Median", "Inter-Quartile Range", "Range")
pretty_mean <- format(summ_table[,'mu'], scientific = T, digits = 3)
pretty_sd <- format(summ_table[,'sd'], scientific = T, digits = 3)
pretty_musd <- paste(pretty_mean, " (±", pretty_sd,")", sep = "")
pretty_median <- format(summ_table[,'med'], scientific = T, digits = 3)
pretty_lqr <- format(summ_table[,'lqr'], scientific = T, digits = 3)
pretty_uqr <- format(summ_table[,'uqr'], scientific = T, digits = 3)
pretty_iqr <- paste(pretty_lqr, pretty_uqr, sep = "; ")
pretty_min <- format(summ_table[,'min_dist'], scientific = T, digits = 3)
pretty_max <- format(summ_table[,'max_dist'], scientific = T, digits = 3)
pretty_range <- paste(pretty_min, pretty_max, sep = "; ")
tab <- data.frame(summ_table$grp1, summ_table$grp2, summ_table$type, summ_table$N)
tab$musd <- pretty_musd
tab$median <- pretty_median
tab$iqr <- pretty_iqr
tab$range <- pretty_range
names(tab) <- pretty_column_names
} else {
column_names <- c("Group 1", "Group 2", "Comparison", "N", "Mean", "SD", "Median", "Lower IQR", "Upper IQR", "Min", "Max")
tab <- summ_table[,c(1,2,5,4,6,7,8,9,10,11,12)]
names(tab) <- column_names
}
if(file_type == 'md') {
require(pander)
capture.output(pander(tab, split.tables = Inf), file = outfile)
} else {
write.table(x = tab, file = outfile, sep = ",", quote = F, row.names = F)
}
}
################################################################################
################################################################################
# output the results to a pretty figure
#
plot_figure <- function(summ_table, outfile = NULL,
file_type = 'png',
fig_type = "mean",
fig_filter = "both",
fig_minmax = TRUE,
fig_comp = NULL) {
# here, we take the output from the summarise_snp_differences function and
# make a plot that includes the mean, the sd, and the min/max for each of
# the possible comparisons
# If outfile is specified, the figure is outputted as a png or pdf.
require(ggplot2)
tmp_tab <- summ_table
if(fig_filter == 'inter') {
tmp_tab <- summ_table[summ_table$type == "inter-group",]
outfile = paste(outfile, "inter", sep = "_")
} else if (fig_filter == 'intra') {
tmp_tab <- summ_table[summ_table$type == "intra-group",]
outfile = paste(outfile, "intra", sep = "_")
} else if (fig_filter == "specific" && !is.null(fig_comp)) {
tmp_tab <- summ_table[grepl(pattern = fig_comp, x = summ_table$comp),]
outfile = paste(outfile, fig_comp, sep = "_")
}
if(fig_type == 'mean'){
p1 <- ggplot(tmp_tab, aes(x = comp, y = mu, colour = type)) +
geom_point(size = 3 ,shape = 18) +
geom_errorbar(aes(ymax = mu + sd, ymin = mu - sd, width = 0.05)) +
# geom_point(aes(x = comp, min_dist), size = 2) +
# geom_point(aes(x = comp, max_dist), size = 2) +
xlab("Pairwise comparisons") +
# ylab("Mean SNP distance\n(errorbars: sd; points: min/max)") +
scale_colour_discrete(name = "Comparison type") +
theme(axis.text.x = element_text(angle = 45, hjust = 1, size = 3),
legend.position="bottom")
ylab <- "Mean SNP distance\n(errorbars: sd"
} else if(fig_type == 'median') {
p1 <- ggplot(tmp_tab, aes(x = comp, y = med, colour = type)) +
geom_point(size = 3 ,shape = 18) +
geom_errorbar(aes(ymax = uqr, ymin = lqr, width = 0.05)) +
# geom_point(aes(x = comp, min_dist), size = 2) +
# geom_point(aes(x = comp, max_dist), size = 2) +
xlab("Pairwise comparisons") +
# ylab("Median SNP distance\n(errorbars: inter-quartile range; points: min/max)") +
scale_colour_discrete(name = "Comparison type") +
theme(axis.text.x = element_text(angle = 45, hjust = 1, size = 10),
legend.position="bottom")
ylab <- "Median SNP distance\n(errorbars: inter-quartile range"
}
if (fig_minmax) {
p1 <- p1 +
geom_point(aes(x = comp, min_dist), size = 2) +
geom_point(aes(x = comp, max_dist), size = 2) +
ylab(paste(ylab," ; points: min/max)", sep = ""))
} else {
outfile <- paste(outfile, "_no_minmax", sep = "")
p1 <- p1 +
ylab(paste(ylab, ")", sep = ""))
}
if(is.null(outfile)) {
print(p1)
} else {
outfile = paste(outfile, file_type, sep = ".")
