forked from pytorch/benchmark
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test.py
148 lines (127 loc) · 6.05 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
"""test.py
Setup and Run hub models.
Make sure to enable an https proxy if necessary, or the setup steps may hang.
"""
# This file shows how to use the benchmark suite from user end.
import gc
import functools
import os
import traceback
import unittest
from unittest.mock import patch
import yaml
import torch
from torchbenchmark import _list_model_paths, ModelTask, get_metadata_from_yaml
from torchbenchmark.util.metadata_utils import skip_by_metadata
# Some of the models have very heavyweight setup, so we have to set a very
# generous limit. That said, we don't want the entire test suite to hang if
# a single test encounters an extreme failure, so we give up after a test is
# unresponsive to 5 minutes. (Note: this does not require that the entire
# test case completes in 5 minutes. It requires that if the worker is
# unresponsive for 5 minutes the parent will presume it dead / incapacitated.)
TIMEOUT = 300 # Seconds
class TestBenchmark(unittest.TestCase):
def setUp(self):
gc.collect()
def tearDown(self):
gc.collect()
def test_fx_profile(self):
try:
from torch.fx.interpreter import Interpreter
except ImportError: # older versions of PyTorch
raise unittest.SkipTest("Requires torch>=1.8")
from fx_profile import main, ProfileAggregate
with patch.object(ProfileAggregate, "save") as mock_save:
# just run one model to make sure things aren't completely broken
main(["--repeat=1", "--filter=pytorch_struct", "--device=cpu"])
self.assertGreaterEqual(mock_save.call_count, 1)
def _create_example_model_instance(task: ModelTask, device: str):
skip = False
try:
task.make_model_instance(test="eval", device=device, jit=False)
except NotImplementedError:
try:
task.make_model_instance(test="train", device=device, jit=False)
except NotImplementedError:
skip = True
finally:
if skip:
raise NotImplementedError(f"Model is not implemented on the device {device}")
def _load_test(path, device):
def _skip_cuda_memory_check_p(metadata):
if device != "cuda":
return True
if "skip_cuda_memory_leak" in metadata and metadata["skip_cuda_memory_leak"]:
return True
return False
def example_fn(self):
task = ModelTask(path, timeout=TIMEOUT)
with task.watch_cuda_memory(skip=_skip_cuda_memory_check_p(metadata), assert_equal=self.assertEqual):
try:
_create_example_model_instance(task, device)
task.check_example()
task.del_model_instance()
except NotImplementedError:
self.skipTest(f'Method `get_module()` on {device} is not implemented, skipping...')
def train_fn(self):
metadata = get_metadata_from_yaml(path)
task = ModelTask(path, timeout=TIMEOUT)
allow_customize_batch_size = task.get_model_attribute("ALLOW_CUSTOMIZE_BSIZE", classattr=True)
# to speedup test, use batch size 1 if possible
batch_size = 1 if allow_customize_batch_size else None
with task.watch_cuda_memory(skip=_skip_cuda_memory_check_p(metadata), assert_equal=self.assertEqual):
try:
task.make_model_instance(test="train", device=device, jit=False, batch_size=batch_size)
task.invoke()
task.check_details_train(device=device, md=metadata)
task.del_model_instance()
except NotImplementedError:
self.skipTest(f'Method train on {device} is not implemented, skipping...')
def eval_fn(self):
metadata = get_metadata_from_yaml(path)
task = ModelTask(path, timeout=TIMEOUT)
allow_customize_batch_size = task.get_model_attribute("ALLOW_CUSTOMIZE_BSIZE", classattr=True)
# to speedup test, use batch size 1 if possible
batch_size = 1 if allow_customize_batch_size else None
with task.watch_cuda_memory(skip=_skip_cuda_memory_check_p(metadata), assert_equal=self.assertEqual):
try:
task.make_model_instance(test="eval", device=device, jit=False, batch_size=batch_size)
task.invoke()
task.check_details_eval(device=device, md=metadata)
task.check_eval_output()
task.del_model_instance()
except NotImplementedError:
self.skipTest(f'Method eval on {device} is not implemented, skipping...')
def check_device_fn(self):
task = ModelTask(path, timeout=TIMEOUT)
with task.watch_cuda_memory(skip=_skip_cuda_memory_check_p(metadata), assert_equal=self.assertEqual):
try:
task.make_model_instance(test="eval", device=device, jit=False)
task.check_device()
task.del_model_instance()
except NotImplementedError:
self.skipTest(f'Method check_device on {device} is not implemented, skipping...')
name = os.path.basename(path)
metadata = get_metadata_from_yaml(path)
for fn, fn_name in zip([example_fn, train_fn, eval_fn, check_device_fn],
["example", "train", "eval", "check_device"]):
# set exclude list based on metadata
setattr(TestBenchmark, f'test_{name}_{fn_name}_{device}',
(unittest.skipIf(skip_by_metadata(test=fn_name, device=device,\
jit=False, extra_args=[], metadata=metadata), "This test is skipped by its metadata")(fn)))
def _load_tests():
devices = ['cpu']
if torch.cuda.is_available():
devices.append('cuda')
if hasattr(torch.backends, 'mps') and torch.backends.mps.is_available():
devices.append('mps')
for path in _list_model_paths():
# TODO: skipping quantized tests for now due to BC-breaking changes for prepare
# api, enable after PyTorch 1.13 release
if "quantized" in path:
continue
for device in devices:
_load_test(path, device)
_load_tests()
if __name__ == '__main__':
unittest.main()