From ba3a6ab6e7e4f42b78058f88de6e49df517820f9 Mon Sep 17 00:00:00 2001 From: z3dev Date: Sun, 2 Jul 2023 10:02:09 +0900 Subject: [PATCH 1/2] refactor(modeling): changed imports to directly import from single files when possible --- packages/modeling/src/colors/colorize.js | 2 +- packages/modeling/src/colors/hslToRgb.js | 2 +- packages/modeling/src/colors/hsvToRgb.js | 2 +- packages/modeling/src/colors/rgbToHex.js | 2 +- packages/modeling/src/colors/rgbToHsl.js | 2 +- packages/modeling/src/colors/rgbToHsv.js | 2 +- packages/modeling/src/connectors/transformationBetween.js | 2 +- packages/modeling/src/geometries/geom2/validate.js | 3 ++- packages/modeling/src/geometries/poly2/isSimple.js | 2 +- packages/modeling/src/geometries/poly2/measureArea.js | 2 +- packages/modeling/src/measurements/measureAggregateArea.js | 2 +- .../src/measurements/measureAggregateBoundingBox.js | 3 ++- .../modeling/src/measurements/measureAggregateEpsilon.js | 6 ++++-- .../modeling/src/measurements/measureAggregateVolume.js | 2 +- packages/modeling/src/measurements/measureArea.js | 2 +- packages/modeling/src/measurements/measureBoundingBox.js | 2 +- .../modeling/src/measurements/measureBoundingSphere.js | 2 +- packages/modeling/src/measurements/measureCenter.js | 2 +- packages/modeling/src/measurements/measureCenterOfMass.js | 2 +- packages/modeling/src/measurements/measureDimensions.js | 2 +- packages/modeling/src/measurements/measureEpsilon.js | 2 +- packages/modeling/src/measurements/measureVolume.js | 2 +- packages/modeling/src/operations/booleans/intersect.js | 3 ++- .../modeling/src/operations/booleans/intersectGeom2.js | 2 +- .../modeling/src/operations/booleans/intersectGeom3.js | 2 +- packages/modeling/src/operations/booleans/mayOverlap.js | 3 ++- packages/modeling/src/operations/booleans/scission.js | 2 +- packages/modeling/src/operations/booleans/scissionGeom3.js | 2 +- packages/modeling/src/operations/booleans/subtract.js | 3 ++- packages/modeling/src/operations/booleans/subtractGeom2.js | 2 +- packages/modeling/src/operations/booleans/subtractGeom3.js | 2 +- packages/modeling/src/operations/booleans/union.js | 3 ++- packages/modeling/src/operations/booleans/unionGeom2.js | 2 +- packages/modeling/src/operations/booleans/unionGeom3.js | 2 +- packages/modeling/src/operations/expansions/expand.js | 2 +- packages/modeling/src/operations/expansions/expandGeom3.js | 2 +- packages/modeling/src/operations/expansions/expandPath2.js | 2 +- packages/modeling/src/operations/expansions/expandShell.js | 4 ++-- packages/modeling/src/operations/expansions/offset.js | 2 +- .../modeling/src/operations/expansions/offsetFromPoints.js | 3 ++- .../modeling/src/operations/extrusions/extrudeLinear.js | 2 +- .../src/operations/extrusions/extrudeRectangular.js | 2 +- .../src/operations/extrusions/extrudeRectangularGeom2.js | 4 ++-- .../src/operations/extrusions/extrudeRectangularPath2.js | 2 +- .../modeling/src/operations/extrusions/extrudeRotate.js | 2 +- packages/modeling/src/operations/extrusions/project.js | 7 ++++--- packages/modeling/src/operations/hulls/hull.js | 3 ++- packages/modeling/src/operations/hulls/hullChain.js | 4 ++-- packages/modeling/src/operations/hulls/hullGeom2.js | 2 +- packages/modeling/src/operations/hulls/hullGeom3.js | 2 +- packages/modeling/src/operations/hulls/hullPath2.js | 2 +- packages/modeling/src/operations/modifiers/generalize.js | 4 ++-- .../modeling/src/operations/modifiers/mergePolygons.js | 2 +- .../operations/modifiers/reTesselateCoplanarPolygons.js | 3 ++- packages/modeling/src/operations/modifiers/retessellate.js | 2 +- packages/modeling/src/operations/modifiers/snap.js | 4 ++-- packages/modeling/src/operations/transforms/align.js | 5 +++-- packages/modeling/src/operations/transforms/center.js | 4 ++-- packages/modeling/src/operations/transforms/mirror.js | 2 +- packages/modeling/src/operations/transforms/rotate.js | 2 +- packages/modeling/src/operations/transforms/scale.js | 2 +- packages/modeling/src/operations/transforms/transform.js | 2 +- packages/modeling/src/operations/transforms/translate.js | 2 +- packages/modeling/src/primitives/torus.js | 5 +++-- packages/modeling/src/text/vectorText.js | 4 ++-- 65 files changed, 91 insertions(+), 77 deletions(-) diff --git a/packages/modeling/src/colors/colorize.js b/packages/modeling/src/colors/colorize.js index 590458f1a..3a38b943a 100644 --- a/packages/modeling/src/colors/colorize.js +++ b/packages/modeling/src/colors/colorize.js @@ -1,4 +1,4 @@ -import { flatten } from '../utils/index.js' +import { flatten } from '../utils/flatten.js' import * as geom2 from '../geometries/geom2/index.js' import * as geom3 from '../geometries/geom3/index.js' diff --git a/packages/modeling/src/colors/hslToRgb.js b/packages/modeling/src/colors/hslToRgb.js index c99225858..cd2c629d1 100644 --- a/packages/modeling/src/colors/hslToRgb.js +++ b/packages/modeling/src/colors/hslToRgb.js @@ -1,4 +1,4 @@ -import { flatten } from '../utils/index.js' +import { flatten } from '../utils/flatten.js' import { hueToColorComponent } from './hueToColorComponent.js' diff --git a/packages/modeling/src/colors/hsvToRgb.js b/packages/modeling/src/colors/hsvToRgb.js index 5eb1565fa..38a99a318 100644 --- a/packages/modeling/src/colors/hsvToRgb.js +++ b/packages/modeling/src/colors/hsvToRgb.js @@ -1,4 +1,4 @@ -import { flatten } from '../utils/index.js' +import { flatten } from '../utils/flatten.js' /** * Converts HSV color values to RGB color values. diff --git a/packages/modeling/src/colors/rgbToHex.js b/packages/modeling/src/colors/rgbToHex.js index c7e4993b6..14def1567 100644 --- a/packages/modeling/src/colors/rgbToHex.js +++ b/packages/modeling/src/colors/rgbToHex.js @@ -1,4 +1,4 @@ -import { flatten } from '../utils/index.js' +import { flatten } from '../utils/flatten.js' /** * Convert the given RGB color values to CSS color notation (string) diff --git a/packages/modeling/src/colors/rgbToHsl.js b/packages/modeling/src/colors/rgbToHsl.js index 5d0a713a2..315a57392 100644 --- a/packages/modeling/src/colors/rgbToHsl.js +++ b/packages/modeling/src/colors/rgbToHsl.js @@ -1,4 +1,4 @@ -import { flatten } from '../utils/index.js' +import { flatten } from '../utils/flatten.js' /** * Converts an RGB color value to HSL. diff --git a/packages/modeling/src/colors/rgbToHsv.js b/packages/modeling/src/colors/rgbToHsv.js index dc0fd2e4e..4928602d4 100644 --- a/packages/modeling/src/colors/rgbToHsv.js +++ b/packages/modeling/src/colors/rgbToHsv.js @@ -1,4 +1,4 @@ -import { flatten } from '../utils/index.js' +import { flatten } from '../utils/flatten.js' /** * Converts an RGB color value to HSV. diff --git a/packages/modeling/src/connectors/transformationBetween.js b/packages/modeling/src/connectors/transformationBetween.js index a0ef54f76..938fe4c89 100644 --- a/packages/modeling/src/connectors/transformationBetween.js +++ b/packages/modeling/src/connectors/transformationBetween.js @@ -3,7 +3,7 @@ import * as plane from '../maths/plane/index.js' import * as vec2 from '../maths/vec2/index.js' import * as vec3 from '../maths/vec3/index.js' -import { OrthonormalFormula } from '../maths/utils/index.js' +import { OrthonormalFormula } from '../maths/utils/OrthonormalFormula.js' import { transform } from './transform.js' diff --git a/packages/modeling/src/geometries/geom2/validate.js b/packages/modeling/src/geometries/geom2/validate.js index 74f6f9b5e..69fee8493 100644 --- a/packages/modeling/src/geometries/geom2/validate.js +++ b/packages/modeling/src/geometries/geom2/validate.js @@ -1,5 +1,6 @@ import * as vec2 from '../../maths/vec2/index.js' -import { intersect } from '../../maths/utils/index.js' + +import { intersect } from '../../maths/utils/intersect.js' import { isA } from './isA.js' import { toOutlines } from './toOutlines.js' diff --git a/packages/modeling/src/geometries/poly2/isSimple.js b/packages/modeling/src/geometries/poly2/isSimple.js index 675844f82..02162a488 100644 --- a/packages/modeling/src/geometries/poly2/isSimple.js +++ b/packages/modeling/src/geometries/poly2/isSimple.js @@ -1,4 +1,4 @@ -import { intersect } from '../../maths/utils/index.js' +import { intersect } from '../../maths/utils/intersect.js' /** * Check whether the given polygon is simple, i.e. does not intersect itself. diff --git a/packages/modeling/src/geometries/poly2/measureArea.js b/packages/modeling/src/geometries/poly2/measureArea.js index a6db3d4a2..9d0447ab3 100644 --- a/packages/modeling/src/geometries/poly2/measureArea.js +++ b/packages/modeling/src/geometries/poly2/measureArea.js @@ -1,4 +1,4 @@ -import { area } from '../../maths/utils/index.js' +import { area } from '../../maths/utils/area.js' /** * Measure the area under the given polygon. diff --git a/packages/modeling/src/measurements/measureAggregateArea.js b/packages/modeling/src/measurements/measureAggregateArea.js index b74a2d04f..b58b083d9 100644 --- a/packages/modeling/src/measurements/measureAggregateArea.js +++ b/packages/modeling/src/measurements/measureAggregateArea.js @@ -1,4 +1,4 @@ -import { flatten } from '../utils/index.js' +import { flatten } from '../utils/flatten.js' import { measureArea } from './measureArea.js' diff --git a/packages/modeling/src/measurements/measureAggregateBoundingBox.js b/packages/modeling/src/measurements/measureAggregateBoundingBox.js index f6f68948e..d9bb99077 100644 --- a/packages/modeling/src/measurements/measureAggregateBoundingBox.js +++ b/packages/modeling/src/measurements/measureAggregateBoundingBox.js @@ -1,4 +1,5 @@ -import { flatten } from '../utils/index.js' +import { flatten } from '../utils/flatten.js' + import * as vec3 from '../maths/vec3/index.js' import { measureBoundingBox } from './measureBoundingBox.js' diff --git a/packages/modeling/src/measurements/measureAggregateEpsilon.js b/packages/modeling/src/measurements/measureAggregateEpsilon.js index 148135527..68c4486eb 100644 --- a/packages/modeling/src/measurements/measureAggregateEpsilon.js +++ b/packages/modeling/src/measurements/measureAggregateEpsilon.js @@ -1,6 +1,8 @@ -import { flatten } from '../utils/index.js' +import { flatten } from '../utils/flatten.js' -import { geom2, geom3, path2 } from '../geometries/index.js' +import * as geom2 from '../geometries/geom2/index.js' +import * as geom3 from '../geometries/geom3/index.js' +import * as path2 from '../geometries/path2/index.js' import { measureAggregateBoundingBox } from './measureAggregateBoundingBox.js' import { calculateEpsilonFromBounds } from './calculateEpsilonFromBounds.js' diff --git a/packages/modeling/src/measurements/measureAggregateVolume.js b/packages/modeling/src/measurements/measureAggregateVolume.js index 1d0b06a87..4284b63be 100644 --- a/packages/modeling/src/measurements/measureAggregateVolume.js +++ b/packages/modeling/src/measurements/measureAggregateVolume.js @@ -1,4 +1,4 @@ -import { flatten } from '../utils/index.js' +import { flatten } from '../utils/flatten.js' import { measureVolume } from './measureVolume.js' diff --git a/packages/modeling/src/measurements/measureArea.js b/packages/modeling/src/measurements/measureArea.js index 891b4b7a8..1b91970f2 100644 --- a/packages/modeling/src/measurements/measureArea.js +++ b/packages/modeling/src/measurements/measureArea.js @@ -1,4 +1,4 @@ -import { flatten } from '../utils/index.js' +import { flatten } from '../utils/flatten.js' import * as geom2 from '../geometries/geom2/index.js' import * as geom3 from '../geometries/geom3/index.js' diff --git a/packages/modeling/src/measurements/measureBoundingBox.js b/packages/modeling/src/measurements/measureBoundingBox.js index 853438964..d549993a3 100644 --- a/packages/modeling/src/measurements/measureBoundingBox.js +++ b/packages/modeling/src/measurements/measureBoundingBox.js @@ -1,4 +1,4 @@ -import { flatten } from '../utils/index.js' +import { flatten } from '../utils/flatten.js' import * as vec2 from '../maths/vec2/index.js' import * as vec3 from '../maths/vec3/index.js' diff --git a/packages/modeling/src/measurements/measureBoundingSphere.js b/packages/modeling/src/measurements/measureBoundingSphere.js index 31a752c8d..2fcac1775 100644 --- a/packages/modeling/src/measurements/measureBoundingSphere.js +++ b/packages/modeling/src/measurements/measureBoundingSphere.js @@ -1,4 +1,4 @@ -import { flatten } from '../utils/index.js' +import { flatten } from '../utils/flatten.js' import * as vec2 from '../maths/vec2/index.js' import * as vec3 from '../maths/vec3/index.js' diff --git a/packages/modeling/src/measurements/measureCenter.js b/packages/modeling/src/measurements/measureCenter.js index 23a12b003..981f73fb4 100644 --- a/packages/modeling/src/measurements/measureCenter.js +++ b/packages/modeling/src/measurements/measureCenter.js @@ -1,4 +1,4 @@ -import { flatten } from '../utils/index.js' +import { flatten } from '../utils/flatten.js' import { measureBoundingBox } from './measureBoundingBox.js' diff --git a/packages/modeling/src/measurements/measureCenterOfMass.js b/packages/modeling/src/measurements/measureCenterOfMass.js index b7ae342be..70e41fdbd 100644 --- a/packages/modeling/src/measurements/measureCenterOfMass.js +++ b/packages/modeling/src/measurements/measureCenterOfMass.js @@ -1,4 +1,4 @@ -import { flatten } from '../utils/index.js' +import { flatten } from '../utils/flatten.js' import * as vec3 from '../maths/vec3/index.js' diff --git a/packages/modeling/src/measurements/measureDimensions.js b/packages/modeling/src/measurements/measureDimensions.js index 029ff7a33..edcf9d8fc 100644 --- a/packages/modeling/src/measurements/measureDimensions.js +++ b/packages/modeling/src/measurements/measureDimensions.js @@ -1,4 +1,4 @@ -import { flatten } from '../utils/index.js' +import { flatten } from '../utils/flatten.js' import { measureBoundingBox } from './measureBoundingBox.js' diff --git a/packages/modeling/src/measurements/measureEpsilon.js b/packages/modeling/src/measurements/measureEpsilon.js index 568af7540..b67a81153 100644 --- a/packages/modeling/src/measurements/measureEpsilon.js +++ b/packages/modeling/src/measurements/measureEpsilon.js @@ -1,4 +1,4 @@ -import { flatten } from '../utils/index.js' +import { flatten } from '../utils/flatten.js' import * as geom2 from '../geometries/geom2/index.js' import * as geom3 from '../geometries/geom3/index.js' diff --git a/packages/modeling/src/measurements/measureVolume.js b/packages/modeling/src/measurements/measureVolume.js index 8cb4cea8f..c602a9a1c 100644 --- a/packages/modeling/src/measurements/measureVolume.js +++ b/packages/modeling/src/measurements/measureVolume.js @@ -1,4 +1,4 @@ -import { flatten } from '../utils/index.js' +import { flatten } from '../utils/flatten.js' import * as geom2 from '../geometries/geom2/index.js' import * as geom3 from '../geometries/geom3/index.js' diff --git a/packages/modeling/src/operations/booleans/intersect.js b/packages/modeling/src/operations/booleans/intersect.js index 139576a80..3c4f5ca3c 100644 --- a/packages/modeling/src/operations/booleans/intersect.js +++ b/packages/modeling/src/operations/booleans/intersect.js @@ -1,4 +1,5 @@ -import { areAllShapesTheSameType, flatten } from '../../utils/index.js' +import { areAllShapesTheSameType } from '../../utils/areAllShapesTheSameType.js' +import { flatten } from '../../utils/flatten.js' import * as geom2 from '../../geometries/geom2/index.js' import * as geom3 from '../../geometries/geom3/index.js' diff --git a/packages/modeling/src/operations/booleans/intersectGeom2.js b/packages/modeling/src/operations/booleans/intersectGeom2.js index c76789279..5eedca386 100644 --- a/packages/modeling/src/operations/booleans/intersectGeom2.js +++ b/packages/modeling/src/operations/booleans/intersectGeom2.js @@ -1,4 +1,4 @@ -import { flatten } from '../../utils/index.js' +import { flatten } from '../../utils/flatten.js' import { INTERSECTION } from './martinez/operation.js' import { boolean } from './martinez/index.js' diff --git a/packages/modeling/src/operations/booleans/intersectGeom3.js b/packages/modeling/src/operations/booleans/intersectGeom3.js index 14668fc91..6bcc63f1a 100644 --- a/packages/modeling/src/operations/booleans/intersectGeom3.js +++ b/packages/modeling/src/operations/booleans/intersectGeom3.js @@ -1,4 +1,4 @@ -import { flatten } from '../../utils/index.js' +import { flatten } from '../../utils/flatten.js' import { retessellate } from '../modifiers/retessellate.js' diff --git a/packages/modeling/src/operations/booleans/mayOverlap.js b/packages/modeling/src/operations/booleans/mayOverlap.js index 6dcdcc32b..209fa0d70 100644 --- a/packages/modeling/src/operations/booleans/mayOverlap.js +++ b/packages/modeling/src/operations/booleans/mayOverlap.js @@ -1,6 +1,7 @@ import { EPS } from '../../maths/constants.js' -import { measureBoundingBox } from '../../measurements/index.js' +import { measureBoundingBox } from '../../measurements/measureBoundingBox.js' + /* * Determine if the given geometries overlap by comparing min and max bounds. diff --git a/packages/modeling/src/operations/booleans/scission.js b/packages/modeling/src/operations/booleans/scission.js index 661666112..36a0ba50b 100644 --- a/packages/modeling/src/operations/booleans/scission.js +++ b/packages/modeling/src/operations/booleans/scission.js @@ -1,4 +1,4 @@ -import { flatten } from '../../utils/index.js' +import { flatten } from '../../utils/flatten.js' import * as geom3 from '../../geometries/geom3/index.js' diff --git a/packages/modeling/src/operations/booleans/scissionGeom3.js b/packages/modeling/src/operations/booleans/scissionGeom3.js index 519b5b91e..de413af6f 100644 --- a/packages/modeling/src/operations/booleans/scissionGeom3.js +++ b/packages/modeling/src/operations/booleans/scissionGeom3.js @@ -1,6 +1,6 @@ import * as vec3 from '../../maths/vec3/index.js' -import { measureEpsilon } from '../../measurements/index.js' +import { measureEpsilon } from '../../measurements/measureEpsilon.js' import * as geom3 from '../../geometries/geom3/index.js' diff --git a/packages/modeling/src/operations/booleans/subtract.js b/packages/modeling/src/operations/booleans/subtract.js index cbeb02668..f9f2caed2 100644 --- a/packages/modeling/src/operations/booleans/subtract.js +++ b/packages/modeling/src/operations/booleans/subtract.js @@ -1,4 +1,5 @@ -import { areAllShapesTheSameType, flatten } from '../../utils/index.js' +import { areAllShapesTheSameType } from '../../utils/areAllShapesTheSameType.js' +import { flatten } from '../../utils/flatten.js' import * as geom2 from '../../geometries/geom2/index.js' import * as geom3 from '../../geometries/geom3/index.js' diff --git a/packages/modeling/src/operations/booleans/subtractGeom2.js b/packages/modeling/src/operations/booleans/subtractGeom2.js index bcab3bc0a..8e6d6c569 100644 --- a/packages/modeling/src/operations/booleans/subtractGeom2.js +++ b/packages/modeling/src/operations/booleans/subtractGeom2.js @@ -1,4 +1,4 @@ -import { flatten } from '../../utils/index.js' +import { flatten } from '../../utils/flatten.js' import { DIFFERENCE } from './martinez/operation.js' import { boolean } from './martinez/index.js' diff --git a/packages/modeling/src/operations/booleans/subtractGeom3.js b/packages/modeling/src/operations/booleans/subtractGeom3.js index c8fb3bdd8..0e35f1174 100644 --- a/packages/modeling/src/operations/booleans/subtractGeom3.js +++ b/packages/modeling/src/operations/booleans/subtractGeom3.js @@ -1,4 +1,4 @@ -import { flatten } from '../../utils/index.js' +import { flatten } from '../../utils/flatten.js' import { retessellate } from '../modifiers/retessellate.js' diff --git a/packages/modeling/src/operations/booleans/union.js b/packages/modeling/src/operations/booleans/union.js index e702f67fd..553503543 100644 --- a/packages/modeling/src/operations/booleans/union.js +++ b/packages/modeling/src/operations/booleans/union.js @@ -1,4 +1,5 @@ -import { areAllShapesTheSameType, flatten } from '../../utils/index.js' +import { areAllShapesTheSameType } from '../../utils/areAllShapesTheSameType.js' +import { flatten } from '../../utils/flatten.js' import * as geom2 from '../../geometries/geom2/index.js' import * as geom3 from '../../geometries/geom3/index.js' diff --git a/packages/modeling/src/operations/booleans/unionGeom2.js b/packages/modeling/src/operations/booleans/unionGeom2.js index afe8a2065..47179075a 100644 --- a/packages/modeling/src/operations/booleans/unionGeom2.js +++ b/packages/modeling/src/operations/booleans/unionGeom2.js @@ -1,4 +1,4 @@ -import { flatten } from '../../utils/index.js' +import { flatten } from '../../utils/flatten.js' import { UNION } from './martinez/operation.js' import { boolean } from './martinez/index.js' diff --git a/packages/modeling/src/operations/booleans/unionGeom3.js b/packages/modeling/src/operations/booleans/unionGeom3.js index 524fe8e8d..1c4810352 100644 --- a/packages/modeling/src/operations/booleans/unionGeom3.js +++ b/packages/modeling/src/operations/booleans/unionGeom3.js @@ -1,4 +1,4 @@ -import { flatten } from '../../utils/index.js' +import { flatten } from '../../utils/flatten.js' import { retessellate } from '../modifiers/retessellate.js' diff --git a/packages/modeling/src/operations/expansions/expand.js b/packages/modeling/src/operations/expansions/expand.js index de0aa6db6..b4a9d0121 100644 --- a/packages/modeling/src/operations/expansions/expand.js +++ b/packages/modeling/src/operations/expansions/expand.js @@ -1,4 +1,4 @@ -import { flatten } from '../../utils/index.js' +import { flatten } from '../../utils/flatten.js' import * as geom2 from '../../geometries/geom2/index.js' import * as geom3 from '../../geometries/geom3/index.js' diff --git a/packages/modeling/src/operations/expansions/expandGeom3.js b/packages/modeling/src/operations/expansions/expandGeom3.js index b9587d504..fc5a70c9f 100644 --- a/packages/modeling/src/operations/expansions/expandGeom3.js +++ b/packages/modeling/src/operations/expansions/expandGeom3.js @@ -1,6 +1,6 @@ import * as geom3 from '../../geometries/geom3/index.js' -import { union } from '../booleans/index.js' +import { union } from '../booleans/union.js' import { expandShell } from './expandShell.js' diff --git a/packages/modeling/src/operations/expansions/expandPath2.js b/packages/modeling/src/operations/expansions/expandPath2.js index 1dc5a2d2c..66e1e6b97 100644 --- a/packages/modeling/src/operations/expansions/expandPath2.js +++ b/packages/modeling/src/operations/expansions/expandPath2.js @@ -1,4 +1,4 @@ -import { area } from '../../maths/utils/index.js' +import { area } from '../../maths/utils/area.js' import * as vec2 from '../../maths/vec2/index.js' diff --git a/packages/modeling/src/operations/expansions/expandShell.js b/packages/modeling/src/operations/expansions/expandShell.js index 0f4e8d404..5ab75760c 100644 --- a/packages/modeling/src/operations/expansions/expandShell.js +++ b/packages/modeling/src/operations/expansions/expandShell.js @@ -3,12 +3,12 @@ import { EPS, TAU } from '../../maths/constants.js' import * as mat4 from '../../maths/mat4/index.js' import * as vec3 from '../../maths/vec3/index.js' -import { fnNumberSort } from '../../utils/index.js' +import { fnNumberSort } from '../../utils/fnNumberSort.js' import * as geom3 from '../../geometries/geom3/index.js' import * as poly3 from '../../geometries/poly3/index.js' -import { sphere } from '../../primitives/index.js' +import { sphere } from '../../primitives/sphere.js' import { retessellate } from '../modifiers/retessellate.js' diff --git a/packages/modeling/src/operations/expansions/offset.js b/packages/modeling/src/operations/expansions/offset.js index e413f7205..f69074a82 100644 --- a/packages/modeling/src/operations/expansions/offset.js +++ b/packages/modeling/src/operations/expansions/offset.js @@ -1,4 +1,4 @@ -import { flatten } from '../../utils/index.js' +import { flatten } from '../../utils/flatten.js' import * as geom2 from '../../geometries/geom2/index.js' import * as path2 from '../../geometries/path2/index.js' diff --git a/packages/modeling/src/operations/expansions/offsetFromPoints.js b/packages/modeling/src/operations/expansions/offsetFromPoints.js index 7ce5ef806..6a5c29a73 100644 --- a/packages/modeling/src/operations/expansions/offsetFromPoints.js +++ b/packages/modeling/src/operations/expansions/offsetFromPoints.js @@ -1,6 +1,7 @@ import { EPS, TAU } from '../../maths/constants.js' -import { area, intersect } from '../../maths/utils/index.js' +import { area } from '../../maths/utils/area.js' +import { intersect } from '../../maths/utils/intersect.js' import * as line2 from '../../maths/line2/index.js' import * as vec2 from '../../maths/vec2/index.js' diff --git a/packages/modeling/src/operations/extrusions/extrudeLinear.js b/packages/modeling/src/operations/extrusions/extrudeLinear.js index c227cd278..ddc409612 100644 --- a/packages/modeling/src/operations/extrusions/extrudeLinear.js +++ b/packages/modeling/src/operations/extrusions/extrudeLinear.js @@ -1,4 +1,4 @@ -import { flatten } from '../../utils/index.js' +import { flatten } from '../../utils/flatten.js' import * as geom2 from '../../geometries/geom2/index.js' import * as path2 from '../../geometries/path2/index.js' diff --git a/packages/modeling/src/operations/extrusions/extrudeRectangular.js b/packages/modeling/src/operations/extrusions/extrudeRectangular.js index dd41723da..ccacaba39 100644 --- a/packages/modeling/src/operations/extrusions/extrudeRectangular.js +++ b/packages/modeling/src/operations/extrusions/extrudeRectangular.js @@ -1,4 +1,4 @@ -import { flatten } from '../../utils/index.js' +import { flatten } from '../../utils/flatten.js' import * as geom2 from '../../geometries/geom2/index.js' import * as path2 from '../../geometries/path2/index.js' diff --git a/packages/modeling/src/operations/extrusions/extrudeRectangularGeom2.js b/packages/modeling/src/operations/extrusions/extrudeRectangularGeom2.js index ef623b343..51b9082f9 100644 --- a/packages/modeling/src/operations/extrusions/extrudeRectangularGeom2.js +++ b/packages/modeling/src/operations/extrusions/extrudeRectangularGeom2.js @@ -1,9 +1,9 @@ -import { area } from '../../maths/utils/index.js' +import { area } from '../../maths/utils/area.js' import * as geom2 from '../../geometries/geom2/index.js' import * as path2 from '../../geometries/path2/index.js' -import { expand } from '../expansions/index.js' +import { expand } from '../expansions/expand.js' import { extrudeLinearGeom2 } from './extrudeLinearGeom2.js' diff --git a/packages/modeling/src/operations/extrusions/extrudeRectangularPath2.js b/packages/modeling/src/operations/extrusions/extrudeRectangularPath2.js index f47afec6b..ece0e9ac6 100644 --- a/packages/modeling/src/operations/extrusions/extrudeRectangularPath2.js +++ b/packages/modeling/src/operations/extrusions/extrudeRectangularPath2.js @@ -1,6 +1,6 @@ import * as path2 from '../../geometries/path2/index.js' -import { expand } from '../expansions/index.js' +import { expand } from '../expansions/expand.js' import { extrudeLinearGeom2 } from './extrudeLinearGeom2.js' diff --git a/packages/modeling/src/operations/extrusions/extrudeRotate.js b/packages/modeling/src/operations/extrusions/extrudeRotate.js index 71db74c09..5a2508872 100644 --- a/packages/modeling/src/operations/extrusions/extrudeRotate.js +++ b/packages/modeling/src/operations/extrusions/extrudeRotate.js @@ -1,7 +1,7 @@ import { TAU } from '../../maths/constants.js' import * as mat4 from '../../maths/mat4/index.js' -import { mirrorX } from '../transforms/index.js' +import { mirrorX } from '../transforms/mirror.js' import * as geom2 from '../../geometries/geom2/index.js' import * as slice from '../../geometries/slice/index.js' diff --git a/packages/modeling/src/operations/extrusions/project.js b/packages/modeling/src/operations/extrusions/project.js index 8a5b68cda..22f445864 100644 --- a/packages/modeling/src/operations/extrusions/project.js +++ b/packages/modeling/src/operations/extrusions/project.js @@ -1,6 +1,7 @@ -import { flatten } from '../../utils/index.js' +import { flatten } from '../../utils/flatten.js' + +import { aboutEqualNormals } from '../../maths/utils/aboutEqualNormals.js' -import { aboutEqualNormals } from '../../maths/utils/index.js' import * as plane from '../../maths/plane/index.js' import * as mat4 from '../../maths/mat4/index.js' import * as vec2 from '../../maths/vec2/index.js' @@ -9,7 +10,7 @@ import * as geom2 from '../../geometries/geom2/index.js' import * as geom3 from '../../geometries/geom3/index.js' import * as poly3 from '../../geometries/poly3/index.js' -import { measureEpsilon } from '../../measurements/index.js' +import { measureEpsilon } from '../../measurements/measureEpsilon.js' import { unionGeom2 } from '../booleans/unionGeom2.js' diff --git a/packages/modeling/src/operations/hulls/hull.js b/packages/modeling/src/operations/hulls/hull.js index 234bc5225..12ad594f8 100644 --- a/packages/modeling/src/operations/hulls/hull.js +++ b/packages/modeling/src/operations/hulls/hull.js @@ -1,4 +1,5 @@ -import { areAllShapesTheSameType, flatten } from '../../utils/index.js' +import { areAllShapesTheSameType } from '../../utils/areAllShapesTheSameType.js' +import { flatten } from '../../utils/flatten.js' import * as geom2 from '../../geometries/geom2/index.js' import * as geom3 from '../../geometries/geom3/index.js' diff --git a/packages/modeling/src/operations/hulls/hullChain.js b/packages/modeling/src/operations/hulls/hullChain.js index 34449f86c..ba1240020 100644 --- a/packages/modeling/src/operations/hulls/hullChain.js +++ b/packages/modeling/src/operations/hulls/hullChain.js @@ -1,6 +1,6 @@ -import { flatten } from '../../utils/index.js' +import { flatten } from '../../utils/flatten.js' -import { union } from '../booleans/index.js' +import { union } from '../booleans/union.js' import { hull } from './hull.js' diff --git a/packages/modeling/src/operations/hulls/hullGeom2.js b/packages/modeling/src/operations/hulls/hullGeom2.js index 4ee81f62f..3edfcca0d 100644 --- a/packages/modeling/src/operations/hulls/hullGeom2.js +++ b/packages/modeling/src/operations/hulls/hullGeom2.js @@ -1,4 +1,4 @@ -import { flatten } from '../../utils/index.js' +import { flatten } from '../../utils/flatten.js' import * as geom2 from '../../geometries/geom2/index.js' diff --git a/packages/modeling/src/operations/hulls/hullGeom3.js b/packages/modeling/src/operations/hulls/hullGeom3.js index 837603d3f..62939c4bd 100644 --- a/packages/modeling/src/operations/hulls/hullGeom3.js +++ b/packages/modeling/src/operations/hulls/hullGeom3.js @@ -1,4 +1,4 @@ -import { flatten } from '../../utils/index.js' +import { flatten } from '../../utils/flatten.js' import * as geom3 from '../../geometries/geom3/index.js' import * as poly3 from '../../geometries/poly3/index.js' diff --git a/packages/modeling/src/operations/hulls/hullPath2.js b/packages/modeling/src/operations/hulls/hullPath2.js index e680c400d..ed4b8304f 100644 --- a/packages/modeling/src/operations/hulls/hullPath2.js +++ b/packages/modeling/src/operations/hulls/hullPath2.js @@ -1,4 +1,4 @@ -import { flatten } from '../../utils/index.js' +import { flatten } from '../../utils/flatten.js' import * as path2 from '../../geometries/path2/index.js' diff --git a/packages/modeling/src/operations/modifiers/generalize.js b/packages/modeling/src/operations/modifiers/generalize.js index 03443758c..3e994387c 100644 --- a/packages/modeling/src/operations/modifiers/generalize.js +++ b/packages/modeling/src/operations/modifiers/generalize.js @@ -1,6 +1,6 @@ -import { flatten } from '../../utils/index.js' +import { flatten } from '../../utils/flatten.js' -import { measureEpsilon } from '../../measurements/index.js' +import { measureEpsilon } from '../../measurements/measureEpsilon.js' import * as geom2 from '../../geometries/geom2/index.js' import * as geom3 from '../../geometries/geom3/index.js' diff --git a/packages/modeling/src/operations/modifiers/mergePolygons.js b/packages/modeling/src/operations/modifiers/mergePolygons.js index 678266a96..6ca3ce188 100644 --- a/packages/modeling/src/operations/modifiers/mergePolygons.js +++ b/packages/modeling/src/operations/modifiers/mergePolygons.js @@ -1,4 +1,4 @@ -import { aboutEqualNormals } from '../../maths/utils/index.js' +import { aboutEqualNormals } from '../../maths/utils/aboutEqualNormals.js' import * as vec3 from '../../maths/vec3/index.js' diff --git a/packages/modeling/src/operations/modifiers/reTesselateCoplanarPolygons.js b/packages/modeling/src/operations/modifiers/reTesselateCoplanarPolygons.js index 14439477f..30431210b 100644 --- a/packages/modeling/src/operations/modifiers/reTesselateCoplanarPolygons.js +++ b/packages/modeling/src/operations/modifiers/reTesselateCoplanarPolygons.js @@ -4,7 +4,8 @@ import { interpolateBetween2DPointsForY, OrthonormalFormula } from '../../maths/ import * as line2 from '../../maths/line2/index.js' import * as vec2 from '../../maths/vec2/index.js' -import { insertSorted, fnNumberSort } from '../../utils/index.js' +import { insertSorted } from '../../utils/insertSorted.js' +import { fnNumberSort } from '../../utils/fnNumberSort.js' import * as poly3 from '../../geometries/poly3/index.js' diff --git a/packages/modeling/src/operations/modifiers/retessellate.js b/packages/modeling/src/operations/modifiers/retessellate.js index cf6bfe772..ceb8f2af6 100644 --- a/packages/modeling/src/operations/modifiers/retessellate.js +++ b/packages/modeling/src/operations/modifiers/retessellate.js @@ -1,4 +1,4 @@ -import { aboutEqualNormals } from '../../maths/utils/index.js' +import { aboutEqualNormals } from '../../maths/utils/aboutEqualNormals.js' import * as geom3 from '../../geometries/geom3/index.js' import * as poly3 from '../../geometries/poly3/index.js' diff --git a/packages/modeling/src/operations/modifiers/snap.js b/packages/modeling/src/operations/modifiers/snap.js index e9f4c717e..8fe1a8208 100644 --- a/packages/modeling/src/operations/modifiers/snap.js +++ b/packages/modeling/src/operations/modifiers/snap.js @@ -1,4 +1,4 @@ -import { flatten } from '../../utils/index.js' +import { flatten } from '../../utils/flatten.js' import * as vec2 from '../../maths/vec2/index.js' @@ -7,7 +7,7 @@ import * as geom3 from '../../geometries/geom3/index.js' import * as path2 from '../../geometries/path2/index.js' import * as poly2 from '../../geometries/poly2/index.js' -import { measureEpsilon } from '../../measurements/index.js' +import { measureEpsilon } from '../../measurements/measureEpsilon.js' import { snapPolygons } from './snapPolygons.js' diff --git a/packages/modeling/src/operations/transforms/align.js b/packages/modeling/src/operations/transforms/align.js index b47eeaa3f..997d7fa5e 100644 --- a/packages/modeling/src/operations/transforms/align.js +++ b/packages/modeling/src/operations/transforms/align.js @@ -1,6 +1,7 @@ -import { flatten, padArrayToLength } from '../../utils/index.js' +import { flatten } from '../../utils/flatten.js' +import { padArrayToLength } from '../../utils/padArrayToLength.js' -import { measureAggregateBoundingBox } from '../../measurements/index.js' +import { measureAggregateBoundingBox } from '../../measurements/measureAggregateBoundingBox.js' import { translate } from './translate.js' diff --git a/packages/modeling/src/operations/transforms/center.js b/packages/modeling/src/operations/transforms/center.js index 4d59a5ced..6f653e7e5 100644 --- a/packages/modeling/src/operations/transforms/center.js +++ b/packages/modeling/src/operations/transforms/center.js @@ -1,10 +1,10 @@ -import { flatten } from '../../utils/index.js' +import { flatten } from '../../utils/flatten.js' import * as geom2 from '../../geometries/geom2/index.js' import * as geom3 from '../../geometries/geom3/index.js' import * as path2 from '../../geometries/path2/index.js' -import { measureBoundingBox } from '../../measurements/index.js' +import { measureBoundingBox } from '../../measurements/measureBoundingBox.js' import { translate } from './translate.js' diff --git a/packages/modeling/src/operations/transforms/mirror.js b/packages/modeling/src/operations/transforms/mirror.js index a2f9c4f83..507af51f5 100644 --- a/packages/modeling/src/operations/transforms/mirror.js +++ b/packages/modeling/src/operations/transforms/mirror.js @@ -1,4 +1,4 @@ -import { flatten } from '../../utils/index.js' +import { flatten } from '../../utils/flatten.js' import * as mat4 from '../../maths/mat4/index.js' import * as plane from '../../maths/plane/index.js' diff --git a/packages/modeling/src/operations/transforms/rotate.js b/packages/modeling/src/operations/transforms/rotate.js index 6f251aa8f..92e36da4c 100644 --- a/packages/modeling/src/operations/transforms/rotate.js +++ b/packages/modeling/src/operations/transforms/rotate.js @@ -1,4 +1,4 @@ -import { flatten } from '../../utils/index.js' +import { flatten } from '../../utils/flatten.js' import * as mat4 from '../../maths/mat4/index.js' diff --git a/packages/modeling/src/operations/transforms/scale.js b/packages/modeling/src/operations/transforms/scale.js index be3b4193a..c0dcebe33 100644 --- a/packages/modeling/src/operations/transforms/scale.js +++ b/packages/modeling/src/operations/transforms/scale.js @@ -1,4 +1,4 @@ -import { flatten } from '../../utils/index.js' +import { flatten } from '../../utils/flatten.js' import * as mat4 from '../../maths/mat4/index.js' diff --git a/packages/modeling/src/operations/transforms/transform.js b/packages/modeling/src/operations/transforms/transform.js index 9730f4ad9..5144ceb7e 100644 --- a/packages/modeling/src/operations/transforms/transform.js +++ b/packages/modeling/src/operations/transforms/transform.js @@ -1,4 +1,4 @@ -import { flatten } from '../../utils/index.js' +import { flatten } from '../../utils/flatten.js' import * as geom2 from '../../geometries/geom2/index.js' import * as geom3 from '../../geometries/geom3/index.js' diff --git a/packages/modeling/src/operations/transforms/translate.js b/packages/modeling/src/operations/transforms/translate.js index 9e3124bca..4165a5766 100644 --- a/packages/modeling/src/operations/transforms/translate.js +++ b/packages/modeling/src/operations/transforms/translate.js @@ -1,4 +1,4 @@ -import { flatten } from '../../utils/index.js' +import { flatten } from '../../utils/flatten.js' import * as mat4 from '../../maths/mat4/index.js' diff --git a/packages/modeling/src/primitives/torus.js b/packages/modeling/src/primitives/torus.js index b32772851..d2fd73999 100644 --- a/packages/modeling/src/primitives/torus.js +++ b/packages/modeling/src/primitives/torus.js @@ -1,7 +1,8 @@ import { TAU } from '../maths/constants.js' -import { extrudeRotate } from '../operations/extrusions/index.js' -import { rotate, translate } from '../operations/transforms/index.js' +import { extrudeRotate } from '../operations/extrusions/extrudeRotate.js' +import { rotate } from '../operations/transforms/rotate.js' +import { translate } from '../operations/transforms/translate.js' import { circle } from './circle.js' diff --git a/packages/modeling/src/text/vectorText.js b/packages/modeling/src/text/vectorText.js index 5befa0273..5dbd50910 100644 --- a/packages/modeling/src/text/vectorText.js +++ b/packages/modeling/src/text/vectorText.js @@ -1,5 +1,5 @@ -import { mat4 } from '../maths/index.js' -import { path2 } from '../geometries/index.js' +import * as mat4 from '../maths/mat4/index.js' +import * as path2 from '../geometries/path2/index.js' import { vectorChar } from './vectorChar.js' import { vectorParams } from './vectorParams.js' From df4d0e99f450a0f11f4b30fa062270f0e63565eb Mon Sep 17 00:00:00 2001 From: z3dev Date: Sun, 2 Jul 2023 10:08:55 +0900 Subject: [PATCH 2/2] build(modeling): latest versions of UMD and ES packages --- packages/modeling/dist/jscad-modeling.es.js | 17497 +++++++++++++++ packages/modeling/dist/jscad-modeling.min.js | 18713 +++++++++++++++-- packages/modeling/package.json | 2 +- 3 files changed, 35018 insertions(+), 1194 deletions(-) create mode 100644 packages/modeling/dist/jscad-modeling.es.js diff --git a/packages/modeling/dist/jscad-modeling.es.js b/packages/modeling/dist/jscad-modeling.es.js new file mode 100644 index 000000000..9d346204c --- /dev/null +++ b/packages/modeling/dist/jscad-modeling.es.js @@ -0,0 +1,17497 @@ +/** + * Constructive Solid Geometry (CSG) Library for JSCAD + * @jscad/modeling + * Version 2.10.0 + * MIT License + */ + +/** + * @alias module:modeling/colors.cssColors + * @see CSS color table from http://www.w3.org/TR/css3-color/ + * @enum {Array} + * @example + * let newShape = colorize(cssColors.red, oldShape) + */ +const cssColors = { + // basic color keywords + black: [0 / 255, 0 / 255, 0 / 255], + silver: [192 / 255, 192 / 255, 192 / 255], + gray: [128 / 255, 128 / 255, 128 / 255], + white: [255 / 255, 255 / 255, 255 / 255], + maroon: [128 / 255, 0 / 255, 0 / 255], + red: [255 / 255, 0 / 255, 0 / 255], + purple: [128 / 255, 0 / 255, 128 / 255], + fuchsia: [255 / 255, 0 / 255, 255 / 255], + green: [0 / 255, 128 / 255, 0 / 255], + lime: [0 / 255, 255 / 255, 0 / 255], + olive: [128 / 255, 128 / 255, 0 / 255], + yellow: [255 / 255, 255 / 255, 0 / 255], + navy: [0 / 255, 0 / 255, 128 / 255], + blue: [0 / 255, 0 / 255, 255 / 255], + teal: [0 / 255, 128 / 255, 128 / 255], + aqua: [0 / 255, 255 / 255, 255 / 255], + // extended color keywords + aliceblue: [240 / 255, 248 / 255, 255 / 255], + antiquewhite: [250 / 255, 235 / 255, 215 / 255], + // 'aqua': [ 0 / 255, 255 / 255, 255 / 255 ], + aquamarine: [127 / 255, 255 / 255, 212 / 255], + azure: [240 / 255, 255 / 255, 255 / 255], + beige: [245 / 255, 245 / 255, 220 / 255], + bisque: [255 / 255, 228 / 255, 196 / 255], + // 'black': [ 0 / 255, 0 / 255, 0 / 255 ], + blanchedalmond: [255 / 255, 235 / 255, 205 / 255], + // 'blue': [ 0 / 255, 0 / 255, 255 / 255 ], + blueviolet: [138 / 255, 43 / 255, 226 / 255], + brown: [165 / 255, 42 / 255, 42 / 255], + burlywood: [222 / 255, 184 / 255, 135 / 255], + cadetblue: [95 / 255, 158 / 255, 160 / 255], + chartreuse: [127 / 255, 255 / 255, 0 / 255], + chocolate: [210 / 255, 105 / 255, 30 / 255], + coral: [255 / 255, 127 / 255, 80 / 255], + cornflowerblue: [100 / 255, 149 / 255, 237 / 255], + cornsilk: [255 / 255, 248 / 255, 220 / 255], + crimson: [220 / 255, 20 / 255, 60 / 255], + cyan: [0 / 255, 255 / 255, 255 / 255], + darkblue: [0 / 255, 0 / 255, 139 / 255], + darkcyan: [0 / 255, 139 / 255, 139 / 255], + darkgoldenrod: [184 / 255, 134 / 255, 11 / 255], + darkgray: [169 / 255, 169 / 255, 169 / 255], + darkgreen: [0 / 255, 100 / 255, 0 / 255], + darkgrey: [169 / 255, 169 / 255, 169 / 255], + darkkhaki: [189 / 255, 183 / 255, 107 / 255], + darkmagenta: [139 / 255, 0 / 255, 139 / 255], + darkolivegreen: [85 / 255, 107 / 255, 47 / 255], + darkorange: [255 / 255, 140 / 255, 0 / 255], + darkorchid: [153 / 255, 50 / 255, 204 / 255], + darkred: [139 / 255, 0 / 255, 0 / 255], + darksalmon: [233 / 255, 150 / 255, 122 / 255], + darkseagreen: [143 / 255, 188 / 255, 143 / 255], + darkslateblue: [72 / 255, 61 / 255, 139 / 255], + darkslategray: [47 / 255, 79 / 255, 79 / 255], + darkslategrey: [47 / 255, 79 / 255, 79 / 255], + darkturquoise: [0 / 255, 206 / 255, 209 / 255], + darkviolet: [148 / 255, 0 / 255, 211 / 255], + deeppink: [255 / 255, 20 / 255, 147 / 255], + deepskyblue: [0 / 255, 191 / 255, 255 / 255], + dimgray: [105 / 255, 105 / 255, 105 / 255], + dimgrey: [105 / 255, 105 / 255, 105 / 255], + dodgerblue: [30 / 255, 144 / 255, 255 / 255], + firebrick: [178 / 255, 34 / 255, 34 / 255], + floralwhite: [255 / 255, 250 / 255, 240 / 255], + forestgreen: [34 / 255, 139 / 255, 34 / 255], + // 'fuchsia': [ 255 / 255, 0 / 255, 255 / 255 ], + gainsboro: [220 / 255, 220 / 255, 220 / 255], + ghostwhite: [248 / 255, 248 / 255, 255 / 255], + gold: [255 / 255, 215 / 255, 0 / 255], + goldenrod: [218 / 255, 165 / 255, 32 / 255], + // 'gray': [ 128 / 255, 128 / 255, 128 / 255 ], + // 'green': [ 0 / 255, 128 / 255, 0 / 255 ], + greenyellow: [173 / 255, 255 / 255, 47 / 255], + grey: [128 / 255, 128 / 255, 128 / 255], + honeydew: [240 / 255, 255 / 255, 240 / 255], + hotpink: [255 / 255, 105 / 255, 180 / 255], + indianred: [205 / 255, 92 / 255, 92 / 255], + indigo: [75 / 255, 0 / 255, 130 / 255], + ivory: [255 / 255, 255 / 255, 240 / 255], + khaki: [240 / 255, 230 / 255, 140 / 255], + lavender: [230 / 255, 230 / 255, 250 / 255], + lavenderblush: [255 / 255, 240 / 255, 245 / 255], + lawngreen: [124 / 255, 252 / 255, 0 / 255], + lemonchiffon: [255 / 255, 250 / 255, 205 / 255], + lightblue: [173 / 255, 216 / 255, 230 / 255], + lightcoral: [240 / 255, 128 / 255, 128 / 255], + lightcyan: [224 / 255, 255 / 255, 255 / 255], + lightgoldenrodyellow: [250 / 255, 250 / 255, 210 / 255], + lightgray: [211 / 255, 211 / 255, 211 / 255], + lightgreen: [144 / 255, 238 / 255, 144 / 255], + lightgrey: [211 / 255, 211 / 255, 211 / 255], + lightpink: [255 / 255, 182 / 255, 193 / 255], + lightsalmon: [255 / 255, 160 / 255, 122 / 255], + lightseagreen: [32 / 255, 178 / 255, 170 / 255], + lightskyblue: [135 / 255, 206 / 255, 250 / 255], + lightslategray: [119 / 255, 136 / 255, 153 / 255], + lightslategrey: [119 / 255, 136 / 255, 153 / 255], + lightsteelblue: [176 / 255, 196 / 255, 222 / 255], + lightyellow: [255 / 255, 255 / 255, 224 / 255], + // 'lime': [ 0 / 255, 255 / 255, 0 / 255 ], + limegreen: [50 / 255, 205 / 255, 50 / 255], + linen: [250 / 255, 240 / 255, 230 / 255], + magenta: [255 / 255, 0 / 255, 255 / 255], + // 'maroon': [ 128 / 255, 0 / 255, 0 / 255 ], + mediumaquamarine: [102 / 255, 205 / 255, 170 / 255], + mediumblue: [0 / 255, 0 / 255, 205 / 255], + mediumorchid: [186 / 255, 85 / 255, 211 / 255], + mediumpurple: [147 / 255, 112 / 255, 219 / 255], + mediumseagreen: [60 / 255, 179 / 255, 113 / 255], + mediumslateblue: [123 / 255, 104 / 255, 238 / 255], + mediumspringgreen: [0 / 255, 250 / 255, 154 / 255], + mediumturquoise: [72 / 255, 209 / 255, 204 / 255], + mediumvioletred: [199 / 255, 21 / 255, 133 / 255], + midnightblue: [25 / 255, 25 / 255, 112 / 255], + mintcream: [245 / 255, 255 / 255, 250 / 255], + mistyrose: [255 / 255, 228 / 255, 225 / 255], + moccasin: [255 / 255, 228 / 255, 181 / 255], + navajowhite: [255 / 255, 222 / 255, 173 / 255], + // 'navy': [ 0 / 255, 0 / 255, 128 / 255 ], + oldlace: [253 / 255, 245 / 255, 230 / 255], + // 'olive': [ 128 / 255, 128 / 255, 0 / 255 ], + olivedrab: [107 / 255, 142 / 255, 35 / 255], + orange: [255 / 255, 165 / 255, 0 / 255], + orangered: [255 / 255, 69 / 255, 0 / 255], + orchid: [218 / 255, 112 / 255, 214 / 255], + palegoldenrod: [238 / 255, 232 / 255, 170 / 255], + palegreen: [152 / 255, 251 / 255, 152 / 255], + paleturquoise: [175 / 255, 238 / 255, 238 / 255], + palevioletred: [219 / 255, 112 / 255, 147 / 255], + papayawhip: [255 / 255, 239 / 255, 213 / 255], + peachpuff: [255 / 255, 218 / 255, 185 / 255], + peru: [205 / 255, 133 / 255, 63 / 255], + pink: [255 / 255, 192 / 255, 203 / 255], + plum: [221 / 255, 160 / 255, 221 / 255], + powderblue: [176 / 255, 224 / 255, 230 / 255], + // 'purple': [ 128 / 255, 0 / 255, 128 / 255 ], + // 'red': [ 255 / 255, 0 / 255, 0 / 255 ], + rosybrown: [188 / 255, 143 / 255, 143 / 255], + royalblue: [65 / 255, 105 / 255, 225 / 255], + saddlebrown: [139 / 255, 69 / 255, 19 / 255], + salmon: [250 / 255, 128 / 255, 114 / 255], + sandybrown: [244 / 255, 164 / 255, 96 / 255], + seagreen: [46 / 255, 139 / 255, 87 / 255], + seashell: [255 / 255, 245 / 255, 238 / 255], + sienna: [160 / 255, 82 / 255, 45 / 255], + // 'silver': [ 192 / 255, 192 / 255, 192 / 255 ], + skyblue: [135 / 255, 206 / 255, 235 / 255], + slateblue: [106 / 255, 90 / 255, 205 / 255], + slategray: [112 / 255, 128 / 255, 144 / 255], + slategrey: [112 / 255, 128 / 255, 144 / 255], + snow: [255 / 255, 250 / 255, 250 / 255], + springgreen: [0 / 255, 255 / 255, 127 / 255], + steelblue: [70 / 255, 130 / 255, 180 / 255], + tan: [210 / 255, 180 / 255, 140 / 255], + // 'teal': [ 0 / 255, 128 / 255, 128 / 255 ], + thistle: [216 / 255, 191 / 255, 216 / 255], + tomato: [255 / 255, 99 / 255, 71 / 255], + turquoise: [64 / 255, 224 / 255, 208 / 255], + violet: [238 / 255, 130 / 255, 238 / 255], + wheat: [245 / 255, 222 / 255, 179 / 255], + // 'white': [ 255 / 255, 255 / 255, 255 / 255 ], + whitesmoke: [245 / 255, 245 / 255, 245 / 255], + // 'yellow': [ 255 / 255, 255 / 255, 0 / 255 ], + yellowgreen: [154 / 255, 205 / 255, 50 / 255] +}; + +/** + * Converts a CSS color name to RGB color. + * + * @param {String} s - the CSS color name + * @return {Array} the RGB color, or undefined if not found + * @alias module:modeling/colors.colorNameToRgb + * @example + * let mySphere = colorize(colorNameToRgb('lightblue'), sphere()) + */ +const colorNameToRgb = (s) => cssColors[s.toLowerCase()]; + +/** + * Flatten the given list of arguments into a single flat array. + * The arguments can be composed of multiple depths of objects and arrays. + * @param {Array} arr - list of arguments + * @returns {Array} a flat list of arguments + * @alias module:modeling/utils.flatten + */ +const flatten = (arr) => arr.reduce((acc, val) => Array.isArray(val) ? acc.concat(flatten(val)) : acc.concat(val), []); + +/** + * Performs a shallow clone of the given geometry. + * @param {geom2} geometry - the geometry to clone + * @returns {geom2} new geometry + * @alias module:modeling/geometries/geom2.clone + */ +const clone$b = (geometry) => Object.assign({}, geometry); + +/** + * Adds the two matrices (A+B). + * + * @param {mat4} out - receiving matrix + * @param {mat4} a - first operand + * @param {mat4} b - second operand + * @returns {mat4} out + * @alias module:modeling/maths/mat4.add + */ +const add$2 = (out, a, b) => { + out[0] = a[0] + b[0]; + out[1] = a[1] + b[1]; + out[2] = a[2] + b[2]; + out[3] = a[3] + b[3]; + out[4] = a[4] + b[4]; + out[5] = a[5] + b[5]; + out[6] = a[6] + b[6]; + out[7] = a[7] + b[7]; + out[8] = a[8] + b[8]; + out[9] = a[9] + b[9]; + out[10] = a[10] + b[10]; + out[11] = a[11] + b[11]; + out[12] = a[12] + b[12]; + out[13] = a[13] + b[13]; + out[14] = a[14] + b[14]; + out[15] = a[15] + b[15]; + return out +}; + +/** + * Represents a 4x4 matrix which is column-major (when typed out it looks row-major). + * See fromValues(). + * @typedef {Array} mat4 + */ + +/** + * Creates a new identity matrix. + * + * @returns {mat4} a new matrix + * @alias module:modeling/maths/mat4.create + */ +const create$c = () => [ + 1, 0, 0, 0, + 0, 1, 0, 0, + 0, 0, 1, 0, + 0, 0, 0, 1 +]; + +/** + * Creates a clone of the given matrix. + * + * @param {mat4} matrix - matrix to clone + * @returns {mat4} a new matrix + * @alias module:modeling/maths/mat4.clone + */ +const clone$a = (matrix) => { + const out = create$c(); + out[0] = matrix[0]; + out[1] = matrix[1]; + out[2] = matrix[2]; + out[3] = matrix[3]; + out[4] = matrix[4]; + out[5] = matrix[5]; + out[6] = matrix[6]; + out[7] = matrix[7]; + out[8] = matrix[8]; + out[9] = matrix[9]; + out[10] = matrix[10]; + out[11] = matrix[11]; + out[12] = matrix[12]; + out[13] = matrix[13]; + out[14] = matrix[14]; + out[15] = matrix[15]; + return out +}; + +/** + * Creates a copy of the given matrix. + * + * @param {mat4} out - receiving matrix + * @param {mat4} matrix - matrix to copy + * @returns {mat4} out + * @alias module:modeling/maths/mat4.copy + */ +const copy$5 = (out, matrix) => { + out[0] = matrix[0]; + out[1] = matrix[1]; + out[2] = matrix[2]; + out[3] = matrix[3]; + out[4] = matrix[4]; + out[5] = matrix[5]; + out[6] = matrix[6]; + out[7] = matrix[7]; + out[8] = matrix[8]; + out[9] = matrix[9]; + out[10] = matrix[10]; + out[11] = matrix[11]; + out[12] = matrix[12]; + out[13] = matrix[13]; + out[14] = matrix[14]; + out[15] = matrix[15]; + return out +}; + +/** + * Creates an inverted copy of the given matrix. + * @author Julian Lloyd + * code from https://github.com/jlmakes/rematrix/blob/master/src/index.js + * + * @param {mat4} out - receiving matrix + * @param {mat4} matrix - matrix to invert + * @returns {mat4} out + * @alias module:modeling/maths/mat4.invert + */ +const invert$2 = (out, matrix) => { + const a00 = matrix[0]; + const a01 = matrix[1]; + const a02 = matrix[2]; + const a03 = matrix[3]; + const a10 = matrix[4]; + const a11 = matrix[5]; + const a12 = matrix[6]; + const a13 = matrix[7]; + const a20 = matrix[8]; + const a21 = matrix[9]; + const a22 = matrix[10]; + const a23 = matrix[11]; + const a30 = matrix[12]; + const a31 = matrix[13]; + const a32 = matrix[14]; + const a33 = matrix[15]; + + const b00 = a00 * a11 - a01 * a10; + const b01 = a00 * a12 - a02 * a10; + const b02 = a00 * a13 - a03 * a10; + const b03 = a01 * a12 - a02 * a11; + const b04 = a01 * a13 - a03 * a11; + const b05 = a02 * a13 - a03 * a12; + const b06 = a20 * a31 - a21 * a30; + const b07 = a20 * a32 - a22 * a30; + const b08 = a20 * a33 - a23 * a30; + const b09 = a21 * a32 - a22 * a31; + const b10 = a21 * a33 - a23 * a31; + const b11 = a22 * a33 - a23 * a32; + + // Calculate the determinant + let det = + b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06; + + if (!det) { + return null + } + det = 1.0 / det; + + out[0] = (a11 * b11 - a12 * b10 + a13 * b09) * det; + out[1] = (a02 * b10 - a01 * b11 - a03 * b09) * det; + out[2] = (a31 * b05 - a32 * b04 + a33 * b03) * det; + out[3] = (a22 * b04 - a21 * b05 - a23 * b03) * det; + out[4] = (a12 * b08 - a10 * b11 - a13 * b07) * det; + out[5] = (a00 * b11 - a02 * b08 + a03 * b07) * det; + out[6] = (a32 * b02 - a30 * b05 - a33 * b01) * det; + out[7] = (a20 * b05 - a22 * b02 + a23 * b01) * det; + out[8] = (a10 * b10 - a11 * b08 + a13 * b06) * det; + out[9] = (a01 * b08 - a00 * b10 - a03 * b06) * det; + out[10] = (a30 * b04 - a31 * b02 + a33 * b00) * det; + out[11] = (a21 * b02 - a20 * b04 - a23 * b00) * det; + out[12] = (a11 * b07 - a10 * b09 - a12 * b06) * det; + out[13] = (a00 * b09 - a01 * b07 + a02 * b06) * det; + out[14] = (a31 * b01 - a30 * b03 - a32 * b00) * det; + out[15] = (a20 * b03 - a21 * b01 + a22 * b00) * det; + + return out +}; + +/** + * Returns whether the matrices have exactly the same elements in the same position. + * + * @param {mat4} a - first matrix + * @param {mat4} b - second matrix + * @returns {Boolean} true if the matrices are equal + * @alias module:modeling/maths/mat4.equals + */ +const equals$8 = (a, b) => ( + a[0] === b[0] && a[1] === b[1] && a[2] === b[2] && a[3] === b[3] && + a[4] === b[4] && a[5] === b[5] && a[6] === b[6] && a[7] === b[7] && + a[8] === b[8] && a[9] === b[9] && a[10] === b[10] && a[11] === b[11] && + a[12] === b[12] && a[13] === b[13] && a[14] === b[14] && a[15] === b[15] +); + +/** + * Epsilon used during determination of near zero distances. + * This should be 1 / spacialResolution. + * @default + * @alias module:modeling/maths.EPS + * @example + * const { EPS } = maths.constants + */ +const EPS = 1e-5; + +/** + * Smaller epsilon used for measuring near zero distances. + * @default + * @alias module:modeling/maths.NEPS + * @example + * const { NEPS } = maths.constants + */ +const NEPS = 1e-13; +// NEPS is derived from a series of tests to determine the optimal precision +// for comparing coplanar polygons, as provided by the sphere primitive at high +// segmentation. NEPS is for 64-bit Number values. + +/** + * The TAU property represents the ratio of the circumference of a circle to its radius. + * Approximately 6.28318530717958647692 + * @alias module:modeling/maths.TAU + * @default + * @example + * const { TAU } = maths.constants + */ +const TAU = Math.PI * 2; + +var constants = /*#__PURE__*/Object.freeze({ + __proto__: null, + EPS: EPS, + NEPS: NEPS, + TAU: TAU +}); + +/* + * Returns zero if n is within epsilon of zero, otherwise return n + */ +const rezero = (n) => Math.abs(n) < NEPS ? 0 : n; + +/** + * Return Math.sin but accurate for TAU / 4 rotations. + * Fixes rounding errors when sin should be 0. + * + * @param {Number} radians - angle in radians + * @returns {Number} sine of the given angle + * @alias module:modeling/utils.sin + * @example + * sin(TAU / 2) == 0 + * sin(TAU) == 0 + */ +const sin = (radians) => rezero(Math.sin(radians)); + +/** + * Return Math.cos but accurate for TAU / 4 rotations. + * Fixes rounding errors when cos should be 0. + * + * @param {Number} radians - angle in radians + * @returns {Number} cosine of the given angle + * @alias module:modeling/utils.cos + * @example + * cos(TAU * 0.25) == 0 + * cos(TAU * 0.75) == 0 + */ +const cos = (radians) => rezero(Math.cos(radians)); + +/** + * Set a matrix to the identity transform. + * + * @param {mat4} out - receiving matrix + * @returns {mat4} out + * @alias module:modeling/maths/mat4.identity + */ +const identity = (out) => { + out[0] = 1; + out[1] = 0; + out[2] = 0; + out[3] = 0; + out[4] = 0; + out[5] = 1; + out[6] = 0; + out[7] = 0; + out[8] = 0; + out[9] = 0; + out[10] = 1; + out[11] = 0; + out[12] = 0; + out[13] = 0; + out[14] = 0; + out[15] = 1; + return out +}; + +/** + * Creates a matrix from a given angle around a given axis + * This is equivalent to (but much faster than): + * + * mat4.identity(dest) + * mat4.rotate(dest, dest, rad, axis) + * + * @param {mat4} out - receiving matrix + * @param {Number} rad - angle to rotate the matrix by + * @param {vec3} axis - axis of which to rotate around + * @returns {mat4} out + * @alias module:modeling/maths/mat4.fromRotation + * @example + * let matrix = fromRotation(create(), TAU / 4, [0, 0, 3]) + */ +const fromRotation = (out, rad, axis) => { + let [x, y, z] = axis; + const lengthSquared = x * x + y * y + z * z; + + if (Math.abs(lengthSquared) < EPS) { + // axis is 0,0,0 or almost + return identity(out) + } + + const len = 1 / Math.sqrt(lengthSquared); + x *= len; + y *= len; + z *= len; + + const s = sin(rad); + const c = cos(rad); + const t = 1 - c; + + // Perform rotation-specific matrix multiplication + out[0] = x * x * t + c; + out[1] = y * x * t + z * s; + out[2] = z * x * t - y * s; + out[3] = 0; + out[4] = x * y * t - z * s; + out[5] = y * y * t + c; + out[6] = z * y * t + x * s; + out[7] = 0; + out[8] = x * z * t + y * s; + out[9] = y * z * t - x * s; + out[10] = z * z * t + c; + out[11] = 0; + out[12] = 0; + out[13] = 0; + out[14] = 0; + out[15] = 1; + return out +}; + +/** + * Creates a matrix from a vector scaling. + * This is equivalent to (but much faster than): + * + * mat4.identity(dest) + * mat4.scale(dest, dest, vec) + * + * @param {mat4} out - receiving matrix + * @param {vec3} vector - X, Y, Z factors by which to scale + * @returns {mat4} out + * @alias module:modeling/maths/mat4.fromScaling + * @example + * let matrix = fromScaling([1, 2, 0.5]) + */ +const fromScaling = (out, vector) => { + out[0] = vector[0]; + out[1] = 0; + out[2] = 0; + out[3] = 0; + out[4] = 0; + out[5] = vector[1]; + out[6] = 0; + out[7] = 0; + out[8] = 0; + out[9] = 0; + out[10] = vector[2]; + out[11] = 0; + out[12] = 0; + out[13] = 0; + out[14] = 0; + out[15] = 1; + return out +}; + +/** + * Creates a matrix from the given Tait–Bryan angles. + * + * Tait-Bryan Euler angle convention using active, intrinsic rotations around the axes in the order z-y-x. + * @see https://en.wikipedia.org/wiki/Euler_angles + * + * @param {mat4} out - receiving matrix + * @param {Number} yaw - Z rotation in radians + * @param {Number} pitch - Y rotation in radians + * @param {Number} roll - X rotation in radians + * @returns {mat4} out + * @alias module:modeling/maths/mat4.fromTaitBryanRotation + * @example + * let matrix = fromTaitBryanRotation(create(), TAU / 4, 0, TAU / 2) + */ +const fromTaitBryanRotation = (out, yaw, pitch, roll) => { + // precompute sines and cosines of Euler angles + const sy = sin(yaw); + const cy = cos(yaw); + const sp = sin(pitch); + const cp = cos(pitch); + const sr = sin(roll); + const cr = cos(roll); + + // create and populate rotation matrix + // left-hand-rule rotation + // const els = [ + // cp*cy, sr*sp*cy - cr*sy, sr*sy + cr*sp*cy, 0, + // cp*sy, cr*cy + sr*sp*sy, cr*sp*sy - sr*cy, 0, + // -sp, sr*cp, cr*cp, 0, + // 0, 0, 0, 1 + // ] + // right-hand-rule rotation + out[0] = cp * cy; + out[1] = cp * sy; + out[2] = -sp; + out[3] = 0; + out[4] = sr * sp * cy - cr * sy; + out[5] = cr * cy + sr * sp * sy; + out[6] = sr * cp; + out[7] = 0; + out[8] = sr * sy + cr * sp * cy; + out[9] = cr * sp * sy - sr * cy; + out[10] = cr * cp; + out[11] = 0; + out[12] = 0; + out[13] = 0; + out[14] = 0; + out[15] = 1; + return out +}; + +/** + * Creates a matrix from a vector translation. + * This is equivalent to (but much faster than): + * + * mat4.identity(dest) + * mat4.translate(dest, dest, vec) + * + * @param {mat4} out - receiving matrix + * @param {vec3} vector - offset (vector) of translation + * @returns {mat4} out + * @alias module:modeling/maths/mat4.fromTranslation + * @example + * let matrix = fromTranslation(create(), [1, 2, 3]) + */ +const fromTranslation = (out, vector) => { + out[0] = 1; + out[1] = 0; + out[2] = 0; + out[3] = 0; + out[4] = 0; + out[5] = 1; + out[6] = 0; + out[7] = 0; + out[8] = 0; + out[9] = 0; + out[10] = 1; + out[11] = 0; + out[12] = vector[0]; + out[13] = vector[1]; + out[14] = vector[2]; + out[15] = 1; + return out +}; + +/** + * Create a matrix with the given values. + * + * @param {Number} m00 Component in column 0, row 0 position (index 0) + * @param {Number} m01 Component in column 0, row 1 position (index 1) + * @param {Number} m02 Component in column 0, row 2 position (index 2) + * @param {Number} m03 Component in column 0, row 3 position (index 3) + * @param {Number} m10 Component in column 1, row 0 position (index 4) + * @param {Number} m11 Component in column 1, row 1 position (index 5) + * @param {Number} m12 Component in column 1, row 2 position (index 6) + * @param {Number} m13 Component in column 1, row 3 position (index 7) + * @param {Number} m20 Component in column 2, row 0 position (index 8) + * @param {Number} m21 Component in column 2, row 1 position (index 9) + * @param {Number} m22 Component in column 2, row 2 position (index 10) + * @param {Number} m23 Component in column 2, row 3 position (index 11) + * @param {Number} m30 Component in column 3, row 0 position (index 12) + * @param {Number} m31 Component in column 3, row 1 position (index 13) + * @param {Number} m32 Component in column 3, row 2 position (index 14) + * @param {Number} m33 Component in column 3, row 3 position (index 15) + * @returns {mat4} a new matrix + * @alias module:modeling/maths/mat4.fromValues + * @example + * let matrix = fromValues( + * 1, 0, 0, 1, + * 0, 1, 0, 0, + * 0, 0, 1, 0, + * 0, 0, 0, 1 + * ) + */ +const fromValues$4 = (m00, m01, m02, m03, m10, m11, m12, m13, m20, m21, m22, m23, m30, m31, m32, m33) => { + const out = create$c(); + out[0] = m00; + out[1] = m01; + out[2] = m02; + out[3] = m03; + out[4] = m10; + out[5] = m11; + out[6] = m12; + out[7] = m13; + out[8] = m20; + out[9] = m21; + out[10] = m22; + out[11] = m23; + out[12] = m30; + out[13] = m31; + out[14] = m32; + out[15] = m33; + return out +}; + +/** + * Calculates the absolute coordinates of the give vector. + * + * @param {vec3} out - receiving vector + * @param {vec3} vector - vector of reference + * @returns {vec3} out + * @alias module:modeling/maths/vec3.abs + */ +const abs$1 = (out, vector) => { + out[0] = Math.abs(vector[0]); + out[1] = Math.abs(vector[1]); + out[2] = Math.abs(vector[2]); + return out +}; + +/** + * Adds the coordinates of two vectors (A+B). + * + * @param {vec3} out - receiving vector + * @param {vec3} a - first operand + * @param {vec3} b - second operand + * @returns {vec3} out + * @alias module:modeling/maths/vec3.add + */ +const add$1 = (out, a, b) => { + out[0] = a[0] + b[0]; + out[1] = a[1] + b[1]; + out[2] = a[2] + b[2]; + return out +}; + +/** + * Calculates the dot product of two vectors. + * + * @param {vec3} a - first operand + * @param {vec3} b - second operand + * @returns {Number} dot product + * @alias module:modeling/maths/vec3.dot + */ +const dot$2 = (a, b) => a[0] * b[0] + a[1] * b[1] + a[2] * b[2]; + +/** + * Calculate the angle between two vectors. + * + * @param {vec3} a - first operand + * @param {vec3} b - second operand + * @returns {Number} angle (radians) + * @alias module:modeling/maths/vec3.angle + */ +const angle = (a, b) => { + const ax = a[0]; + const ay = a[1]; + const az = a[2]; + const bx = b[0]; + const by = b[1]; + const bz = b[2]; + const mag1 = Math.sqrt(ax * ax + ay * ay + az * az); + const mag2 = Math.sqrt(bx * bx + by * by + bz * bz); + const mag = mag1 * mag2; + const cosine = mag && dot$2(a, b) / mag; + return Math.acos(Math.min(Math.max(cosine, -1), 1)) +}; + +/** + * Represents a three dimensional vector. + * See fromValues(). + * @typedef {Array} vec3 + */ + +/** + * Creates a new vector initialized to [0,0,0]. + * + * @returns {vec3} a new vector + * @alias module:modeling/maths/vec3.create + */ +const create$b = () => [0, 0, 0]; + +/** + * Create a clone of the given vector. + * + * @param {vec3} vector - vector to clone + * @returns {vec3} a new vector + * @alias module:modeling/maths/vec3.clone + */ +const clone$9 = (vector) => { + const out = create$b(); + out[0] = vector[0]; + out[1] = vector[1]; + out[2] = vector[2]; + return out +}; + +/** + * Create a copy of the given vector. + * + * @param {vec3} out - receiving vector + * @param {vec3} vector - vector to copy + * @returns {vec3} out + * @alias module:modeling/maths/vec3.copy + */ +const copy$4 = (out, vector) => { + out[0] = vector[0]; + out[1] = vector[1]; + out[2] = vector[2]; + return out +}; + +/** + * Computes the cross product of the given vectors (AxB). + * + * @param {vec3} out - receiving vector + * @param {vec3} a - first operand + * @param {vec3} b - second operand + * @returns {vec3} out + * @alias module:modeling/maths/vec3.cross + */ +const cross$1 = (out, a, b) => { + const ax = a[0]; + const ay = a[1]; + const az = a[2]; + const bx = b[0]; + const by = b[1]; + const bz = b[2]; + + out[0] = ay * bz - az * by; + out[1] = az * bx - ax * bz; + out[2] = ax * by - ay * bx; + return out +}; + +/** + * Calculates the Euclidian distance between the given vectors. + * + * @param {vec3} a - first operand + * @param {vec3} b - second operand + * @returns {Number} distance + * @alias module:modeling/maths/vec3.distance + */ +const distance$1 = (a, b) => { + const x = b[0] - a[0]; + const y = b[1] - a[1]; + const z = b[2] - a[2]; + return Math.sqrt(x * x + y * y + z * z) +}; + +/** + * Divides the coordinates of two vectors (A/B). + * + * @param {vec3} out - receiving vector + * @param {vec3} a - dividend vector + * @param {vec3} b - divisor vector + * @returns {vec3} out + * @alias module:modeling/maths/vec3.divide + */ +const divide$1 = (out, a, b) => { + out[0] = a[0] / b[0]; + out[1] = a[1] / b[1]; + out[2] = a[2] / b[2]; + return out +}; + +/** + * Compare the given vectors for equality. + * + * @param {vec3} a - first operand + * @param {vec3} b - second operand + * @returns {Boolean} true if a and b are equal + * @alias module:modeling/maths/vec3.equals + */ +const equals$7 = (a, b) => (a[0] === b[0]) && (a[1] === b[1]) && (a[2] === b[2]); + +/** + * Creates a vector from a single scalar value. + * All components of the resulting vector have the given value. + * + * @param {vec3} out - receiving vector + * @param {Number} scalar + * @returns {vec3} out + * @alias module:modeling/maths/vec3.fromScalar + */ +const fromScalar$2 = (out, scalar) => { + out[0] = scalar; + out[1] = scalar; + out[2] = scalar; + return out +}; + +/** + * Creates a new vector initialized with the given values. + * + * @param {Number} x - X component + * @param {Number} y - Y component + * @param {Number} z - Z component + * @returns {vec3} a new vector + * @alias module:modeling/maths/vec3.fromValues + */ +const fromValues$3 = (x, y, z) => { + const out = create$b(); + out[0] = x; + out[1] = y; + out[2] = z; + return out +}; + +/** + * Create a new vector by extending a 2D vector with a Z value. + * + * @param {vec3} out - receiving vector + * @param {Array} vector - 2D vector of values + * @param {Number} [z=0] - Z value + * @returns {vec3} out + * @alias module:modeling/maths/vec3.fromVec2 + */ +const fromVec2 = (out, vector, z = 0) => { + out[0] = vector[0]; + out[1] = vector[1]; + out[2] = z; + return out +}; + +/** + * Calculates the length of a vector. + * + * @param {vec3} vector - vector to calculate length of + * @returns {Number} length + * @alias module:modeling/maths/vec3.length + */ +const length$1 = (vector) => { + const x = vector[0]; + const y = vector[1]; + const z = vector[2]; + return Math.sqrt(x * x + y * y + z * z) +}; + +/** + * Performs a linear interpolation between two vectors. + * + * @param {vec3} out - receiving vector + * @param {vec3} a - first operand + * @param {vec3} b - second operand + * @param {Number} t - interpolant (0.0 to 1.0) applied between the two inputs + * @returns {vec3} out + * @alias module:modeling/maths/vec3.lerp + */ +const lerp$1 = (out, a, b, t) => { + out[0] = a[0] + t * (b[0] - a[0]); + out[1] = a[1] + t * (b[1] - a[1]); + out[2] = a[2] + t * (b[2] - a[2]); + return out +}; + +/** + * Returns the maximum coordinates of the given vectors. + * + * @param {vec3} out - receiving vector + * @param {vec3} a - first operand + * @param {vec3} b - second operand + * @returns {vec3} out + * @alias module:modeling/maths/vec3.max + */ +const max$2 = (out, a, b) => { + out[0] = Math.max(a[0], b[0]); + out[1] = Math.max(a[1], b[1]); + out[2] = Math.max(a[2], b[2]); + return out +}; + +/** + * Returns the minimum coordinates of the given vectors. + * + * @param {vec3} out - receiving vector + * @param {vec3} a - first operand + * @param {vec3} b - second operand + * @returns {vec3} out + * @alias module:modeling/maths/vec3.min + */ +const min$2 = (out, a, b) => { + out[0] = Math.min(a[0], b[0]); + out[1] = Math.min(a[1], b[1]); + out[2] = Math.min(a[2], b[2]); + return out +}; + +/** + * Multiply the coordinates of the given vectors (A*B). + * + * @param {vec3} out - receiving vector + * @param {vec3} a - first operand + * @param {vec3} b - second operand + * @returns {vec3} out + * @alias module:modeling/maths/vec3.multiply + */ +const multiply$2 = (out, a, b) => { + out[0] = a[0] * b[0]; + out[1] = a[1] * b[1]; + out[2] = a[2] * b[2]; + return out +}; + +/** + * Negates the coordinates of the given vector. + * + * @param {vec3} out - receiving vector + * @param {vec3} vector - vector to negate + * @returns {vec3} out + * @alias module:modeling/maths/vec3.negate + */ +const negate$1 = (out, vector) => { + out[0] = -vector[0]; + out[1] = -vector[1]; + out[2] = -vector[2]; + return out +}; + +/** + * Normalize the given vector. + * + * @param {vec3} out - receiving vector + * @param {vec3} vector - vector to normalize + * @returns {vec3} out + * @alias module:modeling/maths/vec3.normalize + */ +const normalize$1 = (out, vector) => { + const x = vector[0]; + const y = vector[1]; + const z = vector[2]; + let len = x * x + y * y + z * z; + if (len > 0) { + len = 1 / Math.sqrt(len); + } + out[0] = x * len; + out[1] = y * len; + out[2] = z * len; + return out +}; + +/** + * Create a new vector that is orthogonal to the given vector. + * + * @param {vec3} out - receiving vector + * @param {vec3} vector - vector of reference + * @returns {vec3} out + * @alias module:modeling/maths/vec3.orthogonal + */ +const orthogonal = (out, vector) => { + const bV = abs$1(create$b(), vector); + const b0 = 0 + ((bV[0] < bV[1]) && (bV[0] < bV[2])); + const b1 = 0 + ((bV[1] <= bV[0]) && (bV[1] < bV[2])); + const b2 = 0 + ((bV[2] <= bV[0]) && (bV[2] <= bV[1])); + + return cross$1(out, vector, [b0, b1, b2]) +}; + +/** + * Rotate the given vector around the given origin, X axis only. + * + * @param {vec3} out - receiving vector + * @param {vec3} vector - vector to rotate + * @param {vec3} origin - origin of the rotation + * @param {Number} radians - angle of rotation + * @returns {vec3} out + * @alias module:modeling/maths/vec3.rotateX + */ +const rotateX$2 = (out, vector, origin, radians) => { + const p = []; + const r = []; + + // translate point to the origin + p[0] = vector[0] - origin[0]; + p[1] = vector[1] - origin[1]; + p[2] = vector[2] - origin[2]; + + // perform rotation + r[0] = p[0]; + r[1] = p[1] * Math.cos(radians) - p[2] * Math.sin(radians); + r[2] = p[1] * Math.sin(radians) + p[2] * Math.cos(radians); + + // translate to correct position + out[0] = r[0] + origin[0]; + out[1] = r[1] + origin[1]; + out[2] = r[2] + origin[2]; + + return out +}; + +/** + * Rotate the given vector around the given origin, Y axis only. + * + * @param {vec3} out - receiving vector + * @param {vec3} vector - vector to rotate + * @param {vec3} origin - origin of the rotation + * @param {Number} radians - angle of rotation + * @returns {vec3} out + * @alias module:modeling/maths/vec3.rotateY + */ +const rotateY$2 = (out, vector, origin, radians) => { + const p = []; + const r = []; + + // translate point to the origin + p[0] = vector[0] - origin[0]; + p[1] = vector[1] - origin[1]; + p[2] = vector[2] - origin[2]; + + // perform rotation + r[0] = p[2] * Math.sin(radians) + p[0] * Math.cos(radians); + r[1] = p[1]; + r[2] = p[2] * Math.cos(radians) - p[0] * Math.sin(radians); + + // translate to correct position + out[0] = r[0] + origin[0]; + out[1] = r[1] + origin[1]; + out[2] = r[2] + origin[2]; + + return out +}; + +/** + * Rotate the given vector around the given origin, Z axis only. + * + * @param {vec3} out - receiving vector + * @param {vec3} vector - vector to rotate + * @param {vec3} origin - origin of the rotation + * @param {Number} radians - angle of rotation in radians + * @returns {vec3} out + * @alias module:modeling/maths/vec3.rotateZ + */ +const rotateZ$2 = (out, vector, origin, radians) => { + const p = []; + const r = []; + // Translate point to the origin + p[0] = vector[0] - origin[0]; + p[1] = vector[1] - origin[1]; + + // perform rotation + r[0] = (p[0] * Math.cos(radians)) - (p[1] * Math.sin(radians)); + r[1] = (p[0] * Math.sin(radians)) + (p[1] * Math.cos(radians)); + + // translate to correct position + out[0] = r[0] + origin[0]; + out[1] = r[1] + origin[1]; + out[2] = vector[2]; + + return out +}; + +/** + * Scales the coordinates of the given vector by a scalar number. + * + * @param {vec3} out - receiving vector + * @param {vec3} vector - vector to scale + * @param {Number} amount - amount to scale the vector by + * @returns {vec3} out + * @alias module:modeling/maths/vec3.scale + */ +const scale$3 = (out, vector, amount) => { + out[0] = vector[0] * amount; + out[1] = vector[1] * amount; + out[2] = vector[2] * amount; + return out +}; + +/** + * Snaps the coordinates of the given vector to the given epsilon. + * + * @param {vec3} out - receiving vector + * @param {vec3} vector - vector to snap + * @param {Number} epsilon - epsilon of precision, less than 0 + * @returns {vec3} out + * @alias module:modeling/maths/vec3.snap + */ +const snap$2 = (out, vector, epsilon) => { + out[0] = Math.round(vector[0] / epsilon) * epsilon + 0; + out[1] = Math.round(vector[1] / epsilon) * epsilon + 0; + out[2] = Math.round(vector[2] / epsilon) * epsilon + 0; + return out +}; + +/** + * Calculates the squared distance between two vectors. + * + * @param {vec3} a - first operand + * @param {vec3} b - second operand + * @returns {Number} squared distance + * @alias module:modeling/maths/vec3.squaredDistance + */ +const squaredDistance$1 = (a, b) => { + const x = b[0] - a[0]; + const y = b[1] - a[1]; + const z = b[2] - a[2]; + return x * x + y * y + z * z +}; + +/** + * Calculates the squared length of the given vector. + * + * @param {vec3} vector - vector to calculate squared length of + * @returns {Number} squared length + * @alias module:modeling/maths/vec3.squaredLength + */ +const squaredLength$1 = (vector) => { + const x = vector[0]; + const y = vector[1]; + const z = vector[2]; + return x * x + y * y + z * z +}; + +/** + * Subtracts the coordinates of two vectors (A-B). + * + * @param {vec3} out - receiving vector + * @param {vec3} a - minuend vector + * @param {vec3} b - subtrahend vector + * @returns {vec3} out + * @alias module:modeling/maths/vec3.subtract + */ +const subtract$3 = (out, a, b) => { + out[0] = a[0] - b[0]; + out[1] = a[1] - b[1]; + out[2] = a[2] - b[2]; + return out +}; + +/** + * Convert the given vector to a representative string. + * @param {vec3} vec - vector of reference + * @returns {String} string representation + * @alias module:modeling/maths/vec3.toString + */ +const toString$b = (vec) => `[${vec[0].toFixed(7)}, ${vec[1].toFixed(7)}, ${vec[2].toFixed(7)}]`; + +/** + * Transforms the given vector using the given matrix. + * + * @param {vec3} out - receiving vector + * @param {vec3} vector - vector to transform + * @param {mat4} matrix - transform matrix + * @returns {vec3} out + * @alias module:modeling/maths/vec3.transform + */ +const transform$c = (out, vector, matrix) => { + const x = vector[0]; + const y = vector[1]; + const z = vector[2]; + let w = matrix[3] * x + matrix[7] * y + matrix[11] * z + matrix[15]; + w = w || 1.0; + out[0] = (matrix[0] * x + matrix[4] * y + matrix[8] * z + matrix[12]) / w; + out[1] = (matrix[1] * x + matrix[5] * y + matrix[9] * z + matrix[13]) / w; + out[2] = (matrix[2] * x + matrix[6] * y + matrix[10] * z + matrix[14]) / w; + return out +}; + +/** + * Represents a three dimensional vector. + * @see {@link vec3} for data structure information. + * @module modeling/maths/vec3 + */ + +var index$s = /*#__PURE__*/Object.freeze({ + __proto__: null, + abs: abs$1, + add: add$1, + angle: angle, + clone: clone$9, + copy: copy$4, + create: create$b, + cross: cross$1, + distance: distance$1, + divide: divide$1, + dot: dot$2, + equals: equals$7, + fromScalar: fromScalar$2, + fromValues: fromValues$3, + fromVec2: fromVec2, + length: length$1, + lerp: lerp$1, + max: max$2, + min: min$2, + multiply: multiply$2, + negate: negate$1, + normalize: normalize$1, + orthogonal: orthogonal, + rotateX: rotateX$2, + rotateY: rotateY$2, + rotateZ: rotateZ$2, + scale: scale$3, + snap: snap$2, + squaredDistance: squaredDistance$1, + squaredLength: squaredLength$1, + subtract: subtract$3, + toString: toString$b, + transform: transform$c +}); + +/** + * Create a matrix that rotates the given source to the given target vector. + * + * Each vector must be a directional vector with a length greater than zero. + * @see https://gist.github.com/kevinmoran/b45980723e53edeb8a5a43c49f134724 + * @param {mat4} out - receiving matrix + * @param {vec3} source - source vector + * @param {vec3} target - target vector + * @returns {mat4} a new matrix + * @alias module:modeling/maths/mat4.fromVectorRotation + * @example + * let matrix = fromVectorRotation(create(), [1, 2, 2], [-3, 3, 12]) + */ +const fromVectorRotation = (out, source, target) => { + const sourceNormal = normalize$1(create$b(), source); + const targetNormal = normalize$1(create$b(), target); + + const axis = cross$1(create$b(), targetNormal, sourceNormal); + const cosA = dot$2(targetNormal, sourceNormal); + if (cosA === -1.0) return fromRotation(out, Math.PI, orthogonal(axis, sourceNormal)) + + const k = 1 / (1 + cosA); + out[0] = (axis[0] * axis[0] * k) + cosA; + out[1] = (axis[1] * axis[0] * k) - axis[2]; + out[2] = (axis[2] * axis[0] * k) + axis[1]; + out[3] = 0; + + out[4] = (axis[0] * axis[1] * k) + axis[2]; + out[5] = (axis[1] * axis[1] * k) + cosA; + out[6] = (axis[2] * axis[1] * k) - axis[0]; + out[7] = 0; + + out[8] = (axis[0] * axis[2] * k) - axis[1]; + out[9] = (axis[1] * axis[2] * k) + axis[0]; + out[10] = (axis[2] * axis[2] * k) + cosA; + out[11] = 0; + + out[12] = 0; + out[13] = 0; + out[14] = 0; + out[15] = 1; + return out +}; + +/** + * Creates a matrix from the given angle around the X axis. + * This is equivalent to (but much faster than): + * + * mat4.identity(dest) + * mat4.rotateX(dest, dest, radians) + * + * @param {mat4} out - receiving matrix + * @param {Number} radians - angle to rotate the matrix by + * @returns {mat4} out + * @alias module:modeling/maths/mat4.fromXRotation + * @example + * let matrix = fromXRotation(create(), TAU / 4) + */ +const fromXRotation = (out, radians) => { + const s = sin(radians); + const c = cos(radians); + + // Perform axis-specific matrix multiplication + out[0] = 1; + out[1] = 0; + out[2] = 0; + out[3] = 0; + out[4] = 0; + out[5] = c; + out[6] = s; + out[7] = 0; + out[8] = 0; + out[9] = -s; + out[10] = c; + out[11] = 0; + out[12] = 0; + out[13] = 0; + out[14] = 0; + out[15] = 1; + return out +}; + +/** + * Creates a matrix from the given angle around the Y axis. + * This is equivalent to (but much faster than): + * + * mat4.identity(dest) + * mat4.rotateY(dest, dest, radians) + * + * @param {mat4} out - receiving matrix + * @param {Number} radians - angle to rotate the matrix by + * @returns {mat4} out + * @alias module:modeling/maths/mat4.fromYRotation + * @example + * let matrix = fromYRotation(create(), TAU / 4) + */ +const fromYRotation = (out, radians) => { + const s = sin(radians); + const c = cos(radians); + + // Perform axis-specific matrix multiplication + out[0] = c; + out[1] = 0; + out[2] = -s; + out[3] = 0; + out[4] = 0; + out[5] = 1; + out[6] = 0; + out[7] = 0; + out[8] = s; + out[9] = 0; + out[10] = c; + out[11] = 0; + out[12] = 0; + out[13] = 0; + out[14] = 0; + out[15] = 1; + return out +}; + +/** + * Creates a matrix from the given angle around the Z axis. + * This is equivalent to (but much faster than): + * + * mat4.identity(dest) + * mat4.rotateZ(dest, dest, radians) + * + * @param {mat4} out - receiving matrix + * @param {Number} radians - angle to rotate the matrix by + * @returns {mat4} out + * @alias module:modeling/maths/mat4.fromZRotation + * @example + * let matrix = fromZRotation(create(), TAU / 4) + */ +const fromZRotation = (out, radians) => { + const s = sin(radians); + const c = cos(radians); + + // Perform axis-specific matrix multiplication + out[0] = c; + out[1] = s; + out[2] = 0; + out[3] = 0; + out[4] = -s; + out[5] = c; + out[6] = 0; + out[7] = 0; + out[8] = 0; + out[9] = 0; + out[10] = 1; + out[11] = 0; + out[12] = 0; + out[13] = 0; + out[14] = 0; + out[15] = 1; + return out +}; + +/** + * Determine whether the given matrix is the identity transform. + * This is equivalent to (but much faster than): + * + * mat4.equals(mat4.create(), matrix) + * + * @param {mat4} matrix - the matrix + * @returns {Boolean} true if matrix is the identity transform + * @alias module:modeling/maths/mat4.isIdentity + * @example + * if (mat4.isIdentity(myMatrix)) ... + */ +const isIdentity = (matrix) => ( + matrix[0] === 1 && matrix[1] === 0 && matrix[2] === 0 && matrix[3] === 0 && + matrix[4] === 0 && matrix[5] === 1 && matrix[6] === 0 && matrix[7] === 0 && + matrix[8] === 0 && matrix[9] === 0 && matrix[10] === 1 && matrix[11] === 0 && + matrix[12] === 0 && matrix[13] === 0 && matrix[14] === 0 && matrix[15] === 1 +); + +/** + * Determine whether the given matrix is only translate and/or scale. + * This code returns true for TAU / 2 rotation as it can be interpreted as scale. + * + * @param {mat4} matrix - the matrix + * @returns {Boolean} true if matrix is for translate and/or scale + * @alias module:modeling/maths/mat4.isOnlyTransformScale + */ +const isOnlyTransformScale = (matrix) => ( + + // TODO check if it is worth the effort to add recognition of 90 deg rotations + + isZero(matrix[1]) && isZero(matrix[2]) && isZero(matrix[3]) && + isZero(matrix[4]) && isZero(matrix[6]) && isZero(matrix[7]) && + isZero(matrix[8]) && isZero(matrix[9]) && isZero(matrix[11]) && + matrix[15] === 1 +); + +const isZero = (num) => Math.abs(num) < Number.EPSILON; + +/** + * Determine whether the given matrix is a mirroring transformation. + * + * @param {mat4} matrix - matrix of reference + * @returns {Boolean} true if matrix is a mirroring transformation + * @alias module:modeling/maths/mat4.isMirroring + */ +const isMirroring = (matrix) => { + // const xVector = [matrix[0], matrix[4], matrix[8]] + // const yVector = [matrix[1], matrix[5], matrix[9]] + // const zVector = [matrix[2], matrix[6], matrix[10]] + + // for a true orthogonal, non-mirrored base, xVector.cross(yVector) == zVector + // If they have an opposite direction then we are mirroring + // calculate xVector.cross(yVector) + const x = matrix[4] * matrix[9] - matrix[8] * matrix[5]; + const y = matrix[8] * matrix[1] - matrix[0] * matrix[9]; + const z = matrix[0] * matrix[5] - matrix[4] * matrix[1]; + // calculate dot(cross, zVector) + const d = x * matrix[2] + y * matrix[6] + z * matrix[10]; + return (d < 0) +}; + +/** + * Create a matrix for mirroring about the given plane. + * + * @param {mat4} out - receiving matrix + * @param {vec4} plane - plane of which to mirror the matrix + * @returns {mat4} out + * @alias module:modeling/maths/mat4.mirrorByPlane + */ +const mirrorByPlane = (out, plane) => { + const [nx, ny, nz, w] = plane; + + out[0] = (1.0 - 2.0 * nx * nx); + out[1] = (-2.0 * ny * nx); + out[2] = (-2.0 * nz * nx); + out[3] = 0; + out[4] = (-2.0 * nx * ny); + out[5] = (1.0 - 2.0 * ny * ny); + out[6] = (-2.0 * nz * ny); + out[7] = 0; + out[8] = (-2.0 * nx * nz); + out[9] = (-2.0 * ny * nz); + out[10] = (1.0 - 2.0 * nz * nz); + out[11] = 0; + out[12] = (2.0 * nx * w); + out[13] = (2.0 * ny * w); + out[14] = (2.0 * nz * w); + out[15] = 1; + + return out +}; + +/** + * Multiplies the two matrices. + * + * @param {mat4} out - receiving matrix + * @param {mat4} a - first operand + * @param {mat4} b - second operand + * @returns {mat4} out + * @alias module:modeling/maths/mat4.multiply + */ +const multiply$1 = (out, a, b) => { + const a00 = a[0]; + const a01 = a[1]; + const a02 = a[2]; + const a03 = a[3]; + const a10 = a[4]; + const a11 = a[5]; + const a12 = a[6]; + const a13 = a[7]; + const a20 = a[8]; + const a21 = a[9]; + const a22 = a[10]; + const a23 = a[11]; + const a30 = a[12]; + const a31 = a[13]; + const a32 = a[14]; + const a33 = a[15]; + + // Cache only the current line of the second matrix + let b0 = b[0]; + let b1 = b[1]; + let b2 = b[2]; + let b3 = b[3]; + out[0] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30; + out[1] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31; + out[2] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32; + out[3] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33; + + b0 = b[4]; + b1 = b[5]; + b2 = b[6]; + b3 = b[7]; + out[4] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30; + out[5] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31; + out[6] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32; + out[7] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33; + + b0 = b[8]; + b1 = b[9]; + b2 = b[10]; + b3 = b[11]; + out[8] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30; + out[9] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31; + out[10] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32; + out[11] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33; + + b0 = b[12]; + b1 = b[13]; + b2 = b[14]; + b3 = b[15]; + out[12] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30; + out[13] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31; + out[14] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32; + out[15] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33; + return out +}; + +/** + * Rotates a matrix by the given angle about the given axis. + * + * @param {mat4} out - receiving matrix + * @param {mat4} matrix - matrix to rotate + * @param {Number} radians - angle to rotate the matrix by + * @param {vec3} axis - axis to rotate around + * @returns {mat4} out + * @alias module:modeling/maths/mat4.rotate + */ +const rotate$2 = (out, matrix, radians, axis) => { + let [x, y, z] = axis; + const lengthSquared = x * x + y * y + z * z; + + if (Math.abs(lengthSquared) < EPS) { + // axis is 0,0,0 or almost + return copy$5(out, matrix) + } + + const len = 1 / Math.sqrt(lengthSquared); + x *= len; + y *= len; + z *= len; + + const s = sin(radians); + const c = cos(radians); + const t = 1 - c; + + const a00 = matrix[0]; + const a01 = matrix[1]; + const a02 = matrix[2]; + const a03 = matrix[3]; + const a10 = matrix[4]; + const a11 = matrix[5]; + const a12 = matrix[6]; + const a13 = matrix[7]; + const a20 = matrix[8]; + const a21 = matrix[9]; + const a22 = matrix[10]; + const a23 = matrix[11]; + + // Construct the elements of the rotation matrix + const b00 = x * x * t + c; + const b01 = y * x * t + z * s; + const b02 = z * x * t - y * s; + const b10 = x * y * t - z * s; + const b11 = y * y * t + c; + const b12 = z * y * t + x * s; + const b20 = x * z * t + y * s; + const b21 = y * z * t - x * s; + const b22 = z * z * t + c; + + // Perform rotation-specific matrix multiplication + out[0] = a00 * b00 + a10 * b01 + a20 * b02; + out[1] = a01 * b00 + a11 * b01 + a21 * b02; + out[2] = a02 * b00 + a12 * b01 + a22 * b02; + out[3] = a03 * b00 + a13 * b01 + a23 * b02; + out[4] = a00 * b10 + a10 * b11 + a20 * b12; + out[5] = a01 * b10 + a11 * b11 + a21 * b12; + out[6] = a02 * b10 + a12 * b11 + a22 * b12; + out[7] = a03 * b10 + a13 * b11 + a23 * b12; + out[8] = a00 * b20 + a10 * b21 + a20 * b22; + out[9] = a01 * b20 + a11 * b21 + a21 * b22; + out[10] = a02 * b20 + a12 * b21 + a22 * b22; + out[11] = a03 * b20 + a13 * b21 + a23 * b22; + + if (matrix !== out) { // If the source and destination differ, copy the unchanged last row + out[12] = matrix[12]; + out[13] = matrix[13]; + out[14] = matrix[14]; + out[15] = matrix[15]; + } + return out +}; + +/** + * Rotates a matrix by the given angle around the X axis. + * + * @param {mat4} out - receiving matrix + * @param {mat4} matrix - matrix to rotate + * @param {Number} radians - angle to rotate the matrix by + * @returns {mat4} out + * @alias module:modeling/maths/mat4.rotateX + */ +const rotateX$1 = (out, matrix, radians) => { + const s = sin(radians); + const c = cos(radians); + const a10 = matrix[4]; + const a11 = matrix[5]; + const a12 = matrix[6]; + const a13 = matrix[7]; + const a20 = matrix[8]; + const a21 = matrix[9]; + const a22 = matrix[10]; + const a23 = matrix[11]; + + if (matrix !