if (file_type == 'png') {
png(filename = outfile, width = 2048, height = 1536, res = 300)
} else {
pdf(file = outfile, width = 7, height = 5.5)
}
print(p1)
dev.off()
}
}
################################################################################
################################################################################
# the main() function
#
main <- function(categories,
seq_file = NULL,
diff_file = NULL,
out_base = NULL,
model = NULL,
tab_fmt = NULL,
tab_type = NULL,
fig_filter = NULL,
fig_type = NULL,
fig_fmt = NULL,
fig_comp = NULL,
fig_minmax = NULL,
exclude_ids = NULL,
save_long = NULL) {
################################################################################
## check dependencies
miss_packages = c()
if(!require(ggplot2, quietly = T)) {
miss_packages = c(miss_packages, "ggplot2")
}
if(!require(ape, quietly = T)){
miss_packages = c(miss_packages, "ape")
}
# if(!require(DT, quietly = T)) {
# miss_packages = c(miss_packages, "DT")
# }
if (length(miss_packages) >= 1) {
mp <- paste(miss_packages, sep = ",", collapse = "")
stop(paste("It seems we are missing some dependencies: ", mp, ". To install type the following:\n
install.packages(c(\'",mp,"\'))", sep = ""))
}
# Load some necessary libraries
library(ape)
library(ggplot2)
#load the categories
cats_list <- read_cat_file(categories = categories, exclude_ids = exclude_ids)
#load the data
if(is.null(diff_file)) {
dist_obj <- calc_pairwise_distance(seq_file = seq_file, model = model)
} else {
dist_obj <- read_diff_file(diff_file = diff_file)
}
#summarise the information
cats <- names(cats_list)
#check fig.comp, and parse
if (!is.null(fig_comp)) {
tmp <- strsplit(x = fig_comp, ":")
cat_keep <- tmp[[1]][1]
fig_comp <- tmp[[1]][2]
cats <- cats[which(cats %in% cat_keep)]
}
for(cat in cats) {
outf_b <- paste(out_base, cat, sep = "_")
results <- summ_distances(categories = cats_list[[cat]],
dist_obj = dist_obj,
save_long = save_long,
outfile = outf_b)
#output table
write_summ_table(summ_table = results,
file_type = tab_fmt,
method = tab_type,
outfile = outf_b)
#output figure
plot_figure(summ_table = results,
fig_filter = fig_filter,
fig_type = fig_type,
file_type = fig_fmt,
fig_comp = fig_comp,
fig_minmax = fig_minmax,
outfile = outf_b)
}
}
################################################################################
# If running from the command line:
#
if(!interactive()) {
# collect the arguments
args <- commandArgs(trailingOnly = TRUE)
# check the argument length
if(length(args) < 2 | length(args) > 7) {
args <- c("--help")
}
## Help section
if("--help" %in% args) {
cat("
Summarise SNP differences
Necessary arguments:
filename - a string defining the path to the categories file
Optional arguments:
--seq=filename - a string defining the path to
the FASTA file (ignored if --diff is defined)
--diff=filename - a string defining the path to
the SNP differences matrix (must be defined if no
--seq is defined)
--out_basename - basename for output files (default: snp_diff)
--tab_fmt - output format for table (default: \"csv\")
\"csv\" or \"md\" for CSV or Markdown, respectively
--tab_type - make table \"pretty\" by formatting numbers or
or output \"raw\" numbers (default: \"pretty\")
--fig_filter - one of \"both\", \"intra\", \"inter\", or \"specific\".
use \"both\", \"intra\" or \"inter\" if wanting to plot
both inter and intra distance comparisons on
the same plot, or only intra or inter, respectively.
if wanting to plot just comparisons that include a
single category, use \"specific\", and then specify
the group name in --fig_comp.
(default: \"both\")
--fig_comp - when specifying --fig_filter=\"specific\", this must
be specified. A string identifying one category in the
comp file to plot (e.g., \"clade:clade_a\"). To avoid saving
over previous analyses, the group name is added as an
extension. Note the use of the colon to specify the
category (i.e., column in the cat file) and group
(i.e., name of the grouping unit within that column).
--fig_type - output figure of mean +/- sd and range (\"mean\") or
median +/- inter-quartile range (\"median\")
--fig_minmax - whether or not to plot the mix/max points. Either
\"TRUE\" or \"FALSE\" (default: \"TRUE\")
--fig_fmt - output format for figure (default: \"png\")
\"png\" or \"pdf\" for PNG or PDF, respectively
--save_long - \"TRUE\" or \"FALSE\" if wanting to save the raw data
in long format, along with with all the additional
metadata (default: \"FALSE\")
--exclude_ids - string defining the path to a file with sequence
ids to be excluded, one per line (default: None)
--help - print this text
Example:
./summarise_snp_differences.R \"/home/user/cat.csv\" --seq=\"/home/user/seq.fa\"\n\n")
q(save="no")
}
#parse arguments
cat_file = args[1]
args <- args[2:length(args)]
parse_args <- function(x) strsplit(sub("^--", "", x), "=")
args_df <- as.data.frame(
do.call("rbind", parse_args(args)),
stringsAsFactors = F)
names(args_df) <- c("key", "value")
if('diff' %in% args_df$key) {
diff_file = args_df[args_df$key == 'diff', 'value']
} else {
seq_file = args_df[args_df$key == 'seq', 'value']
}
for(arg in c("out_basename", "tab_fmt", "tab_type", "fig_fmt", "exclude_ids")) {
if (arg %in% args_df$key) {
assign(arg, args_df[args_df$key == arg, 'value'])
}
}
}
#run the main function
main(categories = cat_file,
seq_file = seq_file,
diff_file = diff_file,
out_base = out_basename,
model = model,
tab_fmt = tab_fmt,
tab_type = tab_type,
fig_filter = fig_filter,
fig_type = fig_type,
fig_fmt = fig_fmt,
fig_comp = fig_comp,
fig_minmax = fig_minmax,
save_long = save_long,
exclude_ids = exclude_ids)
cat("The script has ended successfully!\n")
################################################################################