forked from GoogleCloudPlatform/training-data-analyst
-
Notifications
You must be signed in to change notification settings - Fork 0
/
bigquery_connect.sh
executable file
·74 lines (60 loc) · 2.66 KB
/
bigquery_connect.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
#!/bin/env python
# This sample shows you how you could do this. While you would not execute map-reduce processing on BigQuery in Spark (why? just write a SQL statement), it can be useful if you want to use Spark libraries such as Mlib on data that is in BigQuery.
import json
import pprint
import subprocess
import pyspark
sc = pyspark.SparkContext()
# Use the Google Cloud Storage bucket for temporary BigQuery export data used
# by the InputFormat. This assumes the Google Cloud Storage connector for
# Hadoop is configured.
bucket = sc._jsc.hadoopConfiguration().get('fs.gs.system.bucket')
project = sc._jsc.hadoopConfiguration().get('fs.gs.project.id')
input_directory = 'gs://{}/hadoop/tmp/bigquery/pyspark_input'.format(bucket)
conf = {
# Input Parameters
'mapred.bq.project.id': project,
'mapred.bq.gcs.bucket': bucket,
'mapred.bq.temp.gcs.path': input_directory,
'mapred.bq.input.project.id': 'publicdata',
'mapred.bq.input.dataset.id': 'samples',
'mapred.bq.input.table.id': 'shakespeare',
}
# Output Parameters
output_dataset = 'wordcount_dataset'
output_table = 'wordcount_table'
# Load data in from BigQuery.
table_data = sc.newAPIHadoopRDD(
'com.google.cloud.hadoop.io.bigquery.JsonTextBigQueryInputFormat',
'org.apache.hadoop.io.LongWritable',
'com.google.gson.JsonObject',
conf=conf)
# Perform word count.
word_counts = (
table_data
.map(lambda (_, record): json.loads(record))
.map(lambda x: (x['word'].lower(), int(x['word_count'])))
.reduceByKey(lambda x, y: x + y))
# Display 10 results.
pprint.pprint(word_counts.take(10))
# Stage data formatted as newline-delimited JSON in Google Cloud Storage.
output_directory = 'gs://{}/hadoop/tmp/bigquery/pyspark_output'.format(bucket)
partitions = range(word_counts.getNumPartitions())
output_files = [output_directory + '/part-{:05}'.format(i) for i in partitions]
(word_counts
.map(lambda (w, c): json.dumps({'word': w, 'word_count': c}))
.saveAsTextFile(output_directory))
# Shell out to bq CLI to perform BigQuery import.
subprocess.check_call(
'bq load --source_format NEWLINE_DELIMITED_JSON '
'--schema word:STRING,word_count:INTEGER '
'{dataset}.{table} {files}'.format(
dataset=output_dataset, table=output_table, files=','.join(output_files)
).split())
# Manually clean up the staging_directories, otherwise BigQuery
# files will remain indefinitely.
input_path = sc._jvm.org.apache.hadoop.fs.Path(input_directory)
input_path.getFileSystem(sc._jsc.hadoopConfiguration()).delete(input_path, True)
output_path = sc._jvm.org.apache.hadoop.fs.Path(output_directory)
output_path.getFileSystem(sc._jsc.hadoopConfiguration()).delete(
output_path, True)