== out) { // If the source and destination differ, copy the unchanged rows + out[0] = matrix[0]; + out[1] = matrix[1]; + out[2] = matrix[2]; + out[3] = matrix[3]; + out[12] = matrix[12]; + out[13] = matrix[13]; + out[14] = matrix[14]; + out[15] = matrix[15]; + } + + // Perform axis-specific matrix multiplication + out[4] = a10 * c + a20 * s; + out[5] = a11 * c + a21 * s; + out[6] = a12 * c + a22 * s; + out[7] = a13 * c + a23 * s; + out[8] = a20 * c - a10 * s; + out[9] = a21 * c - a11 * s; + out[10] = a22 * c - a12 * s; + out[11] = a23 * c - a13 * s; + return out +}; + +/** + * Rotates a matrix by the given angle around the Y axis. + * + * @param {mat4} out - receiving matrix + * @param {mat4} matrix - matrix to rotate + * @param {Number} radians - angle to rotate the matrix by + * @returns {mat4} out + * @alias module:modeling/maths/mat4.rotateY + */ +const rotateY$1 = (out, matrix, radians) => { + const s = sin(radians); + const c = cos(radians); + const a00 = matrix[0]; + const a01 = matrix[1]; + const a02 = matrix[2]; + const a03 = matrix[3]; + const a20 = matrix[8]; + const a21 = matrix[9]; + const a22 = matrix[10]; + const a23 = matrix[11]; + + if (matrix !== out) { // If the source and destination differ, copy the unchanged rows + out[4] = matrix[4]; + out[5] = matrix[5]; + out[6] = matrix[6]; + out[7] = matrix[7]; + out[12] = matrix[12]; + out[13] = matrix[13]; + out[14] = matrix[14]; + out[15] = matrix[15]; + } + + // Perform axis-specific matrix multiplication + out[0] = a00 * c - a20 * s; + out[1] = a01 * c - a21 * s; + out[2] = a02 * c - a22 * s; + out[3] = a03 * c - a23 * s; + out[8] = a00 * s + a20 * c; + out[9] = a01 * s + a21 * c; + out[10] = a02 * s + a22 * c; + out[11] = a03 * s + a23 * c; + return out +}; + +/** + * Rotates a matrix by the given angle around the Z axis. + * + * @param {mat4} out - receiving matrix + * @param {mat4} matrix - matrix to rotate + * @param {Number} radians - angle to rotate the matrix by + * @returns {mat4} out + * @alias module:modeling/maths/mat4.rotateZ + */ +const rotateZ$1 = (out, matrix, radians) => { + const s = sin(radians); + const c = cos(radians); + const a00 = matrix[0]; + const a01 = matrix[1]; + const a02 = matrix[2]; + const a03 = matrix[3]; + const a10 = matrix[4]; + const a11 = matrix[5]; + const a12 = matrix[6]; + const a13 = matrix[7]; + + if (matrix !== out) { // If the source and destination differ, copy the unchanged last row + out[8] = matrix[8]; + out[9] = matrix[9]; + out[10] = matrix[10]; + out[11] = matrix[11]; + out[12] = matrix[12]; + out[13] = matrix[13]; + out[14] = matrix[14]; + out[15] = matrix[15]; + } + + // Perform axis-specific matrix multiplication + out[0] = a00 * c + a10 * s; + out[1] = a01 * c + a11 * s; + out[2] = a02 * c + a12 * s; + out[3] = a03 * c + a13 * s; + out[4] = a10 * c - a00 * s; + out[5] = a11 * c - a01 * s; + out[6] = a12 * c - a02 * s; + out[7] = a13 * c - a03 * s; + return out +}; + +/** + * Scales the matrix by the given dimensions. + * + * @param {mat4} out - receiving matrix + * @param {mat4} matrix - matrix to scale + * @param {vec3} dimensions - dimensions to scale the matrix by + * @returns {mat4} out + * @alias module:modeling/maths/mat4.scale + */ +const scale$2 = (out, matrix, dimensions) => { + const x = dimensions[0]; + const y = dimensions[1]; + const z = dimensions[2]; + + out[0] = matrix[0] * x; + out[1] = matrix[1] * x; + out[2] = matrix[2] * x; + out[3] = matrix[3] * x; + out[4] = matrix[4] * y; + out[5] = matrix[5] * y; + out[6] = matrix[6] * y; + out[7] = matrix[7] * y; + out[8] = matrix[8] * z; + out[9] = matrix[9] * z; + out[10] = matrix[10] * z; + out[11] = matrix[11] * z; + out[12] = matrix[12]; + out[13] = matrix[13]; + out[14] = matrix[14]; + out[15] = matrix[15]; + return out +}; + +/** + * Subtracts matrix b from matrix a. (A-B) + * + * @param {mat4} out - receiving matrix + * @param {mat4} a - first operand + * @param {mat4} b - second operand + * @returns {mat4} out + * @alias module:modeling/maths/mat4.subtract + */ +const subtract$2 = (out, a, b) => { + out[0] = a[0] - b[0]; + out[1] = a[1] - b[1]; + out[2] = a[2] - b[2]; + out[3] = a[3] - b[3]; + out[4] = a[4] - b[4]; + out[5] = a[5] - b[5]; + out[6] = a[6] - b[6]; + out[7] = a[7] - b[7]; + out[8] = a[8] - b[8]; + out[9] = a[9] - b[9]; + out[10] = a[10] - b[10]; + out[11] = a[11] - b[11]; + out[12] = a[12] - b[12]; + out[13] = a[13] - b[13]; + out[14] = a[14] - b[14]; + out[15] = a[15] - b[15]; + return out +}; + +/** + * Return a string representing the given matrix. + * + * @param {mat4} mat - matrix of reference + * @returns {String} string representation + * @alias module:modeling/maths/mat4.toString + */ +const toString$a = (mat) => mat.map((n) => n.toFixed(7)).toString(); + +/** + * Translate the matrix by the given offset vector. + * + * @param {mat4} out - receiving matrix + * @param {mat4} matrix - matrix to translate + * @param {vec3} offsets - offset vector to translate by + * @returns {mat4} out + * @alias module:modeling/maths/mat4.translate + */ +const translate$1 = (out, matrix, offsets) => { + const x = offsets[0]; + const y = offsets[1]; + const z = offsets[2]; + let a00; + let a01; + let a02; + let a03; + let a10; + let a11; + let a12; + let a13; + let a20; + let a21; + let a22; + let a23; + + if (matrix === out) { + // 0-11 assignments are unnecessary + out[12] = matrix[0] * x + matrix[4] * y + matrix[8] * z + matrix[12]; + out[13] = matrix[1] * x + matrix[5] * y + matrix[9] * z + matrix[13]; + out[14] = matrix[2] * x + matrix[6] * y + matrix[10] * z + matrix[14]; + out[15] = matrix[3] * x + matrix[7] * y + matrix[11] * z + matrix[15]; + } else { + a00 = matrix[0]; a01 = matrix[1]; a02 = matrix[2]; a03 = matrix[3]; + a10 = matrix[4]; a11 = matrix[5]; a12 = matrix[6]; a13 = matrix[7]; + a20 = matrix[8]; a21 = matrix[9]; a22 = matrix[10]; a23 = matrix[11]; + + out[0] = a00; out[1] = a01; out[2] = a02; out[3] = a03; + out[4] = a10; out[5] = a11; out[6] = a12; out[7] = a13; + out[8] = a20; out[9] = a21; out[10] = a22; out[11] = a23; + + out[12] = a00 * x + a10 * y + a20 * z + matrix[12]; + out[13] = a01 * x + a11 * y + a21 * z + matrix[13]; + out[14] = a02 * x + a12 * y + a22 * z + matrix[14]; + out[15] = a03 * x + a13 * y + a23 * z + matrix[15]; + } + + return out +}; + +/** + * Represents a 4x4 matrix which is column-major (when typed out it looks row-major). + * @see {@link mat4} for data structure information. + * @module modeling/maths/mat4 + */ + +var index$r = /*#__PURE__*/Object.freeze({ + __proto__: null, + add: add$2, + clone: clone$a, + copy: copy$5, + create: create$c, + invert: invert$2, + equals: equals$8, + fromRotation: fromRotation, + fromScaling: fromScaling, + fromTaitBryanRotation: fromTaitBryanRotation, + fromTranslation: fromTranslation, + fromValues: fromValues$4, + fromVectorRotation: fromVectorRotation, + fromXRotation: fromXRotation, + fromYRotation: fromYRotation, + fromZRotation: fromZRotation, + identity: identity, + isIdentity: isIdentity, + isOnlyTransformScale: isOnlyTransformScale, + isMirroring: isMirroring, + mirrorByPlane: mirrorByPlane, + multiply: multiply$1, + rotate: rotate$2, + rotateX: rotateX$1, + rotateY: rotateY$1, + rotateZ: rotateZ$1, + scale: scale$2, + subtract: subtract$2, + toString: toString$a, + translate: translate$1 +}); + +/** + * Represents a 2D geometry consisting of outlines, where each outline is an ordered list of points. + * @typedef {Object} geom2 + * @property {Array} outlines - list of polygon outlines + * @property {mat4} transforms - transforms to apply to the geometry, see transform() + * @example + * // data structure + * { + * "outlines": [[[-1,-1],[1,-1],[1,1],[-1,1]]], + * "transforms": [1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1] + * } + */ + +/** + * Create a new 2D geometry composed of polygon outlines. + * @param {Array} [outlines] - list of outlines where each outline is an array of points + * @returns {geom2} a new geometry + * @alias module:modeling/geometries/geom2.create + * @example + * let myShape = create([ [[-1,-1], [1,-1], [1,1], [-1,1]] ]) + */ +const create$a = (outlines = []) => ({ + outlines, + transforms: create$c() +}); + +/** + * Calculates the absolute coordinates of the given vector. + * + * @param {vec2} out - receiving vector + * @param {vec2} vector - vector of reference + * @returns {vec2} out + * @alias module:modeling/maths/vec2.abs + */ +const abs = (out, vector) => { + out[0] = Math.abs(vector[0]); + out[1] = Math.abs(vector[1]); + return out +}; + +/** + * Adds the coordinates of two vectors (A+B). + * + * @param {vec2} out - receiving vector + * @param {vec2} a - first operand + * @param {vec2} b - second operand + * @returns {vec2} out + * @alias module:modeling/maths/vec2.add + */ +const add = (out, a, b) => { + out[0] = a[0] + b[0]; + out[1] = a[1] + b[1]; + return out +}; + +/** + * Calculate the angle of the given vector. + * + * @param {vec2} vector - vector of reference + * @returns {Number} angle in radians + * @alias module:modeling/maths/vec2.angleRadians + */ +const angleRadians = (vector) => Math.atan2(vector[1], vector[0]); // y=sin, x=cos + +/** + * Calculate the angle of the given vector. + * + * @param {vec2} vector - vector of reference + * @returns {Number} angle in degrees + * @alias module:modeling/maths/vec2.angleDegrees + */ +const angleDegrees = (vector) => angleRadians(vector) * 57.29577951308232; + +/** + * Represents a two dimensional vector. + * See fromValues(). + * @typedef {Array} vec2 + */ + +/** + * Creates a new vector, initialized to [0,0]. + * + * @returns {vec2} a new vector + * @alias module:modeling/maths/vec2.create + */ +const create$9 = () => [0, 0]; + +/** + * Create a clone of the given vector. + * + * @param {vec2} vector - vector to clone + * @returns {vec2} a new vector + * @alias module:modeling/maths/vec2.clone + */ +const clone$8 = (vector) => { + const out = create$9(); + out[0] = vector[0]; + out[1] = vector[1]; + return out +}; + +/** + * Create a copy of the given vector. + * + * @param {vec2} out - receiving vector + * @param {vec2} vector - source vector + * @returns {vec2} out + * @alias module:modeling/maths/vec2.copy + */ +const copy$3 = (out, vector) => { + out[0] = vector[0]; + out[1] = vector[1]; + return out +}; + +/** + * Computes the cross product (3D) of two vectors. + * + * @param {vec3} out - receiving vector (3D) + * @param {vec2} a - first operand + * @param {vec2} b - second operand + * @returns {vec3} out + * @alias module:modeling/maths/vec2.cross + */ +const cross = (out, a, b) => { + out[0] = 0; + out[1] = 0; + out[2] = a[0] * b[1] - a[1] * b[0]; + return out +}; + +/** + * Calculates the distance between two vectors. + * + * @param {vec2} a - first operand + * @param {vec2} b - second operand + * @returns {Number} distance + * @alias module:modeling/maths/vec2.distance + */ +const distance = (a, b) => { + const x = b[0] - a[0]; + const y = b[1] - a[1]; + return Math.sqrt(x * x + y * y) +}; + +/** + * Divides the coordinates of two vectors (A/B). + * + * @param {vec2} out - receiving vector + * @param {vec2} a - first operand + * @param {vec2} b - second operand + * @returns {vec2} out + * @alias module:modeling/maths/vec2.divide + */ +const divide = (out, a, b) => { + out[0] = a[0] / b[0]; + out[1] = a[1] / b[1]; + return out +}; + +/** + * Calculates the dot product of two vectors. + * + * @param {vec2} a - first operand + * @param {vec2} b - second operand + * @returns {Number} dot product + * @alias module:modeling/maths/vec2.dot + */ +const dot$1 = (a, b) => a[0] * b[0] + a[1] * b[1]; + +/** + * Compare the given vectors for equality. + * + * @param {vec2} a - first operand + * @param {vec2} b - second operand + * @returns {Boolean} true if a and b are equal + * @alias module:modeling/maths/vec2.equals + */ +const equals$6 = (a, b) => (a[0] === b[0]) && (a[1] === b[1]); + +/** + * Create a new vector in the direction of the given angle. + * + * @param {vec2} out - receiving vector + * @param {Number} radians - angle in radians + * @returns {vec2} out + * @alias module:modeling/maths/vec2.fromAngleRadians + */ +const fromAngleRadians = (out, radians) => { + out[0] = cos(radians); + out[1] = sin(radians); + return out +}; + +/** + * Create a new vector in the direction of the given angle. + * + * @param {vec2} out - receiving vector + * @param {Number} degrees - angle in degrees + * @returns {vec2} out + * @alias module:modeling/maths/vec2.fromAngleDegrees + */ +const fromAngleDegrees = (out, degrees) => fromAngleRadians(out, degrees * 0.017453292519943295); + +/** + * Create a vector from a single scalar value. + * + * @param {vec2} out - receiving vector + * @param {Number} scalar - the scalar value + * @returns {vec2} out + * @alias module:modeling/maths/vec2.fromScalar + */ +const fromScalar$1 = (out, scalar) => { + out[0] = scalar; + out[1] = scalar; + return out +}; + +/** + * Creates a new vector initialized with the given values. + * + * @param {Number} x - X coordinate + * @param {Number} y - Y coordinate + * @returns {vec2} a new vector + * @alias module:modeling/maths/vec2.fromValues + */ +const fromValues$2 = (x, y) => { + const out = create$9(); + out[0] = x; + out[1] = y; + return out +}; + +/** + * Calculates the length of the given vector. + * + * @param {vec2} vector - vector of reference + * @returns {Number} length + * @alias module:modeling/maths/vec2.length + */ +const length = (vector) => Math.sqrt(vector[0] * vector[0] + vector[1] * vector[1]); + +/** + * Performs a linear interpolation between two vectors. + * + * @param {vec2} out - receiving vector + * @param {vec2} a - first operand + * @param {vec2} b - second operand + * @param {Number} t - interpolation amount between the two vectors + * @returns {vec2} out + * @alias module:modeling/maths/vec2.lerp + */ +const lerp = (out, a, b, t) => { + const ax = a[0]; + const ay = a[1]; + out[0] = ax + t * (b[0] - ax); + out[1] = ay + t * (b[1] - ay); + return out +}; + +/** + * Returns the maximum coordinates of two vectors. + * + * @param {vec2} out - receiving vector + * @param {vec2} a - first operand + * @param {vec2} b - second operand + * @returns {vec2} out + * @alias module:modeling/maths/vec2.max + */ +const max$1 = (out, a, b) => { + out[0] = Math.max(a[0], b[0]); + out[1] = Math.max(a[1], b[1]); + return out +}; + +/** + * Returns the minimum coordinates of two vectors. + * + * @param {vec2} out - receiving vector + * @param {vec2} a - first operand + * @param {vec2} b - second operand + * @returns {vec2} out + * @alias module:modeling/maths/vec2.min + */ +const min$1 = (out, a, b) => { + out[0] = Math.min(a[0], b[0]); + out[1] = Math.min(a[1], b[1]); + return out +}; + +/** + * Multiplies the coordinates of two vectors (A*B). + * + * @param {vec2} out - receiving vector + * @param {vec2} a - first operand + * @param {vec2} b - second operand + * @returns {vec2} out + * @alias module:modeling/maths/vec2.multiply + */ +const multiply = (out, a, b) => { + out[0] = a[0] * b[0]; + out[1] = a[1] * b[1]; + return out +}; + +/** + * Negates the coordinates of the given vector. + * + * @param {vec2} out - receiving vector + * @param {vec2} vector - vector to negate + * @returns {vec2} out + * @alias module:modeling/maths/vec2.negate + */ +const negate = (out, vector) => { + out[0] = -vector[0]; + out[1] = -vector[1]; + return out +}; + +/** + * Rotates the given vector by the given angle. + * + * @param {vec2} out - receiving vector + * @param {vec2} vector - vector to rotate + * @param {vec2} origin - origin of the rotation + * @param {Number} radians - angle of rotation (radians) + * @returns {vec2} out + * @alias module:modeling/maths/vec2.rotate + */ +const rotate$1 = (out, vector, origin, radians) => { + const x = vector[0] - origin[0]; + const y = vector[1] - origin[1]; + const c = Math.cos(radians); + const s = Math.sin(radians); + + out[0] = x * c - y * s + origin[0]; + out[1] = x * s + y * c + origin[1]; + + return out +}; + +/** + * Calculates the normal of the given vector. + * The normal value is the given vector rotated 90 degrees. + * + * @param {vec2} out - receiving vector + * @param {vec2} vector - given value + * @returns {vec2} out + * @alias module:modeling/maths/vec2.normal + */ +const normal = (out, vector) => rotate$1(out, vector, create$9(), (TAU / 4)); + +/** + * Normalize the given vector. + * + * @param {vec2} out - receiving vector + * @param {vec2} vector - vector to normalize + * @returns {vec2} out + * @alias module:modeling/maths/vec2.normalize + */ +const normalize = (out, vector) => { + const x = vector[0]; + const y = vector[1]; + let len = x * x + y * y; + if (len > 0) { + len = 1 / Math.sqrt(len); + } + out[0] = x * len; + out[1] = y * len; + return out +}; + +/** + * Scales the coordinates of the given vector. + * + * @param {vec2} out - receiving vector + * @param {vec2} vector - vector to scale + * @param {Number} amount - amount to scale + * @returns {vec2} out + * @alias module:modeling/maths/vec2.scale + */ +const scale$1 = (out, vector, amount) => { + out[0] = vector[0] * amount; + out[1] = vector[1] * amount; + return out +}; + +/** + * Snaps the coordinates of the given vector to the given epsilon. + * + * @param {vec2} out - receiving vector + * @param {vec2} vector - vector to snap + * @param {Number} epsilon - epsilon of precision, less than 0 + * @returns {vec2} out + * @alias module:modeling/maths/vec2.snap + */ +const snap$1 = (out, vector, epsilon) => { + out[0] = Math.round(vector[0] / epsilon) * epsilon + 0; + out[1] = Math.round(vector[1] / epsilon) * epsilon + 0; + return out +}; + +/** + * Calculates the squared distance between the given vectors. + * + * @param {vec2} a - first operand + * @param {vec2} b - second operand + * @returns {Number} squared distance + * @alias module:modeling/maths/vec2.squaredDistance + */ +const squaredDistance = (a, b) => { + const x = b[0] - a[0]; + const y = b[1] - a[1]; + return x * x + y * y +}; + +/** + * Calculates the squared length of the given vector. + * + * @param {vec2} vector - vector of reference + * @returns {Number} squared length + * @alias module:modeling/maths/vec2.squaredLength + */ +const squaredLength = (vector) => { + const x = vector[0]; + const y = vector[1]; + return x * x + y * y +}; + +/** + * Subtracts the coordinates of two vectors (A-B). + * + * @param {vec2} out - receiving vector + * @param {vec2} a - first operand + * @param {vec2} b - second operand + * @returns {vec2} out + * @alias module:modeling/maths/vec2.subtract + */ +const subtract$1 = (out, a, b) => { + out[0] = a[0] - b[0]; + out[1] = a[1] - b[1]; + return out +}; + +/** + * Convert the given vector to a representative string. + * + * @param {vec2} vector - vector of reference + * @returns {String} string representation + * @alias module:modeling/maths/vec2.toString + */ +const toString$9 = (vector) => `[${vector[0].toFixed(7)}, ${vector[1].toFixed(7)}]`; + +/** + * Transforms the given vector using the given matrix. + * + * @param {vec2} out - receiving vector + * @param {vec2} vector - vector to transform + * @param {mat4} matrix - matrix to transform with + * @returns {vec2} out + * @alias module:modeling/maths/vec2.transform + */ +const transform$b = (out, vector, matrix) => { + const x = vector[0]; + const y = vector[1]; + out[0] = matrix[0] * x + matrix[4] * y + matrix[12]; + out[1] = matrix[1] * x + matrix[5] * y + matrix[13]; + return out +}; + +/** + * Represents a two dimensional vector. + * @module modeling/maths/vec2 + */ + +var index$q = /*#__PURE__*/Object.freeze({ + __proto__: null, + abs: abs, + add: add, + angle: angleRadians, + angleDegrees: angleDegrees, + angleRadians: angleRadians, + clone: clone$8, + copy: copy$3, + create: create$9, + cross: cross, + distance: distance, + divide: divide, + dot: dot$1, + equals: equals$6, + fromAngleDegrees: fromAngleDegrees, + fromAngleRadians: fromAngleRadians, + fromScalar: fromScalar$1, + fromValues: fromValues$2, + length: length, + lerp: lerp, + max: max$1, + min: min$1, + multiply: multiply, + negate: negate, + normal: normal, + normalize: normalize, + rotate: rotate$1, + scale: scale$1, + snap: snap$1, + squaredDistance: squaredDistance, + squaredLength: squaredLength, + subtract: subtract$1, + toString: toString$9, + transform: transform$b +}); + +/* + * Create a list of edges which SHARE points. + * This allows the edges to be traversed in order. + */ +const toSharedPoints = (sides) => { + const unique = new Map(); // {key: point} + const getUniquePoint = (point) => { + const key = point.toString(); + if (unique.has(key)) { + return unique.get(key) + } else { + unique.set(key, point); + return point + } + }; + + return sides.map((side) => side.map(getUniquePoint)) +}; + +/* + * Convert a list of sides into a map from point to edges. + */ +const toPointMap = (sides) => { + const pointMap = new Map(); + // first map to edges with shared vertices + const edges = toSharedPoints(sides); + // construct adjacent edges map + edges.forEach((edge) => { + if (pointMap.has(edge[0])) { + pointMap.get(edge[0]).push(edge); + } else { + pointMap.set(edge[0], [edge]); + } + }); + return pointMap +}; + +/** + * Create a new 2D geometry from a list of sides. + * @param {Array} sides - list of sides to create outlines from + * @returns {geom2} a new geometry + * + * @example + * let geometry = fromSides([[[0, 0], [1, 0]], [[1, 0], [1, 1]], [[1, 1], [0, 0]]]) + */ +const fromSides = (sides) => { + const pointMap = toPointMap(sides); // {point: [edges]} + const outlines = []; + while (true) { + let startSide; + for (const [point, edges] of pointMap) { + startSide = edges.shift(); + if (!startSide) { + pointMap.delete(point); + continue + } + break + } + if (startSide === undefined) break // all starting sides have been visited + + const connectedPoints = []; + const startPoint = startSide[0]; + while (true) { + connectedPoints.push(startSide[0]); + const nextPoint = startSide[1]; + if (nextPoint === startPoint) break // the outline has been closed + const nextPossibleSides = pointMap.get(nextPoint); + if (!nextPossibleSides) { + throw new Error(`geometry is not closed at point ${nextPoint}`) + } + const nextSide = popNextSide(startSide, nextPossibleSides); + if (nextPossibleSides.length === 0) { + pointMap.delete(nextPoint); + } + startSide = nextSide; + } // inner loop + + // due to the logic of fromPoints() + // move the first point to the last + if (connectedPoints.length > 0) { + connectedPoints.push(connectedPoints.shift()); + } + outlines.push(connectedPoints); + } // outer loop + pointMap.clear(); + return create$a(outlines) +}; + +// find the first counter-clockwise edge from startSide and pop from nextSides +const popNextSide = (startSide, nextSides) => { + if (nextSides.length === 1) { + return nextSides.pop() + } + const v0 = create$9(); + const startAngle = angleDegrees(subtract$1(v0, startSide[1], startSide[0])); + let bestAngle; + let bestIndex; + nextSides.forEach((nextSide, index) => { + const nextAngle = angleDegrees(subtract$1(v0, nextSide[1], nextSide[0])); + let angle = nextAngle - startAngle; + if (angle < -180) angle += 360; + if (angle >= 180) angle -= 360; + if (bestIndex === undefined || angle > bestAngle) { + bestIndex = index; + bestAngle = angle; + } + }); + const nextSide = nextSides[bestIndex]; + nextSides.splice(bestIndex, 1); // remove side from list + return nextSide +}; + +/** + * Create a new 2D geometry from the given compact binary data. + * @param {Array} data - compact binary data + * @returns {geom2} a new geometry + * @alias module:modeling/geometries/geom2.fromCompactBinary + */ +const fromCompactBinary$2 = (data) => { + if (data[0] !== 0) throw new Error('invalid compact binary data') + + const created = create$a(); + + created.transforms = clone$a(data.slice(1, 17)); + + for (let i = 21; i < data.length;) { + const length = data[i++]; // number of points for this polygon + if (length < 0 || i + length * 2 > data.length) { + throw new Error('invalid compact binary data') + } + const outline = []; + for (let j = 0; j < length; j++) { + const x = data[i + j * 2]; + const y = data[i + j * 2 + 1]; + outline.push(fromValues$2(x, y)); + } + created.outlines.push(outline); + i += length * 2; + } + + // transfer known properties, i.e. color + if (data[17] >= 0) { + created.color = [data[17], data[18], data[19], data[20]]; + } + // TODO: how about custom properties or fields ? + return created +}; + +/** + * Determine if the given object is a 2D geometry. + * @param {Object} object - the object to interrogate + * @returns {Boolean} true, if the object matches a geom2 based object + * @alias module:modeling/geometries/geom2.isA + */ +const isA$5 = (object) => { + if (object && typeof object === 'object') { + if ('outlines' in object && 'transforms' in object) { + if (Array.isArray(object.outlines) && 'length' in object.transforms) { + return true + } + } + } + return false +}; + +/** + * Reverses the given geometry so that the outline points are flipped in the opposite order. + * This swaps the left (interior) and right (exterior) edges. + * @param {geom2} geometry - the geometry to reverse + * @returns {geom2} the new reversed geometry + * @alias module:modeling/geometries/geom2.reverse + * + * @example + * let newGeometry = reverse(geometry) + */ +const reverse$5 = (geometry) => { + const reversed = clone$b(geometry); + reversed.outlines = reversed.outlines.map((outline) => outline.slice().reverse()); + return reversed +}; + +/* + * Apply the transforms of the given geometry. + * NOTE: This function must be called BEFORE exposing any data. See toOutlines(). + * @param {geom2} geometry - the geometry to transform + * @returns {geom2} the given geometry + * + * @example + * geometry = applyTransforms(geometry) + */ +const applyTransforms$2 = (geometry) => { + if (isIdentity(geometry.transforms)) return geometry + + // apply transforms to each side + geometry.outlines = geometry.outlines.map((outline) => outline.map((point) => transform$b(create$9(), point, geometry.transforms))); + geometry.transforms = create$c(); + return geometry +}; + +/** + * Create the outline(s) of the given geometry. + * @param {geom2} geometry - geometry to create outlines from + * @returns {Array} an array of outlines, where each outline is an array of ordered points + * @alias module:modeling/geometries/geom2.toOutlines + * + * @example + * let geometry = subtract(rectangle({size: [5, 5]}), rectangle({size: [3, 3]})) + * let outlines = toOutlines(geometry) // returns two outlines + */ +const toOutlines = (geometry) => applyTransforms$2(geometry).outlines; + +/** + * Produces an array of points from the given geometry. + * The returned array should not be modified as the points are shared with the geometry. + * NOTE: The points returned do NOT define an order. Use toOutlines() for ordered points. + * @param {geom2} geometry - the geometry + * @returns {Array} an array of points + * @alias module:modeling/geometries/geom2.toPoints + * + * @example + * let sharedPoints = toPoints(geometry) + */ +const toPoints$3 = (geometry) => { + const points = []; + toOutlines(geometry).forEach((outline) => { + outline.forEach((point) => { + points.push(point); + }); + }); + return points +}; + +/** + * Produces an array of sides from the given geometry. + * The returned array should not be modified as the data is shared with the geometry. + * NOTE: The sides returned do NOT define an order. Use toOutlines() for ordered points. + * @param {geom2} geometry - the geometry + * @returns {Array} an array of sides + * @alias module:modeling/geometries/geom2.toSides + * + * @example + * let sharedSides = toSides(geometry) + */ +const toSides = (geometry) => { + const sides = []; + toOutlines(geometry).forEach((outline) => { + outline.forEach((point, i) => { + const j = (i + 1) % outline.length; + sides.push([point, outline[j]]); + }); + }); + return sides +}; + +/** + * Create a string representing the contents of the given geometry. + * @param {geom2} geometry - the geometry + * @returns {String} a representative string + * @alias module:modeling/geometries/geom2.toString + * + * @example + * console.out(toString(geometry)) + */ +const toString$8 = (geometry) => { + const outlines = toOutlines(geometry); + let result = 'geom2 (' + outlines.length + ' outlines):\n[\n'; + outlines.forEach((outline) => { + result += ' [' + outline.map(toString$9).join() + ']\n'; + }); + result += ']\n'; + return result +}; + +/** + * Produces a compact binary representation from the given geometry. + * @param {geom2} geometry - the geometry + * @returns {TypedArray} compact binary representation + * @alias module:modeling/geometries/geom2.toCompactBinary + */ +const toCompactBinary$2 = (geometry) => { + const transforms = geometry.transforms; + let color = [-1, -1, -1, -1]; + if (geometry.color) color = geometry.color; + + // Compute array size + let size = 21; + geometry.outlines.forEach((outline) => { + size += 2 * outline.length + 1; + }); + + // FIXME why Float32Array? + const compacted = new Float32Array(size); // type + transforms + color + points + + compacted[0] = 0; // type code: 0 => geom2, 1 => geom3 , 2 => path2 + + compacted[1] = transforms[0]; + compacted[2] = transforms[1]; + compacted[3] = transforms[2]; + compacted[4] = transforms[3]; + compacted[5] = transforms[4]; + compacted[6] = transforms[5]; + compacted[7] = transforms[6]; + compacted[8] = transforms[7]; + compacted[9] = transforms[8]; + compacted[10] = transforms[9]; + compacted[11] = transforms[10]; + compacted[12] = transforms[11]; + compacted[13] = transforms[12]; + compacted[14] = transforms[13]; + compacted[15] = transforms[14]; + compacted[16] = transforms[15]; + + compacted[17] = color[0]; + compacted[18] = color[1]; + compacted[19] = color[2]; + compacted[20] = color[3]; + + let index = 21; + geometry.outlines.forEach((outline) => { + compacted[index++] = outline.length; + outline.forEach((point) => { + compacted[index++] = point[0]; + compacted[index++] = point[1]; + }); + }); + + // TODO: how about custom properties or fields ? + return compacted +}; + +/** + * Transform the given geometry using the given matrix. + * This is a lazy transform of the outlines, as this function only adjusts the transforms. + * The transforms are applied when accessing the outlines via toOutlines(). + * @param {mat4} matrix - the matrix to transform with + * @param {geom2} geometry - the geometry to transform + * @returns {geom2} a new geometry + * @alias module:modeling/geometries/geom2.transform + * + * @example + * let newGeometry = transform(fromZRotation(TAU / 4), geometry) + */ +const transform$a = (matrix, geometry) => { + const transforms = multiply$1(create$c(), matrix, geometry.transforms); + return Object.assign({}, geometry, { transforms }) +}; + +/** + * Calculate the intersect point of the two line segments (p1-p2 and p3-p4). + * If the endpointTouch parameter is false, intersections at segment end points are excluded. + * Note: If the line segments do NOT intersect then undefined is returned. + * @see http://paulbourke.net/geometry/pointlineplane/ + * @param {vec2} p1 - first point of first line segment + * @param {vec2} p2 - second point of first line segment + * @param {vec2} p3 - first point of second line segment + * @param {vec2} p4 - second point of second line segment + * @param {Boolean} endpointTouch - include intersections at segment endpoints + * @returns {vec2} intersection point of the two line segments, or undefined + * @alias module:modeling/maths/utils.intersect + */ +const intersect$1 = (p1, p2, p3, p4, endpointTouch = true) => { + // Check if none of the lines are of length 0 + if ((p1[0] === p2[0] && p1[1] === p2[1]) || (p3[0] === p4[0] && p3[1] === p4[1])) { + return undefined + } + + const denominator = ((p4[1] - p3[1]) * (p2[0] - p1[0]) - (p4[0] - p3[0]) * (p2[1] - p1[1])); + + // Lines are parallel + if (Math.abs(denominator) < Number.MIN_VALUE) { + return undefined + } + + const ua = ((p4[0] - p3[0]) * (p1[1] - p3[1]) - (p4[1] - p3[1]) * (p1[0] - p3[0])) / denominator; + const ub = ((p2[0] - p1[0]) * (p1[1] - p3[1]) - (p2[1] - p1[1]) * (p1[0] - p3[0])) / denominator; + + // is the intersection along the segments + if (ua < 0 || ua > 1 || ub < 0 || ub > 1) { + return undefined + } + + // is the intersection at the end of a segment + if (!endpointTouch && (ua === 0 || ua === 1 || ub === 0 || ub === 1)) { + return undefined + } + + // Return the x and y coordinates of the intersection + const x = p1[0] + ua * (p2[0] - p1[0]); + const y = p1[1] + ua * (p2[1] - p1[1]); + + return [x, y] +}; + +/** + * Determine if the given object is a valid geom2. + * Checks for closedness, self-edges, and valid data points. + * + * **If the geometry is not valid, an exception will be thrown with details of the geometry error.** + * + * @param {Object} object - the object to interrogate + * @throws {Error} error if the geometry is not valid + * @alias module:modeling/geometries/geom2.validate + */ +const validate$4 = (object) => { + if (!isA$5(object)) { + throw new Error('invalid geom2 structure') + } + + object.outlines.forEach((outline, i) => { + if (outline.length < 3) { + throw new Error(`geom2 outline ${i} must contain at least 3 points`) + } + // check for duplicate points + for (let i = 0; i < outline.length; i++) { + const j = (i + 1) % outline.length; + if (equals$6(outline[i], outline[j])) { + throw new Error(`geom2 outline ${i} found duplicate point ${outline[i]}`) + } + } + }); + + // check for self-intersection + toOutlines(object).forEach((outline, i) => { + // check for intersection between [a1, a2] and [b1, b2] + for (let a1 = 0; a1 < outline.length; a1++) { + const a2 = (a1 + 1) % outline.length; + for (let b1 = 0; b1 < outline.length; b1++) { + const b2 = (b1 + 1) % outline.length; + if (a1 !== b1) { + const int = intersect$1(outline[a1], outline[a2], outline[b1], outline[b2], false); + if (int) { + throw new Error(`geom2 outline ${i} self intersection at ${int}`) + } + } + } + } + }); + + // check transforms + if (!object.transforms.every(Number.isFinite)) { + throw new Error(`geom2 invalid transforms ${object.transforms}`) + } +}; + +/** + * Represents a 2D geometry consisting of outlines, where each outline is an ordered list of points. + * The outline is always closed between the first and last points. + * @see {@link geom2} for data structure information. + * @module modeling/geometries/geom2 + * + * @example + * import { geometries } from '@jscad/modeling' + * let myShape = geometries.geom2.create([ [[-1,-1], [1,-1], [1,1], [-1,1]] ]) + */ + +var index$p = /*#__PURE__*/Object.freeze({ + __proto__: null, + clone: clone$b, + create: create$a, + fromSides: fromSides, + fromCompactBinary: fromCompactBinary$2, + isA: isA$5, + reverse: reverse$5, + toOutlines: toOutlines, + toPoints: toPoints$3, + toSides: toSides, + toString: toString$8, + toCompactBinary: toCompactBinary$2, + transform: transform$a, + validate: validate$4 +}); + +/** + * Performs a shallow clone of the given geometry. + * @param {geom3} geometry - the geometry to clone + * @returns {geom3} a new geometry + * @alias module:modeling/geometries/geom3.clone + */ +const clone$7 = (geometry) => Object.assign({}, geometry); + +/** + * Represents a 3D geometry consisting of a list of polygons. + * @typedef {Object} geom3 + * @property {Array} polygons - list of polygons, each polygon containing three or more vertices + * @property {mat4} transforms - transforms to apply to the polygons, see transform() + * @example + * { + * "polygons": [ + * {"vertices": [[-1,-1,-1], [-1,-1,1], [-1,1,1], [-1,1,-1]]}, + * {"vertices": [[1,-1,-1], [1,1,-1], [1,1,1], [1,-1,1]]}, + * {"vertices": [[-1,-1,-1], [1,-1,-1], [1,-1,1], [-1,-1,1]]}, + * {"vertices": [[-1,1,-1], [-1,1,1], [1,1,1], [1,1,-1]]}, + * {"vertices": [[-1,-1,-1], [-1,1,-1], [1,1,-1], [1,-1,-1]]}, + * {"vertices": [[-1,-1,1], [1,-1,1], [1,1,1], [-1,1,1]]} + * ], + * "transforms": [1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1], + * } + */ + +/** + * Create a new 3D geometry composed of the given polygons. + * @param {Array} [polygons] - list of polygons, or undefined + * @returns {geom3} a new geometry + * @alias module:modeling/geometries/geom3.create + */ +const create$8 = (polygons) => { + if (polygons === undefined) { + polygons = []; // empty contents + } + return { + polygons, + transforms: create$c() + } +}; + +/** + * Represents a convex 3D polygon. The vertices used to initialize a polygon must + * be coplanar and form a convex shape. The vertices do not have to be `vec3` + * instances but they must behave similarly. + * @typedef {Object} poly3 + * @property {Array} vertices - list of ordered vertices (3D) + * @example + * {"vertices": [[0,0,0], [4,0,0], [4,3,12]]} + */ + +/** + * Creates a new 3D polygon with initial values. + * + * @param {Array} [vertices] - a list of vertices (3D) + * @returns {poly3} a new polygon + * @alias module:modeling/geometries/poly3.create + * @example + * const polygon = create([[1, 0], [0, 1], [0, 0]]) + */ +const create$7 = (vertices) => { + if (vertices === undefined || vertices.length < 3) { + vertices = []; // empty contents + } + return { vertices } +}; + +/** + * Create a deep clone of the given polygon + * + * @param {poly3} [out] - receiving polygon + * @param {poly3} polygon - polygon to clone + * @returns {poly3} a new polygon + * @alias module:modeling/geometries/poly3.clone + */ +const clone$6 = (...params) => { + let out; + let poly3; + if (params.length === 1) { + out = create$7(); + poly3 = params[0]; + } else { + out = params[0]; + poly3 = params[1]; + } + // deep clone of vertices + out.vertices = poly3.vertices.map((vec) => clone$9(vec)); + return out +}; + +/** + * Create a polygon from the given vertices and plane. + * NOTE: No checks are performed on the parameters. + * @param {Array} vertices - list of vertices (3D) + * @param {plane} plane - plane of the polygon + * @returns {poly3} a new polygon + * @alias module:modeling/geometries/poly3.fromVerticesAndPlane + */ +const fromVerticesAndPlane = (vertices, plane) => { + const poly = create$7(vertices); + poly.plane = plane; // retain the plane for later use + return poly +}; + +/** + * Represents a four dimensional vector. + * See fromValues(). + * @typedef {Array} vec4 + */ + +/** + * Creates a new vector initialized to [0,0,0,0]. + * + * @returns {vec4} a new vector + * @alias module:modeling/maths/vec4.create + */ +const create$6 = () => [0, 0, 0, 0]; + +/** + * Create a clone of the given vector. + * + * @param {vec4} vector - source vector + * @returns {vec4} a new vector + * @alias module:modeling/maths/vec4.clone + */ +const clone$5 = (vector) => { + const out = create$6(); + out[0] = vector[0]; + out[1] = vector[1]; + out[2] = vector[2]; + out[3] = vector[3]; + return out +}; + +/** + * Create a copy of the given vector. + * + * @param {vec4} out - receiving vector + * @param {vec4} vector - source vector + * @returns {vec4} out + * @alias module:modeling/maths/vec4.copy + */ +const copy$2 = (out, vector) => { + out[0] = vector[0]; + out[1] = vector[1]; + out[2] = vector[2]; + out[3] = vector[3]; + return out +}; + +/** + * Compare the given vectors for equality. + * + * @param {vec4} a - first vector + * @param {vec4} b - second vector + * @return {Boolean} true if vectors are equal + * @alias module:modeling/maths/vec4.equals + */ +const equals$5 = (a, b) => ((a[0] === b[0]) && (a[1] === b[1]) && (a[2] === b[2]) && (a[3] === b[3])); + +/** + * Flip the given plane. + * + * @param {plane} out - receiving plane + * @param {plane} plane - plane to flip + * @return {plane} out + * @alias module:modeling/maths/plane.flip + */ +const flip = (out, plane) => { + out[0] = -plane[0]; + out[1] = -plane[1]; + out[2] = -plane[2]; + out[3] = -plane[3]; + return out +}; + +/** + * Represents a plane in 3D coordinate space as determined by a normal (perpendicular to the plane) + * and distance from 0,0,0. + * + * The contents of the array are a normal [0,1,2] and a distance [3]. + * @see https://en.wikipedia.org/wiki/Hesse_normal_form + * @typedef {Array} plane + */ + +/** + * Create a new plane from the given normal and point values. + * + * @param {plane} out - receiving plane + * @param {vec3} normal - directional vector + * @param {vec3} point - origin of plane + * @returns {plane} out + * @alias module:modeling/maths/plane.fromNormalAndPoint + */ +const fromNormalAndPoint = (out, normal, point) => { + const u = normalize$1(create$b(), normal); + const w = dot$2(point, u); + + out[0] = u[0]; + out[1] = u[1]; + out[2] = u[2]; + out[3] = w; + return out +}; + +/** + * Creates a new vector with the given values. + * + * @param {Number} x - X component + * @param {Number} y - Y component + * @param {Number} z - Z component + * @param {Number} w - W component + * @returns {vec4} a new vector + * @alias module:modeling/maths/vec4.fromValues + */ +const fromValues$1 = (x, y, z, w) => { + const out = create$6(); + out[0] = x; + out[1] = y; + out[2] = z; + out[3] = w; + return out +}; + +/** + * Create a plane from the given points. + * + * @param {plane} out - receiving plane + * @param {Array} vertices - points on the plane + * @returns {plane} out + * @alias module:modeling/maths/plane.fromPoints + */ +const fromPoints$4 = (out, ...vertices) => { + const len = vertices.length; + + // Calculate normal vector for a single vertex + // Inline to avoid allocations + const ba = create$b(); + const ca = create$b(); + const vertexNormal = (index) => { + const a = vertices[index]; + const b = vertices[(index + 1) % len]; + const c = vertices[(index + 2) % len]; + subtract$3(ba, b, a); // ba = b - a + subtract$3(ca, c, a); // ca = c - a + cross$1(ba, ba, ca); // ba = ba x ca + normalize$1(ba, ba); + return ba + }; + + out[0] = 0; + out[1] = 0; + out[2] = 0; + if (len === 3) { + // optimization for triangles, which are always coplanar + copy$4(out, vertexNormal(0)); + } else { + // sum of vertex normals + vertices.forEach((v, i) => { + add$1(out, out, vertexNormal(i)); + }); + // renormalize normal vector + normalize$1(out, out); + } + out[3] = dot$2(out, vertices[0]); + return out +}; + +/** + * Create a new plane from the given points like fromPoints, + * but allow the vectors to be on one point or one line. + * In such a case, a random plane through the given points is constructed. + * + * @param {plane} out - receiving plane + * @param {vec3} a - 3D point + * @param {vec3} b - 3D point + * @param {vec3} c - 3D point + * @returns {plane} out + * @alias module:modeling/maths/plane.fromPointsRandom + */ +const fromPointsRandom = (out, a, b, c) => { + let ba = subtract$3(create$b(), b, a); + let ca = subtract$3(create$b(), c, a); + if (length$1(ba) < EPS) { + ba = orthogonal(ba, ca); + } + if (length$1(ca) < EPS) { + ca = orthogonal(ca, ba); + } + let normal = cross$1(create$b(), ba, ca); + if (length$1(normal) < EPS) { + // this would mean that ba == ca.negated() + ca = orthogonal(ca, ba); + normal = cross$1(normal, ba, ca); + } + normal = normalize$1(normal, normal); + const w = dot$2(normal, a); + + out[0] = normal[0]; + out[1] = normal[1]; + out[2] = normal[2]; + out[3] = w; + return out +}; + +/** + * Project the given point on to the given plane. + * + * @param {plane} plane - plane of reference + * @param {vec3} point - point of reference + * @return {vec3} projected point on plane + * @alias module:modeling/maths/plane.projectionOfPoint + */ +const projectionOfPoint = (plane, point) => { + const a = point[0] * plane[0] + point[1] * plane[1] + point[2] * plane[2] - plane[3]; + const x = point[0] - a * plane[0]; + const y = point[1] - a * plane[1]; + const z = point[2] - a * plane[2]; + return fromValues$3(x, y, z) +}; + +/** + * Calculate the distance to the given point. + * + * @param {plane} plane - plane of reference + * @param {vec3} point - point of reference + * @return {Number} signed distance to point + * @alias module:modeling/maths/plane.signedDistanceToPoint + */ +const signedDistanceToPoint = (plane, point) => dot$2(plane, point) - plane[3]; + +/** + * Convert the given vector to a representative string. + * + * @param {vec4} vec - vector to convert + * @returns {String} representative string + * @alias module:modeling/maths/vec4.toString + */ +const toString$7 = (vec) => `(${vec[0].toFixed(9)}, ${vec[1].toFixed(9)}, ${vec[2].toFixed(9)}, ${vec[3].toFixed(9)})`; + +/** + * Transform the given plane using the given matrix + * + * @param {plane} out - receiving plane + * @param {plane} plane - plane to transform + * @param {mat4} matrix - matrix to transform with + * @return {plane} out + * @alias module:modeling/maths/plane.transform + */ +const transform$9 = (out, plane, matrix) => { + const isMirror = isMirroring(matrix); + // get two vectors in the plane: + const r = orthogonal(create$b(), plane); + const u = cross$1(r, plane, r); + const v = cross$1(create$b(), plane, u); + // get 3 points in the plane: + let point1 = fromScalar$2(create$b(), plane[3]); + multiply$2(point1, point1, plane); + let point2 = add$1(create$b(), point1, u); + let point3 = add$1(create$b(), point1, v); + // transform the points: + point1 = transform$c(point1, point1, matrix); + point2 = transform$c(point2, point2, matrix); + point3 = transform$c(point3, point3, matrix); + // and create a new plane from the transformed points: + fromPoints$4(out, point1, point2, point3); + if (isMirror) { + // the transform is mirroring so flip the plane + flip(out, out); + } + return out +}; + +/** + * Represents a plane in 3D coordinate space as determined by a normal (perpendicular to the plane) + * and distance from 0,0,0. + * @see {@link plane} for data structure information. + * @module modeling/maths/plane + */ + +var index$o = /*#__PURE__*/Object.freeze({ + __proto__: null, + clone: clone$5, + copy: copy$2, + create: create$6, + equals: equals$5, + flip: flip, + fromNormalAndPoint: fromNormalAndPoint, + fromValues: fromValues$1, + fromPoints: fromPoints$4, + fromPointsRandom: fromPointsRandom, + projectionOfPoint: projectionOfPoint, + signedDistanceToPoint: signedDistanceToPoint, + toString: toString$7, + transform: transform$9 +}); + +/** + * Invert the give polygon to face the opposite direction. + * + * @param {poly3} polygon - the polygon to invert + * @returns {poly3} a new poly3 + * @alias module:modeling/geometries/poly3.invert + */ +const invert$1 = (polygon) => { + const vertices = polygon.vertices.slice().reverse(); + const inverted = create$7(vertices); + if (polygon.plane) { + // Flip existing plane to save recompute + inverted.plane = flip(create$6(), polygon.plane); + } + return inverted +}; + +/** + * Determine if the given object is a polygon. + * @param {Object} object - the object to interrogate + * @returns {Boolean} true if the object matches a poly3 + * @alias module:modeling/geometries/poly3.isA + */ +const isA$4 = (object) => { + if (object && typeof object === 'object') { + if ('vertices' in object) { + if (Array.isArray(object.vertices)) { + return true + } + } + } + return false +}; + +/** + * Check whether the given polygon is convex. + * @param {poly3} polygon - the polygon to interrogate + * @returns {Boolean} true if convex + * @alias module:modeling/geometries/poly3.isConvex + */ +const isConvex$1 = (polygon) => areVerticesConvex(polygon.vertices); + +const areVerticesConvex = (vertices) => { + const numVertices = vertices.length; + if (numVertices > 2) { + // note: plane ~= normal vertex + const normal = fromPoints$4(create$6(), ...vertices); + let prevPrevPos = vertices[numVertices - 2]; + let prevPos = vertices[numVertices - 1]; + for (let i = 0; i < numVertices; i++) { + const pos = vertices[i]; + if (!isConvexVertex(prevPrevPos, prevPos, pos, normal)) { + return false + } + prevPrevPos = prevPos; + prevPos = pos; + } + } + return true +}; + +// calculate whether three vertices form a convex corner +// prevVertex, vertex, nextVertex: the 3 coordinates (Vector3D instances) +// normal: the normal vector of the plane +const isConvexVertex = (prevVertex, vertex, nextVertex, normal) => { + const crossProduct = cross$1( + create$b(), + subtract$3(create$b(), vertex, prevVertex), + subtract$3(create$b(), nextVertex, vertex) + ); + const crossDotNormal = dot$2(crossProduct, normal); + return crossDotNormal >= 0 +}; + +const plane = (polygon) => { + if (!polygon.plane) { + polygon.plane = fromPoints$4(create$6(), ...polygon.vertices); + } + return polygon.plane +}; + +/** + * Measure the area of the given polygon. + * @see 2000 softSurfer http://geomalgorithms.com + * @param {poly3} polygon - the polygon to measure + * @return {Number} area of the polygon + * @alias module:modeling/geometries/poly3.measureArea + */ +const measureArea$2 = (polygon) => { + const n = polygon.vertices.length; + if (n < 3) { + return 0 // degenerate polygon + } + const vertices = polygon.vertices; + + // calculate a normal vector + const normal = plane(polygon); + + // determine direction of projection + const ax = Math.abs(normal[0]); + const ay = Math.abs(normal[1]); + const az = Math.abs(normal[2]); + + if (ax + ay + az === 0) { + // normal does not exist + return 0 + } + + let coord = 3; // ignore Z coordinates + if ((ax > ay) && (ax > az)) { + coord = 1; // ignore X coordinates + } else + if (ay > az) { + coord = 2; // ignore Y coordinates + } + + let area = 0; + let h = 0; + let i = 1; + let j = 2; + switch (coord) { + case 1: // ignore X coordinates + // compute area of 2D projection + for (i = 1; i < n; i++) { + h = i - 1; + j = (i + 1) % n; + area += (vertices[i][1] * (vertices[j][2] - vertices[h][2])); + } + area += (vertices[0][1] * (vertices[1][2] - vertices[n - 1][2])); + // scale to get area + area /= (2 * normal[0]); + break + + case 2: // ignore Y coordinates + // compute area of 2D projection + for (i = 1; i < n; i++) { + h = i - 1; + j = (i + 1) % n; + area += (vertices[i][2] * (vertices[j][0] - vertices[h][0])); + } + area += (vertices[0][2] * (vertices[1][0] - vertices[n - 1][0])); + // scale to get area + area /= (2 * normal[1]); + break + + case 3: // ignore Z coordinates + default: + // compute area of 2D projection + for (i = 1; i < n; i++) { + h = i - 1; + j = (i + 1) % n; + area += (vertices[i][0] * (vertices[j][1] - vertices[h][1])); + } + area += (vertices[0][0] * (vertices[1][1] - vertices[n - 1][1])); + // scale to get area + area /= (2 * normal[2]); + break + } + return area +}; + +/** + * @param {poly3} polygon - the polygon to measure + * @returns {Array} an array of two vectors (3D); minimum and maximum coordinates + * @alias module:modeling/geometries/poly3.measureBoundingBox + */ +const measureBoundingBox$2 = (polygon) => { + const vertices = polygon.vertices; + const numVertices = vertices.length; + const min = numVertices === 0 ? create$b() : clone$9(vertices[0]); + const max = clone$9(min); + for (let i = 1; i < numVertices; i++) { + min$2(min, min, vertices[i]); + max$2(max, max, vertices[i]); + } + return [min, max] +}; + +/** + * Calculates the dot product of the given vectors. + * + * @param {vec4} a - first vector + * @param {vec4} b - second vector + * @returns {Number} dot product + * @alias module:modeling/maths/vec4.dot + */ +const dot = (a, b) => a[0] * b[0] + a[1] * b[1] + a[2] * b[2] + a[3] * b[3]; + +/** + * Create a new vector from the given scalar value. + * + * @param {vec4} out - receiving vector + * @param {Number} scalar + * @returns {vec4} out + * @alias module:modeling/maths/vec4.fromScalar + */ +const fromScalar = (out, scalar) => { + out[0] = scalar; + out[1] = scalar; + out[2] = scalar; + out[3] = scalar; + return out +}; + +/** + * Transform the given vector using the given matrix. + * + * @param {vec4} out - receiving vector + * @param {vec4} vector - vector to transform + * @param {mat4} matrix - matrix to transform with + * @returns {vec4} out + * @alias module:modeling/maths/vec4.transform + */ +const transform$8 = (out, vector, matrix) => { + const [x, y, z, w] = vector; + + out[0] = matrix[0] * x + matrix[4] * y + matrix[8] * z + matrix[12] * w; + out[1] = matrix[1] * x + matrix[5] * y + matrix[9] * z + matrix[13] * w; + out[2] = matrix[2] * x + matrix[6] * y + matrix[10] * z + matrix[14] * w; + out[3] = matrix[3] * x + matrix[7] * y + matrix[11] * z + matrix[15] * w; + return out +}; + +/** + * Represents a four dimensional vector. + * @see {@link vec4} for data structure information. + * @module modeling/maths/vec4 + */ + +var index$n = /*#__PURE__*/Object.freeze({ + __proto__: null, + clone: clone$5, + copy: copy$2, + create: create$6, + dot: dot, + equals: equals$5, + fromScalar: fromScalar, + fromValues: fromValues$1, + toString: toString$7, + transform: transform$8 +}); + +const cache$3 = new WeakMap(); + +/** + * Measure the bounding sphere of the given polygon. + * @param {poly3} polygon - the polygon to measure + * @returns {vec4} the computed bounding sphere; center vertex (3D) and radius + * @alias module:modeling/geometries/poly3.measureBoundingSphere + */ +const measureBoundingSphere$1 = (polygon) => { + const boundingSphere = cache$3.get(polygon); + if (boundingSphere) return boundingSphere + + const vertices = polygon.vertices; + const out = create$6(); + + if (vertices.length === 0) { + out[0] = 0; + out[1] = 0; + out[2] = 0; + out[3] = 0; + return out + } + + // keep a list of min/max vertices by axis + let minx = vertices[0]; + let miny = minx; + let minz = minx; + let maxx = minx; + let maxy = minx; + let maxz = minx; + + vertices.forEach((v) => { + if (minx[0] > v[0]) minx = v; + if (miny[1] > v[1]) miny = v; + if (minz[2] > v[2]) minz = v; + if (maxx[0] < v[0]) maxx = v; + if (maxy[1] < v[1]) maxy = v; + if (maxz[2] < v[2]) maxz = v; + }); + + out[0] = (minx[0] + maxx[0]) * 0.5; // center of sphere + out[1] = (miny[1] + maxy[1]) * 0.5; + out[2] = (minz[2] + maxz[2]) * 0.5; + const x = out[0] - maxx[0]; + const y = out[1] - maxy[1]; + const z = out[2] - maxz[2]; + out[3] = Math.sqrt(x * x + y * y + z * z); // radius of sphere + + cache$3.set(polygon, out); + + return out +}; + +/** + * Measure the signed volume of the given polygon, which must be convex. + * The volume is that formed by the tetrahedron connected to the axis [0,0,0], + * and will be positive or negative based on the rotation of the vertices. + * @see http://chenlab.ece.cornell.edu/Publication/Cha/icip01_Cha.pdf + * @param {poly3} polygon - the polygon to measure + * @return {Number} volume of the polygon + * @alias module:modeling/geometries/poly3.measureSignedVolume + */ +const measureSignedVolume = (polygon) => { + let signedVolume = 0; + const vertices = polygon.vertices; + // calculate based on triangular polygons + const cross = create$b(); + for (let i = 0; i < vertices.length - 2; i++) { + cross$1(cross, vertices[i + 1], vertices[i + 2]); + signedVolume += dot$2(vertices[0], cross); + } + signedVolume /= 6; + return signedVolume +}; + +/** + * Return the given polygon as a list of vertices. + * NOTE: The returned array should not be modified as the vertices are shared with the geometry. + * @param {poly3} polygon - the polygon + * @return {Array} list of vertices (3D) + * @alias module:modeling/geometries/poly3.toVertices + */ +const toVertices$1 = (polygon) => polygon.vertices; + +/** + * Convert the given polygon to a readable string. + * @param {poly3} polygon - the polygon to convert + * @return {String} the string representation + * @alias module:modeling/geometries/poly3.toString + */ +const toString$6 = (polygon) => `poly3: [${polygon.vertices.map(toString$b).join(', ')}]`; + +/** + * Transform the given polygon using the given matrix. + * @param {mat4} matrix - the matrix to transform with + * @param {poly3} polygon - the polygon to transform + * @returns {poly3} a new polygon + * @alias module:modeling/geometries/poly3.transform + */ +const transform$7 = (matrix, polygon) => { + const vertices = polygon.vertices.map((vertex) => transform$c(create$b(), vertex, matrix)); + if (isMirroring(matrix)) { + // reverse the order to preserve the orientation + vertices.reverse(); + } + return create$7(vertices) +}; + +/** + * Determine if the given object is a valid polygon. + * Checks for valid data structure, convex polygons, and duplicate vertices. + * + * **If the geometry is not valid, an exception will be thrown with details of the geometry error.** + * + * @param {Object} object - the object to interrogate + * @throws {Error} error if the geometry is not valid + * @alias module:modeling/geometries/poly3.validate + */ +const validate$3 = (object) => { + if (!isA$4(object)) { + throw new Error('invalid poly3 structure') + } + + // check for empty polygon + if (object.vertices.length < 3) { + throw new Error(`poly3 not enough vertices ${object.vertices.length}`) + } + // check area + if (measureArea$2(object) <= 0) { + throw new Error('poly3 area must be greater than zero') + } + + // check for duplicate vertices + for (let i = 0; i < object.vertices.length; i++) { + if (equals$7(object.vertices[i], object.vertices[(i + 1) % object.vertices.length])) { + throw new Error(`poly3 duplicate vertex ${object.vertices[i]}`) + } + } + + // check convexity + if (!isConvex$1(object)) { + throw new Error('poly3 must be convex') + } + + // check for infinity, nan + object.vertices.forEach((vertex) => { + if (!vertex.every(Number.isFinite)) { + throw new Error(`poly3 invalid vertex ${vertex}`) + } + }); + + // check that vertices are co-planar + if (object.vertices.length > 3) { + const normal = plane(object); + object.vertices.forEach((vertex) => { + const dist = Math.abs(signedDistanceToPoint(normal, vertex)); + if (dist > NEPS) { + throw new Error(`poly3 must be coplanar: vertex ${vertex} distance ${dist}`) + } + }); + } +}; + +/** + * Represents a convex 3D polygon consisting of a list of ordered vertices. + * @see {@link poly3} for data structure information. + * @module modeling/geometries/poly3 + * + * @example + * import { geometries } from '@jscad/modeling' + * const polygon = geometries.poly3.create([[0,0,0], [4,0,0], [4,3,12]]) + */ + +var index$m = /*#__PURE__*/Object.freeze({ + __proto__: null, + clone: clone$6, + create: create$7, + fromVerticesAndPlane: fromVerticesAndPlane, + invert: invert$1, + isA: isA$4, + isConvex: isConvex$1, + measureArea: measureArea$2, + measureBoundingBox: measureBoundingBox$2, + measureBoundingSphere: measureBoundingSphere$1, + measureSignedVolume: measureSignedVolume, + plane: plane, + toVertices: toVertices$1, + toString: toString$6, + transform: transform$7, + validate: validate$3 +}); + +/** + * Construct a new 3D geometry from a list of vertices. + * The list of vertices should contain sub-arrays, each defining a single polygon of vertices. + * In addition, the vertices should follow the right-hand rule for rotation in order to + * define an external facing polygon. + * @param {Array} listOfVertices - list of lists, where each list is a set of vertices to construct a polygon + * @returns {geom3} a new geometry + * @alias module:modeling/geometries/geom3.fromPoints + */ +const fromPoints$3 = (listOfLists) => { + if (!Array.isArray(listOfLists)) { + throw new Error('the given vertices must be an array') + } + + const polygons = listOfLists.map((vertices, index) => { + // TODO catch the error, and rethrow with index + return create$7(vertices) + }); + return create$8(polygons) +}; + +/** + * Construct a new 3D geometry from the given compact binary data. + * @param {TypedArray} data - compact binary data + * @returns {geom3} a new geometry + * @alias module:modeling/geometries/geom3.fromCompactBinary + */ +const fromCompactBinary$1 = (data) => { + if (data[0] !== 1) throw new Error('invalid compact binary data') + + const created = create$8(); + + created.transforms = clone$a(data.slice(1, 17)); + + const numberOfVertices = data[21]; + let ci = 22; + let vi = data.length - (numberOfVertices * 3); + while (vi < data.length) { + const verticesPerPolygon = data[ci]; + ci++; + + const vertices = []; + for (let i = 0; i < verticesPerPolygon; i++) { + vertices.push(fromValues$3(data[vi], data[vi + 1], data[vi + 2])); + vi += 3; + } + created.polygons.push(create$7(vertices)); + } + + // transfer known properties, i.e. color + if (data[17] >= 0) { + created.color = [data[17], data[18], data[19], data[20]]; + } + // TODO: how about custom properties or fields ? + return created +}; + +/* + * Apply the transforms of the given geometry. + * NOTE: This function must be called BEFORE exposing any data. See toPolygons. + * @param {geom3} geometry - the geometry to transform + * @returns {geom3} the given geometry + * @example + * geometry = applyTransforms(geometry) + */ +const applyTransforms$1 = (geometry) => { + if (isIdentity(geometry.transforms)) return geometry + + // apply transforms to each polygon + geometry.polygons = geometry.polygons.map((polygon) => transform$7(geometry.transforms, polygon)); + // reset transforms + geometry.transforms = create$c(); + return geometry +}; + +/** + * Produces an array of polygons from the given geometry, after applying transforms. + * The returned array should not be modified as the polygons are shared with the geometry. + * @param {geom3} geometry - the geometry + * @returns {Array} an array of polygons + * @alias module:modeling/geometries/geom3.toPolygons + * + * @example + * let sharedPolygons = toPolygons(geometry) + */ +const toPolygons$1 = (geometry) => applyTransforms$1(geometry).polygons; + +/** + * Invert the given geometry, transposing solid and empty space. + * @param {geom3} geometry - the geometry to invert + * @return {geom3} a new geometry + * @alias module:modeling/geometries/geom3.invert + */ +const invert = (geometry) => { + const polygons = toPolygons$1(geometry); + const newPolygons = polygons.map((polygon) => invert$1(polygon)); + return create$8(newPolygons) +}; + +/** + * Determine if the given object is a 3D geometry. + * @param {Object} object - the object to interrogate + * @returns {Boolean} true if the object matches a geom3 + * @alias module:modeling/geometries/geom3.isA + */ +const isA$3 = (object) => { + if (object && typeof object === 'object') { + if ('polygons' in object && 'transforms' in object) { + if (Array.isArray(object.polygons) && 'length' in object.transforms) { + return true + } + } + } + return false +}; + +/** + * Return the given geometry as a list of points, after applying transforms. + * The returned array should not be modified as the points are shared with the geometry. + * @param {geom3} geometry - the geometry + * @return {Array} list of points, where each sub-array represents a polygon + * @alias module:modeling/geometries/geom3.toPoints + */ +const toPoints$2 = (geometry) => { + const polygons = toPolygons$1(geometry); + return polygons.map((polygon) => toVertices$1(polygon)) +}; + +/** + * Create a string representing the contents of the given geometry. + * @param {geom3} geometry - the geometry + * @returns {String} a representative string + * @alias module:modeling/geometries/geom3.toString + * + * @example + * console.out(toString(geometry)) + */ +const toString$5 = (geometry) => { + const polygons = toPolygons$1(geometry); + let result = 'geom3 (' + polygons.length + ' polygons):\n'; + polygons.forEach((polygon) => { + result += ' ' + toString$6(polygon) + '\n'; + }); + return result +}; + +/** + * Return the given geometry in compact binary representation. + * @param {geom3} geometry - the geometry + * @return {TypedArray} compact binary representation + * @alias module:modeling/geometries/geom3.toCompactBinary + */ +const toCompactBinary$1 = (geometry) => { + const polygons = geometry.polygons; + const transforms = geometry.transforms; + + const numberOfPolygons = polygons.length; + const numberOfVertices = polygons.reduce((count, polygon) => count + polygon.vertices.length, 0); + let color = [-1, -1, -1, -1]; + if (geometry.color) color = geometry.color; + + // FIXME why Float32Array? + const compacted = new Float32Array(1 + 16 + 4 + 1 + numberOfPolygons + (numberOfVertices * 3)); + // type + transforms + color + numberOfPolygons + numberOfVerticesPerPolygon[] + vertices data[] + + compacted[0] = 1; // type code: 0 => geom2, 1 => geom3 , 2 => path2 + + compacted[1] = transforms[0]; + compacted[2] = transforms[1]; + compacted[3] = transforms[2]; + compacted[4] = transforms[3]; + compacted[5] = transforms[4]; + compacted[6] = transforms[5]; + compacted[7] = transforms[6]; + compacted[8] = transforms[7]; + compacted[9] = transforms[8]; + compacted[10] = transforms[9]; + compacted[11] = transforms[10]; + compacted[12] = transforms[11]; + compacted[13] = transforms[12]; + compacted[14] = transforms[13]; + compacted[15] = transforms[14]; + compacted[16] = transforms[15]; + + compacted[17] = color[0]; + compacted[18] = color[1]; + compacted[19] = color[2]; + compacted[20] = color[3]; + + compacted[21] = numberOfVertices; + + let ci = 22; + let vi = ci + numberOfPolygons; + polygons.forEach((polygon) => { + const vertices = toVertices$1(polygon); + // record the number of vertices per polygon + compacted[ci] = vertices.length; + ci++; + // convert the vertices + for (let i = 0; i < vertices.length; i++) { + const vertex = vertices[i]; + compacted[vi + 0] = vertex[0]; + compacted[vi + 1] = vertex[1]; + compacted[vi + 2] = vertex[2]; + vi += 3; + } + }); + // TODO: how about custom properties or fields ? + return compacted +}; + +/** + * Transform the given geometry using the given matrix. + * This is a lazy transform of the polygons, as this function only adjusts the transforms. + * See applyTransforms() for the actual application of the transforms to the polygons. + * @param {mat4} matrix - the matrix to transform with + * @param {geom3} geometry - the geometry to transform + * @returns {geom3} a new geometry + * @alias module:modeling/geometries/geom3.transform + * + * @example + * let newGeometry = transform(fromXRotation(TAU / 4), geometry) + */ +const transform$6 = (matrix, geometry) => { + const transforms = multiply$1(create$c(), matrix, geometry.transforms); + return Object.assign({}, geometry, { transforms }) +}; + +/** + * Determine if the given object is a valid 3D geometry. + * Checks for valid data structure, convex polygon faces, and manifold edges. + * + * **If the geometry is not valid, an exception will be thrown with details of the geometry error.** + * + * @param {Object} object - the object to interrogate + * @throws {Error} error if the geometry is not valid + * @alias module:modeling/geometries/geom3.validate + */ +const validate$2 = (object) => { + if (!isA$3(object)) { + throw new Error('invalid geom3 structure') + } + + // check polygons + object.polygons.forEach(validate$3); + validateManifold(object); + + // check transforms + if (!object.transforms.every(Number.isFinite)) { + throw new Error(`geom3 invalid transforms ${object.transforms}`) + } + + // TODO: check for self-intersecting +}; + +/* + * Check manifold edge condition: Every edge is in exactly 2 faces + */ +const validateManifold = (object) => { + // count of each edge + const edgeCount = new Map(); + object.polygons.forEach(({ vertices }) => { + vertices.forEach((v, i) => { + const v1 = `${v}`; + const v2 = `${vertices[(i + 1) % vertices.length]}`; + // sort for undirected edge + const edge = `${v1}/${v2}`; + const count = edgeCount.has(edge) ? edgeCount.get(edge) : 0; + edgeCount.set(edge, count + 1); + }); + }); + + // check that edges are always matched + const nonManifold = []; + edgeCount.forEach((count, edge) => { + const complementEdge = edge.split('/').reverse().join('/'); + const complementCount = edgeCount.get(complementEdge); + if (count !== complementCount) { + nonManifold.push(edge.replace('/', ' -> ')); + } + }); + if (nonManifold.length > 0) { + throw new Error(`non-manifold edges ${nonManifold.length}\n${nonManifold.join('\n')}`) + } +}; + +/** + * Represents a 3D geometry consisting of a list of polygons. + * @see {@link geom3} for data structure information. + * @module modeling/geometries/geom3 + * + * @example + * import { geometries } from '@jscad/modeling' + * const myShape = geometries.geom3.fromPoints([ + * [[-1,-1,-1], [-1,-1,1], [-1,1,1], [-1,1,-1]], + * [[1,-1,-1], [1,1,-1], [1,1,1], [1,-1,1]], + * [[-1,-1,-1], [1,-1,-1], [1,-1,1], [-1,-1,1]] + * [[-1,1,-1], [-1,1,1], [1,1,1], [1,1,-1]], + * [[-1,-1,-1], [-1,1,-1], [1,1,-1], [1,-1,-1]], + * [[-1,-1,1], [1,-1,1], [1,1,1], [-1,1,1]] + * ]) + */ + +var index$l = /*#__PURE__*/Object.freeze({ + __proto__: null, + clone: clone$7, + create: create$8, + fromPoints: fromPoints$3, + fromCompactBinary: fromCompactBinary$1, + invert: invert, + isA: isA$3, + toPoints: toPoints$2, + toPolygons: toPolygons$1, + toString: toString$5, + toCompactBinary: toCompactBinary$1, + transform: transform$6, + validate: validate$2 +}); + +/** + * Performs a shallow clone of the give geometry. + * @param {path2} geometry - the geometry to clone + * @returns {path2} a new path + * @alias module:modeling/geometries/path2.clone + */ +const clone$4 = (geometry) => Object.assign({}, geometry); + +/** + * Close the given geometry. + * @param {path2} geometry - the path to close + * @returns {path2} a new path + * @alias module:modeling/geometries/path2.close + */ +const close = (geometry) => { + if (geometry.isClosed) return geometry + + const cloned = clone$4(geometry); + cloned.isClosed = true; + + if (cloned.points.length > 1) { + // make sure the paths are formed properly + const points = cloned.points; + const p0 = points[0]; + let pn = points[points.length - 1]; + while (distance(p0, pn) < (EPS * EPS)) { + points.pop(); + if (points.length === 1) break + pn = points[points.length - 1]; + } + } + return cloned +}; + +/** + * Represents a 2D geometry consisting of a list of ordered points. + * @typedef {Object} path2 + * @property {Array} points - list of ordered points + * @property {Boolean} isClosed - true if the path is closed where start and end points are the same + * @property {mat4} transforms - transforms to apply to the points, see transform() + * @example + * { + * "points": [[0,0], [4,0], [4,3]], + * "isClosed": true, + * "transforms": [1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1], + * } + */ + +/** + * Create an empty, open path. + * @returns {path2} a new path + * @alias module:modeling/geometries/path2.create + * + * @example + * let newPath = create() + */ +const create$5 = (points) => { + if (points === undefined) { + points = []; + } + return { + points: points, + isClosed: false, + transforms: create$c() + } +}; + +/** + * Create a new path from the given points. + * The points must be provided an array of points, + * where each point is an array of two numbers. + * @param {Object} options - options for construction + * @param {Boolean} [options.closed=false] - if the path should be open or closed + * @param {Array} points - array of points (2D) from which to create the path + * @returns {path2} a new path + * @alias module:modeling/geometries/path2.fromPoints + * + * @example: + * my newPath = fromPoints({closed: true}, [[10, 10], [-10, 10]]) + */ +const fromPoints$2 = (options, points) => { + const defaults = { closed: false }; + let { closed } = Object.assign({}, defaults, options); + + let created = create$5(); + created.points = points.map((point) => clone$8(point)); + + // check if first and last points are equal + if (created.points.length > 1) { + const p0 = created.points[0]; + const pn = created.points[created.points.length - 1]; + if (distance(p0, pn) < (EPS * EPS)) { + // and close automatically + closed = true; + } + } + if (closed === true) created = close(created); + + return created +}; + +/* + * Apply the transforms of the given geometry. + * NOTE: This function must be called BEFORE exposing any data. See toPoints. + * @param {path} geometry - the geometry to transform + * @returns {path} the given geometry + * @example + * geometry = applyTransforms(geometry) + */ +const applyTransforms = (geometry) => { + if (isIdentity(geometry.transforms)) return geometry + + geometry.points = geometry.points.map((point) => transform$b(create$9(), point, geometry.transforms)); + geometry.transforms = create$c(); + return geometry +}; + +/** + * Produces an array of points from the given geometry. + * The returned array should not be modified as the data is shared with the geometry. + * @param {path2} geometry - the geometry + * @returns {Array} an array of points + * @alias module:modeling/geometries/path2.toPoints + * + * @example + * let sharedPoints = toPoints(geometry) + */ +const toPoints$1 = (geometry) => applyTransforms(geometry).points; + +/** + * Append a series of points to the given geometry that represent an arc. + * This implementation follows the SVG specifications. + * @see http://www.w3.org/TR/SVG/paths.html#PathDataEllipticalArcCommands + * @param {Object} options - options for construction + * @param {vec2} options.endpoint - end point of arc (REQUIRED) + * @param {vec2} [options.radius=[0,0]] - radius of arc (X and Y) + * @param {Number} [options.xaxisRotation=0] - rotation (RADIANS) of the X axis of the arc with respect to the X axis of the coordinate system + * @param {Boolean} [options.clockwise=false] - draw an arc clockwise with respect to the center point + * @param {Boolean} [options.large=false] - draw an arc longer than TAU / 2 radians + * @param {Number} [options.segments=16] - number of segments per full rotation + * @param {path2} geometry - the path of which to append the arc + * @returns {path2} a new path with the appended points + * @alias module:modeling/geometries/path2.appendArc + * + * @example + * let myShape = fromPoints({}, [[27.5,-22.96875]]); + * myShape = appendPoints([[27.5,-3.28125]], myShape); + * myShape = appendArc({endpoint: [12.5, -22.96875], radius: [15, -19.6875]}, myShape); + */ +const appendArc = (options, geometry) => { + const defaults = { + radius: [0, 0], // X and Y radius + xaxisRotation: 0, + clockwise: false, + large: false, + segments: 16 + }; + let { endpoint, radius, xaxisRotation, clockwise, large, segments } = Object.assign({}, defaults, options); + + // validate the given options + if (!Array.isArray(endpoint)) throw new Error('endpoint must be an array of X and Y values') + if (endpoint.length < 2) throw new Error('endpoint must contain X and Y values') + endpoint = clone$8(endpoint); + + if (!Array.isArray(radius)) throw new Error('radius must be an array of X and Y values') + if (radius.length < 2) throw new Error('radius must contain X and Y values') + + if (segments < 4) throw new Error('segments must be four or more') + + const decimals = 100000; + + // validate the given geometry + if (geometry.isClosed) { + throw new Error('the given path cannot be closed') + } + + const points = toPoints$1(geometry); + if (points.length < 1) { + throw new Error('the given path must contain one or more points (as the starting point for the arc)') + } + + let xRadius = radius[0]; + let yRadius = radius[1]; + const startpoint = points[points.length - 1]; + + // round to precision in order to have determinate calculations + xRadius = Math.round(xRadius * decimals) / decimals; + yRadius = Math.round(yRadius * decimals) / decimals; + endpoint = fromValues$2(Math.round(endpoint[0] * decimals) / decimals, Math.round(endpoint[1] * decimals) / decimals); + + const sweepFlag = !clockwise; + let newPoints = []; + if ((xRadius === 0) || (yRadius === 0)) { + // http://www.w3.org/TR/SVG/implnote.html#ArcImplementationNotes: + // If rx = 0 or ry = 0, then treat this as a straight line from (x1, y1) to (x2, y2) and stop + newPoints.push(endpoint); + } else { + xRadius = Math.abs(xRadius); + yRadius = Math.abs(yRadius); + + // see http://www.w3.org/TR/SVG/implnote.html#ArcImplementationNotes : + const phi = xaxisRotation; + const cosPhi = Math.cos(phi); + const sinPhi = Math.sin(phi); + const minusHalfDistance = subtract$1(create$9(), startpoint, endpoint); + scale$1(minusHalfDistance, minusHalfDistance, 0.5); + // F.6.5.1: + // round to precision in order to have determinate calculations + const x = Math.round((cosPhi * minusHalfDistance[0] + sinPhi * minusHalfDistance[1]) * decimals) / decimals; + const y = Math.round((-sinPhi * minusHalfDistance[0] + cosPhi * minusHalfDistance[1]) * decimals) / decimals; + const startTranslated = fromValues$2(x, y); + // F.6.6.2: + const bigLambda = (startTranslated[0] * startTranslated[0]) / (xRadius * xRadius) + (startTranslated[1] * startTranslated[1]) / (yRadius * yRadius); + if (bigLambda > 1.0) { + // F.6.6.3: + const sqrtBigLambda = Math.sqrt(bigLambda); + xRadius *= sqrtBigLambda; + yRadius *= sqrtBigLambda; + // round to precision in order to have determinate calculations + xRadius = Math.round(xRadius * decimals) / decimals; + yRadius = Math.round(yRadius * decimals) / decimals; + } + // F.6.5.2: + let multiplier1 = Math.sqrt((xRadius * xRadius * yRadius * yRadius - xRadius * xRadius * startTranslated[1] * startTranslated[1] - yRadius * yRadius * startTranslated[0] * startTranslated[0]) / (xRadius * xRadius * startTranslated[1] * startTranslated[1] + yRadius * yRadius * startTranslated[0] * startTranslated[0])); + if (sweepFlag === large) multiplier1 = -multiplier1; + const centerTranslated = fromValues$2(xRadius * startTranslated[1] / yRadius, -yRadius * startTranslated[0] / xRadius); + scale$1(centerTranslated, centerTranslated, multiplier1); + // F.6.5.3: + let center = fromValues$2(cosPhi * centerTranslated[0] - sinPhi * centerTranslated[1], sinPhi * centerTranslated[0] + cosPhi * centerTranslated[1]); + center = add(center, center, scale$1(create$9(), add(create$9(), startpoint, endpoint), 0.5)); + + // F.6.5.5: + const vector1 = fromValues$2((startTranslated[0] - centerTranslated[0]) / xRadius, (startTranslated[1] - centerTranslated[1]) / yRadius); + const vector2 = fromValues$2((-startTranslated[0] - centerTranslated[0]) / xRadius, (-startTranslated[1] - centerTranslated[1]) / yRadius); + const theta1 = angleRadians(vector1); + const theta2 = angleRadians(vector2); + let deltatheta = theta2 - theta1; + deltatheta = deltatheta % TAU; + if ((!sweepFlag) && (deltatheta > 0)) { + deltatheta -= TAU; + } else if ((sweepFlag) && (deltatheta < 0)) { + deltatheta += TAU; + } + + // Ok, we have the center point and angle range (from theta1, deltatheta radians) so we can create the ellipse + let numSteps = Math.ceil(Math.abs(deltatheta) / TAU * segments) + 1; + if (numSteps < 1) numSteps = 1; + for (let step = 1; step < numSteps; step++) { + const theta = theta1 + step / numSteps * deltatheta; + const cosTheta = Math.cos(theta); + const sinTheta = Math.sin(theta); + // F.6.3.1: + const point = fromValues$2(cosPhi * xRadius * cosTheta - sinPhi * yRadius * sinTheta, sinPhi * xRadius * cosTheta + cosPhi * yRadius * sinTheta); + add(point, point, center); + newPoints.push(point); + } + // ensure end point is precisely what user gave as parameter + if (numSteps) newPoints.push(options.endpoint); + } + newPoints = points.concat(newPoints); + const result = fromPoints$2({}, newPoints); + return result +}; + +/** + * Concatenate the given paths. + * + * If both contain the same point at the junction, merge it into one. + * A concatenation of zero paths is an empty, open path. + * A concatenation of one closed path to a series of open paths produces a closed path. + * A concatenation of a path to a closed path is an error. + * @param {...path2} paths - the paths to concatenate + * @returns {path2} a new path + * @alias module:modeling/geometries/path2.concat + * + * @example + * let newPath = concat(fromPoints({}, [[1, 2]]), fromPoints({}, [[3, 4]])) + */ +const concat = (...paths) => { + // Only the last path can be closed, producing a closed path. + let isClosed = false; + let newPoints = []; + paths.forEach((path, i) => { + const tmp = toPoints$1(path).slice(); + if (newPoints.length > 0 && tmp.length > 0 && equals$6(tmp[0], newPoints[newPoints.length - 1])) tmp.shift(); + if (tmp.length > 0 && isClosed) { + throw new Error(`Cannot concatenate to a closed path; check the ${i}th path`) + } + isClosed = path.isClosed; + newPoints = newPoints.concat(tmp); + }); + return fromPoints$2({ closed: isClosed }, newPoints) +}; + +/** + * Append the given list of points to the end of the given geometry. + * @param {Array} points - the points (2D) to append to the given path + * @param {path2} geometry - the given path + * @returns {path2} a new path with the appended points + * @alias module:modeling/geometries/path2.appendPoints + * @example + * let newPath = appendPoints([[3, 4], [4, 5]], oldPath) + */ +const appendPoints = (points, geometry) => concat(geometry, create$5(points)); + +/** + * Append a series of points to the given geometry that represent a Bézier curve. + * The Bézier curve starts at the last point in the given geometry, and ends at the last control point. + * The other control points are intermediate control points to transition the curve from start to end points. + * The first control point may be null to ensure a smooth transition occurs. In this case, + * the second to last point of the given geometry is mirrored into the control points of the Bézier curve. + * In other words, the trailing gradient of the geometry matches the new gradient of the curve. + * @param {Object} options - options for construction + * @param {Array} options.controlPoints - list of control points (2D) for the Bézier curve + * @param {Number} [options.segment=16] - number of segments per 360 rotation + * @param {path2} geometry - the path of which to append points + * @returns {path2} a new path with the appended points + * @alias module:modeling/geometries/path2.appendBezier + * + * @example + * let myShape = fromPoints({}, [[10,-20]]) + * myShape = appendBezier({controlPoints: [[10,-10],[25,-10],[25,-20]]}, myShape); + * myShape = appendBezier({controlPoints: [null, [25,-30],[40,-30],[40,-20]]}, myShape) + */ +const appendBezier = (options, geometry) => { + const defaults = { + segments: 16 + }; + let { controlPoints, segments } = Object.assign({}, defaults, options); + + // validate the given options + if (!Array.isArray(controlPoints)) throw new Error('controlPoints must be an array of one or more points') + if (controlPoints.length < 1) throw new Error('controlPoints must be an array of one or more points') + + if (segments < 4) throw new Error('segments must be four or more') + + // validate the given geometry + if (geometry.isClosed) { + throw new Error('the given geometry cannot be closed') + } + + const points = toPoints$1(geometry); + if (points.length < 1) { + throw new Error('the given path must contain one or more points (as the starting point for the bezier curve)') + } + + // make a copy of the control points + controlPoints = controlPoints.slice(); + + // special handling of null control point (only first is allowed) + const firstControlPoint = controlPoints[0]; + if (firstControlPoint === null) { + if (controlPoints.length < 2) { + throw new Error('a null control point must be passed with one more control points') + } + // special handling of a previous bezier curve + let lastBezierControlPoint = points[points.length - 2]; + if ('lastBezierControlPoint' in geometry) { + lastBezierControlPoint = geometry.lastBezierControlPoint; + } + if (!Array.isArray(lastBezierControlPoint)) { + throw new Error('the given path must contain TWO or more points if given a null control point') + } + // replace the first control point with the mirror of the last bezier control point + const controlPoint = scale$1(create$9(), points[points.length - 1], 2); + subtract$1(controlPoint, controlPoint, lastBezierControlPoint); + + controlPoints[0] = controlPoint; + } + + // add a control point for the previous end point + controlPoints.unshift(points[points.length - 1]); + + const bezierOrder = controlPoints.length - 1; + const factorials = []; + let fact = 1; + for (let i = 0; i <= bezierOrder; ++i) { + if (i > 0) fact *= i; + factorials.push(fact); + } + + const binomials = []; + for (let i = 0; i <= bezierOrder; ++i) { + const binomial = factorials[bezierOrder] / (factorials[i] * factorials[bezierOrder - i]); + binomials.push(binomial); + } + + const v0 = create$9(); + const v1 = create$9(); + const v3 = create$b(); + const getPointForT = (t) => { + let tk = 1; // = pow(t,k) + let oneMinusTNMinusK = Math.pow(1 - t, bezierOrder); // = pow( 1-t, bezierOrder - k) + const invOneMinusT = (t !== 1) ? (1 / (1 - t)) : 1; + const point = create$9(); // 0, 0, 0 + for (let k = 0; k <= bezierOrder; ++k) { + if (k === bezierOrder) oneMinusTNMinusK = 1; + const bernsteinCoefficient = binomials[k] * tk * oneMinusTNMinusK; + const derivativePoint = scale$1(v0, controlPoints[k], bernsteinCoefficient); + add(point, point, derivativePoint); + tk *= t; + oneMinusTNMinusK *= invOneMinusT; + } + return point + }; + + const newPoints = []; + const newPointsT = []; + const numSteps = bezierOrder + 1; + for (let i = 0; i < numSteps; ++i) { + const t = i / (numSteps - 1); + const point = getPointForT(t); + newPoints.push(point); + newPointsT.push(t); + } + + // subdivide each segment until the angle becomes small enough: + let subdivideBase = 1; + const maxAngle = TAU / segments; + const maxSinAngle = Math.sin(maxAngle); + while (subdivideBase < newPoints.length - 1) { + const dir1 = subtract$1(v0, newPoints[subdivideBase], newPoints[subdivideBase - 1]); + normalize(dir1, dir1); + const dir2 = subtract$1(v1, newPoints[subdivideBase + 1], newPoints[subdivideBase]); + normalize(dir2, dir2); + const sinAngle = cross(v3, dir1, dir2); // the sine of the angle + if (Math.abs(sinAngle[2]) > maxSinAngle) { + // angle is too big, we need to subdivide + const t0 = newPointsT[subdivideBase - 1]; + const t1 = newPointsT[subdivideBase + 1]; + const newt0 = t0 + (t1 - t0) * 1 / 3; + const newt1 = t0 + (t1 - t0) * 2 / 3; + const point0 = getPointForT(newt0); + const point1 = getPointForT(newt1); + // remove the point at subdivideBase and replace with 2 new points: + newPoints.splice(subdivideBase, 1, point0, point1); + newPointsT.splice(subdivideBase, 1, newt0, newt1); + // reevaluate the angles, starting at the previous junction since it has changed: + subdivideBase--; + if (subdivideBase < 1) subdivideBase = 1; + } else { + ++subdivideBase; + } + } + + // append to the new points to the given path + // but skip the first new point because it is identical to the last point in the given path + newPoints.shift(); + const result = appendPoints(newPoints, geometry); + result.lastBezierControlPoint = controlPoints[controlPoints.length - 2]; + return result +}; + +/** + * Determine if the given paths are equal. + * For closed paths, this includes equality under point order rotation. + * @param {path2} a - the first path to compare + * @param {path2} b - the second path to compare + * @returns {Boolean} + * @alias module:modeling/geometries/path2.equals + */ +const equals$4 = (a, b) => { + if (a.isClosed !== b.isClosed) { + return false + } + if (a.points.length !== b.points.length) { + return false + } + + const aPoints = toPoints$1(a); + const bPoints = toPoints$1(b); + + // closed paths might be equal under graph rotation + // so try comparison by rotating across all points + const length = aPoints.length; + let offset = 0; + do { + let unequal = false; + for (let i = 0; i < length; i++) { + if (!equals$6(aPoints[i], bPoints[(i + offset) % length])) { + unequal = true; + break + } + } + if (unequal === false) { + return true + } + // unequal open paths should only be compared once, never rotated + if (!a.isClosed) { + return false + } + } while (++offset < length) + return false +}; + +/** + * Create a new path from the given compact binary data. + * @param {TypedArray} data - compact binary data + * @returns {path2} a new path + * @alias module:modeling/geometries/path2.fromCompactBinary + */ +const fromCompactBinary = (data) => { + if (data[0] !== 2) throw new Error('invalid compact binary data') + + const created = create$5(); + + created.transforms = clone$a(data.slice(1, 17)); + + created.isClosed = !!data[17]; + + for (let i = 22; i < data.length; i += 2) { + const point = fromValues$2(data[i], data[i + 1]); + created.points.push(point); + } + // transfer known properties, i.e. color + if (data[18] >= 0) { + created.color = [data[18], data[19], data[20], data[21]]; + } + // TODO: how about custom properties or fields ? + return created +}; + +/** + * Determine if the given object is a path2 geometry. + * @param {Object} object - the object to interrogate + * @returns {Boolean} true if the object matches a path2 + * @alias module:modeling/geometries/path2.isA + */ +const isA$2 = (object) => { + if (object && typeof object === 'object') { + // see create for the required attributes and types + if ('points' in object && 'transforms' in object && 'isClosed' in object) { + // NOTE: transforms should be a TypedArray, which has a read-only length + if (Array.isArray(object.points) && 'length' in object.transforms) { + return true + } + } + } + return false +}; + +/** + * Reverses the path so that the points are in the opposite order. + * This swaps the left (interior) and right (exterior) edges. + * @param {path2} geometry - the path to reverse + * @returns {path2} a new path + * @alias module:modeling/geometries/path2.reverse + * + * @example + * let newPath = reverse(myPath) + */ +const reverse$4 = (geometry) => { + // NOTE: this only updates the order of the points + const cloned = clone$4(geometry); + cloned.points = geometry.points.slice().reverse(); + return cloned +}; + +/** + * Create a string representing the contents of the given path. + * @param {path2} geometry - the path + * @returns {String} a representative string + * @alias module:modeling/geometries/path2.toString + * + * @example + * console.out(toString(path)) + */ +const toString$4 = (geometry) => { + const points = toPoints$1(geometry); + let result = 'path (' + points.length + ' points, ' + geometry.isClosed + '):\n[\n'; + points.forEach((point) => { + result += ' ' + toString$9(point) + ',\n'; + }); + result += ']\n'; + return result +}; + +/** + * Produce a compact binary representation from the given path. + * @param {path2} geometry - the path geometry + * @returns {TypedArray} compact binary representation + * @alias module:modeling/geometries/path2.toCompactBinary + */ +const toCompactBinary = (geometry) => { + const points = geometry.points; + const transforms = geometry.transforms; + let color = [-1, -1, -1, -1]; + if (geometry.color) color = geometry.color; + + // FIXME why Float32Array? + const compacted = new Float32Array(1 + 16 + 1 + 4 + (points.length * 2)); // type + transforms + isClosed + color + points data + + compacted[0] = 2; // type code: 0 => geom2, 1 => geom3 , 2 => path2 + + compacted[1] = transforms[0]; + compacted[2] = transforms[1]; + compacted[3] = transforms[2]; + compacted[4] = transforms[3]; + compacted[5] = transforms[4]; + compacted[6] = transforms[5]; + compacted[7] = transforms[6]; + compacted[8] = transforms[7]; + compacted[9] = transforms[8]; + compacted[10] = transforms[9]; + compacted[11] = transforms[10]; + compacted[12] = transforms[11]; + compacted[13] = transforms[12]; + compacted[14] = transforms[13]; + compacted[15] = transforms[14]; + compacted[16] = transforms[15]; + + compacted[17] = geometry.isClosed ? 1 : 0; + + compacted[18] = color[0]; + compacted[19] = color[1]; + compacted[20] = color[2]; + compacted[21] = color[3]; + + for (let j = 0; j < points.length; j++) { + const ci = j * 2 + 22; + const point = points[j]; + compacted[ci] = point[0]; + compacted[ci + 1] = point[1]; + } + // TODO: how about custom properties or fields ? + return compacted +}; + +/** + * Transform the given geometry using the given matrix. + * This is a lazy transform of the points, as this function only adjusts the transforms. + * The transforms are applied when accessing the points via toPoints(). + * @param {mat4} matrix - the matrix to transform with + * @param {path2} geometry - the geometry to transform + * @returns {path2} a new path + * @alias module:modeling/geometries/path2.transform + * + * @example + * let newPath = transform(fromZRotation(TAU / 8), path) + */ +const transform$5 = (matrix, geometry) => { + const transforms = multiply$1(create$c(), matrix, geometry.transforms); + return Object.assign({}, geometry, { transforms }) +}; + +/** + * Determine if the given object is a valid path2. + * Checks for valid data points, and duplicate points. + * + * **If the geometry is not valid, an exception will be thrown with details of the geometry error.** + * + * @param {Object} object - the object to interrogate + * @throws {Error} error if the geometry is not valid + * @alias module:modeling/geometries/path2.validate + */ +const validate$1 = (object) => { + if (!isA$2(object)) { + throw new Error('invalid path2 structure') + } + + // check for duplicate points + if (object.points.length > 1) { + for (let i = 0; i < object.points.length; i++) { + if (equals$6(object.points[i], object.points[(i + 1) % object.points.length])) { + throw new Error(`path2 duplicate points ${object.points[i]}`) + } + } + } + + // check for infinity, nan + object.points.forEach((point) => { + if (!point.every(Number.isFinite)) { + throw new Error(`path2 invalid point ${point}`) + } + }); + + // check transforms + if (!object.transforms.every(Number.isFinite)) { + throw new Error(`path2 invalid transforms ${object.transforms}`) + } +}; + +/** + * Represents a 2D geometry consisting of a list of ordered points. + * @see {@link path2} for data structure information. + * @module modeling/geometries/path2 + * + * @example + * import { geometries } from '@jscad/modeling' + * let myShape = geometries.path2.fromPoints({ closed: true }, [[0,0], [4,0], [4,3]]) + */ + +var index$k = /*#__PURE__*/Object.freeze({ + __proto__: null, + appendArc: appendArc, + appendBezier: appendBezier, + appendPoints: appendPoints, + clone: clone$4, + close: close, + concat: concat, + create: create$5, + equals: equals$4, + fromPoints: fromPoints$2, + fromCompactBinary: fromCompactBinary, + isA: isA$2, + reverse: reverse$4, + toPoints: toPoints$1, + toString: toString$4, + toCompactBinary: toCompactBinary, + transform: transform$5, + validate: validate$1 +}); + +const colorGeom2 = (color, object) => { + const newGeom2 = clone$b(object); + newGeom2.color = color; + return newGeom2 +}; + +const colorGeom3 = (color, object) => { + const newGeom3 = clone$7(object); + newGeom3.color = color; + return newGeom3 +}; + +const colorPath2 = (color, object) => { + const newPath2 = clone$4(object); + newPath2.color = color; + return newPath2 +}; + +const colorPoly3 = (color, object) => { + const newPoly = clone$6(object); + newPoly.color = color; + return newPoly +}; + +/** + * Assign the given color to the given objects. + * @param {Array} color - RGBA color values, where each value is between 0 and 1.0 + * @param {Object|Array} objects - the objects of which to apply the given color + * @return {Object|Array} new object, or list of new objects with an additional attribute 'color' + * @alias module:modeling/colors.colorize + * + * @example + * let redSphere = colorize([1,0,0], sphere()) // red + * let greenCircle = colorize([0,1,0,0.8], circle()) // green transparent + * let blueArc = colorize([0,0,1], arc()) // blue + * let wildCylinder = colorize(colorNameToRgb('fuchsia'), cylinder()) // CSS color + */ +const colorize = (color, ...objects) => { + if (!Array.isArray(color)) throw new Error('color must be an array') + if (color.length < 3) throw new Error('color must contain R, G and B values') + if (color.length === 3) color = [color[0], color[1], color[2], 1.0]; // add alpha + + objects = flatten(objects); + if (objects.length === 0) throw new Error('wrong number of arguments') + + const results = objects.map((object) => { + if (isA$5(object)) return colorGeom2(color, object) + if (isA$3(object)) return colorGeom3(color, object) + if (isA$2(object)) return colorPath2(color, object) + if (isA$4(object)) return colorPoly3(color, object) + + object.color = color; + return object + }); + return results.length === 1 ? results[0] : results +}; + +/** + * Converts CSS color notations (string of hex values) to RGB values. + * + * @see https://www.w3.org/TR/css-color-3/ + * @param {String} notation - color notation + * @return {Array} RGB color values + * @alias module:modeling/colors.hexToRgb + * + * @example + * let mySphere = colorize(hexToRgb('#000080'), sphere()) // navy blue + */ +const hexToRgb = (notation) => { + notation = notation.replace('#', ''); + if (notation.length < 6) throw new Error('the given notation must contain 3 or more hex values') + + const r = parseInt(notation.substring(0, 2), 16) / 255; + const g = parseInt(notation.substring(2, 4), 16) / 255; + const b = parseInt(notation.substring(4, 6), 16) / 255; + if (notation.length >= 8) { + const a = parseInt(notation.substring(6, 8), 16) / 255; + return [r, g, b, a] + } + return [r, g, b] +}; + +/** + * Convert hue values to a color component (ie one of r, g, b) + * @param {Number} p + * @param {Number} q + * @param {Number} t + * @return {Number} color component + * @alias module:modeling/colors.hueToColorComponent + */ +const hueToColorComponent = (p, q, t) => { + if (t < 0) t += 1; + if (t > 1) t -= 1; + if (t < 1 / 6) return p + (q - p) * 6 * t + if (t < 1 / 2) return q + if (t < 2 / 3) return p + (q - p) * (2 / 3 - t) * 6 + return p +}; + +/** + * Converts HSL color values to RGB color values. + * + * @see http://en.wikipedia.org/wiki/HSL_color_space + * @param {...Number|Array} values - HSL or HSLA color values + * @return {Array} RGB or RGBA color values + * @alias module:modeling/colors.hslToRgb + * + * @example + * let mySphere = colorize(hslToRgb([0.9166666666666666, 1, 0.5]), sphere()) + */ +const hslToRgb = (...values) => { + values = flatten(values); + if (values.length < 3) throw new Error('values must contain H, S and L values') + + const h = values[0]; + const s = values[1]; + const l = values[2]; + + let r = l; // default is achromatic + let g = l; + let b = l; + + if (s !== 0) { + const q = l < 0.5 ? l * (1 + s) : l + s - l * s; + const p = 2 * l - q; + r = hueToColorComponent(p, q, h + 1 / 3); + g = hueToColorComponent(p, q, h); + b = hueToColorComponent(p, q, h - 1 / 3); + } + + if (values.length > 3) { + // add alpha value if provided + const a = values[3]; + return [r, g, b, a] + } + return [r, g, b] +}; + +/** + * Converts HSV color values to RGB color values. + * + * @see http://en.wikipedia.org/wiki/HSV_color_space. + * @param {...Number|Array} values - HSV or HSVA color values + * @return {Array} RGB or RGBA color values + * @alias module:modeling/colors.hsvToRgb + * + * @example + * let mySphere = colorize(hsvToRgb([0.9166666666666666, 1, 1]), sphere()) + */ +const hsvToRgb = (...values) => { + values = flatten(values); + if (values.length < 3) throw new Error('values must contain H, S and V values') + + const h = values[0]; + const s = values[1]; + const v = values[2]; + + let r = 0; + let g = 0; + let b = 0; + + const i = Math.floor(h * 6); + const f = h * 6 - i; + const p = v * (1 - s); + const q = v * (1 - f * s); + const t = v * (1 - (1 - f) * s); + + switch (i % 6) { + case 0: + r = v; + g = t; + b = p; + break + case 1: + r = q; + g = v; + b = p; + break + case 2: + r = p; + g = v; + b = t; + break + case 3: + r = p; + g = q; + b = v; + break + case 4: + r = t; + g = p; + b = v; + break + case 5: + r = v; + g = p; + b = q; + break + } + + if (values.length > 3) { + // add alpha value if provided + const a = values[3]; + return [r, g, b, a] + } + return [r, g, b] +}; + +/** + * Convert the given RGB color values to CSS color notation (string) + * @see https://www.w3.org/TR/css-color-3/ + * @param {...Number|Array} values - RGB or RGBA color values + * @return {String} CSS color notation + * @alias module:modeling/colors.rgbToHex + */ +const rgbToHex = (...values) => { + values = flatten(values); + if (values.length < 3) throw new Error('values must contain R, G and B values') + + const r = values[0] * 255; + const g = values[1] * 255; + const b = values[2] * 255; + + let s = `#${Number(0x1000000 + r * 0x10000 + g * 0x100 + b).toString(16).substring(1, 7)}`; + + if (values.length > 3) { + // convert alpha to opacity + s = s + Number(values[3] * 255).toString(16); + } + return s +}; + +/** + * Converts an RGB color value to HSL. + * + * @see http://en.wikipedia.org/wiki/HSL_color_space. + * @see http://axonflux.com/handy-rgb-to-hsl-and-rgb-to-hsv-color-model-c + * @param {...Number|Array} values - RGB or RGBA color values + * @return {Array} HSL or HSLA color values + * @alias module:modeling/colors.rgbToHsl + */ +const rgbToHsl = (...values) => { + values = flatten(values); + if (values.length < 3) throw new Error('values must contain R, G and B values') + + const r = values[0]; + const g = values[1]; + const b = values[2]; + + const max = Math.max(r, g, b); + const min = Math.min(r, g, b); + let h; + let s; + const l = (max + min) / 2; + + if (max === min) { + h = s = 0; // achromatic + } else { + const d = max - min; + s = l > 0.5 ? d / (2 - max - min) : d / (max + min); + switch (max) { + case r: + h = (g - b) / d + (g < b ? 6 : 0); + break + case g: + h = (b - r) / d + 2; + break + case b: + h = (r - g) / d + 4; + break + } + h /= 6; + } + + if (values.length > 3) { + // add alpha value if provided + const a = values[3]; + return [h, s, l, a] + } + return [h, s, l] +}; + +/** + * Converts an RGB color value to HSV. + * + * @see http://en.wikipedia.org/wiki/HSV_color_space. + * @param {...Number|Array} values - RGB or RGBA color values + * @return {Array} HSV or HSVA color values + * @alias module:modeling/colors.rgbToHsv + */ +const rgbToHsv = (...values) => { + values = flatten(values); + if (values.length < 3) throw new Error('values must contain R, G and B values') + + const r = values[0]; + const g = values[1]; + const b = values[2]; + + const max = Math.max(r, g, b); + const min = Math.min(r, g, b); + let h; + const v = max; + + const d = max - min; + const s = max === 0 ? 0 : d / max; + + if (max === min) { + h = 0; // achromatic + } else { + switch (max) { + case r: + h = (g - b) / d + (g < b ? 6 : 0); + break + case g: + h = (b - r) / d + 2; + break + case b: + h = (r - g) / d + 4; + break + } + h /= 6; + } + + if (values.length > 3) { + // add alpha if provided + const a = values[3]; + return [h, s, v, a] + } + return [h, s, v] +}; + +/** + * All shapes (primitives or the results of operations) can be assigned a color (RGBA). + * In all cases, the function returns the results, and never changes the original shapes. + * @module modeling/colors + * @example + * import { colors } from '@jscad/modeling' + * const { colorize, cssColors } = colors + */ + +var index$j = /*#__PURE__*/Object.freeze({ + __proto__: null, + colorNameToRgb: colorNameToRgb, + colorize: colorize, + cssColors: cssColors, + hexToRgb: hexToRgb, + hslToRgb: hslToRgb, + hsvToRgb: hsvToRgb, + hueToColorComponent: hueToColorComponent, + rgbToHex: rgbToHex, + rgbToHsl: rgbToHsl, + rgbToHsv: rgbToHsv +}); + +/** + * Represents a Bézier easing function. + * @typedef {Object} bezier + * @property {Array} points - The control points for the Bézier curve. The first and last point will also be the start and end of the curve + * @property {string} pointType - A reference to the type and dimensionality of the points that the curve was created from + * @property {number} dimensions - The dimensionality of the bezier + * @property {Array} permutations - A pre-calculation of the bezier algorithm's co-efficients + * @property {Array} tangentPermutations - A pre-calculation of the bezier algorithm's tangent co-efficients + * + */ + +/** + * Creates an object representing a bezier easing curve. + * Curves can have both an arbitrary number of control points, and an arbitrary number of dimensions. + * + * @example + * const b = bezier.create([0,10]) // a linear progression from 0 to 10 + * const b = bezier.create([0, 0, 10, 10]) // a symmetrical cubic easing curve that starts slowly and ends slowly from 0 to 10 + * const b = bezier.create([0,0,0], [0,5,10], [10,0,-5], [10,10,10]]) // a cubic 3 dimensional easing curve that can generate position arrays for modelling + * // Usage + * let position = bezier.valueAt(t,b) // where 0 < t < 1 + * let tangent = bezier.tangentAt(t,b) // where 0 < t < 1 + * + * @param {Array} points An array with at least 2 elements of either all numbers, or all arrays of numbers that are the same size. + * @returns {bezier} a new bezier data object + * @alias module:modeling/curves/bezier.create + */ +const create$4 = (points) => { + if (!Array.isArray(points)) throw new Error('Bezier points must be a valid array/') + if (points.length < 2) throw new Error('Bezier points must contain at least 2 values.') + const pointType = getPointType(points); + + return { + points: points, + pointType: pointType, + dimensions: pointType === 'float_single' ? 0 : points[0].length, + permutations: getPermutations(points.length - 1), + tangentPermutations: getPermutations(points.length - 2) + } +}; + +const getPointType = function (points) { + let firstPointType = null; + points.forEach((point) => { + let pType = ''; + if (Number.isFinite(point)) { + pType = 'float_single'; + } else if (Array.isArray(point)) { + point.forEach((val) => { + if (!Number.isFinite(val)) throw new Error('Bezier point values must all be numbers.') + }); + pType = 'float_' + point.length; + } else throw new Error('Bezier points must all be numbers or arrays of number.') + if (firstPointType == null) { + firstPointType = pType; + } else { + if (firstPointType !== pType) { + throw new Error('Bezier points must be either all numbers or all arrays of numbers of the same size.') + } + } + }); + return firstPointType +}; + +const getPermutations = function (c) { + const permutations = []; + for (let i = 0; i <= c; i++) { + permutations.push(factorial(c) / (factorial(i) * factorial(c - i))); + } + return permutations +}; + +const factorial = function (b) { + let out = 1; + for (let i = 2; i <= b; i++) { + out *= i; + } + return out +}; + +/** + * Calculates the value at a specific position along a bezier easing curve. + * For multidimensional curves, the tangent is the slope of each dimension at that point. + * See the example called extrudeAlongPath.js to see this in use. + * Math and explanation comes from {@link https://www.freecodecamp.org/news/nerding-out-with-bezier-curves-6e3c0bc48e2f/} + * + * @example + * const b = bezier.create([0,0,0], [0,5,10], [10,0,-5], [10,10,10]]) // a cubic 3 dimensional easing curve that can generate position arrays for modelling + * let position = bezier.valueAt(t,b) // where 0 < t < 1 + * + * @param {number} t : the position of which to calculate the value; 0 < t < 1 + * @param {Object} bezier : a Bézier curve created with bezier.create(). + * @returns {array | number} the value at the requested position. + * @alias module:modeling/curves/bezier.valueAt + */ +const valueAt = (t, bezier) => { + if (t < 0 || t > 1) { + throw new Error('Bezier valueAt() input must be between 0 and 1') + } + if (bezier.pointType === 'float_single') { + return bezierFunction(bezier, bezier.points, t) + } else { + const result = []; + for (let i = 0; i < bezier.dimensions; i++) { + const singleDimensionPoints = []; + for (let j = 0; j < bezier.points.length; j++) { + singleDimensionPoints.push(bezier.points[j][i]); + } + result.push(bezierFunction(bezier, singleDimensionPoints, t)); + } + return result + } +}; + +const bezierFunction = function (bezier, p, t) { + const n = p.length - 1; + let result = 0; + for (let i = 0; i <= n; i++) { + result += bezier.permutations[i] * Math.pow(1 - t, n - i) * Math.pow(t, i) * p[i]; + } + return result +}; + +/** + * Calculates the tangent at a specific position along a bezier easing curve. + * For multidimensional curves, the tangent is the slope of each dimension at that point. + * See the example called extrudeAlongPath.js + * + * @example + * const b = bezier.create([[0,0,0], [0,5,10], [10,0,-5], [10,10,10]]) // a cubic 3 dimensional easing curve that can generate position arrays for modelling + * let tangent = bezier.tangentAt(t, b) + * + * @param {number} t : the position of which to calculate the bezier's tangent value; 0 < t < 1 + * @param {Object} bezier : an array with at least 2 elements of either all numbers, or all arrays of numbers that are the same size. + * @return {array | number} the tangent at the requested position. + * @alias module:modeling/curves/bezier.tangentAt + */ +const tangentAt = (t, bezier) => { + if (t < 0 || t > 1) { + throw new Error('Bezier tangentAt() input must be between 0 and 1') + } + if (bezier.pointType === 'float_single') { + return bezierTangent(bezier, bezier.points, t) + } else { + const result = []; + for (let i = 0; i < bezier.dimensions; i++) { + const singleDimensionPoints = []; + for (let j = 0; j < bezier.points.length; j++) { + singleDimensionPoints.push(bezier.points[j][i]); + } + result.push(bezierTangent(bezier, singleDimensionPoints, t)); + } + return result + } +}; + +const bezierTangent = function (bezier, p, t) { + // from https://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/Bezier/bezier-der.html + const n = p.length - 1; + let result = 0; + for (let i = 0; i < n; i++) { + const q = n * (p[i + 1] - p[i]); + result += bezier.tangentPermutations[i] * Math.pow(1 - t, n - 1 - i) * Math.pow(t, i) * q; + } + return result +}; + +/** + * Represents a bezier easing function. + * @see {@link bezier} for data structure information. + * @module modeling/curves/bezier + * @example + * import { curves } from '@jscad/modeling' + * const { bezier } = curves + */ + +var index$i = /*#__PURE__*/Object.freeze({ + __proto__: null, + create: create$4, + valueAt: valueAt, + tangentAt: tangentAt +}); + +/** + * Curves are n-dimensional mathematical constructs that define a path from vertex 0 to vertex 1. + * @module modeling/curves + * @example + * import { curves } from '@jscad/modeling' + * const { bezier } = curves + */ + +var index$h = /*#__PURE__*/Object.freeze({ + __proto__: null, + bezier: index$i +}); + +/** + * Calculate the area under the given points. + * @param {Array} points - list of 2D points + * @return {Number} area under the given points + * @alias module:modeling/maths/utils.area + */ +const area$1 = (points) => { + let area = 0; + for (let i = 0; i < points.length; i++) { + const j = (i + 1) % points.length; + area += points[i][0] * points[j][1]; + area -= points[j][0] * points[i][1]; + } + return (area / 2.0) +}; + +/** + * Measure the area under the given polygon. + * + * @param {poly2} polygon - the polygon to measure + * @return {Number} the area of the polygon + * @alias module:modeling/geometries/poly2.measureArea + */ +const measureArea$1 = (polygon) => area$1(polygon.points); + +/** + * Represents a 2D polygon consisting of a list of ordered points + * which is closed between start and end points. + * @see https://en.wikipedia.org/wiki/Polygon + * @typedef {Object} poly2 + * @property {Array} points - list of ordered points (2D) + */ + +/** + * Creates a new polygon with initial values. + * + * @param {Array} [points] - list of points (2D) + * @returns {poly2} a new polygon + * @alias module:modeling/geometries/poly2.create + * + * @example + * let polygon = create([[0,0], [4,0], [4,3]]) + */ +const create$3 = (points) => { + if (points === undefined || points.length < 3) { + points = []; // empty contents + } + return { points } +}; + +/** + * Reverse the direction of points in the given polygon, rotating the opposite direction. + * + * @param {poly2} polygon - the polygon to reverse + * @returns {poly2} a new polygon + * @alias module:modeling/geometries/poly2.reverse + */ +const reverse$3 = (polygon) => { + const points = polygon.points.slice().reverse(); + return create$3(points) +}; + +/** + * Determine if the given points are inside the given polygon. + * + * @param {Array} points - a list of points, where each point is an array with X and Y values + * @param {poly2} polygon - a 2D polygon + * @return {number} 1 if all points are inside, 0 if some or none are inside + * @alias module:modeling/geometries/poly2.arePointsInside + */ +const arePointsInside = (points, polygon) => { + if (points.length === 0) return 0 // nothing to check + + if (polygon.points.length < 3) return 0 // nothing can be inside an empty polygon + + if (measureArea$1(polygon) < 0) { + polygon = reverse$3(polygon); // CCW is required + } + + const sum = points.reduce((acc, point) => acc + isPointInside(point, polygon.points), 0); + return sum === points.length ? 1 : 0 +}; + +/* + * Determine if the given point is inside the polygon. + * + * @see http://erich.realtimerendering.com/ptinpoly/ (Crossings Test) + * @param {Array} point - an array with X and Y values + * @param {Array} polygon - a list of points, where each point is an array with X and Y values + * @return {Integer} 1 if the point is inside, 0 if outside + */ +const isPointInside = (point, polygon) => { + const numPoints = polygon.length; + + const tx = point[0]; + const ty = point[1]; + + let vtx0 = polygon[numPoints - 1]; + let vtx1 = polygon[0]; + + let yFlag0 = (vtx0[1] > ty); + + let insideFlag = 0; + + let i = 0; + for (let j = (numPoints + 1); --j;) { + /* + * check if Y endpoints straddle (are on opposite sides) of point's Y + * if so, +X ray could intersect this edge. + */ + const yFlag1 = (vtx1[1] > ty); + if (yFlag0 !== yFlag1) { + /* + * check if X endpoints are on same side of the point's X + * if so, it's easy to test if edge hits or misses. + */ + const xFlag0 = (vtx0[0] > tx); + const xFlag1 = (vtx1[0] > tx); + if (xFlag0 && xFlag1) { + /* if edge's X values are both right of the point, then the point must be inside */ + insideFlag = !insideFlag; + } else { + /* + * if X endpoints straddle the point, then + * compute the intersection of polygon edge with +X ray + * if intersection >= point's X then the +X ray hits it. + */ + if ((vtx1[0] - (vtx1[1] - ty) * (vtx0[0] - vtx1[0]) / (vtx0[1] - vtx1[1])) >= tx) { + insideFlag = !insideFlag; + } + } + } + /* move to next pair of points, retaining info as possible */ + yFlag0 = yFlag1; + vtx0 = vtx1; + vtx1 = polygon[++i]; + } + return insideFlag +}; + +/** + * Create a shallow clone of the given polygon. + * + * @param {poly2} polygon - polygon to clone + * @returns {poly2} a new polygon + * @alias module:modeling/geometries/poly2.clone + */ +const clone$3 = (polygon) => Object.assign({}, polygon); + +/** + * Determine if the given object is a 2D polygon. + * @param {Object} object - the object to interrogate + * @returns {Boolean} true if the object matches a poly2 + * @alias module:modeling/geometries/poly2.isA + */ +const isA$1 = (object) => { + if (object && typeof object === 'object') { + if ('points' in object) { + if (Array.isArray(object.points)) { + return true + } + } + } + return false +}; + +/** + * Check whether the given polygon is convex. + * @param {poly2} polygon - the polygon to interrogate + * @returns {Boolean} true if convex + * @alias module:modeling/geometries/poly2.isConvex + */ +const isConvex = (polygon) => { + const numPoints = polygon.points.length; + if (numPoints > 2) { + const points = polygon.points; + let prev = 0; + let curr = 0; + for (let i = 0; i < numPoints; i++) { + curr = crossBetweenSegments(points[i], points[(i + 1) % numPoints], points[(i + 2) % numPoints]); + if (curr !== 0) { + // sum angle of crosses, looking for a change in direction + if (curr * prev < 0) { + return false + } + prev = curr; + } + } + } + return true +}; + +/* + * Calculate cross product between two consecutive line segments; p1 -> p2, p2 -> p3. + */ +const crossBetweenSegments = (p1, p2, p3) => { + const X1 = p2[0] - p1[0]; + const Y1 = p2[1] - p1[1]; + const X2 = p3[0] - p1[0]; + const Y2 = p3[1] - p1[1]; + + return (X1 * Y2 - Y1 * X2) +}; + +/** + * Check whether the given polygon is simple, i.e. does not intersect itself. + * @see https://en.wikipedia.org/wiki/Simple_polygon + * @param {poly2} polygon - the polygon to interrogate + * @returns {Boolean} true if simple + * @alias module:modeling/geometries/poly2.isSimple + */ +const isSimple = (polygon) => { + const numPoints = polygon.points.length; + if (numPoints < 3) return false // only polygons with an areas are simple + + if (numPoints === 3) return true // triangles are simple + + const points = polygon.points; + + // proof one: there are N unique points + const found = new Set(); + points.forEach((v) => found.add(v.toString())); + if (found.size !== numPoints) return false + + // proof two: line segments do not cross + for (let i = 0; i < numPoints; i++) { + for (let j = i + 2; j < numPoints; j++) { + const k = (j + 1) % numPoints; + if (i !== k) { + const s0 = points[i]; + const s1 = points[(i + 1) % numPoints]; + const z0 = points[j]; + const z1 = points[k]; + const ip = intersect$1(s0, s1, z0, z1); + if (ip) return false + } + } + } + return true +}; + +/** + * @param {poly2} polygon - the polygon to measure + * @returns {Array} an array of two vectors (2D); minimum and maximum coordinates + * @alias module:modeling/geometries/poly2.measureBoundingBox + */ +const measureBoundingBox$1 = (polygon) => { + const points = polygon.points; + const numPoints = points.length; + const min = numPoints === 0 ? create$9() : clone$8(points[0]); + const max = clone$8(min); + for (let i = 1; i < numPoints; i++) { + min$1(min, min, points[i]); + max$1(max, max, points[i]); + } + return [min, max] +}; + +/** + * Return the given polygon as a list of points. + * NOTE: The returned array should not be modified as the points are shared with the geometry. + * @param {poly2} polygon - the polygon + * @return {Array} list of points (2D) + * @alias module:modeling/geometries/poly2.toPoints + */ +const toPoints = (polygon) => polygon.points; + +/** + * Convert the given polygon to a readable string. + * @param {poly2} polygon - the polygon to convert + * @return {String} the string representation + * @alias module:modeling/geometries/poly2.toString + */ +const toString$3 = (polygon) => `poly2: [${polygon.points.map(toString$9).join(', ')}]`; + +/** + * Transform the given polygon using the given matrix. + * @param {mat4} matrix - the matrix to transform with + * @param {poly2} polygon - the polygon to transform + * @returns {poly2} a new polygon + * @alias module:modeling/geometries/poly2.transform + */ +const transform$4 = (matrix, polygon) => { + const points = polygon.points.map((point) => transform$b(create$9(), point, matrix)); + if (isMirroring(matrix)) { + // reverse the order to preserve the orientation + points.reverse(); + } + return create$3(points) +}; + +/** + * Determine if the given object is a valid polygon. + * Checks for valid data structure, convex polygons, and duplicate points. + * + * **If the geometry is not valid, an exception will be thrown with details of the geometry error.** + * + * @param {Object} object - the object to interrogate + * @throws {Error} error if the geometry is not valid + * @alias module:modeling/geometries/poly2.validate + */ +const validate = (object) => { + if (!isA$1(object)) { + throw new Error('invalid poly2 structure') + } + + // check for empty polygon + if (object.points.length < 3) { + throw new Error(`poly2 not enough points ${object.points.length}`) + } + // check area + if (measureArea$1(object) <= 0) { + throw new Error('poly2 area must be greater than zero') + } + + // check for duplicate points + for (let i = 0; i < object.points.length; i++) { + if (equals$6(object.points[i], object.points[(i + 1) % object.points.length])) { + throw new Error(`poly2 duplicate point at ${i}: [${object.points[i]}]`) + } + } + + // check for infinity, nan + object.points.forEach((point) => { + if (point.length !== 2) { + throw new Error(`poly2 invalid point ${point}`) + } + if (!point.every(Number.isFinite)) { + throw new Error(`poly2 invalid point ${point}`) + } + }); +}; + +/** + * Represents a 2D polygon consisting of a list of ordered points. + * @see {@link poly2} for data structure information. + * @module modeling/geometries/poly2 + * + * @example + * import { geometries } from '@jscad/modeling' + * const p1 = geometries.poly2.create([[0,0], [4,0], [4,3]]) + */ + +var index$g = /*#__PURE__*/Object.freeze({ + __proto__: null, + arePointsInside: arePointsInside, + clone: clone$3, + create: create$3, + isA: isA$1, + isConvex: isConvex, + isSimple: isSimple, + measureArea: measureArea$1, + measureBoundingBox: measureBoundingBox$1, + reverse: reverse$3, + toPoints: toPoints, + toString: toString$3, + transform: transform$4, + validate: validate +}); + +/** + * Calculate the plane of the given slice. + * NOTE: The slice (and all vertices) are assumed to be planar from the beginning. + * @param {slice} slice - the slice + * @returns {plane} the plane of the slice + * @alias module:modeling/geometries/slice.calculatePlane + * + * @example + * let myPlane = calculatePlane(slice) + */ +const calculatePlane = (slice) => { + if (slice.contours < 1) throw new Error('slices must have at least one contour to calculate a plane') + + // find the middle of the slice, which will lie on the plane by definition + const middle = create$b(); + let n = 0; // number of vertices + slice.contours.forEach((contour) => { + contour.forEach((vertex) => { + add$1(middle, middle, vertex); + n++; + }); + }); + scale$3(middle, middle, 1 / n); + + // find the farthest edge from the middle, which will be on an outside edge + let farthestContour; + let farthestBefore; + let farthestVertex; + let distance = 0; + slice.contours.forEach((contour) => { + let prev = contour[contour.length - 1]; + contour.forEach((vertex) => { + // make sure that the farthest edge is not a self-edge + if (!equals$7(prev, vertex)) { + const d = squaredDistance$1(middle, vertex); + if (d > distance) { + farthestContour = contour; + farthestBefore = prev; + farthestVertex = vertex; + distance = d; + } + } + prev = vertex; + }); + }); + + // find the after vertex + let farthestAfter; + let prev = farthestContour[farthestContour.length - 1]; + for (let i = 0; i < farthestContour.length; i++) { + const vertex = farthestContour[i]; + if (!equals$7(prev, vertex) && equals$7(prev, farthestVertex)) { + farthestAfter = vertex; + break + } + prev = vertex; + } + + return fromPoints$4(create$6(), farthestBefore, farthestVertex, farthestAfter) +}; + +/** + * Create a deep clone of the given slice. + * + * @param {slice} slice - slice to clone + * @returns {slice} a new slice + * @alias module:modeling/geometries/slice.clone + */ +const clone$2 = (slice) => Object.assign({}, slice); + +/** + * Represents a 3D geometry consisting of a list of contours, + * where each contour consists of a list of planar vertices. + * @typedef {Object} slice + * @property {Array} contours - list of contours, each contour containing a list of 3D vertices + * @example + * {"contours": [[[0,0,1], [4,0,1], [4,3,1]]]} + */ + +/** + * Creates a new slice from the given contours. + * + * @param {Array} [contours] - a list of contours, where each contour contains a list of vertices (3D) + * @returns {slice} a new slice + * @alias module:modeling/geometries/slice.create + * @example + * const slice = create([ [[0,0,1], [4,0,1], [4,3,1]] ]) + */ +const create$2 = (contours = []) => ({ contours }); + +/** + * Determine if the given slices have the same contours. + * @param {slice} a - the first slice to compare + * @param {slice} b - the second slice to compare + * @returns {Boolean} true if the slices are equal + * @alias module:modeling/geometries/slice.equals + */ +const equals$3 = (a, b) => { + if (a.contours.length !== b.contours.length) { + return false + } + + const len = a.contours.length; + for (let i = 0; i < len; i++) { + const aVertex = a.contours[i]; + for (let j = 0; j < len; j++) { + const bVertex = b.contours[j]; + if (!equals$7(aVertex, bVertex)) { + return false + } + } + } + + return true +}; + +/** + * Create a slice from a geom2. + * + * @param {Object} geometry - the 2D geometry to create a slice from + * @returns {slice} a new slice + * @alias module:modeling/geometries/slice.fromGeom2 + */ +const fromGeom2 = (geometry) => { + // Convert from 2D points to 3D vertices + const contours = toOutlines(geometry).map((outline) => outline.map((point) => fromVec2(create$b(), point))); + return create$2(contours) +}; + +/** + * Create a slice from the given vertices. + * + * @param {Array} vertices - list of vertices, where each vertex is either 2D or 3D + * @returns {slice} a new slice + * @alias module:modeling/geometries/slice.fromVertices + * + * @example + * const vertices = [ + * [0, 0, 3], + * [0, 10, 3], + * [0, 10, 6] + * ] + * const slice = fromVertices(vertices) + */ +const fromVertices = (vertices) => { + if (!Array.isArray(vertices)) throw new Error('the given vertices must be an array') + if (vertices.length < 3) throw new Error('the given vertices must contain THREE or more vertices') + + // Convert from 2D points to 3D vertices if needed + const cloned = vertices.map((vertex) => { + if (vertex.length === 3) { + return vertex + } else { + return fromVec2(create$b(), vertex) + } + }); + // create a slice with one contour containing all vertices + return create$2([cloned]) +}; + +/** + * Determine if the given object is a slice. + * @param {slice} object - the object to interrogate + * @returns {Boolean} true if the object matches a slice + * @alias module:modeling/geometries/slice.isA + */ +const isA = (object) => { + if (object && typeof object === 'object') { + if ('contours' in object) { + if (Array.isArray(object.contours)) { + return true + } + } + } + return false +}; + +/** + * Reverse the edges of the given slice. + * + * @param {slice} slice - slice to reverse + * @returns {slice} reverse of the slice + * @alias module:modeling/geometries/slice.reverse + */ +const reverse$2 = (slice) => { + // reverse each contour + const contours = slice.contours.map((contour) => contour.slice().reverse()); + return create$2(contours) +}; + +/** + * Produces an array of edges from the given slice. + * The returned array should not be modified as the data is shared with the slice. + * @param {slice} slice - the slice + * @returns {Array} an array of edges, each edge contains an array of two vertices (3D) + * @alias module:modeling/geometries/slice.toEdges + * + * @example + * let sharedEdges = toEdges(slice) + */ +const toEdges = (slice) => { + const edges = []; + slice.contours.forEach((contour) => { + contour.forEach((vertex, i) => { + const next = contour[(i + 1) % contour.length]; + edges.push([vertex, next]); + }); + }); + return edges +}; + +/** + * Produces an array of vertices from the given slice. + * The returned array should not be modified as the data is shared with the slice. + * @param {slice} slice - the slice + * @returns {Array} an array of 3D vertices + * @alias module:modeling/geometries/slice.toVertices + * + * @example + * let sharedVertices = toVertices(slice) + */ +const toVertices = (slice) => { + const vertices = []; + slice.contours.forEach((contour) => { + contour.forEach((vertex) => { + vertices.push(vertex); + }); + }); + return vertices +}; + +class Node$2 { + constructor (i, x, y) { + // vertex index in coordinates array + this.i = i; + + // vertex coordinates + this.x = x; + this.y = y; + + // previous and next vertex nodes in a polygon ring + this.prev = null; + this.next = null; + + // z-order curve value + this.z = null; + + // previous and next nodes in z-order + this.prevZ = null; + this.nextZ = null; + + // indicates whether this is a steiner point + this.steiner = false; + } +} + +/* + * create a node and optionally link it with previous one (in a circular doubly linked list) + */ +const insertNode = (i, x, y, last) => { + const p = new Node$2(i, x, y); + + if (!last) { + p.prev = p; + p.next = p; + } else { + p.next = last.next; + p.prev = last; + last.next.prev = p; + last.next = p; + } + + return p +}; + +/* + * remove a node and join prev with next nodes + */ +const removeNode = (p) => { + p.next.prev = p.prev; + p.prev.next = p.next; + + if (p.prevZ) p.prevZ.nextZ = p.nextZ; + if (p.nextZ) p.nextZ.prevZ = p.prevZ; +}; + +/* + * check if a point lies within a convex triangle + */ +const pointInTriangle = (ax, ay, bx, by, cx, cy, px, py) => ( + (cx - px) * (ay - py) - (ax - px) * (cy - py) >= 0 && + (ax - px) * (by - py) - (bx - px) * (ay - py) >= 0 && + (bx - px) * (cy - py) - (cx - px) * (by - py) >= 0 +); + +/* + * signed area of a triangle + */ +const area = (p, q, r) => (q.y - p.y) * (r.x - q.x) - (q.x - p.x) * (r.y - q.y); + +/* + * create a circular doubly linked list from polygon points in the specified winding order + */ +const linkedPolygon = (data, start, end, dim, clockwise) => { + let last; + + if (clockwise === (signedArea$1(data, start, end, dim) > 0)) { + for (let i = start; i < end; i += dim) { + last = insertNode(i, data[i], data[i + 1], last); + } + } else { + for (let i = end - dim; i >= start; i -= dim) { + last = insertNode(i, data[i], data[i + 1], last); + } + } + + if (last && equals$2(last, last.next)) { + removeNode(last); + last = last.next; + } + + return last +}; + +/* + * eliminate colinear or duplicate points + */ +const filterPoints = (start, end) => { + if (!start) return start + if (!end) end = start; + + let p = start; + let again; + do { + again = false; + + if (!p.steiner && (equals$2(p, p.next) || area(p.prev, p, p.next) === 0)) { + removeNode(p); + p = end = p.prev; + if (p === p.next) break + again = true; + } else { + p = p.next; + } + } while (again || p !== end) + + return end +}; + +/* + * go through all polygon nodes and cure small local self-intersections + */ +const cureLocalIntersections = (start, triangles, dim) => { + let p = start; + do { + const a = p.prev; + const b = p.next.next; + + if (!equals$2(a, b) && intersects(a, p, p.next, b) && locallyInside(a, b) && locallyInside(b, a)) { + triangles.push(a.i / dim); + triangles.push(p.i / dim); + triangles.push(b.i / dim); + + // remove two nodes involved + removeNode(p); + removeNode(p.next); + + p = start = b; + } + + p = p.next; + } while (p !== start) + + return filterPoints(p) +}; + +/* + * check if a polygon diagonal intersects any polygon segments + */ +const intersectsPolygon = (a, b) => { + let p = a; + do { + if (p.i !== a.i && p.next.i !== a.i && p.i !== b.i && p.next.i !== b.i && + intersects(p, p.next, a, b)) return true + p = p.next; + } while (p !== a) + + return false +}; + +/* + * check if a polygon diagonal is locally inside the polygon + */ +const locallyInside = (a, b) => area(a.prev, a, a.next) < 0 + ? area(a, b, a.next) >= 0 && area(a, a.prev, b) >= 0 + : area(a, b, a.prev) < 0 || area(a, a.next, b) < 0; + +/* + * check if the middle point of a polygon diagonal is inside the polygon + */ +const middleInside = (a, b) => { + let p = a; + let inside = false; + const px = (a.x + b.x) / 2; + const py = (a.y + b.y) / 2; + do { + if (((p.y > py) !== (p.next.y > py)) && p.next.y !== p.y && + (px < (p.next.x - p.x) * (py - p.y) / (p.next.y - p.y) + p.x)) { inside = !inside; } + p = p.next; + } while (p !== a) + + return inside +}; + +/* + * link two polygon vertices with a bridge; if the vertices belong to the same ring, it splits polygon into two + * if one belongs to the outer ring and another to a hole, it merges it into a single ring + */ +const splitPolygon = (a, b) => { + const a2 = new Node$2(a.i, a.x, a.y); + const b2 = new Node$2(b.i, b.x, b.y); + const an = a.next; + const bp = b.prev; + + a.next = b; + b.prev = a; + + a2.next = an; + an.prev = a2; + + b2.next = a2; + a2.prev = b2; + + bp.next = b2; + b2.prev = bp; + + return b2 +}; + +/* + * check if a diagonal between two polygon nodes is valid (lies in polygon interior) + */ +const isValidDiagonal = (a, b) => a.next.i !== b.i && + a.prev.i !== b.i && + !intersectsPolygon(a, b) && // doesn't intersect other edges + ( + locallyInside(a, b) && locallyInside(b, a) && middleInside(a, b) && // locally visible + (area(a.prev, a, b.prev) || area(a, b.prev, b)) || // does not create opposite-facing sectors + equals$2(a, b) && area(a.prev, a, a.next) > 0 && area(b.prev, b, b.next) > 0 + ); + +/* + * check if two segments intersect + */ +const intersects = (p1, q1, p2, q2) => { + const o1 = Math.sign(area(p1, q1, p2)); + const o2 = Math.sign(area(p1, q1, q2)); + const o3 = Math.sign(area(p2, q2, p1)); + const o4 = Math.sign(area(p2, q2, q1)); + + if (o1 !== o2 && o3 !== o4) return true // general case + + if (o1 === 0 && onSegment(p1, p2, q1)) return true // p1, q1 and p2 are colinear and p2 lies on p1q1 + if (o2 === 0 && onSegment(p1, q2, q1)) return true // p1, q1 and q2 are colinear and q2 lies on p1q1 + if (o3 === 0 && onSegment(p2, p1, q2)) return true // p2, q2 and p1 are colinear and p1 lies on p2q2 + if (o4 === 0 && onSegment(p2, q1, q2)) return true // p2, q2 and q1 are colinear and q1 lies on p2q2 + + return false +}; + +/* + * for colinear points p, q, r, check if point q lies on segment pr + */ +const onSegment = (p, q, r) => q.x <= Math.max(p.x, r.x) && + q.x >= Math.min(p.x, r.x) && + q.y <= Math.max(p.y, r.y) && + q.y >= Math.min(p.y, r.y); + +const signedArea$1 = (data, start, end, dim) => { + let sum = 0; + for (let i = start, j = end - dim; i < end; i += dim) { + sum += (data[j] - data[i]) * (data[i + 1] + data[j + 1]); + j = i; + } + + return sum +}; + +/* + * check if two points are equal + */ +const equals$2 = (p1, p2) => p1.x === p2.x && p1.y === p2.y; + +/* + * link every hole into the outer loop, producing a single-ring polygon without holes + * + * Original source from https://github.com/mapbox/earcut + * Copyright (c) 2016 Mapbox + */ +const eliminateHoles = (data, holeIndices, outerNode, dim) => { + const queue = []; + + for (let i = 0, len = holeIndices.length; i < len; i++) { + const start = holeIndices[i] * dim; + const end = i < len - 1 ? holeIndices[i + 1] * dim : data.length; + const list = linkedPolygon(data, start, end, dim, false); + if (list === list.next) list.steiner = true; + queue.push(getLeftmost(list)); + } + + queue.sort((a, b) => a.x - b.x); // compare X + + // process holes from left to right + for (let i = 0; i < queue.length; i++) { + outerNode = eliminateHole(queue[i], outerNode); + outerNode = filterPoints(outerNode, outerNode.next); + } + + return outerNode +}; + +/* + * find a bridge between vertices that connects hole with an outer ring and link it + */ +const eliminateHole = (hole, outerNode) => { + const bridge = findHoleBridge(hole, outerNode); + if (!bridge) { + return outerNode + } + + const bridgeReverse = splitPolygon(bridge, hole); + + // filter colinear points around the cuts + const filteredBridge = filterPoints(bridge, bridge.next); + filterPoints(bridgeReverse, bridgeReverse.next); + + // Check if input node was removed by the filtering + return outerNode === bridge ? filteredBridge : outerNode +}; + +/* + * David Eberly's algorithm for finding a bridge between hole and outer polygon + */ +const findHoleBridge = (hole, outerNode) => { + let p = outerNode; + const hx = hole.x; + const hy = hole.y; + let qx = -Infinity; + let m; + + // find a segment intersected by a ray from the hole's leftmost point to the left + // segment's endpoint with lesser x will be potential connection point + do { + if (hy <= p.y && hy >= p.next.y && p.next.y !== p.y) { + const x = p.x + (hy - p.y) * (p.next.x - p.x) / (p.next.y - p.y); + if (x <= hx && x > qx) { + qx = x; + if (x === hx) { + if (hy === p.y) return p + if (hy === p.next.y) return p.next + } + + m = p.x < p.next.x ? p : p.next; + } + } + + p = p.next; + } while (p !== outerNode) + + if (!m) return null + + if (hx === qx) return m // hole touches outer segment; pick leftmost endpoint + + // look for points inside the triangle of hole point, segment intersection and endpoint + // if there are no points found, we have a valid connection + // otherwise choose the point of the minimum angle with the ray as connection point + + const stop = m; + const mx = m.x; + const my = m.y; + let tanMin = Infinity; + + p = m; + + do { + if (hx >= p.x && p.x >= mx && hx !== p.x && + pointInTriangle(hy < my ? hx : qx, hy, mx, my, hy < my ? qx : hx, hy, p.x, p.y)) { + const tan = Math.abs(hy - p.y) / (hx - p.x); // tangential + + if (locallyInside(p, hole) && (tan < tanMin || (tan === tanMin && (p.x > m.x || (p.x === m.x && sectorContainsSector(m, p)))))) { + m = p; + tanMin = tan; + } + } + + p = p.next; + } while (p !== stop) + + return m +}; + +/* + * whether sector in vertex m contains sector in vertex p in the same coordinates + */ +const sectorContainsSector = (m, p) => area(m.prev, m, p.prev) < 0 && area(p.next, m, m.next) < 0; + +/* + * find the leftmost node of a polygon ring + */ +const getLeftmost = (start) => { + let p = start; + let leftmost = start; + do { + if (p.x < leftmost.x || (p.x === leftmost.x && p.y < leftmost.y)) leftmost = p; + p = p.next; + } while (p !== start) + + return leftmost +}; + +// Simon Tatham's linked list merge sort algorithm +// https://www.chiark.greenend.org.uk/~sgtatham/algorithms/listsort.html +const linkedListSort = (list, fn) => { + let i, p, q, e, numMerges; + let inSize = 1; + + do { + p = list; + list = null; + let tail = null; + numMerges = 0; + + while (p) { + numMerges++; + q = p; + let pSize = 0; + for (i = 0; i < inSize; i++) { + pSize++; + q = q.nextZ; + if (!q) break + } + + let qSize = inSize; + + while (pSize > 0 || (qSize > 0 && q)) { + if (pSize !== 0 && (qSize === 0 || !q || fn(p) <= fn(q))) { + e = p; + p = p.nextZ; + pSize--; + } else { + e = q; + q = q.nextZ; + qSize--; + } + + if (tail) tail.nextZ = e; + else list = e; + + e.prevZ = tail; + tail = e; + } + + p = q; + } + + tail.nextZ = null; + inSize *= 2; + } while (numMerges > 1) + + return list +}; + +/* + * An implementation of the earcut polygon triangulation algorithm. + * + * Original source from https://github.com/mapbox/earcut + * Copyright (c) 2016 Mapbox + * + * @param {data} A flat array of vertex coordinates. + * @param {holeIndices} An array of hole indices if any. + * @param {dim} The number of coordinates per vertex in the input array. + */ +const triangulate = (data, holeIndices, dim = 2) => { + const hasHoles = holeIndices && holeIndices.length; + const outerLen = hasHoles ? holeIndices[0] * dim : data.length; + let outerNode = linkedPolygon(data, 0, outerLen, dim, true); + const triangles = []; + + if (!outerNode || outerNode.next === outerNode.prev) return triangles + + let minX, minY, maxX, maxY, invSize; + + if (hasHoles) outerNode = eliminateHoles(data, holeIndices, outerNode, dim); + + // if the shape is not too simple, we'll use z-order curve hash later; calculate polygon bbox + if (data.length > 80 * dim) { + minX = maxX = data[0]; + minY = maxY = data[1]; + + for (let i = dim; i < outerLen; i += dim) { + const x = data[i]; + const y = data[i + 1]; + if (x < minX) minX = x; + if (y < minY) minY = y; + if (x > maxX) maxX = x; + if (y > maxY) maxY = y; + } + + // minX, minY and invSize are later used to transform coords into integers for z-order calculation + invSize = Math.max(maxX - minX, maxY - minY); + invSize = invSize !== 0 ? 1 / invSize : 0; + } + + earcutLinked(outerNode, triangles, dim, minX, minY, invSize); + + return triangles +}; + +/* + * main ear slicing loop which triangulates a polygon (given as a linked list) + */ +const earcutLinked = (ear, triangles, dim, minX, minY, invSize, pass) => { + if (!ear) return + + // interlink polygon nodes in z-order + if (!pass && invSize) indexCurve(ear, minX, minY, invSize); + + let stop = ear; + let prev; + let next; + + // iterate through ears, slicing them one by one + while (ear.prev !== ear.next) { + prev = ear.prev; + next = ear.next; + + if (invSize ? isEarHashed(ear, minX, minY, invSize) : isEar(ear)) { + // cut off the triangle + triangles.push(prev.i / dim); + triangles.push(ear.i / dim); + triangles.push(next.i / dim); + + removeNode(ear); + + // skipping the next vertex leads to less sliver triangles + ear = next.next; + stop = next.next; + + continue + } + + ear = next; + + // if we looped through the whole remaining polygon and can't find any more ears + if (ear === stop) { + // try filtering points and slicing again + if (!pass) { + earcutLinked(filterPoints(ear), triangles, dim, minX, minY, invSize, 1); + + // if this didn't work, try curing all small self-intersections locally + } else if (pass === 1) { + ear = cureLocalIntersections(filterPoints(ear), triangles, dim); + earcutLinked(ear, triangles, dim, minX, minY, invSize, 2); + + // as a last resort, try splitting the remaining polygon into two + } else if (pass === 2) { + splitEarcut(ear, triangles, dim, minX, minY, invSize); + } + + break + } + } +}; + +/* + * check whether a polygon node forms a valid ear with adjacent nodes + */ +const isEar = (ear) => { + const a = ear.prev; + const b = ear; + const c = ear.next; + + if (area(a, b, c) >= 0) return false // reflex, can't be an ear + + // now make sure we don't have other points inside the potential ear + let p = ear.next.next; + + while (p !== ear.prev) { + if (pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y) && area(p.prev, p, p.next) >= 0) { + return false + } + p = p.next; + } + + return true +}; + +const isEarHashed = (ear, minX, minY, invSize) => { + const a = ear.prev; + const b = ear; + const c = ear.next; + + if (area(a, b, c) >= 0) return false // reflex, can't be an ear + + // triangle bbox; min & max are calculated like this for speed + const minTX = a.x < b.x ? (a.x < c.x ? a.x : c.x) : (b.x < c.x ? b.x : c.x); + const minTY = a.y < b.y ? (a.y < c.y ? a.y : c.y) : (b.y < c.y ? b.y : c.y); + const maxTX = a.x > b.x ? (a.x > c.x ? a.x : c.x) : (b.x > c.x ? b.x : c.x); + const maxTY = a.y > b.y ? (a.y > c.y ? a.y : c.y) : (b.y > c.y ? b.y : c.y); + + // z-order range for the current triangle bbox + const minZ = zOrder(minTX, minTY, minX, minY, invSize); + const maxZ = zOrder(maxTX, maxTY, minX, minY, invSize); + + let p = ear.prevZ; + let n = ear.nextZ; + + // look for points inside the triangle in both directions + while (p && p.z >= minZ && n && n.z <= maxZ) { + if (p !== ear.prev && p !== ear.next && + pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y) && + area(p.prev, p, p.next) >= 0) return false + p = p.prevZ; + + if (n !== ear.prev && n !== ear.next && + pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, n.x, n.y) && + area(n.prev, n, n.next) >= 0) return false + n = n.nextZ; + } + + // look for remaining points in decreasing z-order + while (p && p.z >= minZ) { + if (p !== ear.prev && p !== ear.next && + pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y) && + area(p.prev, p, p.next) >= 0) return false + p = p.prevZ; + } + + // look for remaining points in increasing z-order + while (n && n.z <= maxZ) { + if (n !== ear.prev && n !== ear.next && + pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, n.x, n.y) && + area(n.prev, n, n.next) >= 0) return false + n = n.nextZ; + } + + return true +}; + +/* + * try splitting polygon into two and triangulate them independently + */ +const splitEarcut = (start, triangles, dim, minX, minY, invSize) => { + // look for a valid diagonal that divides the polygon into two + let a = start; + do { + let b = a.next.next; + while (b !== a.prev) { + if (a.i !== b.i && isValidDiagonal(a, b)) { + // split the polygon in two by the diagonal + let c = splitPolygon(a, b); + + // filter colinear points around the cuts + a = filterPoints(a, a.next); + c = filterPoints(c, c.next); + + // run earcut on each half + earcutLinked(a, triangles, dim, minX, minY, invSize); + earcutLinked(c, triangles, dim, minX, minY, invSize); + return + } + + b = b.next; + } + + a = a.next; + } while (a !== start) +}; + +/* + * interlink polygon nodes in z-order + */ +const indexCurve = (start, minX, minY, invSize) => { + let p = start; + do { + if (p.z === null) p.z = zOrder(p.x, p.y, minX, minY, invSize); + p.prevZ = p.prev; + p.nextZ = p.next; + p = p.next; + } while (p !== start) + + p.prevZ.nextZ = null; + p.prevZ = null; + + linkedListSort(p, (p) => p.z); +}; + +/* + * z-order of a point given coords and inverse of the longer side of data bbox + */ +const zOrder = (x, y, minX, minY, invSize) => { + // coords are transformed into non-negative 15-bit integer range + x = 32767 * (x - minX) * invSize; + y = 32767 * (y - minY) * invSize; + + x = (x | (x << 8)) & 0x00FF00FF; + x = (x | (x << 4)) & 0x0F0F0F0F; + x = (x | (x << 2)) & 0x33333333; + x = (x | (x << 1)) & 0x55555555; + + y = (y | (y << 8)) & 0x00FF00FF; + y = (y | (y << 4)) & 0x0F0F0F0F; + y = (y | (y << 2)) & 0x33333333; + y = (y | (y << 1)) & 0x55555555; + + return x | (y << 1) +}; + +/** + * Compare two normals (unit vectors) for near equality. + * @param {vec3} a - normal a + * @param {vec3} b - normal b + * @returns {Boolean} true if a and b are nearly equal + * @alias module:modeling/maths/utils.aboutEqualNormals + */ +const aboutEqualNormals = (a, b) => (Math.abs(a[0] - b[0]) <= NEPS && Math.abs(a[1] - b[1]) <= NEPS && Math.abs(a[2] - b[2]) <= NEPS); + +/** + * Get the X coordinate of a point with a certain Y coordinate, interpolated between two points. + * Interpolation is robust even if the points have the same Y coordinate + * @param {vec2} point1 + * @param {vec2} point2 + * @param {Number} y + * @return {Array} X and Y of interpolated point + * @alias module:modeling/maths/utils.interpolateBetween2DPointsForY + */ +const interpolateBetween2DPointsForY = (point1, point2, y) => { + let f1 = y - point1[1]; + let f2 = point2[1] - point1[1]; + if (f2 < 0) { + f1 = -f1; + f2 = -f2; + } + let t; + if (f1 <= 0) { + t = 0.0; + } else if (f1 >= f2) { + t = 1.0; + } else if (f2 < 1e-10) { // FIXME Should this be EPS? + t = 0.5; + } else { + t = f1 / f2; + } + const result = point1[0] + t * (point2[0] - point1[0]); + return result +}; + +const solve2Linear = (a, b, c, d, u, v) => { + const det = a * d - b * c; + const invdet = 1.0 / det; + let x = u * d - b * v; + let y = -u * c + a * v; + x *= invdet; + y *= invdet; + return [x, y] +}; + +/* + * Class that defines the formula for convertion to/from orthonomal basis vectors. + * @see https://www.kristakingmath.com/blog/orthonormal-basis-for-a-vector-set + */ +class OrthonormalFormula { + /** + * Construct the standard basis formula from the given plane. + * @param {plane} the plane of which to convert vertices to/from the orthonormal basis + */ + constructor (plane) { + // plane normal is one component + this.plane = plane; + // orthogonal vector to plane normal is one component + const rightVector = orthogonal(create$b(), plane); + this.v = normalize$1(rightVector, cross$1(rightVector, plane, rightVector)); + // cross between plane normal and orthogonal vector is one component + this.u = cross$1(create$b(), this.v, plane); + + this.planeOrigin = scale$3(create$b(), plane, plane[3]); + this.basisMap = new Map(); + } + + /** + * Convert the basis formula to a projection matrix. + * return {mat4} matrix which can be used to convert 3D vertices to 2D points + */ + getProjectionMatrix () { + return fromValues$4( + this.u[0], this.v[0], this.plane[0], 0, + this.u[1], this.v[1], this.plane[1], 0, + this.u[2], this.v[2], this.plane[2], 0, + 0, 0, -this.plane[3], 1 + ) + } + + /** + * Convert the basis formula to an inverse projection matrix. + * return {mat4} matrix which can be used to convert 2D points to 3D vertices + */ + getInverseProjectionMatrix () { + return fromValues$4( + this.u[0], this.u[1], this.u[2], 0, + this.v[0], this.v[1], this.v[2], 0, + this.plane[0], this.plane[1], this.plane[2], 0, + this.planeOrigin[0], this.planeOrigin[1], this.planeOrigin[2], 1 + ) + } + + /** + * Convert the given 3D vertex to a 2D point which exists in the orthonormal basis + * @param {vec3} - 3D vertex which lies within the original basis (set) + * @return {vec2} - 2D point which lies within the orthonormal basis + */ + to2D (vertex) { + const point = fromValues$2(dot$2(vertex, this.u), dot$2(vertex, this.v)); + this.basisMap.set(point, vertex); + return point + } + + /** + * Convert the given 2D point to a 3D vertex which exists in the original basis (set) + * @param {vec2} - 2D point which lies within the orthonormal basis + * @return {vec3} - 3D vertex which lies within the original basis (set) + */ + to3D (point) { + // return the original vertex if possible, i.e. no floating point error + const original = this.basisMap.get(point); + if (original) return original + + // calculate a new 3D vertex from the orthonormal basis formula + const v1 = scale$3(create$b(), this.u, point[0]); + const v2 = scale$3(create$b(), this.v, point[1]); + const v3 = add$1(v1, v1, this.planeOrigin); + const v4 = add$1(v2, v2, v3); + return v4 + } +} + +/** + * Utility functions for maths. + * @module modeling/maths/utils + * @example + * import { maths } from '@jscad/modeling' + * const { aboutEqualNormals, area, intersect, solve2Linear } = maths.utils + */ + +var index$f = /*#__PURE__*/Object.freeze({ + __proto__: null, + cos: cos, + sin: sin, + aboutEqualNormals: aboutEqualNormals, + area: area$1, + interpolateBetween2DPointsForY: interpolateBetween2DPointsForY, + intersect: intersect$1, + solve2Linear: solve2Linear, + OrthonormalFormula: OrthonormalFormula +}); + +/* + * Constructs a polygon hierarchy of solids and holes. + * The hierarchy is represented as a forest of trees. All trees shall be depth at most 2. + * If a solid exists inside the hole of another solid, it will be split out as its own root. + * + * @param {geom2} geometry + * @returns {Array} an array of polygons with associated holes + * @alias module:modeling/geometries/geom2.toTree + * + * @example + * const geometry = subtract(rectangle({size: [5, 5]}), rectangle({size: [3, 3]})) + * console.log(assignHoles(geometry)) + * [{ + * "solid": [[-2.5,-2.5],[2.5,-2.5],[2.5,2.5],[-2.5,2.5]], + * "holes": [[[-1.5,1.5],[1.5,1.5],[1.5,-1.5],[-1.5,-1.5]]] + * }] + */ +const assignHoles = (geometry) => { + const outlines = toOutlines(geometry); + const solids = []; // solid indices + const holes = []; // hole indices + outlines.forEach((outline, i) => { + const a = area$1(outline); + if (a < 0) { + holes.push(i); + } else if (a > 0) { + solids.push(i); + } + }); + + // for each hole, determine what solids it is inside of + const children = []; // child holes of solid[i] + const parents = []; // parent solids of hole[i] + solids.forEach((s, i) => { + const solid = outlines[s]; + children[i] = []; + holes.forEach((h, j) => { + const hole = outlines[h]; + // check if a point of hole j is inside solid i + if (arePointsInside([hole[0]], create$3(solid))) { + children[i].push(h); + if (!parents[j]) parents[j] = []; + parents[j].push(i); + } + }); + }); + + // check if holes have multiple parents and choose one with fewest children + holes.forEach((h, j) => { + // ensure at least one parent exists + if (parents[j] && parents[j].length > 1) { + // the solid directly containing this hole + const directParent = minIndex(parents[j], (p) => children[p].length); + parents[j].forEach((p, i) => { + if (i !== directParent) { + // Remove hole from skip level parents + children[p] = children[p].filter((c) => c !== h); + } + }); + } + }); + + // map indices back to points + return children.map((holes, i) => ({ + solid: outlines[solids[i]], + holes: holes.map((h) => outlines[h]) + })) +}; + +/* + * Find the item in the list with smallest score(item). + * If the list is empty, return undefined. + */ +const minIndex = (list, score) => { + let bestIndex; + let best; + list.forEach((item, index) => { + const value = score(item); + if (best === undefined || value < best) { + bestIndex = index; + best = value; + } + }); + return bestIndex +}; + +/* + * Constructs a polygon hierarchy which associates holes with their outer solids. + * This class maps a 3D polygon onto a 2D space using an orthonormal basis. + * It tracks the mapping so that points can be reversed back to 3D losslessly. + */ +class PolygonHierarchy { + constructor (slice) { + this.plane = calculatePlane(slice); + + // create an orthonormal basis + // choose an arbitrary right hand vector, making sure it is somewhat orthogonal to the plane normal + const rightVector = orthogonal(create$b(), this.plane); + const perp = cross$1(create$b(), this.plane, rightVector); + this.v = normalize$1(perp, perp); + this.u = cross$1(create$b(), this.v, this.plane); + + // map from 2D to original 3D points + this.basisMap = new Map(); + + // project slice onto 2D plane + const projected = slice.contours.map((part) => part.map((v) => this.to2D(v))); + + // compute polygon hierarchies, assign holes to solids + const geometry = create$a(projected); + this.roots = assignHoles(geometry); + } + + /* + * project a 3D point onto the 2D plane + */ + to2D (vector3) { + const vector2 = fromValues$2(dot$2(vector3, this.u), dot$2(vector3, this.v)); + this.basisMap.set(vector2, vector3); + return vector2 + } + + /* + * un-project a 2D point back into 3D + */ + to3D (vector2) { + // use a map to get the original 3D, no floating point error + const original = this.basisMap.get(vector2); + if (original) { + return original + } else { + console.log('Warning: point not in original slice'); + const v1 = scale$3(create$b(), this.u, vector2[0]); + const v2 = scale$3(create$b(), this.v, vector2[1]); + + const planeOrigin = scale$3(create$b(), this.plane, this.plane[3]); + const v3 = add$1(v1, v1, planeOrigin); + return add$1(v2, v2, v3) + } + } +} + +/** + * Return a list of polygons which are enclosed by the slice. + * @param {slice} slice - the slice + * @return {Array} a list of polygons (3D) + * @alias module:modeling/geometries/slice.toPolygons + */ +const toPolygons = (slice) => { + const hierarchy = new PolygonHierarchy(slice); + + const polygons = []; + hierarchy.roots.forEach(({ solid, holes }) => { + // hole indices + let index = solid.length; + const holesIndex = []; + holes.forEach((hole, i) => { + holesIndex.push(index); + index += hole.length; + }); + + // compute earcut triangulation for each solid + const vertices = [solid, ...holes].flat(); + const data = vertices.flat(); + // Get original 3D vertex by index + const getVertex = (i) => hierarchy.to3D(vertices[i]); + const indices = triangulate(data, holesIndex); + for (let i = 0; i < indices.length; i += 3) { + // Map back to original vertices + const tri = indices.slice(i, i + 3).map(getVertex); + polygons.push(fromVerticesAndPlane(tri, hierarchy.plane)); + } + }); + + return polygons +}; + +/** + * Convert the given slice to a readable string. + * @param {slice} slice - the slice + * @return {String} the string representation + * @alias module:modeling/geometries/slice.toString + */ +const toString$2 = (slice) => { + let result = 'slice (' + slice.contours.length + ' contours):\n[\n'; + slice.contours.forEach((contour) => { + result += ' [' + contour.map(toString$b).join() + '],\n'; + }); + result += ']\n'; + return result +}; + +/** + * Transform the given slice using the given matrix. + * @param {mat4} matrix - transform matrix + * @param {slice} slice - slice to transform + * @returns {slice} the transformed slice + * @alias module:modeling/geometries/slice.transform + * + * @example + * let matrix = mat4.fromTranslation([1, 2, 3]) + * let newSlice = transform(matrix, oldSlice) + */ +const transform$3 = (matrix, slice) => { + const contours = slice.contours.map((contour) => contour.map((vertex) => transform$c(create$b(), vertex, matrix))); + return create$2(contours) +}; + +/** + * Represents a 3D geometry consisting of a list of contours, where each contour consists of a list of planar vertices. + * @see {@link slice} for data structure information. + * @module modeling/geometries/slice + * + * @example + * import { geometries } from '@jscad/modeling' + * const slice = geometries.slice.create([[[0,0,0], [4,0,0], [4,3,12]]]) + */ + +var index$e = /*#__PURE__*/Object.freeze({ + __proto__: null, + calculatePlane: calculatePlane, + clone: clone$2, + create: create$2, + equals: equals$3, + fromGeom2: fromGeom2, + fromVertices: fromVertices, + isA: isA, + reverse: reverse$2, + toEdges: toEdges, + toVertices: toVertices, + toPolygons: toPolygons, + toString: toString$2, + transform: transform$3 +}); + +/** + * Geometries are objects that represent the contents of primitives or the results of operations. + * Note: Geometries are considered immutable, so never change the contents directly. + * + * @see {@link geom2} - 2D geometry consisting of 2D outlines + * @see {@link geom3} - 3D geometry consisting of polygons + * @see {@link path2} - 2D geometry consisting of ordered points + * @see {@link poly2} - 2D polygon consisting of ordered vertices + * @see {@link poly3} - 3D polygon consisting of ordered vertices + * @see {@link slice} - 3D geometry consisting of 3D outlines + * + * @module modeling/geometries + * @example + * import { geometries } from '@jscad/modeling' + * const { geom2, geom3, path2, poly2, poly3 } = geometries + */ + +var index$d = /*#__PURE__*/Object.freeze({ + __proto__: null, + geom2: index$p, + geom3: index$l, + path2: index$k, + poly2: index$g, + poly3: index$m, + slice: index$e +}); + +/** + * Represents an unbounded line in 2D space, positioned at a point of origin. + * A line is parametrized by a normal vector (perpendicular to the line, + * rotated 90 degrees counterclockwise) and distance from the origin. + * + * Equation: A Point (P) is on Line (L) if dot(L.normal, P) == L.distance + * + * The contents of the array are a normal [0,1] and a distance [2]. + * @typedef {Array} line2 + */ + +/** + * Create a line, positioned at 0,0, and running along the X axis. + * + * @returns {line2} a new unbounded line + * @alias module:modeling/maths/line2.create + */ +const create$1 = () => [0, 1, 0]; // normal and distance + +/** + * Create a clone of the given line. + * + * @param {line2} line - line to clone + * @returns {line2} a new unbounded line + * @alias module:modeling/maths/line2.clone + */ +const clone$1 = (line) => { + const out = create$1(); + out[0] = line[0]; + out[1] = line[1]; + out[2] = line[2]; + return out +}; + +/** + * Return the direction of the given line. + * + * @param {line2} line - line of reference + * @return {vec2} a vector in the direction of the line + * @alias module:modeling/maths/line2.direction + */ +const direction$1 = (line) => { + const vector = normal(create$9(), line); + negate(vector, vector); + return vector +}; + +/** + * Return the origin of the given line. + * + * @param {line2} line - line of reference + * @return {vec2} the origin of the line + * @alias module:modeling/maths/line2.origin + */ +const origin$1 = (line) => scale$1(create$9(), line, line[2]); + +/** + * Determine the closest point on the given line to the given point. + * + * @param {line2} line - line of reference + * @param {vec2} point - point of reference + * @returns {vec2} closest point + * @alias module:modeling/maths/line2.closestPoint + */ +const closestPoint$1 = (line, point) => { + // linear function of AB + const a = origin$1(line); + const b = direction$1(line); + const m1 = (b[1] - a[1]) / (b[0] - a[0]); + const t1 = a[1] - m1 * a[0]; + // linear function of PC + const m2 = -1 / m1; // perpendicular + const t2 = point[1] - m2 * point[0]; + // c.x * m1 + t1 === c.x * m2 + t2 + const x = (t2 - t1) / (m1 - m2); + const y = m1 * x + t1; + + const closest = fromValues$2(x, y); + return closest +}; + +/** + * Copy the given line to the receiving line. + * + * @param {line2} out - receiving line + * @param {line2} line - line to copy + * @returns {line2} out + * @alias module:modeling/maths/line2.copy + */ +const copy$1 = (out, line) => { + out[0] = line[0]; + out[1] = line[1]; + out[2] = line[2]; + return out +}; + +/** + * Calculate the distance (positive) between the given point and line. + * + * @param {line2} line - line of reference + * @param {vec2} point - point of reference + * @return {Number} distance between line and point + * @alias module:modeling/maths/line2.distanceToPoint + */ +const distanceToPoint$1 = (line, point) => { + let distance = dot$1(point, line); + distance = Math.abs(distance - line[2]); + return distance +}; + +/** + * Compare the given lines for equality. + * + * @param {line2} line1 - first line to compare + * @param {line2} line2 - second line to compare + * @return {Boolean} true if lines are equal + * @alias module:modeling/maths/line2.equals + */ +const equals$1 = (line1, line2) => (line1[0] === line2[0]) && (line1[1] === line2[1] && (line1[2] === line2[2])); + +/** + * Create a new line that passes through the given points. + * + * @param {line2} out - receiving line + * @param {vec2} point1 - start point of the line + * @param {vec2} point2 - end point of the line + * @returns {line2} a new unbounded line + * @alias module:modeling/maths/line2.fromPoints + */ +const fromPoints$1 = (out, point1, point2) => { + const vector = subtract$1(create$9(), point2, point1); // directional vector + + normal(vector, vector); + normalize(vector, vector); // normalized + + const distance = dot$1(point1, vector); + + out[0] = vector[0]; + out[1] = vector[1]; + out[2] = distance; + return out +}; + +/** + * Creates a new line initialized with the given values. + * + * @param {Number} x - X coordinate of the unit normal + * @param {Number} y - Y coordinate of the unit normal + * @param {Number} d - distance of the line from [0,0] + * @returns {line2} a new unbounded line + * @alias module:modeling/maths/line2.fromValues + */ +const fromValues = (x, y, d) => { + const out = create$1(); + out[0] = x; + out[1] = y; + out[2] = d; + return out +}; + +/** + * Return the point of intersection between the given lines. + * + * NOTES: + * The point will have Infinity values if the lines are parallel. + * The point will have NaN values if the lines are the same. + * + * @param {line2} line1 - line of reference + * @param {line2} line2 - line of reference + * @return {vec2} the point of intersection + * @alias module:modeling/maths/line2.intersectPointOfLines + */ +const intersectPointOfLines = (line1, line2) => { + const point = solve2Linear(line1[0], line1[1], line2[0], line2[1], line1[2], line2[2]); + return clone$8(point) +}; + +/** + * Create a new line in the opposite direction as the given. + * + * @param {line2} out - receiving line + * @param {line2} line - line to reverse + * @returns {line2} out + * @alias module:modeling/maths/line2.reverse + */ +const reverse$1 = (out, line) => { + const normal = negate(create$9(), line); + const distance = -line[2]; + return copy$1(out, fromValues(normal[0], normal[1], distance)) +}; + +/** + * Return a string representing the given line. + * + * @param {line2} line - line of reference + * @returns {String} string representation + * @alias module:modeling/maths/line2.toString + */ +const toString$1 = (line) => `line2: (${line[0].toFixed(7)}, ${line[1].toFixed(7)}, ${line[2].toFixed(7)})`; + +/** + * Transforms the given line using the given matrix. + * + * @param {line2} out - receiving line + * @param {line2} line - line to transform + * @param {mat4} matrix - matrix to transform with + * @returns {line2} out + * @alias module:modeling/maths/line2.transform + */ +const transform$2 = (out, line, matrix) => { + const org = origin$1(line); + const dir = direction$1(line); + + transform$b(org, org, matrix); + transform$b(dir, dir, matrix); + + return fromPoints$1(out, org, dir) +}; + +/** + * Determine the X coordinate of the given line at the Y coordinate. + * + * The X coordinate will be Infinity if the line is parallel to the X axis. + * + * @param {line2} line - line of reference + * @param {Number} y - Y coordinate on the line + * @return {Number} the X coordinate on the line + * @alias module:modeling/maths/line2.xAtY + */ +const xAtY = (line, y) => { + let x = (line[2] - (line[1] * y)) / line[0]; + if (Number.isNaN(x)) { + const org = origin$1(line); + x = org[0]; + } + return x +}; + +/** + * Represents an unbounded line in 2D space, positioned at a point of origin. + * @see {@link line2} for data structure information. + * @module modeling/maths/line2 + */ + +var index$c = /*#__PURE__*/Object.freeze({ + __proto__: null, + clone: clone$1, + closestPoint: closestPoint$1, + copy: copy$1, + create: create$1, + direction: direction$1, + distanceToPoint: distanceToPoint$1, + equals: equals$1, + fromPoints: fromPoints$1, + fromValues: fromValues, + intersectPointOfLines: intersectPointOfLines, + origin: origin$1, + reverse: reverse$1, + toString: toString$1, + transform: transform$2, + xAtY: xAtY +}); + +/** + * Represents an unbounded line in 3D space, positioned at a point of origin. + * A line is parametrized by a point of origin and a directional vector. + * + * The array contents are two 3D vectors; origin [0,0,0] and directional vector [0,0,1]. + * @see https://en.wikipedia.org/wiki/Hesse_normal_form + * @typedef {Array} line3 + */ + +/** + * Create a line, positioned at 0,0,0 and lying on the X axis. + * + * @returns {line3} a new unbounded line + * @alias module:modeling/maths/line3.create + */ +const create = () => [ + fromValues$3(0, 0, 0), // origin + fromValues$3(0, 0, 1) // direction +]; + +/** + * Create a clone of the given line. + * + * @param {line3} line - line to clone + * @returns {line3} a new unbounded line + * @alias module:modeling/maths/line3.clone + */ +const clone = (line) => { + const out = create(); + copy$4(out[0], line[0]); + copy$4(out[1], line[1]); + return out +}; + +/** + * Determine the closest point on the given line to the given point. + * + * @param {line3} line - line of reference + * @param {vec3} point - point of reference + * @returns {vec3} a point + * @alias module:modeling/maths/line3.closestPoint + */ +const closestPoint = (line, point) => { + const lPoint = line[0]; + const lDirection = line[1]; + + const a = dot$2(subtract$3(create$b(), point, lPoint), lDirection); + const b = dot$2(lDirection, lDirection); + const t = a / b; + + const closestPoint = scale$3(create$b(), lDirection, t); + add$1(closestPoint, closestPoint, lPoint); + return closestPoint +}; + +/** + * Copy the given line into the receiving line. + * + * @param {line3} out - receiving line + * @param {line3} line - line to copy + * @returns {line3} out + * @alias module:modeling/maths/line3.copy + */ +const copy = (out, line) => { + copy$4(out[0], line[0]); + copy$4(out[1], line[1]); + return out +}; + +/** + * Return the direction of the given line. + * + * @param {line3} line - line for reference + * @return {vec3} the relative vector in the direction of the line + * @alias module:modeling/maths/line3.direction + */ +const direction = (line) => line[1]; + +/** + * Calculate the distance (positive) between the given point and line. + * + * @param {line3} line - line of reference + * @param {vec3} point - point of reference + * @return {Number} distance between line and point + * @alias module:modeling/maths/line3.distanceToPoint + */ +const distanceToPoint = (line, point) => { + const closest = closestPoint(line, point); + const distanceVector = subtract$3(create$b(), point, closest); + return length$1(distanceVector) +}; + +/** + * Compare the given lines for equality. + * + * @param {line3} line1 - first line to compare + * @param {line3} line2 - second line to compare + * @return {Boolean} true if lines are equal + * @alias module:modeling/maths/line3.equals + */ +const equals = (line1, line2) => { + // compare directions (unit vectors) + if (!equals$7(line1[1], line2[1])) return false + + // compare points + if (!equals$7(line1[0], line2[0])) return false + + // why would lines with the same slope (direction) and different points be equal? + // let distance = distanceToPoint(line1, line2[0]) + // if (distance > EPS) return false + + return true +}; + +/** + * Create a line from the given point (origin) and direction. + * + * The point can be any random point on the line. + * The direction must be a vector with positive or negative distance from the point. + * + * See the logic of fromPoints() for appropriate values. + * + * @param {line3} out - receiving line + * @param {vec3} point - start point of the line segment + * @param {vec3} direction - direction of the line segment + * @returns {line3} out + * @alias module:modeling/maths/line3.fromPointAndDirection + */ +const fromPointAndDirection = (out, point, direction) => { + const unit = normalize$1(create$b(), direction); + + copy$4(out[0], point); + copy$4(out[1], unit); + return out +}; + +/** + * Create a line the intersection of the given planes. + * + * @param {line3} out - receiving line + * @param {plane} plane1 - first plane of reference + * @param {plane} plane2 - second plane of reference + * @returns {line3} out + * @alias module:modeling/maths/line3.fromPlanes + */ +const fromPlanes = (out, plane1, plane2) => { + let direction = cross$1(create$b(), plane1, plane2); + let length = length$1(direction); + if (length < EPS) { + throw new Error('parallel planes do not intersect') + } + length = (1.0 / length); + direction = scale$3(direction, direction, length); + + const absX = Math.abs(direction[0]); + const absY = Math.abs(direction[1]); + const absZ = Math.abs(direction[2]); + let origin; + let r; + if ((absX >= absY) && (absX >= absZ)) { + // find a point p for which x is zero + r = solve2Linear(plane1[1], plane1[2], plane2[1], plane2[2], plane1[3], plane2[3]); + origin = fromValues$3(0, r[0], r[1]); + } else if ((absY >= absX) && (absY >= absZ)) { + // find a point p for which y is zero + r = solve2Linear(plane1[0], plane1[2], plane2[0], plane2[2], plane1[3], plane2[3]); + origin = fromValues$3(r[0], 0, r[1]); + } else { + // find a point p for which z is zero + r = solve2Linear(plane1[0], plane1[1], plane2[0], plane2[1], plane1[3], plane2[3]); + origin = fromValues$3(r[0], r[1], 0); + } + return fromPointAndDirection(out, origin, direction) +}; + +/** + * Create a line that passes through the given points. + * + * @param {line3} out - receiving line + * @param {vec3} point1 - start point of the line segment + * @param {vec3} point2 - end point of the line segment + * @returns {line3} out + * @alias module:modeling/maths/line3.fromPoints + */ +const fromPoints = (out, point1, point2) => { + const direction = subtract$3(create$b(), point2, point1); + return fromPointAndDirection(out, point1, direction) +}; + +/** + * Determine the closest point on the given plane to the given line. + * + * NOTES: + * The point of intersection will be invalid if the line is parallel to the plane, e.g. NaN. + * + * @param {line3} line - line of reference + * @param {plane} plane - plane of reference + * @returns {vec3} a point on the line + * @alias module:modeling/maths/line3.intersectPointOfLineAndPlane + */ +const intersectPointOfLineAndPlane = (line, plane) => { + // plane: plane.normal * p = plane.w + const pNormal = plane; + const pw = plane[3]; + + const lPoint = line[0]; + const lDirection = line[1]; + + // point: p = line.point + labda * line.direction + const labda = (pw - dot$2(pNormal, lPoint)) / dot$2(pNormal, lDirection); + + return add$1(create$b(), lPoint, scale$3(create$b(), lDirection, labda)) +}; + +/** + * Return the origin of the given line. + * + * @param {line3} line - line of reference + * @return {vec3} the origin of the line + * @alias module:modeling/maths/line3.origin + */ +const origin = (line) => line[0]; + +/** + * Create a line in the opposite direction as the given. + * + * @param {line3} out - receiving line + * @param {line3} line - line to reverse + * @returns {line3} out + * @alias module:modeling/maths/line3.reverse + */ +const reverse = (out, line) => { + const point = clone$9(line[0]); + const direction = negate$1(create$b(), line[1]); + return fromPointAndDirection(out, point, direction) +}; + +/** + * Return a string representing the given line. + * + * @param {line3} line - line of reference + * @returns {String} string representation + * @alias module:modeling/maths/line3.toString + */ +const toString = (line) => { + const point = line[0]; + const direction = line[1]; + return `line3: point: (${point[0].toFixed(7)}, ${point[1].toFixed(7)}, ${point[2].toFixed(7)}) direction: (${direction[0].toFixed(7)}, ${direction[1].toFixed(7)}, ${direction[2].toFixed(7)})` +}; + +/** + * Transforms the given line using the given matrix. + * + * @param {line3} out - line to update + * @param {line3} line - line to transform + * @param {mat4} matrix - matrix to transform with + * @returns {line3} a new unbounded line + * @alias module:modeling/maths/line3.transform + */ +const transform$1 = (out, line, matrix) => { + const point = line[0]; + const direction = line[1]; + const pointPlusDirection = add$1(create$b(), point, direction); + + const newPoint = transform$c(create$b(), point, matrix); + const newPointPlusDirection = transform$c(pointPlusDirection, pointPlusDirection, matrix); + const newDirection = subtract$3(newPointPlusDirection, newPointPlusDirection, newPoint); + + return fromPointAndDirection(out, newPoint, newDirection) +}; + +/** + * Represents an unbounded line in 3D space, positioned at a point of origin. + * @see {@link line3} for data structure information. + * @module modeling/maths/line3 + */ + +var index$b = /*#__PURE__*/Object.freeze({ + __proto__: null, + clone: clone, + closestPoint: closestPoint, + copy: copy, + create: create, + direction: direction, + distanceToPoint: distanceToPoint, + equals: equals, + fromPlanes: fromPlanes, + fromPointAndDirection: fromPointAndDirection, + fromPoints: fromPoints, + intersectPointOfLineAndPlane: intersectPointOfLineAndPlane, + origin: origin, + reverse: reverse, + toString: toString, + transform: transform$1 +}); + +/** + * Maths are computational units for fundamental Euclidean geometry. All maths operate upon array data structures. + * Note: Maths data structures are considered immutable, so never change the contents directly. + * @see Most computations are based upon the glMatrix library (glmatrix.net) + * @module modeling/maths + * @example + * import { maths } from '@jscad/modeling' + * const { constants, line2, line3, mat4, plane, utils, vec2, vec3, vec4 } = maths + */ + +var index$a = /*#__PURE__*/Object.freeze({ + __proto__: null, + constants: constants, + line2: index$c, + line3: index$b, + mat4: index$r, + plane: index$o, + utils: index$f, + vec2: index$q, + vec3: index$s, + vec4: index$n +}); + +const cache$2 = new WeakMap(); + +/* + * Measure the area of the given geometry. + * NOTE: paths are infinitely narrow and do not have an area + * + * @param {path2} geometry - geometry to measure + * @returns {Number} area of the geometry + */ +const measureAreaOfPath2 = () => 0; + +/* + * Measure the area of the given geometry. + * For a counterclockwise rotating geometry (about Z) the area is positive, otherwise negative. + * + * @see http://paulbourke.net/geometry/polygonmesh/ + * @param {geom2} geometry - 2D geometry to measure + * @returns {Number} area of the geometry + */ +const measureAreaOfGeom2 = (geometry) => { + let area = cache$2.get(geometry); + if (area) return area + + const sides = toSides(geometry); + area = sides.reduce((area, side) => area + (side[0][0] * side[1][1] - side[0][1] * side[1][0]), 0); + area *= 0.5; + + cache$2.set(geometry, area); + + return area +}; + +/* + * Measure the area of the given geometry. + * + * @param {geom3} geometry - 3D geometry to measure + * @returns {Number} area of the geometry + */ +const measureAreaOfGeom3 = (geometry) => { + let area = cache$2.get(geometry); + if (area) return area + + const polygons = toPolygons$1(geometry); + area = polygons.reduce((area, polygon) => area + measureArea$2(polygon), 0); + + cache$2.set(geometry, area); + + return area +}; + +/** + * Measure the area of the given geometries. + * @param {...Objects} geometries - the geometries to measure + * @return {Number|Array} the area, or a list of areas for each geometry + * @alias module:modeling/measurements.measureArea + * + * @example + * let area = measureArea(sphere()) + */ +const measureArea = (...geometries) => { + geometries = flatten(geometries); + if (geometries.length === 0) throw new Error('wrong number of arguments') + + const results = geometries.map((geometry) => { + if (isA$2(geometry)) return measureAreaOfPath2() + if (isA$5(geometry)) return measureAreaOfGeom2(geometry) + if (isA$3(geometry)) return measureAreaOfGeom3(geometry) + return 0 + }); + return results.length === 1 ? results[0] : results +}; + +/** + * Measure the total (aggregate) area for the given geometries. + * Note: This measurement will not account for overlapping geometry + * @param {...Object} geometries - the geometries to measure. + * @return {Number} the total surface area for the group of geometry. + * @alias module:modeling/measurements.measureAggregateArea + * + * @example + * let totalArea = measureAggregateArea(sphere(),cube()) + */ +const measureAggregateArea = (...geometries) => { + geometries = flatten(geometries); + if (geometries.length === 0) throw new Error('measureAggregateArea: no geometries supplied') + const areas = measureArea(geometries); + if (geometries.length === 1) { + return areas + } + const result = 0; + return areas.reduce((result, area) => result + area, result) +}; + +const cache$1 = new WeakMap(); + +/* + * Measure the min and max bounds of the given (path2) geometry. + * @return {Array[]} the min and max bounds for the geometry + */ +const measureBoundingBoxOfPath2 = (geometry) => { + let boundingBox = cache$1.get(geometry); + if (boundingBox) return boundingBox + + const points = toPoints$1(geometry); + + let minPoint; + if (points.length === 0) { + minPoint = create$9(); + } else { + minPoint = clone$8(points[0]); + } + let maxPoint = clone$8(minPoint); + + points.forEach((point) => { + min$1(minPoint, minPoint, point); + max$1(maxPoint, maxPoint, point); + }); + minPoint = [minPoint[0], minPoint[1], 0]; + maxPoint = [maxPoint[0], maxPoint[1], 0]; + + boundingBox = [minPoint, maxPoint]; + + cache$1.set(geometry, boundingBox); + + return boundingBox +}; + +/* + * Measure the min and max bounds of the given (geom2) geometry. + * @return {Array[]} the min and max bounds for the geometry + */ +const measureBoundingBoxOfGeom2 = (geometry) => { + let boundingBox = cache$1.get(geometry); + if (boundingBox) return boundingBox + + const points = toPoints$3(geometry); + + let minPoint; + if (points.length === 0) { + minPoint = create$9(); + } else { + minPoint = clone$8(points[0]); + } + let maxPoint = clone$8(minPoint); + + points.forEach((point) => { + min$1(minPoint, minPoint, point); + max$1(maxPoint, maxPoint, point); + }); + + minPoint = [minPoint[0], minPoint[1], 0]; + maxPoint = [maxPoint[0], maxPoint[1], 0]; + + boundingBox = [minPoint, maxPoint]; + + cache$1.set(geometry, boundingBox); + + return boundingBox +}; + +/* + * Measure the min and max bounds of the given (geom3) geometry. + * @return {Array[]} the min and max bounds for the geometry + */ +const measureBoundingBoxOfGeom3 = (geometry) => { + let boundingBox = cache$1.get(geometry); + if (boundingBox) return boundingBox + + const polygons = toPolygons$1(geometry); + + let minVertex = create$b(); + if (polygons.length > 0) { + const vertices = toVertices$1(polygons[0]); + copy$4(minVertex, vertices[0]); + } + let maxVertex = clone$9(minVertex); + + polygons.forEach((polygon) => { + toVertices$1(polygon).forEach((vertex) => { + min$2(minVertex, minVertex, vertex); + max$2(maxVertex, maxVertex, vertex); + }); + }); + + minVertex = [minVertex[0], minVertex[1], minVertex[2]]; + maxVertex = [maxVertex[0], maxVertex[1], maxVertex[2]]; + + boundingBox = [minVertex, maxVertex]; + + cache$1.set(geometry, boundingBox); + + return boundingBox +}; + +/** + * Measure the min and max bounds of the given geometries. + * @param {...Object} geometries - the geometries to measure + * @return {Array} the min and max bounds, or a list of bounds for each geometry + * @alias module:modeling/measurements.measureBoundingBox + * + * @example + * let bounds = measureBoundingBox(sphere()) + */ +const measureBoundingBox = (...geometries) => { + geometries = flatten(geometries); + if (geometries.length === 0) throw new Error('wrong number of arguments') + + const results = geometries.map((geometry) => { + if (isA$2(geometry)) return measureBoundingBoxOfPath2(geometry) + if (isA$5(geometry)) return measureBoundingBoxOfGeom2(geometry) + if (isA$3(geometry)) return measureBoundingBoxOfGeom3(geometry) + return [[0, 0, 0], [0, 0, 0]] + }); + return results.length === 1 ? results[0] : results +}; + +/** + * Measure the aggregated minimum and maximum bounds for the given geometries. + * @param {...Object} geometries - the geometries to measure + * @return {Array} the min and max bounds for the group of geometry, i.e. [[x,y,z],[X,Y,Z]] + * @alias module:modeling/measurements.measureAggregateBoundingBox + * + * @example + * let bounds = measureAggregateBoundingBox(sphere(),cube()) + */ +const measureAggregateBoundingBox = (...geometries) => { + geometries = flatten(geometries); + if (geometries.length === 0) throw new Error('measureAggregateBoundingBox: no geometries supplied') + const bounds = measureBoundingBox(geometries); + if (geometries.length === 1) { + return bounds + } + const result = [[Number.MAX_VALUE, Number.MAX_VALUE, Number.MAX_VALUE], [-Number.MAX_VALUE, -Number.MAX_VALUE, -Number.MAX_VALUE]]; + return bounds.reduce((result, item) => { + result = [min$2(result[0], result[0], item[0]), max$2(result[1], result[1], item[1])]; + return result + }, result) +}; + +const calculateEpsilonFromBounds = (bounds, dimensions) => { + let total = 0; + for (let i = 0; i < dimensions; i++) { + total += bounds[1][i] - bounds[0][i]; + } + return EPS * total / dimensions +}; + +/** + * Measure the aggregated Epsilon for the given geometries. + * @param {...Object} geometries - the geometries to measure + * @return {Number} the aggregated Epsilon for the whole group of geometries + * @alias module:modeling/measurements.measureAggregateEpsilon + * + * @example + * let groupEpsilon = measureAggregateEpsilon(sphere(),cube()) + */ +const measureAggregateEpsilon = (...geometries) => { + geometries = flatten(geometries); + if (geometries.length === 0) throw new Error('measureAggregateEpsilon: no geometries supplied') + const bounds = measureAggregateBoundingBox(geometries); + + let dimensions = 0; + dimensions = geometries.reduce((dimensions, geometry) => { + if (isA$2(geometry) || isA$5(geometry)) return Math.max(dimensions, 2) + if (isA$3(geometry)) return Math.max(dimensions, 3) + return 0 + }, dimensions); + return calculateEpsilonFromBounds(bounds, dimensions) +}; + +const cache = new WeakMap(); + +/* + * Measure the volume of the given geometry. + * NOTE: paths are infinitely narrow and do not have a volume + * + * @param {Path2} geometry - geometry to measure + * @returns {Number} volume of the geometry + */ +const measureVolumeOfPath2 = () => 0; + +/* + * Measure the volume of the given geometry. + * NOTE: 2D geometry are infinitely thin and do not have a volume + * + * @param {Geom2} geometry - 2D geometry to measure + * @returns {Number} volume of the geometry + */ +const measureVolumeOfGeom2 = () => 0; + +/* + * Measure the volume of the given geometry. + * + * @param {Geom3} geometry - 3D geometry to measure + * @returns {Number} volume of the geometry + */ +const measureVolumeOfGeom3 = (geometry) => { + let volume = cache.get(geometry); + if (volume) return volume + + const polygons = toPolygons$1(geometry); + volume = polygons.reduce((volume, polygon) => volume + measureSignedVolume(polygon), 0); + + cache.set(geometry, volume); + + return volume +}; + +/** + * Measure the volume of the given geometries. + * @param {...Object} geometries - the geometries to measure + * @return {Number|Array} the volume, or a list of volumes for each geometry + * @alias module:modeling/measurements.measureVolume + * + * @example + * let volume = measureVolume(sphere()) + */ +const measureVolume = (...geometries) => { + geometries = flatten(geometries); + if (geometries.length === 0) throw new Error('wrong number of arguments') + + const results = geometries.map((geometry) => { + if (isA$2(geometry)) return measureVolumeOfPath2() + if (isA$5(geometry)) return measureVolumeOfGeom2() + if (isA$3(geometry)) return measureVolumeOfGeom3(geometry) + return 0 + }); + return results.length === 1 ? results[0] : results +}; + +/** + * Measure the total (aggregate) volume for the given geometries. + * Note: This measurement will not account for overlapping geometry + * @param {...Object} geometries - the geometries to measure. + * @return {Number} the volume for the group of geometry. + * @alias module:modeling/measurements.measureAggregateVolume + * + * @example + * let totalVolume = measureAggregateVolume(sphere(),cube()) + */ +const measureAggregateVolume = (...geometries) => { + geometries = flatten(geometries); + if (geometries.length === 0) throw new Error('measureAggregateVolume: no geometries supplied') + const volumes = measureVolume(geometries); + if (geometries.length === 1) { + return volumes + } + const result = 0; + return volumes.reduce((result, volume) => result + volume, result) +}; + +const cacheOfBoundingSpheres = new WeakMap(); + +/* + * Measure the bounding sphere of the given (path2) geometry. + * @return {[[x, y, z], radius]} the bounding sphere for the geometry + */ +const measureBoundingSphereOfPath2 = (geometry) => { + let boundingSphere = cacheOfBoundingSpheres.get(geometry); + if (boundingSphere !== undefined) return boundingSphere + + const centroid = create$b(); + let radius = 0; + + const points = toPoints$1(geometry); + + if (points.length > 0) { + // calculate the centroid of the geometry + let numPoints = 0; + const temp = create$b(); + points.forEach((point) => { + add$1(centroid, centroid, fromVec2(temp, point, 0)); + numPoints++; + }); + scale$3(centroid, centroid, 1 / numPoints); + + // find the farthest point from the centroid + points.forEach((point) => { + radius = Math.max(radius, squaredDistance(centroid, point)); + }); + radius = Math.sqrt(radius); + } + + boundingSphere = [centroid, radius]; + cacheOfBoundingSpheres.set(geometry, boundingSphere); + + return boundingSphere +}; + +/* + * Measure the bounding sphere of the given (geom2) geometry. + * @return {[[x, y, z], radius]} the bounding sphere for the geometry + */ +const measureBoundingSphereOfGeom2 = (geometry) => { + let boundingSphere = cacheOfBoundingSpheres.get(geometry); + if (boundingSphere !== undefined) return boundingSphere + + const centroid = create$b(); + let radius = 0; + + const points = toPoints$3(geometry); + + if (points.length > 0) { + // calculate the centroid of the geometry + let numPoints = 0; + const temp = create$b(); + points.forEach((point) => { + add$1(centroid, centroid, fromVec2(temp, point, 0)); + numPoints++; + }); + scale$3(centroid, centroid, 1 / numPoints); + + // find the farthest point from the centroid + points.forEach((point) => { + radius = Math.max(radius, squaredDistance(centroid, point)); + }); + radius = Math.sqrt(radius); + } + + boundingSphere = [centroid, radius]; + cacheOfBoundingSpheres.set(geometry, boundingSphere); + + return boundingSphere +}; + +/* + * Measure the bounding sphere of the given (geom3) geometry. + * @return {[[x, y, z], radius]} the bounding sphere for the geometry + */ +const measureBoundingSphereOfGeom3 = (geometry) => { + let boundingSphere = cacheOfBoundingSpheres.get(geometry); + if (boundingSphere !== undefined) return boundingSphere + + const centroid = create$b(); + let radius = 0; + + const polygons = toPolygons$1(geometry); + + if (polygons.length > 0) { + // calculate the centroid of the geometry + let numVertices = 0; + polygons.forEach((polygon) => { + toVertices$1(polygon).forEach((vertex) => { + add$1(centroid, centroid, vertex); + numVertices++; + }); + }); + scale$3(centroid, centroid, 1 / numVertices); + + // find the farthest vertex from the centroid + polygons.forEach((polygon) => { + toVertices$1(polygon).forEach((vertex) => { + radius = Math.max(radius, squaredDistance$1(centroid, vertex)); + }); + }); + radius = Math.sqrt(radius); + } + + boundingSphere = [centroid, radius]; + cacheOfBoundingSpheres.set(geometry, boundingSphere); + + return boundingSphere +}; + +/** + * Measure the (approximate) bounding sphere of the given geometries. + * @see https://en.wikipedia.org/wiki/Bounding_sphere + * @param {...Object} geometries - the geometries to measure + * @return {Array} the bounding sphere for each geometry, i.e. [centroid, radius] + * @alias module:modeling/measurements.measureBoundingSphere + * + * @example + * let bounds = measureBoundingSphere(cube()) + */ +const measureBoundingSphere = (...geometries) => { + geometries = flatten(geometries); + + const results = geometries.map((geometry) => { + if (isA$2(geometry)) return measureBoundingSphereOfPath2(geometry) + if (isA$5(geometry)) return measureBoundingSphereOfGeom2(geometry) + if (isA$3(geometry)) return measureBoundingSphereOfGeom3(geometry) + return [[0, 0, 0], 0] + }); + return results.length === 1 ? results[0] : results +}; + +/** + * Measure the center of the given geometries. + * @param {...Object} geometries - the geometries to measure + * @return {Array} the center vertex for each geometry, i.e. [X, Y, Z] + * @alias module:modeling/measurements.measureCenter + * + * @example + * let center = measureCenter(sphere()) + */ +const measureCenter = (...geometries) => { + geometries = flatten(geometries); + + const results = geometries.map((geometry) => { + const bounds = measureBoundingBox(geometry); + return [ + (bounds[0][0] + ((bounds[1][0] - bounds[0][0]) / 2)), + (bounds[0][1] + ((bounds[1][1] - bounds[0][1]) / 2)), + (bounds[0][2] + ((bounds[1][2] - bounds[0][2]) / 2)) + ] + }); + return results.length === 1 ? results[0] : results +}; + +const cacheOfCenterOfMass = new WeakMap(); + +/* + * Measure the center of mass for the given geometry. + * + * @see http://paulbourke.net/geometry/polygonmesh/ + * @return {Array} the center of mass for the geometry + */ +const measureCenterOfMassGeom2 = (geometry) => { + let centerOfMass = cacheOfCenterOfMass.get(geometry); + if (centerOfMass !== undefined) return centerOfMass + + const sides = toSides(geometry); + + let area = 0; + let x = 0; + let y = 0; + if (sides.length > 0) { + for (let i = 0; i < sides.length; i++) { + const p1 = sides[i][0]; + const p2 = sides[i][1]; + + const a = p1[0] * p2[1] - p1[1] * p2[0]; + area += a; + x += (p1[0] + p2[0]) * a; + y += (p1[1] + p2[1]) * a; + } + area /= 2; + + const f = 1 / (area * 6); + x *= f; + y *= f; + } + + centerOfMass = fromValues$3(x, y, 0); + + cacheOfCenterOfMass.set(geometry, centerOfMass); + return centerOfMass +}; + +/* + * Measure the center of mass for the given geometry. + * @return {Array} the center of mass for the geometry + */ +const measureCenterOfMassGeom3 = (geometry) => { + let centerOfMass = cacheOfCenterOfMass.get(geometry); + if (centerOfMass !== undefined) return centerOfMass + + centerOfMass = create$b(); // 0, 0, 0 + + const polygons = toPolygons$1(geometry); + if (polygons.length === 0) return centerOfMass + + let totalVolume = 0; + const vector = create$b(); // for speed + polygons.forEach((polygon) => { + // calculate volume and center of each tetrahedron + const vertices = polygon.vertices; + for (let i = 0; i < vertices.length - 2; i++) { + cross$1(vector, vertices[i + 1], vertices[i + 2]); + const volume = dot$2(vertices[0], vector) / 6; + + totalVolume += volume; + + add$1(vector, vertices[0], vertices[i + 1]); + add$1(vector, vector, vertices[i + 2]); + const weightedCenter = scale$3(vector, vector, 1 / 4 * volume); + + add$1(centerOfMass, centerOfMass, weightedCenter); + } + }); + scale$3(centerOfMass, centerOfMass, 1 / totalVolume); + + cacheOfCenterOfMass.set(geometry, centerOfMass); + return centerOfMass +}; + +/** + * Measure the center of mass for the given geometries. + * @param {...Object} geometries - the geometries to measure + * @return {Array} the center of mass for each geometry, i.e. [X, Y, Z] + * @alias module:modeling/measurements.measureCenterOfMass + * + * @example + * let center = measureCenterOfMass(sphere()) + */ +const measureCenterOfMass = (...geometries) => { + geometries = flatten(geometries); + + const results = geometries.map((geometry) => { + // NOTE: center of mass for geometry path2 is not possible + if (isA$5(geometry)) return measureCenterOfMassGeom2(geometry) + if (isA$3(geometry)) return measureCenterOfMassGeom3(geometry) + return [0, 0, 0] + }); + return results.length === 1 ? results[0] : results +}; + +/** + * Measure the dimensions of the given geometries. + * @param {...Object} geometries - the geometries to measure + * @return {Array} the dimensions for each geometry, i.e. [width, depth, height] + * @alias module:modeling/measurements.measureDimensions + * + * @example + * let dimensions = measureDimensions(sphere()) + */ +const measureDimensions = (...geometries) => { + geometries = flatten(geometries); + + const results = geometries.map((geometry) => { + const boundingBox = measureBoundingBox(geometry); + return [ + boundingBox[1][0] - boundingBox[0][0], + boundingBox[1][1] - boundingBox[0][1], + boundingBox[1][2] - boundingBox[0][2] + ] + }); + return results.length === 1 ? results[0] : results +}; + +/* + * Measure the epsilon of the given (path2) geometry. + * @return {Number} the epsilon (precision) of the geometry + */ +const measureEpsilonOfPath2 = (geometry) => calculateEpsilonFromBounds(measureBoundingBox(geometry), 2); + +/* + * Measure the epsilon of the given (geom2) geometry. + * @return {Number} the epsilon (precision) of the geometry + */ +const measureEpsilonOfGeom2 = (geometry) => calculateEpsilonFromBounds(measureBoundingBox(geometry), 2); + +/* + * Measure the epsilon of the given (geom3) geometry. + * @return {Float} the epsilon (precision) of the geometry + */ +const measureEpsilonOfGeom3 = (geometry) => calculateEpsilonFromBounds(measureBoundingBox(geometry), 3); + +/** + * Measure the epsilon of the given geometries. + * Epsilon values are used in various functions to determine minimum distances between vertices, planes, etc. + * @param {...Object} geometries - the geometries to measure + * @return {Number|Array} the epsilon, or a list of epsilons for each geometry + * @alias module:modeling/measurements.measureEpsilon + * + * @example + * let epsilon = measureEpsilon(sphere()) + */ +const measureEpsilon = (...geometries) => { + geometries = flatten(geometries); + if (geometries.length === 0) throw new Error('wrong number of arguments') + + const results = geometries.map((geometry) => { + if (isA$2(geometry)) return measureEpsilonOfPath2(geometry) + if (isA$5(geometry)) return measureEpsilonOfGeom2(geometry) + if (isA$3(geometry)) return measureEpsilonOfGeom3(geometry) + return 0 + }); + return results.length === 1 ? results[0] : results +}; + +/** + * All shapes (primitives or the results of operations) can be measured, e.g. calculate volume, etc. + * @module modeling/measurements + * @example + * import { measureArea, measureBoundingBox, measureVolume } from '@jscad/modeling/measurements') + */ + +var index$9 = /*#__PURE__*/Object.freeze({ + __proto__: null, + measureAggregateArea: measureAggregateArea, + measureAggregateBoundingBox: measureAggregateBoundingBox, + measureAggregateEpsilon: measureAggregateEpsilon, + measureAggregateVolume: measureAggregateVolume, + measureArea: measureArea, + measureBoundingBox: measureBoundingBox, + measureBoundingSphere: measureBoundingSphere, + measureCenter: measureCenter, + measureCenterOfMass: measureCenterOfMass, + measureDimensions: measureDimensions, + measureEpsilon: measureEpsilon, + measureVolume: measureVolume +}); + +// verify that the array has the given dimension, and contains Number values +const isNumberArray = (array, dimension) => { + if (Array.isArray(array) && array.length >= dimension) { + return array.every((n) => Number.isFinite(n)) + } + return false +}; + +// verify that the value is a Number greater than the constant +const isGT = (value, constant) => (Number.isFinite(value) && value > constant); + +// verify that the value is a Number greater than or equal to the constant +const isGTE = (value, constant) => (Number.isFinite(value) && value >= constant); + +/** + * Construct an arc in two dimensional space where all points are at the same distance from the center. + * @param {Object} [options] - options for construction + * @param {Array} [options.center=[0,0]] - center of arc + * @param {Number} [options.radius=1] - radius of arc + * @param {Number} [options.startAngle=0] - starting angle of the arc, in radians + * @param {Number} [options.endAngle=TAU] - ending angle of the arc, in radians + * @param {Number} [options.segments=32] - number of segments to create per full rotation + * @param {Boolean} [options.makeTangent=false] - adds line segments at both ends of the arc to ensure that the gradients at the edges are tangent + * @returns {path2} new 2D path + * @alias module:modeling/primitives.arc + */ +const arc = (options) => { + const defaults = { + center: [0, 0], + radius: 1, + startAngle: 0, + endAngle: TAU, + makeTangent: false, + segments: 32 + }; + let { center, radius, startAngle, endAngle, makeTangent, segments } = Object.assign({}, defaults, options); + + if (!isNumberArray(center, 2)) throw new Error('center must be an array of X and Y values') + if (!isGT(radius, 0)) throw new Error('radius must be greater than zero') + if (!isGTE(startAngle, 0)) throw new Error('startAngle must be positive') + if (!isGTE(endAngle, 0)) throw new Error('endAngle must be positive') + if (!isGTE(segments, 4)) throw new Error('segments must be four or more') + + startAngle = startAngle % TAU; + endAngle = endAngle % TAU; + + let rotation = TAU; + if (startAngle < endAngle) { + rotation = endAngle - startAngle; + } + if (startAngle > endAngle) { + rotation = endAngle + (TAU - startAngle); + } + + const minAngle = Math.acos(((radius * radius) + (radius * radius) - (EPS * EPS)) / (2 * radius * radius)); + + const centerV = clone$8(center); + let point; + const pointArray = []; + if (rotation < minAngle) { + // there is no rotation, just a single point + point = fromAngleRadians(create$9(), startAngle); + scale$1(point, point, radius); + add(point, point, centerV); + pointArray.push(point); + } else { + // note: add one additional step to achieve full rotation + const numSteps = Math.max(1, Math.floor(segments * (rotation / TAU))) + 1; + let edgeStepSize = numSteps * 0.5 / rotation; // step size for half a degree + if (edgeStepSize > 0.25) edgeStepSize = 0.25; + + const totalSteps = makeTangent ? (numSteps + 2) : numSteps; + for (let i = 0; i <= totalSteps; i++) { + let step = i; + if (makeTangent) { + step = (i - 1) * (numSteps - 2 * edgeStepSize) / numSteps + edgeStepSize; + if (step < 0) step = 0; + if (step > numSteps) step = numSteps; + } + const angle = startAngle + (step * (rotation / numSteps)); + point = fromAngleRadians(create$9(), angle); + scale$1(point, point, radius); + add(point, point, centerV); + pointArray.push(point); + } + } + return fromPoints$2({ closed: false }, pointArray) +}; + +/** + * Construct an axis-aligned ellipse in two dimensional space. + * @see https://en.wikipedia.org/wiki/Ellipse + * @param {Object} [options] - options for construction + * @param {Array} [options.center=[0,0]] - center of ellipse + * @param {Array} [options.radius=[1,1]] - radius of ellipse, along X and Y + * @param {Number} [options.startAngle=0] - start angle of ellipse, in radians + * @param {Number} [options.endAngle=TAU] - end angle of ellipse, in radians + * @param {Number} [options.segments=32] - number of segments to create per full rotation + * @returns {geom2} new 2D geometry + * @alias module:modeling/primitives.ellipse + * @example + * let myshape = ellipse({radius: [5,10]}) + */ +const ellipse = (options) => { + const defaults = { + center: [0, 0], + radius: [1, 1], + startAngle: 0, + endAngle: TAU, + segments: 32 + }; + let { center, radius, startAngle, endAngle, segments } = Object.assign({}, defaults, options); + + if (!isNumberArray(center, 2)) throw new Error('center must be an array of X and Y values') + if (!isNumberArray(radius, 2)) throw new Error('radius must be an array of X and Y values') + if (!radius.every((n) => n > 0)) throw new Error('radius values must be greater than zero') + if (!isGTE(startAngle, 0)) throw new Error('startAngle must be positive') + if (!isGTE(endAngle, 0)) throw new Error('endAngle must be positive') + if (!isGTE(segments, 3)) throw new Error('segments must be three or more') + + startAngle = startAngle % TAU; + endAngle = endAngle % TAU; + + let rotation = TAU; + if (startAngle < endAngle) { + rotation = endAngle - startAngle; + } + if (startAngle > endAngle) { + rotation = endAngle + (TAU - startAngle); + } + + const minRadius = Math.min(radius[0], radius[1]); + const minAngle = Math.acos(((minRadius * minRadius) + (minRadius * minRadius) - (EPS * EPS)) / + (2 * minRadius * minRadius)); + if (rotation < minAngle) throw new Error('startAngle and endAngle do not define a significant rotation') + + segments = Math.floor(segments * (rotation / TAU)); + + const centerV = clone$8(center); + const step = rotation / segments; // radians per segment + + const points = []; + segments = (rotation < TAU) ? segments + 1 : segments; + for (let i = 0; i < segments; i++) { + const angle = (step * i) + startAngle; + const point = fromValues$2(radius[0] * cos(angle), radius[1] * sin(angle)); + add(point, centerV, point); + points.push(point); + } + if (rotation < TAU) points.push(centerV); + return create$a([points]) +}; + +/** + * Construct a circle in two dimensional space where all points are at the same distance from the center. + * @see [ellipse]{@link module:modeling/primitives.ellipse} for more options + * @param {Object} [options] - options for construction + * @param {Array} [options.center=[0,0]] - center of circle + * @param {Number} [options.radius=1] - radius of circle + * @param {Number} [options.startAngle=0] - start angle of circle, in radians + * @param {Number} [options.endAngle=TAU] - end angle of circle, in radians + * @param {Number} [options.segments=32] - number of segments to create per full rotation + * @returns {geom2} new 2D geometry + * @alias module:modeling/primitives.circle + * @example + * let myshape = circle({radius: 10}) + */ +const circle = (options) => { + const defaults = { + center: [0, 0], + radius: 1, + startAngle: 0, + endAngle: TAU, + segments: 32 + }; + let { center, radius, startAngle, endAngle, segments } = Object.assign({}, defaults, options); + + if (!isGT(radius, 0)) throw new Error('radius must be greater than zero') + + radius = [radius, radius]; + + return ellipse({ center, radius, startAngle, endAngle, segments }) +}; + +/** + * Construct an axis-aligned solid cuboid in three dimensional space. + * @param {Object} [options] - options for construction + * @param {Array} [options.center=[0,0,0]] - center of cuboid + * @param {Array} [options.size=[2,2,2]] - dimensions of cuboid; width, depth, height + * @returns {geom3} new 3D geometry + * @alias module:modeling/primitives.cuboid + * + * @example + * let myshape = cuboid(size: [5, 10, 5]}) + */ +const cuboid = (options) => { + const defaults = { + center: [0, 0, 0], + size: [2, 2, 2] + }; + const { center, size } = Object.assign({}, defaults, options); + + if (!isNumberArray(center, 3)) throw new Error('center must be an array of X, Y and Z values') + if (!isNumberArray(size, 3)) throw new Error('size must be an array of width, depth and height values') + if (!size.every((n) => n > 0)) throw new Error('size values must be greater than zero') + + const result = create$8( + // adjust a basic shape to size + [ + [[0, 4, 6, 2], [-1, 0, 0]], + [[1, 3, 7, 5], [+1, 0, 0]], + [[0, 1, 5, 4], [0, -1, 0]], + [[2, 6, 7, 3], [0, +1, 0]], + [[0, 2, 3, 1], [0, 0, -1]], + [[4, 5, 7, 6], [0, 0, +1]] + ].map((info) => { + const vertices = info[0].map((i) => { + const pos = [ + center[0] + (size[0] / 2) * (2 * !!(i & 1) - 1), + center[1] + (size[1] / 2) * (2 * !!(i & 2) - 1), + center[2] + (size[2] / 2) * (2 * !!(i & 4) - 1) + ]; + return pos + }); + return create$7(vertices) + }) + ); + return result +}; + +/** + * Construct an axis-aligned solid cube in three dimensional space with six square faces. + * @see [cuboid]{@link module:modeling/primitives.cuboid} for more options + * @param {Object} [options] - options for construction + * @param {Array} [options.center=[0,0,0]] - center of cube + * @param {Number} [options.size=2] - dimension of cube + * @returns {geom3} new 3D geometry + * @alias module:modeling/primitives.cube + * @example + * let myshape = cube({size: 10}) + */ +const cube = (options) => { + const defaults = { + center: [0, 0, 0], + size: 2 + }; + let { center, size } = Object.assign({}, defaults, options); + + if (!isGT(size, 0)) throw new Error('size must be greater than zero') + + size = [size, size, size]; + + return cuboid({ center, size }) +}; + +/** + * Construct a Z axis-aligned elliptic cylinder in three dimensional space. + * @param {Object} [options] - options for construction + * @param {Array} [options.center=[0,0,0]] - center of cylinder + * @param {Number} [options.height=2] - height of cylinder + * @param {Array} [options.startRadius=[1,1]] - radius of rounded start, must be two dimensional array + * @param {Number} [options.startAngle=0] - start angle of cylinder, in radians + * @param {Array} [options.endRadius=[1,1]] - radius of rounded end, must be two dimensional array + * @param {Number} [options.endAngle=TAU] - end angle of cylinder, in radians + * @param {Number} [options.segments=32] - number of segments to create per full rotation + * @returns {geom3} new geometry + * @alias module:modeling/primitives.cylinderElliptic + * + * @example + * let myshape = cylinderElliptic({height: 2, startRadius: [10,5], endRadius: [8,3]}) + */ +const cylinderElliptic = (options) => { + const defaults = { + center: [0, 0, 0], + height: 2, + startRadius: [1, 1], + startAngle: 0, + endRadius: [1, 1], + endAngle: TAU, + segments: 32 + }; + let { center, height, startRadius, startAngle, endRadius, endAngle, segments } = Object.assign({}, defaults, options); + + if (!isNumberArray(center, 3)) throw new Error('center must be an array of X, Y and Z values') + if (!isGT(height, 0)) throw new Error('height must be greater then zero') + if (!isNumberArray(startRadius, 2)) throw new Error('startRadius must be an array of X and Y values') + if (!startRadius.every((n) => n >= 0)) throw new Error('startRadius values must be positive') + if (!isNumberArray(endRadius, 2)) throw new Error('endRadius must be an array of X and Y values') + if (!endRadius.every((n) => n >= 0)) throw new Error('endRadius values must be positive') + if (endRadius.every((n) => n === 0) && startRadius.every((n) => n === 0)) throw new Error('at least one radius must be positive') + if (!isGTE(startAngle, 0)) throw new Error('startAngle must be positive') + if (!isGTE(endAngle, 0)) throw new Error('endAngle must be positive') + if (!isGTE(segments, 4)) throw new Error('segments must be four or more') + + startAngle = startAngle % TAU; + endAngle = endAngle % TAU; + + let rotation = TAU; + if (startAngle < endAngle) { + rotation = endAngle - startAngle; + } + if (startAngle > endAngle) { + rotation = endAngle + (TAU - startAngle); + } + + const minRadius = Math.min(startRadius[0], startRadius[1], endRadius[0], endRadius[1]); + const minAngle = Math.acos(((minRadius * minRadius) + (minRadius * minRadius) - (EPS * EPS)) / + (2 * minRadius * minRadius)); + if (rotation < minAngle) throw new Error('startAngle and endAngle do not define a significant rotation') + + const slices = Math.floor(segments * (rotation / TAU)); + + const start = fromValues$3(0, 0, -(height / 2)); + const end = fromValues$3(0, 0, height / 2); + const ray = subtract$3(create$b(), end, start); + + const axisX = fromValues$3(1, 0, 0); + const axisY = fromValues$3(0, 1, 0); + + const v1 = create$b(); + const v2 = create$b(); + const v3 = create$b(); + const genVertex = (stack, slice, radius) => { + const angle = slice * rotation + startAngle; + scale$3(v1, axisX, radius[0] * cos(angle)); + scale$3(v2, axisY, radius[1] * sin(angle)); + add$1(v1, v1, v2); + + scale$3(v3, ray, stack); + add$1(v3, v3, start); + return add$1(create$b(), v1, v3) + }; + + // adjust the vertices to center + const fromVertices = (...vertices) => { + const newVertices = vertices.map((vertex) => add$1(create$b(), vertex, center)); + return create$7(newVertices) + }; + + const polygons = []; + for (let i = 0; i < slices; i++) { + const t0 = i / slices; + let t1 = (i + 1) / slices; + // fix rounding error when rotating TAU radians + if (rotation === TAU && i === slices - 1) t1 = 0; + + if (endRadius[0] === startRadius[0] && endRadius[1] === startRadius[1]) { + polygons.push(fromVertices(start, genVertex(0, t1, endRadius), genVertex(0, t0, endRadius))); + polygons.push(fromVertices(genVertex(0, t1, endRadius), genVertex(1, t1, endRadius), genVertex(1, t0, endRadius), genVertex(0, t0, endRadius))); + polygons.push(fromVertices(end, genVertex(1, t0, endRadius), genVertex(1, t1, endRadius))); + } else { + if (startRadius[0] > 0 && startRadius[1] > 0) { + polygons.push(fromVertices(start, genVertex(0, t1, startRadius), genVertex(0, t0, startRadius))); + } + if (startRadius[0] > 0 || startRadius[1] > 0) { + polygons.push(fromVertices(genVertex(0, t0, startRadius), genVertex(0, t1, startRadius), genVertex(1, t0, endRadius))); + } + if (endRadius[0] > 0 && endRadius[1] > 0) { + polygons.push(fromVertices(end, genVertex(1, t0, endRadius), genVertex(1, t1, endRadius))); + } + if (endRadius[0] > 0 || endRadius[1] > 0) { + polygons.push(fromVertices(genVertex(1, t0, endRadius), genVertex(0, t1, startRadius), genVertex(1, t1, endRadius))); + } + } + } + if (rotation < TAU) { + polygons.push(fromVertices(start, genVertex(0, 0, startRadius), end)); + polygons.push(fromVertices(genVertex(0, 0, startRadius), genVertex(1, 0, endRadius), end)); + polygons.push(fromVertices(start, end, genVertex(0, 1, startRadius))); + polygons.push(fromVertices(genVertex(0, 1, startRadius), end, genVertex(1, 1, endRadius))); + } + const result = create$8(polygons); + return result +}; + +/** + * Construct a Z axis-aligned cylinder in three dimensional space. + * @see [cylinderElliptic]{@link module:modeling/primitives.cylinderElliptic} for more options + * @param {Object} [options] - options for construction + * @param {Array} [options.center=[0,0,0]] - center of cylinder + * @param {Number} [options.height=2] - height of cylinder + * @param {Number} [options.radius=1] - radius of cylinder (at both start and end) + * @param {Number} [options.segments=32] - number of segments to create per full rotation + * @returns {geom3} new geometry + * @alias module:modeling/primitives.cylinder + * + * @example + * let myshape = cylinder({height: 2, radius: 10}) + */ +const cylinder = (options) => { + const defaults = { + center: [0, 0, 0], + height: 2, + radius: 1, + segments: 32 + }; + const { center, height, radius, segments } = Object.assign({}, defaults, options); + + if (!isGT(radius, 0)) throw new Error('radius must be greater than zero') + + const newOptions = { + center, + height, + startRadius: [radius, radius], + endRadius: [radius, radius], + segments + }; + + return cylinderElliptic(newOptions) +}; + +/** + * Construct an axis-aligned ellipsoid in three dimensional space. + * @param {Object} [options] - options for construction + * @param {Array} [options.center=[0,0,0]] - center of ellipsoid + * @param {Array} [options.radius=[1,1,1]] - radius of ellipsoid, along X, Y and Z + * @param {Number} [options.segments=32] - number of segments to create per full rotation + * @param {Array} [options.axes] - an array with three vectors for the x, y and z base vectors + * @returns {geom3} new 3D geometry + * @alias module:modeling/primitives.ellipsoid + * + * @example + * let myshape = ellipsoid({radius: [5, 10, 20]}) +*/ +const ellipsoid = (options) => { + const defaults = { + center: [0, 0, 0], + radius: [1, 1, 1], + segments: 32, + axes: [[1, 0, 0], [0, -1, 0], [0, 0, 1]] + }; + const { center, radius, segments, axes } = Object.assign({}, defaults, options); + + if (!isNumberArray(center, 3)) throw new Error('center must be an array of X, Y and Z values') + if (!isNumberArray(radius, 3)) throw new Error('radius must be an array of X, Y and Z values') + if (!radius.every((n) => n > 0)) throw new Error('radius values must be greater than zero') + if (!isGTE(segments, 4)) throw new Error('segments must be four or more') + + const xVector = scale$3(create$b(), normalize$1(create$b(), axes[0]), radius[0]); + const yVector = scale$3(create$b(), normalize$1(create$b(), axes[1]), radius[1]); + const zVector = scale$3(create$b(), normalize$1(create$b(), axes[2]), radius[2]); + + const qSegments = Math.round(segments / 4); + let prevCylinderVertex; + const polygons = []; + const p1 = create$b(); + const p2 = create$b(); + for (let slice1 = 0; slice1 <= segments; slice1++) { + const angle = TAU * slice1 / segments; + const cylinderVertex = add$1(create$b(), scale$3(p1, xVector, cos(angle)), scale$3(p2, yVector, sin(angle))); + if (slice1 > 0) { + let prevCosPitch, prevSinPitch; + for (let slice2 = 0; slice2 <= qSegments; slice2++) { + const pitch = TAU / 4 * slice2 / qSegments; + const cosPitch = cos(pitch); + const sinPitch = sin(pitch); + if (slice2 > 0) { + let vertices = []; + let vertex; + vertex = subtract$3(create$b(), scale$3(p1, prevCylinderVertex, prevCosPitch), scale$3(p2, zVector, prevSinPitch)); + vertices.push(add$1(vertex, vertex, center)); + vertex = subtract$3(create$b(), scale$3(p1, cylinderVertex, prevCosPitch), scale$3(p2, zVector, prevSinPitch)); + vertices.push(add$1(vertex, vertex, center)); + if (slice2 < qSegments) { + vertex = subtract$3(create$b(), scale$3(p1, cylinderVertex, cosPitch), scale$3(p2, zVector, sinPitch)); + vertices.push(add$1(vertex, vertex, center)); + } + vertex = subtract$3(create$b(), scale$3(p1, prevCylinderVertex, cosPitch), scale$3(p2, zVector, sinPitch)); + vertices.push(add$1(vertex, vertex, center)); + + polygons.push(create$7(vertices)); + + vertices = []; + vertex = add$1(create$b(), scale$3(p1, prevCylinderVertex, prevCosPitch), scale$3(p2, zVector, prevSinPitch)); + vertices.push(add$1(create$b(), center, vertex)); + vertex = add$1(vertex, scale$3(p1, cylinderVertex, prevCosPitch), scale$3(p2, zVector, prevSinPitch)); + vertices.push(add$1(create$b(), center, vertex)); + if (slice2 < qSegments) { + vertex = add$1(vertex, scale$3(p1, cylinderVertex, cosPitch), scale$3(p2, zVector, sinPitch)); + vertices.push(add$1(create$b(), center, vertex)); + } + vertex = add$1(vertex, scale$3(p1, prevCylinderVertex, cosPitch), scale$3(p2, zVector, sinPitch)); + vertices.push(add$1(create$b(), center, vertex)); + vertices.reverse(); + + polygons.push(create$7(vertices)); + } + prevCosPitch = cosPitch; + prevSinPitch = sinPitch; + } + } + prevCylinderVertex = cylinderVertex; + } + return create$8(polygons) +}; + +/** + * Construct a polyhedron in three dimensional space from the given set of 3D vertices and faces. + * The faces can define outward or inward facing polygons (orientation). + * However, each face must define a counterclockwise rotation of vertices which follows the right hand rule. + * @param {Object} options - options for construction + * @param {Array} options.points - list of points in 3D space + * @param {Array} options.faces - list of faces, where each face is a set of indexes into the points + * @param {Array} [options.colors=undefined] - list of RGBA colors to apply to each face + * @param {String} [options.orientation='outward'] - orientation of faces + * @returns {geom3} new 3D geometry + * @alias module:modeling/primitives.polyhedron + * + * @example + * let myPoints = [ [10, 10, 0], [10, -10, 0], [-10, -10, 0], [-10, 10, 0], [0, 0, 10] ] + * let myFaces = [ [0, 1, 4], [1, 2, 4], [2, 3, 4], [3, 0, 4], [1, 0, 3], [2, 1, 3] ] + * let myShape = polyhedron({points: myPoints, faces: myFaces, orientation: 'inward'}) + */ +const polyhedron = (options) => { + const defaults = { + points: [], + faces: [], + colors: undefined, + orientation: 'outward' + }; + const { points, faces, colors, orientation } = Object.assign({}, defaults, options); + + if (!(Array.isArray(points) && Array.isArray(faces))) { + throw new Error('points and faces must be arrays') + } + if (points.length < 3) { + throw new Error('three or more points are required') + } + if (faces.length < 1) { + throw new Error('one or more faces are required') + } + if (colors) { + if (!Array.isArray(colors)) { + throw new Error('colors must be an array') + } + if (colors.length !== faces.length) { + throw new Error('faces and colors must have the same length') + } + } + points.forEach((vertex, i) => { + if (!isNumberArray(vertex, 3)) throw new Error(`vertex ${i} must be an array of X, Y, Z values`) + }); + faces.forEach((face, i) => { + if (face.length < 3) throw new Error(`face ${i} must contain 3 or more indexes`) + if (!isNumberArray(face, face.length)) throw new Error(`face ${i} must be an array of numbers`) + }); + + // invert the faces if orientation is inwards, as all internals expect outward facing polygons + if (orientation !== 'outward') { + faces.forEach((face) => face.reverse()); + } + + const polygons = faces.map((face, findex) => { + const polygon = create$7(face.map((pindex) => points[pindex])); + if (colors && colors[findex]) polygon.color = colors[findex]; + return polygon + }); + + return create$8(polygons) +}; + +/** + * Construct a geodesic sphere based on icosahedron symmetry. + * @param {Object} [options] - options for construction + * @param {Number} [options.radius=1] - target radius of sphere + * @param {Number} [options.frequency=6] - subdivision frequency per face, multiples of 6 + * @returns {geom3} new 3D geometry + * @alias module:modeling/primitives.geodesicSphere + * + * @example + * let myshape = geodesicSphere({radius: 15, frequency: 18}) + */ +const geodesicSphere = (options) => { + const defaults = { + radius: 1, + frequency: 6 + }; + let { radius, frequency } = Object.assign({}, defaults, options); + + if (!isGT(radius, 0)) throw new Error('radius must be greater than zero') + if (!isGTE(frequency, 6)) throw new Error('frequency must be six or more') + + // adjust the frequency to base 6 + frequency = Math.floor(frequency / 6); + + const ci = [ // hard-coded data of icosahedron (20 faces, all triangles) + [0.850651, 0.000000, -0.525731], + [0.850651, -0.000000, 0.525731], + [-0.850651, -0.000000, 0.525731], + [-0.850651, 0.000000, -0.525731], + [0.000000, -0.525731, 0.850651], + [0.000000, 0.525731, 0.850651], + [0.000000, 0.525731, -0.850651], + [0.000000, -0.525731, -0.850651], + [-0.525731, -0.850651, -0.000000], + [0.525731, -0.850651, -0.000000], + [0.525731, 0.850651, 0.000000], + [-0.525731, 0.850651, 0.000000]]; + + const ti = [[0, 9, 1], [1, 10, 0], [6, 7, 0], [10, 6, 0], [7, 9, 0], [5, 1, 4], [4, 1, 9], [5, 10, 1], [2, 8, 3], [3, 11, 2], [2, 5, 4], + [4, 8, 2], [2, 11, 5], [3, 7, 6], [6, 11, 3], [8, 7, 3], [9, 8, 4], [11, 10, 5], [10, 11, 6], [8, 9, 7]]; + + const geodesicSubDivide = (p, frequency, offset) => { + const p1 = p[0]; + const p2 = p[1]; + const p3 = p[2]; + let n = offset; + const c = []; + const f = []; + + // p3 + // /\ + // /__\ frequency = 3 + // i /\ /\ + // /__\/__\ total triangles = 9 (frequency*frequency) + // /\ /\ /\ + // 0/__\/__\/__\ + // p1 0 j p2 + + for (let i = 0; i < frequency; i++) { + for (let j = 0; j < frequency - i; j++) { + const t0 = i / frequency; + const t1 = (i + 1) / frequency; + const s0 = j / (frequency - i); + const s1 = (j + 1) / (frequency - i); + const s2 = frequency - i - 1 ? j / (frequency - i - 1) : 1; + const q = []; + + q[0] = mix3(mix3(p1, p2, s0), p3, t0); + q[1] = mix3(mix3(p1, p2, s1), p3, t0); + q[2] = mix3(mix3(p1, p2, s2), p3, t1); + + // -- normalize + for (let k = 0; k < 3; k++) { + const r = length$1(q[k]); + for (let l = 0; l < 3; l++) { + q[k][l] /= r; + } + } + c.push(q[0], q[1], q[2]); + f.push([n, n + 1, n + 2]); n += 3; + + if (j < frequency - i - 1) { + const s3 = frequency - i - 1 ? (j + 1) / (frequency - i - 1) : 1; + q[0] = mix3(mix3(p1, p2, s1), p3, t0); + q[1] = mix3(mix3(p1, p2, s3), p3, t1); + q[2] = mix3(mix3(p1, p2, s2), p3, t1); + + // -- normalize + for (let k = 0; k < 3; k++) { + const r = length$1(q[k]); + for (let l = 0; l < 3; l++) { + q[k][l] /= r; + } + } + c.push(q[0], q[1], q[2]); + f.push([n, n + 1, n + 2]); n += 3; + } + } + } + return { vertices: c, triangles: f, offset: n } + }; + + const mix3 = (a, b, f) => { + const _f = 1 - f; + const c = []; + for (let i = 0; i < 3; i++) { + c[i] = a[i] * _f + b[i] * f; + } + return c + }; + + let vertices = []; + let faces = []; + let offset = 0; + + for (let i = 0; i < ti.length; i++) { + const g = geodesicSubDivide([ci[ti[i][0]], ci[ti[i][1]], ci[ti[i][2]]], frequency, offset); + vertices = vertices.concat(g.vertices); + faces = faces.concat(g.triangles); + offset = g.offset; + } + + let geometry = polyhedron({ points: vertices, faces: faces, orientation: 'inward' }); + if (radius !== 1) geometry = transform$6(fromScaling(create$c(), [radius, radius, radius]), geometry); + return geometry +}; + +/** + * Construct a new line in two dimensional space from the given points. + * The points must be provided as an array, where each element is a 2D point. + * @param {Array} points - array of points from which to create the path + * @returns {path2} new 2D path + * @alias module:modeling/primitives.line + * + * @example + * let myshape = line([[10, 10], [-10, 10]]) + */ +const line = (points) => { + if (!Array.isArray(points)) throw new Error('points must be an array') + + return fromPoints$2({}, points) +}; + +/** + * Construct a polygon in two dimensional space from a list of points, or a list of points and paths. + * NOTE: The ordering of points is VERY IMPORTANT. + * @param {Object} options - options for construction + * @param {Array} options.points - points of the polygon : either flat or nested array of 2D points + * @param {Array} [options.paths] - paths of the polygon : either flat or nested array of point indexes + * @returns {geom2} new 2D geometry + * @alias module:modeling/primitives.polygon + * + * @example + * let roof = [[10,11], [0,11], [5,20]] + * let wall = [[0,0], [10,0], [10,10], [0,10]] + * + * let poly = polygon({ points: roof }) + * or + * let poly = polygon({ points: [roof, wall] }) + * or + * let poly = polygon({ points: roof, paths: [0, 1, 2] }) + * or + * let poly = polygon({ points: [roof, wall], paths: [[0, 1, 2], [3, 4, 5, 6]] }) + */ +const polygon = (options) => { + const defaults = { + points: [], + paths: [] + }; + const { points, paths } = Object.assign({}, defaults, options); + + if (!(Array.isArray(points) && Array.isArray(paths))) throw new Error('points and paths must be arrays') + + let listOfPolys = points; + if (Array.isArray(points[0])) { + if (!Array.isArray(points[0][0])) { + // points is an array of something... convert to list + listOfPolys = [points]; + } + } + + listOfPolys.forEach((list, i) => { + if (!Array.isArray(list)) throw new Error('list of points ' + i + ' must be an array') + if (list.length < 3) throw new Error('list of points ' + i + ' must contain three or more points') + list.forEach((point, j) => { + if (!Array.isArray(point)) throw new Error('list of points ' + i + ', point ' + j + ' must be an array') + if (point.length < 2) throw new Error('list of points ' + i + ', point ' + j + ' must contain by X and Y values') + }); + }); + + let listOfPaths = paths; + if (paths.length === 0) { + // create a list of paths based on the points + let count = 0; + listOfPaths = listOfPolys.map((list) => list.map((point) => count++)); + } + + // flatten the listOfPoints for indexed access + const allPoints = []; + listOfPolys.forEach((list) => list.forEach((point) => allPoints.push(point))); + + const outlines = []; + listOfPaths.forEach((path) => { + const setOfPoints = path.map((index) => allPoints[index]); + outlines.push(setOfPoints); + }); + return create$a(outlines) +}; + +/** + * Construct an axis-aligned rectangle in two dimensional space with four sides at right angles. + * @param {Object} [options] - options for construction + * @param {Array} [options.center=[0,0]] - center of rectangle + * @param {Array} [options.size=[2,2]] - dimension of rectangle, width and length + * @returns {geom2} new 2D geometry + * @alias module:modeling/primitives.rectangle + * + * @example + * let myshape = rectangle({size: [10, 20]}) + */ +const rectangle = (options) => { + const defaults = { + center: [0, 0], + size: [2, 2] + }; + const { center, size } = Object.assign({}, defaults, options); + + if (!isNumberArray(center, 2)) throw new Error('center must be an array of X and Y values') + if (!isNumberArray(size, 2)) throw new Error('size must be an array of X and Y values') + if (!size.every((n) => n > 0)) throw new Error('size values must be greater than zero') + + const point = [size[0] / 2, size[1] / 2]; + const swapped = [point[0], -point[1]]; + + const points = [ + subtract$1(create$9(), center, point), + add(create$9(), center, swapped), + add(create$9(), center, point), + subtract$1(create$9(), center, swapped) + ]; + return create$a([points]) +}; + +const createCorners = (center, size, radius, segments, slice, positive) => { + const pitch = (TAU / 4) * slice / segments; + const cosPitch = cos(pitch); + const sinPitch = sin(pitch); + + const layerSegments = segments - slice; + let layerRadius = radius * cosPitch; + let layerOffset = size[2] - (radius - (radius * sinPitch)); + if (!positive) layerOffset = (radius - (radius * sinPitch)) - size[2]; + + layerRadius = layerRadius > EPS ? layerRadius : 0; + + const corner0 = add$1(create$b(), center, [size[0] - radius, size[1] - radius, layerOffset]); + const corner1 = add$1(create$b(), center, [radius - size[0], size[1] - radius, layerOffset]); + const corner2 = add$1(create$b(), center, [radius - size[0], radius - size[1], layerOffset]); + const corner3 = add$1(create$b(), center, [size[0] - radius, radius - size[1], layerOffset]); + const corner0Vertices = []; + const corner1Vertices = []; + const corner2Vertices = []; + const corner3Vertices = []; + for (let i = 0; i <= layerSegments; i++) { + const radians = layerSegments > 0 ? TAU / 4 * i / layerSegments : 0; + // FIXME allocate only once + const point2d = fromAngleRadians(create$9(), radians); + scale$1(point2d, point2d, layerRadius); + const point3d = fromVec2(create$b(), point2d); + corner0Vertices.push(add$1(create$b(), corner0, point3d)); + rotateZ$2(point3d, point3d, [0, 0, 0], TAU / 4); + corner1Vertices.push(add$1(create$b(), corner1, point3d)); + rotateZ$2(point3d, point3d, [0, 0, 0], TAU / 4); + corner2Vertices.push(add$1(create$b(), corner2, point3d)); + rotateZ$2(point3d, point3d, [0, 0, 0], TAU / 4); + corner3Vertices.push(add$1(create$b(), corner3, point3d)); + } + if (!positive) { + corner0Vertices.reverse(); + corner1Vertices.reverse(); + corner2Vertices.reverse(); + corner3Vertices.reverse(); + return [corner3Vertices, corner2Vertices, corner1Vertices, corner0Vertices] + } + return [corner0Vertices, corner1Vertices, corner2Vertices, corner3Vertices] +}; + +const stitchCorners = (previousCorners, currentCorners) => { + const polygons = []; + for (let i = 0; i < previousCorners.length; i++) { + const previous = previousCorners[i]; + const current = currentCorners[i]; + for (let j = 0; j < (previous.length - 1); j++) { + polygons.push(create$7([previous[j], previous[j + 1], current[j]])); + + if (j < (current.length - 1)) { + polygons.push(create$7([current[j], previous[j + 1], current[j + 1]])); + } + } + } + return polygons +}; + +const stitchWalls = (previousCorners, currentCorners) => { + const polygons = []; + for (let i = 0; i < previousCorners.length; i++) { + let previous = previousCorners[i]; + let current = currentCorners[i]; + const p0 = previous[previous.length - 1]; + const c0 = current[current.length - 1]; + + const j = (i + 1) % previousCorners.length; + previous = previousCorners[j]; + current = currentCorners[j]; + const p1 = previous[0]; + const c1 = current[0]; + + polygons.push(create$7([p0, p1, c1, c0])); + } + return polygons +}; + +const stitchSides = (bottomCorners, topCorners) => { + // make a copy and reverse the bottom corners + bottomCorners = [bottomCorners[3], bottomCorners[2], bottomCorners[1], bottomCorners[0]]; + bottomCorners = bottomCorners.map((corner) => corner.slice().reverse()); + + const bottomVertices = []; + bottomCorners.forEach((corner) => { + corner.forEach((vertex) => bottomVertices.push(vertex)); + }); + + const topVertices = []; + topCorners.forEach((corner) => { + corner.forEach((vertex) => topVertices.push(vertex)); + }); + + const polygons = []; + for (let i = 0; i < topVertices.length; i++) { + const j = (i + 1) % topVertices.length; + polygons.push(create$7([bottomVertices[i], bottomVertices[j], topVertices[j], topVertices[i]])); + } + return polygons +}; + +/** + * Construct an axis-aligned solid cuboid in three dimensional space with rounded corners. + * @param {Object} [options] - options for construction + * @param {Array} [options.center=[0,0,0]] - center of rounded cube + * @param {Array} [options.size=[2,2,2]] - dimension of rounded cube; width, depth, height + * @param {Number} [options.roundRadius=0.2] - radius of rounded edges + * @param {Number} [options.segments=32] - number of segments to create per full rotation + * @returns {geom3} new 3D geometry + * @alias module:modeling/primitives.roundedCuboid + * + * @example + * let myCube = roundedCuboid({size: [10, 20, 10], roundRadius: 2, segments: 16}) + */ +const roundedCuboid = (options) => { + const defaults = { + center: [0, 0, 0], + size: [2, 2, 2], + roundRadius: 0.2, + segments: 32 + }; + let { center, size, roundRadius, segments } = Object.assign({}, defaults, options); + + if (!isNumberArray(center, 3)) throw new Error('center must be an array of X, Y and Z values') + if (!isNumberArray(size, 3)) throw new Error('size must be an array of X, Y and Z values') + if (!size.every((n) => n > 0)) throw new Error('size values must be greater than zero') + if (!isGT(roundRadius, 0)) throw new Error('roundRadius must be greater than zero') + if (!isGTE(segments, 4)) throw new Error('segments must be four or more') + + size = size.map((v) => v / 2); // convert to radius + + if (roundRadius > (size[0] - EPS) || + roundRadius > (size[1] - EPS) || + roundRadius > (size[2] - EPS)) throw new Error('roundRadius must be smaller then the radius of all dimensions') + + segments = Math.floor(segments / 4); + + let prevCornersPos = null; + let prevCornersNeg = null; + let polygons = []; + for (let slice = 0; slice <= segments; slice++) { + const cornersPos = createCorners(center, size, roundRadius, segments, slice, true); + const cornersNeg = createCorners(center, size, roundRadius, segments, slice, false); + + if (slice === 0) { + polygons = polygons.concat(stitchSides(cornersNeg, cornersPos)); + } + + if (prevCornersPos) { + polygons = polygons.concat(stitchCorners(prevCornersPos, cornersPos), + stitchWalls(prevCornersPos, cornersPos)); + } + if (prevCornersNeg) { + polygons = polygons.concat(stitchCorners(prevCornersNeg, cornersNeg), + stitchWalls(prevCornersNeg, cornersNeg)); + } + + if (slice === segments) { + // add the top + let vertices = cornersPos.map((corner) => corner[0]); + polygons.push(create$7(vertices)); + // add the bottom + vertices = cornersNeg.map((corner) => corner[0]); + polygons.push(create$7(vertices)); + } + + prevCornersPos = cornersPos; + prevCornersNeg = cornersNeg; + } + + return create$8(polygons) +}; + +/** + * Construct a Z axis-aligned solid cylinder in three dimensional space with rounded ends. + * @param {Object} [options] - options for construction + * @param {Array} [options.center=[0,0,0]] - center of cylinder + * @param {Number} [options.height=2] - height of cylinder + * @param {Number} [options.radius=1] - radius of cylinder + * @param {Number} [options.roundRadius=0.2] - radius of rounded edges + * @param {Number} [options.segments=32] - number of segments to create per full rotation + * @returns {geom3} new 3D geometry + * @alias module:modeling/primitives.roundedCylinder + * + * @example + * let myshape = roundedCylinder({ height: 10, radius: 2, roundRadius: 0.5 }) + */ +const roundedCylinder = (options) => { + const defaults = { + center: [0, 0, 0], + height: 2, + radius: 1, + roundRadius: 0.2, + segments: 32 + }; + const { center, height, radius, roundRadius, segments } = Object.assign({}, defaults, options); + + if (!isNumberArray(center, 3)) throw new Error('center must be an array of X, Y and Z values') + if (!isGT(height, 0)) throw new Error('height must be greater then zero') + if (!isGT(radius, 0)) throw new Error('radius must be greater then zero') + if (!isGT(roundRadius, 0)) throw new Error('roundRadius must be greater then zero') + if (roundRadius > (radius - EPS)) throw new Error('roundRadius must be smaller then the radius') + if (!isGTE(segments, 4)) throw new Error('segments must be four or more') + + const start = [0, 0, -(height / 2)]; + const end = [0, 0, height / 2]; + const direction = subtract$3(create$b(), end, start); + const length = length$1(direction); + + if ((2 * roundRadius) > (length - EPS)) throw new Error('height must be larger than twice roundRadius') + + let defaultNormal; + if (Math.abs(direction[0]) > Math.abs(direction[1])) { + defaultNormal = fromValues$3(0, 1, 0); + } else { + defaultNormal = fromValues$3(1, 0, 0); + } + + const zVector = scale$3(create$b(), normalize$1(create$b(), direction), roundRadius); + const xVector = scale$3(create$b(), normalize$1(create$b(), cross$1(create$b(), zVector, defaultNormal)), radius); + const yVector = scale$3(create$b(), normalize$1(create$b(), cross$1(create$b(), xVector, zVector)), radius); + + add$1(start, start, zVector); + subtract$3(end, end, zVector); + + const qSegments = Math.floor(0.25 * segments); + + const fromVertices = (vertices) => { + // adjust the vertices to center + const newVertices = vertices.map((vertex) => add$1(vertex, vertex, center)); + return create$7(newVertices) + }; + + const polygons = []; + const v1 = create$b(); + const v2 = create$b(); + let prevCylinderVertex; + for (let slice1 = 0; slice1 <= segments; slice1++) { + const angle = TAU * slice1 / segments; + const cylinderVertex = add$1(create$b(), scale$3(v1, xVector, cos(angle)), scale$3(v2, yVector, sin(angle))); + if (slice1 > 0) { + // cylinder wall + let vertices = []; + vertices.push(add$1(create$b(), start, cylinderVertex)); + vertices.push(add$1(create$b(), start, prevCylinderVertex)); + vertices.push(add$1(create$b(), end, prevCylinderVertex)); + vertices.push(add$1(create$b(), end, cylinderVertex)); + polygons.push(fromVertices(vertices)); + + let prevCosPitch, prevSinPitch; + let vertex; + for (let slice2 = 0; slice2 <= qSegments; slice2++) { + const pitch = TAU / 4 * slice2 / qSegments; + const cosPitch = cos(pitch); + const sinPitch = sin(pitch); + if (slice2 > 0) { + // cylinder rounding, start + vertices = []; + vertex = add$1(create$b(), start, subtract$3(v1, scale$3(v1, prevCylinderVertex, prevCosPitch), scale$3(v2, zVector, prevSinPitch))); + vertices.push(vertex); + vertex = add$1(create$b(), start, subtract$3(v1, scale$3(v1, cylinderVertex, prevCosPitch), scale$3(v2, zVector, prevSinPitch))); + vertices.push(vertex); + if (slice2 < qSegments) { + vertex = add$1(create$b(), start, subtract$3(v1, scale$3(v1, cylinderVertex, cosPitch), scale$3(v2, zVector, sinPitch))); + vertices.push(vertex); + } + vertex = add$1(create$b(), start, subtract$3(v1, scale$3(v1, prevCylinderVertex, cosPitch), scale$3(v2, zVector, sinPitch))); + vertices.push(vertex); + + polygons.push(fromVertices(vertices)); + + // cylinder rounding, end + vertices = []; + vertex = add$1(create$b(), scale$3(v1, prevCylinderVertex, prevCosPitch), scale$3(v2, zVector, prevSinPitch)); + add$1(vertex, vertex, end); + vertices.push(vertex); + vertex = add$1(create$b(), scale$3(v1, cylinderVertex, prevCosPitch), scale$3(v2, zVector, prevSinPitch)); + add$1(vertex, vertex, end); + vertices.push(vertex); + if (slice2 < qSegments) { + vertex = add$1(create$b(), scale$3(v1, cylinderVertex, cosPitch), scale$3(v2, zVector, sinPitch)); + add$1(vertex, vertex, end); + vertices.push(vertex); + } + vertex = add$1(create$b(), scale$3(v1, prevCylinderVertex, cosPitch), scale$3(v2, zVector, sinPitch)); + add$1(vertex, vertex, end); + vertices.push(vertex); + vertices.reverse(); + + polygons.push(fromVertices(vertices)); + } + prevCosPitch = cosPitch; + prevSinPitch = sinPitch; + } + } + prevCylinderVertex = cylinderVertex; + } + return create$8(polygons) +}; + +/** + * Construct an axis-aligned rectangle in two dimensional space with rounded corners. + * @param {Object} [options] - options for construction + * @param {Array} [options.center=[0,0]] - center of rounded rectangle + * @param {Array} [options.size=[2,2]] - dimension of rounded rectangle; width and length + * @param {Number} [options.roundRadius=0.2] - round radius of corners + * @param {Number} [options.segments=32] - number of segments to create per full rotation + * @returns {geom2} new 2D geometry + * @alias module:modeling/primitives.roundedRectangle + * + * @example + * let myshape = roundedRectangle({size: [10, 20], roundRadius: 2}) + */ +const roundedRectangle = (options) => { + const defaults = { + center: [0, 0], + size: [2, 2], + roundRadius: 0.2, + segments: 32 + }; + let { center, size, roundRadius, segments } = Object.assign({}, defaults, options); + + if (!isNumberArray(center, 2)) throw new Error('center must be an array of X and Y values') + if (!isNumberArray(size, 2)) throw new Error('size must be an array of X and Y values') + if (!size.every((n) => n > 0)) throw new Error('size values must be greater than zero') + if (!isGT(roundRadius, 0)) throw new Error('roundRadius must be greater than zero') + if (!isGTE(segments, 4)) throw new Error('segments must be four or more') + + size = size.map((v) => v / 2); // convert to radius + + if (roundRadius > (size[0] - EPS) || + roundRadius > (size[1] - EPS)) throw new Error('roundRadius must be smaller then the radius of all dimensions') + + const cornerSegments = Math.floor(segments / 4); + + // create sets of points that define the corners + const corner0 = add(create$9(), center, [size[0] - roundRadius, size[1] - roundRadius]); + const corner1 = add(create$9(), center, [roundRadius - size[0], size[1] - roundRadius]); + const corner2 = add(create$9(), center, [roundRadius - size[0], roundRadius - size[1]]); + const corner3 = add(create$9(), center, [size[0] - roundRadius, roundRadius - size[1]]); + const corner0Points = []; + const corner1Points = []; + const corner2Points = []; + const corner3Points = []; + for (let i = 0; i <= cornerSegments; i++) { + const radians = TAU / 4 * i / cornerSegments; + const point = fromAngleRadians(create$9(), radians); + scale$1(point, point, roundRadius); + corner0Points.push(add(create$9(), corner0, point)); + rotate$1(point, point, create$9(), TAU / 4); + corner1Points.push(add(create$9(), corner1, point)); + rotate$1(point, point, create$9(), TAU / 4); + corner2Points.push(add(create$9(), corner2, point)); + rotate$1(point, point, create$9(), TAU / 4); + corner3Points.push(add(create$9(), corner3, point)); + } + + const points = corner0Points.concat(corner1Points, corner2Points, corner3Points); + return create$a([points]) +}; + +/** + * Construct a sphere in three dimensional space where all vertices are at the same distance from the center. + * @see [ellipsoid]{@link module:modeling/primitives.ellipsoid} for more options + * @param {Object} [options] - options for construction + * @param {Array} [options.center=[0,0,0]] - center of sphere + * @param {Number} [options.radius=1] - radius of sphere + * @param {Number} [options.segments=32] - number of segments to create per full rotation + * @param {Array} [options.axes] - an array with three vectors for the x, y and z base vectors + * @returns {geom3} new 3D geometry + * @alias module:modeling/primitives.sphere + * + * @example + * let myshape = sphere({radius: 5}) + */ +const sphere = (options) => { + const defaults = { + center: [0, 0, 0], + radius: 1, + segments: 32, + axes: [[1, 0, 0], [0, -1, 0], [0, 0, 1]] + }; + let { center, radius, segments, axes } = Object.assign({}, defaults, options); + + if (!isGT(radius, 0)) throw new Error('radius must be greater than zero') + + radius = [radius, radius, radius]; + + return ellipsoid({ center, radius, segments, axes }) +}; + +/** + * Construct an axis-aligned square in two dimensional space with four equal sides at right angles. + * @see [rectangle]{@link module:modeling/primitives.rectangle} for more options + * @param {Object} [options] - options for construction + * @param {Array} [options.center=[0,0]] - center of square + * @param {Number} [options.size=2] - dimension of square + * @returns {geom2} new 2D geometry + * @alias module:modeling/primitives.square + * + * @example + * let myshape = square({size: 10}) + */ +const square = (options) => { + const defaults = { + center: [0, 0], + size: 2 + }; + let { center, size } = Object.assign({}, defaults, options); + + if (!isGT(size, 0)) throw new Error('size must be greater than zero') + + size = [size, size]; + + return rectangle({ center, size }) +}; + +// @see http://www.jdawiseman.com/papers/easymath/surds_star_inner_radius.html +const getRadiusRatio = (vertices, density) => { + if (vertices > 0 && density > 1 && density < vertices / 2) { + return Math.cos(Math.PI * density / vertices) / Math.cos(Math.PI * (density - 1) / vertices) + } + return 0 +}; + +const getPoints = (vertices, radius, startAngle, center) => { + const a = TAU / vertices; + + const points = []; + for (let i = 0; i < vertices; i++) { + const point = fromAngleRadians(create$9(), a * i + startAngle); + scale$1(point, point, radius); + add(point, center, point); + points.push(point); + } + return points +}; + +/** + * Construct a star in two dimensional space. + * @see https://en.wikipedia.org/wiki/Star_polygon + * @param {Object} [options] - options for construction + * @param {Array} [options.center=[0,0]] - center of star + * @param {Number} [options.vertices=5] - number of vertices (P) on the star + * @param {Number} [options.density=2] - density (Q) of star + * @param {Number} [options.outerRadius=1] - outer radius of vertices + * @param {Number} [options.innerRadius=0] - inner radius of vertices, or zero to calculate + * @param {Number} [options.startAngle=0] - starting angle for first vertex, in radians + * @returns {geom2} new 2D geometry + * @alias module:modeling/primitives.star + * + * @example + * let star1 = star({vertices: 8, outerRadius: 10}) // star with 8/2 density + * let star2 = star({vertices: 12, outerRadius: 40, innerRadius: 20}) // star with given radius + */ +const star = (options) => { + const defaults = { + center: [0, 0], + vertices: 5, + outerRadius: 1, + innerRadius: 0, + density: 2, + startAngle: 0 + }; + let { center, vertices, outerRadius, innerRadius, density, startAngle } = Object.assign({}, defaults, options); + + if (!isNumberArray(center, 2)) throw new Error('center must be an array of X and Y values') + if (!isGTE(vertices, 2)) throw new Error('vertices must be two or more') + if (!isGT(outerRadius, 0)) throw new Error('outerRadius must be greater than zero') + if (!isGTE(innerRadius, 0)) throw new Error('innerRadius must be greater than zero') + if (!isGTE(startAngle, 0)) throw new Error('startAngle must be greater than zero') + + // force integers + vertices = Math.floor(vertices); + density = Math.floor(density); + + startAngle = startAngle % TAU; + + if (innerRadius === 0) { + if (!isGTE(density, 2)) throw new Error('density must be two or more') + innerRadius = outerRadius * getRadiusRatio(vertices, density); + } + + const centerV = clone$8(center); + + const outerPoints = getPoints(vertices, outerRadius, startAngle, centerV); + const innerPoints = getPoints(vertices, innerRadius, startAngle + Math.PI / vertices, centerV); + + const allPoints = []; + for (let i = 0; i < vertices; i++) { + allPoints.push(outerPoints[i]); + allPoints.push(innerPoints[i]); + } + + return create$a([allPoints]) +}; + +/** + * Mirror the given objects using the given options. + * @param {Object} options - options for mirror + * @param {Array} [options.origin=[0,0,0]] - the origin of the plane + * @param {Array} [options.normal=[0,0,1]] - the normal vector of the plane + * @param {...Object} objects - the objects to mirror + * @return {Object|Array} the mirrored object, or a list of mirrored objects + * @alias module:modeling/transforms.mirror + * + * @example + * let myshape = mirror({normal: [0,0,10]}, cube({center: [0,0,15], radius: [20, 25, 5]})) + */ +const mirror = (options, ...objects) => { + const defaults = { + origin: [0, 0, 0], + normal: [0, 0, 1] // Z axis + }; + const { origin, normal } = Object.assign({}, defaults, options); + + objects = flatten(objects); + if (objects.length === 0) throw new Error('wrong number of arguments') + + const planeOfMirror = fromNormalAndPoint(create$6(), normal, origin); + // verify the plane, i.e. check that the given normal was valid + if (Number.isNaN(planeOfMirror[0])) { + throw new Error('the given origin and normal do not define a proper plane') + } + + const matrix = mirrorByPlane(create$c(), planeOfMirror); + + const results = objects.map((object) => { + if (isA$2(object)) return transform$5(matrix, object) + if (isA$5(object)) return transform$a(matrix, object) + if (isA$3(object)) return transform$6(matrix, object) + return object + }); + return results.length === 1 ? results[0] : results +}; + +/** + * Mirror the given objects about the X axis. + * @param {...Object} objects - the objects to mirror + * @return {Object|Array} the mirrored object, or a list of mirrored objects + * @alias module:modeling/transforms.mirrorX + */ +const mirrorX = (...objects) => mirror({ normal: [1, 0, 0] }, objects); + +/** + * Mirror the given objects about the Y axis. + * @param {...Object} objects - the geometries to mirror + * @return {Object|Array} the mirrored object, or a list of mirrored objects + * @alias module:modeling/transforms.mirrorY + */ +const mirrorY = (...objects) => mirror({ normal: [0, 1, 0] }, objects); + +/** + * Mirror the given objects about the Z axis. + * @param {...Object} objects - the geometries to mirror + * @return {Object|Array} the mirrored object, or a list of mirrored objects + * @alias module:modeling/transforms.mirrorZ + */ +const mirrorZ = (...objects) => mirror({ normal: [0, 0, 1] }, objects); + +// https://en.wikipedia.org/wiki/Greatest_common_divisor#Using_Euclid's_algorithm +const gcd = (a, b) => { + if (a === b) { return a } + if (a < b) { return gcd(b, a) } + if (b === 1) { return 1 } + if (b === 0) { return a } + return gcd(b, a % b) +}; + +const lcm = (a, b) => (a * b) / gcd(a, b); + +// Return a set of edges that encloses the same area by splitting +// the given edges to have newLength total edges. +const repartitionEdges = (newLength, edges) => { + // NOTE: This implementation splits each edge evenly. + const multiple = newLength / edges.length; + if (multiple === 1) { + return edges + } + + const divisor = fromValues$3(multiple, multiple, multiple); + + const newEdges = []; + edges.forEach((edge) => { + const increment = subtract$3(create$b(), edge[1], edge[0]); + divide$1(increment, increment, divisor); + + // repartition the edge + let prev = edge[0]; + for (let i = 1; i <= multiple; ++i) { + const next = add$1(create$b(), prev, increment); + newEdges.push([prev, next]); + prev = next; + } + }); + return newEdges +}; + +const EPSAREA = (EPS * EPS / 2) * Math.sin(Math.PI / 3); + +/* + * Extrude (build) walls between the given slices. + * Each wall consists of two triangles, which may be invalid if slices are overlapping. + */ +const extrudeWalls = (slice0, slice1) => { + let edges0 = toEdges(slice0); + let edges1 = toEdges(slice1); + + if (edges0.length !== edges1.length) { + // different shapes, so adjust one or both to the same number of edges + const newLength = lcm(edges0.length, edges1.length); + if (newLength !== edges0.length) edges0 = repartitionEdges(newLength, edges0); + if (newLength !== edges1.length) edges1 = repartitionEdges(newLength, edges1); + } + + const walls = []; + edges0.forEach((edge0, i) => { + const edge1 = edges1[i]; + + const poly0 = create$7([edge0[0], edge0[1], edge1[1]]); + const poly0area = measureArea$2(poly0); + if (Number.isFinite(poly0area) && poly0area > EPSAREA) walls.push(poly0); + + const poly1 = create$7([edge0[0], edge1[1], edge1[0]]); + const poly1area = measureArea$2(poly1); + if (Number.isFinite(poly1area) && poly1area > EPSAREA) walls.push(poly1); + }); + return walls +}; + +const defaultCallback = (progress, index, base) => { + let baseSlice = null; + if (isA$5(base)) baseSlice = fromGeom2(base); + if (isA$4(base)) baseSlice = fromVertices(toVertices$1(base)); + + return progress === 0 || progress === 1 ? transform$3(fromTranslation(create$c(), [0, 0, progress]), baseSlice) : null +}; + +/** + * Extrude a solid from the slices as returned by the callback function. + * @see slice + * + * @param {Object} options - options for extrude + * @param {Integer} [options.numberOfSlices=2] the number of slices to be generated by the callback + * @param {Boolean} [options.capStart=true] the solid should have a cap at the start + * @param {Boolean} [options.capEnd=true] the solid should have a cap at the end + * @param {Boolean} [options.close=false] the solid should have a closing section between start and end + * @param {Boolean} [options.repair=true] - repair gaps in the geometry + * @param {Function} [options.callback] the callback function that generates each slice + * @param {Object} base - the base object which is used to create slices (see the example for callback information) + * @return {geom3} the extruded shape + * @alias module:modeling/extrusions.extrudeFromSlices + * + * @example + * // Parameters: + * // progress : the percent complete [0..1] + * // index : the index of the current slice [0..numberOfSlices - 1] + * // base : the base object as given + * // Return Value: + * // slice or null (to skip) + * const callback = (progress, index, base) => { + * ... + * return slice + * } + */ +const extrudeFromSlices = (options, base) => { + const defaults = { + numberOfSlices: 2, + capStart: true, + capEnd: true, + close: false, + callback: defaultCallback + }; + const { numberOfSlices, capStart, capEnd, close, callback: generate } = Object.assign({ }, defaults, options); + + if (numberOfSlices < 2) throw new Error('numberOfSlices must be 2 or more') + + const sMax = numberOfSlices - 1; + + let startSlice = null; + let endSlice = null; + let prevSlice = null; + let polygons = []; + for (let s = 0; s < numberOfSlices; s++) { + // invoke the callback function to get the next slice + // NOTE: callback can return null to skip the slice + const currentSlice = generate(s / sMax, s, base); + + if (currentSlice) { + if (!isA(currentSlice)) throw new Error('the callback function must return slice objects') + + if (currentSlice.contours.length === 0) throw new Error('the callback function must return slices with one or more contours') + + if (prevSlice) { + polygons = polygons.concat(extrudeWalls(prevSlice, currentSlice)); + } + + // save start and end slices for caps if necessary + if (s === 0) startSlice = currentSlice; + if (s === (numberOfSlices - 1)) endSlice = currentSlice; + + prevSlice = currentSlice; + } + } + + if (capEnd) { + // create a cap at the end + const endPolygons = toPolygons(endSlice); + polygons = polygons.concat(endPolygons); + } + if (capStart) { + // create a cap at the start + const startPolygons = toPolygons(startSlice).map(invert$1); + polygons = polygons.concat(startPolygons); + } + if (!capStart && !capEnd) { + // create walls between end and start slices + if (close && !equals$3(endSlice, startSlice)) { + polygons = polygons.concat(extrudeWalls(endSlice, startSlice)); + } + } + return create$8(polygons) +}; + +/** + * Rotate extrude the given geometry using the given options. + * + * @param {Object} options - options for extrusion + * @param {Number} [options.angle=TAU] - angle of the extrusion (RADIANS) + * @param {Number} [options.startAngle=0] - start angle of the extrusion (RADIANS) + * @param {String} [options.overflow='cap'] - what to do with points outside of bounds (+ / - x) : + * defaults to capping those points to 0 (only supported behaviour for now) + * @param {Number} [options.segments=12] - number of segments of the extrusion + * @param {geom2} geometry - the geometry to extrude + * @returns {geom3} the extruded geometry + * @alias module:modeling/extrusions.extrudeRotate + * + * @example + * const myshape = extrudeRotate({segments: 8, angle: TAU / 2}, circle({size: 3, center: [4, 0]})) + */ +const extrudeRotate = (options, geometry) => { + const defaults = { + segments: 12, + startAngle: 0, + angle: TAU, + overflow: 'cap' + }; + let { segments, startAngle, angle, overflow } = Object.assign({}, defaults, options); + + if (segments < 3) throw new Error('segments must be greater then 3') + + startAngle = Math.abs(startAngle) > TAU ? startAngle % TAU : startAngle; + angle = Math.abs(angle) > TAU ? angle % TAU : angle; + + let endAngle = startAngle + angle; + endAngle = Math.abs(endAngle) > TAU ? endAngle % TAU : endAngle; + + if (endAngle < startAngle) { + const x = startAngle; + startAngle = endAngle; + endAngle = x; + } + let totalRotation = endAngle - startAngle; + if (totalRotation <= 0.0) totalRotation = TAU; + + if (Math.abs(totalRotation) < TAU) { + // adjust the segments to achieve the total rotation requested + const anglePerSegment = TAU / segments; + segments = Math.floor(Math.abs(totalRotation) / anglePerSegment); + if (Math.abs(totalRotation) > (segments * anglePerSegment)) segments++; + } + + // convert geometry to an array of sides, easier to deal with + let shapeSides = toSides(geometry); + if (shapeSides.length === 0) throw new Error('the given geometry cannot be empty') + + // determine if the extrusion can be computed in the first place + // ie all the points have to be either x > 0 or x < 0 + + // generic solution to always have a valid solid, even if points go beyond x/ -x + // 1. split points up between all those on the 'left' side of the axis (x<0) & those on the 'right' (x>0) + // 2. for each set of points do the extrusion operation IN OPPOSITE DIRECTIONS + // 3. union the two resulting solids + + // 1. alt : OR : just cap of points at the axis ? + + const pointsWithNegativeX = shapeSides.filter((s) => (s[0][0] < 0)); + const pointsWithPositiveX = shapeSides.filter((s) => (s[0][0] >= 0)); + const arePointsWithNegAndPosX = pointsWithNegativeX.length > 0 && pointsWithPositiveX.length > 0; + + // FIXME actually there are cases where setting X=0 will change the basic shape + // - Alternative #1 : don't allow shapes with both negative and positive X values + // - Alternative #2 : remove one half of the shape (costly) + if (arePointsWithNegAndPosX && overflow === 'cap') { + if (pointsWithNegativeX.length > pointsWithPositiveX.length) { + shapeSides = shapeSides.map((side) => { + let point0 = side[0]; + let point1 = side[1]; + point0 = [Math.min(point0[0], 0), point0[1]]; + point1 = [Math.min(point1[0], 0), point1[1]]; + return [point0, point1] + }); + // recreate the geometry from the (-) capped points + geometry = reverse$5(fromSides(shapeSides)); + geometry = mirrorX(geometry); + } else if (pointsWithPositiveX.length >= pointsWithNegativeX.length) { + shapeSides = shapeSides.map((side) => { + let point0 = side[0]; + let point1 = side[1]; + point0 = [Math.max(point0[0], 0), point0[1]]; + point1 = [Math.max(point1[0], 0), point1[1]]; + return [point0, point1] + }); + // recreate the geometry from the (+) capped points + geometry = fromSides(shapeSides); + } + } + + const rotationPerSlice = totalRotation / segments; + const isCapped = Math.abs(totalRotation) < TAU; + let baseSlice = fromGeom2(geometry); + baseSlice = reverse$2(baseSlice); + + const matrix = create$c(); + const createSlice = (progress, index, base) => { + let Zrotation = rotationPerSlice * index + startAngle; + // fix rounding error when rotating TAU radians + if (totalRotation === TAU && index === segments) { + Zrotation = startAngle; + } + multiply$1(matrix, fromZRotation(matrix, Zrotation), fromXRotation(create$c(), TAU / 4)); + + return transform$3(matrix, base) + }; + + options = { + numberOfSlices: segments + 1, + capStart: isCapped, + capEnd: isCapped, + close: !isCapped, + callback: createSlice + }; + return extrudeFromSlices(options, baseSlice) +}; + +/** + * Rotate the given objects using the given options. + * @param {Array} angles - angle (RADIANS) of rotations about X, Y, and Z axis + * @param {...Object} objects - the objects to rotate + * @return {Object|Array} the rotated object, or a list of rotated objects + * @alias module:modeling/transforms.rotate + * + * @example + * const newSphere = rotate([TAU / 8, 0, 0], sphere()) + */ +const rotate = (angles, ...objects) => { + if (!Array.isArray(angles)) throw new Error('angles must be an array') + + objects = flatten(objects); + if (objects.length === 0) throw new Error('wrong number of arguments') + + // adjust the angles if necessary + angles = angles.slice(); // don't modify the original + while (angles.length < 3) angles.push(0); + + const yaw = angles[2]; + const pitch = angles[1]; + const roll = angles[0]; + + const matrix = fromTaitBryanRotation(create$c(), yaw, pitch, roll); + + const results = objects.map((object) => { + if (isA$2(object)) return transform$5(matrix, object) + if (isA$5(object)) return transform$a(matrix, object) + if (isA$3(object)) return transform$6(matrix, object) + return object + }); + return results.length === 1 ? results[0] : results +}; + +/** + * Rotate the given objects about the X axis, using the given options. + * @param {Number} angle - angle (RADIANS) of rotations about X + * @param {...Object} objects - the objects to rotate + * @return {Object|Array} the rotated object, or a list of rotated objects + * @alias module:modeling/transforms.rotateX + */ +const rotateX = (angle, ...objects) => rotate([angle, 0, 0], objects); + +/** + * Rotate the given objects about the Y axis, using the given options. + * @param {Number} angle - angle (RADIANS) of rotations about Y + * @param {...Object} objects - the objects to rotate + * @return {Object|Array} the rotated object, or a list of rotated objects + * @alias module:modeling/transforms.rotateY + */ +const rotateY = (angle, ...objects) => rotate([0, angle, 0], objects); + +/** + * Rotate the given objects about the Z axis, using the given options. + * @param {Number} angle - angle (RADIANS) of rotations about Z + * @param {...Object} objects - the objects to rotate + * @return {Object|Array} the rotated object, or a list of rotated objects + * @alias module:modeling/transforms.rotateZ + */ +const rotateZ = (angle, ...objects) => rotate([0, 0, angle], objects); + +/** + * Translate the given objects using the given options. + * @param {Array} offset - offset (vector) of which to translate the objects + * @param {...Object} objects - the objects to translate + * @return {Object|Array} the translated object, or a list of translated objects + * @alias module:modeling/transforms.translate + * + * @example + * const newSphere = translate([5, 0, 10], sphere()) + */ +const translate = (offset, ...objects) => { + if (!Array.isArray(offset)) throw new Error('offset must be an array') + + objects = flatten(objects); + if (objects.length === 0) throw new Error('wrong number of arguments') + + // adjust the offset if necessary + offset = offset.slice(); // don't modify the original + while (offset.length < 3) offset.push(0); + + const matrix = fromTranslation(create$c(), offset); + + const results = objects.map((object) => { + if (isA$2(object)) return transform$5(matrix, object) + if (isA$5(object)) return transform$a(matrix, object) + if (isA$3(object)) return transform$6(matrix, object) + return object + }); + return results.length === 1 ? results[0] : results +}; + +/** + * Translate the given objects along the X axis using the given options. + * @param {Number} offset - X offset of which to translate the objects + * @param {...Object} objects - the objects to translate + * @return {Object|Array} the translated object, or a list of translated objects + * @alias module:modeling/transforms.translateX + */ +const translateX = (offset, ...objects) => translate([offset, 0, 0], objects); + +/** + * Translate the given objects along the Y axis using the given options. + * @param {Number} offset - Y offset of which to translate the geometries + * @param {...Object} objects - the objects to translate + * @return {Object|Array} the translated object, or a list of translated objects + * @alias module:modeling/transforms.translateY + */ +const translateY = (offset, ...objects) => translate([0, offset, 0], objects); + +/** + * Translate the given objects along the Z axis using the given options. + * @param {Number} offset - Z offset of which to translate the geometries + * @param {...Object} objects - the objects to translate + * @return {Object|Array} the translated object, or a list of translated objects + * @alias module:modeling/transforms.translateZ + */ +const translateZ = (offset, ...objects) => translate([0, 0, offset], objects); + +/** + * Construct a torus by revolving a small circle (inner) about the circumference of a large (outer) circle. + * @param {Object} [options] - options for construction + * @param {Number} [options.innerRadius=1] - radius of small (inner) circle + * @param {Number} [options.outerRadius=4] - radius of large (outer) circle + * @param {Integer} [options.innerSegments=32] - number of segments to create per rotation + * @param {Integer} [options.outerSegments=32] - number of segments to create per rotation + * @param {Integer} [options.innerRotation=0] - rotation of small (inner) circle in radians + * @param {Number} [options.outerRotation=TAU] - rotation (outer) of the torus (RADIANS) + * @param {Number} [options.startAngle=0] - start angle of the torus (RADIANS) + * @returns {geom3} new 3D geometry + * @alias module:modeling/primitives.torus + * + * @example + * let myshape = torus({ innerRadius: 10, outerRadius: 100 }) + */ +const torus = (options) => { + const defaults = { + innerRadius: 1, + innerSegments: 32, + outerRadius: 4, + outerSegments: 32, + innerRotation: 0, + startAngle: 0, + outerRotation: TAU + }; + const { innerRadius, innerSegments, outerRadius, outerSegments, innerRotation, startAngle, outerRotation } = Object.assign({}, defaults, options); + + if (!isGT(innerRadius, 0)) throw new Error('innerRadius must be greater than zero') + if (!isGTE(innerSegments, 3)) throw new Error('innerSegments must be three or more') + if (!isGT(outerRadius, 0)) throw new Error('outerRadius must be greater than zero') + if (!isGTE(outerSegments, 3)) throw new Error('outerSegments must be three or more') + if (!isGTE(startAngle, 0)) throw new Error('startAngle must be positive') + if (!isGT(outerRotation, 0)) throw new Error('outerRotation must be greater than zero') + + if (innerRadius >= outerRadius) throw new Error('inner circle is two large to rotate about the outer circle') + + let innerCircle = circle({ radius: innerRadius, segments: innerSegments }); + + if (innerRotation !== 0) { + innerCircle = rotate([0, 0, innerRotation], innerCircle); + } + + innerCircle = translate([outerRadius, 0], innerCircle); + + const extrudeOptions = { + startAngle: startAngle, + angle: outerRotation, + segments: outerSegments + }; + return extrudeRotate(extrudeOptions, innerCircle) +}; + +// returns angle C +const solveAngleFromSSS = (a, b, c) => Math.acos(((a * a) + (b * b) - (c * c)) / (2 * a * b)); + +// returns side c +const solveSideFromSAS = (a, C, b) => { + if (C > NEPS) { + return Math.sqrt(a * a + b * b - 2 * a * b * Math.cos(C)) + } + + // Explained in https://www.nayuki.io/page/numerically-stable-law-of-cosines + return Math.sqrt((a - b) * (a - b) + a * b * C * C * (1 - C * C / 12)) +}; + +// AAA is when three angles of a triangle, but no sides +const solveAAA = (angles) => { + const eps = Math.abs(angles[0] + angles[1] + angles[2] - Math.PI); + if (eps > NEPS) throw new Error('AAA triangles require angles that sum to PI') + + const A = angles[0]; + const B = angles[1]; + const C = Math.PI - A - B; + + // Note: This is not 100% proper but... + // default the side c length to 1 + // solve the other lengths + const c = 1; + const a = (c / Math.sin(C)) * Math.sin(A); + const b = (c / Math.sin(C)) * Math.sin(B); + return createTriangle(A, B, C, a, b, c) +}; + +// AAS is when two angles and one side are known, and the side is not between the angles +const solveAAS = (values) => { + const A = values[0]; + const B = values[1]; + const C = Math.PI + NEPS - A - B; + + if (C < NEPS) throw new Error('AAS triangles require angles that sum to PI') + + const a = values[2]; + const b = (a / Math.sin(A)) * Math.sin(B); + const c = (a / Math.sin(A)) * Math.sin(C); + return createTriangle(A, B, C, a, b, c) +}; + +// ASA is when two angles and the side between the angles are known +const solveASA = (values) => { + const A = values[0]; + const B = values[2]; + const C = Math.PI + NEPS - A - B; + + if (C < NEPS) throw new Error('ASA triangles require angles that sum to PI') + + const c = values[1]; + const a = (c / Math.sin(C)) * Math.sin(A); + const b = (c / Math.sin(C)) * Math.sin(B); + return createTriangle(A, B, C, a, b, c) +}; + +// SAS is when two sides and the angle between them are known +const solveSAS = (values) => { + const c = values[0]; + const B = values[1]; + const a = values[2]; + + const b = solveSideFromSAS(c, B, a); + + const A = solveAngleFromSSS(b, c, a); // solve for A + const C = Math.PI - A - B; + return createTriangle(A, B, C, a, b, c) +}; + +// SSA is when two sides and an angle that is not the angle between the sides are known +const solveSSA = (values) => { + const c = values[0]; + const a = values[1]; + const C = values[2]; + + const A = Math.asin(a * Math.sin(C) / c); + const B = Math.PI - A - C; + + const b = (c / Math.sin(C)) * Math.sin(B); + return createTriangle(A, B, C, a, b, c) +}; + +// SSS is when we know three sides of the triangle +const solveSSS = (lengths) => { + const a = lengths[1]; + const b = lengths[2]; + const c = lengths[0]; + if (((a + b) <= c) || ((b + c) <= a) || ((c + a) <= b)) { + throw new Error('SSS triangle is incorrect, as the longest side is longer than the sum of the other sides') + } + + const A = solveAngleFromSSS(b, c, a); // solve for A + const B = solveAngleFromSSS(c, a, b); // solve for B + const C = Math.PI - A - B; + return createTriangle(A, B, C, a, b, c) +}; + +const createTriangle = (A, B, C, a, b, c) => { + const p0 = fromValues$2(0, 0); // everything starts from 0, 0 + const p1 = fromValues$2(c, 0); + const p2 = fromValues$2(a, 0); + add(p2, rotate$1(p2, p2, [0, 0], Math.PI - B), p1); + return create$a([[p0, p1, p2]]) +}; + +/** + * Construct a triangle in two dimensional space from the given options. + * The triangle is always constructed CCW from the origin, [0, 0, 0]. + * @see https://www.mathsisfun.com/algebra/trig-solving-triangles.html + * @param {Object} [options] - options for construction + * @param {String} [options.type='SSS'] - type of triangle to construct; A ~ angle, S ~ side + * @param {Array} [options.values=[1,1,1]] - angle (radians) of corners or length of sides + * @returns {geom2} new 2D geometry + * @alias module:modeling/primitives.triangle + * + * @example + * let myshape = triangle({type: 'AAS', values: [degToRad(62), degToRad(35), 7]}) + */ +const triangle = (options) => { + const defaults = { + type: 'SSS', + values: [1, 1, 1] + }; + let { type, values } = Object.assign({}, defaults, options); + + if (typeof (type) !== 'string') throw new Error('triangle type must be a string') + type = type.toUpperCase(); + if (!((type[0] === 'A' || type[0] === 'S') && + (type[1] === 'A' || type[1] === 'S') && + (type[2] === 'A' || type[2] === 'S'))) throw new Error('triangle type must contain three letters; A or S') + + if (!isNumberArray(values, 3)) throw new Error('triangle values must contain three values') + if (!values.every((n) => n > 0)) throw new Error('triangle values must be greater than zero') + + switch (type) { + case 'AAA': + return solveAAA(values) + case 'AAS': + return solveAAS(values) + case 'ASA': + return solveASA(values) + case 'SAS': + return solveSAS(values) + case 'SSA': + return solveSSA(values) + case 'SSS': + return solveSSS(values) + default: + throw new Error('invalid triangle type, try again') + } +}; + +/** + * Primitives provide the building blocks for complex parts. + * Each primitive is a geometrical object that can be described mathematically, and therefore precise. + * Primitives can be logically combined, transformed, extruded, etc. + * @module modeling/primitives + * @example + * import { cube, ellipse, star } = require('@jscad/modeling/primitives') + */ + +var index$8 = /*#__PURE__*/Object.freeze({ + __proto__: null, + arc: arc, + circle: circle, + cube: cube, + cuboid: cuboid, + cylinder: cylinder, + cylinderElliptic: cylinderElliptic, + ellipse: ellipse, + ellipsoid: ellipsoid, + geodesicSphere: geodesicSphere, + line: line, + polygon: polygon, + polyhedron: polyhedron, + rectangle: rectangle, + roundedCuboid: roundedCuboid, + roundedCylinder: roundedCylinder, + roundedRectangle: roundedRectangle, + sphere: sphere, + square: square, + star: star, + torus: torus, + triangle: triangle +}); + +// -- data source from from http://paulbourke.net/dataformats/hershey/ +// -- reduced to save some bytes... +// { [ascii code]: [width, x, y, ...] } - undefined value as path separator +const simplex = { + height: 14, + 32: [16], + 33: [10, 5, 21, 5, 7, undefined, 5, 2, 4, 1, 5, 0, 6, 1, 5, 2], + 34: [16, 4, 21, 4, 14, undefined, 12, 21, 12, 14], + 35: [21, 11, 25, 4, -7, undefined, 17, 25, 10, -7, undefined, 4, 12, 18, 12, undefined, 3, 6, 17, 6], + 36: [20, 8, 25, 8, -4, undefined, 12, 25, 12, -4, undefined, 17, 18, 15, 20, 12, 21, 8, 21, 5, 20, 3, 18, 3, 16, 4, 14, 5, 13, 7, 12, 13, 10, 15, 9, 16, 8, 17, 6, 17, 3, 15, 1, 12, 0, 8, 0, 5, 1, 3, 3], + 37: [24, 21, 21, 3, 0, undefined, 8, 21, 10, 19, 10, 17, 9, 15, 7, 14, 5, 14, 3, 16, 3, 18, 4, 20, 6, 21, 8, 21, 10, 20, 13, 19, 16, 19, 19, 20, 21, 21, undefined, 17, 7, 15, 6, 14, 4, 14, 2, 16, 0, 18, 0, 20, 1, 21, 3, 21, 5, 19, 7, 17, 7], + 38: [26, 23, 12, 23, 13, 22, 14, 21, 14, 20, 13, 19, 11, 17, 6, 15, 3, 13, 1, 11, 0, 7, 0, 5, 1, 4, 2, 3, 4, 3, 6, 4, 8, 5, 9, 12, 13, 13, 14, 14, 16, 14, 18, 13, 20, 11, 21, 9, 20, 8, 18, 8, 16, 9, 13, 11, 10, 16, 3, 18, 1, 20, 0, 22, 0, 23, 1, 23, 2], + 39: [10, 5, 19, 4, 20, 5, 21, 6, 20, 6, 18, 5, 16, 4, 15], + 40: [14, 11, 25, 9, 23, 7, 20, 5, 16, 4, 11, 4, 7, 5, 2, 7, -2, 9, -5, 11, -7], + 41: [14, 3, 25, 5, 23, 7, 20, 9, 16, 10, 11, 10, 7, 9, 2, 7, -2, 5, -5, 3, -7], + 42: [16, 8, 21, 8, 9, undefined, 3, 18, 13, 12, undefined, 13, 18, 3, 12], + 43: [26, 13, 18, 13, 0, undefined, 4, 9, 22, 9], + 44: [10, 6, 1, 5, 0, 4, 1, 5, 2, 6, 1, 6, -1, 5, -3, 4, -4], + 45: [26, 4, 9, 22, 9], + 46: [10, 5, 2, 4, 1, 5, 0, 6, 1, 5, 2], + 47: [22, 20, 25, 2, -7], + 48: [20, 9, 21, 6, 20, 4, 17, 3, 12, 3, 9, 4, 4, 6, 1, 9, 0, 11, 0, 14, 1, 16, 4, 17, 9, 17, 12, 16, 17, 14, 20, 11, 21, 9, 21], + 49: [20, 6, 17, 8, 18, 11, 21, 11, 0], + 50: [20, 4, 16, 4, 17, 5, 19, 6, 20, 8, 21, 12, 21, 14, 20, 15, 19, 16, 17, 16, 15, 15, 13, 13, 10, 3, 0, 17, 0], + 51: [20, 5, 21, 16, 21, 10, 13, 13, 13, 15, 12, 16, 11, 17, 8, 17, 6, 16, 3, 14, 1, 11, 0, 8, 0, 5, 1, 4, 2, 3, 4], + 52: [20, 13, 21, 3, 7, 18, 7, undefined, 13, 21, 13, 0], + 53: [20, 15, 21, 5, 21, 4, 12, 5, 13, 8, 14, 11, 14, 14, 13, 16, 11, 17, 8, 17, 6, 16, 3, 14, 1, 11, 0, 8, 0, 5, 1, 4, 2, 3, 4], + 54: [20, 16, 18, 15, 20, 12, 21, 10, 21, 7, 20, 5, 17, 4, 12, 4, 7, 5, 3, 7, 1, 10, 0, 11, 0, 14, 1, 16, 3, 17, 6, 17, 7, 16, 10, 14, 12, 11, 13, 10, 13, 7, 12, 5, 10, 4, 7], + 55: [20, 17, 21, 7, 0, undefined, 3, 21, 17, 21], + 56: [20, 8, 21, 5, 20, 4, 18, 4, 16, 5, 14, 7, 13, 11, 12, 14, 11, 16, 9, 17, 7, 17, 4, 16, 2, 15, 1, 12, 0, 8, 0, 5, 1, 4, 2, 3, 4, 3, 7, 4, 9, 6, 11, 9, 12, 13, 13, 15, 14, 16, 16, 16, 18, 15, 20, 12, 21, 8, 21], + 57: [20, 16, 14, 15, 11, 13, 9, 10, 8, 9, 8, 6, 9, 4, 11, 3, 14, 3, 15, 4, 18, 6, 20, 9, 21, 10, 21, 13, 20, 15, 18, 16, 14, 16, 9, 15, 4, 13, 1, 10, 0, 8, 0, 5, 1, 4, 3], + 58: [10, 5, 14, 4, 13, 5, 12, 6, 13, 5, 14, undefined, 5, 2, 4, 1, 5, 0, 6, 1, 5, 2], + 59: [10, 5, 14, 4, 13, 5, 12, 6, 13, 5, 14, undefined, 6, 1, 5, 0, 4, 1, 5, 2, 6, 1, 6, -1, 5, -3, 4, -4], + 60: [24, 20, 18, 4, 9, 20, 0], + 61: [26, 4, 12, 22, 12, undefined, 4, 6, 22, 6], + 62: [24, 4, 18, 20, 9, 4, 0], + 63: [18, 3, 16, 3, 17, 4, 19, 5, 20, 7, 21, 11, 21, 13, 20, 14, 19, 15, 17, 15, 15, 14, 13, 13, 12, 9, 10, 9, 7, undefined, 9, 2, 8, 1, 9, 0, 10, 1, 9, 2], + 64: [27, 18, 13, 17, 15, 15, 16, 12, 16, 10, 15, 9, 14, 8, 11, 8, 8, 9, 6, 11, 5, 14, 5, 16, 6, 17, 8, undefined, 12, 16, 10, 14, 9, 11, 9, 8, 10, 6, 11, 5, undefined, 18, 16, 17, 8, 17, 6, 19, 5, 21, 5, 23, 7, 24, 10, 24, 12, 23, 15, 22, 17, 20, 19, 18, 20, 15, 21, 12, 21, 9, 20, 7, 19, 5, 17, 4, 15, 3, 12, 3, 9, 4, 6, 5, 4, 7, 2, 9, 1, 12, 0, 15, 0, 18, 1, 20, 2, 21, 3, undefined, 19, 16, 18, 8, 18, 6, 19, 5], + 65: [18, 9, 21, 1, 0, undefined, 9, 21, 17, 0, undefined, 4, 7, 14, 7], + 66: [21, 4, 21, 4, 0, undefined, 4, 21, 13, 21, 16, 20, 17, 19, 18, 17, 18, 15, 17, 13, 16, 12, 13, 11, undefined, 4, 11, 13, 11, 16, 10, 17, 9, 18, 7, 18, 4, 17, 2, 16, 1, 13, 0, 4, 0], + 67: [21, 18, 16, 17, 18, 15, 20, 13, 21, 9, 21, 7, 20, 5, 18, 4, 16, 3, 13, 3, 8, 4, 5, 5, 3, 7, 1, 9, 0, 13, 0, 15, 1, 17, 3, 18, 5], + 68: [21, 4, 21, 4, 0, undefined, 4, 21, 11, 21, 14, 20, 16, 18, 17, 16, 18, 13, 18, 8, 17, 5, 16, 3, 14, 1, 11, 0, 4, 0], + 69: [19, 4, 21, 4, 0, undefined, 4, 21, 17, 21, undefined, 4, 11, 12, 11, undefined, 4, 0, 17, 0], + 70: [18, 4, 21, 4, 0, undefined, 4, 21, 17, 21, undefined, 4, 11, 12, 11], + 71: [21, 18, 16, 17, 18, 15, 20, 13, 21, 9, 21, 7, 20, 5, 18, 4, 16, 3, 13, 3, 8, 4, 5, 5, 3, 7, 1, 9, 0, 13, 0, 15, 1, 17, 3, 18, 5, 18, 8, undefined, 13, 8, 18, 8], + 72: [22, 4, 21, 4, 0, undefined, 18, 21, 18, 0, undefined, 4, 11, 18, 11], + 73: [8, 4, 21, 4, 0], + 74: [16, 12, 21, 12, 5, 11, 2, 10, 1, 8, 0, 6, 0, 4, 1, 3, 2, 2, 5, 2, 7], + 75: [21, 4, 21, 4, 0, undefined, 18, 21, 4, 7, undefined, 9, 12, 18, 0], + 76: [17, 4, 21, 4, 0, undefined, 4, 0, 16, 0], + 77: [24, 4, 21, 4, 0, undefined, 4, 21, 12, 0, undefined, 20, 21, 12, 0, undefined, 20, 21, 20, 0], + 78: [22, 4, 21, 4, 0, undefined, 4, 21, 18, 0, undefined, 18, 21, 18, 0], + 79: [22, 9, 21, 7, 20, 5, 18, 4, 16, 3, 13, 3, 8, 4, 5, 5, 3, 7, 1, 9, 0, 13, 0, 15, 1, 17, 3, 18, 5, 19, 8, 19, 13, 18, 16, 17, 18, 15, 20, 13, 21, 9, 21], + 80: [21, 4, 21, 4, 0, undefined, 4, 21, 13, 21, 16, 20, 17, 19, 18, 17, 18, 14, 17, 12, 16, 11, 13, 10, 4, 10], + 81: [22, 9, 21, 7, 20, 5, 18, 4, 16, 3, 13, 3, 8, 4, 5, 5, 3, 7, 1, 9, 0, 13, 0, 15, 1, 17, 3, 18, 5, 19, 8, 19, 13, 18, 16, 17, 18, 15, 20, 13, 21, 9, 21, undefined, 12, 4, 18, -2], + 82: [21, 4, 21, 4, 0, undefined, 4, 21, 13, 21, 16, 20, 17, 19, 18, 17, 18, 15, 17, 13, 16, 12, 13, 11, 4, 11, undefined, 11, 11, 18, 0], + 83: [20, 17, 18, 15, 20, 12, 21, 8, 21, 5, 20, 3, 18, 3, 16, 4, 14, 5, 13, 7, 12, 13, 10, 15, 9, 16, 8, 17, 6, 17, 3, 15, 1, 12, 0, 8, 0, 5, 1, 3, 3], + 84: [16, 8, 21, 8, 0, undefined, 1, 21, 15, 21], + 85: [22, 4, 21, 4, 6, 5, 3, 7, 1, 10, 0, 12, 0, 15, 1, 17, 3, 18, 6, 18, 21], + 86: [18, 1, 21, 9, 0, undefined, 17, 21, 9, 0], + 87: [24, 2, 21, 7, 0, undefined, 12, 21, 7, 0, undefined, 12, 21, 17, 0, undefined, 22, 21, 17, 0], + 88: [20, 3, 21, 17, 0, undefined, 17, 21, 3, 0], + 89: [18, 1, 21, 9, 11, 9, 0, undefined, 17, 21, 9, 11], + 90: [20, 17, 21, 3, 0, undefined, 3, 21, 17, 21, undefined, 3, 0, 17, 0], + 91: [14, 4, 25, 4, -7, undefined, 5, 25, 5, -7, undefined, 4, 25, 11, 25, undefined, 4, -7, 11, -7], + 92: [14, 0, 21, 14, -3], + 93: [14, 9, 25, 9, -7, undefined, 10, 25, 10, -7, undefined, 3, 25, 10, 25, undefined, 3, -7, 10, -7], + 94: [16, 6, 15, 8, 18, 10, 15, undefined, 3, 12, 8, 17, 13, 12, undefined, 8, 17, 8, 0], + 95: [16, 0, -2, 16, -2], + 96: [10, 6, 21, 5, 20, 4, 18, 4, 16, 5, 15, 6, 16, 5, 17], + 97: [19, 15, 14, 15, 0, undefined, 15, 11, 13, 13, 11, 14, 8, 14, 6, 13, 4, 11, 3, 8, 3, 6, 4, 3, 6, 1, 8, 0, 11, 0, 13, 1, 15, 3], + 98: [19, 4, 21, 4, 0, undefined, 4, 11, 6, 13, 8, 14, 11, 14, 13, 13, 15, 11, 16, 8, 16, 6, 15, 3, 13, 1, 11, 0, 8, 0, 6, 1, 4, 3], + 99: [18, 15, 11, 13, 13, 11, 14, 8, 14, 6, 13, 4, 11, 3, 8, 3, 6, 4, 3, 6, 1, 8, 0, 11, 0, 13, 1, 15, 3], + 100: [19, 15, 21, 15, 0, undefined, 15, 11, 13, 13, 11, 14, 8, 14, 6, 13, 4, 11, 3, 8, 3, 6, 4, 3, 6, 1, 8, 0, 11, 0, 13, 1, 15, 3], + 101: [18, 3, 8, 15, 8, 15, 10, 14, 12, 13, 13, 11, 14, 8, 14, 6, 13, 4, 11, 3, 8, 3, 6, 4, 3, 6, 1, 8, 0, 11, 0, 13, 1, 15, 3], + 102: [12, 10, 21, 8, 21, 6, 20, 5, 17, 5, 0, undefined, 2, 14, 9, 14], + 103: [19, 15, 14, 15, -2, 14, -5, 13, -6, 11, -7, 8, -7, 6, -6, undefined, 15, 11, 13, 13, 11, 14, 8, 14, 6, 13, 4, 11, 3, 8, 3, 6, 4, 3, 6, 1, 8, 0, 11, 0, 13, 1, 15, 3], + 104: [19, 4, 21, 4, 0, undefined, 4, 10, 7, 13, 9, 14, 12, 14, 14, 13, 15, 10, 15, 0], + 105: [8, 3, 21, 4, 20, 5, 21, 4, 22, 3, 21, undefined, 4, 14, 4, 0], + 106: [10, 5, 21, 6, 20, 7, 21, 6, 22, 5, 21, undefined, 6, 14, 6, -3, 5, -6, 3, -7, 1, -7], + 107: [17, 4, 21, 4, 0, undefined, 14, 14, 4, 4, undefined, 8, 8, 15, 0], + 108: [8, 4, 21, 4, 0], + 109: [30, 4, 14, 4, 0, undefined, 4, 10, 7, 13, 9, 14, 12, 14, 14, 13, 15, 10, 15, 0, undefined, 15, 10, 18, 13, 20, 14, 23, 14, 25, 13, 26, 10, 26, 0], + 110: [19, 4, 14, 4, 0, undefined, 4, 10, 7, 13, 9, 14, 12, 14, 14, 13, 15, 10, 15, 0], + 111: [19, 8, 14, 6, 13, 4, 11, 3, 8, 3, 6, 4, 3, 6, 1, 8, 0, 11, 0, 13, 1, 15, 3, 16, 6, 16, 8, 15, 11, 13, 13, 11, 14, 8, 14], + 112: [19, 4, 14, 4, -7, undefined, 4, 11, 6, 13, 8, 14, 11, 14, 13, 13, 15, 11, 16, 8, 16, 6, 15, 3, 13, 1, 11, 0, 8, 0, 6, 1, 4, 3], + 113: [19, 15, 14, 15, -7, undefined, 15, 11, 13, 13, 11, 14, 8, 14, 6, 13, 4, 11, 3, 8, 3, 6, 4, 3, 6, 1, 8, 0, 11, 0, 13, 1, 15, 3], + 114: [13, 4, 14, 4, 0, undefined, 4, 8, 5, 11, 7, 13, 9, 14, 12, 14], + 115: [17, 14, 11, 13, 13, 10, 14, 7, 14, 4, 13, 3, 11, 4, 9, 6, 8, 11, 7, 13, 6, 14, 4, 14, 3, 13, 1, 10, 0, 7, 0, 4, 1, 3, 3], + 116: [12, 5, 21, 5, 4, 6, 1, 8, 0, 10, 0, undefined, 2, 14, 9, 14], + 117: [19, 4, 14, 4, 4, 5, 1, 7, 0, 10, 0, 12, 1, 15, 4, undefined, 15, 14, 15, 0], + 118: [16, 2, 14, 8, 0, undefined, 14, 14, 8, 0], + 119: [22, 3, 14, 7, 0, undefined, 11, 14, 7, 0, undefined, 11, 14, 15, 0, undefined, 19, 14, 15, 0], + 120: [17, 3, 14, 14, 0, undefined, 14, 14, 3, 0], + 121: [16, 2, 14, 8, 0, undefined, 14, 14, 8, 0, 6, -4, 4, -6, 2, -7, 1, -7], + 122: [17, 14, 14, 3, 0, undefined, 3, 14, 14, 14, undefined, 3, 0, 14, 0], + 123: [14, 9, 25, 7, 24, 6, 23, 5, 21, 5, 19, 6, 17, 7, 16, 8, 14, 8, 12, 6, 10, undefined, 7, 24, 6, 22, 6, 20, 7, 18, 8, 17, 9, 15, 9, 13, 8, 11, 4, 9, 8, 7, 9, 5, 9, 3, 8, 1, 7, 0, 6, -2, 6, -4, 7, -6, undefined, 6, 8, 8, 6, 8, 4, 7, 2, 6, 1, 5, -1, 5, -3, 6, -5, 7, -6, 9, -7], + 124: [8, 4, 25, 4, -7], + 125: [14, 5, 25, 7, 24, 8, 23, 9, 21, 9, 19, 8, 17, 7, 16, 6, 14, 6, 12, 8, 10, undefined, 7, 24, 8, 22, 8, 20, 7, 18, 6, 17, 5, 15, 5, 13, 6, 11, 10, 9, 6, 7, 5, 5, 5, 3, 6, 1, 7, 0, 8, -2, 8, -4, 7, -6, undefined, 8, 8, 6, 6, 6, 4, 7, 2, 8, 1, 9, -1, 9, -3, 8, -5, 7, -6, 5, -7], + 126: [24, 3, 6, 3, 8, 4, 11, 6, 12, 8, 12, 10, 11, 14, 8, 16, 7, 18, 7, 20, 8, 21, 10, undefined, 3, 8, 4, 10, 6, 11, 8, 11, 10, 10, 14, 7, 16, 6, 18, 6, 20, 7, 21, 10, 21, 12] +}; + +const defaultsVectorParams = { + xOffset: 0, + yOffset: 0, + input: '?', + align: 'left', + font: simplex, + height: 14, // old vector_xxx simplex font height + lineSpacing: 30/14, // old vector_xxx ratio + letterSpacing: 0, // proportion of font size, i.e. CSS em + extrudeOffset: 0 +}; + +// vectorsXXX parameters handler +const vectorParams = (options, input) => { + if (!input && typeof options === 'string') { + options = { input: options }; + } + options = options || {}; + const params = Object.assign({}, defaultsVectorParams, options); + params.input = input || params.input; + return params +}; + +/** + * Represents a character as an anonymous object containing a list of 2D paths. + * @typedef {Object} VectorChar + * @property {number} width - character width + * @property {number} height - character height (uppercase) + * @property {Array} paths - list of 2D paths + */ + +/** + * Construct a {@link VectorChar} from an ASCII character whose code is between 31 and 127. + * If the character is not supported it is replaced by a question mark. + * + * @param {Object} [options] - options for construction + * @param {number} [options.xOffset=0] - x offset + * @param {number} [options.yOffset=0] - y offset + * @param {number} [options.height=21] - font size/character height (uppercase height) + * @param {number} [options.extrudeOffset=0] - width of the extrusion that will be applied (manually) after the creation of the character + * @param {String} [options.input='?'] - ascii character (ignored/overwritten if provided as second parameter) + * @param {String} [character='?'] - ascii character + * @returns {VectorChar} a new vertor char object + * @alias module:modeling/text.vectorChar + * + * @example + * let mycharacter = vectorChar() + * or + * let mycharacter = vectorChar('A') + * or + * let mycharacter = vectorChar({ xOffset: 57 }, 'C') + * or + * let mycharacter = vectorChar({ xOffset: 78, input: '!' }) + */ +const vectorChar = (options, character) => { + const { + xOffset, yOffset, input, font, height, extrudeOffset + } = vectorParams(options, character); + + let code = input.charCodeAt(0); + if (!code || !font[code]) { + code = 63; // invalid character so use ? + } + + const glyph = [].concat(font[code]); + const ratio = (height - extrudeOffset) / font.height; + const extrudeYOffset = (extrudeOffset / 2); + const width = glyph.shift() * ratio; + + const paths = []; + let polyline = []; + for (let i = 0, il = glyph.length; i < il; i += 2) { + const gx = ratio * glyph[i] + xOffset; + const gy = ratio * glyph[i + 1] + yOffset + extrudeYOffset; + if (glyph[i] !== undefined) { + polyline.push([gx, gy]); + continue + } + paths.push(fromPoints$2({}, polyline)); + polyline = []; + i--; + } + if (polyline.length) { + paths.push(fromPoints$2({}, polyline)); + } + + return { width, height, paths } +}; + +/** + * Represents a line of characters as an anonymous object containing a list of VectorChar. + * @typedef {Object} VectorLine + * @property {number} width - sum of character width and letter spacing + * @property {number} height - maximum height of character heights + * @property {Array} characters - list of vector characters + */ + +const matrix = create$c(); + +const translateLine = (options, line) => { + const { x, y } = Object.assign({ x: 0, y: 0 }, options); + + identity(matrix); + translate$1(matrix, matrix, [x, y, 0]); + + line.chars = line.chars.map((vchar) => { + vchar.paths = vchar.paths.map((path) => { + return transform$5(matrix, path) + }); + return vchar + }); + return line +}; + +/** + * Construct an array of character segments from an ascii string whose characters code is between 31 and 127, + * if one character is not supported it is replaced by a question mark. + * @param {Object|String} [options] - options for construction or ascii string + * @param {Float} [options.xOffset=0] - x offset + * @param {Float} [options.yOffset=0] - y offset + * @param {Float} [options.height=14] - height of requested characters (uppercase height), i.e. font height in points + * @param {Float} [options.lineSpacing=30/14] - line spacing expressed as a percentage of height + * @param {Float} [options.letterSpacing=0] - extra letter spacing, expressed as a proportion of height, i.e. like CSS em + * @param {String} [options.align='left'] - multi-line text alignment: left, center, right + * @param {Float} [options.extrudeOffset=0] - width of the extrusion that will be applied (manually) after the creation of the character + * @param {String} [options.input='?'] - ascii string (ignored/overwrited if provided as seconds parameter) + * @param {String} [text='?'] - ascii string + * @returns {Array} list of vector line objects, where each line contains a list of vector character objects + * @alias module:modeling/text.vectorText + * + * @example + * let mylines = vectorText() + * or + * let mylines = vectorText('OpenJSCAD') + * or + * let mylines = vectorText({ yOffset: -50 }, 'OpenJSCAD') + * or + * let mylines = vectorText({ yOffset: -80, input: 'OpenJSCAD' }) + */ +const vectorText = (options, text) => { + const { + xOffset, yOffset, input, font, height, align, extrudeOffset, lineSpacing, letterSpacing + } = vectorParams(options, text); + + // NOTE: Just like CSS letter-spacing, the spacing could be positive or negative + const extraLetterSpacing = (height * letterSpacing); + + // manage the list of lines + let maxWidth = 0; // keep track of max width for final alignment + let line = { width: 0, height: 0, chars: [] }; + let lines = []; + + const pushLine = () => { + maxWidth = Math.max(maxWidth, line.width); + + if (line.chars.length) lines.push(line); + line = { width: 0, height: 0, chars: [] }; + }; + + // convert the text into a list of vector lines + let x = xOffset; + let y = yOffset; + let vchar; + let il = input.length; + for (let i = 0; i < il; i++) { + const character = input[i]; + if (character === '\n') { + pushLine(); + + // reset x and y for a new line + x = xOffset; + y -= height * lineSpacing; + continue + } + // convert the character + vchar = vectorChar({ xOffset: x, yOffset: y, font, height, extrudeOffset }, character); + + let width = vchar.width + extraLetterSpacing; + x += width; + + // update current line + line.width += width; + line.height = Math.max(line.height, vchar.height); + if (character !== ' ') { + line.chars = line.chars.concat(vchar); + } + } + if (line.chars.length) pushLine(); + + // align all lines as requested + lines = lines.map((line) => { + const diff = maxWidth - line.width; + if (align === 'right') { + return translateLine({ x: diff }, line) + } else if (align === 'center') { + return translateLine({ x: diff / 2 }, line) + } else { + return line + } + }); + return lines +}; + +/** + * Texts provide sets of segments for each character or text strings. + * The segments can be used to create outlines for both 2D and 3D geometry. + * Note: Only ASCII characters are supported. + * @module modeling/text + * @example + * import { vectorChar, vectorText } from '@jscad/modeling/text' + */ + +var index$7 = /*#__PURE__*/Object.freeze({ + __proto__: null, + vectorChar: vectorChar, + vectorText: vectorText +}); + +// list of supported geometries + +/** + * @param {Array} shapes - list of shapes to compare + * @returns {Boolean} true if the given shapes are of the same type + * @alias module:modeling/utils.areAllShapesTheSameType + */ +const areAllShapesTheSameType = (shapes) => { + let previousType; + for (const shape of shapes) { + let currentType = 0; + if (isA$5(shape)) currentType = 1; + if (isA$3(shape)) currentType = 2; + if (isA$2(shape)) currentType = 3; + + if (previousType && currentType !== previousType) return false + previousType = currentType; + } + return true +}; + +/** + * Convert the given angle (degrees) to radians. + * @param {Number} degrees - angle in degrees + * @returns {Number} angle in radians + * @alias module:modeling/utils.degToRad + */ +const degToRad = (degrees) => degrees * 0.017453292519943295; + +/** + * @alias module:modeling/utils.fnNumberSort + */ +const fnNumberSort = (a, b) => a - b; + +/** + * Insert the given element into the give array using the compareFunction. + * @alias module:modeling/utils.insertSorted + */ +const insertSorted = (array, element, compareFunc) => { + let leftBound = 0; + let rightBound = array.length; + while (rightBound > leftBound) { + const testIndex = Math.floor((leftBound + rightBound) / 2); + const testElement = array[testIndex]; + const compareResult = compareFunc(element, testElement); + if (compareResult > 0) { // element > testElement + leftBound = testIndex + 1; + } else { + rightBound = testIndex; + } + } + array.splice(leftBound, 0, element); +}; + +/** + * Build an array of at minimum a specified length from an existing array and a padding value. IF the array is already larger than the target length, it will not be shortened. + * @param {Array} anArray - the source array to copy into the result. + * @param {*} padding - the value to add to the new array to reach the desired length. + * @param {Number} targetLength - The desired length of the return array. + * @returns {Array} an array of at least 'targetLength' length + * @alias module:modeling/utils.padArrayToLength + */ +const padArrayToLength = (anArray, padding, targetLength) => { + anArray = anArray.slice(); + while (anArray.length < targetLength) { + anArray.push(padding); + } + return anArray +}; + +/** + * Calculate the number of segments from the given radius based on minimum length or angle. + * @param {Number} radius - radius of the requested shape + * @param {Number} minimumLength - minimum length of segments; length > 0 + * @param {Number} minimumAngle - minimum angle (radians) between segments; 0 > angle < TAU + * @returns {Number} number of segments to complete the radius + * @alias module:modeling/utils.radiusToSegments + */ +const radiusToSegments = (radius, minimumLength, minimumAngle) => { + const ss = minimumLength > 0 ? radius * TAU / minimumLength : 0; + const as = minimumAngle > 0 ? TAU / minimumAngle : 0; + // minimum segments is four(4) for round primitives + return Math.ceil(Math.max(ss, as, 4)) +}; + +/** + * Convert the given angle (radians) to degrees. + * @param {Number} radians - angle in radians + * @returns {Number} angle in degrees + * @alias module:modeling/utils.radToDeg + */ +const radToDeg = (radians) => radians * 57.29577951308232; + +/** + * Utility functions of various sorts. + * @module modeling/utils + * @example + * import { flatten, insertSorted } from '@jscad/modeling/utils' + */ + +var index$6 = /*#__PURE__*/Object.freeze({ + __proto__: null, + areAllShapesTheSameType: areAllShapesTheSameType, + degToRad: degToRad, + flatten: flatten, + fnNumberSort: fnNumberSort, + insertSorted: insertSorted, + padArrayToLength: padArrayToLength, + radiusToSegments: radiusToSegments, + radToDeg: radToDeg +}); + +const INTERSECTION = 0; +const UNION = 1; +const DIFFERENCE = 2; +const XOR = 3; + +/* + * Follows "An implementation of top-down splaying" + * by D. Sleator March 1992 + * + * Copyright (c) 2018 Alexander Milevski + * https://github.com/w8r/splay-tree + */ + +const DEFAULT_COMPARE = (a, b) => a > b ? 1 : a < b ? -1 : 0; + +class Node$1 { + constructor (key, data) { + this.key = key; + this.data = data; + this.left = null; + this.right = null; + this.next = null; + } +} + +/** + * Simple top down splay, not requiring i to be in the tree t. + */ +const splay = (i, t, comparator) => { + const N = new Node$1(null, null); + let l = N; + let r = N; + + while (true) { + const cmp = comparator(i, t.key); + // if (i < t.key) { + if (cmp < 0) { + if (t.left === null) break + // if (i < t.left.key) { + if (comparator(i, t.left.key) < 0) { + const y = t.left; /* rotate right */ + t.left = y.right; + y.right = t; + t = y; + if (t.left === null) break + } + r.left = t; /* link right */ + r = t; + t = t.left; + // } else if (i > t.key) { + } else if (cmp > 0) { + if (t.right === null) break + // if (i > t.right.key) { + if (comparator(i, t.right.key) > 0) { + const y = t.right; /* rotate left */ + t.right = y.left; + y.left = t; + t = y; + if (t.right === null) break + } + l.right = t; /* link left */ + l = t; + t = t.right; + } else break + } + /* assemble */ + l.right = t.left; + r.left = t.right; + t.left = N.right; + t.right = N.left; + return t +}; + +const insert = (i, data, t, comparator) => { + const node = new Node$1(i, data); + + if (t === null) { + node.left = node.right = null; + return node + } + + t = splay(i, t, comparator); + const cmp = comparator(i, t.key); + if (cmp < 0) { + node.left = t.left; + node.right = t; + t.left = null; + } else if (cmp >= 0) { + node.right = t.right; + node.left = t; + t.right = null; + } + return node +}; + +const split = (key, v, comparator) => { + let left = null; + let right = null; + if (v) { + v = splay(key, v, comparator); + + const cmp = comparator(v.key, key); + if (cmp === 0) { + left = v.left; + right = v.right; + } else if (cmp < 0) { + right = v.right; + v.right = null; + left = v; + } else { + left = v.left; + v.left = null; + right = v; + } + } + return { left, right } +}; + +const merge = (left, right, comparator) => { + if (right === null) return left + if (left === null) return right + + right = splay(left.key, right, comparator); + right.left = left; + return right +}; + +/** + * Prints level of the tree + */ +const printRow = (root, prefix, isTail, out, printNode) => { + if (root) { + out(`${prefix}${isTail ? '└── ' : '├── '}${printNode(root)}\n`); + const indent = prefix + (isTail ? ' ' : '│ '); + if (root.left) printRow(root.left, indent, false, out, printNode); + if (root.right) printRow(root.right, indent, true, out, printNode); + } +}; + +class Tree$1 { + constructor (comparator = DEFAULT_COMPARE) { + this._comparator = comparator; + this._root = null; + this._size = 0; + } + + /** + * Inserts a key, allows duplicates + */ + insert (key, data) { + this._size++; + this._root = insert(key, data, this._root, this._comparator); + return this._root + } + + /** + * Adds a key, if it is not present in the tree + */ + add (key, data) { + const node = new Node$1(key, data); + + if (this._root === null) { + node.left = node.right = null; + this._size++; + this._root = node; + } + + const comparator = this._comparator; + const t = splay(key, this._root, comparator); + const cmp = comparator(key, t.key); + if (cmp === 0) this._root = t; + else { + if (cmp < 0) { + node.left = t.left; + node.right = t; + t.left = null; + } else if (cmp > 0) { + node.right = t.right; + node.left = t; + t.right = null; + } + this._size++; + this._root = node; + } + + return this._root + } + + /** + * @param {Key} key + * @return {Node|null} + */ + remove (key) { + this._root = this._remove(key, this._root, this._comparator); + } + + /** + * Deletes i from the tree if it's there + */ + _remove (i, t, comparator) { + let x; + if (t === null) return null + t = splay(i, t, comparator); + const cmp = comparator(i, t.key); + if (cmp === 0) { /* found it */ + if (t.left === null) { + x = t.right; + } else { + x = splay(i, t.left, comparator); + x.right = t.right; + } + this._size--; + return x + } + return t /* It wasn't there */ + } + + /** + * Removes and returns the node with smallest key + */ + pop () { + let node = this._root; + if (node) { + while (node.left) node = node.left; + this._root = splay(node.key, this._root, this._comparator); + this._root = this._remove(node.key, this._root, this._comparator); + return { key: node.key, data: node.data } + } + return null + } + + /** + * Find without splaying + */ + findStatic (key) { + let current = this._root; + const compare = this._comparator; + while (current) { + const cmp = compare(key, current.key); + if (cmp === 0) return current + else if (cmp < 0) current = current.left; + else current = current.right; + } + return null + } + + find (key) { + if (this._root) { + this._root = splay(key, this._root, this._comparator); + if (this._comparator(key, this._root.key) !== 0) return null + } + return this._root + } + + contains (key) { + let current = this._root; + const compare = this._comparator; + while (current) { + const cmp = compare(key, current.key); + if (cmp === 0) return true + else if (cmp < 0) current = current.left; + else current = current.right; + } + return false + } + + forEach (visitor, ctx) { + let current = this._root; + const Q = []; /* Initialize stack s */ + let done = false; + + while (!done) { + if (current !== null) { + Q.push(current); + current = current.left; + } else { + if (Q.length !== 0) { + current = Q.pop(); + visitor.call(ctx, current); + + current = current.right; + } else done = true; + } + } + return this + } + + /** + * Walk key range from `low` to `high`. Stops if `fn` returns a value. + */ + range (low, high, fn, ctx) { + const Q = []; + const compare = this._comparator; + let node = this._root; + let cmp; + + while (Q.length !== 0 || node) { + if (node) { + Q.push(node); + node = node.left; + } else { + node = Q.pop(); + cmp = compare(node.key, high); + if (cmp > 0) { + break + } else if (compare(node.key, low) >= 0) { + if (fn.call(ctx, node)) return this // stop if smth is returned + } + node = node.right; + } + } + return this + } + + /** + * Returns array of keys + */ + keys () { + const keys = []; + this.forEach(({ key }) => keys.push(key)); + return keys + } + + /** + * Returns array of all the data in the nodes + */ + values () { + const values = []; + this.forEach(({ data }) => values.push(data)); + return values + } + + min () { + if (this._root) return this.minNode(this._root).key + return null + } + + max () { + if (this._root) return this.maxNode(this._root).key + return null + } + + minNode (t = this._root) { + if (t) while (t.left) t = t.left; + return t + } + + maxNode (t = this._root) { + if (t) while (t.right) t = t.right; + return t + } + + /** + * Returns node at given index + */ + at (index) { + let current = this._root; + let done = false; + let i = 0; + const Q = []; + + while (!done) { + if (current) { + Q.push(current); + current = current.left; + } else { + if (Q.length > 0) { + current = Q.pop(); + if (i === index) return current + i++; + current = current.right; + } else done = true; + } + } + return null + } + + next (d) { + let root = this._root; + let successor = null; + + if (d.right) { + successor = d.right; + while (successor.left) successor = successor.left; + return successor + } + + const comparator = this._comparator; + while (root) { + const cmp = comparator(d.key, root.key); + if (cmp === 0) break + else if (cmp < 0) { + successor = root; + root = root.left; + } else root = root.right; + } + + return successor + } + + prev (d) { + let root = this._root; + let predecessor = null; + + if (d.left !== null) { + predecessor = d.left; + while (predecessor.right) predecessor = predecessor.right; + return predecessor + } + + const comparator = this._comparator; + while (root) { + const cmp = comparator(d.key, root.key); + if (cmp === 0) break + else if (cmp < 0) root = root.left; + else { + predecessor = root; + root = root.right; + } + } + return predecessor + } + + clear () { + this._root = null; + this._size = 0; + return this + } + + toList () { + return toList(this._root) + } + + /** + * Bulk-load items. Both array have to be same size + */ + load (keys, values = [], presort = false) { + let size = keys.length; + const comparator = this._comparator; + + // sort if needed + if (presort) sort(keys, values, 0, size - 1, comparator); + + if (this._root === null) { // empty tree + this._root = loadRecursive(keys, values, 0, size); + this._size = size; + } else { // that re-builds the whole tree from two in-order traversals + const mergedList = mergeLists(this.toList(), createList(keys, values), comparator); + size = this._size + size; + this._root = sortedListToBST({ head: mergedList }, 0, size); + } + return this + } + + isEmpty () { return this._root === null } + + size () { return this._size } + root () { return this._root } + + toString (printNode = (n) => String(n.key)) { + const out = []; + printRow(this._root, '', true, (v) => out.push(v), printNode); + return out.join('') + } + + update (key, newKey, newData) { + const comparator = this._comparator; + let { left, right } = split(key, this._root, comparator); + if (comparator(key, newKey) < 0) { + right = insert(newKey, newData, right, comparator); + } else { + left = insert(newKey, newData, left, comparator); + } + this._root = merge(left, right, comparator); + } + + split (key) { + return split(key, this._root, this._comparator) + } + + * [Symbol.iterator] () { + let n = this.minNode(); + while (n) { + yield n; + n = this.next(n); + } + } +} + +const loadRecursive = (keys, values, start, end) => { + const size = end - start; + if (size > 0) { + const middle = start + Math.floor(size / 2); + const key = keys[middle]; + const data = values[middle]; + const node = new Node$1(key, data); + node.left = loadRecursive(keys, values, start, middle); + node.right = loadRecursive(keys, values, middle + 1, end); + return node + } + return null +}; + +const createList = (keys, values) => { + const head = new Node$1(null, null); + let p = head; + for (let i = 0; i < keys.length; i++) { + p = p.next = new Node$1(keys[i], values[i]); + } + p.next = null; + return head.next +}; + +const toList = (root) => { + let current = root; + const Q = []; + let done = false; + + const head = new Node$1(null, null); + let p = head; + + while (!done) { + if (current) { + Q.push(current); + current = current.left; + } else { + if (Q.length > 0) { + current = p = p.next = Q.pop(); + current = current.right; + } else done = true; + } + } + p.next = null; // that'll work even if the tree was empty + return head.next +}; + +const sortedListToBST = (list, start, end) => { + const size = end - start; + if (size > 0) { + const middle = start + Math.floor(size / 2); + const left = sortedListToBST(list, start, middle); + + const root = list.head; + root.left = left; + + list.head = list.head.next; + + root.right = sortedListToBST(list, middle + 1, end); + return root + } + return null +}; + +const mergeLists = (l1, l2, compare) => { + const head = new Node$1(null, null); // dummy + let p = head; + + let p1 = l1; + let p2 = l2; + + while (p1 !== null && p2 !== null) { + if (compare(p1.key, p2.key) < 0) { + p.next = p1; + p1 = p1.next; + } else { + p.next = p2; + p2 = p2.next; + } + p = p.next; + } + + if (p1 !== null) { + p.next = p1; + } else if (p2 !== null) { + p.next = p2; + } + + return head.next +}; + +const sort = (keys, values, left, right, compare) => { + if (left >= right) return + + const pivot = keys[(left + right) >> 1]; + let i = left - 1; + let j = right + 1; + + while (true) { + do i++; while (compare(keys[i], pivot) < 0) + do j--; while (compare(keys[j], pivot) > 0) + if (i >= j) break + + let tmp = keys[i]; + keys[i] = keys[j]; + keys[j] = tmp; + + tmp = values[i]; + values[i] = values[j]; + values[j] = tmp; + } + + sort(keys, values, left, j, compare); + sort(keys, values, j + 1, right, compare); +}; + +const NORMAL = 0; +const NON_CONTRIBUTING = 1; +const SAME_TRANSITION = 2; +const DIFFERENT_TRANSITION = 3; + +/* + * Implementation of the Martinez 2D polygon clipping algorithm + * Copyright (c) 2018 Alexander Milevski + * https://github.com/w8r/martinez + */ + +/** + * @param {SweepEvent} event + * @param {SweepEvent} prev + * @param {Operation} operation + */ +const computeFields = (event, prev, operation) => { + // compute inOut and otherInOut fields + if (prev === null) { + event.inOut = false; + event.otherInOut = true; + + // previous line segment in sweepline belongs to the same polygon + } else { + if (event.isSubject === prev.isSubject) { + event.inOut = !prev.inOut; + event.otherInOut = prev.otherInOut; + + // previous line segment in sweepline belongs to the clipping polygon + } else { + event.inOut = !prev.otherInOut; + event.otherInOut = prev.isVertical() ? !prev.inOut : prev.inOut; + } + + // compute prevInResult field + if (prev) { + event.prevInResult = (!inResult(prev, operation) || prev.isVertical()) ? prev.prevInResult : prev; + } + } + + // check if the line segment belongs to the Boolean operation + const isInResult = inResult(event, operation); + if (isInResult) { + event.resultTransition = determineResultTransition(event, operation); + } else { + event.resultTransition = 0; + } +}; + +const inResult = (event, operation) => { + switch (event.type) { + case NORMAL: + switch (operation) { + case INTERSECTION: + return !event.otherInOut + case UNION: + return event.otherInOut + case DIFFERENCE: + // return (event.isSubject && !event.otherInOut) || + // (!event.isSubject && event.otherInOut) + return (event.isSubject && event.otherInOut) || + (!event.isSubject && !event.otherInOut) + case XOR: + return true + } + break + case SAME_TRANSITION: + return operation === INTERSECTION || operation === UNION + case DIFFERENT_TRANSITION: + return operation === DIFFERENCE + case NON_CONTRIBUTING: + return false + } + return false +}; + +const determineResultTransition = (event, operation) => { + const thisIn = !event.inOut; + const thatIn = !event.otherInOut; + + let isIn; + switch (operation) { + case INTERSECTION: + isIn = thisIn && thatIn; + break + case UNION: + isIn = thisIn || thatIn; + break + case XOR: + isIn = thisIn ^ thatIn; + break + case DIFFERENCE: + if (event.isSubject) { + isIn = thisIn && !thatIn; + } else { + isIn = thatIn && !thisIn; + } + break + } + return isIn ? +1 : -1 +}; + +class SweepEvent { + /** + * Sweepline event + * + * @class {SweepEvent} + * @param {Array.} point + * @param {Boolean} left + * @param {SweepEvent=} otherEvent + * @param {Boolean} isSubject + * @param {Number} edgeType + */ + constructor (point, left, otherEvent, isSubject, edgeType) { + /** + * Is left endpoint? + * @type {Boolean} + */ + this.left = left; + + /** + * @type {Array.} + */ + this.point = point; + + /** + * Other edge reference + * @type {SweepEvent} + */ + this.otherEvent = otherEvent; + + /** + * Belongs to source or clipping polygon + * @type {Boolean} + */ + this.isSubject = isSubject; + + /** + * Edge contribution type + * @type {Number} + */ + this.type = edgeType || NORMAL; + + /** + * In-out transition for the sweepline crossing polygon + * @type {Boolean} + */ + this.inOut = false; + + /** + * @type {Boolean} + */ + this.otherInOut = false; + + /** + * Previous event in result? + * @type {SweepEvent} + */ + this.prevInResult = null; + + /** + * Type of result transition (0 = not in result, +1 = out-in, -1, in-out) + * @type {Number} + */ + this.resultTransition = 0; + + // connection step + + /** + * @type {Number} + */ + this.otherPos = -1; + + /** + * @type {Number} + */ + this.outputContourId = -1; + + this.isExteriorRing = true; // TODO: Looks unused, remove? + } + + /** + * @param {Array.} p + * @return {Boolean} + */ + isBelow (p) { + const p0 = this.point; + const p1 = this.otherEvent.point; + return this.left + ? (p0[0] - p[0]) * (p1[1] - p[1]) - (p1[0] - p[0]) * (p0[1] - p[1]) > 0 + // signedArea(this.point, this.otherEvent.point, p) > 0 : + : (p1[0] - p[0]) * (p0[1] - p[1]) - (p0[0] - p[0]) * (p1[1] - p[1]) > 0 + // signedArea(this.otherEvent.point, this.point, p) > 0 + } + + /** + * @param {Array.} p + * @return {Boolean} + */ + isAbove (p) { + return !this.isBelow(p) + } + + /** + * @return {Boolean} + */ + isVertical () { + return this.point[0] === this.otherEvent.point[0] + } + + /** + * Does event belong to result? + * @return {Boolean} + */ + get inResult () { + return this.resultTransition !== 0 + } + + clone () { + const copy = new SweepEvent( + this.point, this.left, this.otherEvent, this.isSubject, this.type); + + copy.contourId = this.contourId; + copy.resultTransition = this.resultTransition; + copy.prevInResult = this.prevInResult; + copy.isExteriorRing = this.isExteriorRing; + copy.inOut = this.inOut; + copy.otherInOut = this.otherInOut; + + return copy + } +} + +const orient2d = (ax, ay, bx, by, cx, cy) => (ay - cy) * (bx - cx) - (ax - cx) * (by - cy); + +/** + * Signed area of the triangle (p0, p1, p2) + * @param {Array.} p0 + * @param {Array.} p1 + * @param {Array.} p2 + * @return {Number} + */ +const signedArea = (p0, p1, p2) => { + const res = orient2d(p0[0], p0[1], p1[0], p1[1], p2[0], p2[1]); + if (res > 0) return -1 + if (res < 0) return 1 + return 0 +}; + +/* + * Implementation of the Martinez 2D polygon clipping algorithm + * Copyright (c) 2018 Alexander Milevski + * https://github.com/w8r/martinez + */ + +/** + * @param {SweepEvent} e1 + * @param {SweepEvent} e2 + * @return {Number} + */ +const compareEvents = (e1, e2) => { + const p1 = e1.point; + const p2 = e2.point; + + // Different x-coordinate + if (p1[0] > p2[0]) return 1 + if (p1[0] < p2[0]) return -1 + + // Different points, but same x-coordinate + // Event with lower y-coordinate is processed first + if (p1[1] !== p2[1]) return p1[1] > p2[1] ? 1 : -1 + + return specialCases(e1, e2, p1) +}; + +const specialCases = (e1, e2, p1, p2) => { + // Same coordinates, but one is a left endpoint and the other is + // a right endpoint. The right endpoint is processed first + if (e1.left !== e2.left) { return e1.left ? 1 : -1 } + + // const p2 = e1.otherEvent.point, p3 = e2.otherEvent.point + // const sa = (p1[0] - p3[0]) * (p2[1] - p3[1]) - (p2[0] - p3[0]) * (p1[1] - p3[1]) + // Same coordinates, both events + // are left endpoints or right endpoints. + // not collinear + if (signedArea(p1, e1.otherEvent.point, e2.otherEvent.point) !== 0) { + // the event associate to the bottom segment is processed first + return (!e1.isBelow(e2.otherEvent.point)) ? 1 : -1 + } + + return (!e1.isSubject && e2.isSubject) ? 1 : -1 +}; + +/** + * @param {SweepEvent} se + * @param {Array.} p + * @param {Queue} queue + * @return {Queue} + */ +const divideSegment = (se, p, queue) => { + const r = new SweepEvent(p, false, se, se.isSubject); + const l = new SweepEvent(p, true, se.otherEvent, se.isSubject); + + r.contourId = l.contourId = se.contourId; + + // avoid a rounding error. The left event would be processed after the right event + if (compareEvents(l, se.otherEvent) > 0) { + se.otherEvent.left = true; + l.left = false; + } + + // avoid a rounding error. The left event would be processed after the right event + // if (compareEvents(se, r) > 0) {} + + se.otherEvent.otherEvent = l; + se.otherEvent = r; + + queue.push(l); + queue.push(r); + + return queue +}; + +/* + * Implementation of the Martinez 2D polygon clipping algorithm + * Copyright (c) 2018 Alexander Milevski + * https://github.com/w8r/martinez + */ + +/** + * Finds the magnitude of the cross product of two vectors (if we pretend + * they're in three dimensions) + * + * @param {Object} a First vector + * @param {Object} b Second vector + * @private + * @returns {Number} The magnitude of the cross product + */ +const crossProduct = (a, b) => (a[0] * b[1]) - (a[1] * b[0]); + +/** + * Finds the intersection (if any) between two line segments a and b, given the + * line segments' end points a1, a2 and b1, b2. + * + * This algorithm is based on Schneider and Eberly. + * http://www.cimec.org.ar/~ncalvo/Schneider_Eberly.pdf + * Page 244. + * + * @param {Array.} a1 point of first line + * @param {Array.} a2 point of first line + * @param {Array.} b1 point of second line + * @param {Array.} b2 point of second line + * @param {Boolean=} noEndpointTouch whether to skip single touchpoints (meaning connected segments) as intersections + * @returns {Array.>|Null} If the lines intersect, the point of + * intersection. If they overlap, the two end points of the overlapping segment. + * Otherwise, null. + */ +const segmentIntersection = (a1, a2, b1, b2, noEndpointTouch) => { + // The algorithm expects our lines in the form P + sd, where P is a point, + // s is on the interval [0, 1], and d is a vector. + // We are passed two points. P can be the first point of each pair. The + // vector, then, could be thought of as the distance (in x and y components) + // from the first point to the second point. + // So first, let's make our vectors: + const va = [a2[0] - a1[0], a2[1] - a1[1]]; + const vb = [b2[0] - b1[0], b2[1] - b1[1]]; + // We also define a function to convert back to regular point form: + + const toPoint = (p, s, d) => [ + p[0] + s * d[0], + p[1] + s * d[1] + ]; + + // The rest is pretty much a straight port of the algorithm. + const e = [b1[0] - a1[0], b1[1] - a1[1]]; + let kross = crossProduct(va, vb); + let sqrKross = kross * kross; + const sqrLenA = dot$1(va, va); + // const sqrLenB = dotProduct(vb, vb) + + // Check for line intersection. This works because of the properties of the + // cross product -- specifically, two vectors are parallel if and only if the + // cross product is the 0 vector. The full calculation involves relative error + // to account for possible very small line segments. See Schneider & Eberly + // for details. + if (sqrKross > 0/* EPS * sqrLenB * sqLenA */) { + // If they're not parallel, then (because these are line segments) they + // still might not actually intersect. This code checks that the + // intersection point of the lines is actually on both line segments. + const s = crossProduct(e, vb) / kross; + if (s < 0 || s > 1) { + // not on line segment a + return null + } + const t = crossProduct(e, va) / kross; + if (t < 0 || t > 1) { + // not on line segment b + return null + } + if (s === 0 || s === 1) { + // on an endpoint of line segment a + return noEndpointTouch ? null : [toPoint(a1, s, va)] + } + if (t === 0 || t === 1) { + // on an endpoint of line segment b + return noEndpointTouch ? null : [toPoint(b1, t, vb)] + } + return [toPoint(a1, s, va)] + } + + // If we've reached this point, then the lines are either parallel or the + // same, but the segments could overlap partially or fully, or not at all. + // So we need to find the overlap, if any. To do that, we can use e, which is + // the (vector) difference between the two initial points. If this is parallel + // with the line itself, then the two lines are the same line, and there will + // be overlap. + // const sqrLenE = dotProduct(e, e) + kross = crossProduct(e, va); + sqrKross = kross * kross; + + if (sqrKross > 0 /* EPS * sqLenB * sqLenE */) { + // Lines are just parallel, not the same. No overlap. + return null + } + + const sa = dot$1(va, e) / sqrLenA; + const sb = sa + dot$1(va, vb) / sqrLenA; + const smin = Math.min(sa, sb); + const smax = Math.max(sa, sb); + + // this is, essentially, the FindIntersection acting on floats from + // Schneider & Eberly, just inlined into this function. + if (smin <= 1 && smax >= 0) { + // overlap on an end point + if (smin === 1) { + return noEndpointTouch ? null : [toPoint(a1, smin > 0 ? smin : 0, va)] + } + + if (smax === 0) { + return noEndpointTouch ? null : [toPoint(a1, smax < 1 ? smax : 1, va)] + } + + if (noEndpointTouch && smin === 0 && smax === 1) return null + + // There's overlap on a segment -- two points of intersection. Return both. + return [ + toPoint(a1, smin > 0 ? smin : 0, va), + toPoint(a1, smax < 1 ? smax : 1, va) + ] + } + + return null +}; + +/* + * Implementation of the Martinez 2D polygon clipping algorithm + * Copyright (c) 2018 Alexander Milevski + * https://github.com/w8r/martinez + */ + +/** + * @param {SweepEvent} se1 + * @param {SweepEvent} se2 + * @param {Queue} queue + * @return {Number} + */ +const possibleIntersection = (se1, se2, queue) => { + // that disallows self-intersecting polygons, + // did cost us half a day, so I'll leave it + // out of respect + // if (se1.isSubject === se2.isSubject) return + const inter = segmentIntersection( + se1.point, se1.otherEvent.point, + se2.point, se2.otherEvent.point + ); + + const nIntersections = inter ? inter.length : 0; + if (nIntersections === 0) return 0 // no intersection + + // the line segments intersect at an endpoint of both line segments + if ((nIntersections === 1) && + (equals$6(se1.point, se2.point) || + equals$6(se1.otherEvent.point, se2.otherEvent.point))) { + return 0 + } + + if (nIntersections === 2 && se1.isSubject === se2.isSubject) { + return 0 + } + + // The line segments associated to se1 and se2 intersect + if (nIntersections === 1) { + // if the intersection point is not an endpoint of se1 + if (!equals$6(se1.point, inter[0]) && !equals$6(se1.otherEvent.point, inter[0])) { + divideSegment(se1, inter[0], queue); + } + + // if the intersection point is not an endpoint of se2 + if (!equals$6(se2.point, inter[0]) && !equals$6(se2.otherEvent.point, inter[0])) { + divideSegment(se2, inter[0], queue); + } + return 1 + } + + // The line segments associated to se1 and se2 overlap + const events = []; + let leftCoincide = false; + let rightCoincide = false; + + if (equals$6(se1.point, se2.point)) { + leftCoincide = true; // linked + } else if (compareEvents(se1, se2) === 1) { + events.push(se2, se1); + } else { + events.push(se1, se2); + } + + if (equals$6(se1.otherEvent.point, se2.otherEvent.point)) { + rightCoincide = true; + } else if (compareEvents(se1.otherEvent, se2.otherEvent) === 1) { + events.push(se2.otherEvent, se1.otherEvent); + } else { + events.push(se1.otherEvent, se2.otherEvent); + } + + if ((leftCoincide && rightCoincide) || leftCoincide) { + // both line segments are equal or share the left endpoint + se2.type = NON_CONTRIBUTING; + se1.type = (se2.inOut === se1.inOut) ? SAME_TRANSITION : DIFFERENT_TRANSITION; + + if (leftCoincide && !rightCoincide) { + // honestly no idea, but changing events selection from [2, 1] + // to [0, 1] fixes the overlapping self-intersecting polygons issue + divideSegment(events[1].otherEvent, events[0].point, queue); + } + return 2 + } + + // the line segments share the right endpoint + if (rightCoincide) { + divideSegment(events[0], events[1].point, queue); + return 3 + } + + // no line segment includes totally the other one + if (events[0] !== events[3].otherEvent) { + divideSegment(events[0], events[1].point, queue); + divideSegment(events[1], events[2].point, queue); + return 3 + } + + // one line segment includes the other one + divideSegment(events[0], events[1].point, queue); + divideSegment(events[3].otherEvent, events[2].point, queue); + + return 3 +}; + +/* + * Implementation of the Martinez 2D polygon clipping algorithm + * Copyright (c) 2018 Alexander Milevski + * https://github.com/w8r/martinez + */ + +/** + * @param {SweepEvent} le1 + * @param {SweepEvent} le2 + * @return {Number} + */ +const compareSegments = (le1, le2) => { + if (le1 === le2) return 0 + + // Segments are not collinear + if (signedArea(le1.point, le1.otherEvent.point, le2.point) !== 0 || + signedArea(le1.point, le1.otherEvent.point, le2.otherEvent.point) !== 0) { + // If they share their left endpoint use the right endpoint to sort + if (equals$6(le1.point, le2.point)) return le1.isBelow(le2.otherEvent.point) ? -1 : 1 + + // Different left endpoint: use the left endpoint to sort + if (le1.point[0] === le2.point[0]) return le1.point[1] < le2.point[1] ? -1 : 1 + + // has the line segment associated to e1 been inserted + // into S after the line segment associated to e2 ? + if (compareEvents(le1, le2) === 1) return le2.isAbove(le1.point) ? -1 : 1 + + // The line segment associated to e2 has been inserted + // into S after the line segment associated to e1 + return le1.isBelow(le2.point) ? -1 : 1 + } + + if (le1.isSubject === le2.isSubject) { // same polygon + let p1 = le1.point; + let p2 = le2.point; + if (p1[0] === p2[0] && p1[1] === p2[1]/* equals(le1.point, le2.point) */) { + p1 = le1.otherEvent.point; + p2 = le2.otherEvent.point; + if (p1[0] === p2[0] && p1[1] === p2[1]) return 0 + else return le1.contourId > le2.contourId ? 1 : -1 + } + } else { // Segments are collinear, but belong to separate polygons + return le1.isSubject ? -1 : 1 + } + + return compareEvents(le1, le2) === 1 ? 1 : -1 +}; + +/* + * Implementation of the Martinez 2D polygon clipping algorithm + * Copyright (c) 2018 Alexander Milevski + * https://github.com/w8r/martinez + */ + +const subdivideSegments = (eventQueue, subject, clipping, sbbox, cbbox, operation) => { + const sweepLine = new Tree$1(compareSegments); + const sortedEvents = []; + + const rightBound = Math.min(sbbox[2], cbbox[2]); + + let prev, next, begin; + + while (eventQueue.length !== 0) { + let event = eventQueue.pop(); + sortedEvents.push(event); + + // optimization by bboxes for intersection and difference goes here + if ((operation === INTERSECTION && event.point[0] > rightBound) || + (operation === DIFFERENCE && event.point[0] > sbbox[2])) { + break + } + + if (event.left) { + next = prev = sweepLine.insert(event); + begin = sweepLine.minNode(); + + if (prev !== begin) prev = sweepLine.prev(prev); + else prev = null; + + next = sweepLine.next(next); + + const prevEvent = prev ? prev.key : null; + let prevprevEvent; + computeFields(event, prevEvent, operation); + if (next) { + if (possibleIntersection(event, next.key, eventQueue) === 2) { + computeFields(event, prevEvent, operation); + computeFields(next.key, event, operation); + } + } + + if (prev) { + if (possibleIntersection(prev.key, event, eventQueue) === 2) { + let prevprev = prev; + if (prevprev !== begin) prevprev = sweepLine.prev(prevprev); + else prevprev = null; + + prevprevEvent = prevprev ? prevprev.key : null; + computeFields(prevEvent, prevprevEvent, operation); + computeFields(event, prevEvent, operation); + } + } + } else { + event = event.otherEvent; + next = prev = sweepLine.find(event); + + if (prev && next) { + if (prev !== begin) prev = sweepLine.prev(prev); + else prev = null; + + next = sweepLine.next(next); + sweepLine.remove(event); + + if (next && prev) { + possibleIntersection(prev.key, next.key, eventQueue); + } + } + } + } + return sortedEvents +}; + +class Contour { + constructor () { + this.points = []; + this.holeIds = []; + this.holeOf = null; + this.depth = null; + } + + isExterior () { + return this.holeOf == null + } +} + +/* + * Implementation of the Martinez 2D polygon clipping algorithm + * Copyright (c) 2018 Alexander Milevski + * https://github.com/w8r/martinez + */ + +/** + * @param {Array.} sortedEvents + * @return {Array.} + */ +const orderEvents = (sortedEvents) => { + let event, i, len, tmp; + const resultEvents = []; + for (i = 0, len = sortedEvents.length; i < len; i++) { + event = sortedEvents[i]; + if ((event.left && event.inResult) || + (!event.left && event.otherEvent.inResult)) { + resultEvents.push(event); + } + } + // Due to overlapping edges the resultEvents array can be not wholly sorted + let sorted = false; + while (!sorted) { + sorted = true; + for (i = 0, len = resultEvents.length; i < len; i++) { + if ((i + 1) < len && + compareEvents(resultEvents[i], resultEvents[i + 1]) === 1) { + tmp = resultEvents[i]; + resultEvents[i] = resultEvents[i + 1]; + resultEvents[i + 1] = tmp; + sorted = false; + } + } + } + + for (i = 0, len = resultEvents.length; i < len; i++) { + event = resultEvents[i]; + event.otherPos = i; + } + + // imagine, the right event is found in the beginning of the queue, + // when his left counterpart is not marked yet + for (i = 0, len = resultEvents.length; i < len; i++) { + event = resultEvents[i]; + if (!event.left) { + tmp = event.otherPos; + event.otherPos = event.otherEvent.otherPos; + event.otherEvent.otherPos = tmp; + } + } + + return resultEvents +}; + +/** + * @param {Number} pos + * @param {Array.} resultEvents + * @param {Object>} processed + * @return {Number} + */ +const nextPos = (pos, resultEvents, processed, origPos) => { + let newPos = pos + 1; + const p = resultEvents[pos].point; + let p1; + const length = resultEvents.length; + + if (newPos < length) { p1 = resultEvents[newPos].point; } + + while (newPos < length && p1[0] === p[0] && p1[1] === p[1]) { + if (!processed[newPos]) { + return newPos + } else { + newPos++; + } + if (newPos < length) { + p1 = resultEvents[newPos].point; + } + } + + newPos = pos - 1; + + while (processed[newPos] && newPos > origPos) { + newPos--; + } + + return newPos +}; + +const initializeContourFromContext = (event, contours, contourId) => { + const contour = new Contour(); + if (event.prevInResult != null) { + const prevInResult = event.prevInResult; + // Note that it is valid to query the "previous in result" for its output contour id, + // because we must have already processed it (i.e., assigned an output contour id) + // in an earlier iteration, otherwise it wouldn't be possible that it is "previous in + // result". + const lowerContourId = prevInResult.outputContourId; + const lowerResultTransition = prevInResult.resultTransition; + if (lowerContourId < 0) { + contour.holeOf = null; + contour.depth = 0; + } else if (lowerResultTransition > 0) { + // We are inside. Now we have to check if the thing below us is another hole or + // an exterior contour. + const lowerContour = contours[lowerContourId]; + if (lowerContour.holeOf != null) { + // The lower contour is a hole => Connect the new contour as a hole to its parent, + // and use same depth. + const parentContourId = lowerContour.holeOf; + contours[parentContourId].holeIds.push(contourId); + contour.holeOf = parentContourId; + contour.depth = contours[lowerContourId].depth; + } else { + // The lower contour is an exterior contour => Connect the new contour as a hole, + // and increment depth. + contours[lowerContourId].holeIds.push(contourId); + contour.holeOf = lowerContourId; + contour.depth = contours[lowerContourId].depth + 1; + } + } else { + // We are outside => this contour is an exterior contour of same depth. + contour.holeOf = null; + contour.depth = contours[lowerContourId].depth; + } + } else { + // There is no lower/previous contour => this contour is an exterior contour of depth 0. + contour.holeOf = null; + contour.depth = 0; + } + return contour +}; + +/** + * @param {Array.} sortedEvents + * @return {Array.<*>} polygons + */ +const connectEdges = (sortedEvents) => { + const resultEvents = orderEvents(sortedEvents); + const len = resultEvents.length; + + // "false"-filled array + const processed = {}; + const contours = []; + + for (let i = 0; i < len; i++) { + if (processed[i]) { + continue + } + + const contourId = contours.length; + const contour = initializeContourFromContext(resultEvents[i], contours, contourId); + + // Helper function that combines marking an event as processed with assigning its output contour ID + const markAsProcessed = (pos) => { + processed[pos] = true; + if (pos < resultEvents.length && resultEvents[pos]) { + resultEvents[pos].outputContourId = contourId; + } + }; + + let pos = i; + const origPos = i; + + const initial = resultEvents[i].point; + contour.points.push(initial); + + while (true) { + markAsProcessed(pos); + + pos = resultEvents[pos].otherPos; + + markAsProcessed(pos); + contour.points.push(resultEvents[pos].point); + + pos = nextPos(pos, resultEvents, processed, origPos); + + if (pos === origPos || pos >= resultEvents.length || !resultEvents[pos]) { + break + } + } + + contours.push(contour); + } + + return contours +}; + +/* + * The smallest and simplest binary heap priority queue in JavaScript + * Copyright (c) 2017, Vladimir Agafonkin + * https://github.com/mourner/tinyqueue + */ + +class Queue { + constructor (data, compare) { + this.data = data; + this.length = this.data.length; + this.compare = compare; + + if (this.length > 0) { + for (let i = (this.length >> 1) - 1; i >= 0; i--) this._down(i); + } + } + + push (item) { + this.data.push(item); + this._up(this.length++); + } + + pop () { + if (this.length === 0) return undefined + + const top = this.data[0]; + const bottom = this.data.pop(); + + if (--this.length > 0) { + this.data[0] = bottom; + this._down(0); + } + + return top + } + + peek () { + return this.data[0] + } + + _up (pos) { + const { data, compare } = this; + const item = data[pos]; + + while (pos > 0) { + const parent = (pos - 1) >> 1; + const current = data[parent]; + if (compare(item, current) >= 0) break + data[pos] = current; + pos = parent; + } + + data[pos] = item; + } + + _down (pos) { + const { data, compare } = this; + const halfLength = this.length >> 1; + const item = data[pos]; + + while (pos < halfLength) { + let bestChild = (pos << 1) + 1; // initially it is the left child + const right = bestChild + 1; + + if (right < this.length && compare(data[right], data[bestChild]) < 0) { + bestChild = right; + } + if (compare(data[bestChild], item) >= 0) break + + data[pos] = data[bestChild]; + pos = bestChild; + } + + data[pos] = item; + } +} + +/* + * Implementation of the Martinez 2D polygon clipping algorithm + * Copyright (c) 2018 Alexander Milevski + * https://github.com/w8r/martinez + */ + +const max = Math.max; +const min = Math.min; + +let contourId = 0; + +const processPolygon = (contourOrHole, isSubject, depth, queue, bbox, isExteriorRing) => { + const len = contourOrHole.length - 1; + let s1, s2, e1, e2; + for (let i = 0; i < len; i++) { + s1 = contourOrHole[i]; + s2 = contourOrHole[i + 1]; + e1 = new SweepEvent(s1, false, undefined, isSubject); + e2 = new SweepEvent(s2, false, e1, isSubject); + e1.otherEvent = e2; + + if (s1[0] === s2[0] && s1[1] === s2[1]) { + continue // skip collapsed edges, or it breaks + } + + e1.contourId = e2.contourId = depth; + if (!isExteriorRing) { + e1.isExteriorRing = false; + e2.isExteriorRing = false; + } + if (compareEvents(e1, e2) > 0) { + e2.left = true; + } else { + e1.left = true; + } + + const x = s1[0]; + const y = s1[1]; + bbox[0] = min(bbox[0], x); + bbox[1] = min(bbox[1], y); + bbox[2] = max(bbox[2], x); + bbox[3] = max(bbox[3], y); + + // Pushing it so the queue is sorted from left to right, + // with object on the left having the highest priority. + queue.push(e1); + queue.push(e2); + } +}; + +const fillQueue = (subject, clipping, sbbox, cbbox, operation) => { + const eventQueue = new Queue([], compareEvents); + let polygonSet, isExteriorRing, i, ii, j, jj; //, k, kk + + for (i = 0, ii = subject.length; i < ii; i++) { + polygonSet = subject[i]; + for (j = 0, jj = polygonSet.length; j < jj; j++) { + isExteriorRing = j === 0; + if (isExteriorRing) contourId++; + processPolygon(polygonSet[j], true, contourId, eventQueue, sbbox, isExteriorRing); + } + } + + for (i = 0, ii = clipping.length; i < ii; i++) { + polygonSet = clipping[i]; + for (j = 0, jj = polygonSet.length; j < jj; j++) { + isExteriorRing = j === 0; + if (operation === DIFFERENCE) isExteriorRing = false; + if (isExteriorRing) contourId++; + processPolygon(polygonSet[j], false, contourId, eventQueue, cbbox, isExteriorRing); + } + } + + return eventQueue +}; + +/* + * Implementation of the Martinez 2D polygon clipping algorithm. + * Copyright (c) 2018 Alexander Milevski + * https://github.com/w8r/martinez + * + * Adapted for JSCAD by @platypii + */ + +const EMPTY = []; + +/* + * Fast path for trivial operations like intersection with empty geometry + * Returns null if operation is non-trivial + */ +const trivialOperation = (subject, clipping, operation) => { + let result = null; + if (subject.length * clipping.length === 0) { + if (operation === INTERSECTION) { + return EMPTY + } else if (operation === DIFFERENCE) { + result = subject; + } else if (operation === UNION || + operation === XOR) { + result = (subject.length === 0) ? clipping : subject; + } + } + if (result === EMPTY) { + return create$a() + } else if (result) { + return fromOutlines(result.flat()) + } else { + return null + } +}; + +/* + * Fast path for non-intersecting subjects + * Returns null if operation is non-trivial + */ +const compareBBoxes = (subject, clipping, sbbox, cbbox, operation) => { + let result = null; + if (sbbox[0] > cbbox[2] || + cbbox[0] > sbbox[2] || + sbbox[1] > cbbox[3] || + cbbox[1] > sbbox[3]) { + if (operation === INTERSECTION) { + result = EMPTY; + } else if (operation === DIFFERENCE) { + result = subject; + } else if (operation === UNION || + operation === XOR) { + result = subject.concat(clipping); + } + } + if (result === EMPTY) { + return create$a() + } else if (result) { + return fromOutlines(result.flat()) + } else { + return null + } +}; + +/* + * Convert from geom2 to martinez data structure + */ +const toMartinez = (geometry) => { + const outlines = []; + toOutlines(geometry).forEach((outline) => { + // Martinez expects first point == last point + if (equals$6(outline[0], outline[outline.length - 1])) { + outlines.push(outline); + } else { + outlines.push([...outline, outline[0]]); + } + }); + return [outlines] +}; + +/* + * Convert martinez data structure to geom2 + */ +const fromOutlines = (outlines) => { + outlines.forEach((outline) => { + if (equals$6(outline[0], outline[outline.length - 1])) { + outline.pop(); // first == last point + } + }); + // Martinez sometime returns empty outlines, filter them out + outlines = outlines.filter((o) => o.length >= 3); + return create$a(outlines) +}; + +const boolean = (subjectGeom, clippingGeom, operation) => { + // Convert from geom2 to outlines + const subject = toMartinez(subjectGeom); + const clipping = toMartinez(clippingGeom); + + let trivial = trivialOperation(subject, clipping, operation); + if (trivial) { + return trivial + } + const sbbox = [Infinity, Infinity, -Infinity, -Infinity]; + const cbbox = [Infinity, Infinity, -Infinity, -Infinity]; + + const eventQueue = fillQueue(subject, clipping, sbbox, cbbox, operation); + + trivial = compareBBoxes(subject, clipping, sbbox, cbbox, operation); + if (trivial) { + return trivial + } + const sortedEvents = subdivideSegments(eventQueue, subject, clipping, sbbox, cbbox, operation); + + const contours = connectEdges(sortedEvents); + + // Convert contours to geom2 + const polygons = []; + for (let i = 0; i < contours.length; i++) { + const contour = contours[i]; + if (contour.isExterior()) { + // The exterior ring goes first + const rings = [contour.points]; + // Followed by holes if any + for (let j = 0; j < contour.holeIds.length; j++) { + const holeId = contour.holeIds[j]; + const holePoints = contours[holeId].points; + const hole = []; + for (let k = holePoints.length - 2; k >= 0; k--) { + hole.push(holePoints[k]); + } + rings.push(hole); + } + polygons.push(rings); + } + } + + if (polygons) { + return fromOutlines(polygons.flat()) + } else { + return create$a() + } +}; + +/* + * Return a new 2D geometry representing space in both the first geometry and + * in the subsequent geometries. None of the given geometries are modified. + * @param {...geom2} geometries - list of 2D geometries + * @returns {geom2} new 2D geometry + */ +const intersectGeom2 = (...geometries) => { + geometries = flatten(geometries); + + let newGeometry = geometries.shift(); + geometries.forEach((geometry) => { + newGeometry = boolean(newGeometry, geometry, INTERSECTION); + }); + + return newGeometry +}; + +/* + * Retesselation for a set of COPLANAR polygons. + * @param {poly3[]} sourcePolygons - list of polygons + * @returns {poly3[]} new set of polygons + */ +const reTesselateCoplanarPolygons = (sourcePolygons) => { + if (sourcePolygons.length < 2) return sourcePolygons + + const destPolygons = []; + const numPolygons = sourcePolygons.length; + const plane$1 = plane(sourcePolygons[0]); + const orthonormalFormula = new OrthonormalFormula(plane$1); + const polygonVertices2d = []; // array of array of Vector2D + const polygonTopVertexIndexes = []; // array of indexes of topmost vertex per polygon + const topy2polygonIndexes = new Map(); + const yCoordinateToPolygonIndexes = new Map(); + + // convert all polygon vertices to 2D + // Make a list of all encountered y coordinates + // And build a map of all polygons that have a vertex at a certain y coordinate: + const yCoordinateBins = new Map(); + const yCoordinateBinningFactor = 10 / EPS; + for (let polygonIndex = 0; polygonIndex < numPolygons; polygonIndex++) { + const poly3d = sourcePolygons[polygonIndex]; + let vertices2d = []; + let numVertices = poly3d.vertices.length; + let minIndex = -1; + if (numVertices > 0) { + let miny; + let maxy; + for (let i = 0; i < numVertices; i++) { + let pos2d = orthonormalFormula.to2D(poly3d.vertices[i]); + // perform binning of y coordinates: If we have multiple vertices very + // close to each other, give them the same y coordinate: + const yCoordinateBin = Math.floor(pos2d[1] * yCoordinateBinningFactor); + let newY; + if (yCoordinateBins.has(yCoordinateBin)) { + newY = yCoordinateBins.get(yCoordinateBin); + } else if (yCoordinateBins.has(yCoordinateBin + 1)) { + newY = yCoordinateBins.get(yCoordinateBin + 1); + } else if (yCoordinateBins.has(yCoordinateBin - 1)) { + newY = yCoordinateBins.get(yCoordinateBin - 1); + } else { + newY = pos2d[1]; + yCoordinateBins.set(yCoordinateBin, pos2d[1]); + } + pos2d = fromValues$2(pos2d[0], newY); + vertices2d.push(pos2d); + const y = pos2d[1]; + if ((i === 0) || (y < miny)) { + miny = y; + minIndex = i; + } + if ((i === 0) || (y > maxy)) { + maxy = y; + } + let polygonIndexes = yCoordinateToPolygonIndexes.get(y); + if (!polygonIndexes) { + polygonIndexes = {}; // PERF + yCoordinateToPolygonIndexes.set(y, polygonIndexes); + } + polygonIndexes[polygonIndex] = true; + } + if (miny >= maxy) { + // degenerate polygon, all vertices have same y coordinate. Just ignore it from now: + vertices2d = []; + numVertices = 0; + minIndex = -1; + } else { + let polygonIndexes = topy2polygonIndexes.get(miny); + if (!polygonIndexes) { + polygonIndexes = []; + topy2polygonIndexes.set(miny, polygonIndexes); + } + polygonIndexes.push(polygonIndex); + } + } // if(numVertices > 0) + // reverse the vertex order: + vertices2d.reverse(); + minIndex = numVertices - minIndex - 1; + polygonVertices2d.push(vertices2d); + polygonTopVertexIndexes.push(minIndex); + } + + const yCoordinates = []; + yCoordinateToPolygonIndexes.forEach((polylist, y) => yCoordinates.push(y)); + yCoordinates.sort(fnNumberSort); + + // Now we will iterate over all y coordinates, from lowest to highest y coordinate + // activePolygons: source polygons that are 'active', i.e. intersect with our y coordinate + // Is sorted so the polygons are in left to right order + // Each element in activePolygons has these properties: + // polygonIndex: the index of the source polygon (i.e. an index into the sourcePolygons + // and polygonVertices2d arrays) + // leftVertexIndex: the index of the vertex at the left side of the polygon (lowest x) + // that is at or just above the current y coordinate + // rightVertexIndex: ditto at right hand side of polygon + // topLeft, bottomLeft: coordinates of the left side of the polygon crossing the current y coordinate + // topRight, bottomRight: coordinates of the right hand side of the polygon crossing the current y coordinate + let activePolygons = []; + let prevOutPolygonRow = []; + for (let yIndex = 0; yIndex < yCoordinates.length; yIndex++) { + const newOutPolygonRow = []; + const yCoordinate = yCoordinates[yIndex]; + + // update activePolygons for this y coordinate: + // - Remove any polygons that end at this y coordinate + // - update leftVertexIndex and rightVertexIndex (which point to the current vertex index + // at the left and right side of the polygon + // Iterate over all polygons that have a corner at this y coordinate: + const polygonIndexesWithCorner = yCoordinateToPolygonIndexes.get(yCoordinate); + for (let activePolygonIndex = 0; activePolygonIndex < activePolygons.length; ++activePolygonIndex) { + const activePolygon = activePolygons[activePolygonIndex]; + const polygonIndex = activePolygon.polygonIndex; + if (polygonIndexesWithCorner[polygonIndex]) { + // this active polygon has a corner at this y coordinate: + const vertices2d = polygonVertices2d[polygonIndex]; + const numVertices = vertices2d.length; + let newLeftVertexIndex = activePolygon.leftVertexIndex; + let newRightVertexIndex = activePolygon.rightVertexIndex; + // See if we need to increase leftVertexIndex or decrease rightVertexIndex: + while (true) { + let nextLeftVertexIndex = newLeftVertexIndex + 1; + if (nextLeftVertexIndex >= numVertices) nextLeftVertexIndex = 0; + if (vertices2d[nextLeftVertexIndex][1] !== yCoordinate) break + newLeftVertexIndex = nextLeftVertexIndex; + } + let nextRightVertexIndex = newRightVertexIndex - 1; + if (nextRightVertexIndex < 0) nextRightVertexIndex = numVertices - 1; + if (vertices2d[nextRightVertexIndex][1] === yCoordinate) { + newRightVertexIndex = nextRightVertexIndex; + } + if ((newLeftVertexIndex !== activePolygon.leftVertexIndex) && (newLeftVertexIndex === newRightVertexIndex)) { + // We have increased leftVertexIndex or decreased rightVertexIndex, and now they point to the same vertex + // This means that this is the bottom point of the polygon. We'll remove it: + activePolygons.splice(activePolygonIndex, 1); + --activePolygonIndex; + } else { + activePolygon.leftVertexIndex = newLeftVertexIndex; + activePolygon.rightVertexIndex = newRightVertexIndex; + activePolygon.topLeft = vertices2d[newLeftVertexIndex]; + activePolygon.topRight = vertices2d[newRightVertexIndex]; + let nextLeftVertexIndex = newLeftVertexIndex + 1; + if (nextLeftVertexIndex >= numVertices) nextLeftVertexIndex = 0; + activePolygon.bottomLeft = vertices2d[nextLeftVertexIndex]; + let nextRightVertexIndex = newRightVertexIndex - 1; + if (nextRightVertexIndex < 0) nextRightVertexIndex = numVertices - 1; + activePolygon.bottomRight = vertices2d[nextRightVertexIndex]; + } + } // if polygon has corner here + } // for activePolygonIndex + let nextYcoordinate; + if (yIndex >= yCoordinates.length - 1) { + // last row, all polygons must be finished here: + activePolygons = []; + nextYcoordinate = null; + } else { // yIndex < yCoordinates.length-1 + nextYcoordinate = Number(yCoordinates[yIndex + 1]); + const middleYcoordinate = 0.5 * (yCoordinate + nextYcoordinate); + // update activePolygons by adding any polygons that start here: + const startingPolygonIndexes = topy2polygonIndexes.get(yCoordinate); + for (const polygonIndexKey in startingPolygonIndexes) { + const polygonIndex = startingPolygonIndexes[polygonIndexKey]; + const vertices2d = polygonVertices2d[polygonIndex]; + const numVertices = vertices2d.length; + const topVertexIndex = polygonTopVertexIndexes[polygonIndex]; + // the top of the polygon may be a horizontal line. In that case topVertexIndex can point to any point on this line. + // Find the left and right topmost vertices which have the current y coordinate: + let topLeftVertexIndex = topVertexIndex; + while (true) { + let i = topLeftVertexIndex + 1; + if (i >= numVertices) i = 0; + if (vertices2d[i][1] !== yCoordinate) break + if (i === topVertexIndex) break // should not happen, but just to prevent endless loops + topLeftVertexIndex = i; + } + let topRightVertexIndex = topVertexIndex; + while (true) { + let i = topRightVertexIndex - 1; + if (i < 0) i = numVertices - 1; + if (vertices2d[i][1] !== yCoordinate) break + if (i === topLeftVertexIndex) break // should not happen, but just to prevent endless loops + topRightVertexIndex = i; + } + let nextLeftVertexIndex = topLeftVertexIndex + 1; + if (nextLeftVertexIndex >= numVertices) nextLeftVertexIndex = 0; + let nextRightVertexIndex = topRightVertexIndex - 1; + if (nextRightVertexIndex < 0) nextRightVertexIndex = numVertices - 1; + const newActivePolygon = { + polygonIndex, + leftVertexIndex: topLeftVertexIndex, + rightVertexIndex: topRightVertexIndex, + topLeft: vertices2d[topLeftVertexIndex], + topRight: vertices2d[topRightVertexIndex], + bottomLeft: vertices2d[nextLeftVertexIndex], + bottomRight: vertices2d[nextRightVertexIndex] + }; + insertSorted(activePolygons, newActivePolygon, (el1, el2) => { + const x1 = interpolateBetween2DPointsForY(el1.topLeft, el1.bottomLeft, middleYcoordinate); + const x2 = interpolateBetween2DPointsForY(el2.topLeft, el2.bottomLeft, middleYcoordinate); + if (x1 > x2) return 1 + if (x1 < x2) return -1 + return 0 + }); + } // for(let polygonIndex in startingPolygonIndexes) + } // yIndex < yCoordinates.length-1 + + // Now activePolygons is up to date + // Build the output polygons for the next row in newOutPolygonRow: + for (const activePolygonKey in activePolygons) { + const activePolygon = activePolygons[activePolygonKey]; + + let x = interpolateBetween2DPointsForY(activePolygon.topLeft, activePolygon.bottomLeft, yCoordinate); + const topLeft = fromValues$2(x, yCoordinate); + x = interpolateBetween2DPointsForY(activePolygon.topRight, activePolygon.bottomRight, yCoordinate); + const topRight = fromValues$2(x, yCoordinate); + x = interpolateBetween2DPointsForY(activePolygon.topLeft, activePolygon.bottomLeft, nextYcoordinate); + const bottomLeft = fromValues$2(x, nextYcoordinate); + x = interpolateBetween2DPointsForY(activePolygon.topRight, activePolygon.bottomRight, nextYcoordinate); + const bottomRight = fromValues$2(x, nextYcoordinate); + const outPolygon = { + topLeft, + topRight, + bottomLeft, + bottomRight, + leftLine: fromPoints$1(create$1(), topLeft, bottomLeft), + rightLine: fromPoints$1(create$1(), bottomRight, topRight) + }; + if (newOutPolygonRow.length > 0) { + const prevOutPolygon = newOutPolygonRow[newOutPolygonRow.length - 1]; + const d1 = distance(outPolygon.topLeft, prevOutPolygon.topRight); + const d2 = distance(outPolygon.bottomLeft, prevOutPolygon.bottomRight); + if ((d1 < EPS) && (d2 < EPS)) { + // we can join this polygon with the one to the left: + outPolygon.topLeft = prevOutPolygon.topLeft; + outPolygon.leftLine = prevOutPolygon.leftLine; + outPolygon.bottomLeft = prevOutPolygon.bottomLeft; + newOutPolygonRow.splice(newOutPolygonRow.length - 1, 1); + } + } + newOutPolygonRow.push(outPolygon); + } // for(activePolygon in activePolygons) + if (yIndex > 0) { + // try to match the new polygons against the previous row: + const prevContinuedIndexes = new Set(); + const matchedIndexes = new Set(); + for (let i = 0; i < newOutPolygonRow.length; i++) { + const thisPolygon = newOutPolygonRow[i]; + for (let ii = 0; ii < prevOutPolygonRow.length; ii++) { + if (!matchedIndexes.has(ii)) { // not already processed? + // We have a match if the sidelines are equal or if the top coordinates + // are on the sidelines of the previous polygon + const prevPolygon = prevOutPolygonRow[ii]; + if (distance(prevPolygon.bottomLeft, thisPolygon.topLeft) < EPS) { + if (distance(prevPolygon.bottomRight, thisPolygon.topRight) < EPS) { + // Yes, the top of this polygon matches the bottom of the previous: + matchedIndexes.add(ii); + // Now check if the joined polygon would remain convex: + const v1 = direction$1(thisPolygon.leftLine); + const v2 = direction$1(prevPolygon.leftLine); + const d1 = v1[0] - v2[0]; + + const v3 = direction$1(thisPolygon.rightLine); + const v4 = direction$1(prevPolygon.rightLine); + const d2 = v3[0] - v4[0]; + + const leftLineContinues = Math.abs(d1) < EPS; + const rightLineContinues = Math.abs(d2) < EPS; + const leftLineIsConvex = leftLineContinues || (d1 >= 0); + const rightLineIsConvex = rightLineContinues || (d2 >= 0); + if (leftLineIsConvex && rightLineIsConvex) { + // yes, both sides have convex corners: + // This polygon will continue the previous polygon + thisPolygon.outPolygon = prevPolygon.outPolygon; + thisPolygon.leftLineContinues = leftLineContinues; + thisPolygon.rightLineContinues = rightLineContinues; + prevContinuedIndexes.add(ii); + } + break + } + } + } // if(!prevContinuedIndexes.has(ii)) + } // for ii + } // for i + for (let ii = 0; ii < prevOutPolygonRow.length; ii++) { + if (!prevContinuedIndexes.has(ii)) { + // polygon ends here + // Finish the polygon with the last point(s): + const prevPolygon = prevOutPolygonRow[ii]; + prevPolygon.outPolygon.rightPoints.push(prevPolygon.bottomRight); + if (distance(prevPolygon.bottomRight, prevPolygon.bottomLeft) > EPS) { + // polygon ends with a horizontal line: + prevPolygon.outPolygon.leftPoints.push(prevPolygon.bottomLeft); + } + // reverse the left half so we get a counterclockwise circle: + prevPolygon.outPolygon.leftPoints.reverse(); + const points2d = prevPolygon.outPolygon.rightPoints.concat(prevPolygon.outPolygon.leftPoints); + const vertices3d = points2d.map((point2d) => orthonormalFormula.to3D(point2d)); + const polygon = fromVerticesAndPlane(vertices3d, plane$1); // TODO support shared + + // if we let empty polygon out, next retesselate will crash + if (polygon.vertices.length) destPolygons.push(polygon); + } + } + } // if(yIndex > 0) + for (let i = 0; i < newOutPolygonRow.length; i++) { + const thisPolygon = newOutPolygonRow[i]; + if (!thisPolygon.outPolygon) { + // polygon starts here: + thisPolygon.outPolygon = { + leftPoints: [], + rightPoints: [] + }; + thisPolygon.outPolygon.leftPoints.push(thisPolygon.topLeft); + if (distance(thisPolygon.topLeft, thisPolygon.topRight) > EPS) { + // we have a horizontal line at the top: + thisPolygon.outPolygon.rightPoints.push(thisPolygon.topRight); + } + } else { + // continuation of a previous row + if (!thisPolygon.leftLineContinues) { + thisPolygon.outPolygon.leftPoints.push(thisPolygon.topLeft); + } + if (!thisPolygon.rightLineContinues) { + thisPolygon.outPolygon.rightPoints.push(thisPolygon.topRight); + } + } + } + prevOutPolygonRow = newOutPolygonRow; + } // for yIndex + return destPolygons +}; + +const coplanar$1 = (plane1, plane2) => { + // expect the same distance from the origin, within tolerance + if (Math.abs(plane1[3] - plane2[3]) < 0.00000015) { + return aboutEqualNormals(plane1, plane2) + } + return false +}; + +/* + After boolean operations all coplanar polygon fragments are joined by a retesselating + operation. geom3.reTesselate(geom). + Retesselation is done through a linear sweep over the polygon surface. + The sweep line passes over the y coordinates of all vertices in the polygon. + Polygons are split at each sweep line, and the fragments are joined horizontally and vertically into larger polygons + (making sure that we will end up with convex polygons). +*/ +const retessellate = (geometry) => { + if (geometry.isRetesselated) { + return geometry + } + + const polygons = toPolygons$1(geometry); + const polygonsPerPlane = []; // elements: [plane, [poly3...]] + polygons.forEach((polygon) => { + const mapping = polygonsPerPlane.find((element) => coplanar$1(element[0], plane(polygon))); + if (mapping) { + const polygons = mapping[1]; + polygons.push(polygon); + } else { + polygonsPerPlane.push([plane(polygon), [polygon]]); + } + }); + + let destPolygons = []; + polygonsPerPlane.forEach((mapping) => { + const sourcePolygons = mapping[1]; + const retesselatedPolygons = reTesselateCoplanarPolygons(sourcePolygons); + destPolygons = destPolygons.concat(retesselatedPolygons); + }); + + const result = create$8(destPolygons); + result.isRetesselated = true; + + return result +}; + +// # class Node +// Holds a node in a BSP tree. +// A BSP tree is built from a collection of polygons by picking a polygon to split along. +// Polygons are not stored directly in the tree, but in PolygonTreeNodes, stored in this.polygontreenodes. +// Those PolygonTreeNodes are children of the owning Tree.polygonTree. +// This is not a leafy BSP tree since there is no distinction between internal and leaf nodes. +class Node { + constructor (parent) { + this.plane = null; + this.front = null; + this.back = null; + this.polygontreenodes = []; + this.parent = parent; + } + + // Convert solid space to empty space and empty space to solid space. + invert () { + const queue = [this]; + let node; + for (let i = 0; i < queue.length; i++) { + node = queue[i]; + if (node.plane) node.plane = flip(create$6(), node.plane); + if (node.front) queue.push(node.front); + if (node.back) queue.push(node.back); + const temp = node.front; + node.front = node.back; + node.back = temp; + } + } + + // clip polygontreenodes to our plane + // calls remove() for all clipped PolygonTreeNodes + clipPolygons (polygonTreeNodes, alsoRemoveCoplanarFront) { + let current = { node: this, polygonTreeNodes }; + let node; + const stack = []; + + do { + node = current.node; + polygonTreeNodes = current.polygonTreeNodes; + + if (node.plane) { + const plane = node.plane; + + const backNodes = []; + const frontNodes = []; + const coplanarFrontNodes = alsoRemoveCoplanarFront ? backNodes : frontNodes; + polygonTreeNodes.forEach((treeNode) => { + if (!treeNode.isRemoved()) { + // split this polygon tree node using the plane + // NOTE: children are added to the tree if there are spanning polygons + treeNode.splitByPlane(plane, coplanarFrontNodes, backNodes, frontNodes, backNodes); + } + }); + + if (node.front && (frontNodes.length > 0)) { + // add front node for further splitting + stack.push({ node: node.front, polygonTreeNodes: frontNodes }); + } + const numBackNodes = backNodes.length; + if (node.back && (numBackNodes > 0)) { + // add back node for further splitting + stack.push({ node: node.back, polygonTreeNodes: backNodes }); + } else { + // remove all back nodes from processing + for (let i = 0; i < numBackNodes; i++) { + backNodes[i].remove(); + } + } + } + current = stack.pop(); + } while (current !== undefined) + } + + // Remove all polygons in this BSP tree that are inside the other BSP tree + // `tree`. + clipTo (tree, alsoRemoveCoplanarFront) { + let node = this; + const stack = []; + do { + if (node.polygontreenodes.length > 0) { + tree.rootnode.clipPolygons(node.polygontreenodes, alsoRemoveCoplanarFront); + } + if (node.front) stack.push(node.front); + if (node.back) stack.push(node.back); + node = stack.pop(); + } while (node !== undefined) + } + + addPolygonTreeNodes (newPolygonTreeNodes) { + let current = { node: this, polygonTreeNodes: newPolygonTreeNodes }; + const stack = []; + do { + const node = current.node; + const polygonTreeNodes = current.polygonTreeNodes; + const len = polygonTreeNodes.length; + + if (len === 0) { + current = stack.pop(); + continue + } + if (!node.plane) { + let index = 0; // default + index = Math.floor(len / 2); + // index = len >> 1 + // index = Math.floor(Math.random() * len) + const bestPoly = polygonTreeNodes[index].getPolygon(); + node.plane = plane(bestPoly); + } + const frontNodes = []; + const backNodes = []; + for (let i = 0; i < len; ++i) { + polygonTreeNodes[i].splitByPlane(node.plane, node.polygontreenodes, backNodes, frontNodes, backNodes); + } + + if (frontNodes.length > 0) { + if (!node.front) node.front = new Node(node); + + // unable to split by any of the current nodes + const stopCondition = len === frontNodes.length && backNodes.length === 0; + if (stopCondition) node.front.polygontreenodes = frontNodes; + else stack.push({ node: node.front, polygonTreeNodes: frontNodes }); + } + if (backNodes.length > 0) { + if (!node.back) node.back = new Node(node); + + // unable to split by any of the current nodes + const stopCondition = len === backNodes.length && frontNodes.length === 0; + + if (stopCondition) node.back.polygontreenodes = backNodes; + else stack.push({ node: node.back, polygonTreeNodes: backNodes }); + } + + current = stack.pop(); + } while (current !== undefined) + } +} + +const splitLineSegmentByPlane = (plane, p1, p2) => { + const direction = subtract$3(create$b(), p2, p1); + let lambda = (plane[3] - dot$2(plane, p1)) / dot$2(plane, direction); + if (Number.isNaN(lambda)) lambda = 0; + if (lambda > 1) lambda = 1; + if (lambda < 0) lambda = 0; + + scale$3(direction, direction, lambda); + add$1(direction, p1, direction); + return direction +}; + +// Returns object: +// .type: +// 0: coplanar-front +// 1: coplanar-back +// 2: front +// 3: back +// 4: spanning +// In case the polygon is spanning, returns: +// .front: a Polygon3 of the front part +// .back: a Polygon3 of the back part +const splitPolygonByPlane = (splane, polygon) => { + const result = { + type: null, + front: null, + back: null + }; + // cache in local lets (speedup): + const vertices = polygon.vertices; + const numVertices = vertices.length; + const pplane = plane(polygon); + if (equals$5(pplane, splane)) { + result.type = 0; + } else { + let hasFront = false; + let hasBack = false; + const vertexIsBack = []; + const MINEPS = -EPS; + for (let i = 0; i < numVertices; i++) { + const t = dot$2(splane, vertices[i]) - splane[3]; + const isback = (t < MINEPS); + vertexIsBack.push(isback); + if (t > EPS) hasFront = true; + if (t < MINEPS) hasBack = true; + } + if ((!hasFront) && (!hasBack)) { + // all points coplanar + const t = dot$2(splane, pplane); + result.type = (t >= 0) ? 0 : 1; + } else if (!hasBack) { + result.type = 2; + } else if (!hasFront) { + result.type = 3; + } else { + // spanning + result.type = 4; + const frontVertices = []; + const backVertices = []; + let isback = vertexIsBack[0]; + for (let vertexIndex = 0; vertexIndex < numVertices; vertexIndex++) { + const vertex = vertices[vertexIndex]; + let nextVertexIndex = vertexIndex + 1; + if (nextVertexIndex >= numVertices) nextVertexIndex = 0; + const nextIsBack = vertexIsBack[nextVertexIndex]; + if (isback === nextIsBack) { + // line segment is on one side of the plane: + if (isback) { + backVertices.push(vertex); + } else { + frontVertices.push(vertex); + } + } else { + // line segment intersects plane: + const nextPoint = vertices[nextVertexIndex]; + const intersectionPoint = splitLineSegmentByPlane(splane, vertex, nextPoint); + if (isback) { + backVertices.push(vertex); + backVertices.push(intersectionPoint); + frontVertices.push(intersectionPoint); + } else { + frontVertices.push(vertex); + frontVertices.push(intersectionPoint); + backVertices.push(intersectionPoint); + } + } + isback = nextIsBack; + } // for vertexIndex + // remove duplicate vertices: + const EPS_SQUARED = EPS * EPS; + if (backVertices.length >= 3) { + let prevVertex = backVertices[backVertices.length - 1]; + for (let vertexIndex = 0; vertexIndex < backVertices.length; vertexIndex++) { + const vertex = backVertices[vertexIndex]; + if (squaredDistance$1(vertex, prevVertex) < EPS_SQUARED) { + backVertices.splice(vertexIndex, 1); + vertexIndex--; + } + prevVertex = vertex; + } + } + if (frontVertices.length >= 3) { + let prevVertex = frontVertices[frontVertices.length - 1]; + for (let vertexIndex = 0; vertexIndex < frontVertices.length; vertexIndex++) { + const vertex = frontVertices[vertexIndex]; + if (squaredDistance$1(vertex, prevVertex) < EPS_SQUARED) { + frontVertices.splice(vertexIndex, 1); + vertexIndex--; + } + prevVertex = vertex; + } + } + if (frontVertices.length >= 3) { + result.front = fromVerticesAndPlane(frontVertices, pplane); + } + if (backVertices.length >= 3) { + result.back = fromVerticesAndPlane(backVertices, pplane); + } + } + } + return result +}; + +// # class PolygonTreeNode +// This class manages hierarchical splits of polygons. +// At the top is a root node which does not hold a polygon, only child PolygonTreeNodes. +// Below that are zero or more 'top' nodes; each holds a polygon. +// The polygons can be in different planes. +// splitByPlane() splits a node by a plane. If the plane intersects the polygon, +// two new child nodes are created holding the split polygon. +// getPolygons() retrieves the polygons from the tree. If for PolygonTreeNode the polygon is split but +// the two split parts (child nodes) are still intact, then the unsplit polygon is returned. +// This ensures that we can safely split a polygon into many fragments. If the fragments are untouched, +// getPolygons() will return the original unsplit polygon instead of the fragments. +// remove() removes a polygon from the tree. Once a polygon is removed, the parent polygons are invalidated +// since they are no longer intact. +class PolygonTreeNode { + // constructor creates the root node + constructor (parent, polygon) { + this.parent = parent; + this.children = []; + this.polygon = polygon; + this.removed = false; // state of branch or leaf + } + + // fill the tree with polygons. Should be called on the root node only; child nodes must + // always be a derivate (split) of the parent node. + addPolygons (polygons) { + // new polygons can only be added to root node; children can only be split polygons + if (!this.isRootNode()) { + throw new Error('Assertion failed') + } + const _this = this; + polygons.forEach((polygon) => { + _this.addChild(polygon); + }); + } + + // remove a node + // - the siblings become toplevel nodes + // - the parent is removed recursively + remove () { + if (!this.removed) { + this.removed = true; + this.polygon = null; + + // remove ourselves from the parent's children list: + const parentschildren = this.parent.children; + const i = parentschildren.indexOf(this); + if (i < 0) throw new Error('Assertion failed') + parentschildren.splice(i, 1); + + // invalidate the parent's polygon, and of all parents above it: + this.parent.recursivelyInvalidatePolygon(); + } + } + + isRemoved () { + return this.removed + } + + isRootNode () { + return !this.parent + } + + // invert all polygons in the tree. Call on the root node + invert () { + if (!this.isRootNode()) throw new Error('Assertion failed') // can only call this on the root node + this.invertSub(); + } + + getPolygon () { + if (!this.polygon) throw new Error('Assertion failed') // doesn't have a polygon, which means that it has been broken down + return this.polygon + } + + getPolygons (result) { + let children = [this]; + const queue = [children]; + let i, j, l, node; + for (i = 0; i < queue.length; ++i) { // queue size can change in loop, don't cache length + children = queue[i]; + for (j = 0, l = children.length; j < l; j++) { // ok to cache length + node = children[j]; + if (node.polygon) { + // the polygon hasn't been broken yet. We can ignore the children and return our polygon: + result.push(node.polygon); + } else { + // our polygon has been split up and broken, so gather all subpolygons from the children + if (node.children.length > 0) queue.push(node.children); + } + } + } + } + + // split the node by a plane; add the resulting nodes to the frontNodes and backNodes array + // If the plane doesn't intersect the polygon, the 'this' object is added to one of the arrays + // If the plane does intersect the polygon, two new child nodes are created for the front and back fragments, + // and added to both arrays. + splitByPlane (plane, coplanarFrontNodes, coplanarBackNodes, frontNodes, backNodes) { + if (this.children.length) { + const queue = [this.children]; + let i; + let j; + let l; + let node; + let nodes; + for (i = 0; i < queue.length; i++) { // queue.length can increase, do not cache + nodes = queue[i]; + for (j = 0, l = nodes.length; j < l; j++) { // ok to cache length + node = nodes[j]; + if (node.children.length > 0) { + queue.push(node.children); + } else { + // no children. Split the polygon: + node._splitByPlane(plane, coplanarFrontNodes, coplanarBackNodes, frontNodes, backNodes); + } + } + } + } else { + this._splitByPlane(plane, coplanarFrontNodes, coplanarBackNodes, frontNodes, backNodes); + } + } + + // only to be called for nodes with no children + _splitByPlane (splane, coplanarFrontNodes, coplanarBackNodes, frontNodes, backNodes) { + const polygon = this.polygon; + if (polygon) { + const bound = measureBoundingSphere$1(polygon); + const sphereRadius = bound[3] + EPS; // ensure radius is LARGER then polygon + const sphereCenter = bound; + const d = dot$2(splane, sphereCenter) - splane[3]; + if (d > sphereRadius) { + frontNodes.push(this); + } else if (d < -sphereRadius) { + backNodes.push(this); + } else { + const splitResult = splitPolygonByPlane(splane, polygon); + switch (splitResult.type) { + case 0: + // coplanar front: + coplanarFrontNodes.push(this); + break + + case 1: + // coplanar back: + coplanarBackNodes.push(this); + break + + case 2: + // front: + frontNodes.push(this); + break + + case 3: + // back: + backNodes.push(this); + break + + case 4: + // spanning: + if (splitResult.front) { + const frontNode = this.addChild(splitResult.front); + frontNodes.push(frontNode); + } + if (splitResult.back) { + const backNode = this.addChild(splitResult.back); + backNodes.push(backNode); + } + break + } + } + } + } + + // PRIVATE methods from here: + // add child to a node + // this should be called whenever the polygon is split + // a child should be created for every fragment of the split polygon + // returns the newly created child + addChild (polygon) { + const newChild = new PolygonTreeNode(this, polygon); + this.children.push(newChild); + return newChild + } + + invertSub () { + let children = [this]; + const queue = [children]; + let i, j, l, node; + for (i = 0; i < queue.length; i++) { + children = queue[i]; + for (j = 0, l = children.length; j < l; j++) { + node = children[j]; + if (node.polygon) { + node.polygon = invert$1(node.polygon); + } + if (node.children.length > 0) queue.push(node.children); + } + } + } + + // private method + // remove the polygon from the node, and all parent nodes above it + // called to invalidate parents of removed nodes + recursivelyInvalidatePolygon () { + this.polygon = null; + if (this.parent) { + this.parent.recursivelyInvalidatePolygon(); + } + } + + clear () { + let children = [this]; + const queue = [children]; + for (let i = 0; i < queue.length; ++i) { // queue size can change in loop, don't cache length + children = queue[i]; + const l = children.length; + for (let j = 0; j < l; j++) { + const node = children[j]; + if (node.polygon) { + node.polygon = null; + } + if (node.parent) { + node.parent = null; + } + if (node.children.length > 0) queue.push(node.children); + node.children = []; + } + } + } + + toString () { + let result = ''; + let children = [this]; + const queue = [children]; + let i, j, l, node; + for (i = 0; i < queue.length; ++i) { // queue size can change in loop, don't cache length + children = queue[i]; + const prefix = ' '.repeat(i); + for (j = 0, l = children.length; j < l; j++) { // ok to cache length + node = children[j]; + result += `${prefix}PolygonTreeNode (${node.isRootNode()}): ${node.children.length}`; + if (node.polygon) { + result += `\n ${prefix}polygon: ${node.polygon.vertices}\n`; + } else { + result += '\n'; + } + if (node.children.length > 0) queue.push(node.children); + } + } + return result + } +} + +// # class Tree +// This is the root of a BSP tree. +// This separate class for the root of the tree in order to hold the PolygonTreeNode root. +// The actual tree is kept in this.rootnode +class Tree { + constructor (polygons) { + this.polygonTree = new PolygonTreeNode(); + this.rootnode = new Node(null); + if (polygons) this.addPolygons(polygons); + } + + invert () { + this.polygonTree.invert(); + this.rootnode.invert(); + } + + // Remove all polygons in this BSP tree that are inside the other BSP tree + // `tree`. + clipTo (tree, alsoRemoveCoplanarFront = false) { + this.rootnode.clipTo(tree, alsoRemoveCoplanarFront); + } + + allPolygons () { + const result = []; + this.polygonTree.getPolygons(result); + return result + } + + addPolygons (polygons) { + const polygonTreeNodes = new Array(polygons.length); + for (let i = 0; i < polygons.length; i++) { + polygonTreeNodes[i] = this.polygonTree.addChild(polygons[i]); + } + this.rootnode.addPolygonTreeNodes(polygonTreeNodes); + } + + clear () { + this.polygonTree.clear(); + } + + toString () { + return 'Tree: ' + this.polygonTree.toString('') + } +} + +/* + * Determine if the given geometries overlap by comparing min and max bounds. + * NOTE: This is used in union for performance gains. + * @param {geom3} geometry1 - geometry for comparison + * @param {geom3} geometry2 - geometry for comparison + * @returns {boolean} true if the geometries overlap + */ +const mayOverlap = (geometry1, geometry2) => { + // FIXME accessing the data structure of the geometry should not be allowed + if ((geometry1.polygons.length === 0) || (geometry2.polygons.length === 0)) { + return false + } + + const bounds1 = measureBoundingBox(geometry1); + const min1 = bounds1[0]; + const max1 = bounds1[1]; + + const bounds2 = measureBoundingBox(geometry2); + const min2 = bounds2[0]; + const max2 = bounds2[1]; + + if ((min2[0] - max1[0]) > EPS) return false + if ((min1[0] - max2[0]) > EPS) return false + if ((min2[1] - max1[1]) > EPS) return false + if ((min1[1] - max2[1]) > EPS) return false + if ((min2[2] - max1[2]) > EPS) return false + if ((min1[2] - max2[2]) > EPS) return false + return true +}; + +/* + * Return a new 3D geometry representing the space in both the first geometry and + * the second geometry. None of the given geometries are modified. + * @param {geom3} geometry1 - a geometry + * @param {geom3} geometry2 - a geometry + * @returns {geom3} new 3D geometry + */ +const intersectGeom3Sub = (geometry1, geometry2) => { + if (!mayOverlap(geometry1, geometry2)) { + return create$8() // empty geometry + } + + const a = new Tree(toPolygons$1(geometry1)); + const b = new Tree(toPolygons$1(geometry2)); + + a.invert(); + b.clipTo(a); + b.invert(); + a.clipTo(b); + b.clipTo(a); + a.addPolygons(b.allPolygons()); + a.invert(); + + const newPolygons = a.allPolygons(); + return create$8(newPolygons) +}; + +/* + * Return a new 3D geometry representing space in both the first geometry and + * in the subsequent geometries. None of the given geometries are modified. + * @param {...geom3} geometries - list of 3D geometries + * @returns {geom3} new 3D geometry + */ +const intersectGeom3 = (...geometries) => { + geometries = flatten(geometries); + + let newGeometry = geometries.shift(); + geometries.forEach((geometry) => { + newGeometry = intersectGeom3Sub(newGeometry, geometry); + }); + + newGeometry = retessellate(newGeometry); + return newGeometry +}; + +/** + * Return a new geometry representing space in both the first geometry and + * all subsequent geometries. + * The given geometries should be of the same type, either geom2 or geom3. + * + * @param {...Object} geometries - list of geometries + * @returns {geom2|geom3} a new geometry + * @alias module:modeling/booleans.intersect + * + * @example + * let myshape = intersect(cube({size: [5,5,5]}), cube({size: [5,5,5], center: [5,5,5]})) + * + * @example + * +-------+ + * | | + * | A | + * | +--+----+ = +--+ + * +----+--+ | +--+ + * | B | + * | | + * +-------+ + */ +const intersect = (...geometries) => { + geometries = flatten(geometries); + if (geometries.length === 0) throw new Error('wrong number of arguments') + + if (!areAllShapesTheSameType(geometries)) { + throw new Error('only intersect of the types are supported') + } + + const geometry = geometries[0]; + // if (path.isA(geometry)) return intersectPath(matrix, geometries) + if (isA$5(geometry)) return intersectGeom2(geometries) + if (isA$3(geometry)) return intersectGeom3(geometries) + return geometry +}; + +// returns array numerically sorted and duplicates removed +const sortNb = (array) => array.sort((a, b) => a - b).filter((item, pos, ary) => !pos || item !== ary[pos - 1]); + +const insertMapping = (map, vertex, index) => { + const key = `${vertex}`; + const mapping = map.get(key); + if (mapping === undefined) { + map.set(key, [index]); + } else { + mapping.push(index); + } +}; + +const findMapping = (map, vertex) => { + const key = `${vertex}`; + return map.get(key) +}; + +const scissionGeom3 = (geometry) => { + // construit table de correspondance entre polygones + // build polygons lookup table + const eps = measureEpsilon(geometry); + const polygons = toPolygons$1(geometry); + const pl = polygons.length; + + const indexesPerVertex = new Map(); + const temp = create$b(); + polygons.forEach((polygon, index) => { + polygon.vertices.forEach((vertex) => { + insertMapping(indexesPerVertex, snap$2(temp, vertex, eps), index); + }); + }); + + const indexesPerPolygon = polygons.map((polygon) => { + let indexes = []; + polygon.vertices.forEach((vertex) => { + indexes = indexes.concat(findMapping(indexesPerVertex, snap$2(temp, vertex, eps))); + }); + return { e: 1, d: sortNb(indexes) } // for each polygon, push the list of indexes + }); + + indexesPerVertex.clear(); + + // regroupe les correspondances des polygones se touchant + // boucle ne s'arrêtant que quand deux passages retournent le même nb de polygones + // merge lookup data from linked polygons as long as possible + let merges = 0; + const ippl = indexesPerPolygon.length; + for (let i = 0; i < ippl; i++) { + const mapi = indexesPerPolygon[i]; + // merge mappings if necessary + if (mapi.e > 0) { + const indexes = new Array(pl); + indexes[i] = true; // include ourself + do { + merges = 0; + // loop through the known indexes + indexes.forEach((e, j) => { + const mapj = indexesPerPolygon[j]; + // merge this mapping if necessary + if (mapj.e > 0) { + mapj.e = -1; // merged + for (let d = 0; d < mapj.d.length; d++) { + indexes[mapj.d[d]] = true; + } + merges++; + } + }); + } while (merges > 0) + mapi.indexes = indexes; + } + } + + // construit le tableau des geometry à retourner + // build array of geometry to return + const newgeometries = []; + for (let i = 0; i < ippl; i++) { + if (indexesPerPolygon[i].indexes) { + const newpolygons = []; + indexesPerPolygon[i].indexes.forEach((e, p) => newpolygons.push(polygons[p])); + newgeometries.push(create$8(newpolygons)); + } + } + + return newgeometries +}; + +/** + * Scission (divide) the given geometry into the component pieces. + * + * @param {...Object} objects - list of geometries + * @returns {Array} list of pieces from each geometry + * @alias module:modeling/booleans.scission + * + * @example + * let figure = use('./my.stl') + * let pieces = scission(figure) + * + * @example + * +-------+ +-------+ + * | | | | + * | +---+ | A +---+ + * | | +---+ = | | +---+ + * +---+ | | +---+ | | + * +---+ | +---+ | + * | | | B | + * +-------+ +-------+ + */ +const scission = (...objects) => { + objects = flatten(objects); + if (objects.length === 0) throw new Error('wrong number of arguments') + + const results = objects.map((object) => { + // if (path2.isA(object)) return path2.transform(matrix, object) + // if (geom2.isA(object)) return geom2.transform(matrix, object) + if (isA$3(object)) return scissionGeom3(object) + return object + }); + return results.length === 1 ? results[0] : results +}; + +/* + * Return a new 2D geometry representing space in the first geometry but + * not in the subsequent geometries. None of the given geometries are modified. + * @param {...geom2} geometries - list of geometries + * @returns {geom2} new 2D geometry + */ +const subtractGeom2 = (...geometries) => { + geometries = flatten(geometries); + + let newGeometry = geometries.shift(); + geometries.forEach((geometry) => { + newGeometry = boolean(newGeometry, geometry, DIFFERENCE); + }); + + return newGeometry +}; + +/* + * Return a new 3D geometry representing the space in the first geometry but not + * in the second geometry. None of the given geometries are modified. + * @param {geom3} geometry1 - a geometry + * @param {geom3} geometry2 - a geometry + * @returns {geom3} new 3D geometry + */ +const subtractGeom3Sub = (geometry1, geometry2) => { + if (!mayOverlap(geometry1, geometry2)) { + return clone$7(geometry1) + } + + const a = new Tree(toPolygons$1(geometry1)); + const b = new Tree(toPolygons$1(geometry2)); + + a.invert(); + a.clipTo(b); + b.clipTo(a, true); + a.addPolygons(b.allPolygons()); + a.invert(); + + const newPolygons = a.allPolygons(); + return create$8(newPolygons) +}; + +/* + * Return a new 3D geometry representing space in this geometry but not in the given geometries. + * Neither this geometry nor the given geometries are modified. + * @param {...geom3} geometries - list of geometries + * @returns {geom3} new 3D geometry + */ +const subtractGeom3 = (...geometries) => { + geometries = flatten(geometries); + + let newGeometry = geometries.shift(); + geometries.forEach((geometry) => { + newGeometry = subtractGeom3Sub(newGeometry, geometry); + }); + + newGeometry = retessellate(newGeometry); + return newGeometry +}; + +/** + * Return a new geometry representing space in the first geometry but + * not in all subsequent geometries. + * The given geometries should be of the same type, either geom2 or geom3. + * + * @param {...Object} geometries - list of geometries + * @returns {geom2|geom3} a new geometry + * @alias module:modeling/booleans.subtract + * + * @example + * let myshape = subtract(cuboid({size: [5,5,5]}), cuboid({size: [5,5,5], center: [5,5,5]})) + * + * @example + * +-------+ +-------+ + * | | | | + * | A | | | + * | +--+----+ = | +--+ + * +----+--+ | +----+ + * | B | + * | | + * +-------+ + */ +const subtract = (...geometries) => { + geometries = flatten(geometries); + if (geometries.length === 0) throw new Error('wrong number of arguments') + + if (!areAllShapesTheSameType(geometries)) { + throw new Error('only subtract of the types are supported') + } + + const geometry = geometries[0]; + // if (path.isA(geometry)) return subtractPath(matrix, geometries) + if (isA$5(geometry)) return subtractGeom2(geometries) + if (isA$3(geometry)) return subtractGeom3(geometries) + return geometry +}; + +/* + * Return a new 2D geometry representing the total space in the given 2D geometries. + * @param {...geom2} geometries - list of 2D geometries to union + * @returns {geom2} new 2D geometry + */ +const unionGeom2 = (...geometries) => { + geometries = flatten(geometries); + + let newGeometry = geometries.shift(); + geometries.forEach((geometry) => { + newGeometry = boolean(newGeometry, geometry, UNION); + }); + + return newGeometry +}; + +/* + * Return a new 3D geometry representing the space in the given geometries. + * @param {geom3} geometry1 - geometry to union + * @param {geom3} geometry2 - geometry to union + * @returns {geom3} new 3D geometry + */ +const unionGeom3Sub = (geometry1, geometry2) => { + if (!mayOverlap(geometry1, geometry2)) { + return unionForNonIntersecting(geometry1, geometry2) + } + + const a = new Tree(toPolygons$1(geometry1)); + const b = new Tree(toPolygons$1(geometry2)); + + a.clipTo(b, false); + // b.clipTo(a, true); // ERROR: doesn't work + b.clipTo(a); + b.invert(); + b.clipTo(a); + b.invert(); + + const newPolygons = a.allPolygons().concat(b.allPolygons()); + return create$8(newPolygons) +}; + +// Like union, but when we know that the two solids are not intersecting +// Do not use if you are not completely sure that the solids do not intersect! +const unionForNonIntersecting = (geometry1, geometry2) => { + let newpolygons = toPolygons$1(geometry1); + newpolygons = newpolygons.concat(toPolygons$1(geometry2)); + return create$8(newpolygons) +}; + +/* + * Return a new 3D geometry representing the space in the given 3D geometries. + * @param {...objects} geometries - list of geometries to union + * @returns {geom3} new 3D geometry + */ +const unionGeom3 = (...geometries) => { + geometries = flatten(geometries); + + // combine geometries in a way that forms a balanced binary tree pattern + let i; + for (i = 1; i < geometries.length; i += 2) { + geometries.push(unionGeom3Sub(geometries[i - 1], geometries[i])); + } + let newGeometry = geometries[i - 1]; + newGeometry = retessellate(newGeometry); + return newGeometry +}; + +/** + * Return a new geometry representing the total space in the given geometries. + * The given geometries should be of the same type, either geom2 or geom3. + * + * @param {...Object} geometries - list of geometries + * @returns {geom2|geom3} a new geometry + * @alias module:modeling/booleans.union + * + * @example + * let myshape = union(cube({size: [5,5,5]}), cube({size: [5,5,5], center: [5,5,5]})) + * + * @example + * +-------+ +-------+ + * | | | | + * | A | | | + * | +--+----+ = | +----+ + * +----+--+ | +----+ | + * | B | | | + * | | | | + * +-------+ +-------+ + */ +const union = (...geometries) => { + geometries = flatten(geometries); + if (geometries.length === 0) throw new Error('wrong number of arguments') + + if (!areAllShapesTheSameType(geometries)) { + throw new Error('only unions of the same type are supported') + } + + const geometry = geometries[0]; + // if (path.isA(geometry)) return unionPath(matrix, geometries) + if (isA$5(geometry)) return unionGeom2(geometries) + if (isA$3(geometry)) return unionGeom3(geometries) + return geometry +}; + +/** + * All shapes (primitives or the results of operations) can be passed to boolean functions + * to perform logical operations, e.g. remove a hole from a board. + * In all cases, the function returns the results, and never changes the original shapes. + * @module modeling/booleans + * @example + * import { booleans } from '@jscad/modeling' + * const { intersect, scission, subtract, union } = booleans + */ + +var index$5 = /*#__PURE__*/Object.freeze({ + __proto__: null, + intersect: intersect, + scission: scission, + subtract: subtract, + union: union +}); + +/* + * Create a set of offset points from the given points using the given options (if any). + * @param {Object} options - options for offset + * @param {Float} [options.delta=1] - delta of offset (+ to exterior, - from interior) + * @param {String} [options.corners='edge'] - type corner to create during of expansion; edge, chamfer, round + * @param {Integer} [options.segments=16] - number of segments when creating round corners + * @param {Integer} [options.closed=false] - is the last point connected back to the first point? + * @param {Array} points - array of 2D points + * @returns {Array} new set of offset points, plus points for each rounded corner + */ +const offsetFromPoints = (options, points) => { + const defaults = { + delta: 1, + corners: 'edge', + closed: false, + segments: 16 + }; + let { delta, corners, closed, segments } = Object.assign({ }, defaults, options); + + if (Math.abs(delta) < EPS) return points + + let rotation = options.closed ? area$1(points) : 1.0; // + counter clockwise, - clockwise + if (rotation === 0) rotation = 1.0; + + // use right hand normal? + const orientation = ((rotation > 0) && (delta >= 0)) || ((rotation < 0) && (delta < 0)); + delta = Math.abs(delta); // sign is no longer required + + let previousSegment = null; + let newPoints = []; + const newCorners = []; + const of = create$9(); + const n = points.length; + for (let i = 0; i < n; i++) { + const j = (i + 1) % n; + const p0 = points[i]; + const p1 = points[j]; + // calculate the unit normal + orientation ? subtract$1(of, p0, p1) : subtract$1(of, p1, p0); + normal(of, of); + normalize(of, of); + // calculate the offset vector + scale$1(of, of, delta); + // calculate the new points (edge) + const n0 = add(create$9(), p0, of); + const n1 = add(create$9(), p1, of); + + const currentSegment = [n0, n1]; + if (previousSegment != null) { + if (closed || (!closed && j !== 0)) { + // check for intersection of new line segments + const ip = intersect$1(previousSegment[0], previousSegment[1], currentSegment[0], currentSegment[1], true); + if (ip) { + // adjust the previous points + newPoints.pop(); + // adjust current points + currentSegment[0] = ip; + } else { + newCorners.push({ c: p0, s0: previousSegment, s1: currentSegment }); + } + } + } + previousSegment = [n0, n1]; + + if (j === 0 && !closed) continue + + newPoints.push(currentSegment[0]); + newPoints.push(currentSegment[1]); + } + // complete the closure if required + if (closed && previousSegment != null) { + // check for intersection of closing line segments + const n0 = newPoints[0]; + const n1 = newPoints[1]; + const ip = intersect$1(previousSegment[0], previousSegment[1], n0, n1, true); + if (ip) { + // adjust the previous points + newPoints[0] = ip; + newPoints.pop(); + } else { + const p0 = points[0]; + const currentSegment = [n0, n1]; + newCorners.push({ c: p0, s0: previousSegment, s1: currentSegment }); + } + } + + // generate corners if necessary + + if (corners === 'edge') { + // map for fast point index lookup + const pointIndex = new Map(); // {point: index} + newPoints.forEach((point, index) => pointIndex.set(point, index)); + + // create edge corners + const line0 = create$1(); + const line1 = create$1(); + newCorners.forEach((corner) => { + fromPoints$1(line0, corner.s0[0], corner.s0[1]); + fromPoints$1(line1, corner.s1[0], corner.s1[1]); + const ip = intersectPointOfLines(line0, line1); + if (Number.isFinite(ip[0]) && Number.isFinite(ip[1])) { + const p0 = corner.s0[1]; + const i = pointIndex.get(p0); + newPoints[i] = ip; + newPoints[(i + 1) % newPoints.length] = undefined; + } else { + // parallel segments, drop one + const p0 = corner.s1[0]; + const i = pointIndex.get(p0); + newPoints[i] = undefined; + } + }); + newPoints = newPoints.filter((p) => p !== undefined); + } + + if (corners === 'round') { + // create rounded corners + let cornerSegments = Math.floor(segments / 4); + const v0 = create$9(); + newCorners.forEach((corner) => { + // calculate angle of rotation + let rotation = angleRadians(subtract$1(v0, corner.s1[0], corner.c)); + rotation -= angleRadians(subtract$1(v0, corner.s0[1], corner.c)); + if (orientation && rotation < 0) { + rotation = rotation + Math.PI; + if (rotation < 0) rotation = rotation + Math.PI; + } + if ((!orientation) && rotation > 0) { + rotation = rotation - Math.PI; + if (rotation > 0) rotation = rotation - Math.PI; + } + + if (rotation !== 0.0) { + // generate the segments + cornerSegments = Math.floor(segments * (Math.abs(rotation) / TAU)); + const step = rotation / cornerSegments; + const start = angleRadians(subtract$1(v0, corner.s0[1], corner.c)); + const cornerPoints = []; + for (let i = 1; i < cornerSegments; i++) { + const radians = start + (step * i); + const point = fromAngleRadians(create$9(), radians); + scale$1(point, point, delta); + add(point, point, corner.c); + cornerPoints.push(point); + } + if (cornerPoints.length > 0) { + const p0 = corner.s0[1]; + let i = newPoints.findIndex((point) => equals$6(p0, point)); + i = (i + 1) % newPoints.length; + newPoints.splice(i, 0, ...cornerPoints); + } + } else { + // parallel segments, drop one + const p0 = corner.s1[0]; + const i = newPoints.findIndex((point) => equals$6(p0, point)); + newPoints.splice(i, 1); + } + }); + } + return newPoints +}; + +/* + * Expand the given geometry (geom2) using the given options (if any). + * @param {Object} options - options for expand + * @param {Number} [options.delta=1] - delta (+/-) of expansion + * @param {String} [options.corners='edge'] - type corner to create during of expansion; edge, chamfer, round + * @param {Integer} [options.segments=16] - number of segments when creating round corners + * @param {geom2} geometry - the geometry to expand + * @returns {geom2} expanded geometry + */ +const expandGeom2 = (options, geometry) => { + const defaults = { + delta: 1, + corners: 'edge', + segments: 16 + }; + const { delta, corners, segments } = Object.assign({ }, defaults, options); + + if (!(corners === 'edge' || corners === 'chamfer' || corners === 'round')) { + throw new Error('corners must be "edge", "chamfer", or "round"') + } + + // convert the geometry to outlines, and generate offsets from each + const outlines = toOutlines(geometry); + const newOutlines = outlines.map((outline) => { + options = { + delta, + corners, + closed: true, + segments + }; + return offsetFromPoints(options, outline) + }); + + // create a composite geometry from the new outlines + return create$a(newOutlines) +}; + +// Extrude a polygon in the direction of the offset vector. +// Returns (geom3) a new geometry +const extrudePolygon = (offsetVector, polygon1) => { + const direction = dot$2(plane(polygon1), offsetVector); + if (direction > 0) { + polygon1 = invert$1(polygon1); + } + + const newPolygons = [polygon1]; + + const polygon2 = transform$7(fromTranslation(create$c(), offsetVector), polygon1); + const numVertices = polygon1.vertices.length; + for (let i = 0; i < numVertices; i++) { + const nexti = (i < (numVertices - 1)) ? i + 1 : 0; + const sideFacePolygon = create$7([ + polygon1.vertices[i], + polygon2.vertices[i], + polygon2.vertices[nexti], + polygon1.vertices[nexti] + ]); + newPolygons.push(sideFacePolygon); + } + newPolygons.push(invert$1(polygon2)); + + return create$8(newPolygons) +}; + +/* + * Collect all planes adjacent to each vertex + */ +const mapPlaneToVertex = (map, vertex, plane) => { + const key = vertex.toString(); + if (!map.has(key)) { + const entry = [vertex, [plane]]; + map.set(key, entry); + } else { + const planes = map.get(key)[1]; + planes.push(plane); + } +}; + +/* + * Collect all planes adjacent to each edge. + * Combine undirected edges, no need for duplicate cylinders. + */ +const mapPlaneToEdge = (map, edge, plane) => { + const key0 = edge[0].toString(); + const key1 = edge[1].toString(); + // Sort keys to make edges undirected + const key = key0 < key1 ? `${key0},${key1}` : `${key1},${key0}`; + if (!map.has(key)) { + const entry = [edge, [plane]]; + map.set(key, entry); + } else { + const planes = map.get(key)[1]; + planes.push(plane); + } +}; + +const addUniqueAngle = (map, angle) => { + const i = map.findIndex((item) => item === angle); + if (i < 0) { + map.push(angle); + } +}; + +/* + * Create the expanded shell of the solid: + * All faces are extruded to 2 times delta + * Cylinders are constructed around every side + * Spheres are placed on every vertex + * the result is a true expansion of the solid + * @param {Number} delta + * @param {Integer} segments + */ +const expandShell = (options, geometry) => { + const defaults = { + delta: 1, + segments: 12 + }; + const { delta, segments } = Object.assign({ }, defaults, options); + + let result = create$8(); + const vertices2planes = new Map(); // {vertex: [vertex, [plane, ...]]} + const edges2planes = new Map(); // {edge: [[vertex, vertex], [plane, ...]]} + + const v1 = create$b(); + const v2 = create$b(); + + // loop through the polygons + // - extruded the polygon, and add to the composite result + // - add the plane to the unique vertex map + // - add the plane to the unique edge map + const polygons = toPolygons$1(geometry); + polygons.forEach((polygon, index) => { + const extrudeVector = scale$3(create$b(), plane(polygon), 2 * delta); + const translatedPolygon = transform$7(fromTranslation(create$c(), scale$3(create$b(), extrudeVector, -0.5)), polygon); + const extrudedFace = extrudePolygon(extrudeVector, translatedPolygon); + result = unionGeom3Sub(result, extrudedFace); + + const vertices = polygon.vertices; + for (let i = 0; i < vertices.length; i++) { + mapPlaneToVertex(vertices2planes, vertices[i], plane(polygon)); + const j = (i + 1) % vertices.length; + const edge = [vertices[i], vertices[j]]; + mapPlaneToEdge(edges2planes, edge, plane(polygon)); + } + }); + + // now construct a cylinder on every side + // The cylinder is always an approximation of a true cylinder, having polygons + // around the sides. We will make sure though that the cylinder will have an edge at every + // face that touches this side. This ensures that we will get a smooth fill even + // if two edges are at, say, 10 degrees and the segments is low. + edges2planes.forEach((item) => { + const edge = item[0]; + const planes = item[1]; + const startVertex = edge[0]; + const endVertex = edge[1]; + + // our x,y and z vectors: + const zBase = subtract$3(create$b(), endVertex, startVertex); + normalize$1(zBase, zBase); + const xBase = planes[0]; + const yBase = cross$1(create$b(), xBase, zBase); + + // make a list of angles that the cylinder should traverse: + let angles = []; + + // first of all equally spaced around the cylinder: + for (let i = 0; i < segments; i++) { + addUniqueAngle(angles, (i * TAU / segments)); + } + + // and also at every normal of all touching planes: + for (let i = 0, iMax = planes.length; i < iMax; i++) { + const planeNormal = planes[i]; + const si = dot$2(yBase, planeNormal); + const co = dot$2(xBase, planeNormal); + let angle = Math.atan2(si, co); + + if (angle < 0) angle += TAU; + addUniqueAngle(angles, angle); + angle = Math.atan2(-si, -co); + if (angle < 0) angle += TAU; + addUniqueAngle(angles, angle); + } + + // this will result in some duplicate angles but we will get rid of those later. + angles = angles.sort(fnNumberSort); + + // Now construct the cylinder by traversing all angles: + const numAngles = angles.length; + let prevP1; + let prevP2; + const startFaceVertices = []; + const endFaceVertices = []; + const polygons = []; + for (let i = -1; i < numAngles; i++) { + const angle = angles[(i < 0) ? (i + numAngles) : i]; + const si = Math.sin(angle); + const co = Math.cos(angle); + scale$3(v1, xBase, co * delta); + scale$3(v2, yBase, si * delta); + add$1(v1, v1, v2); + const p1 = add$1(create$b(), startVertex, v1); + const p2 = add$1(create$b(), endVertex, v1); + let skip = false; + if (i >= 0) { + if (distance$1(p1, prevP1) < EPS) { + skip = true; + } + } + if (!skip) { + if (i >= 0) { + startFaceVertices.push(p1); + endFaceVertices.push(p2); + const vertices = [prevP2, p2, p1, prevP1]; + const polygon = create$7(vertices); + polygons.push(polygon); + } + prevP1 = p1; + prevP2 = p2; + } + } + endFaceVertices.reverse(); + polygons.push(create$7(startFaceVertices)); + polygons.push(create$7(endFaceVertices)); + + const cylinder = create$8(polygons); + result = unionGeom3Sub(result, cylinder); + }); + + // build spheres at each unique vertex + // We will try to set the x and z axis to the normals of 2 planes + // This will ensure that our sphere tesselation somewhat matches 2 planes + vertices2planes.forEach((item) => { + const vertex = item[0]; + const planes = item[1]; + // use the first normal to be the x axis of our sphere: + const xaxis = planes[0]; + // and find a suitable z axis. We will use the normal which is most perpendicular to the x axis: + let bestzaxis = null; + let bestzaxisOrthogonality = 0; + for (let i = 1; i < planes.length; i++) { + const normal = planes[i]; + const cross = cross$1(v1, xaxis, normal); + const crossLength = length$1(cross); + if (crossLength > 0.05) { // FIXME why 0.05? + if (crossLength > bestzaxisOrthogonality) { + bestzaxisOrthogonality = crossLength; + bestzaxis = normal; + } + } + } + if (!bestzaxis) { + bestzaxis = orthogonal(v1, xaxis); + } + const yaxis = cross$1(v1, xaxis, bestzaxis); + normalize$1(yaxis, yaxis); + const zaxis = cross$1(v2, yaxis, xaxis); + const corner = sphere({ + center: [vertex[0], vertex[1], vertex[2]], + radius: delta, + segments: segments, + axes: [xaxis, yaxis, zaxis] + }); + result = unionGeom3Sub(result, corner); + }); + return retessellate(result) +}; + +/* + * Expand the given geometry (geom3) using the given options (if any). + * @param {Object} options - options for expand + * @param {Number} [options.delta=1] - delta (+/-) of expansion + * @param {String} [options.corners='round'] - type corner to create during of expansion; round + * @param {Integer} [options.segments=12] - number of segments when creating round corners + * @param {geom3} geometry - the geometry to expand + * @returns {geom3} expanded geometry + */ +const expandGeom3 = (options, geometry) => { + const defaults = { + delta: 1, + corners: 'round', + segments: 12 + }; + const { delta, corners, segments } = Object.assign({ }, defaults, options); + + if (!(corners === 'round')) { + throw new Error('corners must be "round" for 3D geometries') + } + + const polygons = toPolygons$1(geometry); + if (polygons.length === 0) throw new Error('the given geometry cannot be empty') + + options = { delta, corners, segments }; + const expanded = expandShell(options, geometry); + return union(geometry, expanded) +}; + +const createGeometryFromClosedOffsets = (paths) => { + let { external, internal } = paths; + if (area$1(external) < 0) { + external = external.reverse(); + } else { + internal = internal.reverse(); + } + return create$a([external, internal]) +}; + +const createGeometryFromExpandedOpenPath = (paths, segments, corners, delta) => { + const { points, external, internal } = paths; + const capSegments = Math.floor(segments / 2); // rotation is 180 degrees + const e2iCap = []; + const i2eCap = []; + if (corners === 'round' && capSegments > 0) { + // added round caps to the geometry + const step = Math.PI / capSegments; + const eCorner = points[points.length - 1]; + const e2iStart = angleRadians(subtract$1(create$9(), external[external.length - 1], eCorner)); + const iCorner = points[0]; + const i2eStart = angleRadians(subtract$1(create$9(), internal[0], iCorner)); + for (let i = 1; i < capSegments; i++) { + let radians = e2iStart + (step * i); + let point = fromAngleRadians(create$9(), radians); + scale$1(point, point, delta); + add(point, point, eCorner); + e2iCap.push(point); + + radians = i2eStart + (step * i); + point = fromAngleRadians(create$9(), radians); + scale$1(point, point, delta); + add(point, point, iCorner); + i2eCap.push(point); + } + } + const allPoints = []; + allPoints.push(...external, ...e2iCap, ...internal.reverse(), ...i2eCap); + return create$a([allPoints]) +}; + +/* + * Expand the given geometry (path2) using the given options (if any). + * @param {Object} options - options for expand + * @param {Number} [options.delta=1] - delta (+) of expansion + * @param {String} [options.corners='edge'] - type corner to create during of expansion; edge, chamfer, round + * @param {Integer} [options.segments=16] - number of segments when creating round corners + * @param {path2} geometry - the geometry to expand + * @returns {geom2} expanded geometry + */ +const expandPath2 = (options, geometry) => { + const defaults = { + delta: 1, + corners: 'edge', + segments: 16 + }; + + options = Object.assign({ }, defaults, options); + const { delta, corners, segments } = options; + + if (delta <= 0) throw new Error('the given delta must be positive for paths') + + if (!(corners === 'edge' || corners === 'chamfer' || corners === 'round')) { + throw new Error('corners must be "edge", "chamfer", or "round"') + } + + const closed = geometry.isClosed; + const points = toPoints$1(geometry); + if (points.length === 0) throw new Error('the given geometry cannot be empty') + + const paths = { + points: points, + external: offsetFromPoints({ delta, corners, segments, closed }, points), + internal: offsetFromPoints({ delta: -delta, corners, segments, closed }, points) + }; + + if (geometry.isClosed) { + return createGeometryFromClosedOffsets(paths) + } else { + return createGeometryFromExpandedOpenPath(paths, segments, corners, delta) + } +}; + +/** + * Expand the given geometry using the given options. + * Both internal and external space is expanded for 2D and 3D shapes. + * + * Note: Contract is expand using a negative delta. + * @param {Object} options - options for expand + * @param {Number} [options.delta=1] - delta (+/-) of expansion + * @param {String} [options.corners='edge'] - type of corner to create after expanding; edge, chamfer, round + * @param {Integer} [options.segments=16] - number of segments when creating round corners + * @param {...Objects} objects - the geometries to expand + * @return {Object|Array} new geometry, or list of new geometries + * @alias module:modeling/expansions.expand + * + * @example + * let newArc = expand({delta: 5, corners: 'edge'}, arc({})) + * let newSquare = expand({delta: 5, corners: 'chamfer'}, square({size: 30})) + * let newSphere = expand({delta: 2, corners: 'round'}, cuboid({size: [20, 25, 5]})) + */ +const expand = (options, ...objects) => { + objects = flatten(objects); + if (objects.length === 0) throw new Error('wrong number of arguments') + + const results = objects.map((object) => { + if (isA$2(object)) return expandPath2(options, object) + if (isA$5(object)) return expandGeom2(options, object) + if (isA$3(object)) return expandGeom3(options, object) + return object + }); + return results.length === 1 ? results[0] : results +}; + +/* + * Create an offset geometry from the given geom2 using the given options (if any). + * @param {Object} options - options for offset + * @param {Float} [options.delta=1] - delta of offset (+ to exterior, - from interior) + * @param {String} [options.corners='edge'] - type corner to create during of expansion; edge, chamfer, round + * @param {Integer} [options.segments=16] - number of segments when creating round corners + * @param {geom2} geometry - geometry from which to create the offset + * @returns {geom2} offset geometry, plus rounded corners + */ +const offsetGeom2 = (options, geometry) => { + const defaults = { + delta: 1, + corners: 'edge', + segments: 0 + }; + const { delta, corners, segments } = Object.assign({ }, defaults, options); + + if (!(corners === 'edge' || corners === 'chamfer' || corners === 'round')) { + throw new Error('corners must be "edge", "chamfer", or "round"') + } + + // convert the geometry to outlines, and generate offsets from each + const outlines = toOutlines(geometry); + const newOutlines = outlines.map((outline) => { + const level = outlines.reduce((acc, polygon) => acc + arePointsInside(outline, create$3(polygon)), 0); + const outside = (level % 2) === 0; + + options = { + delta: outside ? delta : -delta, + corners, + closed: true, + segments + }; + return offsetFromPoints(options, outline) + }); + + // create a composite geometry from the new outlines + return create$a(newOutlines) +}; + +/* + * Create an offset geometry from the given path using the given options (if any). + * @param {Object} options - options for offset + * @param {Float} [options.delta=1] - delta of offset (+ to exterior, - from interior) + * @param {String} [options.corners='edge'] - type corner to create during of expansion; edge, chamfer, round + * @param {Integer} [options.segments=16] - number of segments when creating round corners + * @param {path2} geometry - geometry from which to create the offset + * @returns {path2} offset geometry, plus rounded corners + */ +const offsetPath2 = (options, geometry) => { + const defaults = { + delta: 1, + corners: 'edge', + closed: geometry.isClosed, + segments: 16 + }; + const { delta, corners, closed, segments } = Object.assign({ }, defaults, options); + + if (!(corners === 'edge' || corners === 'chamfer' || corners === 'round')) { + throw new Error('corners must be "edge", "chamfer", or "round"') + } + + options = { delta, corners, closed, segments }; + const newPoints = offsetFromPoints(options, toPoints$1(geometry)); + return fromPoints$2({ closed: closed }, newPoints) +}; + +/** + * Create offset geometry from the given geometry using the given options. + * Offsets from internal and external space are created. + * @param {Object} options - options for offset + * @param {Float} [options.delta=1] - delta of offset (+ to exterior, - from interior) + * @param {String} [options.corners='edge'] - type of corner to create after offseting; edge, chamfer, round + * @param {Integer} [options.segments=16] - number of segments when creating round corners + * @param {...Object} objects - the geometries to offset + * @return {Object|Array} new geometry, or list of new geometries + * @alias module:modeling/expansions.offset + * + * @example + * let small = offset({ delta: -4, corners: 'chamfer' }, square({size: 40})) // contract + */ +const offset = (options, ...objects) => { + objects = flatten(objects); + if (objects.length === 0) throw new Error('wrong number of arguments') + + const results = objects.map((object) => { + if (isA$2(object)) return offsetPath2(options, object) + if (isA$5(object)) return offsetGeom2(options, object) + // if (geom3.isA(object)) return geom3.transform(matrix, object) + return object + }); + return results.length === 1 ? results[0] : results +}; + +/** + * All shapes (primitives or the results of operations) can be expanded (or contracted.) + * In all cases, the function returns the results, and never changes the original shapes. + * @module modeling/expansions + * @example + * import { expansions } from '@jscad/modeling' + * const { expand, offset } = expansions' + */ + +var index$4 = /*#__PURE__*/Object.freeze({ + __proto__: null, + expand: expand, + offset: offset +}); + +/* + * Extrude the given geometry using the given options. + * + * @param {Object} [options] - options for extrude + * @param {Array} [options.offset] - the direction of the extrusion as a 3D vector + * @param {Number} [options.twistAngle] - the final rotation (RADIANS) about the origin + * @param {Integer} [options.twistSteps] - the number of steps created to produce the twist (if any) + * @param {Boolean} [options.repair] - repair gaps in the geometry + * @param {geom2} geometry - the geometry to extrude + * @returns {geom3} the extruded 3D geometry +*/ +const extrudeLinearGeom2 = (options, geometry) => { + const defaults = { + offset: [0, 0, 1], + twistAngle: 0, + twistSteps: 12, + repair: true + }; + let { offset, twistAngle, twistSteps, repair } = Object.assign({ }, defaults, options); + + if (twistSteps < 1) throw new Error('twistSteps must be 1 or more') + + if (twistAngle === 0) { + twistSteps = 1; + } + + // convert to vector in order to perform transforms + const offsetV = clone$9(offset); + + let baseSlice = fromGeom2(geometry); + if (offsetV[2] < 0) baseSlice = reverse$2(baseSlice); + + const matrix = create$c(); + const createTwist = (progress, index, base) => { + const Zrotation = index / twistSteps * twistAngle; + const Zoffset = scale$3(create$b(), offsetV, index / twistSteps); + multiply$1(matrix, fromZRotation(matrix, Zrotation), fromTranslation(create$c(), Zoffset)); + + return transform$3(matrix, base) + }; + + options = { + numberOfSlices: twistSteps + 1, + capStart: true, + capEnd: true, + repair, + callback: createTwist + }; + return extrudeFromSlices(options, baseSlice) +}; + +/* + * Extrude the given geometry using the given options. + * + * @param {Object} [options] - options for extrude + * @param {Array} [options.offset] - the direction of the extrusion as a 3D vector + * @param {Number} [options.twistAngle] - the final rotation (RADIANS) about the origin + * @param {Integer} [options.twistSteps] - the number of steps created to produce the twist (if any) + * @param {path2} geometry - the geometry to extrude + * @returns {geom3} the extruded 3D geometry +*/ +const extrudeLinearPath2 = (options, geometry) => { + if (!geometry.isClosed) throw new Error('extruded path must be closed') + // Convert path2 to geom2 + const points = toPoints$1(geometry); + const geometry2 = create$a([points]); + return extrudeLinearGeom2(options, geometry2) +}; + +/** + * Extrude the given geometry in an upward linear direction using the given options. + * Accepts path2 or geom2 objects as input. Paths must be closed. + * + * @param {Object} options - options for extrude + * @param {Number} [options.height=1] the height of the extrusion + * @param {Number} [options.twistAngle=0] the final rotation (RADIANS) about the origin of the shape (if any) + * @param {Integer} [options.twistSteps=1] the resolution of the twist about the axis (if any) + * @param {...Object} objects - the geometries to extrude + * @return {Object|Array} the extruded geometry, or a list of extruded geometry + * @alias module:modeling/extrusions.extrudeLinear + * + * @example + * let myshape = extrudeLinear({height: 10}, rectangle({size: [20, 25]})) + */ +const extrudeLinear = (options, ...objects) => { + const defaults = { + height: 1, + twistAngle: 0, + twistSteps: 1, + repair: true + }; + const { height, twistAngle, twistSteps, repair } = Object.assign({ }, defaults, options); + + objects = flatten(objects); + if (objects.length === 0) throw new Error('wrong number of arguments') + + options = { offset: [0, 0, height], twistAngle, twistSteps, repair }; + + const results = objects.map((object) => { + if (isA$2(object)) return extrudeLinearPath2(options, object) + if (isA$5(object)) return extrudeLinearGeom2(options, object) + // if (geom3.isA(object)) return geom3.extrude(options, object) + return object + }); + return results.length === 1 ? results[0] : results +}; + +/* + * Expand and extrude the given geometry (path2). + * @See expand for addition options + * @param {Object} options - options for extrusion, if any + * @param {Number} [options.size=1] - size of the rectangle + * @param {Number} [options.height=1] - height of the extrusion + * @param {path2} geometry - the geometry to extrude + * @return {geom3} the extruded geometry + */ +const extrudeRectangularPath2 = (options, geometry) => { + const defaults = { + size: 1, + height: 1 + }; + const { size, height } = Object.assign({ }, defaults, options); + + options.delta = size; + options.offset = [0, 0, height]; + + const points = toPoints$1(geometry); + if (points.length === 0) throw new Error('the given geometry cannot be empty') + + const newGeometry = expand(options, geometry); + return extrudeLinearGeom2(options, newGeometry) +}; + +/* + * Expand and extrude the given geometry (geom2). + * @see expand for additional options + * @param {Object} options - options for extrusion, if any + * @param {Number} [options.size=1] - size of the rectangle + * @param {Number} [options.height=1] - height of the extrusion + * @param {geom2} geometry - the geometry to extrude + * @return {geom3} the extruded geometry + */ +const extrudeRectangularGeom2 = (options, geometry) => { + const defaults = { + size: 1, + height: 1 + }; + const { size, height } = Object.assign({ }, defaults, options); + + options.delta = size; + options.offset = [0, 0, height]; + + // convert the geometry to outlines + const outlines = toOutlines(geometry); + if (outlines.length === 0) throw new Error('the given geometry cannot be empty') + + // create a composite geometry + let expanded = []; + outlines.forEach((outline) => { + if (area$1(outline) < 0) { + outline = outline.slice().reverse(); // all outlines must wind counterclockwise + } + // expand the outline + const part = expand(options, fromPoints$2({ closed: true }, outline)); + expanded = expanded.concat(toOutlines(part)); + }); + const newGeometry = create$a(expanded); + + return extrudeLinearGeom2(options, newGeometry) +}; + +/** + * Extrude the given geometry by following the outline(s) with a rectangle. + * @See expand for addition options + * @param {Object} options - options for extrusion, if any + * @param {Number} [options.size=1] - size of the rectangle + * @param {Number} [options.height=1] - height of the extrusion + * @param {...Object} objects - the geometries to extrude + * @return {Object|Array} the extruded object, or a list of extruded objects + * @alias module:modeling/extrusions.extrudeRectangular + * + * @example + * let myWalls = extrudeRectangular({size: 1, height: 3}, square({size: 20})) + * let myWalls = extrudeRectangular({size: 1, height: 300, twistAngle: TAU / 2}, square({size: 20})) + */ +const extrudeRectangular = (options, ...objects) => { + const defaults = { + size: 1, + height: 1 + }; + const { size, height } = Object.assign({}, defaults, options); + + objects = flatten(objects); + if (objects.length === 0) throw new Error('wrong number of arguments') + + if (size <= 0) throw new Error('size must be positive') + if (height <= 0) throw new Error('height must be positive') + + const results = objects.map((object) => { + if (isA$2(object)) return extrudeRectangularPath2(options, object) + if (isA$5(object)) return extrudeRectangularGeom2(options, object) + // if (geom3.isA(object)) return geom3.transform(matrix, object) + return object + }); + return results.length === 1 ? results[0] : results +}; + +const projectGeom3 = (options, geometry) => { + // create a plane from the options, and verify + const projPlane = fromNormalAndPoint(create$6(), options.axis, options.origin); + if (Number.isNaN(projPlane[0]) || Number.isNaN(projPlane[1]) || Number.isNaN(projPlane[2]) || Number.isNaN(projPlane[3])) { + throw new Error('project: invalid axis or origin') + } + + const epsilon = measureEpsilon(geometry); + const epsilonArea = (epsilon * epsilon * Math.sqrt(3) / 4); + + if (epsilon === 0) return create$a() + + // project the polygons to the plane + const polygons = toPolygons$1(geometry); + let projPolys = []; + for (let i = 0; i < polygons.length; i++) { + const newVertices = polygons[i].vertices.map((v) => projectionOfPoint(projPlane, v)); + const newPoly = create$7(newVertices); + // only keep projections that face the same direction as the plane + const newPlane = plane(newPoly); + if (!aboutEqualNormals(projPlane, newPlane)) continue + // only keep projections that have a measurable area + if (measureArea$2(newPoly) < epsilonArea) continue + projPolys.push(newPoly); + } + + // rotate the polygons to lay on X/Y axes if necessary + if (!aboutEqualNormals(projPlane, [0, 0, 1])) { + const rotation = fromVectorRotation(create$c(), projPlane, [0, 0, 1]); + projPolys = projPolys.map((p) => transform$7(rotation, p)); + } + + // sort the polygons to allow the union to ignore small pieces efficiently + projPolys = projPolys.sort((a, b) => measureArea$2(b) - measureArea$2(a)); + + // convert polygons to geometry, and union all pieces into a single geometry + const projGeoms = projPolys.map((p) => { + // This clones the points from vec3 to vec2 + const cloned = p.vertices.map(clone$8); + return create$a([cloned]) + }); + + return unionGeom2(projGeoms) +}; + +/** + * Project the given 3D geometry on to the given plane. + * @param {Object} options - options for project + * @param {Array} [options.axis=[0,0,1]] the axis of the plane (default is Z axis) + * @param {Array} [options.origin=[0,0,0]] the origin of the plane + * @param {...Object} objects - the list of 3D geometry to project + * @return {geom2|Array} the projected 2D geometry, or a list of 2D projected geometry + * @alias module:modeling/extrusions.project + * + * @example + * let myshape = project({}, sphere({radius: 20, segments: 5})) + */ +const project = (options, ...objects) => { + const defaults = { + axis: [0, 0, 1], // Z axis + origin: [0, 0, 0] + }; + const { axis, origin } = Object.assign({ }, defaults, options); + + objects = flatten(objects); + if (objects.length === 0) throw new Error('wrong number of arguments') + + options = { axis, origin }; + + const results = objects.map((object) => { + // if (path.isA(object)) return project(options, object) + // if (geom2.isA(object)) return project(options, object) + if (isA$3(object)) return projectGeom3(options, object) + return object + }); + return results.length === 1 ? results[0] : results +}; + +/** + * All 2D shapes (primitives or the results of operations) can be extruded in various ways. + * In all cases, the function returns the results, and never changes the original shapes. + * @module modeling/extrusions + * @example + * import { extrusions } from '@jscad/modeling' + * const { extrudeFromSlices, extrudeLinear, extrudeRectangular, extrudeRotate, project } = extrusions + */ + +var index$3 = /*#__PURE__*/Object.freeze({ + __proto__: null, + extrudeFromSlices: extrudeFromSlices, + extrudeLinear: extrudeLinear, + extrudeRectangular: extrudeRectangular, + extrudeRotate: extrudeRotate, + project: project +}); + +/* + * Create a convex hull of the given set of points, where each point is an array of [x,y]. + * Uses https://en.wikipedia.org/wiki/Graham_scan + * @param {Array} uniquePoints - list of UNIQUE points from which to create a hull + * @returns {Array} a list of points that form the hull + */ +const hullPoints2 = (uniquePoints) => { + // find min point + let min = fromValues$2(Infinity, Infinity); + uniquePoints.forEach((point) => { + if (point[1] < min[1] || (point[1] === min[1] && point[0] < min[0])) { + min = point; + } + }); + + // gather information for sorting by polar coordinates (point, angle, distSq) + const points = []; + uniquePoints.forEach((point) => { + // use faster fakeAtan2 instead of Math.atan2 + const angle = fakeAtan2(point[1] - min[1], point[0] - min[0]); + const distSq = squaredDistance(point, min); + points.push({ point, angle, distSq }); + }); + + // sort by polar coordinates + points.sort((pt1, pt2) => pt1.angle < pt2.angle + ? -1 + : pt1.angle > pt2.angle + ? 1 + : pt1.distSq < pt2.distSq ? -1 : pt1.distSq > pt2.distSq ? 1 : 0); + + const stack = []; // start with empty stack + points.forEach((point) => { + let cnt = stack.length; + while (cnt > 1 && ccw(stack[cnt - 2], stack[cnt - 1], point.point) <= Number.EPSILON) { + stack.pop(); // get rid of colinear and interior (clockwise) points + cnt = stack.length; + } + stack.push(point.point); + }); + + return stack +}; + +// returns: < 0 clockwise, 0 colinear, > 0 counter-clockwise +const ccw = (v1, v2, v3) => (v2[0] - v1[0]) * (v3[1] - v1[1]) - (v2[1] - v1[1]) * (v3[0] - v1[0]); + +// Returned "angle" is really 1/tan (inverse of slope) made negative to increase with angle. +// This function is strictly for sorting in this algorithm. +const fakeAtan2 = (y, x) => { + // The "if" is a special case for when the minimum vector found in loop above is present. + // We need to ensure that it sorts as the minimum point. Otherwise, this becomes NaN. + if (y === 0 && x === 0) { + return -Infinity + } else { + return -x / y + } +}; + +/* + * Return the unique vertices of a geometry + */ +const toUniquePoints = (geometries) => { + const found = new Set(); + const uniquePoints = []; + + const addPoint = (point) => { + const key = point.toString(); + if (!found.has(key)) { + uniquePoints.push(point); + found.add(key); + } + }; + + geometries.forEach((geometry) => { + if (isA$5(geometry)) { + toPoints$3(geometry).forEach(addPoint); + } else if (isA$3(geometry)) { + // points are grouped by polygon + toPoints$2(geometry).forEach((points) => points.forEach(addPoint)); + } else if (isA$2(geometry)) { + toPoints$1(geometry).forEach(addPoint); + } + }); + + return uniquePoints +}; + +/* + * Create a convex hull of the given geometries (path2). + * @param {...geometries} geometries - list of path2 geometries + * @returns {path2} new geometry + */ +const hullPath2 = (...geometries) => { + geometries = flatten(geometries); + + // extract the unique points from the geometries + const unique = toUniquePoints(geometries); + + const hullPoints = hullPoints2(unique); + + // assemble a new geometry from the list of points + return fromPoints$2({ closed: true }, hullPoints) +}; + +/* + * Create a convex hull of the given geom2 geometries. + * @param {...geometries} geometries - list of geom2 geometries + * @returns {geom2} new geometry + */ +const hullGeom2 = (...geometries) => { + geometries = flatten(geometries); + + // extract the unique points from the geometries + const unique = toUniquePoints(geometries); + + const hullPoints = hullPoints2(unique); + + // NOTE: more than three points are required to create a new geometry + if (hullPoints.length < 3) return create$a() + + // assemble a new geometry from the list of points + return create$a([hullPoints]) +}; + +/* + * Original source from quickhull3d (https://github.com/mauriciopoppe/quickhull3d) + * Copyright (c) 2015 Mauricio Poppe + * + * Adapted to JSCAD by Jeff Gay + */ + +const distanceSquared = (p, a, b) => { + // == parallelogram solution + // + // s + // __a________b__ + // / | / + // / h| / + // /_____|__/ + // p + // + // s = b - a + // area = s * h + // |ap x s| = s * h + // h = |ap x s| / s + // + const ab = []; + const ap = []; + const cr = []; + subtract$3(ab, b, a); + subtract$3(ap, p, a); + const area = squaredLength$1(cross$1(cr, ap, ab)); + const s = squaredLength$1(ab); + if (s === 0) { + throw Error('a and b are the same point') + } + return area / s +}; + +const pointLineDistance = (point, a, b) => Math.sqrt(distanceSquared(point, a, b)); + +/* + * Original source from quickhull3d (https://github.com/mauriciopoppe/quickhull3d) + * Copyright (c) 2015 Mauricio Poppe + * + * Adapted to JSCAD by Jeff Gay + */ +class VertexList { + constructor () { + this.head = null; + this.tail = null; + } + + clear () { + this.head = this.tail = null; + } + + /** + * Inserts a `node` before `target`, it's assumed that + * `target` belongs to this doubly linked list + * + * @param {*} target + * @param {*} node + */ + insertBefore (target, node) { + node.prev = target.prev; + node.next = target; + if (!node.prev) { + this.head = node; + } else { + node.prev.next = node; + } + target.prev = node; + } + + /** + * Inserts a `node` after `target`, it's assumed that + * `target` belongs to this doubly linked list + * + * @param {Vertex} target + * @param {Vertex} node + */ + insertAfter (target, node) { + node.prev = target; + node.next = target.next; + if (!node.next) { + this.tail = node; + } else { + node.next.prev = node; + } + target.next = node; + } + + /** + * Appends a `node` to the end of this doubly linked list + * Note: `node.next` will be unlinked from `node` + * Note: if `node` is part of another linked list call `addAll` instead + * + * @param {*} node + */ + add (node) { + if (!this.head) { + this.head = node; + } else { + this.tail.next = node; + } + node.prev = this.tail; + // since node is the new end it doesn't have a next node + node.next = null; + this.tail = node; + } + + /** + * Appends a chain of nodes where `node` is the head, + * the difference with `add` is that it correctly sets the position + * of the node list `tail` property + * + * @param {*} node + */ + addAll (node) { + if (!this.head) { + this.head = node; + } else { + this.tail.next = node; + } + node.prev = this.tail; + + // find the end of the list + while (node.next) { + node = node.next; + } + this.tail = node; + } + + /** + * Deletes a `node` from this linked list, it's assumed that `node` is a + * member of this linked list + * + * @param {*} node + */ + remove (node) { + if (!node.prev) { + this.head = node.next; + } else { + node.prev.next = node.next; + } + + if (!node.next) { + this.tail = node.prev; + } else { + node.next.prev = node.prev; + } + } + + /** + * Removes a chain of nodes whose head is `a` and whose tail is `b`, + * it's assumed that `a` and `b` belong to this list and also that `a` + * comes before `b` in the linked list + * + * @param {*} a + * @param {*} b + */ + removeChain (a, b) { + if (!a.prev) { + this.head = b.next; + } else { + a.prev.next = b.next; + } + + if (!b.next) { + this.tail = a.prev; + } else { + b.next.prev = a.prev; + } + } + + first () { + return this.head + } + + isEmpty () { + return !this.head + } +} + +/* + * Original source from quickhull3d (https://github.com/mauriciopoppe/quickhull3d) + * Copyright (c) 2015 Mauricio Poppe + * + * Adapted to JSCAD by Jeff Gay + */ + +class Vertex { + constructor (point, index) { + this.point = point; + // index in the input array + this.index = index; + // vertex is a double linked list node + this.next = null; + this.prev = null; + // the face that is able to see this point + this.face = null; + } +} + +/* + * Original source from quickhull3d (https://github.com/mauriciopoppe/quickhull3d) + * Copyright (c) 2015 Mauricio Poppe + * + * Adapted to JSCAD by Jeff Gay + */ + +class HalfEdge { + constructor (vertex, face) { + this.vertex = vertex; + this.face = face; + this.next = null; + this.prev = null; + this.opposite = null; + } + + head () { + return this.vertex + } + + tail () { + return this.prev + ? this.prev.vertex + : null + } + + length () { + if (this.tail()) { + return distance$1( + this.tail().point, + this.head().point + ) + } + return -1 + } + + lengthSquared () { + if (this.tail()) { + return squaredDistance$1( + this.tail().point, + this.head().point + ) + } + return -1 + } + + setOpposite (edge) { + this.opposite = edge; + edge.opposite = this; + } +} + +const VISIBLE = 0; +const NON_CONVEX = 1; +const DELETED = 2; + +class Face { + constructor () { + this.normal = []; + this.centroid = []; + // signed distance from face to the origin + this.offset = 0; + // pointer to the vertex in a double linked list this face can see + this.outside = null; + this.mark = VISIBLE; + this.edge = null; + this.nVertices = 0; + } + + getEdge (i) { + if (typeof i !== 'number') { + throw Error('requires a number') + } + let it = this.edge; + while (i > 0) { + it = it.next; + i -= 1; + } + while (i < 0) { + it = it.prev; + i += 1; + } + return it + } + + computeNormal () { + const e0 = this.edge; + const e1 = e0.next; + let e2 = e1.next; + const v2 = subtract$3([], e1.head().point, e0.head().point); + const t = []; + const v1 = []; + + this.nVertices = 2; + this.normal = [0, 0, 0]; + while (e2 !== e0) { + copy$4(v1, v2); + subtract$3(v2, e2.head().point, e0.head().point); + add$1(this.normal, this.normal, cross$1(t, v1, v2)); + e2 = e2.next; + this.nVertices += 1; + } + this.area = length$1(this.normal); + // normalize the vector, since we've already calculated the area + // it's cheaper to scale the vector using this quantity instead of + // doing the same operation again + this.normal = scale$3(this.normal, this.normal, 1 / this.area); + } + + computeNormalMinArea (minArea) { + this.computeNormal(); + if (this.area < minArea) { + // compute the normal without the longest edge + let maxEdge; + let maxSquaredLength = 0; + let edge = this.edge; + + // find the longest edge (in length) in the chain of edges + do { + const lengthSquared = edge.lengthSquared(); + if (lengthSquared > maxSquaredLength) { + maxEdge = edge; + maxSquaredLength = lengthSquared; + } + edge = edge.next; + } while (edge !== this.edge) + + const p1 = maxEdge.tail().point; + const p2 = maxEdge.head().point; + const maxVector = subtract$3([], p2, p1); + const maxLength = Math.sqrt(maxSquaredLength); + // maxVector is normalized after this operation + scale$3(maxVector, maxVector, 1 / maxLength); + // compute the projection of maxVector over this face normal + const maxProjection = dot$2(this.normal, maxVector); + // subtract the quantity maxEdge adds on the normal + scale$3(maxVector, maxVector, -maxProjection); + add$1(this.normal, this.normal, maxVector); + // renormalize `this.normal` + normalize$1(this.normal, this.normal); + } + } + + computeCentroid () { + this.centroid = [0, 0, 0]; + let edge = this.edge; + do { + add$1(this.centroid, this.centroid, edge.head().point); + edge = edge.next; + } while (edge !== this.edge) + scale$3(this.centroid, this.centroid, 1 / this.nVertices); + } + + computeNormalAndCentroid (minArea) { + if (typeof minArea !== 'undefined') { + this.computeNormalMinArea(minArea); + } else { + this.computeNormal(); + } + this.computeCentroid(); + this.offset = dot$2(this.normal, this.centroid); + } + + distanceToPlane (point) { + return dot$2(this.normal, point) - this.offset + } + + /** + * @private + * + * Connects two edges assuming that prev.head().point === next.tail().point + * + * @param {HalfEdge} prev + * @param {HalfEdge} next + */ + connectHalfEdges (prev, next) { + let discardedFace; + if (prev.opposite.face === next.opposite.face) { + // `prev` is remove a redundant edge + const oppositeFace = next.opposite.face; + let oppositeEdge; + if (prev === this.edge) { + this.edge = next; + } + if (oppositeFace.nVertices === 3) { + // case: + // remove the face on the right + // + // /|\ + // / | \ the face on the right + // / | \ --> opposite edge + // / a | \ + // *----*----* + // / b | \ + // â–¾ + // redundant edge + // + // Note: the opposite edge is actually in the face to the right + // of the face to be destroyed + oppositeEdge = next.opposite.prev.opposite; + oppositeFace.mark = DELETED; + discardedFace = oppositeFace; + } else { + // case: + // t + // *---- + // /| <- right face's redundant edge + // / | opposite edge + // / | â–´ / + // / a | | / + // *----*----* + // / b | \ + // â–¾ + // redundant edge + oppositeEdge = next.opposite.next; + // make sure that the link `oppositeFace.edge` points correctly even + // after the right face redundant edge is removed + if (oppositeFace.edge === oppositeEdge.prev) { + oppositeFace.edge = oppositeEdge; + } + + // /| / + // / | t/opposite edge + // / | / â–´ / + // / a |/ | / + // *----*----* + // / b \ + oppositeEdge.prev = oppositeEdge.prev.prev; + oppositeEdge.prev.next = oppositeEdge; + } + // /| + // / | + // / | + // / a | + // *----*----* + // / b â–´ \ + // | + // redundant edge + next.prev = prev.prev; + next.prev.next = next; + + // / \ \ + // / \->\ + // / \<-\ opposite edge + // / a \ \ + // *----*----* + // / b ^ \ + next.setOpposite(oppositeEdge); + + oppositeFace.computeNormalAndCentroid(); + } else { + // trivial case + // * + // /|\ + // / | \ + // / |--> next + // / a | \ + // *----*----* + // \ b | / + // \ |--> prev + // \ | / + // \|/ + // * + prev.next = next; + next.prev = prev; + } + return discardedFace + } + + mergeAdjacentFaces (adjacentEdge, discardedFaces) { + const oppositeEdge = adjacentEdge.opposite; + const oppositeFace = oppositeEdge.face; + + discardedFaces.push(oppositeFace); + oppositeFace.mark = DELETED; + + // find the chain of edges whose opposite face is `oppositeFace` + // + // ===> + // \ face / + // * ---- * ---- * ---- * + // / opposite face \ + // <=== + // + let adjacentEdgePrev = adjacentEdge.prev; + let adjacentEdgeNext = adjacentEdge.next; + let oppositeEdgePrev = oppositeEdge.prev; + let oppositeEdgeNext = oppositeEdge.next; + + // left edge + while (adjacentEdgePrev.opposite.face === oppositeFace) { + adjacentEdgePrev = adjacentEdgePrev.prev; + oppositeEdgeNext = oppositeEdgeNext.next; + } + // right edge + while (adjacentEdgeNext.opposite.face === oppositeFace) { + adjacentEdgeNext = adjacentEdgeNext.next; + oppositeEdgePrev = oppositeEdgePrev.prev; + } + // adjacentEdgePrev \ face / adjacentEdgeNext + // * ---- * ---- * ---- * + // oppositeEdgeNext / opposite face \ oppositeEdgePrev + + // fix the face reference of all the opposite edges that are not part of + // the edges whose opposite face is not `face` i.e. all the edges that + // `face` and `oppositeFace` do not have in common + let edge; + for (edge = oppositeEdgeNext; edge !== oppositeEdgePrev.next; edge = edge.next) { + edge.face = this; + } + + // make sure that `face.edge` is not one of the edges to be destroyed + // Note: it's important for it to be a `next` edge since `prev` edges + // might be destroyed on `connectHalfEdges` + this.edge = adjacentEdgeNext; + + // connect the extremes + // Note: it might be possible that after connecting the edges a triangular + // face might be redundant + let discardedFace; + discardedFace = this.connectHalfEdges(oppositeEdgePrev, adjacentEdgeNext); + if (discardedFace) { + discardedFaces.push(discardedFace); + } + discardedFace = this.connectHalfEdges(adjacentEdgePrev, oppositeEdgeNext); + if (discardedFace) { + discardedFaces.push(discardedFace); + } + + this.computeNormalAndCentroid(); + // TODO: additional consistency checks + return discardedFaces + } + + collectIndices () { + const indices = []; + let edge = this.edge; + do { + indices.push(edge.head().index); + edge = edge.next; + } while (edge !== this.edge) + return indices + } + + static createTriangle (v0, v1, v2, minArea = 0) { + const face = new Face(); + const e0 = new HalfEdge(v0, face); + const e1 = new HalfEdge(v1, face); + const e2 = new HalfEdge(v2, face); + + // join edges + e0.next = e2.prev = e1; + e1.next = e0.prev = e2; + e2.next = e1.prev = e0; + + // main half edge reference + face.edge = e0; + face.computeNormalAndCentroid(minArea); + return face + } +} + +/* + * Original source from quickhull3d (https://github.com/mauriciopoppe/quickhull3d) + * Copyright (c) 2015 Mauricio Poppe + * + * Adapted to JSCAD by Jeff Gay + */ + +// merge types +// non-convex with respect to the large face +const MERGE_NON_CONVEX_WRT_LARGER_FACE = 1; +const MERGE_NON_CONVEX = 2; + +class QuickHull { + constructor (points) { + if (!Array.isArray(points)) { + throw TypeError('input is not a valid array') + } + if (points.length < 4) { + throw Error('cannot build a simplex out of <4 points') + } + + this.tolerance = -1; + + // buffers + this.nFaces = 0; + this.nPoints = points.length; + + this.faces = []; + this.newFaces = []; + // helpers + // + // let `a`, `b` be `Face` instances + // let `v` be points wrapped as instance of `Vertex` + // + // [v, v, ..., v, v, v, ...] + // ^ ^ + // | | + // a.outside b.outside + // + this.claimed = new VertexList(); + this.unclaimed = new VertexList(); + + // vertices of the hull(internal representation of points) + this.vertices = []; + for (let i = 0; i < points.length; i += 1) { + this.vertices.push(new Vertex(points[i], i)); + } + this.discardedFaces = []; + this.vertexPointIndices = []; + } + + addVertexToFace (vertex, face) { + vertex.face = face; + if (!face.outside) { + this.claimed.add(vertex); + } else { + this.claimed.insertBefore(face.outside, vertex); + } + face.outside = vertex; + } + + /** + * Removes `vertex` for the `claimed` list of vertices, it also makes sure + * that the link from `face` to the first vertex it sees in `claimed` is + * linked correctly after the removal + * + * @param {Vertex} vertex + * @param {Face} face + */ + removeVertexFromFace (vertex, face) { + if (vertex === face.outside) { + // fix face.outside link + if (vertex.next && vertex.next.face === face) { + // face has at least 2 outside vertices, move the `outside` reference + face.outside = vertex.next; + } else { + // vertex was the only outside vertex that face had + face.outside = null; + } + } + this.claimed.remove(vertex); + } + + /** + * Removes all the visible vertices that `face` is able to see which are + * stored in the `claimed` vertext list + * + * @param {Face} face + * @return {Vertex|undefined} If face had visible vertices returns + * `face.outside`, otherwise undefined + */ + removeAllVerticesFromFace (face) { + if (face.outside) { + // pointer to the last vertex of this face + // [..., outside, ..., end, outside, ...] + // | | | + // a a b + let end = face.outside; + while (end.next && end.next.face === face) { + end = end.next; + } + this.claimed.removeChain(face.outside, end); + // b + // [ outside, ...] + // | removes this link + // [ outside, ..., end ] -┘ + // | | + // a a + end.next = null; + return face.outside + } + } + + /** + * Removes all the visible vertices that `face` is able to see, additionally + * checking the following: + * + * If `absorbingFace` doesn't exist then all the removed vertices will be + * added to the `unclaimed` vertex list + * + * If `absorbingFace` exists then this method will assign all the vertices of + * `face` that can see `absorbingFace`, if a vertex cannot see `absorbingFace` + * it's added to the `unclaimed` vertex list + * + * @param {Face} face + * @param {Face} [absorbingFace] + */ + deleteFaceVertices (face, absorbingFace) { + const faceVertices = this.removeAllVerticesFromFace(face); + if (faceVertices) { + if (!absorbingFace) { + // mark the vertices to be reassigned to some other face + this.unclaimed.addAll(faceVertices); + } else { + // if there's an absorbing face try to assign as many vertices + // as possible to it + + // the reference `vertex.next` might be destroyed on + // `this.addVertexToFace` (see VertexList#add), nextVertex is a + // reference to it + let nextVertex; + for (let vertex = faceVertices; vertex; vertex = nextVertex) { + nextVertex = vertex.next; + const distance = absorbingFace.distanceToPlane(vertex.point); + + // check if `vertex` is able to see `absorbingFace` + if (distance > this.tolerance) { + this.addVertexToFace(vertex, absorbingFace); + } else { + this.unclaimed.add(vertex); + } + } + } + } + } + + /** + * Reassigns as many vertices as possible from the unclaimed list to the new + * faces + * + * @param {Faces[]} newFaces + */ + resolveUnclaimedPoints (newFaces) { + // cache next vertex so that if `vertex.next` is destroyed it's still + // recoverable + let vertexNext = this.unclaimed.first(); + for (let vertex = vertexNext; vertex; vertex = vertexNext) { + vertexNext = vertex.next; + let maxDistance = this.tolerance; + let maxFace; + for (let i = 0; i < newFaces.length; i += 1) { + const face = newFaces[i]; + if (face.mark === VISIBLE) { + const dist = face.distanceToPlane(vertex.point); + if (dist > maxDistance) { + maxDistance = dist; + maxFace = face; + } + if (maxDistance > 1000 * this.tolerance) { + break + } + } + } + + if (maxFace) { + this.addVertexToFace(vertex, maxFace); + } + } + } + + /** + * Computes the extremes of a tetrahedron which will be the initial hull + * + * @return {number[]} The min/max vertices in the x,y,z directions + */ + computeExtremes () { + const min = []; + const max = []; + + // min vertex on the x,y,z directions + const minVertices = []; + // max vertex on the x,y,z directions + const maxVertices = []; + + let i, j; + + // initially assume that the first vertex is the min/max + for (i = 0; i < 3; i += 1) { + minVertices[i] = maxVertices[i] = this.vertices[0]; + } + // copy the coordinates of the first vertex to min/max + for (i = 0; i < 3; i += 1) { + min[i] = max[i] = this.vertices[0].point[i]; + } + + // compute the min/max vertex on all 6 directions + for (i = 1; i < this.vertices.length; i += 1) { + const vertex = this.vertices[i]; + const point = vertex.point; + // update the min coordinates + for (j = 0; j < 3; j += 1) { + if (point[j] < min[j]) { + min[j] = point[j]; + minVertices[j] = vertex; + } + } + // update the max coordinates + for (j = 0; j < 3; j += 1) { + if (point[j] > max[j]) { + max[j] = point[j]; + maxVertices[j] = vertex; + } + } + } + + // compute epsilon + this.tolerance = 3 * Number.EPSILON * ( + Math.max(Math.abs(min[0]), Math.abs(max[0])) + + Math.max(Math.abs(min[1]), Math.abs(max[1])) + + Math.max(Math.abs(min[2]), Math.abs(max[2])) + ); + return [minVertices, maxVertices] + } + + /** + * Compues the initial tetrahedron assigning to its faces all the points that + * are candidates to form part of the hull + */ + createInitialSimplex () { + const vertices = this.vertices; + const [min, max] = this.computeExtremes(); + let v2, v3; + let i, j; + + // Find the two vertices with the greatest 1d separation + // (max.x - min.x) + // (max.y - min.y) + // (max.z - min.z) + let maxDistance = 0; + let indexMax = 0; + for (i = 0; i < 3; i += 1) { + const distance = max[i].point[i] - min[i].point[i]; + if (distance > maxDistance) { + maxDistance = distance; + indexMax = i; + } + } + const v0 = min[indexMax]; + const v1 = max[indexMax]; + + // the next vertex is the one farthest to the line formed by `v0` and `v1` + maxDistance = 0; + for (i = 0; i < this.vertices.length; i += 1) { + const vertex = this.vertices[i]; + if (vertex !== v0 && vertex !== v1) { + const distance = pointLineDistance( + vertex.point, v0.point, v1.point + ); + if (distance > maxDistance) { + maxDistance = distance; + v2 = vertex; + } + } + } + + // the next vertex is the one farthest to the plane `v0`, `v1`, `v2` + // normalize((v2 - v1) x (v0 - v1)) + const normal = fromPoints$4([], v0.point, v1.point, v2.point); + // distance from the origin to the plane + const distPO = dot$2(v0.point, normal); + maxDistance = -1; + for (i = 0; i < this.vertices.length; i += 1) { + const vertex = this.vertices[i]; + if (vertex !== v0 && vertex !== v1 && vertex !== v2) { + const distance = Math.abs(dot$2(normal, vertex.point) - distPO); + if (distance > maxDistance) { + maxDistance = distance; + v3 = vertex; + } + } + } + + // initial simplex + // Taken from http://everything2.com/title/How+to+paint+a+tetrahedron + // + // v2 + // ,|, + // ,7``\'VA, + // ,7` |, `'VA, + // ,7` `\ `'VA, + // ,7` |, `'VA, + // ,7` `\ `'VA, + // ,7` |, `'VA, + // ,7` `\ ,..ooOOTK` v3 + // ,7` |,.ooOOT''` AV + // ,7` ,..ooOOT`\` /7 + // ,7` ,..ooOOT''` |, AV + // ,T,..ooOOT''` `\ /7 + // v0 `'TTs., |, AV + // `'TTs., `\ /7 + // `'TTs., |, AV + // `'TTs., `\ /7 + // `'TTs., |, AV + // `'TTs.,\/7 + // `'T` + // v1 + // + const faces = []; + if (dot$2(v3.point, normal) - distPO < 0) { + // the face is not able to see the point so `planeNormal` + // is pointing outside the tetrahedron + faces.push( + Face.createTriangle(v0, v1, v2), + Face.createTriangle(v3, v1, v0), + Face.createTriangle(v3, v2, v1), + Face.createTriangle(v3, v0, v2) + ); + + // set the opposite edge + for (i = 0; i < 3; i += 1) { + const j = (i + 1) % 3; + // join face[i] i > 0, with the first face + faces[i + 1].getEdge(2).setOpposite(faces[0].getEdge(j)); + // join face[i] with face[i + 1], 1 <= i <= 3 + faces[i + 1].getEdge(1).setOpposite(faces[j + 1].getEdge(0)); + } + } else { + // the face is able to see the point so `planeNormal` + // is pointing inside the tetrahedron + faces.push( + Face.createTriangle(v0, v2, v1), + Face.createTriangle(v3, v0, v1), + Face.createTriangle(v3, v1, v2), + Face.createTriangle(v3, v2, v0) + ); + + // set the opposite edge + for (i = 0; i < 3; i += 1) { + const j = (i + 1) % 3; + // join face[i] i > 0, with the first face + faces[i + 1].getEdge(2).setOpposite(faces[0].getEdge((3 - i) % 3)); + // join face[i] with face[i + 1] + faces[i + 1].getEdge(0).setOpposite(faces[j + 1].getEdge(1)); + } + } + + // the initial hull is the tetrahedron + for (i = 0; i < 4; i += 1) { + this.faces.push(faces[i]); + } + + // initial assignment of vertices to the faces of the tetrahedron + for (i = 0; i < vertices.length; i += 1) { + const vertex = vertices[i]; + if (vertex !== v0 && vertex !== v1 && vertex !== v2 && vertex !== v3) { + maxDistance = this.tolerance; + let maxFace; + for (j = 0; j < 4; j += 1) { + const distance = faces[j].distanceToPlane(vertex.point); + if (distance > maxDistance) { + maxDistance = distance; + maxFace = faces[j]; + } + } + + if (maxFace) { + this.addVertexToFace(vertex, maxFace); + } + } + } + } + + reindexFaceAndVertices () { + // remove inactive faces + const activeFaces = []; + for (let i = 0; i < this.faces.length; i += 1) { + const face = this.faces[i]; + if (face.mark === VISIBLE) { + activeFaces.push(face); + } + } + this.faces = activeFaces; + } + + collectFaces (skipTriangulation) { + const faceIndices = []; + for (let i = 0; i < this.faces.length; i += 1) { + if (this.faces[i].mark !== VISIBLE) { + throw Error('attempt to include a destroyed face in the hull') + } + const indices = this.faces[i].collectIndices(); + if (skipTriangulation) { + faceIndices.push(indices); + } else { + for (let j = 0; j < indices.length - 2; j += 1) { + faceIndices.push( + [indices[0], indices[j + 1], indices[j + 2]] + ); + } + } + } + return faceIndices + } + + /** + * Finds the next vertex to make faces with the current hull + * + * - let `face` be the first face existing in the `claimed` vertex list + * - if `face` doesn't exist then return since there are no vertices left + * - otherwise for each `vertex` that face sees find the one furthest away + * from `face` + * + * @return {Vertex|undefined} Returns undefined when there are no more + * visible vertices + */ + nextVertexToAdd () { + if (!this.claimed.isEmpty()) { + let eyeVertex, vertex; + let maxDistance = 0; + const eyeFace = this.claimed.first().face; + for (vertex = eyeFace.outside; vertex && vertex.face === eyeFace; vertex = vertex.next) { + const distance = eyeFace.distanceToPlane(vertex.point); + if (distance > maxDistance) { + maxDistance = distance; + eyeVertex = vertex; + } + } + return eyeVertex + } + } + + /** + * Computes a chain of half edges in ccw order called the `horizon`, for an + * edge to be part of the horizon it must join a face that can see + * `eyePoint` and a face that cannot see `eyePoint` + * + * @param {number[]} eyePoint - The coordinates of a point + * @param {HalfEdge} crossEdge - The edge used to jump to the current `face` + * @param {Face} face - The current face being tested + * @param {HalfEdge[]} horizon - The edges that form part of the horizon in + * ccw order + */ + computeHorizon (eyePoint, crossEdge, face, horizon) { + // moves face's vertices to the `unclaimed` vertex list + this.deleteFaceVertices(face); + + face.mark = DELETED; + + let edge; + if (!crossEdge) { + edge = crossEdge = face.getEdge(0); + } else { + // start from the next edge since `crossEdge` was already analyzed + // (actually `crossEdge.opposite` was the face who called this method + // recursively) + edge = crossEdge.next; + } + + // All the faces that are able to see `eyeVertex` are defined as follows + // + // v / + // / <== visible face + // / + // | + // | <== not visible face + // + // dot(v, visible face normal) - visible face offset > this.tolerance + // + do { + const oppositeEdge = edge.opposite; + const oppositeFace = oppositeEdge.face; + if (oppositeFace.mark === VISIBLE) { + if (oppositeFace.distanceToPlane(eyePoint) > this.tolerance) { + this.computeHorizon(eyePoint, oppositeEdge, oppositeFace, horizon); + } else { + horizon.push(edge); + } + } + edge = edge.next; + } while (edge !== crossEdge) + } + + /** + * Creates a face with the points `eyeVertex.point`, `horizonEdge.tail` and + * `horizonEdge.tail` in ccw order + * + * @param {Vertex} eyeVertex + * @param {HalfEdge} horizonEdge + * @return {HalfEdge} The half edge whose vertex is the eyeVertex + */ + addAdjoiningFace (eyeVertex, horizonEdge) { + // all the half edges are created in ccw order thus the face is always + // pointing outside the hull + // edges: + // + // eyeVertex.point + // / \ + // / \ + // 1 / \ 0 + // / \ + // / \ + // / \ + // horizon.tail --- horizon.head + // 2 + // + const face = Face.createTriangle( + eyeVertex, + horizonEdge.tail(), + horizonEdge.head() + ); + this.faces.push(face); + // join face.getEdge(-1) with the horizon's opposite edge + // face.getEdge(-1) = face.getEdge(2) + face.getEdge(-1).setOpposite(horizonEdge.opposite); + return face.getEdge(0) + } + + /** + * Adds horizon.length faces to the hull, each face will be 'linked' with the + * horizon opposite face and the face on the left/right + * + * @param {Vertex} eyeVertex + * @param {HalfEdge[]} horizon - A chain of half edges in ccw order + */ + addNewFaces (eyeVertex, horizon) { + this.newFaces = []; + let firstSideEdge, previousSideEdge; + for (let i = 0; i < horizon.length; i += 1) { + const horizonEdge = horizon[i]; + // returns the right side edge + const sideEdge = this.addAdjoiningFace(eyeVertex, horizonEdge); + if (!firstSideEdge) { + firstSideEdge = sideEdge; + } else { + // joins face.getEdge(1) with previousFace.getEdge(0) + sideEdge.next.setOpposite(previousSideEdge); + } + this.newFaces.push(sideEdge.face); + previousSideEdge = sideEdge; + } + firstSideEdge.next.setOpposite(previousSideEdge); + } + + /** + * Computes the distance from `edge` opposite face's centroid to + * `edge.face` + * + * @param {HalfEdge} edge + * @return {number} + * - A positive number when the centroid of the opposite face is above the + * face i.e. when the faces are concave + * - A negative number when the centroid of the opposite face is below the + * face i.e. when the faces are convex + */ + oppositeFaceDistance (edge) { + return edge.face.distanceToPlane(edge.opposite.face.centroid) + } + + /** + * Merges a face with none/any/all its neighbors according to the strategy + * used + * + * if `mergeType` is MERGE_NON_CONVEX_WRT_LARGER_FACE then the merge will be + * decided based on the face with the larger area, the centroid of the face + * with the smaller area will be checked against the one with the larger area + * to see if it's in the merge range [tolerance, -tolerance] i.e. + * + * dot(centroid smaller face, larger face normal) - larger face offset > -tolerance + * + * Note that the first check (with +tolerance) was done on `computeHorizon` + * + * If the above is not true then the check is done with respect to the smaller + * face i.e. + * + * dot(centroid larger face, smaller face normal) - smaller face offset > -tolerance + * + * If true then it means that two faces are non-convex (concave), even if the + * dot(...) - offset value is > 0 (that's the point of doing the merge in the + * first place) + * + * If two faces are concave then the check must also be done on the other face + * but this is done in another merge pass, for this to happen the face is + * marked in a temporal NON_CONVEX state + * + * if `mergeType` is MERGE_NON_CONVEX then two faces will be merged only if + * they pass the following conditions + * + * dot(centroid smaller face, larger face normal) - larger face offset > -tolerance + * dot(centroid larger face, smaller face normal) - smaller face offset > -tolerance + * + * @param {Face} face + * @param {number} mergeType - Either MERGE_NON_CONVEX_WRT_LARGER_FACE or + * MERGE_NON_CONVEX + */ + doAdjacentMerge (face, mergeType) { + let edge = face.edge; + let convex = true; + let it = 0; + do { + if (it >= face.nVertices) { + throw Error('merge recursion limit exceeded') + } + const oppositeFace = edge.opposite.face; + let merge = false; + + // Important notes about the algorithm to merge faces + // + // - Given a vertex `eyeVertex` that will be added to the hull + // all the faces that cannot see `eyeVertex` are defined as follows + // + // dot(v, not visible face normal) - not visible offset < tolerance + // + // - Two faces can be merged when the centroid of one of these faces + // projected to the normal of the other face minus the other face offset + // is in the range [tolerance, -tolerance] + // - Since `face` (given in the input for this method) has passed the + // check above we only have to check the lower bound e.g. + // + // dot(v, not visible face normal) - not visible offset > -tolerance + // + if (mergeType === MERGE_NON_CONVEX) { + if (this.oppositeFaceDistance(edge) > -this.tolerance || + this.oppositeFaceDistance(edge.opposite) > -this.tolerance) { + merge = true; + } + } else { + if (face.area > oppositeFace.area) { + if (this.oppositeFaceDistance(edge) > -this.tolerance) { + merge = true; + } else if (this.oppositeFaceDistance(edge.opposite) > -this.tolerance) { + convex = false; + } + } else { + if (this.oppositeFaceDistance(edge.opposite) > -this.tolerance) { + merge = true; + } else if (this.oppositeFaceDistance(edge) > -this.tolerance) { + convex = false; + } + } + } + + if (merge) { + // when two faces are merged it might be possible that redundant faces + // are destroyed, in that case move all the visible vertices from the + // destroyed faces to the `unclaimed` vertex list + const discardedFaces = face.mergeAdjacentFaces(edge, []); + for (let i = 0; i < discardedFaces.length; i += 1) { + this.deleteFaceVertices(discardedFaces[i], face); + } + return true + } + + edge = edge.next; + it += 1; + } while (edge !== face.edge) + if (!convex) { + face.mark = NON_CONVEX; + } + return false + } + + /** + * Adds a vertex to the hull with the following algorithm + * + * - Compute the `horizon` which is a chain of half edges, for an edge to + * belong to this group it must be the edge connecting a face that can + * see `eyeVertex` and a face which cannot see `eyeVertex` + * - All the faces that can see `eyeVertex` have its visible vertices removed + * from the claimed VertexList + * - A new set of faces is created with each edge of the `horizon` and + * `eyeVertex`, each face is connected with the opposite horizon face and + * the face on the left/right + * - The new faces are merged if possible with the opposite horizon face first + * and then the faces on the right/left + * - The vertices removed from all the visible faces are assigned to the new + * faces if possible + * + * @param {Vertex} eyeVertex + */ + addVertexToHull (eyeVertex) { + const horizon = []; + + this.unclaimed.clear(); + + // remove `eyeVertex` from `eyeVertex.face` so that it can't be added to the + // `unclaimed` vertex list + this.removeVertexFromFace(eyeVertex, eyeVertex.face); + this.computeHorizon(eyeVertex.point, null, eyeVertex.face, horizon); + this.addNewFaces(eyeVertex, horizon); + + // first merge pass + // Do the merge with respect to the larger face + for (let i = 0; i < this.newFaces.length; i += 1) { + const face = this.newFaces[i]; + if (face.mark === VISIBLE) { + while (this.doAdjacentMerge(face, MERGE_NON_CONVEX_WRT_LARGER_FACE)) {} // eslint-disable-line no-empty + } + } + + // second merge pass + // Do the merge on non-convex faces (a face is marked as non-convex in the + // first pass) + for (let i = 0; i < this.newFaces.length; i += 1) { + const face = this.newFaces[i]; + if (face.mark === NON_CONVEX) { + face.mark = VISIBLE; + while (this.doAdjacentMerge(face, MERGE_NON_CONVEX)) {} // eslint-disable-line no-empty + } + } + + // reassign `unclaimed` vertices to the new faces + this.resolveUnclaimedPoints(this.newFaces); + } + + build () { + let eyeVertex; + this.createInitialSimplex(); + while ((eyeVertex = this.nextVertexToAdd())) { + this.addVertexToHull(eyeVertex); + } + this.reindexFaceAndVertices(); + } +} + +/* + * Original source from quickhull3d (https://github.com/mauriciopoppe/quickhull3d) + * Copyright (c) 2015 Mauricio Poppe + * + * Adapted to JSCAD by Jeff Gay + */ + +const runner = (points, options = {}) => { + const instance = new QuickHull(points); + instance.build(); + return instance.collectFaces(options.skipTriangulation) +}; + +/* + * Create a convex hull of the given geometries (geom3). + * @param {...geometries} geometries - list of geom3 geometries + * @returns {geom3} new geometry + */ +const hullGeom3 = (...geometries) => { + geometries = flatten(geometries); + + if (geometries.length === 1) return geometries[0] + + // extract the unique vertices from the geometries + const unique = toUniquePoints(geometries); + + const faces = runner(unique, { skipTriangulation: true }); + + const polygons = faces.map((face) => { + const vertices = face.map((index) => unique[index]); + return create$7(vertices) + }); + + return create$8(polygons) +}; + +/** + * Create a convex hull of the given geometries. + * The given geometries should be of the same type, either geom2 or geom3 or path2. + * @param {...Objects} geometries - list of geometries from which to create a hull + * @returns {geom2|geom3} new geometry + * @alias module:modeling/hulls.hull + * + * @example + * let myshape = hull(rectangle({center: [-5,-5]}), ellipse({center: [5,5]})) + * + * @example + * +-------+ +-------+ + * | | | \ + * | A | | \ + * | | | \ + * +-------+ + \ + * = \ \ + * +-------+ \ + + * | | \ | + * | B | \ | + * | | \ | + * +-------+ +-------+ + */ +const hull = (...geometries) => { + geometries = flatten(geometries); + if (geometries.length === 0) throw new Error('wrong number of arguments') + + if (!areAllShapesTheSameType(geometries)) { + throw new Error('only hulls of the same type are supported') + } + + const geometry = geometries[0]; + if (isA$2(geometry)) return hullPath2(geometries) + if (isA$5(geometry)) return hullGeom2(geometries) + if (isA$3(geometry)) return hullGeom3(geometries) + + // FIXME should this throw an error for unknown geometries? + return geometry +}; + +/** + * Create a chain of hulled geometries from the given geometries. + * Essentially hull A+B, B+C, C+D, etc., then union the results. + * The given geometries should be of the same type, either geom2 or geom3 or path2. + * + * @param {...Objects} geometries - list of geometries from which to create a hull + * @returns {geom2|geom3} new geometry + * @alias module:modeling/hulls.hullChain + * + * @example + * let newShape = hullChain(rectangle({center: [-5,-5]}), circle({center: [0,0]}), rectangle({center: [5,5]})) + * + * @example + * +-------+ +-------+ +-------+ +------+ + * | | | | | \ / | + * | A | | C | | | | + * | | | | | | + * +-------+ +-------+ + + + * = \ / + * +-------+ \ / + * | | \ / + * | B | \ / + * | | \ / + * +-------+ +-------+ + */ +const hullChain = (...geometries) => { + geometries = flatten(geometries); + if (geometries.length < 2) throw new Error('wrong number of arguments') + + const hulls = []; + for (let i = 1; i < geometries.length; i++) { + hulls.push(hull(geometries[i - 1], geometries[i])); + } + return union(hulls) +}; + +/** + * All shapes (primitives or the results of operations) can be passed to hull functions + * to determine the convex hull of all points. + * In all cases, the function returns the results, and never changes the original shapes. + * @module modeling/hulls + * @example + * const { hull, hullChain } = require('@jscad/modeling').hulls + */ + +var index$2 = /*#__PURE__*/Object.freeze({ + __proto__: null, + hull: hull, + hullChain: hullChain +}); + +const isValidPoly3 = (epsilon, polygon) => { + const area = Math.abs(measureArea$2(polygon)); + return (Number.isFinite(area) && area > epsilon) +}; + +/* + * Snap the given list of polygons to the epsilon. + */ +const snapPolygons = (epsilon, polygons) => { + let newPolygons = polygons.map((polygon) => { + const snapVertices = polygon.vertices.map((vertex) => snap$2(create$b(), vertex, epsilon)); + // only retain unique vertices + const newVertices = []; + for (let i = 0; i < snapVertices.length; i++) { + const j = (i + 1) % snapVertices.length; + if (!equals$7(snapVertices[i], snapVertices[j])) newVertices.push(snapVertices[i]); + } + const newPolygon = create$7(newVertices); + if (polygon.color) newPolygon.color = polygon.color; + return newPolygon + }); + // snap can produce polygons with zero (0) area, remove those + const epsilonArea = (epsilon * epsilon * Math.sqrt(3) / 4); + newPolygons = newPolygons.filter((polygon) => isValidPoly3(epsilonArea, polygon)); + return newPolygons +}; + +// create a set of edges from the given polygon, and link the edges as well +const createEdges = (polygon) => { + const vertices = toVertices$1(polygon); + const edges = []; + for (let i = 0; i < vertices.length; i++) { + const j = (i + 1) % vertices.length; + const edge = { + v1: vertices[i], + v2: vertices[j] + }; + edges.push(edge); + } + // link the edges together + for (let i = 0; i < edges.length; i++) { + const j = (i + 1) % vertices.length; + edges[i].next = edges[j]; + edges[j].prev = edges[i]; + } + return edges +}; + +const insertEdge = (edges, edge) => { + const key = `${edge.v1}:${edge.v2}`; + edges.set(key, edge); +}; + +const deleteEdge = (edges, edge) => { + const key = `${edge.v1}:${edge.v2}`; + edges.delete(key); +}; + +const findOppositeEdge = (edges, edge) => { + const key = `${edge.v2}:${edge.v1}`; // NOTE: OPPOSITE OF INSERT KEY + return edges.get(key) +}; + +// calculate the two adjoining angles between the opposing edges +const calculateAnglesBetween = (current, opposite, normal) => { + let v0 = current.prev.v1; + let v1 = current.prev.v2; + let v2 = opposite.next.v2; + const angle1 = calculateAngle(v0, v1, v2, normal); + + v0 = opposite.prev.v1; + v1 = opposite.prev.v2; + v2 = current.next.v2; + const angle2 = calculateAngle(v0, v1, v2, normal); + + return [angle1, angle2] +}; + +const v1 = create$b(); +const v2 = create$b(); + +const calculateAngle = (prevVertex, midVertex, nextVertex, normal) => { + const d0 = subtract$3(v1, midVertex, prevVertex); + const d1 = subtract$3(v2, nextVertex, midVertex); + cross$1(d0, d0, d1); + return dot$2(d0, normal) +}; + +// create a polygon starting from the given edge (if possible) +const createPolygonAnd = (edge) => { + let polygon; + const vertices = []; + while (edge.next) { + const next = edge.next; + + vertices.push(edge.v1); + + edge.v1 = null; + edge.v2 = null; + edge.next = null; + edge.prev = null; + + edge = next; + } + if (vertices.length > 0) polygon = create$7(vertices); + return polygon +}; + +/* + * Merge COPLANAR polygons that share common edges. + * @param {poly3[]} sourcePolygons - list of polygons + * @returns {poly3[]} new set of polygons + */ +const mergeCoplanarPolygons = (sourcePolygons) => { + if (sourcePolygons.length < 2) return sourcePolygons + + const normal = sourcePolygons[0].plane; + const polygons = sourcePolygons.slice(); + const edgeList = new Map(); + + while (polygons.length > 0) { // NOTE: the length of polygons WILL change + const polygon = polygons.shift(); + const edges = createEdges(polygon); + for (let i = 0; i < edges.length; i++) { + const current = edges[i]; + const opposite = findOppositeEdge(edgeList, current); + if (opposite) { + const angles = calculateAnglesBetween(current, opposite, normal); + if (angles[0] >= 0 && angles[1] >= 0) { + const edge1 = opposite.next; + const edge2 = current.next; + // adjust the edges, linking together opposing polygons + current.prev.next = opposite.next; + current.next.prev = opposite.prev; + + opposite.prev.next = current.next; + opposite.next.prev = current.prev; + + // remove the opposing edges + current.v1 = null; + current.v2 = null; + current.next = null; + current.prev = null; + + deleteEdge(edgeList, opposite); + + opposite.v1 = null; + opposite.v2 = null; + opposite.next = null; + opposite.prev = null; + + const mergeEdges = (list, e1, e2) => { + const newEdge = { + v1: e2.v1, + v2: e1.v2, + next: e1.next, + prev: e2.prev + }; + // link in newEdge + e2.prev.next = newEdge; + e1.next.prev = newEdge; + // remove old edges + deleteEdge(list, e1); + e1.v1 = null; + e1.v2 = null; + e1.next = null; + e1.prev = null; + + deleteEdge(list, e2); + e2.v1 = null; + e2.v2 = null; + e2.next = null; + e2.prev = null; + }; + + if (angles[0] === 0.0) { + mergeEdges(edgeList, edge1, edge1.prev); + } + if (angles[1] === 0.0) { + mergeEdges(edgeList, edge2, edge2.prev); + } + } + } else { + if (current.next) insertEdge(edgeList, current); + } + } + } + + // build a set of polygons from the remaining edges + const destPolygons = []; + edgeList.forEach((edge) => { + const polygon = createPolygonAnd(edge); + if (polygon) destPolygons.push(polygon); + }); + + edgeList.clear(); + + return destPolygons +}; + +const coplanar = (plane1, plane2) => { + // expect the same distance from the origin, within tolerance + if (Math.abs(plane1[3] - plane2[3]) < 0.00000015) { + return aboutEqualNormals(plane1, plane2) + } + return false +}; + +const mergePolygons = (epsilon, polygons) => { + const polygonsPerPlane = []; // elements: [plane, [poly3...]] + polygons.forEach((polygon) => { + const mapping = polygonsPerPlane.find((element) => coplanar(element[0], plane(polygon))); + if (mapping) { + const polygons = mapping[1]; + polygons.push(polygon); + } else { + polygonsPerPlane.push([plane(polygon), [polygon]]); + } + }); + + let destPolygons = []; + polygonsPerPlane.forEach((mapping) => { + const sourcePolygons = mapping[1]; + const retesselatedPolygons = mergeCoplanarPolygons(sourcePolygons); + destPolygons = destPolygons.concat(retesselatedPolygons); + }); + return destPolygons +}; + +const getTag = (vertex) => `${vertex}`; + +const addSide = (sideMap, vertextag2sidestart, vertextag2sideend, vertex0, vertex1, polygonIndex) => { + const startTag = getTag(vertex0); + const endTag = getTag(vertex1); + const newSideTag = `${startTag}/${endTag}`; + const reverseSideTag = `${endTag}/${startTag}`; + if (sideMap.has(reverseSideTag)) { + // remove the opposing side from mappings + deleteSide(sideMap, vertextag2sidestart, vertextag2sideend, vertex1, vertex0, null); + return null + } + // add the side to the mappings + const newSideObj = { + vertex0: vertex0, + vertex1: vertex1, + polygonIndex + }; + if (!(sideMap.has(newSideTag))) { + sideMap.set(newSideTag, [newSideObj]); + } else { + sideMap.get(newSideTag).push(newSideObj); + } + if (vertextag2sidestart.has(startTag)) { + vertextag2sidestart.get(startTag).push(newSideTag); + } else { + vertextag2sidestart.set(startTag, [newSideTag]); + } + if (vertextag2sideend.has(endTag)) { + vertextag2sideend.get(endTag).push(newSideTag); + } else { + vertextag2sideend.set(endTag, [newSideTag]); + } + return newSideTag +}; + +const deleteSide = (sidemap, vertextag2sidestart, vertextag2sideend, vertex0, vertex1, polygonIndex) => { + const startTag = getTag(vertex0); + const endTag = getTag(vertex1); + const sideTag = `${startTag}/${endTag}`; + let idx = -1; + const sideObjs = sidemap.get(sideTag); + for (let i = 0; i < sideObjs.length; i++) { + const sideObj = sideObjs[i]; + let sideTag = getTag(sideObj.vertex0); + if (sideTag !== startTag) continue + sideTag = getTag(sideObj.vertex1); + if (sideTag !== endTag) continue + if (polygonIndex !== null) { + if (sideObj.polygonIndex !== polygonIndex) continue + } + idx = i; + break + } + sideObjs.splice(idx, 1); + if (sideObjs.length === 0) { + sidemap.delete(sideTag); + } + + // adjust start and end lists + idx = vertextag2sidestart.get(startTag).indexOf(sideTag); + vertextag2sidestart.get(startTag).splice(idx, 1); + if (vertextag2sidestart.get(startTag).length === 0) { + vertextag2sidestart.delete(startTag); + } + + idx = vertextag2sideend.get(endTag).indexOf(sideTag); + vertextag2sideend.get(endTag).splice(idx, 1); + if (vertextag2sideend.get(endTag).length === 0) { + vertextag2sideend.delete(endTag); + } +}; + +/* + Suppose we have two polygons ACDB and EDGF: + + A-----B + | | + | E--F + | | | + C-----D--G + + Note that vertex E forms a T-junction on the side BD. In this case some STL slicers will complain + that the solid is not watertight. This is because the watertightness check is done by checking if + each side DE is matched by another side ED. + + This function will return a new solid with ACDB replaced by ACDEB + + Note that this can create polygons that are slightly non-convex (due to rounding errors). + Therefore, the result should not be used for further CSG operations! + + Note this function is meant to be used to preprocess geometries when triangulation is required, i.e. AMF, STL, etc. + Do not use the results in other operations. +*/ + +/* + * Insert missing vertices for T-junctions, which creates polygons that can be triangulated. + * @param {Array} polygons - the original polygons which may or may not have T-junctions + * @return original polygons (if no T-junctions found) or new polygons with updated vertices + */ +const insertTjunctions = (polygons) => { + // STEP 1 : build a map of 'unmatched' sides from the polygons + // i.e. side AB in one polygon does not have a matching side BA in another polygon + const sideMap = new Map(); + for (let polygonIndex = 0; polygonIndex < polygons.length; polygonIndex++) { + const polygon = polygons[polygonIndex]; + const numVertices = polygon.vertices.length; + if (numVertices >= 3) { + let vertex = polygon.vertices[0]; + let vertexTag = getTag(vertex); + for (let vertexIndex = 0; vertexIndex < numVertices; vertexIndex++) { + let nextVertexIndex = vertexIndex + 1; + if (nextVertexIndex === numVertices) nextVertexIndex = 0; + + const nextVertex = polygon.vertices[nextVertexIndex]; + const nextVertexTag = getTag(nextVertex); + + const sideTag = `${vertexTag}/${nextVertexTag}`; + const reverseSideTag = `${nextVertexTag}/${vertexTag}`; + if (sideMap.has(reverseSideTag)) { + // this side matches the same side in another polygon. Remove from sidemap + // FIXME is this check necessary? there should only be ONE(1) opposing side + // FIXME assert ? + const ar = sideMap.get(reverseSideTag); + ar.splice(-1, 1); + if (ar.length === 0) { + sideMap.delete(reverseSideTag); + } + } else { + const sideobj = { + vertex0: vertex, + vertex1: nextVertex, + polygonIndex + }; + if (!(sideMap.has(sideTag))) { + sideMap.set(sideTag, [sideobj]); + } else { + sideMap.get(sideTag).push(sideobj); + } + } + vertex = nextVertex; + vertexTag = nextVertexTag; + } + } else { + console.warn('warning: invalid polygon found during insertTjunctions'); + } + } + + if (sideMap.size > 0) { + // STEP 2 : create a list of starting sides and ending sides + const vertextag2sidestart = new Map(); + const vertextag2sideend = new Map(); + const sidesToCheck = new Map(); + for (const [sidetag, sideObjs] of sideMap) { + sidesToCheck.set(sidetag, true); + sideObjs.forEach((sideObj) => { + const starttag = getTag(sideObj.vertex0); + const endtag = getTag(sideObj.vertex1); + if (vertextag2sidestart.has(starttag)) { + vertextag2sidestart.get(starttag).push(sidetag); + } else { + vertextag2sidestart.set(starttag, [sidetag]); + } + if (vertextag2sideend.has(endtag)) { + vertextag2sideend.get(endtag).push(sidetag); + } else { + vertextag2sideend.set(endtag, [sidetag]); + } + }); + } + + // STEP 3 : if sideMap is not empty + const newPolygons = polygons.slice(0); // make a copy in order to replace polygons inline + while (true) { + if (sideMap.size === 0) break + + for (const sideTag of sideMap.keys()) { + sidesToCheck.set(sideTag, true); + } + + let doneSomething = false; + while (true) { + const sideTags = Array.from(sidesToCheck.keys()); + if (sideTags.length === 0) break // sidesToCheck is empty, we're done! + const sideTagToCheck = sideTags[0]; + let doneWithSide = true; + if (sideMap.has(sideTagToCheck)) { + const sideObjs = sideMap.get(sideTagToCheck); + const sideObj = sideObjs[0]; + for (let directionIndex = 0; directionIndex < 2; directionIndex++) { + const startVertex = (directionIndex === 0) ? sideObj.vertex0 : sideObj.vertex1; + const endVertex = (directionIndex === 0) ? sideObj.vertex1 : sideObj.vertex0; + const startVertexTag = getTag(startVertex); + const endVertexTag = getTag(endVertex); + let matchingSides = []; + if (directionIndex === 0) { + if (vertextag2sideend.has(startVertexTag)) { + matchingSides = vertextag2sideend.get(startVertexTag); + } + } else { + if (vertextag2sidestart.has(startVertexTag)) { + matchingSides = vertextag2sidestart.get(startVertexTag); + } + } + for (let matchingSideIndex = 0; matchingSideIndex < matchingSides.length; matchingSideIndex++) { + const matchingSideTag = matchingSides[matchingSideIndex]; + const matchingSide = sideMap.get(matchingSideTag)[0]; + const matchingSideStartVertex = (directionIndex === 0) ? matchingSide.vertex0 : matchingSide.vertex1; + (directionIndex === 0) ? matchingSide.vertex1 : matchingSide.vertex0; + const matchingSideStartVertexTag = getTag(matchingSideStartVertex); + if (matchingSideStartVertexTag === endVertexTag) { + // matchingSide cancels sideTagToCheck + deleteSide(sideMap, vertextag2sidestart, vertextag2sideend, startVertex, endVertex, null); + deleteSide(sideMap, vertextag2sidestart, vertextag2sideend, endVertex, startVertex, null); + doneWithSide = false; + directionIndex = 2; // skip reverse direction check + doneSomething = true; + break + } else { + const startPos = startVertex; + const endPos = endVertex; + const checkPos = matchingSideStartVertex; + const direction = subtract$3(create$b(), checkPos, startPos); + // Now we need to check if endPos is on the line startPos-checkPos: + const t = dot$2(subtract$3(create$b(), endPos, startPos), direction) / dot$2(direction, direction); + if ((t > 0) && (t < 1)) { + const closestVertex = scale$3(create$b(), direction, t); + add$1(closestVertex, closestVertex, startPos); + const distanceSquared = squaredDistance$1(closestVertex, endPos); + if (distanceSquared < (EPS * EPS)) { + // Yes it's a t-junction! We need to split matchingSide in two: + const polygonIndex = matchingSide.polygonIndex; + const polygon = newPolygons[polygonIndex]; + // find the index of startVertexTag in polygon: + const insertionVertexTag = getTag(matchingSide.vertex1); + let insertionVertexTagIndex = -1; + for (let i = 0; i < polygon.vertices.length; i++) { + if (getTag(polygon.vertices[i]) === insertionVertexTag) { + insertionVertexTagIndex = i; + break + } + } + // split the side by inserting the vertex: + const newVertices = polygon.vertices.slice(0); + newVertices.splice(insertionVertexTagIndex, 0, endVertex); + const newPolygon = create$7(newVertices); + + newPolygons[polygonIndex] = newPolygon; + + // remove the original sides from our maps + deleteSide(sideMap, vertextag2sidestart, vertextag2sideend, matchingSide.vertex0, matchingSide.vertex1, polygonIndex); + const newSideTag1 = addSide(sideMap, vertextag2sidestart, vertextag2sideend, matchingSide.vertex0, endVertex, polygonIndex); + const newSideTag2 = addSide(sideMap, vertextag2sidestart, vertextag2sideend, endVertex, matchingSide.vertex1, polygonIndex); + if (newSideTag1 !== null) sidesToCheck.set(newSideTag1, true); + if (newSideTag2 !== null) sidesToCheck.set(newSideTag2, true); + doneWithSide = false; + directionIndex = 2; // skip reverse direction check + doneSomething = true; + break + } // if(distanceSquared < 1e-10) + } // if( (t > 0) && (t < 1) ) + } // if(endingSideStartVertexTag === endVertexTag) + } // for matchingSideIndex + } // for directionIndex + } // if(sideTagToCheck in sideMap) + if (doneWithSide) { + sidesToCheck.delete(sideTagToCheck); + } + } + if (!doneSomething) break + } + polygons = newPolygons; + } + sideMap.clear(); + + return polygons +}; + +const triangulatePolygon = (epsilon, polygon, triangles) => { + const nv = polygon.vertices.length; + if (nv > 3) { + if (nv > 4) { + // split the polygon using a midpoint + const midpoint = [0, 0, 0]; + polygon.vertices.forEach((vertex) => add$1(midpoint, midpoint, vertex)); + snap$2(midpoint, divide$1(midpoint, midpoint, [nv, nv, nv]), epsilon); + for (let i = 0; i < nv; i++) { + const poly = create$7([midpoint, polygon.vertices[i], polygon.vertices[(i + 1) % nv]]); + if (polygon.color) poly.color = polygon.color; + triangles.push(poly); + } + return + } + // exactly 4 vertices, use simple triangulation + const poly0 = create$7([polygon.vertices[0], polygon.vertices[1], polygon.vertices[2]]); + const poly1 = create$7([polygon.vertices[0], polygon.vertices[2], polygon.vertices[3]]); + if (polygon.color) { + poly0.color = polygon.color; + poly1.color = polygon.color; + } + triangles.push(poly0, poly1); + return + } + // exactly 3 vertices, so return the original + triangles.push(polygon); +}; + +/* + * Convert the given polygons into a list of triangles (polygons with 3 vertices). + * NOTE: this is possible because poly3 is CONVEX by definition + */ +const triangulatePolygons = (epsilon, polygons) => { + const triangles = []; + polygons.forEach((polygon) => { + triangulatePolygon(epsilon, polygon, triangles); + }); + return triangles +}; + +/* + */ +const generalizePath2 = (options, geometry) => geometry; + +/* + */ +const generalizeGeom2 = (options, geometry) => geometry; + +/* + */ +const generalizeGeom3 = (options, geometry) => { + const defaults = { + snap: false, + simplify: false, + triangulate: false + }; + const { snap, simplify, triangulate } = Object.assign({}, defaults, options); + + const epsilon = measureEpsilon(geometry); + let polygons = toPolygons$1(geometry); + + // snap the given geometry if requested + if (snap) { + polygons = snapPolygons(epsilon, polygons); + } + + // simplify the polygons if requested + if (simplify) { + // TODO implement some mesh decimations + polygons = mergePolygons(epsilon, polygons); + } + + // triangulate the polygons if requested + if (triangulate) { + polygons = insertTjunctions(polygons); + polygons = triangulatePolygons(epsilon, polygons); + } + + // FIXME replace with geom3.cloneShallow() when available + const clone = Object.assign({}, geometry); + clone.polygons = polygons; + + return clone +}; + +/** + * Apply various modifications in proper order to produce a generalized geometry. + * @param {Object} options - options for modifications + * @param {Boolean} [options.snap=false] the geometries should be snapped to epsilons + * @param {Boolean} [options.simplify=false] the geometries should be simplified + * @param {Boolean} [options.triangulate=false] the geometries should be triangulated + * @param {...Object} geometries - the geometries to generalize + * @return {Object|Array} the modified geometry, or a list of modified geometries + * @alias module:modeling/modifiers.generalize + */ +const generalize = (options, ...geometries) => { + geometries = flatten(geometries); + if (geometries.length === 0) throw new Error('wrong number of arguments') + + const results = geometries.map((geometry) => { + if (isA$2(geometry)) return generalizePath2(options, geometry) + if (isA$5(geometry)) return generalizeGeom2(options, geometry) + if (isA$3(geometry)) return generalizeGeom3(options, geometry) + throw new Error('invalid geometry') + }); + return results.length === 1 ? results[0] : results +}; + +const snapPath2 = (geometry) => { + const epsilon = measureEpsilon(geometry); + const points = toPoints$1(geometry); + const newPoints = points.map((point) => snap$1(create$9(), point, epsilon)); + // snap can produce duplicate points, remove those + return create$5(newPoints) +}; + +const snapGeom2 = (geometry) => { + const epsilon = measureEpsilon(geometry); + const outlines = toOutlines(geometry); + let newOutlines = outlines.map((outline) => { + let prev = snap$1(create$9(), outline[outline.length - 1], epsilon); + const newOutline = []; + outline.forEach((point) => { + const snapped = snap$1(create$9(), point, epsilon); + // remove duplicate points + if (!equals$6(prev, snapped)) { + newOutline.push(snapped); + } + prev = snapped; + }); + return newOutline + }); + // remove zero-area outlines + newOutlines = newOutlines.filter((outline) => measureArea$1(create$3(outline))); + return create$a(newOutlines) +}; + +const snapGeom3 = (geometry) => { + const epsilon = measureEpsilon(geometry); + const polygons = toPolygons$1(geometry); + const newPolygons = snapPolygons(epsilon, polygons); + return create$8(newPolygons) +}; + +/** + * Snap the given geometries to the overall precision (epsilon) of the geometry. + * @see measurements.measureEpsilon() + * @param {...Object} geometries - the geometries to snap + * @return {Object|Array} the snapped geometry, or a list of snapped geometries + * @alias module:modeling/modifiers.snap + */ +const snap = (...geometries) => { + geometries = flatten(geometries); + if (geometries.length === 0) throw new Error('wrong number of arguments') + + const results = geometries.map((geometry) => { + if (isA$2(geometry)) return snapPath2(geometry) + if (isA$5(geometry)) return snapGeom2(geometry) + if (isA$3(geometry)) return snapGeom3(geometry) + return geometry + }); + return results.length === 1 ? results[0] : results +}; + +/** + * All shapes (primitives or the results of operations) can be modified to correct issues, etc. + * In all cases, these functions returns the results, and never changes the original geometry. + * @module modeling/modifiers + * @example + * import { generalize, snap } from '@jscad/modeling/modifiers' + */ + +var index$1 = /*#__PURE__*/Object.freeze({ + __proto__: null, + generalize: generalize, + snap: snap +}); + +const validateOptions = (options) => { + if (!Array.isArray(options.modes) || options.modes.length > 3) throw new Error('align(): modes must be an array of length <= 3') + options.modes = padArrayToLength(options.modes, 'none', 3); + if (options.modes.filter((mode) => ['center', 'max', 'min', 'none'].includes(mode)).length !== 3) throw new Error('align(): all modes must be one of "center", "max" or "min"') + + if (!Array.isArray(options.relativeTo) || options.relativeTo.length > 3) throw new Error('align(): relativeTo must be an array of length <= 3') + options.relativeTo = padArrayToLength(options.relativeTo, 0, 3); + if (options.relativeTo.filter((alignVal) => (Number.isFinite(alignVal) || alignVal == null)).length !== 3) throw new Error('align(): all relativeTo values must be a number, or null.') + + if (typeof options.grouped !== 'boolean') throw new Error('align(): grouped must be a boolean value.') + + return options +}; + +const populateRelativeToFromBounds = (relativeTo, modes, bounds) => { + for (let i = 0; i < 3; i++) { + if (relativeTo[i] == null) { + if (modes[i] === 'center') { + relativeTo[i] = (bounds[0][i] + bounds[1][i]) / 2; + } else if (modes[i] === 'max') { + relativeTo[i] = bounds[1][i]; + } else if (modes[i] === 'min') { + relativeTo[i] = bounds[0][i]; + } + } + } + return relativeTo +}; + +const alignGeometries = (geometry, modes, relativeTo) => { + const bounds = measureAggregateBoundingBox(geometry); + const translation = [0, 0, 0]; + for (let i = 0; i < 3; i++) { + if (modes[i] === 'center') { + translation[i] = relativeTo[i] - (bounds[0][i] + bounds[1][i]) / 2; + } else if (modes[i] === 'max') { + translation[i] = relativeTo[i] - bounds[1][i]; + } else if (modes[i] === 'min') { + translation[i] = relativeTo[i] - bounds[0][i]; + } + } + + return translate(translation, geometry) +}; + +/** + * Align the boundaries of the given geometries using the given options. + * @param {Object} options - options for aligning + * @param {Array} [options.modes = ['center', 'center', 'min']] - the point on the geometries to align to for each axis. Valid options are "center", "max", "min", and "none". + * @param {Array} [options.relativeTo = [0,0,0]] - The point one each axis on which to align the geometries upon. If the value is null, then the corresponding value from the group's bounding box is used. + * @param {Boolean} [options.grouped = false] - if true, transform all geometries by the same amount, maintaining the relative positions to each other. + * @param {...Object} geometries - the geometries to align + * @return {Object|Array} the aligned geometry, or a list of aligned geometries + * @alias module:modeling/transforms.align + * + * @example + * let alignedGeometries = align({modes: ['min', 'center', 'none'], relativeTo: [10, null, 10], grouped: true }, geometries) + */ +const align = (options, ...geometries) => { + const defaults = { + modes: ['center', 'center', 'min'], + relativeTo: [0, 0, 0], + grouped: false + }; + options = Object.assign({}, defaults, options); + + options = validateOptions(options); + let { modes, relativeTo, grouped } = options; + geometries = flatten(geometries); + if (geometries.length === 0) throw new Error('align(): No geometries were provided to act upon') + + if (relativeTo.filter((val) => val == null).length) { + const bounds = measureAggregateBoundingBox(geometries); + relativeTo = populateRelativeToFromBounds(relativeTo, modes, bounds); + } + if (grouped) { + geometries = alignGeometries(geometries, modes, relativeTo); + } else { + geometries = geometries.map((geometry) => alignGeometries(geometry, modes, relativeTo)); + } + return geometries.length === 1 ? geometries[0] : geometries +}; + +const centerGeometry = (options, object) => { + const defaults = { + axes: [true, true, true], + relativeTo: [0, 0, 0] + }; + const { axes, relativeTo } = Object.assign({}, defaults, options); + + const bounds = measureBoundingBox(object); + const offset = [0, 0, 0]; + if (axes[0]) offset[0] = relativeTo[0] - (bounds[0][0] + ((bounds[1][0] - bounds[0][0]) / 2)); + if (axes[1]) offset[1] = relativeTo[1] - (bounds[0][1] + ((bounds[1][1] - bounds[0][1]) / 2)); + if (axes[2]) offset[2] = relativeTo[2] - (bounds[0][2] + ((bounds[1][2] - bounds[0][2]) / 2)); + return translate(offset, object) +}; + +/** + * Center the given objects using the given options. + * @param {Object} options - options for centering + * @param {Array} [options.axes=[true,true,true]] - axis of which to center, true or false + * @param {Array} [options.relativeTo=[0,0,0]] - relative point of which to center the objects + * @param {...Object} objects - the objects to center + * @return {Object|Array} the centered object, or a list of centered objects + * @alias module:modeling/transforms.center + * + * @example + * let myshape = center({axes: [true,false,false]}, sphere()) // center about the X axis + */ +const center = (options, ...objects) => { + const defaults = { + axes: [true, true, true], + relativeTo: [0, 0, 0] + // TODO: Add additional 'methods' of centering: midpoint, centroid + }; + const { axes, relativeTo } = Object.assign({}, defaults, options); + + objects = flatten(objects); + if (objects.length === 0) throw new Error('wrong number of arguments') + if (relativeTo.length !== 3) throw new Error('relativeTo must be an array of length 3') + + options = { axes, relativeTo }; + + const results = objects.map((object) => { + if (isA$2(object)) return centerGeometry(options, object) + if (isA$5(object)) return centerGeometry(options, object) + if (isA$3(object)) return centerGeometry(options, object) + return object + }); + return results.length === 1 ? results[0] : results +}; + +/** + * Center the given objects about the X axis. + * @param {...Object} objects - the objects to center + * @return {Object|Array} the centered object, or a list of centered objects + * @alias module:modeling/transforms.centerX + */ +const centerX = (...objects) => center({ axes: [true, false, false] }, objects); + +/** + * Center the given objects about the Y axis. + * @param {...Object} objects - the objects to center + * @return {Object|Array} the centered object, or a list of centered objects + * @alias module:modeling/transforms.centerY + */ +const centerY = (...objects) => center({ axes: [false, true, false] }, objects); + +/** + * Center the given objects about the Z axis. + * @param {...Object} objects - the objects to center + * @return {Object|Array} the centered object, or a list of centered objects + * @alias module:modeling/transforms.centerZ + */ +const centerZ = (...objects) => center({ axes: [false, false, true] }, objects); + +/** + * Scale the given objects using the given options. + * @param {Array} factors - X, Y, Z factors by which to scale the objects + * @param {...Object} objects - the objects to scale + * @return {Object|Array} the scaled object, or a list of scaled objects + * @alias module:modeling/transforms.scale + * + * @example + * let myshape = scale([5, 0, 10], sphere()) + */ +const scale = (factors, ...objects) => { + if (!Array.isArray(factors)) throw new Error('factors must be an array') + + objects = flatten(objects); + if (objects.length === 0) throw new Error('wrong number of arguments') + + // adjust the factors if necessary + factors = factors.slice(); // don't modify the original + while (factors.length < 3) factors.push(1); + + if (factors[0] <= 0 || factors[1] <= 0 || factors[2] <= 0) throw new Error('factors must be positive') + + const matrix = fromScaling(create$c(), factors); + + const results = objects.map((object) => { + if (isA$2(object)) return transform$5(matrix, object) + if (isA$5(object)) return transform$a(matrix, object) + if (isA$3(object)) return transform$6(matrix, object) + return object + }); + return results.length === 1 ? results[0] : results +}; + +/** + * Scale the given objects about the X axis using the given options. + * @param {Number} factor - X factor by which to scale the objects + * @param {...Object} objects - the objects to scale + * @return {Object|Array} the scaled object, or a list of scaled objects + * @alias module:modeling/transforms.scaleX + */ +const scaleX = (factor, ...objects) => scale([factor, 1, 1], objects); + +/** + * Scale the given objects about the Y axis using the given options. + * @param {Number} factor - Y factor by which to scale the objects + * @param {...Object} objects - the objects to scale + * @return {Object|Array} the scaled object, or a list of scaled objects + * @alias module:modeling/transforms.scaleY + */ +const scaleY = (factor, ...objects) => scale([1, factor, 1], objects); + +/** + * Scale the given objects about the Z axis using the given options. + * @param {Number} factor - Z factor by which to scale the objects + * @param {...Object} objects - the objects to scale + * @return {Object|Array} the scaled object, or a list of scaled objects + * @alias module:modeling/transforms.scaleZ + */ +const scaleZ = (factor, ...objects) => scale([1, 1, factor], objects); + +/** + * Transform the given objects using the given matrix. + * @param {mat4} matrix - a transformation matrix + * @param {...Object} objects - the objects to transform + * @return {Object|Array} the transformed object, or a list of transformed objects + * @alias module:modeling/transforms.transform + * + * @example + * const newSphere = transform(mat4.rotateX(TAU / 8), sphere()) + */ +const transform = (matrix, ...objects) => { + // TODO how to check that the matrix is REAL? + + objects = flatten(objects); + if (objects.length === 0) throw new Error('wrong number of arguments') + + const results = objects.map((object) => { + if (isA$2(object)) return transform$5(matrix, object) + if (isA$5(object)) return transform$a(matrix, object) + if (isA$3(object)) return transform$6(matrix, object) + return object + }); + return results.length === 1 ? results[0] : results +}; + +/** + * All shapes (primitives or the results of operations) can be transformed, such as scaled or rotated. + * In all cases, the function returns the results, and never changes the original shapes. + * @module modeling/transforms + * @example + * import { center, rotateX, translate } from '@jscad/modeling/transforms' + */ + +var index = /*#__PURE__*/Object.freeze({ + __proto__: null, + align: align, + center: center, + centerX: centerX, + centerY: centerY, + centerZ: centerZ, + mirror: mirror, + mirrorX: mirrorX, + mirrorY: mirrorY, + mirrorZ: mirrorZ, + rotate: rotate, + rotateX: rotateX, + rotateY: rotateY, + rotateZ: rotateZ, + scale: scale, + scaleX: scaleX, + scaleY: scaleY, + scaleZ: scaleZ, + translate: translate, + translateX: translateX, + translateY: translateY, + translateZ: translateZ, + transform: transform +}); + +export { index$5 as booleans, index$j as colors, index$h as curves, index$4 as expansions, index$3 as extrusions, index$d as geometries, index$2 as hulls, index$a as maths, index$9 as measurements, index$1 as modifiers, index$8 as primitives, index$7 as text, index as transforms, index$6 as utils }; diff --git a/packages/modeling/dist/jscad-modeling.min.js b/packages/modeling/dist/jscad-modeling.min.js index 597e73d4f..1f792686e 100644 --- a/packages/modeling/dist/jscad-modeling.min.js +++ b/packages/modeling/dist/jscad-modeling.min.js @@ -1,1193 +1,17520 @@ -(function(f){if(typeof exports==="object"&&typeof module!=="undefined"){module.exports=f()}else if(typeof define==="function"&&define.amd){define([],f)}else{var g;if(typeof window!=="undefined"){g=window}else if(typeof global!=="undefined"){g=global}else if(typeof self!=="undefined"){g=self}else{g=this}g.jscadModeling = f()}})(function(){var define,module,exports;return (function(){function r(e,n,t){function o(i,f){if(!n[i]){if(!e[i]){var c="function"==typeof require&&require;if(!f&&c)return c(i,!0);if(u)return u(i,!0);var a=new Error("Cannot find module '"+i+"'");throw a.code="MODULE_NOT_FOUND",a}var p=n[i]={exports:{}};e[i][0].call(p.exports,function(r){var n=e[i][1][r];return o(n||r)},p,p.exports,r,e,n,t)}return n[i].exports}for(var u="function"==typeof require&&require,i=0;icssColors[o.toLowerCase()];module.exports=colorNameToRgb; - -},{"./cssColors":3}],2:[function(require,module,exports){ -const flatten=require("../utils/flatten"),geom2=require("../geometries/geom2"),geom3=require("../geometries/geom3"),path2=require("../geometries/path2"),poly3=require("../geometries/poly3"),colorGeom2=(o,r)=>{const e=geom2.clone(r);return e.color=o,e},colorGeom3=(o,r)=>{const e=geom3.clone(r);return e.color=o,e},colorPath2=(o,r)=>{const e=path2.clone(r);return e.color=o,e},colorPoly3=(o,r)=>{const e=poly3.clone(r);return e.color=o,e},colorize=(o,...r)=>{if(!Array.isArray(o))throw new Error("color must be an array");if(o.length<3)throw new Error("color must contain R, G and B values");if(3===o.length&&(o=[o[0],o[1],o[2],1]),0===(r=flatten(r)).length)throw new Error("wrong number of arguments");const e=r.map(r=>geom2.isA(r)?colorGeom2(o,r):geom3.isA(r)?colorGeom3(o,r):path2.isA(r)?colorPath2(o,r):poly3.isA(r)?colorPoly3(o,r):(r.color=o,r));return 1===e.length?e[0]:e};module.exports=colorize; - -},{"../geometries/geom2":22,"../geometries/geom3":37,"../geometries/path2":58,"../geometries/poly3":75,"../utils/flatten":391}],3:[function(require,module,exports){ -const cssColors={black:[0,0,0],silver:[192/255,192/255,192/255],gray:[128/255,128/255,128/255],white:[1,1,1],maroon:[128/255,0,0],red:[1,0,0],purple:[128/255,0,128/255],fuchsia:[1,0,1],green:[0,128/255,0],lime:[0,1,0],olive:[128/255,128/255,0],yellow:[1,1,0],navy:[0,0,128/255],blue:[0,0,1],teal:[0,128/255,128/255],aqua:[0,1,1],aliceblue:[240/255,248/255,1],antiquewhite:[250/255,235/255,215/255],aquamarine:[127/255,1,212/255],azure:[240/255,1,1],beige:[245/255,245/255,220/255],bisque:[1,228/255,196/255],blanchedalmond:[1,235/255,205/255],blueviolet:[138/255,43/255,226/255],brown:[165/255,42/255,42/255],burlywood:[222/255,184/255,135/255],cadetblue:[95/255,158/255,160/255],chartreuse:[127/255,1,0],chocolate:[210/255,105/255,30/255],coral:[1,127/255,80/255],cornflowerblue:[100/255,149/255,237/255],cornsilk:[1,248/255,220/255],crimson:[220/255,20/255,60/255],cyan:[0,1,1],darkblue:[0,0,139/255],darkcyan:[0,139/255,139/255],darkgoldenrod:[184/255,134/255,11/255],darkgray:[169/255,169/255,169/255],darkgreen:[0,100/255,0],darkgrey:[169/255,169/255,169/255],darkkhaki:[189/255,183/255,107/255],darkmagenta:[139/255,0,139/255],darkolivegreen:[85/255,107/255,47/255],darkorange:[1,140/255,0],darkorchid:[.6,50/255,.8],darkred:[139/255,0,0],darksalmon:[233/255,150/255,122/255],darkseagreen:[143/255,188/255,143/255],darkslateblue:[72/255,61/255,139/255],darkslategray:[47/255,79/255,79/255],darkslategrey:[47/255,79/255,79/255],darkturquoise:[0,206/255,209/255],darkviolet:[148/255,0,211/255],deeppink:[1,20/255,147/255],deepskyblue:[0,191/255,1],dimgray:[105/255,105/255,105/255],dimgrey:[105/255,105/255,105/255],dodgerblue:[30/255,144/255,1],firebrick:[178/255,34/255,34/255],floralwhite:[1,250/255,240/255],forestgreen:[34/255,139/255,34/255],gainsboro:[220/255,220/255,220/255],ghostwhite:[248/255,248/255,1],gold:[1,215/255,0],goldenrod:[218/255,165/255,32/255],greenyellow:[173/255,1,47/255],grey:[128/255,128/255,128/255],honeydew:[240/255,1,240/255],hotpink:[1,105/255,180/255],indianred:[205/255,92/255,92/255],indigo:[75/255,0,130/255],ivory:[1,1,240/255],khaki:[240/255,230/255,140/255],lavender:[230/255,230/255,250/255],lavenderblush:[1,240/255,245/255],lawngreen:[124/255,252/255,0],lemonchiffon:[1,250/255,205/255],lightblue:[173/255,216/255,230/255],lightcoral:[240/255,128/255,128/255],lightcyan:[224/255,1,1],lightgoldenrodyellow:[250/255,250/255,210/255],lightgray:[211/255,211/255,211/255],lightgreen:[144/255,238/255,144/255],lightgrey:[211/255,211/255,211/255],lightpink:[1,182/255,193/255],lightsalmon:[1,160/255,122/255],lightseagreen:[32/255,178/255,170/255],lightskyblue:[135/255,206/255,250/255],lightslategray:[119/255,136/255,.6],lightslategrey:[119/255,136/255,.6],lightsteelblue:[176/255,196/255,222/255],lightyellow:[1,1,224/255],limegreen:[50/255,205/255,50/255],linen:[250/255,240/255,230/255],magenta:[1,0,1],mediumaquamarine:[.4,205/255,170/255],mediumblue:[0,0,205/255],mediumorchid:[186/255,85/255,211/255],mediumpurple:[147/255,112/255,219/255],mediumseagreen:[60/255,179/255,113/255],mediumslateblue:[123/255,104/255,238/255],mediumspringgreen:[0,250/255,154/255],mediumturquoise:[72/255,209/255,.8],mediumvioletred:[199/255,21/255,133/255],midnightblue:[25/255,25/255,112/255],mintcream:[245/255,1,250/255],mistyrose:[1,228/255,225/255],moccasin:[1,228/255,181/255],navajowhite:[1,222/255,173/255],oldlace:[253/255,245/255,230/255],olivedrab:[107/255,142/255,35/255],orange:[1,165/255,0],orangered:[1,69/255,0],orchid:[218/255,112/255,214/255],palegoldenrod:[238/255,232/255,170/255],palegreen:[152/255,251/255,152/255],paleturquoise:[175/255,238/255,238/255],palevioletred:[219/255,112/255,147/255],papayawhip:[1,239/255,213/255],peachpuff:[1,218/255,185/255],peru:[205/255,133/255,63/255],pink:[1,192/255,203/255],plum:[221/255,160/255,221/255],powderblue:[176/255,224/255,230/255],rosybrown:[188/255,143/255,143/255],royalblue:[65/255,105/255,225/255],saddlebrown:[139/255,69/255,19/255],salmon:[250/255,128/255,114/255],sandybrown:[244/255,164/255,96/255],seagreen:[46/255,139/255,87/255],seashell:[1,245/255,238/255],sienna:[160/255,82/255,45/255],skyblue:[135/255,206/255,235/255],slateblue:[106/255,90/255,205/255],slategray:[112/255,128/255,144/255],slategrey:[112/255,128/255,144/255],snow:[1,250/255,250/255],springgreen:[0,1,127/255],steelblue:[70/255,130/255,180/255],tan:[210/255,180/255,140/255],thistle:[216/255,191/255,216/255],tomato:[1,99/255,71/255],turquoise:[64/255,224/255,208/255],violet:[238/255,130/255,238/255],wheat:[245/255,222/255,179/255],whitesmoke:[245/255,245/255,245/255],yellowgreen:[154/255,205/255,50/255]};module.exports=cssColors; - -},{}],4:[function(require,module,exports){ -const hexToRgb=t=>{if((t=t.replace("#","")).length<6)throw new Error("the given notation must contain 3 or more hex values");const e=parseInt(t.substring(0,2),16)/255,n=parseInt(t.substring(2,4),16)/255,r=parseInt(t.substring(4,6),16)/255;if(t.length>=8){return[e,n,r,parseInt(t.substring(6,8),16)/255]}return[e,n,r]};module.exports=hexToRgb; - -},{}],5:[function(require,module,exports){ -const flatten=require("../utils/flatten"),hueToColorComponent=require("./hueToColorComponent"),hslToRgb=(...o)=>{if((o=flatten(o)).length<3)throw new Error("values must contain H, S and L values");const e=o[0],n=o[1],t=o[2];let r=t,l=t,u=t;if(0!==n){const o=t<.5?t*(1+n):t+n-t*n,h=2*t-o;r=hueToColorComponent(h,o,e+1/3),l=hueToColorComponent(h,o,e),u=hueToColorComponent(h,o,e-1/3)}if(o.length>3){return[r,l,u,o[3]]}return[r,l,u]};module.exports=hslToRgb; - -},{"../utils/flatten":391,"./hueToColorComponent":7}],6:[function(require,module,exports){ -const flatten=require("../utils/flatten"),hsvToRgb=(...e)=>{if((e=flatten(e)).length<3)throw new Error("values must contain H, S and V values");const t=e[0],a=e[1],r=e[2];let s=0,n=0,o=0;const c=Math.floor(6*t),l=6*t-c,u=r*(1-a),b=r*(1-l*a),h=r*(1-(1-l)*a);switch(c%6){case 0:s=r,n=h,o=u;break;case 1:s=b,n=r,o=u;break;case 2:s=u,n=r,o=h;break;case 3:s=u,n=b,o=r;break;case 4:s=h,n=u,o=r;break;case 5:s=r,n=u,o=b}if(e.length>3){return[s,n,o,e[3]]}return[s,n,o]};module.exports=hsvToRgb; - -},{"../utils/flatten":391}],7:[function(require,module,exports){ -const hueToColorComponent=(o,e,n)=>(n<0&&(n+=1),n>1&&(n-=1),n<1/6?o+6*(e-o)*n:n<.5?e:n<2/3?o+(e-o)*(2/3-n)*6:o);module.exports=hueToColorComponent; - -},{}],8:[function(require,module,exports){ -module.exports={colorize:require("./colorize"),colorNameToRgb:require("./colorNameToRgb"),cssColors:require("./cssColors"),hexToRgb:require("./hexToRgb"),hslToRgb:require("./hslToRgb"),hsvToRgb:require("./hsvToRgb"),hueToColorComponent:require("./hueToColorComponent"),rgbToHex:require("./rgbToHex"),rgbToHsl:require("./rgbToHsl"),rgbToHsv:require("./rgbToHsv")}; - -},{"./colorNameToRgb":1,"./colorize":2,"./cssColors":3,"./hexToRgb":4,"./hslToRgb":5,"./hsvToRgb":6,"./hueToColorComponent":7,"./rgbToHex":9,"./rgbToHsl":10,"./rgbToHsv":11}],9:[function(require,module,exports){ -const flatten=require("../utils/flatten"),rgbToHex=(...t)=>{if((t=flatten(t)).length<3)throw new Error("values must contain R, G and B values");const e=255*t[0],r=255*t[1],n=255*t[2];let o=`#${Number(16777216+65536*e+256*r+n).toString(16).substring(1,7)}`;return t.length>3&&(o+=Number(255*t[3]).toString(16)),o};module.exports=rgbToHex; - -},{"../utils/flatten":391}],10:[function(require,module,exports){ -const flatten=require("../utils/flatten"),rgbToHsl=(...t)=>{if((t=flatten(t)).length<3)throw new Error("values must contain R, G and B values");const e=t[0],n=t[1],s=t[2],a=Math.max(e,n,s),r=Math.min(e,n,s);let l,o;const c=(a+r)/2;if(a===r)l=o=0;else{const t=a-r;switch(o=c>.5?t/(2-a-r):t/(a+r),a){case e:l=(n-s)/t+(n3){return[l,o,c,t[3]]}return[l,o,c]};module.exports=rgbToHsl; - -},{"../utils/flatten":391}],11:[function(require,module,exports){ -const flatten=require("../utils/flatten"),rgbToHsv=(...e)=>{if((e=flatten(e)).length<3)throw new Error("values must contain R, G and B values");const t=e[0],a=e[1],n=e[2],r=Math.max(t,a,n),s=Math.min(t,a,n);let l;const o=r,c=r-s,i=0===r?0:c/r;if(r===s)l=0;else{switch(r){case t:l=(a-n)/c+(a3){return[l,i,o,e[3]]}return[l,i,o]};module.exports=rgbToHsv; - -},{"../utils/flatten":391}],12:[function(require,module,exports){ -const create=e=>{if(!Array.isArray(e))throw new Error("Bezier points must be a valid array/");if(e.length<2)throw new Error("Bezier points must contain at least 2 values.");const r=getPointType(e);return{points:e,pointType:r,dimensions:"float_single"===r?0:e[0].length,permutations:getPermutations(e.length-1),tangentPermutations:getPermutations(e.length-2)}},getPointType=function(e){let r=null;return e.forEach(e=>{let t="";if(Number.isFinite(e))t="float_single";else{if(!Array.isArray(e))throw new Error("Bezier points must all be numbers or arrays of number.");e.forEach(e=>{if(!Number.isFinite(e))throw new Error("Bezier point values must all be numbers.")}),t="float_"+e.length}if(null==r)r=t;else if(r!==t)throw new Error("Bezier points must be either all numbers or all arrays of numbers of the same size.")}),r},getPermutations=function(e){const r=[];for(let t=0;t<=e;t++)r.push(factorial(e)/(factorial(t)*factorial(e-t)));return r},factorial=function(e){let r=1;for(let t=2;t<=e;t++)r*=t;return r};module.exports=create; - -},{}],13:[function(require,module,exports){ -module.exports={create:require("./create"),valueAt:require("./valueAt"),tangentAt:require("./tangentAt")}; - -},{"./create":12,"./tangentAt":14,"./valueAt":15}],14:[function(require,module,exports){ -const tangentAt=(t,n)=>{if(t<0||t>1)throw new Error("Bezier tangentAt() input must be between 0 and 1");if("float_single"===n.pointType)return bezierTangent(n,n.points,t);{const e=[];for(let o=0;o{if(t<0||t>1)throw new Error("Bezier valueAt() input must be between 0 and 1");if("float_single"===e.pointType)return bezierFunction(e,e.points,t);{const n=[];for(let o=0;omat4.isIdentity(r.transforms)?r:(r.sides=r.sides.map(s=>{return[vec2.transform(vec2.create(),s[0],r.transforms),vec2.transform(vec2.create(),s[1],r.transforms)]}),r.transforms=mat4.create(),r);module.exports=applyTransforms; - -},{"../../maths/mat4":139,"../../maths/vec2":186}],18:[function(require,module,exports){ -const clone=e=>Object.assign({},e);module.exports=clone; - -},{}],19:[function(require,module,exports){ -const mat4=require("../../maths/mat4"),create=e=>(void 0===e&&(e=[]),{sides:e,transforms:mat4.create()});module.exports=create; - -},{"../../maths/mat4":139}],20:[function(require,module,exports){ -const mat4=require("../../maths/mat4"),vec2=require("../../maths/vec2"),create=require("./create"),fromCompactBinary=e=>{if(0!==e[0])throw new Error("invalid compact binary data");const r=create();r.transforms=mat4.clone(e.slice(1,17));for(let t=21;t=0&&(r.color=[e[17],e[18],e[19],e[20]]),r};module.exports=fromCompactBinary; - -},{"../../maths/mat4":139,"../../maths/vec2":186,"./create":19}],21:[function(require,module,exports){ -const vec2=require("../../maths/vec2"),create=require("./create"),fromPoints=e=>{if(!Array.isArray(e))throw new Error("the given points must be an array");let r=e.length;if(r<3)throw new Error("the given points must define a closed geometry with three or more points");vec2.equals(e[0],e[r-1])&&--r;const t=[];let o=e[r-1];for(let n=0;n!!(s&&"object"==typeof s&&"sides"in s&&"transforms"in s&&Array.isArray(s.sides)&&"length"in s.transforms);module.exports=isA; - -},{}],24:[function(require,module,exports){ -const create=require("./create"),toSides=require("./toSides"),reverse=e=>{const r=toSides(e).map(e=>[e[1],e[0]]);return r.reverse(),create(r)};module.exports=reverse; - -},{"./create":19,"./toSides":28}],25:[function(require,module,exports){ -const toCompactBinary=o=>{const t=o.sides,r=o.transforms;let n=[-1,-1,-1,-1];o.color&&(n=o.color);const e=new Float32Array(21+4*t.length);e[0]=0,e[1]=r[0],e[2]=r[1],e[3]=r[2],e[4]=r[3],e[5]=r[4],e[6]=r[5],e[7]=r[6],e[8]=r[7],e[9]=r[8],e[10]=r[9],e[11]=r[10],e[12]=r[11],e[13]=r[12],e[14]=r[13],e[15]=r[14],e[16]=r[15],e[17]=n[0],e[18]=n[1],e[19]=n[2],e[20]=n[3];for(let o=0;o{const t=new Map,r=e=>{const r=e.toString();return t.has(r)?t.get(r):(t.set(r,e),e)};return e.map(e=>e.map(r))},toVertexMap=e=>{const t=new Map;return toSharedVertices(e).forEach(e=>{t.has(e[0])?t.get(e[0]).push(e):t.set(e[0],[e])}),t},toOutlines=e=>{const t=toVertexMap(toSides(e)),r=[];for(;;){let e;for(const[r,o]of t){if(e=o.shift())break;t.delete(r)}if(void 0===e)break;const o=[],s=e[0];for(;;){o.push(e[0]);const r=e[1];if(r===s)break;const n=t.get(r);if(!n)throw new Error(`geometry is not closed at vertex ${r}`);const c=popNextSide(e,n);0===n.length&&t.delete(r),e=c}o.length>0&&o.push(o.shift()),r.push(o)}return t.clear(),r},popNextSide=(e,t)=>{if(1===t.length)return t.pop();const r=vec2.create(),o=vec2.angleDegrees(vec2.subtract(r,e[1],e[0]));let s,n;t.forEach((e,t)=>{let c=vec2.angleDegrees(vec2.subtract(r,e[1],e[0]))-o;c<-180&&(c+=360),c>=180&&(c-=360),(void 0===n||c>s)&&(n=t,s=c)});const c=t[n];return t.splice(n,1),c};module.exports=toOutlines; - -},{"../../maths/vec2":186,"./toSides":28}],27:[function(require,module,exports){ -const toSides=require("./toSides"),toPoints=t=>{const o=toSides(t).map(t=>t[0]);return o.length>0&&o.push(o.shift()),o};module.exports=toPoints; - -},{"./toSides":28}],28:[function(require,module,exports){ -const applyTransforms=require("./applyTransforms"),toSides=s=>applyTransforms(s).sides;module.exports=toSides; - -},{"./applyTransforms":17}],29:[function(require,module,exports){ -const vec2=require("../../maths/vec2"),toSides=require("./toSides"),toString=e=>{const t=toSides(e);let o="geom2 ("+t.length+" sides):\n[\n";return t.forEach(e=>{o+=" ["+vec2.toString(e[0])+", "+vec2.toString(e[1])+"]\n"}),o+="]\n"};module.exports=toString; - -},{"../../maths/vec2":186,"./toSides":28}],30:[function(require,module,exports){ -const mat4=require("../../maths/mat4"),transform=(t,r)=>{const s=mat4.multiply(mat4.create(),t,r.transforms);return Object.assign({},r,{transforms:s})};module.exports=transform; - -},{"../../maths/mat4":139}],31:[function(require,module,exports){ -const vec2=require("../../maths/vec2"),isA=require("./isA"),toOutlines=require("./toOutlines"),validate=e=>{if(!isA(e))throw new Error("invalid geom2 structure");if(toOutlines(e),e.sides.forEach(e=>{if(vec2.equals(e[0],e[1]))throw new Error(`geom2 self-edge ${e[0]}`)}),!e.transforms.every(Number.isFinite))throw new Error(`geom2 invalid transforms ${e.transforms}`)};module.exports=validate; - -},{"../../maths/vec2":186,"./isA":23,"./toOutlines":26}],32:[function(require,module,exports){ -const mat4=require("../../maths/mat4"),poly3=require("../poly3"),applyTransforms=r=>mat4.isIdentity(r.transforms)?r:(r.polygons=r.polygons.map(s=>poly3.transform(r.transforms,s)),r.transforms=mat4.create(),r);module.exports=applyTransforms; - -},{"../../maths/mat4":139,"../poly3":75}],33:[function(require,module,exports){ -const clone=e=>Object.assign({},e);module.exports=clone; - -},{}],34:[function(require,module,exports){ -const mat4=require("../../maths/mat4"),create=e=>(void 0===e&&(e=[]),{polygons:e,transforms:mat4.create()});module.exports=create; - -},{"../../maths/mat4":139}],35:[function(require,module,exports){ -const vec3=require("../../maths/vec3"),mat4=require("../../maths/mat4"),poly3=require("../poly3"),create=require("./create"),fromCompactBinary=e=>{if(1!==e[0])throw new Error("invalid compact binary data");const r=create();r.transforms=mat4.clone(e.slice(1,17));const o=e[21];let t=22,a=e.length-3*o;for(;a=0&&(r.color=[e[17],e[18],e[19],e[20]]),r};module.exports=fromCompactBinary; - -},{"../../maths/mat4":139,"../../maths/vec3":217,"../poly3":75,"./create":34}],36:[function(require,module,exports){ -const poly3=require("../poly3"),create=require("./create"),fromPoints=r=>{if(!Array.isArray(r))throw new Error("the given points must be an array");const e=r.map((r,e)=>{return poly3.create(r)});return create(e)};module.exports=fromPoints; - -},{"../poly3":75,"./create":34}],37:[function(require,module,exports){ -module.exports={clone:require("./clone"),create:require("./create"),fromPoints:require("./fromPoints"),fromCompactBinary:require("./fromCompactBinary"),invert:require("./invert"),isA:require("./isA"),toPoints:require("./toPoints"),toPolygons:require("./toPolygons"),toString:require("./toString"),toCompactBinary:require("./toCompactBinary"),transform:require("./transform"),validate:require("./validate")}; - -},{"./clone":33,"./create":34,"./fromCompactBinary":35,"./fromPoints":36,"./invert":38,"./isA":39,"./toCompactBinary":40,"./toPoints":41,"./toPolygons":42,"./toString":43,"./transform":44,"./validate":45}],38:[function(require,module,exports){ -const poly3=require("../poly3"),create=require("./create"),toPolygons=require("./toPolygons"),invert=e=>{const o=toPolygons(e).map(e=>poly3.invert(e));return create(o)};module.exports=invert; - -},{"../poly3":75,"./create":34,"./toPolygons":42}],39:[function(require,module,exports){ -const isA=o=>!!(o&&"object"==typeof o&&"polygons"in o&&"transforms"in o&&Array.isArray(o.polygons)&&"length"in o.transforms);module.exports=isA; - -},{}],40:[function(require,module,exports){ -const poly3=require("../poly3"),toCompactBinary=o=>{const t=o.polygons,e=o.transforms,r=t.length,n=t.reduce((o,t)=>o+t.vertices.length,0);let l=[-1,-1,-1,-1];o.color&&(l=o.color);const c=new Float32Array(22+r+3*n);c[0]=1,c[1]=e[0],c[2]=e[1],c[3]=e[2],c[4]=e[3],c[5]=e[4],c[6]=e[5],c[7]=e[6],c[8]=e[7],c[9]=e[8],c[10]=e[9],c[11]=e[10],c[12]=e[11],c[13]=e[12],c[14]=e[13],c[15]=e[14],c[16]=e[15],c[17]=l[0],c[18]=l[1],c[19]=l[2],c[20]=l[3],c[21]=n;let s=22,a=s+r;return t.forEach(o=>{const t=poly3.toPoints(o);c[s]=t.length,s++;for(let o=0;o{return toPolygons(o).map(o=>poly3.toPoints(o))};module.exports=toPoints; - -},{"../poly3":75,"./toPolygons":42}],42:[function(require,module,exports){ -const applyTransforms=require("./applyTransforms"),toPolygons=o=>applyTransforms(o).polygons;module.exports=toPolygons; - -},{"./applyTransforms":32}],43:[function(require,module,exports){ -const poly3=require("../poly3"),toPolygons=require("./toPolygons"),toString=o=>{const t=toPolygons(o);let n="geom3 ("+t.length+" polygons):\n";return t.forEach(o=>{n+=" "+poly3.toString(o)+"\n"}),n};module.exports=toString; - -},{"../poly3":75,"./toPolygons":42}],44:[function(require,module,exports){ -const mat4=require("../../maths/mat4"),transform=(t,r)=>{const s=mat4.multiply(mat4.create(),t,r.transforms);return Object.assign({},r,{transforms:s})};module.exports=transform; - -},{"../../maths/mat4":139}],45:[function(require,module,exports){ -const poly3=require("../poly3"),isA=require("./isA"),validate=e=>{if(!isA(e))throw new Error("invalid geom3 structure");if(e.polygons.forEach(poly3.validate),validateManifold(e),!e.transforms.every(Number.isFinite))throw new Error(`geom3 invalid transforms ${e.transforms}`)},validateManifold=e=>{const o=new Map;e.polygons.forEach(({vertices:e})=>{e.forEach((r,n)=>{const t=`${`${r}`}/${`${e[(n+1)%e.length]}`}`,i=o.has(t)?o.get(t):0;o.set(t,i+1)})});const r=[];if(o.forEach((e,n)=>{const t=n.split("/").reverse().join("/");e!==o.get(t)&&r.push(n.replace("/"," -> "))}),r.length>0)throw new Error(`non-manifold edges ${r.length}\n${r.join("\n")}`)};module.exports=validate; - -},{"../poly3":75,"./isA":39}],46:[function(require,module,exports){ -module.exports={geom2:require("./geom2"),geom3:require("./geom3"),path2:require("./path2"),poly2:require("./poly2"),poly3:require("./poly3")}; - -},{"./geom2":22,"./geom3":37,"./path2":58,"./poly2":69,"./poly3":75}],47:[function(require,module,exports){ -const{TAU:TAU}=require("../../maths/constants"),vec2=require("../../maths/vec2"),fromPoints=require("./fromPoints"),toPoints=require("./toPoints"),appendArc=(e,t)=>{let{endpoint:r,radius:a,xaxisrotation:o,clockwise:n,large:s,segments:c}=Object.assign({},{radius:[0,0],xaxisrotation:0,clockwise:!1,large:!1,segments:16},e);if(!Array.isArray(r))throw new Error("endpoint must be an array of X and Y values");if(r.length<2)throw new Error("endpoint must contain X and Y values");if(r=vec2.clone(r),!Array.isArray(a))throw new Error("radius must be an array of X and Y values");if(a.length<2)throw new Error("radius must contain X and Y values");if(c<4)throw new Error("segments must be four or more");if(t.isClosed)throw new Error("the given path cannot be closed");const i=toPoints(t);if(i.length<1)throw new Error("the given path must contain one or more points (as the starting point for the arc)");let h=a[0],u=a[1];const l=i[i.length-1];h=Math.round(1e5*h)/1e5,u=Math.round(1e5*u)/1e5,r=vec2.fromValues(Math.round(1e5*r[0])/1e5,Math.round(1e5*r[1])/1e5);const d=!n;let v=[];if(0===h||0===u)v.push(r);else{h=Math.abs(h),u=Math.abs(u);const t=o,a=Math.cos(t),n=Math.sin(t),i=vec2.subtract(vec2.create(),l,r);vec2.scale(i,i,.5);const f=Math.round(1e5*(a*i[0]+n*i[1]))/1e5,m=Math.round(1e5*(-n*i[0]+a*i[1]))/1e5,M=vec2.fromValues(f,m),p=M[0]*M[0]/(h*h)+M[1]*M[1]/(u*u);if(p>1){const e=Math.sqrt(p);h*=e,u*=e,h=Math.round(1e5*h)/1e5,u=Math.round(1e5*u)/1e5}let w=Math.sqrt((h*h*u*u-h*h*M[1]*M[1]-u*u*M[0]*M[0])/(h*h*M[1]*M[1]+u*u*M[0]*M[0]));d===s&&(w=-w);const g=vec2.fromValues(h*M[1]/u,-u*M[0]/h);vec2.scale(g,g,w);let A=vec2.fromValues(a*g[0]-n*g[1],n*g[0]+a*g[1]);A=vec2.add(A,A,vec2.scale(vec2.create(),vec2.add(vec2.create(),l,r),.5));const b=vec2.fromValues((M[0]-g[0])/h,(M[1]-g[1])/u),E=vec2.fromValues((-M[0]-g[0])/h,(-M[1]-g[1])/u),V=vec2.angleRadians(b);let q=vec2.angleRadians(E)-V;q%=TAU,!d&&q>0?q-=TAU:d&&q<0&&(q+=TAU);let y=Math.ceil(Math.abs(q)/TAU*c)+1;y<1&&(y=1);for(let e=1;e{let{controlPoints:o,segments:r}=Object.assign({},{segments:16},e);if(!Array.isArray(o))throw new Error("controlPoints must be an array of one or more points");if(o.length<1)throw new Error("controlPoints must be an array of one or more points");if(r<4)throw new Error("segments must be four or more");if(t.isClosed)throw new Error("the given geometry cannot be closed");const n=toPoints(t);if(n.length<1)throw new Error("the given path must contain one or more points (as the starting point for the bezier curve)");if(null===(o=o.slice())[0]){if(o.length<2)throw new Error("a null control point must be passed with one more control points");let e=n[n.length-2];if("lastBezierControlPoint"in t&&(e=t.lastBezierControlPoint),!Array.isArray(e))throw new Error("the given path must contain TWO or more points if given a null control point");const r=vec2.scale(vec2.create(),n[n.length-1],2);vec2.subtract(r,r,e),o[0]=r}o.unshift(n[n.length-1]);const s=o.length-1,i=[];let c=1;for(let e=0;e<=s;++e)e>0&&(c*=e),i.push(c);const a=[];for(let e=0;e<=s;++e){const t=i[s]/(i[e]*i[s-e]);a.push(t)}const l=vec2.create(),h=vec2.create(),p=vec3.create(),u=e=>{let t=1,r=Math.pow(1-e,s);const n=1!==e?1/(1-e):1,i=vec2.create();for(let c=0;c<=s;++c){c===s&&(r=1);const h=a[c]*t*r,p=vec2.scale(l,o[c],h);vec2.add(i,i,p),t*=e,r*=n}return i},v=[],m=[],f=s+1;for(let e=0;eP){const e=m[g-1],t=m[g+1],o=e+1*(t-e)/3,r=e+2*(t-e)/3,n=u(o),s=u(r);v.splice(g,1,n,s),m.splice(g,1,o,r),--g<1&&(g=1)}else++g}v.shift();const b=appendPoints(v,t);return b.lastBezierControlPoint=o[o.length-2],b};module.exports=appendBezier; - -},{"../../maths/constants":90,"../../maths/vec2":186,"./appendPoints":49,"./toPoints":62}],49:[function(require,module,exports){ -const concat=require("./concat"),create=require("./create"),appendPoints=(e,c)=>concat(c,create(e));module.exports=appendPoints; - -},{"./concat":53,"./create":54}],50:[function(require,module,exports){ -const mat4=require("../../maths/mat4"),vec2=require("../../maths/vec2"),applyTransforms=r=>mat4.isIdentity(r.transforms)?r:(r.points=r.points.map(s=>vec2.transform(vec2.create(),s,r.transforms)),r.transforms=mat4.create(),r);module.exports=applyTransforms; - -},{"../../maths/mat4":139,"../../maths/vec2":186}],51:[function(require,module,exports){ -const clone=e=>Object.assign({},e);module.exports=clone; - -},{}],52:[function(require,module,exports){ -const{EPS:EPS}=require("../../maths/constants"),vec2=require("../../maths/vec2"),clone=require("./clone"),close=e=>{if(e.isClosed)return e;const t=clone(e);if(t.isClosed=!0,t.points.length>1){const e=t.points,n=e[0];let o=e[e.length-1];for(;vec2.distance(n,o){let o=!1,e=[];return t.forEach((t,n)=>{const s=toPoints(t).slice();if(e.length>0&&s.length>0&&equals(s[0],e[e.length-1])&&s.shift(),s.length>0&&o)throw new Error(`Cannot concatenate to a closed path; check the ${n}th path`);o=t.isClosed,e=e.concat(s)}),fromPoints({closed:o},e)};module.exports=concat; - -},{"../../maths/vec2":186,"./fromPoints":57,"./toPoints":62}],54:[function(require,module,exports){ -const mat4=require("../../maths/mat4"),create=e=>(void 0===e&&(e=[]),{points:e,isClosed:!1,transforms:mat4.create()});module.exports=create; - -},{"../../maths/mat4":139}],55:[function(require,module,exports){ -const vec2=require("../../maths/vec2"),toPoints=require("./toPoints"),equals=(e,t)=>{if(e.isClosed!==t.isClosed)return!1;if(e.points.length!==t.points.length)return!1;const o=toPoints(e),s=toPoints(t),i=o.length;let r=0;do{let t=!1;for(let e=0;e{if(2!==r[0])throw new Error("invalid compact binary data");const e=create();e.transforms=mat4.clone(r.slice(1,17)),e.isClosed=!!r[17];for(let t=22;t=0&&(e.color=[r[18],r[19],r[20],r[21]]),e};module.exports=fromCompactBinary; - -},{"../../maths/mat4":139,"../../maths/vec2":186,"./create":54}],57:[function(require,module,exports){ -const{EPS:EPS}=require("../../maths/constants"),vec2=require("../../maths/vec2"),close=require("./close"),create=require("./create"),fromPoints=(e,t)=>{let{closed:s}=Object.assign({},{closed:!1},e),o=create();if(o.points=t.map(e=>vec2.clone(e)),o.points.length>1){const e=o.points[0],t=o.points[o.points.length-1];vec2.distance(e,t)!!(s&&"object"==typeof s&&"points"in s&&"transforms"in s&&"isClosed"in s&&Array.isArray(s.points)&&"length"in s.transforms);module.exports=isA; - -},{}],60:[function(require,module,exports){ -const clone=require("./clone"),reverse=e=>{const r=clone(e);return r.points=e.points.slice().reverse(),r};module.exports=reverse; - -},{"./clone":51}],61:[function(require,module,exports){ -const toCompactBinary=o=>{const t=o.points,n=o.transforms;let r=[-1,-1,-1,-1];o.color&&(r=o.color);const s=new Float32Array(22+2*t.length);s[0]=2,s[1]=n[0],s[2]=n[1],s[3]=n[2],s[4]=n[3],s[5]=n[4],s[6]=n[5],s[7]=n[6],s[8]=n[7],s[9]=n[8],s[10]=n[9],s[11]=n[10],s[12]=n[11],s[13]=n[12],s[14]=n[13],s[15]=n[14],s[16]=n[15],s[17]=o.isClosed?1:0,s[18]=r[0],s[19]=r[1],s[20]=r[2],s[21]=r[3];for(let o=0;oapplyTransforms(o).points;module.exports=toPoints; - -},{"./applyTransforms":50}],63:[function(require,module,exports){ -const vec2=require("../../maths/vec2"),toPoints=require("./toPoints"),toString=t=>{const o=toPoints(t);let n="path ("+o.length+" points, "+t.isClosed+"):\n[\n";return o.forEach(t=>{n+=" "+vec2.toString(t)+",\n"}),n+="]\n"};module.exports=toString; - -},{"../../maths/vec2":186,"./toPoints":62}],64:[function(require,module,exports){ -const mat4=require("../../maths/mat4"),transform=(t,r)=>{const s=mat4.multiply(mat4.create(),t,r.transforms);return Object.assign({},r,{transforms:s})};module.exports=transform; - -},{"../../maths/mat4":139}],65:[function(require,module,exports){ -const vec2=require("../../maths/vec2"),isA=require("./isA"),validate=r=>{if(!isA(r))throw new Error("invalid path2 structure");if(r.points.length>1)for(let i=0;i{if(!r.every(Number.isFinite))throw new Error(`path2 invalid point ${r}`)}),!r.transforms.every(Number.isFinite))throw new Error(`path2 invalid transforms ${r.transforms}`)};module.exports=validate; - -},{"../../maths/vec2":186,"./isA":59}],66:[function(require,module,exports){ -const measureArea=require("./measureArea"),flip=require("./flip"),arePointsInside=(e,r)=>{if(0===e.length)return 0;const t=r.vertices;return t.length<3?0:(measureArea(r)<0&&(r=flip(r)),e.reduce((e,r)=>e+isPointInside(r,t),0)===e.length?1:0)},isPointInside=(e,r)=>{const t=r.length,n=e[0],i=e[1];let s=r[t-1],o=r[0],l=s[1]>i,u=0,a=0;for(let e=t+1;--e;){const e=o[1]>i;if(l!==e){const e=s[0]>n,r=o[0]>n;e&&r?u=!u:o[0]-(o[1]-i)*(s[0]-o[0])/(s[1]-o[1])>=n&&(u=!u)}l=e,s=o,o=r[++a]}return u},isLeft=(e,r,t)=>(r[0]-e[0])*(t[1]-e[1])-(t[0]-e[0])*(r[1]-e[1]);module.exports=arePointsInside; - -},{"./flip":68,"./measureArea":70}],67:[function(require,module,exports){ -const create=e=>((void 0===e||e.length<3)&&(e=[]),{vertices:e});module.exports=create; - -},{}],68:[function(require,module,exports){ -const create=require("./create"),flip=e=>{const r=e.vertices.slice().reverse();return create(r)};module.exports=flip; - -},{"./create":67}],69:[function(require,module,exports){ -module.exports={arePointsInside:require("./arePointsInside"),create:require("./create"),flip:require("./flip"),measureArea:require("./measureArea")}; - -},{"./arePointsInside":66,"./create":67,"./flip":68,"./measureArea":70}],70:[function(require,module,exports){ -const area=require("../../maths/utils/area"),measureArea=e=>area(e.vertices);module.exports=measureArea; - -},{"../../maths/utils/area":163}],71:[function(require,module,exports){ -const create=require("./create"),vec3=require("../../maths/vec3"),clone=(...e)=>{let c,r;return 1===e.length?(c=create(),r=e[0]):(c=e[0],r=e[1]),c.vertices=r.vertices.map(e=>vec3.clone(e)),c};module.exports=clone; - -},{"../../maths/vec3":217,"./create":72}],72:[function(require,module,exports){ -const create=e=>((void 0===e||e.length<3)&&(e=[]),{vertices:e});module.exports=create; - -},{}],73:[function(require,module,exports){ -const vec3=require("../../maths/vec3"),create=require("./create"),fromPoints=e=>{const r=e.map(e=>vec3.clone(e));return create(r)};module.exports=fromPoints; - -},{"../../maths/vec3":217,"./create":72}],74:[function(require,module,exports){ -const create=require("./create"),fromPointsAndPlane=(e,n)=>{const r=create(e);return r.plane=n,r};module.exports=fromPointsAndPlane; - -},{"./create":72}],75:[function(require,module,exports){ -module.exports={clone:require("./clone"),create:require("./create"),fromPoints:require("./fromPoints"),fromPointsAndPlane:require("./fromPointsAndPlane"),invert:require("./invert"),isA:require("./isA"),isConvex:require("./isConvex"),measureArea:require("./measureArea"),measureBoundingBox:require("./measureBoundingBox"),measureBoundingSphere:require("./measureBoundingSphere"),measureSignedVolume:require("./measureSignedVolume"),plane:require("./plane"),toPoints:require("./toPoints"),toString:require("./toString"),transform:require("./transform"),validate:require("./validate")}; - -},{"./clone":71,"./create":72,"./fromPoints":73,"./fromPointsAndPlane":74,"./invert":76,"./isA":77,"./isConvex":78,"./measureArea":79,"./measureBoundingBox":80,"./measureBoundingSphere":81,"./measureSignedVolume":82,"./plane":83,"./toPoints":84,"./toString":85,"./transform":86,"./validate":87}],76:[function(require,module,exports){ -const plane=require("../../maths/plane"),create=require("./create"),invert=e=>{const r=e.vertices.slice().reverse(),a=create(r);return e.plane&&(a.plane=plane.flip(plane.create(),e.plane)),a};module.exports=invert; - -},{"../../maths/plane":158,"./create":72}],77:[function(require,module,exports){ -const isA=e=>!!(e&&"object"==typeof e&&"vertices"in e&&Array.isArray(e.vertices));module.exports=isA; - -},{}],78:[function(require,module,exports){ -const plane=require("../../maths/plane"),vec3=require("../../maths/vec3"),isConvex=e=>areVerticesConvex(e.vertices),areVerticesConvex=e=>{const t=e.length;if(t>2){const r=plane.fromPoints(plane.create(),...e);let c=e[t-2],n=e[t-1];for(let o=0;o{const n=vec3.cross(vec3.create(),vec3.subtract(vec3.create(),t,e),vec3.subtract(vec3.create(),r,t));return vec3.dot(n,c)>=0};module.exports=isConvex; - -},{"../../maths/plane":158,"../../maths/vec3":217}],79:[function(require,module,exports){ -const plane=require("./plane"),measureArea=e=>{const r=e.vertices.length;if(r<3)return 0;const a=e.vertices,t=plane(e),s=Math.abs(t[0]),n=Math.abs(t[1]),c=Math.abs(t[2]);if(s+n+c===0)return 0;let l=3;s>n&&s>c?l=1:n>c&&(l=2);let o=0,u=0,f=1,i=2;switch(l){case 1:for(f=1;f{const c=e.vertices,n=c.length,o=0===n?vec3.create():vec3.clone(c[0]),r=vec3.clone(o);for(let e=1;e{let r=cache.get(e);if(r)return r;const t=e.vertices,c=vec4.create();if(0===t.length)return c[0]=0,c[1]=0,c[2]=0,c[3]=0,c;let a=t[0],n=a,s=a,h=a,u=a,o=a;t.forEach(e=>{a[0]>e[0]&&(a=e),n[1]>e[1]&&(n=e),s[2]>e[2]&&(s=e),h[0]{let r=0;const t=e.vertices,c=vec3.create();for(let e=0;e(e.plane||(e.plane=mplane.fromPoints(mplane.create(),...e.vertices)),e.plane);module.exports=plane; - -},{"../../maths/plane/":158}],84:[function(require,module,exports){ -const toPoints=o=>o.vertices;module.exports=toPoints; - -},{}],85:[function(require,module,exports){ -const vec3=require("../../maths/vec3/"),toString=e=>{let t="poly3: vertices: [";return e.vertices.forEach(e=>{t+=`${vec3.toString(e)}, `}),t+="]"};module.exports=toString; - -},{"../../maths/vec3/":217}],86:[function(require,module,exports){ -const mat4=require("../../maths/mat4"),vec3=require("../../maths/vec3"),create=require("./create"),transform=(e,r)=>{const t=r.vertices.map(r=>vec3.transform(vec3.create(),r,e));return mat4.isMirroring(e)&&t.reverse(),create(t)};module.exports=transform; - -},{"../../maths/mat4":139,"../../maths/vec3":217,"./create":72}],87:[function(require,module,exports){ -const signedDistanceToPoint=require("../../maths/plane/signedDistanceToPoint"),{NEPS:NEPS}=require("../../maths/constants"),vec3=require("../../maths/vec3"),isA=require("./isA"),isConvex=require("./isConvex"),measureArea=require("./measureArea"),plane=require("./plane"),validate=e=>{if(!isA(e))throw new Error("invalid poly3 structure");if(e.vertices.length<3)throw new Error(`poly3 not enough vertices ${e.vertices.length}`);if(measureArea(e)<=0)throw new Error("poly3 area must be greater than zero");for(let r=0;r{if(!e.every(Number.isFinite))throw new Error(`poly3 invalid vertex ${e}`)}),e.vertices.length>3){const r=plane(e);e.vertices.forEach(e=>{const t=Math.abs(signedDistanceToPoint(r,e));if(t>NEPS)throw new Error(`poly3 must be coplanar: vertex ${e} distance ${t}`)})}};module.exports=validate; - -},{"../../maths/constants":90,"../../maths/plane/signedDistanceToPoint":160,"../../maths/vec3":217,"./isA":77,"./isConvex":78,"./measureArea":79,"./plane":83}],88:[function(require,module,exports){ -module.exports={colors:require("./colors"),curves:require("./curves"),geometries:require("./geometries"),maths:require("./maths"),measurements:require("./measurements"),primitives:require("./primitives"),text:require("./text"),utils:require("./utils"),booleans:require("./operations/booleans"),expansions:require("./operations/expansions"),extrusions:require("./operations/extrusions"),hulls:require("./operations/hulls"),modifiers:require("./operations/modifiers"),transforms:require("./operations/transforms")}; - -},{"./colors":8,"./curves":16,"./geometries":46,"./maths":91,"./measurements":247,"./operations/booleans":261,"./operations/expansions":290,"./operations/extrusions":312,"./operations/hulls":334,"./operations/modifiers":345,"./operations/transforms":355,"./primitives":371,"./text":385,"./utils":393}],89:[function(require,module,exports){ -const mat4=require("./mat4"),vec2=require("./vec2"),vec3=require("./vec3"),OrthoNormalBasis=function(e,t){arguments.length<2&&(t=vec3.orthogonal(vec3.create(),e)),this.v=vec3.normalize(vec3.create(),vec3.cross(vec3.create(),e,t)),this.u=vec3.cross(vec3.create(),this.v,e),this.plane=e,this.planeorigin=vec3.scale(vec3.create(),e,e[3])};OrthoNormalBasis.GetCartesian=function(e,t){const i=e+"/"+t;let s,n;if("X/Y"===i)s=[0,0,1],n=[1,0,0];else if("Y/-X"===i)s=[0,0,1],n=[0,1,0];else if("-X/-Y"===i)s=[0,0,1],n=[-1,0,0];else if("-Y/X"===i)s=[0,0,1],n=[0,-1,0];else if("-X/Y"===i)s=[0,0,-1],n=[-1,0,0];else if("-Y/-X"===i)s=[0,0,-1],n=[0,-1,0];else if("X/-Y"===i)s=[0,0,-1],n=[1,0,0];else if("Y/X"===i)s=[0,0,-1],n=[0,1,0];else if("X/Z"===i)s=[0,-1,0],n=[1,0,0];else if("Z/-X"===i)s=[0,-1,0],n=[0,0,1];else if("-X/-Z"===i)s=[0,-1,0],n=[-1,0,0];else if("-Z/X"===i)s=[0,-1,0],n=[0,0,-1];else if("-X/Z"===i)s=[0,1,0],n=[-1,0,0];else if("-Z/-X"===i)s=[0,1,0],n=[0,0,-1];else if("X/-Z"===i)s=[0,1,0],n=[1,0,0];else if("Z/X"===i)s=[0,1,0],n=[0,0,1];else if("Y/Z"===i)s=[1,0,0],n=[0,1,0];else if("Z/-Y"===i)s=[1,0,0],n=[0,0,1];else if("-Y/-Z"===i)s=[1,0,0],n=[0,-1,0];else if("-Z/Y"===i)s=[1,0,0],n=[0,0,-1];else if("-Y/Z"===i)s=[-1,0,0],n=[0,-1,0];else if("-Z/-Y"===i)s=[-1,0,0],n=[0,0,-1];else if("Y/-Z"===i)s=[-1,0,0],n=[0,1,0];else{if("Z/Y"!==i)throw new Error("OrthoNormalBasis.GetCartesian: invalid combination of axis identifiers. Should pass two string arguments from [X,Y,Z,-X,-Y,-Z], being two different axes.");s=[-1,0,0],n=[0,0,1]}return new OrthoNormalBasis(new Plane(new Vector3D(s),0),new Vector3D(n))},OrthoNormalBasis.Z0Plane=function(){const e=new Plane(new Vector3D([0,0,1]),0);return new OrthoNormalBasis(e,new Vector3D([1,0,0]))},OrthoNormalBasis.prototype={getProjectionMatrix:function(){return mat4.fromValues(this.u[0],this.v[0],this.plane[0],0,this.u[1],this.v[1],this.plane[1],0,this.u[2],this.v[2],this.plane[2],0,0,0,-this.plane[3],1)},getInverseProjectionMatrix:function(){const e=vec3.scale(vec3.create(),this.plane,this.plane[3]);return mat4.fromValues(this.u[0],this.u[1],this.u[2],0,this.v[0],this.v[1],this.v[2],0,this.plane[0],this.plane[1],this.plane[2],0,e[0],e[1],e[2],1)},to2D:function(e){return vec2.fromValues(vec3.dot(e,this.u),vec3.dot(e,this.v))},to3D:function(e){const t=vec3.scale(vec3.create(),this.u,e[0]),i=vec3.scale(vec3.create(),this.v,e[1]),s=vec3.add(t,t,this.planeorigin);return vec3.add(i,i,s)},line3Dto2D:function(e){const t=e.point,i=e.direction.plus(t),s=this.to2D(t),n=this.to2D(i);return Line2D.fromPoints(s,n)},line2Dto3D:function(e){const t=e.origin(),i=e.direction().plus(t),s=this.to3D(t),n=this.to3D(i);return Line3D.fromPoints(s,n)},transform:function(e){const t=this.plane.transform(e),i=this.u.transform(e),s=new Vector3D(0,0,0).transform(e),n=i.minus(s);return new OrthoNormalBasis(t,n)}},module.exports=OrthoNormalBasis; - -},{"./mat4":139,"./vec2":186,"./vec3":217}],90:[function(require,module,exports){ -const spatialResolution=1e5,EPS=1e-5,NEPS=1e-13,TAU=2*Math.PI;module.exports={EPS:EPS,NEPS:NEPS,TAU:TAU,spatialResolution:1e5}; - -},{}],91:[function(require,module,exports){ -module.exports={constants:require("./constants"),line2:require("./line2"),line3:require("./line3"),mat4:require("./mat4"),plane:require("./plane"),utils:require("./utils"),vec2:require("./vec2"),vec3:require("./vec3"),vec4:require("./vec4")}; - -},{"./constants":90,"./line2":101,"./line3":118,"./mat4":139,"./plane":158,"./utils":164,"./vec2":186,"./vec3":217,"./vec4":243}],92:[function(require,module,exports){ -const create=require("./create"),clone=e=>{const r=create();return r[0]=e[0],r[1]=e[1],r[2]=e[2],r};module.exports=clone; - -},{"./create":95}],93:[function(require,module,exports){ -const vec2=require("../vec2"),direction=require("./direction"),origin=require("./origin"),closestPoint=(e,i)=>{const r=origin(e),o=direction(e),n=(o[1]-r[1])/(o[0]-r[0]),t=r[1]-n*r[0],c=-1/n,s=(i[1]-c*i[0]-t)/(n-c),u=n*s+t;return vec2.fromValues(s,u)};module.exports=closestPoint; - -},{"../vec2":186,"./direction":96,"./origin":103}],94:[function(require,module,exports){ -const copy=(o,c)=>(o[0]=c[0],o[1]=c[1],o[2]=c[2],o);module.exports=copy; - -},{}],95:[function(require,module,exports){ -const create=()=>[0,1,0];module.exports=create; - -},{}],96:[function(require,module,exports){ -const vec2=require("../vec2"),direction=e=>{const c=vec2.normal(vec2.create(),e);return vec2.negate(c,c),c};module.exports=direction; - -},{"../vec2":186}],97:[function(require,module,exports){ -const vec2=require("../vec2"),distanceToPoint=(e,t)=>{let o=vec2.dot(t,e);return o=Math.abs(o-e[2])};module.exports=distanceToPoint; - -},{"../vec2":186}],98:[function(require,module,exports){ -const equals=(e,s)=>e[0]===s[0]&&e[1]===s[1]&&e[2]===s[2];module.exports=equals; - -},{}],99:[function(require,module,exports){ -const vec2=require("../vec2"),fromPoints=(e,c,o)=>{const r=vec2.subtract(vec2.create(),o,c);vec2.normal(r,r),vec2.normalize(r,r);const t=vec2.dot(c,r);return e[0]=r[0],e[1]=r[1],e[2]=t,e};module.exports=fromPoints; - -},{"../vec2":186}],100:[function(require,module,exports){ -const create=require("./create"),fromValues=(e,r,t)=>{const o=create();return o[0]=e,o[1]=r,o[2]=t,o};module.exports=fromValues; - -},{"./create":95}],101:[function(require,module,exports){ -module.exports={clone:require("./clone"),closestPoint:require("./closestPoint"),copy:require("./copy"),create:require("./create"),direction:require("./direction"),distanceToPoint:require("./distanceToPoint"),equals:require("./equals"),fromPoints:require("./fromPoints"),fromValues:require("./fromValues"),intersectPointOfLines:require("./intersectPointOfLines"),origin:require("./origin"),reverse:require("./reverse"),toString:require("./toString"),transform:require("./transform"),xAtY:require("./xAtY")}; - -},{"./clone":92,"./closestPoint":93,"./copy":94,"./create":95,"./direction":96,"./distanceToPoint":97,"./equals":98,"./fromPoints":99,"./fromValues":100,"./intersectPointOfLines":102,"./origin":103,"./reverse":104,"./toString":105,"./transform":106,"./xAtY":107}],102:[function(require,module,exports){ -const vec2=require("../vec2"),{solve2Linear:solve2Linear}=require("../utils"),intersectToLine=(e,r)=>{const n=solve2Linear(e[0],e[1],r[0],r[1],e[2],r[2]);return vec2.clone(n)};module.exports=intersectToLine; - -},{"../utils":164,"../vec2":186}],103:[function(require,module,exports){ -const vec2=require("../vec2"),origin=e=>vec2.scale(vec2.create(),e,e[2]);module.exports=origin; - -},{"../vec2":186}],104:[function(require,module,exports){ -const vec2=require("../vec2"),copy=require("./copy"),fromValues=require("./fromValues"),reverse=(e,r)=>{const c=vec2.negate(vec2.create(),r),o=-r[2];return copy(e,fromValues(c[0],c[1],o))};module.exports=reverse; - -},{"../vec2":186,"./copy":94,"./fromValues":100}],105:[function(require,module,exports){ -const toString=t=>`line2: (${t[0].toFixed(7)}, ${t[1].toFixed(7)}, ${t[2].toFixed(7)})`;module.exports=toString; - -},{}],106:[function(require,module,exports){ -const vec2=require("../vec2"),fromPoints=require("./fromPoints"),origin=require("./origin"),direction=require("./direction"),transform=(r,o,i)=>{const e=origin(o),n=direction(o);return vec2.transform(e,e,i),vec2.transform(n,n,i),fromPoints(r,e,n)};module.exports=transform; - -},{"../vec2":186,"./direction":96,"./fromPoints":99,"./origin":103}],107:[function(require,module,exports){ -const origin=require("./origin"),xAtY=(i,r)=>{let e=(i[2]-i[1]*r)/i[0];if(Number.isNaN(e)){e=origin(i)[0]}return e};module.exports=xAtY; - -},{"./origin":103}],108:[function(require,module,exports){ -const vec3=require("../vec3"),create=require("./create"),clone=e=>{const c=create();return vec3.copy(c[0],e[0]),vec3.copy(c[1],e[1]),c};module.exports=clone; - -},{"../vec3":217,"./create":111}],109:[function(require,module,exports){ -const vec3=require("../vec3"),closestPoint=(e,c)=>{const t=e[0],o=e[1],s=vec3.dot(vec3.subtract(vec3.create(),c,t),o)/vec3.dot(o,o),v=vec3.scale(vec3.create(),o,s);return vec3.add(v,v,t),v};module.exports=closestPoint; - -},{"../vec3":217}],110:[function(require,module,exports){ -const vec3=require("../vec3"),copy=(c,e)=>(vec3.copy(c[0],e[0]),vec3.copy(c[1],e[1]),c);module.exports=copy; - -},{"../vec3":217}],111:[function(require,module,exports){ -const vec3=require("../vec3"),create=()=>[vec3.fromValues(0,0,0),vec3.fromValues(0,0,1)];module.exports=create; - -},{"../vec3":217}],112:[function(require,module,exports){ -const direction=o=>o[1];module.exports=direction; - -},{}],113:[function(require,module,exports){ -const vec3=require("../vec3"),closestPoint=require("./closestPoint"),distanceToPoint=(e,t)=>{const c=closestPoint(e,t),o=vec3.subtract(vec3.create(),t,c);return vec3.length(o)};module.exports=distanceToPoint; - -},{"../vec3":217,"./closestPoint":109}],114:[function(require,module,exports){ -const vec3=require("../vec3"),equals=(e,s)=>!!vec3.equals(e[1],s[1])&&!!vec3.equals(e[0],s[0]);module.exports=equals; - -},{"../vec3":217}],115:[function(require,module,exports){ -const vec3=require("../vec3"),{solve2Linear:solve2Linear}=require("../utils"),{EPS:EPS}=require("../constants"),fromPointAndDirection=require("./fromPointAndDirection"),fromPlanes=(e,r,o)=>{let n=vec3.cross(vec3.create(),r,o),s=vec3.length(n);if(s=a&&t>=i?(c=solve2Linear(r[1],r[2],o[1],o[2],r[3],o[3]),l=vec3.fromValues(0,c[0],c[1])):a>=t&&a>=i?(c=solve2Linear(r[0],r[2],o[0],o[2],r[3],o[3]),l=vec3.fromValues(c[0],0,c[1])):(c=solve2Linear(r[0],r[1],o[0],o[1],r[3],o[3]),l=vec3.fromValues(c[0],c[1],0)),fromPointAndDirection(e,l,n)};module.exports=fromPlanes; - -},{"../constants":90,"../utils":164,"../vec3":217,"./fromPointAndDirection":116}],116:[function(require,module,exports){ -const vec3=require("../vec3"),fromPointAndDirection=(e,c,o)=>{const r=vec3.normalize(vec3.create(),o);return vec3.copy(e[0],c),vec3.copy(e[1],r),e};module.exports=fromPointAndDirection; - -},{"../vec3":217}],117:[function(require,module,exports){ -const vec3=require("../vec3"),fromPointAndDirection=require("./fromPointAndDirection"),fromPoints=(o,r,e)=>{const t=vec3.subtract(vec3.create(),e,r);return fromPointAndDirection(o,r,t)};module.exports=fromPoints; - -},{"../vec3":217,"./fromPointAndDirection":116}],118:[function(require,module,exports){ -module.exports={clone:require("./clone"),closestPoint:require("./closestPoint"),copy:require("./copy"),create:require("./create"),direction:require("./direction"),distanceToPoint:require("./distanceToPoint"),equals:require("./equals"),fromPlanes:require("./fromPlanes"),fromPointAndDirection:require("./fromPointAndDirection"),fromPoints:require("./fromPoints"),intersectPointOfLineAndPlane:require("./intersectPointOfLineAndPlane"),origin:require("./origin"),reverse:require("./reverse"),toString:require("./toString"),transform:require("./transform")}; - -},{"./clone":108,"./closestPoint":109,"./copy":110,"./create":111,"./direction":112,"./distanceToPoint":113,"./equals":114,"./fromPlanes":115,"./fromPointAndDirection":116,"./fromPoints":117,"./intersectPointOfLineAndPlane":119,"./origin":120,"./reverse":121,"./toString":122,"./transform":123}],119:[function(require,module,exports){ -const vec3=require("../vec3"),intersectToPlane=(e,c)=>{const t=c,r=c[3],o=e[0],v=e[1],n=(r-vec3.dot(t,o))/vec3.dot(t,v);return vec3.add(vec3.create(),o,vec3.scale(vec3.create(),v,n))};module.exports=intersectToPlane; - -},{"../vec3":217}],120:[function(require,module,exports){ -const origin=o=>o[0];module.exports=origin; - -},{}],121:[function(require,module,exports){ -const vec3=require("../vec3"),fromPointAndDirection=require("./fromPointAndDirection"),reverse=(e,r)=>{const n=vec3.clone(r[0]),o=vec3.negate(vec3.create(),r[1]);return fromPointAndDirection(e,n,o)};module.exports=reverse; - -},{"../vec3":217,"./fromPointAndDirection":116}],122:[function(require,module,exports){ -const toString=t=>{const o=t[0],i=t[1];return`line3: point: (${o[0].toFixed(7)}, ${o[1].toFixed(7)}, ${o[2].toFixed(7)}) direction: (${i[0].toFixed(7)}, ${i[1].toFixed(7)}, ${i[2].toFixed(7)})`};module.exports=toString; - -},{}],123:[function(require,module,exports){ -const vec3=require("../vec3"),fromPointAndDirection=require("./fromPointAndDirection"),transform=(r,e,t)=>{const o=e[0],c=e[1],n=vec3.add(vec3.create(),o,c),i=vec3.transform(vec3.create(),o,t),a=vec3.transform(n,n,t),m=vec3.subtract(a,a,i);return fromPointAndDirection(r,i,m)};module.exports=transform; - -},{"../vec3":217,"./fromPointAndDirection":116}],124:[function(require,module,exports){ -const add=(d,o,a)=>(d[0]=o[0]+a[0],d[1]=o[1]+a[1],d[2]=o[2]+a[2],d[3]=o[3]+a[3],d[4]=o[4]+a[4],d[5]=o[5]+a[5],d[6]=o[6]+a[6],d[7]=o[7]+a[7],d[8]=o[8]+a[8],d[9]=o[9]+a[9],d[10]=o[10]+a[10],d[11]=o[11]+a[11],d[12]=o[12]+a[12],d[13]=o[13]+a[13],d[14]=o[14]+a[14],d[15]=o[15]+a[15],d);module.exports=add; - -},{}],125:[function(require,module,exports){ -const create=require("./create"),clone=e=>{const r=create();return r[0]=e[0],r[1]=e[1],r[2]=e[2],r[3]=e[3],r[4]=e[4],r[5]=e[5],r[6]=e[6],r[7]=e[7],r[8]=e[8],r[9]=e[9],r[10]=e[10],r[11]=e[11],r[12]=e[12],r[13]=e[13],r[14]=e[14],r[15]=e[15],r};module.exports=clone; - -},{"./create":127}],126:[function(require,module,exports){ -const copy=(o,c)=>(o[0]=c[0],o[1]=c[1],o[2]=c[2],o[3]=c[3],o[4]=c[4],o[5]=c[5],o[6]=c[6],o[7]=c[7],o[8]=c[8],o[9]=c[9],o[10]=c[10],o[11]=c[11],o[12]=c[12],o[13]=c[13],o[14]=c[14],o[15]=c[15],o);module.exports=copy; - -},{}],127:[function(require,module,exports){ -const create=()=>[1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1];module.exports=create; - -},{}],128:[function(require,module,exports){ -const equals=(e,s)=>e[0]===s[0]&&e[1]===s[1]&&e[2]===s[2]&&e[3]===s[3]&&e[4]===s[4]&&e[5]===s[5]&&e[6]===s[6]&&e[7]===s[7]&&e[8]===s[8]&&e[9]===s[9]&&e[10]===s[10]&&e[11]===s[11]&&e[12]===s[12]&&e[13]===s[13]&&e[14]===s[14]&&e[15]===s[15];module.exports=equals; - -},{}],129:[function(require,module,exports){ -const{EPS:EPS}=require("../constants"),{sin:sin,cos:cos}=require("../utils/trigonometry"),identity=require("./identity"),fromRotation=(t,o,i)=>{let[n,r,s]=i;const e=n*n+r*r+s*s;if(Math.abs(e)(o[0]=c[0],o[1]=0,o[2]=0,o[3]=0,o[4]=0,o[5]=c[1],o[6]=0,o[7]=0,o[8]=0,o[9]=0,o[10]=c[2],o[11]=0,o[12]=0,o[13]=0,o[14]=0,o[15]=1,o);module.exports=fromScaling; - -},{}],131:[function(require,module,exports){ -const{sin:sin,cos:cos}=require("../utils/trigonometry"),fromTaitBryanRotation=(o,s,n,t)=>{const i=sin(s),r=cos(s),c=sin(n),a=cos(n),e=sin(t),m=cos(t);return o[0]=a*r,o[1]=a*i,o[2]=-c,o[3]=0,o[4]=e*c*r-m*i,o[5]=m*r+e*c*i,o[6]=e*a,o[7]=0,o[8]=e*i+m*c*r,o[9]=m*c*i-e*r,o[10]=m*a,o[11]=0,o[12]=0,o[13]=0,o[14]=0,o[15]=1,o};module.exports=fromTaitBryanRotation; - -},{"../utils/trigonometry":168}],132:[function(require,module,exports){ -const fromTranslation=(o,n)=>(o[0]=1,o[1]=0,o[2]=0,o[3]=0,o[4]=0,o[5]=1,o[6]=0,o[7]=0,o[8]=0,o[9]=0,o[10]=1,o[11]=0,o[12]=n[0],o[13]=n[1],o[14]=n[2],o[15]=1,o);module.exports=fromTranslation; - -},{}],133:[function(require,module,exports){ -const create=require("./create"),fromValues=(e,r,t,o,a,c,s,u,l,m,n,f,V,d,i,p)=>{const q=create();return q[0]=e,q[1]=r,q[2]=t,q[3]=o,q[4]=a,q[5]=c,q[6]=s,q[7]=u,q[8]=l,q[9]=m,q[10]=n,q[11]=f,q[12]=V,q[13]=d,q[14]=i,q[15]=p,q};module.exports=fromValues; - -},{"./create":127}],134:[function(require,module,exports){ -const vec3=require("../vec3"),fromRotation=require("./fromRotation"),fromVectorRotation=(o,e,t)=>{const r=vec3.normalize(vec3.create(),e),c=vec3.normalize(vec3.create(),t),n=vec3.cross(vec3.create(),c,r),a=vec3.dot(c,r);if(-1===a)return fromRotation(o,Math.PI,vec3.orthogonal(n,r));const i=1/(1+a);return o[0]=n[0]*n[0]*i+a,o[1]=n[1]*n[0]*i-n[2],o[2]=n[2]*n[0]*i+n[1],o[3]=0,o[4]=n[0]*n[1]*i+n[2],o[5]=n[1]*n[1]*i+a,o[6]=n[2]*n[1]*i-n[0],o[7]=0,o[8]=n[0]*n[2]*i-n[1],o[9]=n[1]*n[2]*i+n[0],o[10]=n[2]*n[2]*i+a,o[11]=0,o[12]=0,o[13]=0,o[14]=0,o[15]=1,o};module.exports=fromVectorRotation; - -},{"../vec3":217,"./fromRotation":129}],135:[function(require,module,exports){ -const{sin:sin,cos:cos}=require("../utils/trigonometry"),fromXRotation=(o,t)=>{const s=sin(t),n=cos(t);return o[0]=1,o[1]=0,o[2]=0,o[3]=0,o[4]=0,o[5]=n,o[6]=s,o[7]=0,o[8]=0,o[9]=-s,o[10]=n,o[11]=0,o[12]=0,o[13]=0,o[14]=0,o[15]=1,o};module.exports=fromXRotation; - -},{"../utils/trigonometry":168}],136:[function(require,module,exports){ -const{sin:sin,cos:cos}=require("../utils/trigonometry"),fromYRotation=(o,t)=>{const s=sin(t),n=cos(t);return o[0]=n,o[1]=0,o[2]=-s,o[3]=0,o[4]=0,o[5]=1,o[6]=0,o[7]=0,o[8]=s,o[9]=0,o[10]=n,o[11]=0,o[12]=0,o[13]=0,o[14]=0,o[15]=1,o};module.exports=fromYRotation; - -},{"../utils/trigonometry":168}],137:[function(require,module,exports){ -const{sin:sin,cos:cos}=require("../utils/trigonometry"),fromZRotation=(o,t)=>{const s=sin(t),n=cos(t);return o[0]=n,o[1]=s,o[2]=0,o[3]=0,o[4]=-s,o[5]=n,o[6]=0,o[7]=0,o[8]=0,o[9]=0,o[10]=1,o[11]=0,o[12]=0,o[13]=0,o[14]=0,o[15]=1,o};module.exports=fromZRotation; - -},{"../utils/trigonometry":168}],138:[function(require,module,exports){ -const identity=t=>(t[0]=1,t[1]=0,t[2]=0,t[3]=0,t[4]=0,t[5]=1,t[6]=0,t[7]=0,t[8]=0,t[9]=0,t[10]=1,t[11]=0,t[12]=0,t[13]=0,t[14]=0,t[15]=1,t);module.exports=identity; - -},{}],139:[function(require,module,exports){ -module.exports={add:require("./add"),clone:require("./clone"),copy:require("./copy"),create:require("./create"),invert:require("./invert"),equals:require("./equals"),fromRotation:require("./fromRotation"),fromScaling:require("./fromScaling"),fromTaitBryanRotation:require("./fromTaitBryanRotation"),fromTranslation:require("./fromTranslation"),fromValues:require("./fromValues"),fromVectorRotation:require("./fromVectorRotation"),fromXRotation:require("./fromXRotation"),fromYRotation:require("./fromYRotation"),fromZRotation:require("./fromZRotation"),identity:require("./identity"),isIdentity:require("./isIdentity"),isOnlyTransformScale:require("./isOnlyTransformScale"),isMirroring:require("./isMirroring"),mirrorByPlane:require("./mirrorByPlane"),multiply:require("./multiply"),rotate:require("./rotate"),rotateX:require("./rotateX"),rotateY:require("./rotateY"),rotateZ:require("./rotateZ"),scale:require("./scale"),subtract:require("./subtract"),toString:require("./toString"),translate:require("./translate")}; - -},{"./add":124,"./clone":125,"./copy":126,"./create":127,"./equals":128,"./fromRotation":129,"./fromScaling":130,"./fromTaitBryanRotation":131,"./fromTranslation":132,"./fromValues":133,"./fromVectorRotation":134,"./fromXRotation":135,"./fromYRotation":136,"./fromZRotation":137,"./identity":138,"./invert":140,"./isIdentity":141,"./isMirroring":142,"./isOnlyTransformScale":143,"./mirrorByPlane":144,"./multiply":145,"./rotate":146,"./rotateX":147,"./rotateY":148,"./rotateZ":149,"./scale":150,"./subtract":151,"./toString":152,"./translate":153}],140:[function(require,module,exports){ -const invert=(t,e)=>{const n=e[0],r=e[1],l=e[2],o=e[3],s=e[4],u=e[5],c=e[6],i=e[7],v=e[8],d=e[9],m=e[10],p=e[11],x=e[12],a=e[13],b=e[14],f=e[15],g=n*u-r*s,h=n*c-l*s,j=n*i-o*s,k=r*c-l*u,q=r*i-o*u,w=l*i-o*c,y=v*a-d*x,z=v*b-m*x,A=v*f-p*x,B=d*b-m*a,C=d*f-p*a,D=m*f-p*b;let E=g*D-h*C+j*B+k*A-q*z+w*y;return E?(E=1/E,t[0]=(u*D-c*C+i*B)*E,t[1]=(l*C-r*D-o*B)*E,t[2]=(a*w-b*q+f*k)*E,t[3]=(m*q-d*w-p*k)*E,t[4]=(c*A-s*D-i*z)*E,t[5]=(n*D-l*A+o*z)*E,t[6]=(b*j-x*w-f*h)*E,t[7]=(v*w-m*j+p*h)*E,t[8]=(s*C-u*A+i*y)*E,t[9]=(r*A-n*C-o*y)*E,t[10]=(x*q-a*j+f*g)*E,t[11]=(d*j-v*q-p*g)*E,t[12]=(u*z-s*B-c*y)*E,t[13]=(n*B-r*z+l*y)*E,t[14]=(a*h-x*k-b*g)*E,t[15]=(v*k-d*h+m*g)*E,t):null};module.exports=invert; - -},{}],141:[function(require,module,exports){ -const isIdentity=t=>1===t[0]&&0===t[1]&&0===t[2]&&0===t[3]&&0===t[4]&&1===t[5]&&0===t[6]&&0===t[7]&&0===t[8]&&0===t[9]&&1===t[10]&&0===t[11]&&0===t[12]&&0===t[13]&&0===t[14]&&1===t[15];module.exports=isIdentity; - -},{}],142:[function(require,module,exports){ -const isMirroring=r=>{const i=r[4]*r[9]-r[8]*r[5],o=r[8]*r[1]-r[0]*r[9],n=r[0]*r[5]-r[4]*r[1];return i*r[2]+o*r[6]+n*r[10]<0};module.exports=isMirroring; - -},{}],143:[function(require,module,exports){ -const isOnlyTransformScale=s=>isZero(s[1])&&isZero(s[2])&&isZero(s[3])&&isZero(s[4])&&isZero(s[6])&&isZero(s[7])&&isZero(s[8])&&isZero(s[9])&&isZero(s[11])&&1===s[15],isZero=s=>Math.abs(s){const[e,n,t,l]=o;return r[0]=1-2*e*e,r[1]=-2*n*e,r[2]=-2*t*e,r[3]=0,r[4]=-2*e*n,r[5]=1-2*n*n,r[6]=-2*t*n,r[7]=0,r[8]=-2*e*t,r[9]=-2*n*t,r[10]=1-2*t*t,r[11]=0,r[12]=2*e*l,r[13]=2*n*l,r[14]=2*t*l,r[15]=1,r};module.exports=mirrorByPlane; - -},{}],145:[function(require,module,exports){ -const multiply=(t,l,e)=>{const o=l[0],u=l[1],m=l[2],n=l[3],p=l[4],r=l[5],s=l[6],c=l[7],i=l[8],y=l[9],d=l[10],x=l[11],a=l[12],b=l[13],f=l[14],g=l[15];let h=e[0],j=e[1],k=e[2],q=e[3];return t[0]=h*o+j*p+k*i+q*a,t[1]=h*u+j*r+k*y+q*b,t[2]=h*m+j*s+k*d+q*f,t[3]=h*n+j*c+k*x+q*g,h=e[4],j=e[5],k=e[6],q=e[7],t[4]=h*o+j*p+k*i+q*a,t[5]=h*u+j*r+k*y+q*b,t[6]=h*m+j*s+k*d+q*f,t[7]=h*n+j*c+k*x+q*g,h=e[8],j=e[9],k=e[10],q=e[11],t[8]=h*o+j*p+k*i+q*a,t[9]=h*u+j*r+k*y+q*b,t[10]=h*m+j*s+k*d+q*f,t[11]=h*n+j*c+k*x+q*g,h=e[12],j=e[13],k=e[14],q=e[15],t[12]=h*o+j*p+k*i+q*a,t[13]=h*u+j*r+k*y+q*b,t[14]=h*m+j*s+k*d+q*f,t[15]=h*n+j*c+k*x+q*g,t};module.exports=multiply; - -},{}],146:[function(require,module,exports){ -const{EPS:EPS}=require("../constants"),{sin:sin,cos:cos}=require("../utils/trigonometry"),copy=require("./copy"),rotate=(t,o,r,s)=>{let[e,n,c]=s;const i=e*e+n*n+c*c;if(Math.abs(i){const r=sin(s),e=cos(s),n=t[4],i=t[5],c=t[6],u=t[7],a=t[8],l=t[9],m=t[10],X=t[11];return t!==o&&(o[0]=t[0],o[1]=t[1],o[2]=t[2],o[3]=t[3],o[12]=t[12],o[13]=t[13],o[14]=t[14],o[15]=t[15]),o[4]=n*e+a*r,o[5]=i*e+l*r,o[6]=c*e+m*r,o[7]=u*e+X*r,o[8]=a*e-n*r,o[9]=l*e-i*r,o[10]=m*e-c*r,o[11]=X*e-u*r,o};module.exports=rotateX; - -},{"../utils/trigonometry":168}],148:[function(require,module,exports){ -const{sin:sin,cos:cos}=require("../utils/trigonometry"),rotateY=(o,t,s)=>{const r=sin(s),e=cos(s),n=t[0],i=t[1],c=t[2],u=t[3],a=t[8],l=t[9],m=t[10],Y=t[11];return t!==o&&(o[4]=t[4],o[5]=t[5],o[6]=t[6],o[7]=t[7],o[12]=t[12],o[13]=t[13],o[14]=t[14],o[15]=t[15]),o[0]=n*e-a*r,o[1]=i*e-l*r,o[2]=c*e-m*r,o[3]=u*e-Y*r,o[8]=n*r+a*e,o[9]=i*r+l*e,o[10]=c*r+m*e,o[11]=u*r+Y*e,o};module.exports=rotateY; - -},{"../utils/trigonometry":168}],149:[function(require,module,exports){ -const{sin:sin,cos:cos}=require("../utils/trigonometry"),rotateZ=(o,t,s)=>{const r=sin(s),e=cos(s),n=t[0],i=t[1],c=t[2],u=t[3],a=t[4],l=t[5],m=t[6],Z=t[7];return t!==o&&(o[8]=t[8],o[9]=t[9],o[10]=t[10],o[11]=t[11],o[12]=t[12],o[13]=t[13],o[14]=t[14],o[15]=t[15]),o[0]=n*e+a*r,o[1]=i*e+l*r,o[2]=c*e+m*r,o[3]=u*e+Z*r,o[4]=a*e-n*r,o[5]=l*e-i*r,o[6]=m*e-c*r,o[7]=Z*e-u*r,o};module.exports=rotateZ; - -},{"../utils/trigonometry":168}],150:[function(require,module,exports){ -const scale=(e,s,c)=>{const o=c[0],t=c[1],l=c[2];return e[0]=s[0]*o,e[1]=s[1]*o,e[2]=s[2]*o,e[3]=s[3]*o,e[4]=s[4]*t,e[5]=s[5]*t,e[6]=s[6]*t,e[7]=s[7]*t,e[8]=s[8]*l,e[9]=s[9]*l,e[10]=s[10]*l,e[11]=s[11]*l,e[12]=s[12],e[13]=s[13],e[14]=s[14],e[15]=s[15],e};module.exports=scale; - -},{}],151:[function(require,module,exports){ -const subtract=(t,s,c)=>(t[0]=s[0]-c[0],t[1]=s[1]-c[1],t[2]=s[2]-c[2],t[3]=s[3]-c[3],t[4]=s[4]-c[4],t[5]=s[5]-c[5],t[6]=s[6]-c[6],t[7]=s[7]-c[7],t[8]=s[8]-c[8],t[9]=s[9]-c[9],t[10]=s[10]-c[10],t[11]=s[11]-c[11],t[12]=s[12]-c[12],t[13]=s[13]-c[13],t[14]=s[14]-c[14],t[15]=s[15]-c[15],t);module.exports=subtract; - -},{}],152:[function(require,module,exports){ -const toString=t=>t.map(t=>t.toFixed(7)).toString();module.exports=toString; - -},{}],153:[function(require,module,exports){ -const translate=(t,e,n)=>{const r=n[0],s=n[1],a=n[2];let l,o,c,u,d,m,p,x,b,f,g,h;return e===t?(t[12]=e[0]*r+e[4]*s+e[8]*a+e[12],t[13]=e[1]*r+e[5]*s+e[9]*a+e[13],t[14]=e[2]*r+e[6]*s+e[10]*a+e[14],t[15]=e[3]*r+e[7]*s+e[11]*a+e[15]):(l=e[0],o=e[1],c=e[2],u=e[3],d=e[4],m=e[5],p=e[6],x=e[7],b=e[8],f=e[9],g=e[10],h=e[11],t[0]=l,t[1]=o,t[2]=c,t[3]=u,t[4]=d,t[5]=m,t[6]=p,t[7]=x,t[8]=b,t[9]=f,t[10]=g,t[11]=h,t[12]=l*r+d*s+b*a+e[12],t[13]=o*r+m*s+f*a+e[13],t[14]=c*r+p*s+g*a+e[14],t[15]=u*r+x*s+h*a+e[15]),t};module.exports=translate; - -},{}],154:[function(require,module,exports){ -const flip=(l,o)=>(l[0]=-o[0],l[1]=-o[1],l[2]=-o[2],l[3]=-o[3],l);module.exports=flip; - -},{}],155:[function(require,module,exports){ -const vec3=require("../vec3"),fromNormalAndPoint=(e,o,r)=>{const c=vec3.normalize(vec3.create(),o),n=vec3.dot(r,c);return e[0]=c[0],e[1]=c[1],e[2]=c[2],e[3]=n,e};module.exports=fromNormalAndPoint; - -},{"../vec3":217}],156:[function(require,module,exports){ -const vec3=require("../vec3"),fromPoints=(e,...c)=>{const r=c.length,t=vec3.create(),o=vec3.create(),v=e=>{const v=c[e],n=c[(e+1)%r],s=c[(e+2)%r];return vec3.subtract(t,n,v),vec3.subtract(o,s,v),vec3.cross(t,t,o),vec3.normalize(t,t),t};return e[0]=0,e[1]=0,e[2]=0,3===r?vec3.copy(e,v(0)):(c.forEach((c,r)=>{vec3.add(e,e,v(r))}),vec3.normalize(e,e)),e[3]=vec3.dot(e,c[0]),e};module.exports=fromPoints; - -},{"../vec3":217}],157:[function(require,module,exports){ -const{EPS:EPS}=require("../constants"),vec3=require("../vec3"),fromPointsRandom=(e,c,o,t)=>{let r=vec3.subtract(vec3.create(),o,c),v=vec3.subtract(vec3.create(),t,c);vec3.length(r){const r=o[0]*e[0]+o[1]*e[1]+o[2]*e[2]-e[3],t=o[0]-r*e[0],c=o[1]-r*e[1],n=o[2]-r*e[2];return vec3.fromValues(t,c,n)};module.exports=projectionOfPoint; - -},{"../vec3":217}],160:[function(require,module,exports){ -const vec3=require("../vec3"),signedDistanceToPoint=(e,o)=>vec3.dot(e,o)-e[3];module.exports=signedDistanceToPoint; - -},{"../vec3":217}],161:[function(require,module,exports){ -const mat4=require("../mat4"),vec3=require("../vec3"),fromPoints=require("./fromPoints"),flip=require("./flip"),transform=(e,r,c)=>{const t=mat4.isMirroring(c),o=vec3.orthogonal(vec3.create(),r),a=vec3.cross(o,r,o),v=vec3.cross(vec3.create(),r,a);let s=vec3.fromScalar(vec3.create(),r[3]);vec3.multiply(s,s,r);let i=vec3.add(vec3.create(),s,a),m=vec3.add(vec3.create(),s,v);return s=vec3.transform(s,s,c),i=vec3.transform(i,i,c),m=vec3.transform(m,m,c),fromPoints(e,s,i,m),t&&flip(e,e),e};module.exports=transform; - -},{"../mat4":139,"../vec3":217,"./flip":154,"./fromPoints":156}],162:[function(require,module,exports){ -const{NEPS:NEPS}=require("../constants"),aboutEqualNormals=(a,s)=>Math.abs(a[0]-s[0])<=NEPS&&Math.abs(a[1]-s[1])<=NEPS&&Math.abs(a[2]-s[2])<=NEPS;module.exports=aboutEqualNormals; - -},{"../constants":90}],163:[function(require,module,exports){ -const area=e=>{let t=0;for(let r=0;r{let n,r=o-e[1],i=t[1]-e[1];return i<0&&(r=-r,i=-i),n=r<=0?0:r>=i?1:i<1e-10?.5:r/i,e[0]+n*(t[0]-e[0])};module.exports=interpolateBetween2DPointsForY; - -},{}],166:[function(require,module,exports){ -const intersect=(t,e,r,n)=>{if(t[0]===e[0]&&t[1]===e[1]||r[0]===n[0]&&r[1]===n[1])return;const s=(n[1]-r[1])*(e[0]-t[0])-(n[0]-r[0])*(e[1]-t[1]);if(Math.abs(s)1||c<0||c>1?void 0:[t[0]+o*(e[0]-t[0]),t[1]+o*(e[1]-t[1])]};module.exports=intersect; - -},{}],167:[function(require,module,exports){ -const solve2Linear=(e,o,n,r,s,t)=>{const l=1/(e*r-o*n);let a=s*r-o*t,c=-s*n+e*t;return[a*=l,c*=l]};module.exports=solve2Linear; - -},{}],168:[function(require,module,exports){ -const{NEPS:NEPS}=require("../constants"),rezero=s=>Math.abs(s)rezero(Math.sin(s)),cos=s=>rezero(Math.cos(s));module.exports={sin:sin,cos:cos}; - -},{"../constants":90}],169:[function(require,module,exports){ -const abs=(a,s)=>(a[0]=Math.abs(s[0]),a[1]=Math.abs(s[1]),a);module.exports=abs; - -},{}],170:[function(require,module,exports){ -const add=(d,o,a)=>(d[0]=o[0]+a[0],d[1]=o[1]+a[1],d);module.exports=add; - -},{}],171:[function(require,module,exports){ -module.exports=require("./angleRadians"); - -},{"./angleRadians":173}],172:[function(require,module,exports){ -const angleRadians=require("./angleRadians"),angleDegrees=e=>57.29577951308232*angleRadians(e);module.exports=angleDegrees; - -},{"./angleRadians":173}],173:[function(require,module,exports){ -const angleRadians=a=>Math.atan2(a[1],a[0]);module.exports=angleRadians; - -},{}],174:[function(require,module,exports){ -const create=require("./create"),clone=e=>{const r=create();return r[0]=e[0],r[1]=e[1],r};module.exports=clone; - -},{"./create":176}],175:[function(require,module,exports){ -const copy=(o,c)=>(o[0]=c[0],o[1]=c[1],o);module.exports=copy; - -},{}],176:[function(require,module,exports){ -const create=()=>[0,0];module.exports=create; - -},{}],177:[function(require,module,exports){ -const cross=(s,o,c)=>(s[0]=0,s[1]=0,s[2]=o[0]*c[1]-o[1]*c[0],s);module.exports=cross; - -},{}],178:[function(require,module,exports){ -const distance=(t,s)=>{const e=s[0]-t[0],n=s[1]-t[1];return Math.sqrt(e*e+n*n)};module.exports=distance; - -},{}],179:[function(require,module,exports){ -const divide=(d,e,i)=>(d[0]=e[0]/i[0],d[1]=e[1]/i[1],d);module.exports=divide; - -},{}],180:[function(require,module,exports){ -const dot=(o,t)=>o[0]*t[0]+o[1]*t[1];module.exports=dot; - -},{}],181:[function(require,module,exports){ -const equals=(e,s)=>e[0]===s[0]&&e[1]===s[1];module.exports=equals; - -},{}],182:[function(require,module,exports){ -const fromAngleRadians=require("./fromAngleRadians"),fromAngleDegrees=(e,r)=>fromAngleRadians(e,.017453292519943295*r);module.exports=fromAngleDegrees; - -},{"./fromAngleRadians":183}],183:[function(require,module,exports){ -const{sin:sin,cos:cos}=require("../utils/trigonometry"),fromAngleRadians=(s,o)=>(s[0]=cos(o),s[1]=sin(o),s);module.exports=fromAngleRadians; - -},{"../utils/trigonometry":168}],184:[function(require,module,exports){ -const fromScalar=(o,r)=>(o[0]=r,o[1]=r,o);module.exports=fromScalar; - -},{}],185:[function(require,module,exports){ -const create=require("./create"),fromValues=(e,r)=>{const t=create();return t[0]=e,t[1]=r,t};module.exports=fromValues; - -},{"./create":176}],186:[function(require,module,exports){ -module.exports={abs:require("./abs"),add:require("./add"),angle:require("./angle"),angleDegrees:require("./angleDegrees"),angleRadians:require("./angleRadians"),clone:require("./clone"),copy:require("./copy"),create:require("./create"),cross:require("./cross"),distance:require("./distance"),divide:require("./divide"),dot:require("./dot"),equals:require("./equals"),fromAngleDegrees:require("./fromAngleDegrees"),fromAngleRadians:require("./fromAngleRadians"),fromScalar:require("./fromScalar"),fromValues:require("./fromValues"),length:require("./length"),lerp:require("./lerp"),max:require("./max"),min:require("./min"),multiply:require("./multiply"),negate:require("./negate"),normal:require("./normal"),normalize:require("./normalize"),rotate:require("./rotate"),scale:require("./scale"),snap:require("./snap"),squaredDistance:require("./squaredDistance"),squaredLength:require("./squaredLength"),subtract:require("./subtract"),toString:require("./toString"),transform:require("./transform")}; - -},{"./abs":169,"./add":170,"./angle":171,"./angleDegrees":172,"./angleRadians":173,"./clone":174,"./copy":175,"./create":176,"./cross":177,"./distance":178,"./divide":179,"./dot":180,"./equals":181,"./fromAngleDegrees":182,"./fromAngleRadians":183,"./fromScalar":184,"./fromValues":185,"./length":187,"./lerp":188,"./max":189,"./min":190,"./multiply":191,"./negate":192,"./normal":193,"./normalize":194,"./rotate":195,"./scale":196,"./snap":197,"./squaredDistance":198,"./squaredLength":199,"./subtract":200,"./toString":201,"./transform":202}],187:[function(require,module,exports){ -const length=t=>Math.sqrt(t[0]*t[0]+t[1]*t[1]);module.exports=length; - -},{}],188:[function(require,module,exports){ -const lerp=(e,r,o,t)=>{const l=r[0],n=r[1];return e[0]=l+t*(o[0]-l),e[1]=n+t*(o[1]-n),e};module.exports=lerp; - -},{}],189:[function(require,module,exports){ -const max=(a,m,x)=>(a[0]=Math.max(m[0],x[0]),a[1]=Math.max(m[1],x[1]),a);module.exports=max; - -},{}],190:[function(require,module,exports){ -const min=(m,n,i)=>(m[0]=Math.min(n[0],i[0]),m[1]=Math.min(n[1],i[1]),m);module.exports=min; - -},{}],191:[function(require,module,exports){ -const multiply=(l,t,m)=>(l[0]=t[0]*m[0],l[1]=t[1]*m[1],l);module.exports=multiply; - -},{}],192:[function(require,module,exports){ -const negate=(e,t)=>(e[0]=-t[0],e[1]=-t[1],e);module.exports=negate; - -},{}],193:[function(require,module,exports){ -const{TAU:TAU}=require("../constants"),create=require("./create"),rotate=require("./rotate"),normal=(e,r)=>rotate(e,r,create(),TAU/4);module.exports=normal; - -},{"../constants":90,"./create":176,"./rotate":195}],194:[function(require,module,exports){ -const normalize=(t,e)=>{const o=e[0],r=e[1];let n=o*o+r*r;return n>0&&(n=1/Math.sqrt(n)),t[0]=o*n,t[1]=r*n,t};module.exports=normalize; - -},{}],195:[function(require,module,exports){ -const rotate=(t,o,e,r)=>{const s=o[0]-e[0],a=o[1]-e[1],n=Math.cos(r),c=Math.sin(r);return t[0]=s*n-a*c+e[0],t[1]=s*c+a*n+e[1],t};module.exports=rotate; - -},{}],196:[function(require,module,exports){ -const scale=(e,s,c)=>(e[0]=s[0]*c,e[1]=s[1]*c,e);module.exports=scale; - -},{}],197:[function(require,module,exports){ -const snap=(n,o,a)=>(n[0]=Math.round(o[0]/a)*a+0,n[1]=Math.round(o[1]/a)*a+0,n);module.exports=snap; - -},{}],198:[function(require,module,exports){ -const squaredDistance=(e,s)=>{const t=s[0]-e[0],n=s[1]-e[1];return t*t+n*n};module.exports=squaredDistance; - -},{}],199:[function(require,module,exports){ -const squaredLength=e=>{const t=e[0],n=e[1];return t*t+n*n};module.exports=squaredLength; - -},{}],200:[function(require,module,exports){ -const subtract=(t,s,c)=>(t[0]=s[0]-c[0],t[1]=s[1]-c[1],t);module.exports=subtract; - -},{}],201:[function(require,module,exports){ -const toString=t=>`[${t[0].toFixed(7)}, ${t[1].toFixed(7)}]`;module.exports=toString; - -},{}],202:[function(require,module,exports){ -const transform=(r,o,t)=>{const n=o[0],s=o[1];return r[0]=t[0]*n+t[4]*s+t[12],r[1]=t[1]*n+t[5]*s+t[13],r};module.exports=transform; - -},{}],203:[function(require,module,exports){ -const abs=(a,s)=>(a[0]=Math.abs(s[0]),a[1]=Math.abs(s[1]),a[2]=Math.abs(s[2]),a);module.exports=abs; - -},{}],204:[function(require,module,exports){ -const add=(d,o,a)=>(d[0]=o[0]+a[0],d[1]=o[1]+a[1],d[2]=o[2]+a[2],d);module.exports=add; - -},{}],205:[function(require,module,exports){ -const dot=require("./dot"),angle=(t,a)=>{const o=t[0],e=t[1],r=t[2],n=a[0],s=a[1],h=a[2],M=Math.sqrt(o*o+e*e+r*r)*Math.sqrt(n*n+s*s+h*h),d=M&&dot(t,a)/M;return Math.acos(Math.min(Math.max(d,-1),1))};module.exports=angle; - -},{"./dot":212}],206:[function(require,module,exports){ -const create=require("./create"),clone=e=>{const r=create();return r[0]=e[0],r[1]=e[1],r[2]=e[2],r};module.exports=clone; - -},{"./create":208}],207:[function(require,module,exports){ -const copy=(o,c)=>(o[0]=c[0],o[1]=c[1],o[2]=c[2],o);module.exports=copy; - -},{}],208:[function(require,module,exports){ -const create=()=>[0,0,0];module.exports=create; - -},{}],209:[function(require,module,exports){ -const cross=(s,o,r)=>{const c=o[0],t=o[1],e=o[2],n=r[0],u=r[1],d=r[2];return s[0]=t*d-e*u,s[1]=e*n-c*d,s[2]=c*u-t*n,s};module.exports=cross; - -},{}],210:[function(require,module,exports){ -const distance=(t,s)=>{const e=s[0]-t[0],n=s[1]-t[1],c=s[2]-t[2];return Math.sqrt(e*e+n*n+c*c)};module.exports=distance; - -},{}],211:[function(require,module,exports){ -const divide=(d,e,i)=>(d[0]=e[0]/i[0],d[1]=e[1]/i[1],d[2]=e[2]/i[2],d);module.exports=divide; - -},{}],212:[function(require,module,exports){ -const dot=(o,t)=>o[0]*t[0]+o[1]*t[1]+o[2]*t[2];module.exports=dot; - -},{}],213:[function(require,module,exports){ -const equals=(e,s)=>e[0]===s[0]&&e[1]===s[1]&&e[2]===s[2];module.exports=equals; - -},{}],214:[function(require,module,exports){ -const fromScalar=(o,r)=>(o[0]=r,o[1]=r,o[2]=r,o);module.exports=fromScalar; - -},{}],215:[function(require,module,exports){ -const create=require("./create"),fromValues=(e,r,t)=>{const o=create();return o[0]=e,o[1]=r,o[2]=t,o};module.exports=fromValues; - -},{"./create":208}],216:[function(require,module,exports){ -const fromVector2=(o,r,e=0)=>(o[0]=r[0],o[1]=r[1],o[2]=e,o);module.exports=fromVector2; - -},{}],217:[function(require,module,exports){ -module.exports={abs:require("./abs"),add:require("./add"),angle:require("./angle"),clone:require("./clone"),copy:require("./copy"),create:require("./create"),cross:require("./cross"),distance:require("./distance"),divide:require("./divide"),dot:require("./dot"),equals:require("./equals"),fromScalar:require("./fromScalar"),fromValues:require("./fromValues"),fromVec2:require("./fromVec2"),length:require("./length"),lerp:require("./lerp"),max:require("./max"),min:require("./min"),multiply:require("./multiply"),negate:require("./negate"),normalize:require("./normalize"),orthogonal:require("./orthogonal"),rotateX:require("./rotateX"),rotateY:require("./rotateY"),rotateZ:require("./rotateZ"),scale:require("./scale"),snap:require("./snap"),squaredDistance:require("./squaredDistance"),squaredLength:require("./squaredLength"),subtract:require("./subtract"),toString:require("./toString"),transform:require("./transform")}; - -},{"./abs":203,"./add":204,"./angle":205,"./clone":206,"./copy":207,"./create":208,"./cross":209,"./distance":210,"./divide":211,"./dot":212,"./equals":213,"./fromScalar":214,"./fromValues":215,"./fromVec2":216,"./length":218,"./lerp":219,"./max":220,"./min":221,"./multiply":222,"./negate":223,"./normalize":224,"./orthogonal":225,"./rotateX":226,"./rotateY":227,"./rotateZ":228,"./scale":229,"./snap":230,"./squaredDistance":231,"./squaredLength":232,"./subtract":233,"./toString":234,"./transform":235}],218:[function(require,module,exports){ -const length=t=>{const e=t[0],n=t[1],o=t[2];return Math.sqrt(e*e+n*n+o*o)};module.exports=length; - -},{}],219:[function(require,module,exports){ -const lerp=(e,l,o,p)=>(e[0]=l[0]+p*(o[0]-l[0]),e[1]=l[1]+p*(o[1]-l[1]),e[2]=l[2]+p*(o[2]-l[2]),e);module.exports=lerp; - -},{}],220:[function(require,module,exports){ -const max=(a,m,x)=>(a[0]=Math.max(m[0],x[0]),a[1]=Math.max(m[1],x[1]),a[2]=Math.max(m[2],x[2]),a);module.exports=max; - -},{}],221:[function(require,module,exports){ -const min=(m,n,i)=>(m[0]=Math.min(n[0],i[0]),m[1]=Math.min(n[1],i[1]),m[2]=Math.min(n[2],i[2]),m);module.exports=min; - -},{}],222:[function(require,module,exports){ -const multiply=(l,t,m)=>(l[0]=t[0]*m[0],l[1]=t[1]*m[1],l[2]=t[2]*m[2],l);module.exports=multiply; - -},{}],223:[function(require,module,exports){ -const negate=(e,t)=>(e[0]=-t[0],e[1]=-t[1],e[2]=-t[2],e);module.exports=negate; - -},{}],224:[function(require,module,exports){ -const normalize=(t,e)=>{const o=e[0],r=e[1],n=e[2];let l=o*o+r*r+n*n;return l>0&&(l=1/Math.sqrt(l)),t[0]=o*l,t[1]=r*l,t[2]=n*l,t};module.exports=normalize; - -},{}],225:[function(require,module,exports){ -const abs=require("./abs"),create=require("./create"),cross=require("./cross"),orthogonal=(r,e)=>{const o=abs(create(),e),s=0+(o[0]{const e=[],n=[];return e[0]=o[0]-s[0],e[1]=o[1]-s[1],e[2]=o[2]-s[2],n[0]=e[0],n[1]=e[1]*Math.cos(a)-e[2]*Math.sin(a),n[2]=e[1]*Math.sin(a)+e[2]*Math.cos(a),t[0]=n[0]+s[0],t[1]=n[1]+s[1],t[2]=n[2]+s[2],t};module.exports=rotateX; - -},{}],227:[function(require,module,exports){ -const rotateY=(t,o,s,a)=>{const e=[],n=[];return e[0]=o[0]-s[0],e[1]=o[1]-s[1],e[2]=o[2]-s[2],n[0]=e[2]*Math.sin(a)+e[0]*Math.cos(a),n[1]=e[1],n[2]=e[2]*Math.cos(a)-e[0]*Math.sin(a),t[0]=n[0]+s[0],t[1]=n[1]+s[1],t[2]=n[2]+s[2],t};module.exports=rotateY; - -},{}],228:[function(require,module,exports){ -const rotateZ=(t,o,s,a)=>{const e=[],n=[];return e[0]=o[0]-s[0],e[1]=o[1]-s[1],n[0]=e[0]*Math.cos(a)-e[1]*Math.sin(a),n[1]=e[0]*Math.sin(a)+e[1]*Math.cos(a),t[0]=n[0]+s[0],t[1]=n[1]+s[1],t[2]=o[2],t};module.exports=rotateZ; - -},{}],229:[function(require,module,exports){ -const scale=(e,s,c)=>(e[0]=s[0]*c,e[1]=s[1]*c,e[2]=s[2]*c,e);module.exports=scale; - -},{}],230:[function(require,module,exports){ -const snap=(n,o,a)=>(n[0]=Math.round(o[0]/a)*a+0,n[1]=Math.round(o[1]/a)*a+0,n[2]=Math.round(o[2]/a)*a+0,n);module.exports=snap; - -},{}],231:[function(require,module,exports){ -const squaredDistance=(e,s)=>{const t=s[0]-e[0],n=s[1]-e[1],r=s[2]-e[2];return t*t+n*n+r*r};module.exports=squaredDistance; - -},{}],232:[function(require,module,exports){ -const squaredLength=e=>{const t=e[0],n=e[1],r=e[2];return t*t+n*n+r*r};module.exports=squaredLength; - -},{}],233:[function(require,module,exports){ -const subtract=(t,s,c)=>(t[0]=s[0]-c[0],t[1]=s[1]-c[1],t[2]=s[2]-c[2],t);module.exports=subtract; - -},{}],234:[function(require,module,exports){ -const toString=t=>`[${t[0].toFixed(7)}, ${t[1].toFixed(7)}, ${t[2].toFixed(7)}]`;module.exports=toString; - -},{}],235:[function(require,module,exports){ -const transform=(r,t,o)=>{const n=t[0],s=t[1],e=t[2];let m=o[3]*n+o[7]*s+o[11]*e+o[15];return m=m||1,r[0]=(o[0]*n+o[4]*s+o[8]*e+o[12])/m,r[1]=(o[1]*n+o[5]*s+o[9]*e+o[13])/m,r[2]=(o[2]*n+o[6]*s+o[10]*e+o[14])/m,r};module.exports=transform; - -},{}],236:[function(require,module,exports){ -const create=require("./create"),clone=e=>{const r=create();return r[0]=e[0],r[1]=e[1],r[2]=e[2],r[3]=e[3],r};module.exports=clone; - -},{"./create":238}],237:[function(require,module,exports){ -const copy=(o,c)=>(o[0]=c[0],o[1]=c[1],o[2]=c[2],o[3]=c[3],o);module.exports=copy; - -},{}],238:[function(require,module,exports){ -const create=()=>[0,0,0,0];module.exports=create; - -},{}],239:[function(require,module,exports){ -const dot=(o,t)=>o[0]*t[0]+o[1]*t[1]+o[2]*t[2]+o[3]*t[3];module.exports=dot; - -},{}],240:[function(require,module,exports){ -const equals=(e,s)=>e[0]===s[0]&&e[1]===s[1]&&e[2]===s[2]&&e[3]===s[3];module.exports=equals; - -},{}],241:[function(require,module,exports){ -const fromScalar=(o,r)=>(o[0]=r,o[1]=r,o[2]=r,o[3]=r,o);module.exports=fromScalar; - -},{}],242:[function(require,module,exports){ -const create=require("./create"),fromValues=(e,r,t,o)=>{const a=create();return a[0]=e,a[1]=r,a[2]=t,a[3]=o,a};module.exports=fromValues; - -},{"./create":238}],243:[function(require,module,exports){ -module.exports={clone:require("./clone"),copy:require("./copy"),create:require("./create"),dot:require("./dot"),equals:require("./equals"),fromScalar:require("./fromScalar"),fromValues:require("./fromValues"),toString:require("./toString"),transform:require("./transform")}; - -},{"./clone":236,"./copy":237,"./create":238,"./dot":239,"./equals":240,"./fromScalar":241,"./fromValues":242,"./toString":244,"./transform":245}],244:[function(require,module,exports){ -const toString=t=>`(${t[0].toFixed(9)}, ${t[1].toFixed(9)}, ${t[2].toFixed(9)}, ${t[3].toFixed(9)})`;module.exports=toString; - -},{}],245:[function(require,module,exports){ -const transform=(r,o,t)=>{const[n,s,e,m]=o;return r[0]=t[0]*n+t[4]*s+t[8]*e+t[12]*m,r[1]=t[1]*n+t[5]*s+t[9]*e+t[13]*m,r[2]=t[2]*n+t[6]*s+t[10]*e+t[14]*m,r[3]=t[3]*n+t[7]*s+t[11]*e+t[15]*m,r};module.exports=transform; - -},{}],246:[function(require,module,exports){ -const{EPS:EPS}=require("../maths/constants"),calculateEpsilonFromBounds=(o,t)=>{let e=0;for(let l=0;l{if(0===(e=flatten(e)).length)throw new Error("measureAggregateArea: no geometries supplied");const r=measureArea(e);if(1===e.length)return r;return r.reduce((e,r)=>e+r,0)};module.exports=measureAggregateArea; - -},{"../utils/flatten":391,"./measureArea":252}],249:[function(require,module,exports){ -const flatten=require("../utils/flatten"),vec3min=require("../maths/vec3/min"),vec3max=require("../maths/vec3/max"),measureBoundingBox=require("./measureBoundingBox"),measureAggregateBoundingBox=(...e)=>{if(0===(e=flatten(e)).length)throw new Error("measureAggregateBoundingBox: no geometries supplied");const r=measureBoundingBox(e);if(1===e.length)return r;const u=[[Number.MAX_VALUE,Number.MAX_VALUE,Number.MAX_VALUE],[-Number.MAX_VALUE,-Number.MAX_VALUE,-Number.MAX_VALUE]];return r.reduce((e,r)=>e=[vec3min(e[0],e[0],r[0]),vec3max(e[1],e[1],r[1])],u)};module.exports=measureAggregateBoundingBox; - -},{"../maths/vec3/max":220,"../maths/vec3/min":221,"../utils/flatten":391,"./measureBoundingBox":253}],250:[function(require,module,exports){ -const flatten=require("../utils/flatten"),measureAggregateBoundingBox=require("./measureAggregateBoundingBox"),calculateEpsilonFromBounds=require("./calculateEpsilonFromBounds"),{geom2:geom2,geom3:geom3,path2:path2}=require("../geometries"),measureAggregateEpsilon=(...e)=>{if(0===(e=flatten(e)).length)throw new Error("measureAggregateEpsilon: no geometries supplied");const o=measureAggregateBoundingBox(e);let r=0;return r=e.reduce((e,o)=>path2.isA(o)||geom2.isA(o)?Math.max(e,2):geom3.isA(o)?Math.max(e,3):0,r),calculateEpsilonFromBounds(o,r)};module.exports=measureAggregateEpsilon; - -},{"../geometries":46,"../utils/flatten":391,"./calculateEpsilonFromBounds":246,"./measureAggregateBoundingBox":249}],251:[function(require,module,exports){ -const flatten=require("../utils/flatten"),measureVolume=require("./measureVolume"),measureAggregateVolume=(...e)=>{if(0===(e=flatten(e)).length)throw new Error("measureAggregateVolume: no geometries supplied");const r=measureVolume(e);if(1===e.length)return r;return r.reduce((e,r)=>e+r,0)};module.exports=measureAggregateVolume; - -},{"../utils/flatten":391,"./measureVolume":259}],252:[function(require,module,exports){ -const flatten=require("../utils/flatten"),geom2=require("../geometries/geom2"),geom3=require("../geometries/geom3"),path2=require("../geometries/path2"),poly3=require("../geometries/poly3"),cache=new WeakMap,measureAreaOfPath2=()=>0,measureAreaOfGeom2=e=>{let r=cache.get(e);if(r)return r;return r=geom2.toSides(e).reduce((e,r)=>e+(r[0][0]*r[1][1]-r[0][1]*r[1][0]),0),r*=.5,cache.set(e,r),r},measureAreaOfGeom3=e=>{let r=cache.get(e);if(r)return r;return r=geom3.toPolygons(e).reduce((e,r)=>e+poly3.measureArea(r),0),cache.set(e,r),r},measureArea=(...e)=>{if(0===(e=flatten(e)).length)throw new Error("wrong number of arguments");const r=e.map(e=>path2.isA(e)?0:geom2.isA(e)?measureAreaOfGeom2(e):geom3.isA(e)?measureAreaOfGeom3(e):0);return 1===r.length?r[0]:r};module.exports=measureArea; - -},{"../geometries/geom2":22,"../geometries/geom3":37,"../geometries/path2":58,"../geometries/poly3":75,"../utils/flatten":391}],253:[function(require,module,exports){ -const flatten=require("../utils/flatten"),vec2=require("../maths/vec2"),vec3=require("../maths/vec3"),geom2=require("../geometries/geom2"),geom3=require("../geometries/geom3"),path2=require("../geometries/path2"),poly3=require("../geometries/poly3"),cache=new WeakMap,measureBoundingBoxOfPath2=e=>{let o=cache.get(e);if(o)return o;const t=path2.toPoints(e);let n;n=0===t.length?vec2.create():vec2.clone(t[0]);let r=vec2.clone(n);return t.forEach(e=>{vec2.min(n,n,e),vec2.max(r,r,e)}),n=[n[0],n[1],0],r=[r[0],r[1],0],o=[n,r],cache.set(e,o),o},measureBoundingBoxOfGeom2=e=>{let o=cache.get(e);if(o)return o;const t=geom2.toPoints(e);let n;n=0===t.length?vec2.create():vec2.clone(t[0]);let r=vec2.clone(n);return t.forEach(e=>{vec2.min(n,n,e),vec2.max(r,r,e)}),n=[n[0],n[1],0],r=[r[0],r[1],0],o=[n,r],cache.set(e,o),o},measureBoundingBoxOfGeom3=e=>{let o=cache.get(e);if(o)return o;const t=geom3.toPolygons(e);let n=vec3.create();if(t.length>0){const e=poly3.toPoints(t[0]);vec3.copy(n,e[0])}let r=vec3.clone(n);return t.forEach(e=>{poly3.toPoints(e).forEach(e=>{vec3.min(n,n,e),vec3.max(r,r,e)})}),n=[n[0],n[1],n[2]],r=[r[0],r[1],r[2]],o=[n,r],cache.set(e,o),o},measureBoundingBox=(...e)=>{if(0===(e=flatten(e)).length)throw new Error("wrong number of arguments");const o=e.map(e=>path2.isA(e)?measureBoundingBoxOfPath2(e):geom2.isA(e)?measureBoundingBoxOfGeom2(e):geom3.isA(e)?measureBoundingBoxOfGeom3(e):[[0,0,0],[0,0,0]]);return 1===o.length?o[0]:o};module.exports=measureBoundingBox; - -},{"../geometries/geom2":22,"../geometries/geom3":37,"../geometries/path2":58,"../geometries/poly3":75,"../maths/vec2":186,"../maths/vec3":217,"../utils/flatten":391}],254:[function(require,module,exports){ -const flatten=require("../utils/flatten"),vec2=require("../maths/vec2"),vec3=require("../maths/vec3"),geom2=require("../geometries/geom2"),geom3=require("../geometries/geom3"),path2=require("../geometries/path2"),poly3=require("../geometries/poly3"),cacheOfBoundingSpheres=new WeakMap,measureBoundingSphereOfPath2=e=>{let t=cacheOfBoundingSpheres.get(e);if(void 0!==t)return t;const r=vec3.create();let o=0;const c=path2.toPoints(e);if(c.length>0){let e=0;const t=vec3.create();c.forEach(o=>{vec3.add(r,r,vec3.fromVec2(t,o,0)),e++}),vec3.scale(r,r,1/e),c.forEach(e=>{o=Math.max(o,vec2.squaredDistance(r,e))}),o=Math.sqrt(o)}return t=[r,o],cacheOfBoundingSpheres.set(e,t),t},measureBoundingSphereOfGeom2=e=>{let t=cacheOfBoundingSpheres.get(e);if(void 0!==t)return t;const r=vec3.create();let o=0;const c=geom2.toSides(e);if(c.length>0){let e=0;const t=vec3.create();c.forEach(o=>{vec3.add(r,r,vec3.fromVec2(t,o[0],0)),e++}),vec3.scale(r,r,1/e),c.forEach(e=>{o=Math.max(o,vec2.squaredDistance(r,e[0]))}),o=Math.sqrt(o)}return t=[r,o],cacheOfBoundingSpheres.set(e,t),t},measureBoundingSphereOfGeom3=e=>{let t=cacheOfBoundingSpheres.get(e);if(void 0!==t)return t;const r=vec3.create();let o=0;const c=geom3.toPolygons(e);if(c.length>0){let e=0;c.forEach(t=>{poly3.toPoints(t).forEach(t=>{vec3.add(r,r,t),e++})}),vec3.scale(r,r,1/e),c.forEach(e=>{poly3.toPoints(e).forEach(e=>{o=Math.max(o,vec3.squaredDistance(r,e))})}),o=Math.sqrt(o)}return t=[r,o],cacheOfBoundingSpheres.set(e,t),t},measureBoundingSphere=(...e)=>{const t=(e=flatten(e)).map(e=>path2.isA(e)?measureBoundingSphereOfPath2(e):geom2.isA(e)?measureBoundingSphereOfGeom2(e):geom3.isA(e)?measureBoundingSphereOfGeom3(e):[[0,0,0],0]);return 1===t.length?t[0]:t};module.exports=measureBoundingSphere; - -},{"../geometries/geom2":22,"../geometries/geom3":37,"../geometries/path2":58,"../geometries/poly3":75,"../maths/vec2":186,"../maths/vec3":217,"../utils/flatten":391}],255:[function(require,module,exports){ -const flatten=require("../utils/flatten"),measureBoundingBox=require("./measureBoundingBox"),measureCenter=(...e)=>{const n=(e=flatten(e)).map(e=>{const n=measureBoundingBox(e);return[n[0][0]+(n[1][0]-n[0][0])/2,n[0][1]+(n[1][1]-n[0][1])/2,n[0][2]+(n[1][2]-n[0][2])/2]});return 1===n.length?n[0]:n};module.exports=measureCenter; - -},{"../utils/flatten":391,"./measureBoundingBox":253}],256:[function(require,module,exports){ -const flatten=require("../utils/flatten"),vec3=require("../maths/vec3"),geom2=require("../geometries/geom2"),geom3=require("../geometries/geom3"),cacheOfCenterOfMass=new WeakMap,measureCenterOfMassGeom2=e=>{let t=cacheOfCenterOfMass.get(e);if(void 0!==t)return t;const s=geom2.toSides(e);let r=0,c=0,a=0;if(s.length>0){for(let e=0;e{let t=cacheOfCenterOfMass.get(e);if(void 0!==t)return t;t=vec3.create();const s=geom3.toPolygons(e);if(0===s.length)return t;let r=0;const c=vec3.create();return s.forEach(e=>{const s=e.vertices;for(let e=0;e{const t=(e=flatten(e)).map(e=>geom2.isA(e)?measureCenterOfMassGeom2(e):geom3.isA(e)?measureCenterOfMassGeom3(e):[0,0,0]);return 1===t.length?t[0]:t};module.exports=measureCenterOfMass; - -},{"../geometries/geom2":22,"../geometries/geom3":37,"../maths/vec3":217,"../utils/flatten":391}],257:[function(require,module,exports){ -const flatten=require("../utils/flatten"),measureBoundingBox=require("./measureBoundingBox"),measureDimensions=(...e)=>{const n=(e=flatten(e)).map(e=>{const n=measureBoundingBox(e);return[n[1][0]-n[0][0],n[1][1]-n[0][1],n[1][2]-n[0][2]]});return 1===n.length?n[0]:n};module.exports=measureDimensions; - -},{"../utils/flatten":391,"./measureBoundingBox":253}],258:[function(require,module,exports){ -const flatten=require("../utils/flatten"),{geom2:geom2,geom3:geom3,path2:path2}=require("../geometries"),calculateEpsilonFromBounds=require("./calculateEpsilonFromBounds"),measureBoundingBox=require("./measureBoundingBox"),measureEpsilonOfPath2=e=>calculateEpsilonFromBounds(measureBoundingBox(e),2),measureEpsilonOfGeom2=e=>calculateEpsilonFromBounds(measureBoundingBox(e),2),measureEpsilonOfGeom3=e=>calculateEpsilonFromBounds(measureBoundingBox(e),3),measureEpsilon=(...e)=>{if(0===(e=flatten(e)).length)throw new Error("wrong number of arguments");const o=e.map(e=>path2.isA(e)?measureEpsilonOfPath2(e):geom2.isA(e)?measureEpsilonOfGeom2(e):geom3.isA(e)?measureEpsilonOfGeom3(e):0);return 1===o.length?o[0]:o};module.exports=measureEpsilon; - -},{"../geometries":46,"../utils/flatten":391,"./calculateEpsilonFromBounds":246,"./measureBoundingBox":253}],259:[function(require,module,exports){ -const flatten=require("../utils/flatten"),geom2=require("../geometries/geom2"),geom3=require("../geometries/geom3"),path2=require("../geometries/path2"),poly3=require("../geometries/poly3"),cache=new WeakMap,measureVolumeOfPath2=()=>0,measureVolumeOfGeom2=()=>0,measureVolumeOfGeom3=e=>{let r=cache.get(e);if(r)return r;return r=geom3.toPolygons(e).reduce((e,r)=>e+poly3.measureSignedVolume(r),0),cache.set(e,r),r},measureVolume=(...e)=>{if(0===(e=flatten(e)).length)throw new Error("wrong number of arguments");const r=e.map(e=>path2.isA(e)?0:geom2.isA(e)?0:geom3.isA(e)?measureVolumeOfGeom3(e):0);return 1===r.length?r[0]:r};module.exports=measureVolume; - -},{"../geometries/geom2":22,"../geometries/geom3":37,"../geometries/path2":58,"../geometries/poly3":75,"../utils/flatten":391}],260:[function(require,module,exports){ -const vec2=require("../../maths/vec2"),geom2=require("../../geometries/geom2"),fromFakePolygon=(e,o)=>{if(o.vertices.length<4)return null;const r=[],n=o.vertices.filter((e,o)=>e[2]>0&&(r.push(o),!0));if(2!==n.length)throw new Error("Assertion failed: fromFakePolygon: not enough points found");const t=n.map(o=>{const r=Math.round(o[0]/e)*e+0,n=Math.round(o[1]/e)*e+0;return vec2.fromValues(r,n)});if(vec2.equals(t[0],t[1]))return null;const s=r[1]-r[0];if(1!==s&&3!==s)throw new Error("Assertion failed: fromFakePolygon: unknown index ordering");return 1===s&&t.reverse(),t},fromFakePolygons=(e,o)=>{const r=o.map(o=>fromFakePolygon(e,o)).filter(e=>null!==e);return geom2.create(r)};module.exports=fromFakePolygons; - -},{"../../geometries/geom2":22,"../../maths/vec2":186}],261:[function(require,module,exports){ -module.exports={intersect:require("./intersect"),scission:require("./scission"),subtract:require("./subtract"),union:require("./union")}; - -},{"./intersect":262,"./scission":267,"./subtract":269,"./union":280}],262:[function(require,module,exports){ -const flatten=require("../../utils/flatten"),areAllShapesTheSameType=require("../../utils/areAllShapesTheSameType"),geom2=require("../../geometries/geom2"),geom3=require("../../geometries/geom3"),intersectGeom2=require("./intersectGeom2"),intersectGeom3=require("./intersectGeom3"),intersect=(...e)=>{if(0===(e=flatten(e)).length)throw new Error("wrong number of arguments");if(!areAllShapesTheSameType(e))throw new Error("only intersect of the types are supported");const r=e[0];return geom2.isA(r)?intersectGeom2(e):geom3.isA(r)?intersectGeom3(e):r};module.exports=intersect; - -},{"../../geometries/geom2":22,"../../geometries/geom3":37,"../../utils/areAllShapesTheSameType":389,"../../utils/flatten":391,"./intersectGeom2":263,"./intersectGeom3":264}],263:[function(require,module,exports){ -const flatten=require("../../utils/flatten"),geom3=require("../../geometries/geom3"),measureEpsilon=require("../../measurements/measureEpsilon"),fromFakePolygons=require("./fromFakePolygons"),to3DWalls=require("./to3DWalls"),intersectGeom3=require("./intersectGeom3"),intersect=(...e)=>{const o=(e=flatten(e)).map(e=>to3DWalls({z0:-1,z1:1},e)),r=intersectGeom3(o),t=measureEpsilon(r);return fromFakePolygons(t,geom3.toPolygons(r))};module.exports=intersect; - -},{"../../geometries/geom3":37,"../../measurements/measureEpsilon":258,"../../utils/flatten":391,"./fromFakePolygons":260,"./intersectGeom3":264,"./to3DWalls":273}],264:[function(require,module,exports){ -const flatten=require("../../utils/flatten"),retessellate=require("../modifiers/retessellate"),intersectSub=require("./intersectGeom3Sub"),intersect=(...e)=>{let t=(e=flatten(e)).shift();return e.forEach(e=>{t=intersectSub(t,e)}),t=retessellate(t)};module.exports=intersect; - -},{"../../utils/flatten":391,"../modifiers/retessellate":349,"./intersectGeom3Sub":265}],265:[function(require,module,exports){ -const geom3=require("../../geometries/geom3"),mayOverlap=require("./mayOverlap"),{Tree:Tree}=require("./trees"),intersectGeom3Sub=(e,o)=>{if(!mayOverlap(e,o))return geom3.create();const r=new Tree(geom3.toPolygons(e)),t=new Tree(geom3.toPolygons(o));r.invert(),t.clipTo(r),t.invert(),r.clipTo(t),t.clipTo(r),r.addPolygons(t.allPolygons()),r.invert();const n=r.allPolygons();return geom3.create(n)};module.exports=intersectGeom3Sub; - -},{"../../geometries/geom3":37,"./mayOverlap":266,"./trees":277}],266:[function(require,module,exports){ -const{EPS:EPS}=require("../../maths/constants"),measureBoundingBox=require("../../measurements/measureBoundingBox"),mayOverlap=(e,n)=>{if(0===e.polygons.length||0===n.polygons.length)return!1;const o=measureBoundingBox(e),r=o[0],s=o[1],u=measureBoundingBox(n),a=u[0],t=u[1];return!(a[0]-s[0]>EPS)&&(!(r[0]-t[0]>EPS)&&(!(a[1]-s[1]>EPS)&&(!(r[1]-t[1]>EPS)&&(!(a[2]-s[2]>EPS)&&!(r[2]-t[2]>EPS)))))};module.exports=mayOverlap; - -},{"../../maths/constants":90,"../../measurements/measureBoundingBox":253}],267:[function(require,module,exports){ -const flatten=require("../../utils/flatten"),geom3=require("../../geometries/geom3"),scissionGeom3=require("./scissionGeom3"),scission=(...e)=>{if(0===(e=flatten(e)).length)throw new Error("wrong number of arguments");const s=e.map(e=>geom3.isA(e)?scissionGeom3(e):e);return 1===s.length?s[0]:s};module.exports=scission; - -},{"../../geometries/geom3":37,"../../utils/flatten":391,"./scissionGeom3":268}],268:[function(require,module,exports){ -const vec3=require("../../maths/vec3"),measureEpsilon=require("../../measurements/measureEpsilon"),geom3=require("../../geometries/geom3"),sortNb=e=>e.sort((e,s)=>e-s).filter((e,s,o)=>!s||e!==o[s-1]),insertMapping=(e,s,o)=>{const t=`${s}`,n=e.get(t);void 0===n?e.set(t,[o]):n.push(o)},findMapping=(e,s)=>{const o=`${s}`;return e.get(o)},scissionGeom3=e=>{const s=measureEpsilon(e),o=geom3.toPolygons(e),t=o.length,n=new Map,r=vec3.create();o.forEach((e,o)=>{e.vertices.forEach(e=>{insertMapping(n,vec3.snap(r,e,s),o)})});const c=o.map(e=>{let o=[];return e.vertices.forEach(e=>{o=o.concat(findMapping(n,vec3.snap(r,e,s)))}),{e:1,d:sortNb(o)}});n.clear();let i=0;const a=c.length;for(let e=0;e0){const o=new Array(t);o[e]=!0;do{i=0,o.forEach((e,s)=>{const t=c[s];if(t.e>0){t.e=-1;for(let e=0;e0);s.indexes=o}}const p=[];for(let e=0;es.push(o[t])),p.push(geom3.create(s))}return p};module.exports=scissionGeom3; - -},{"../../geometries/geom3":37,"../../maths/vec3":217,"../../measurements/measureEpsilon":258}],269:[function(require,module,exports){ -const flatten=require("../../utils/flatten"),areAllShapesTheSameType=require("../../utils/areAllShapesTheSameType"),geom2=require("../../geometries/geom2"),geom3=require("../../geometries/geom3"),subtractGeom2=require("./subtractGeom2"),subtractGeom3=require("./subtractGeom3"),subtract=(...e)=>{if(0===(e=flatten(e)).length)throw new Error("wrong number of arguments");if(!areAllShapesTheSameType(e))throw new Error("only subtract of the types are supported");const r=e[0];return geom2.isA(r)?subtractGeom2(e):geom3.isA(r)?subtractGeom3(e):r};module.exports=subtract; - -},{"../../geometries/geom2":22,"../../geometries/geom3":37,"../../utils/areAllShapesTheSameType":389,"../../utils/flatten":391,"./subtractGeom2":270,"./subtractGeom3":271}],270:[function(require,module,exports){ -const flatten=require("../../utils/flatten"),geom3=require("../../geometries/geom3"),measureEpsilon=require("../../measurements/measureEpsilon"),fromFakePolygons=require("./fromFakePolygons"),to3DWalls=require("./to3DWalls"),subtractGeom3=require("./subtractGeom3"),subtract=(...e)=>{const o=(e=flatten(e)).map(e=>to3DWalls({z0:-1,z1:1},e)),r=subtractGeom3(o),t=measureEpsilon(r);return fromFakePolygons(t,geom3.toPolygons(r))};module.exports=subtract; - -},{"../../geometries/geom3":37,"../../measurements/measureEpsilon":258,"../../utils/flatten":391,"./fromFakePolygons":260,"./subtractGeom3":271,"./to3DWalls":273}],271:[function(require,module,exports){ -const flatten=require("../../utils/flatten"),retessellate=require("../modifiers/retessellate"),subtractSub=require("./subtractGeom3Sub"),subtract=(...t)=>{let e=(t=flatten(t)).shift();return t.forEach(t=>{e=subtractSub(e,t)}),e=retessellate(e)};module.exports=subtract; - -},{"../../utils/flatten":391,"../modifiers/retessellate":349,"./subtractGeom3Sub":272}],272:[function(require,module,exports){ -const geom3=require("../../geometries/geom3"),mayOverlap=require("./mayOverlap"),{Tree:Tree}=require("./trees"),subtractGeom3Sub=(e,o)=>{if(!mayOverlap(e,o))return geom3.clone(e);const r=new Tree(geom3.toPolygons(e)),t=new Tree(geom3.toPolygons(o));r.invert(),r.clipTo(t),t.clipTo(r,!0),r.addPolygons(t.allPolygons()),r.invert();const l=r.allPolygons();return geom3.create(l)};module.exports=subtractGeom3Sub; - -},{"../../geometries/geom3":37,"./mayOverlap":266,"./trees":277}],273:[function(require,module,exports){ -const vec3=require("../../maths/vec3"),geom2=require("../../geometries/geom2"),geom3=require("../../geometries/geom3"),poly3=require("../../geometries/poly3"),to3DWall=(e,o,r)=>{const c=[vec3.fromVec2(vec3.create(),r[0],e),vec3.fromVec2(vec3.create(),r[1],e),vec3.fromVec2(vec3.create(),r[1],o),vec3.fromVec2(vec3.create(),r[0],o)];return poly3.create(c)},to3DWalls=(e,o)=>{const r=geom2.toSides(o).map(o=>to3DWall(e.z0,e.z1,o));return geom3.create(r)};module.exports=to3DWalls; - -},{"../../geometries/geom2":22,"../../geometries/geom3":37,"../../geometries/poly3":75,"../../maths/vec3":217}],274:[function(require,module,exports){ -const plane=require("../../../maths/plane"),poly3=require("../../../geometries/poly3");class Node{constructor(e){this.plane=null,this.front=null,this.back=null,this.polygontreenodes=[],this.parent=e}invert(){const e=[this];let o;for(let n=0;n0&&l.push({node:n.front,polygontreenodes:p});const h=s.length;if(n.back&&h>0)l.push({node:n.back,polygontreenodes:s});else for(let e=0;e0&&e.rootnode.clipPolygons(n.polygontreenodes,o),n.front&&t.push(n.front),n.back&&t.push(n.back),n=t.pop()}while(void 0!==n)}addPolygonTreeNodes(e){let o={node:this,polygontreenodes:e};const n=[];do{const e=o.node,t=o.polygontreenodes;if(0===t.length){o=n.pop();continue}if(!e.plane){let o=0;const n=t[o=Math.floor(t.length/2)].getPolygon();e.plane=poly3.plane(n)}const l=[],s=[],p=t.length;for(let o=0;o0){e.front||(e.front=new Node(e)),p===l.length&&0===s.length?e.front.polygontreenodes=l:n.push({node:e.front,polygontreenodes:l})}if(s.length>0){e.back||(e.back=new Node(e)),p===s.length&&0===l.length?e.back.polygontreenodes=s:n.push({node:e.back,polygontreenodes:s})}o=n.pop()}while(void 0!==o)}}module.exports=Node; - -},{"../../../geometries/poly3":75,"../../../maths/plane":158}],275:[function(require,module,exports){ -const{EPS:EPS}=require("../../../maths/constants"),vec3=require("../../../maths/vec3"),poly3=require("../../../geometries/poly3"),splitPolygonByPlane=require("./splitPolygonByPlane");class PolygonTreeNode{constructor(e,t){this.parent=e,this.children=[],this.polygon=t,this.removed=!1}addPolygons(e){if(!this.isRootNode())throw new Error("Assertion failed");const t=this;e.forEach(e=>{t.addChild(e)})}remove(){if(!this.removed){this.removed=!0,this.polygon=null;const e=this.parent.children,t=e.indexOf(this);if(t<0)throw new Error("Assertion failed");e.splice(t,1),this.parent.recursivelyInvalidatePolygon()}}isRemoved(){return this.removed}isRootNode(){return!this.parent}invert(){if(!this.isRootNode())throw new Error("Assertion failed");this.invertSub()}getPolygon(){if(!this.polygon)throw new Error("Assertion failed");return this.polygon}getPolygons(e){let t=[this];const o=[t];let n,l,s,i;for(n=0;n0&&o.push(i.children)}splitByPlane(e,t,o,n,l){if(this.children.length){const s=[this.children];let i,r,h,c,d;for(i=0;i0?s.push(c.children):c._splitByPlane(e,t,o,n,l)}else this._splitByPlane(e,t,o,n,l)}_splitByPlane(e,t,o,n,l){const s=this.polygon;if(s){const i=poly3.measureBoundingSphere(s),r=i[3]+EPS,h=i,c=vec3.dot(e,h)-e[3];if(c>r)n.push(this);else if(c<-r)l.push(this);else{const i=splitPolygonByPlane(e,s);switch(i.type){case 0:t.push(this);break;case 1:o.push(this);break;case 2:n.push(this);break;case 3:l.push(this);break;case 4:if(i.front){const e=this.addChild(i.front);n.push(e)}if(i.back){const e=this.addChild(i.back);l.push(e)}}}}}addChild(e){const t=new PolygonTreeNode(this,e);return this.children.push(t),t}invertSub(){let e=[this];const t=[e];let o,n,l,s;for(o=0;o0&&t.push(s.children)}recursivelyInvalidatePolygon(){this.polygon=null,this.parent&&this.parent.recursivelyInvalidatePolygon()}clear(){let e=[this];const t=[e];for(let o=0;o0&&t.push(n.children),n.children=[]}}}toString(){let e="",t=[this];const o=[t];let n,l,s,i;for(n=0;n0&&o.push(i.children)}return e}}module.exports=PolygonTreeNode; - -},{"../../../geometries/poly3":75,"../../../maths/constants":90,"../../../maths/vec3":217,"./splitPolygonByPlane":279}],276:[function(require,module,exports){ -const Node=require("./Node"),PolygonTreeNode=require("./PolygonTreeNode");class Tree{constructor(o){this.polygonTree=new PolygonTreeNode,this.rootnode=new Node(null),o&&this.addPolygons(o)}invert(){this.polygonTree.invert(),this.rootnode.invert()}clipTo(o,e=!1){this.rootnode.clipTo(o,e)}allPolygons(){const o=[];return this.polygonTree.getPolygons(o),o}addPolygons(o){const e=new Array(o.length);for(let r=0;r{const n=vec3.subtract(vec3.create(),c,t);let s=(e[3]-vec3.dot(e,t))/vec3.dot(e,n);return Number.isNaN(s)&&(s=0),s>1&&(s=1),s<0&&(s=0),vec3.scale(n,n,s),vec3.add(n,t,n),n};module.exports=splitLineSegmentByPlane; - -},{"../../../maths/vec3":217}],279:[function(require,module,exports){ -const{EPS:EPS}=require("../../../maths/constants"),plane=require("../../../maths/plane"),vec3=require("../../../maths/vec3"),poly3=require("../../../geometries/poly3"),splitLineSegmentByPlane=require("./splitLineSegmentByPlane"),splitPolygonByPlane=(e,t)=>{const l={type:null,front:null,back:null},n=t.vertices,s=n.length,o=poly3.plane(t);if(plane.equals(o,e))l.type=0;else{let t=!1,p=!1;const i=[],c=-EPS;for(let l=0;lEPS&&(t=!0),s=s&&(r=0);const a=i[r];if(c===a)c?p.push(o):t.push(o);else{const l=n[r],s=splitLineSegmentByPlane(e,o,l);c?(p.push(o),p.push(s),t.push(s)):(t.push(o),t.push(s),p.push(s))}c=a}const r=EPS*EPS;if(p.length>=3){let e=p[p.length-1];for(let t=0;t=3){let e=t[t.length-1];for(let l=0;l=3&&(l.front=poly3.fromPointsAndPlane(t,o)),p.length>=3&&(l.back=poly3.fromPointsAndPlane(p,o))}else l.type=3;else l.type=2;else{const t=vec3.dot(e,o);l.type=t>=0?0:1}}return l};module.exports=splitPolygonByPlane; - -},{"../../../geometries/poly3":75,"../../../maths/constants":90,"../../../maths/plane":158,"../../../maths/vec3":217,"./splitLineSegmentByPlane":278}],280:[function(require,module,exports){ -const flatten=require("../../utils/flatten"),areAllShapesTheSameType=require("../../utils/areAllShapesTheSameType"),geom2=require("../../geometries/geom2"),geom3=require("../../geometries/geom3"),unionGeom2=require("./unionGeom2"),unionGeom3=require("./unionGeom3"),union=(...e)=>{if(0===(e=flatten(e)).length)throw new Error("wrong number of arguments");if(!areAllShapesTheSameType(e))throw new Error("only unions of the same type are supported");const o=e[0];return geom2.isA(o)?unionGeom2(e):geom3.isA(o)?unionGeom3(e):o};module.exports=union; - -},{"../../geometries/geom2":22,"../../geometries/geom3":37,"../../utils/areAllShapesTheSameType":389,"../../utils/flatten":391,"./unionGeom2":281,"./unionGeom3":282}],281:[function(require,module,exports){ -const flatten=require("../../utils/flatten"),geom3=require("../../geometries/geom3"),measureEpsilon=require("../../measurements/measureEpsilon"),fromFakePolygons=require("./fromFakePolygons"),to3DWalls=require("./to3DWalls"),unionGeom3=require("./unionGeom3"),union=(...e)=>{const o=(e=flatten(e)).map(e=>to3DWalls({z0:-1,z1:1},e)),n=unionGeom3(o),r=measureEpsilon(n);return fromFakePolygons(r,geom3.toPolygons(n))};module.exports=union; - -},{"../../geometries/geom3":37,"../../measurements/measureEpsilon":258,"../../utils/flatten":391,"./fromFakePolygons":260,"./to3DWalls":273,"./unionGeom3":282}],282:[function(require,module,exports){ -const flatten=require("../../utils/flatten"),retessellate=require("../modifiers/retessellate"),unionSub=require("./unionGeom3Sub"),union=(...e)=>{let t;for(e=flatten(e),t=1;t{if(!mayOverlap(e,o))return unionForNonIntersecting(e,o);const n=new Tree(geom3.toPolygons(e)),r=new Tree(geom3.toPolygons(o));n.clipTo(r,!1),r.clipTo(n),r.invert(),r.clipTo(n),r.invert();const t=n.allPolygons().concat(r.allPolygons());return geom3.create(t)},unionForNonIntersecting=(e,o)=>{let n=geom3.toPolygons(e);return n=n.concat(geom3.toPolygons(o)),geom3.create(n)};module.exports=unionSub; - -},{"../../geometries/geom3":37,"./mayOverlap":266,"./trees":277}],284:[function(require,module,exports){ -const flatten=require("../../utils/flatten"),geom2=require("../../geometries/geom2"),geom3=require("../../geometries/geom3"),path2=require("../../geometries/path2"),expandGeom2=require("./expandGeom2"),expandGeom3=require("./expandGeom3"),expandPath2=require("./expandPath2"),expand=(e,...r)=>{if(0===(r=flatten(r)).length)throw new Error("wrong number of arguments");const t=r.map(r=>path2.isA(r)?expandPath2(e,r):geom2.isA(r)?expandGeom2(e,r):geom3.isA(r)?expandGeom3(e,r):r);return 1===t.length?t[0]:t};module.exports=expand; - -},{"../../geometries/geom2":22,"../../geometries/geom3":37,"../../geometries/path2":58,"../../utils/flatten":391,"./expandGeom2":285,"./expandGeom3":286,"./expandPath2":287}],285:[function(require,module,exports){ -const geom2=require("../../geometries/geom2"),offsetFromPoints=require("./offsetFromPoints"),expandGeom2=(e,o)=>{const{delta:r,corners:s,segments:t}=Object.assign({},{delta:1,corners:"edge",segments:16},e);if("edge"!==s&&"chamfer"!==s&&"round"!==s)throw new Error('corners must be "edge", "chamfer", or "round"');const n=geom2.toOutlines(o).map(o=>offsetFromPoints(e={delta:r,corners:s,closed:!0,segments:t},o)).reduce((e,o)=>e.concat(geom2.toSides(geom2.fromPoints(o))),[]);return geom2.create(n)};module.exports=expandGeom2; - -},{"../../geometries/geom2":22,"./offsetFromPoints":292}],286:[function(require,module,exports){ -const geom3=require("../../geometries/geom3"),union=require("../booleans/union"),expandShell=require("./expandShell"),expandGeom3=(e,n)=>{const{delta:o,corners:r,segments:t}=Object.assign({},{delta:1,corners:"round",segments:12},e);if("round"!==r)throw new Error('corners must be "round" for 3D geometries');if(0===geom3.toPolygons(n).length)throw new Error("the given geometry cannot be empty");const s=expandShell(e={delta:o,corners:r,segments:t},n);return union(n,s)};module.exports=expandGeom3; - -},{"../../geometries/geom3":37,"../booleans/union":280,"./expandShell":288}],287:[function(require,module,exports){ -const area=require("../../maths/utils/area"),vec2=require("../../maths/vec2"),geom2=require("../../geometries/geom2"),path2=require("../../geometries/path2"),offsetFromPoints=require("./offsetFromPoints"),createGeometryFromClosedOffsets=e=>{let{external:t,internal:r}=e;area(t)<0?t=t.reverse():r=r.reverse();const o=path2.fromPoints({closed:!0},t),s=path2.fromPoints({closed:!0},r),n=geom2.toSides(geom2.fromPoints(path2.toPoints(o))),a=geom2.toSides(geom2.fromPoints(path2.toPoints(s)));return n.push(...a),geom2.create(n)},createGeometryFromExpandedOpenPath=(e,t,r,o)=>{const{points:s,external:n,internal:a}=e,c=Math.floor(t/2),m=[],i=[];if("round"===r&&c>0){const e=Math.PI/c,t=s[s.length-1],r=vec2.angle(vec2.subtract(vec2.create(),n[n.length-1],t)),d=s[0],l=vec2.angle(vec2.subtract(vec2.create(),a[0],d));for(let s=1;s{e=Object.assign({},{delta:1,corners:"edge",segments:16},e);const{delta:r,corners:o,segments:s}=e;if(r<=0)throw new Error("the given delta must be positive for paths");if("edge"!==o&&"chamfer"!==o&&"round"!==o)throw new Error('corners must be "edge", "chamfer", or "round"');const n=t.isClosed,a=path2.toPoints(t);if(0===a.length)throw new Error("the given geometry cannot be empty");const c={points:a,external:offsetFromPoints({delta:r,corners:o,segments:s,closed:n},a),internal:offsetFromPoints({delta:-r,corners:o,segments:s,closed:n},a)};return t.isClosed?createGeometryFromClosedOffsets(c):createGeometryFromExpandedOpenPath(c,s,o,r)};module.exports=expandPath2; - -},{"../../geometries/geom2":22,"../../geometries/path2":58,"../../maths/utils/area":163,"../../maths/vec2":186,"./offsetFromPoints":292}],288:[function(require,module,exports){ -const{EPS:EPS,TAU:TAU}=require("../../maths/constants"),mat4=require("../../maths/mat4"),vec3=require("../../maths/vec3"),fnNumberSort=require("../../utils/fnNumberSort"),geom3=require("../../geometries/geom3"),poly3=require("../../geometries/poly3"),sphere=require("../../primitives/sphere"),retessellate=require("../modifiers/retessellate"),unionGeom3Sub=require("../booleans/unionGeom3Sub"),extrudePolygon=require("./extrudePolygon"),mapPlaneToVertex=(e,t,o)=>{const n=t.toString();if(e.has(n)){e.get(n)[1].push(o)}else{const s=[t,[o]];e.set(n,s)}},mapPlaneToEdge=(e,t,o)=>{const n=t[0].toString(),s=t[1].toString(),r=n{e.findIndex(e=>e===t)<0&&e.push(t)},expandShell=(e,t)=>{const{delta:o,segments:n}=Object.assign({},{delta:1,segments:12},e);let s=geom3.create();const r=new Map,c=new Map,a=vec3.create(),l=vec3.create();return geom3.toPolygons(t).forEach((e,t)=>{const n=vec3.scale(vec3.create(),poly3.plane(e),2*o),a=poly3.transform(mat4.fromTranslation(mat4.create(),vec3.scale(vec3.create(),n,-.5)),e),l=extrudePolygon(n,a);s=unionGeom3Sub(s,l);const u=e.vertices;for(let t=0;t{const t=e[0],r=e[1],c=t[0],u=t[1],i=vec3.subtract(vec3.create(),u,c);vec3.normalize(i,i);const m=r[0],g=vec3.cross(vec3.create(),m,i);let p=[];for(let e=0;e=0&&vec3.distance(r,v)=0){f.push(r),S.push(i);const e=[d,i,r,v],t=poly3.create(e);q.push(t)}v=r,d=i}}S.reverse(),q.push(poly3.create(f)),q.push(poly3.create(S));const y=geom3.create(q);s=unionGeom3Sub(s,y)}),r.forEach(e=>{const t=e[0],r=e[1],c=r[0];let u=null,i=0;for(let e=1;e.05&&n>i&&(i=n,u=t)}u||(u=vec3.orthogonal(a,c));const m=vec3.cross(a,c,u);vec3.normalize(m,m);const g=vec3.cross(l,m,c),p=sphere({center:[t[0],t[1],t[2]],radius:o,segments:n,axes:[c,m,g]});s=unionGeom3Sub(s,p)}),retessellate(s)};module.exports=expandShell; - -},{"../../geometries/geom3":37,"../../geometries/poly3":75,"../../maths/constants":90,"../../maths/mat4":139,"../../maths/vec3":217,"../../primitives/sphere":379,"../../utils/fnNumberSort":392,"../booleans/unionGeom3Sub":283,"../modifiers/retessellate":349,"./extrudePolygon":289}],289:[function(require,module,exports){ -const mat4=require("../../maths/mat4"),vec3=require("../../maths/vec3"),geom3=require("../../geometries/geom3"),poly3=require("../../geometries/poly3"),extrudePolygon=(e,r)=>{vec3.dot(poly3.plane(r),e)>0&&(r=poly3.invert(r));const t=[r],o=poly3.transform(mat4.fromTranslation(mat4.create(),e),r),s=r.vertices.length;for(let e=0;e{if(0===(t=flatten(t)).length)throw new Error("wrong number of arguments");const o=t.map(t=>path2.isA(t)?offsetPath2(e,t):geom2.isA(t)?offsetGeom2(e,t):t);return 1===o.length?o[0]:o};module.exports=offset; - -},{"../../geometries/geom2":22,"../../geometries/path2":58,"../../utils/flatten":391,"./offsetGeom2":293,"./offsetPath2":294}],292:[function(require,module,exports){ -const{EPS:EPS,TAU:TAU}=require("../../maths/constants"),intersect=require("../../maths/utils/intersect"),line2=require("../../maths/line2"),vec2=require("../../maths/vec2"),area=require("../../maths/utils/area"),offsetFromPoints=(e,t)=>{let{delta:s,corners:c,closed:n,segments:a}=Object.assign({},{delta:1,corners:"edge",closed:!1,segments:16},e);if(Math.abs(s)0&&s>=0||r<0&&s<0;s=Math.abs(s);let i=null,l=[];const u=[],v=vec2.create(),f=t.length;for(let e=0;ee.set(t,s));const t=line2.create(),s=line2.create();u.forEach(c=>{line2.fromPoints(t,c.s0[0],c.s0[1]),line2.fromPoints(s,c.s1[0],c.s1[1]);const n=line2.intersectPointOfLines(t,s);if(Number.isFinite(n[0])&&Number.isFinite(n[1])){const t=c.s0[1],s=e.get(t);l[s]=n,l[(s+1)%l.length]=void 0}else{const t=c.s1[0],s=e.get(t);l[s]=void 0}}),l=l.filter(e=>void 0!==e)}if("round"===c){let e=Math.floor(a/4);const t=vec2.create();u.forEach(c=>{let n=vec2.angle(vec2.subtract(t,c.s1[0],c.c));if(n-=vec2.angle(vec2.subtract(t,c.s0[1],c.c)),o&&n<0&&(n+=Math.PI)<0&&(n+=Math.PI),!o&&n>0&&(n-=Math.PI)>0&&(n-=Math.PI),0!==n){const r=n/(e=Math.floor(a*(Math.abs(n)/TAU))),o=vec2.angle(vec2.subtract(t,c.s0[1],c.c)),i=[];for(let t=1;t0){const e=c.s0[1];let t=l.findIndex(t=>vec2.equals(e,t));t=(t+1)%l.length,l.splice(t,0,...i)}}else{const e=c.s1[0],t=l.findIndex(t=>vec2.equals(e,t));l.splice(t,1)}})}return l};module.exports=offsetFromPoints; - -},{"../../maths/constants":90,"../../maths/line2":101,"../../maths/utils/area":163,"../../maths/utils/intersect":166,"../../maths/vec2":186}],293:[function(require,module,exports){ -const geom2=require("../../geometries/geom2"),poly2=require("../../geometries/poly2"),offsetFromPoints=require("./offsetFromPoints"),offsetGeom2=(e,o)=>{const{delta:r,corners:s,segments:t}=Object.assign({},{delta:1,corners:"edge",segments:0},e);if("edge"!==s&&"chamfer"!==s&&"round"!==s)throw new Error('corners must be "edge", "chamfer", or "round"');const n=geom2.toOutlines(o),m=n.map(o=>{const m=n.reduce((e,r)=>e+poly2.arePointsInside(o,poly2.create(r)),0);return offsetFromPoints(e={delta:m%2==0?r:-r,corners:s,closed:!0,segments:t},o)}).reduce((e,o)=>e.concat(geom2.toSides(geom2.fromPoints(o))),[]);return geom2.create(m)};module.exports=offsetGeom2; - -},{"../../geometries/geom2":22,"../../geometries/poly2":69,"./offsetFromPoints":292}],294:[function(require,module,exports){ -const path2=require("../../geometries/path2"),offsetFromPoints=require("./offsetFromPoints"),offsetPath2=(e,o)=>{const s={delta:1,corners:"edge",closed:o.isClosed,segments:16},{delta:t,corners:r,closed:n,segments:c}=Object.assign({},s,e);if("edge"!==r&&"chamfer"!==r&&"round"!==r)throw new Error('corners must be "edge", "chamfer", or "round"');const d=offsetFromPoints(e={delta:t,corners:r,closed:n,segments:c},path2.toPoints(o));return path2.fromPoints({closed:n},d)};module.exports=offsetPath2; - -},{"../../geometries/path2":58,"./offsetFromPoints":292}],295:[function(require,module,exports){ -const{area:area}=require("../../../maths/utils"),{toOutlines:toOutlines}=require("../../../geometries/geom2"),{arePointsInside:arePointsInside}=require("../../../geometries/poly2"),assignHoles=e=>{const s=toOutlines(e),o=[],t=[];s.forEach((e,s)=>{const n=area(e);n<0?t.push(s):n>0&&o.push(s)});const n=[],r=[];return o.forEach((e,o)=>{const i=s[e];n[o]=[],t.forEach((e,t)=>{const a=s[e];arePointsInside([a[0]],{vertices:i})&&(n[o].push(e),r[t]||(r[t]=[]),r[t].push(o))})}),t.forEach((e,s)=>{if(r[s]&&r[s].length>1){const o=minIndex(r[s],e=>n[e].length);r[s].forEach((s,t)=>{t!==o&&(n[s]=n[s].filter(s=>s!==e))})}}),n.map((e,t)=>({solid:s[o[t]],holes:e.map(e=>s[e])}))},minIndex=(e,s)=>{let o,t;return e.forEach((e,n)=>{const r=s(e);(void 0===t||r{const i=[];for(let n=0,o=t.length;ne.x-t.x);for(let e=0;e{const n=findHoleBridge(e,t);if(!n)return t;const l=splitPolygon(n,e),i=filterPoints(n,n.next);return filterPoints(l,l.next),t===n?i:t},findHoleBridge=(e,t)=>{let n=t;const l=e.x,i=e.y;let o,r=-1/0;do{if(i<=n.y&&i>=n.next.y&&n.next.y!==n.y){const e=n.x+(i-n.y)*(n.next.x-n.x)/(n.next.y-n.y);if(e<=l&&e>r){if(r=e,e===l){if(i===n.y)return n;if(i===n.next.y)return n.next}o=n.x=n.x&&n.x>=s&&l!==n.x&&pointInTriangle(io.x||n.x===o.x&§orContainsSector(o,n)))&&(o=n,a=t)}n=n.next}while(n!==x);return o},sectorContainsSector=(e,t)=>area(e.prev,e,t.prev)<0&&area(t.next,e,e.next)<0,getLeftmost=e=>{let t=e,n=e;do{(t.x{const t=r&&r.length,i=t?r[0]*n:e.length;let x=linkedPolygon(e,0,i,n,!0);const l=[];if(!x||x.next===x.prev)return l;let o,a,y,s,p;if(t&&(x=eliminateHoles(e,r,x,n)),e.length>80*n){o=y=e[0],a=s=e[1];for(let r=n;ry&&(y=n),t>s&&(s=t)}p=0!==(p=Math.max(y-o,s-a))?1/p:0}return earcutLinked(x,l,n,o,a,p),l},earcutLinked=(e,r,n,t,i,x,l)=>{if(!e)return;!l&&x&&indexCurve(e,t,i,x);let o,a,y=e;for(;e.prev!==e.next;)if(o=e.prev,a=e.next,x?isEarHashed(e,t,i,x):isEar(e))r.push(o.i/n),r.push(e.i/n),r.push(a.i/n),removeNode(e),e=a.next,y=a.next;else if((e=a)===y){l?1===l?(e=cureLocalIntersections(filterPoints(e),r,n),earcutLinked(e,r,n,t,i,x,2)):2===l&&splitEarcut(e,r,n,t,i,x):earcutLinked(filterPoints(e),r,n,t,i,x,1);break}},isEar=e=>{const r=e.prev,n=e,t=e.next;if(area(r,n,t)>=0)return!1;let i=e.next.next;for(;i!==e.prev;){if(pointInTriangle(r.x,r.y,n.x,n.y,t.x,t.y,i.x,i.y)&&area(i.prev,i,i.next)>=0)return!1;i=i.next}return!0},isEarHashed=(e,r,n,t)=>{const i=e.prev,x=e,l=e.next;if(area(i,x,l)>=0)return!1;const o=i.xx.x?i.x>l.x?i.x:l.x:x.x>l.x?x.x:l.x,s=i.y>x.y?i.y>l.y?i.y:l.y:x.y>l.y?x.y:l.y,p=zOrder(o,a,r,n,t),u=zOrder(y,s,r,n,t);let d=e.prevZ,v=e.nextZ;for(;d&&d.z>=p&&v&&v.z<=u;){if(d!==e.prev&&d!==e.next&&pointInTriangle(i.x,i.y,x.x,x.y,l.x,l.y,d.x,d.y)&&area(d.prev,d,d.next)>=0)return!1;if(d=d.prevZ,v!==e.prev&&v!==e.next&&pointInTriangle(i.x,i.y,x.x,x.y,l.x,l.y,v.x,v.y)&&area(v.prev,v,v.next)>=0)return!1;v=v.nextZ}for(;d&&d.z>=p;){if(d!==e.prev&&d!==e.next&&pointInTriangle(i.x,i.y,x.x,x.y,l.x,l.y,d.x,d.y)&&area(d.prev,d,d.next)>=0)return!1;d=d.prevZ}for(;v&&v.z<=u;){if(v!==e.prev&&v!==e.next&&pointInTriangle(i.x,i.y,x.x,x.y,l.x,l.y,v.x,v.y)&&area(v.prev,v,v.next)>=0)return!1;v=v.nextZ}return!0},splitEarcut=(e,r,n,t,i,x)=>{let l=e;do{let e=l.next.next;for(;e!==l.prev;){if(l.i!==e.i&&isValidDiagonal(l,e)){let o=splitPolygon(l,e);return l=filterPoints(l,l.next),o=filterPoints(o,o.next),earcutLinked(l,r,n,t,i,x),void earcutLinked(o,r,n,t,i,x)}e=e.next}l=l.next}while(l!==e)},indexCurve=(e,r,n,t)=>{let i=e;do{null===i.z&&(i.z=zOrder(i.x,i.y,r,n,t)),i.prevZ=i.prev,i.nextZ=i.next,i=i.next}while(i!==e);i.prevZ.nextZ=null,i.prevZ=null,sortLinked(i,e=>e.z)},zOrder=(e,r,n,t,i)=>(e=1431655765&((e=858993459&((e=252645135&((e=16711935&((e=32767*(e-n)*i)|e<<8))|e<<4))|e<<2))|e<<1))|(r=1431655765&((r=858993459&((r=252645135&((r=16711935&((r=32767*(r-t)*i)|r<<8))|r<<4))|r<<2))|r<<1))<<1;module.exports=triangulate; - -},{"./eliminateHoles":296,"./linkedList":298,"./linkedPolygon":300,"./triangle":302}],298:[function(require,module,exports){ -const sortLinked=require("./linkedListSort");class Node{constructor(e,t,n){this.i=e,this.x=t,this.y=n,this.prev=null,this.next=null,this.z=null,this.prevZ=null,this.nextZ=null,this.steiner=!1}}const insertNode=(e,t,n,r)=>{const o=new Node(e,t,n);return r?(o.next=r.next,o.prev=r,r.next.prev=o,r.next=o):(o.prev=o,o.next=o),o},removeNode=e=>{e.next.prev=e.prev,e.prev.next=e.next,e.prevZ&&(e.prevZ.nextZ=e.nextZ),e.nextZ&&(e.nextZ.prevZ=e.prevZ)};module.exports={Node:Node,insertNode:insertNode,removeNode:removeNode,sortLinked:sortLinked}; - -},{"./linkedListSort":299}],299:[function(require,module,exports){ -const sortLinked=(e,t)=>{let l,n,o,r,x,Z=1;do{n=e,e=null;let u=null;for(x=0;n;){x++,o=n;let d=0;for(l=0;l0||s>0&&o;)0!==d&&(0===s||!o||t(n)<=t(o))?(r=n,n=n.nextZ,d--):(r=o,o=o.nextZ,s--),u?u.nextZ=r:e=r,r.prevZ=u,u=r;n=o}u.nextZ=null,Z*=2}while(x>1);return e};module.exports=sortLinked; - -},{}],300:[function(require,module,exports){ -const{Node:Node,insertNode:insertNode,removeNode:removeNode}=require("./linkedList"),{area:area}=require("./triangle"),linkedPolygon=(e,n,t,r,i)=>{let o;if(i===signedArea(e,n,t,r)>0)for(let i=n;i=n;i-=r)o=insertNode(i,e[i],e[i+1],o);return o&&equals(o,o.next)&&(removeNode(o),o=o.next),o},filterPoints=(e,n)=>{if(!e)return e;n||(n=e);let t,r=e;do{if(t=!1,r.steiner||!equals(r,r.next)&&0!==area(r.prev,r,r.next))r=r.next;else{if(removeNode(r),(r=n=r.prev)===r.next)break;t=!0}}while(t||r!==n);return n},cureLocalIntersections=(e,n,t)=>{let r=e;do{const i=r.prev,o=r.next.next;!equals(i,o)&&intersects(i,r,r.next,o)&&locallyInside(i,o)&&locallyInside(o,i)&&(n.push(i.i/t),n.push(r.i/t),n.push(o.i/t),removeNode(r),removeNode(r.next),r=e=o),r=r.next}while(r!==e);return filterPoints(r)},intersectsPolygon=(e,n)=>{let t=e;do{if(t.i!==e.i&&t.next.i!==e.i&&t.i!==n.i&&t.next.i!==n.i&&intersects(t,t.next,e,n))return!0;t=t.next}while(t!==e);return!1},locallyInside=(e,n)=>area(e.prev,e,e.next)<0?area(e,n,e.next)>=0&&area(e,e.prev,n)>=0:area(e,n,e.prev)<0||area(e,e.next,n)<0,middleInside=(e,n)=>{let t=e,r=!1;const i=(e.x+n.x)/2,o=(e.y+n.y)/2;do{t.y>o!=t.next.y>o&&t.next.y!==t.y&&i<(t.next.x-t.x)*(o-t.y)/(t.next.y-t.y)+t.x&&(r=!r),t=t.next}while(t!==e);return r},splitPolygon=(e,n)=>{const t=new Node(e.i,e.x,e.y),r=new Node(n.i,n.x,n.y),i=e.next,o=n.prev;return e.next=n,n.prev=e,t.next=i,i.prev=t,r.next=t,t.prev=r,o.next=r,r.prev=o,r},isValidDiagonal=(e,n)=>e.next.i!==n.i&&e.prev.i!==n.i&&!intersectsPolygon(e,n)&&(locallyInside(e,n)&&locallyInside(n,e)&&middleInside(e,n)&&(area(e.prev,e,n.prev)||area(e,n.prev,n))||equals(e,n)&&area(e.prev,e,e.next)>0&&area(n.prev,n,n.next)>0),intersects=(e,n,t,r)=>{const i=Math.sign(area(e,n,t)),o=Math.sign(area(e,n,r)),l=Math.sign(area(t,r,e)),a=Math.sign(area(t,r,n));return i!==o&&l!==a||(!(0!==i||!onSegment(e,t,n))||(!(0!==o||!onSegment(e,r,n))||(!(0!==l||!onSegment(t,e,r))||!(0!==a||!onSegment(t,n,r)))))},onSegment=(e,n,t)=>n.x<=Math.max(e.x,t.x)&&n.x>=Math.min(e.x,t.x)&&n.y<=Math.max(e.y,t.y)&&n.y>=Math.min(e.y,t.y),signedArea=(e,n,t,r)=>{let i=0;for(let o=n,l=t-r;oe.x===n.x&&e.y===n.y;module.exports={cureLocalIntersections:cureLocalIntersections,filterPoints:filterPoints,isValidDiagonal:isValidDiagonal,linkedPolygon:linkedPolygon,locallyInside:locallyInside,splitPolygon:splitPolygon}; - -},{"./linkedList":298,"./triangle":302}],301:[function(require,module,exports){ -const geom2=require("../../../geometries/geom2"),plane=require("../../../maths/plane"),vec2=require("../../../maths/vec2"),vec3=require("../../../maths/vec3"),calculatePlane=require("../slice/calculatePlane"),assignHoles=require("./assignHoles");class PolygonHierarchy{constructor(e){this.plane=calculatePlane(e);const s=vec3.orthogonal(vec3.create(),this.plane),c=vec3.cross(vec3.create(),this.plane,s);this.v=vec3.normalize(c,c),this.u=vec3.cross(vec3.create(),this.v,this.plane),this.basisMap=new Map;const t=e.edges.map(e=>e.map(e=>this.to2D(e))),a=geom2.create(t);this.roots=assignHoles(a)}to2D(e){const s=vec2.fromValues(vec3.dot(e,this.u),vec3.dot(e,this.v));return this.basisMap.set(s,e),s}to3D(e){const s=this.basisMap.get(e);if(s)return s;{console.log("Warning: point not in original slice");const s=vec3.scale(vec3.create(),this.u,e[0]),c=vec3.scale(vec3.create(),this.v,e[1]),t=vec3.scale(vec3.create(),plane,plane[3]),a=vec3.add(s,s,t);return vec3.add(c,c,a)}}}module.exports=PolygonHierarchy; - -},{"../../../geometries/geom2":22,"../../../maths/plane":158,"../../../maths/vec2":186,"../../../maths/vec3":217,"../slice/calculatePlane":314,"./assignHoles":295}],302:[function(require,module,exports){ -const pointInTriangle=(n,a,e,r,i,o,t,x)=>(i-t)*(a-x)-(n-t)*(o-x)>=0&&(n-t)*(r-x)-(e-t)*(a-x)>=0&&(e-t)*(o-x)-(i-t)*(r-x)>=0,area=(n,a,e)=>(a.y-n.y)*(e.x-a.x)-(a.x-n.x)*(e.y-a.y);module.exports={area:area,pointInTriangle:pointInTriangle}; - -},{}],303:[function(require,module,exports){ -const mat4=require("../../maths/mat4"),geom2=require("../../geometries/geom2"),geom3=require("../../geometries/geom3"),poly3=require("../../geometries/poly3"),slice=require("./slice"),repairSlice=require("./slice/repair"),extrudeWalls=require("./extrudeWalls"),defaultCallback=(e,r,l)=>{let t=null;return geom2.isA(l)&&(t=slice.fromSides(geom2.toSides(l))),poly3.isA(l)&&(t=slice.fromPoints(poly3.toPoints(l))),0===e||1===e?slice.transform(mat4.fromTranslation(mat4.create(),[0,0,e]),t):null},extrudeFromSlices=(e,r)=>{const l={numberOfSlices:2,capStart:!0,capEnd:!0,close:!1,repair:!0,callback:defaultCallback},{numberOfSlices:t,capStart:o,capEnd:c,close:s,repair:i,callback:a}=Object.assign({},l,e);if(t<2)throw new Error("numberOfSlices must be 2 or more");i&&(r=repairSlice(r));const n=t-1;let u=null,m=null,f=null,g=[];for(let e=0;e{const{height:r,twistAngle:i,twistSteps:n,repair:a}=Object.assign({},{height:1,twistAngle:0,twistSteps:1,repair:!0},e);if(0===(t=flatten(t)).length)throw new Error("wrong number of arguments");e={offset:[0,0,r],twistAngle:i,twistSteps:n,repair:a};const s=t.map(t=>path2.isA(t)?extrudeLinearPath2(e,t):geom2.isA(t)?extrudeLinearGeom2(e,t):t);return 1===s.length?s[0]:s};module.exports=extrudeLinear; - -},{"../../geometries/geom2":22,"../../geometries/path2":58,"../../utils/flatten":391,"./extrudeLinearGeom2":305,"./extrudeLinearPath2":306}],305:[function(require,module,exports){ -const mat4=require("../../maths/mat4"),vec3=require("../../maths/vec3"),geom2=require("../../geometries/geom2"),slice=require("./slice"),extrudeFromSlices=require("./extrudeFromSlices"),extrudeGeom2=(e,t)=>{let{offset:r,twistAngle:s,twistSteps:o,repair:i}=Object.assign({},{offset:[0,0,1],twistAngle:0,twistSteps:12,repair:!0},e);if(o<1)throw new Error("twistSteps must be 1 or more");0===s&&(o=1);const c=vec3.clone(r),m=geom2.toSides(t);if(0===m.length)throw new Error("the given geometry cannot be empty");const a=slice.fromSides(m);c[2]<0&&slice.reverse(a,a);const n=mat4.create();return extrudeFromSlices(e={numberOfSlices:o+1,capStart:!0,capEnd:!0,repair:i,callback:(e,t,r)=>{const i=t/o*s,m=vec3.scale(vec3.create(),c,t/o);return mat4.multiply(n,mat4.fromZRotation(n,i),mat4.fromTranslation(mat4.create(),m)),slice.transform(n,r)}},a)};module.exports=extrudeGeom2; - -},{"../../geometries/geom2":22,"../../maths/mat4":139,"../../maths/vec3":217,"./extrudeFromSlices":303,"./slice":320}],306:[function(require,module,exports){ -const geom2=require("../../geometries/geom2"),path2=require("../../geometries/path2"),extrudeLinearGeom2=require("./extrudeLinearGeom2"),extrudePath2=(e,r)=>{if(!r.isClosed)throw new Error("extruded path must be closed");const t=path2.toPoints(r),o=geom2.fromPoints(t);return extrudeLinearGeom2(e,o)};module.exports=extrudePath2; - -},{"../../geometries/geom2":22,"../../geometries/path2":58,"./extrudeLinearGeom2":305}],307:[function(require,module,exports){ -const flatten=require("../../utils/flatten"),geom2=require("../../geometries/geom2"),path2=require("../../geometries/path2"),extrudeRectangularPath2=require("./extrudeRectangularPath2"),extrudeRectangularGeom2=require("./extrudeRectangularGeom2"),extrudeRectangular=(e,...t)=>{const{size:r,height:a}=Object.assign({},{size:1,height:1},e);if(0===(t=flatten(t)).length)throw new Error("wrong number of arguments");if(r<=0)throw new Error("size must be positive");if(a<=0)throw new Error("height must be positive");const u=t.map(t=>path2.isA(t)?extrudeRectangularPath2(e,t):geom2.isA(t)?extrudeRectangularGeom2(e,t):t);return 1===u.length?u[0]:u};module.exports=extrudeRectangular; - -},{"../../geometries/geom2":22,"../../geometries/path2":58,"../../utils/flatten":391,"./extrudeRectangularGeom2":308,"./extrudeRectangularPath2":309}],308:[function(require,module,exports){ -const{area:area}=require("../../maths/utils"),geom2=require("../../geometries/geom2"),path2=require("../../geometries/path2"),expand=require("../expansions/expand"),extrudeLinearGeom2=require("./extrudeLinearGeom2"),extrudeRectangularGeom2=(e,r)=>{const{size:t,height:o}=Object.assign({},{size:1,height:1},e);e.delta=t,e.offset=[0,0,o];const a=geom2.toOutlines(r);if(0===a.length)throw new Error("the given geometry cannot be empty");const n=a.map(r=>(area(r)<0&&r.reverse(),expand(e,path2.fromPoints({closed:!0},r)))).reduce((e,r)=>e.concat(geom2.toSides(r)),[]),i=geom2.create(n);return extrudeLinearGeom2(e,i)};module.exports=extrudeRectangularGeom2; - -},{"../../geometries/geom2":22,"../../geometries/path2":58,"../../maths/utils":164,"../expansions/expand":284,"./extrudeLinearGeom2":305}],309:[function(require,module,exports){ -const path2=require("../../geometries/path2"),expand=require("../expansions/expand"),extrudeLinearGeom2=require("./extrudeLinearGeom2"),extrudeRectangularPath2=(e,t)=>{const{size:r,height:n}=Object.assign({},{size:1,height:1},e);if(e.delta=r,e.offset=[0,0,n],0===path2.toPoints(t).length)throw new Error("the given geometry cannot be empty");const a=expand(e,t);return extrudeLinearGeom2(e,a)};module.exports=extrudeRectangularPath2; - -},{"../../geometries/path2":58,"../expansions/expand":284,"./extrudeLinearGeom2":305}],310:[function(require,module,exports){ -const{TAU:TAU}=require("../../maths/constants"),mat4=require("../../maths/mat4"),{mirrorX:mirrorX}=require("../transforms/mirror"),geom2=require("../../geometries/geom2"),slice=require("./slice"),extrudeFromSlices=require("./extrudeFromSlices"),extrudeRotate=(e,t)=>{const r={segments:12,startAngle:0,angle:TAU,overflow:"cap"};let{segments:a,startAngle:o,angle:s,overflow:m}=Object.assign({},r,e);if(a<3)throw new Error("segments must be greater then 3");o=Math.abs(o)>TAU?o%TAU:o,s=Math.abs(s)>TAU?s%TAU:s;let n=o+s;if((n=Math.abs(n)>TAU?n%TAU:n)a*e&&a++}let i=geom2.toSides(t);if(0===i.length)throw new Error("the given geometry cannot be empty");const c=i.filter(e=>e[0][0]<0),g=i.filter(e=>e[0][0]>=0);c.length>0&&g.length>0&&"cap"===m&&(c.length>g.length?(i=i.map(e=>{let t=e[0],r=e[1];return[t=[Math.min(t[0],0),t[1]],r=[Math.min(r[0],0),r[1]]]}),t=geom2.reverse(geom2.create(i)),t=mirrorX(t)):g.length>=c.length&&(i=i.map(e=>{let t=e[0],r=e[1];return[t=[Math.max(t[0],0),t[1]],r=[Math.max(r[0],0),r[1]]]}),t=geom2.create(i)));const h=l/a,u=Math.abs(l){let s=h*t+o;return l===TAU&&t===a&&(s=o),mat4.multiply(f,mat4.fromZRotation(f,s),mat4.fromXRotation(mat4.create(),TAU/4)),slice.transform(f,r)}},A)};module.exports=extrudeRotate; - -},{"../../geometries/geom2":22,"../../maths/constants":90,"../../maths/mat4":139,"../transforms/mirror":356,"./extrudeFromSlices":303,"./slice":320}],311:[function(require,module,exports){ -const{EPS:EPS}=require("../../maths/constants"),vec3=require("../../maths/vec3"),poly3=require("../../geometries/poly3"),slice=require("./slice"),gcd=(e,t)=>e===t?e:ee*t/gcd(e,t),repartitionEdges=(e,t)=>{const r=e/t.length;if(1===r)return t;const s=vec3.fromValues(r,r,r),c=[];return t.forEach(e=>{const t=vec3.subtract(vec3.create(),e[1],e[0]);vec3.divide(t,t,s);let l=e[0];for(let e=1;e<=r;++e){const e=vec3.add(vec3.create(),l,t);c.push([l,e]),l=e}}),c},EPSAREA=EPS*EPS/2*Math.sin(Math.PI/3),extrudeWalls=(e,t)=>{let r=slice.toEdges(e),s=slice.toEdges(t);if(r.length!==s.length){const e=lcm(r.length,s.length);e!==r.length&&(r=repartitionEdges(e,r)),e!==s.length&&(s=repartitionEdges(e,s))}const c=[];return r.forEach((e,t)=>{const r=s[t],l=poly3.create([e[0],e[1],r[1]]),o=poly3.measureArea(l);Number.isFinite(o)&&o>EPSAREA&&c.push(l);const n=poly3.create([e[0],r[1],r[0]]),i=poly3.measureArea(n);Number.isFinite(i)&&i>EPSAREA&&c.push(n)}),c};module.exports=extrudeWalls; - -},{"../../geometries/poly3":75,"../../maths/constants":90,"../../maths/vec3":217,"./slice":320}],312:[function(require,module,exports){ -module.exports={extrudeFromSlices:require("./extrudeFromSlices"),extrudeLinear:require("./extrudeLinear"),extrudeRectangular:require("./extrudeRectangular"),extrudeRotate:require("./extrudeRotate"),project:require("./project"),slice:require("./slice")}; - -},{"./extrudeFromSlices":303,"./extrudeLinear":304,"./extrudeRectangular":307,"./extrudeRotate":310,"./project":313,"./slice":320}],313:[function(require,module,exports){ -const flatten=require("../../utils/flatten"),aboutEqualNormals=require("../../maths/utils/aboutEqualNormals"),plane=require("../../maths/plane"),mat4=require("../../maths/mat4"),geom2=require("../../geometries/geom2"),geom3=require("../../geometries/geom3"),poly3=require("../../geometries/poly3"),measureEpsilon=require("../../measurements/measureEpsilon"),unionGeom2=require("../booleans/unionGeom2"),projectGeom3=(e,o)=>{const r=plane.fromNormalAndPoint(plane.create(),e.axis,e.origin);if(Number.isNaN(r[0])||Number.isNaN(r[1])||Number.isNaN(r[2])||Number.isNaN(r[3]))throw new Error("project: invalid axis or origin");const t=measureEpsilon(o),a=t*t*Math.sqrt(3)/4;if(0===t)return geom2.create();const n=geom3.toPolygons(o);let s=[];for(let e=0;eplane.projectionOfPoint(r,e)),t=poly3.create(o),i=poly3.plane(t);aboutEqualNormals(r,i)&&(poly3.measureArea(t)poly3.transform(e,o))}const i=(s=s.sort((e,o)=>poly3.measureArea(o)-poly3.measureArea(e))).map(e=>geom2.fromPoints(e.vertices));return unionGeom2(i)},project=(e,...o)=>{const{axis:r,origin:t}=Object.assign({},{axis:[0,0,1],origin:[0,0,0]},e);if(0===(o=flatten(o)).length)throw new Error("wrong number of arguments");e={axis:r,origin:t};const a=o.map(o=>geom3.isA(o)?projectGeom3(e,o):o);return 1===a.length?a[0]:a};module.exports=project; - -},{"../../geometries/geom2":22,"../../geometries/geom3":37,"../../geometries/poly3":75,"../../maths/mat4":139,"../../maths/plane":158,"../../maths/utils/aboutEqualNormals":162,"../../measurements/measureEpsilon":258,"../../utils/flatten":391,"../booleans/unionGeom2":281}],314:[function(require,module,exports){ -const plane=require("../../../maths/plane"),vec3=require("../../../maths/vec3"),calculatePlane=e=>{const c=e.edges;if(c.length<3)throw new Error("slices must have 3 or more edges to calculate a plane");const a=c.reduce((e,c)=>vec3.add(vec3.create(),e,c[0]),vec3.create());let t;vec3.scale(a,a,1/c.length);let l=0;c.forEach(e=>{if(!vec3.equals(e[0],e[1])){const c=vec3.squaredDistance(a,e[0]);c>l&&(t=e,l=c)}});const r=c.find(e=>vec3.equals(e[1],t[0]));return plane.fromPoints(plane.create(),r[0],t[0],t[1])};module.exports=calculatePlane; - -},{"../../../maths/plane":158,"../../../maths/vec3":217}],315:[function(require,module,exports){ -const create=require("./create"),vec3=require("../../../maths/vec3"),clone=(...e)=>{let c,r;return 1===e.length?(c=create(),r=e[0]):(c=e[0],r=e[1]),c.edges=r.edges.map(e=>[vec3.clone(e[0]),vec3.clone(e[1])]),c};module.exports=clone; - -},{"../../../maths/vec3":217,"./create":316}],316:[function(require,module,exports){ -const create=e=>(e||(e=[]),{edges:e});module.exports=create; - -},{}],317:[function(require,module,exports){ -const vec3=require("../../../maths/vec3"),equals=(e,s)=>{const r=e.edges,t=s.edges;return r.length===t.length&&r.reduce((e,s,r)=>{const u=t[r],c=vec3.squaredDistance(s[0],u[0]);return e&&c{if(!Array.isArray(e))throw new Error("the given points must be an array");if(e.length<3)throw new Error("the given points must contain THREE or more points");const r=[];let t=e[e.length-1];return e.forEach(e=>{2===e.length&&r.push([vec3.fromVec2(vec3.create(),t),vec3.fromVec2(vec3.create(),e)]),3===e.length&&r.push([t,e]),t=e}),create(r)};module.exports=fromPoints; - -},{"../../../maths/vec3":217,"./create":316}],319:[function(require,module,exports){ -const vec3=require("../../../maths/vec3"),create=require("./create"),fromSides=e=>{if(!Array.isArray(e))throw new Error("the given sides must be an array");const r=[];return e.forEach(e=>{r.push([vec3.fromVec2(vec3.create(),e[0]),vec3.fromVec2(vec3.create(),e[1])])}),create(r)};module.exports=fromSides; - -},{"../../../maths/vec3":217,"./create":316}],320:[function(require,module,exports){ -module.exports={calculatePlane:require("./calculatePlane"),clone:require("./clone"),create:require("./create"),equals:require("./equals"),fromPoints:require("./fromPoints"),fromSides:require("./fromSides"),isA:require("./isA"),reverse:require("./reverse"),toEdges:require("./toEdges"),toPolygons:require("./toPolygons"),toString:require("./toString"),transform:require("./transform")}; - -},{"./calculatePlane":314,"./clone":315,"./create":316,"./equals":317,"./fromPoints":318,"./fromSides":319,"./isA":321,"./reverse":323,"./toEdges":324,"./toPolygons":325,"./toString":326,"./transform":327}],321:[function(require,module,exports){ -const isA=e=>!!(e&&"object"==typeof e&&"edges"in e&&Array.isArray(e.edges));module.exports=isA; - -},{}],322:[function(require,module,exports){ -const vec3=require("../../../maths/vec3"),create=require("./create"),repair=e=>{if(!e.edges)return e;let t=e.edges;const r=new Map,c=new Map;(t=t.filter(e=>!vec3.equals(e[0],e[1]))).forEach(e=>{const t=e[0].toString(),s=e[1].toString();r.set(t,e[0]),r.set(s,e[1]),c.set(t,(c.get(t)||0)+1),c.set(s,(c.get(s)||0)-1)});const s=[],a=[];return c.forEach((e,t)=>{e<0&&s.push(t),e>0&&a.push(t)}),s.forEach(e=>{const c=r.get(e);let s,n=1/0;a.forEach(e=>{const t=r.get(e),a=vec3.distance(c,t);at[0].toString()===e?[s,t[1]]:t[1].toString()===e?[t[0],s]:t)}),create(t)};module.exports=repair; - -},{"../../../maths/vec3":217,"./create":316}],323:[function(require,module,exports){ -const create=require("./create"),reverse=(...e)=>{let r,t;return 1===e.length?(r=create(),t=e[0]):(r=e[0],t=e[1]),r.edges=t.edges.map(e=>[e[1],e[0]]),r};module.exports=reverse; - -},{"./create":316}],324:[function(require,module,exports){ -const toEdges=e=>e.edges;module.exports=toEdges; - -},{}],325:[function(require,module,exports){ -const poly3=require("../../../geometries/poly3"),earcut=require("../earcut"),PolygonHierarchy=require("../earcut/polygonHierarchy"),toPolygons=o=>{const e=new PolygonHierarchy(o),r=[];return e.roots.forEach(({solid:o,holes:t})=>{let l=o.length;const n=[];t.forEach((o,e)=>{n.push(l),l+=o.length});const s=[o,...t].flat(),c=s.flat(),a=o=>e.to3D(s[o]),h=earcut(c,n);for(let o=0;oe.reduce((e,t)=>e+=`[${vec3.toString(t[0])}, ${vec3.toString(t[1])}], `,""),toString=e=>`[${edgesToString(e.edges)}]`;module.exports=toString; - -},{"../../../maths/vec3":217}],327:[function(require,module,exports){ -const vec3=require("../../../maths/vec3"),create=require("./create"),transform=(e,r)=>{const t=r.edges.map(r=>[vec3.transform(vec3.create(),r[0],e),vec3.transform(vec3.create(),r[1],e)]);return create(t)};module.exports=transform; - -},{"../../../maths/vec3":217,"./create":316}],328:[function(require,module,exports){ -const flatten=require("../../utils/flatten"),areAllShapesTheSameType=require("../../utils/areAllShapesTheSameType"),geom2=require("../../geometries/geom2"),geom3=require("../../geometries/geom3"),path2=require("../../geometries/path2"),hullPath2=require("./hullPath2"),hullGeom2=require("./hullGeom2"),hullGeom3=require("./hullGeom3"),hull=(...e)=>{if(0===(e=flatten(e)).length)throw new Error("wrong number of arguments");if(!areAllShapesTheSameType(e))throw new Error("only hulls of the same type are supported");const l=e[0];return path2.isA(l)?hullPath2(e):geom2.isA(l)?hullGeom2(e):geom3.isA(l)?hullGeom3(e):l};module.exports=hull; - -},{"../../geometries/geom2":22,"../../geometries/geom3":37,"../../geometries/path2":58,"../../utils/areAllShapesTheSameType":389,"../../utils/flatten":391,"./hullGeom2":330,"./hullGeom3":331,"./hullPath2":332}],329:[function(require,module,exports){ -const flatten=require("../../utils/flatten"),union=require("../booleans/union"),hull=require("./hull"),hullChain=(...n)=>{if((n=flatten(n)).length<2)throw new Error("wrong number of arguments");const e=[];for(let l=1;l{e=flatten(e);const t=toUniquePoints(e),o=hullPoints2(t);return o.length<3?geom2.create():geom2.fromPoints(o)};module.exports=hullGeom2; - -},{"../../geometries/geom2":22,"../../utils/flatten":391,"./hullPoints2":333,"./toUniquePoints":343}],331:[function(require,module,exports){ -const flatten=require("../../utils/flatten"),geom3=require("../../geometries/geom3"),poly3=require("../../geometries/poly3"),quickhull=require("./quickhull"),toUniquePoints=require("./toUniquePoints"),hullGeom3=(...e)=>{if(1===(e=flatten(e)).length)return e[0];const t=toUniquePoints(e),o=quickhull(t,{skipTriangulation:!0}).map(e=>{const o=e.map(e=>t[e]);return poly3.create(o)});return geom3.create(o)};module.exports=hullGeom3; - -},{"../../geometries/geom3":37,"../../geometries/poly3":75,"../../utils/flatten":391,"./quickhull":341,"./toUniquePoints":343}],332:[function(require,module,exports){ -const flatten=require("../../utils/flatten"),path2=require("../../geometries/path2"),hullPoints2=require("./hullPoints2"),toUniquePoints=require("./toUniquePoints"),hullPath2=(...t)=>{t=flatten(t);const e=toUniquePoints(t),o=hullPoints2(e);return path2.fromPoints({closed:!0},o)};module.exports=hullPath2; - -},{"../../geometries/path2":58,"../../utils/flatten":391,"./hullPoints2":333,"./toUniquePoints":343}],333:[function(require,module,exports){ -const vec2=require("../../maths/vec2"),hullPoints2=t=>{let e=vec2.fromValues(1/0,1/0);t.forEach(t=>{(t[1]{const s=fakeAtan2(t[1]-e[1],t[0]-e[0]),o=vec2.squaredDistance(t,e);n.push({point:t,angle:s,distSq:o})}),n.sort((t,e)=>t.anglee.angle?1:t.distSqe.distSq?1:0);const s=[];return n.forEach(t=>{let e=s.length;for(;e>1&&ccw(s[e-2],s[e-1],t.point)<=Number.EPSILON;)s.pop(),e=s.length;s.push(t.point)}),s},ccw=(t,e,n)=>(e[0]-t[0])*(n[1]-t[1])-(e[1]-t[1])*(n[0]-t[0]),fakeAtan2=(t,e)=>0===t&&0===e?-1/0:-e/t;module.exports=hullPoints2; - -},{"../../maths/vec2":186}],334:[function(require,module,exports){ -module.exports={hull:require("./hull"),hullChain:require("./hullChain")}; - -},{"./hull":328,"./hullChain":329}],335:[function(require,module,exports){ -const add=require("../../../maths/vec3/add"),copy=require("../../../maths/vec3/copy"),cross=require("../../../maths/vec3/cross"),dot=require("../../../maths/vec3/dot"),length=require("../../../maths/vec3/length"),normalize=require("../../../maths/vec3/normalize"),scale=require("../../../maths/vec3/scale"),subtract=require("../../../maths/vec3/subtract"),HalfEdge=require("./HalfEdge"),VISIBLE=0,NON_CONVEX=1,DELETED=2;class Face{constructor(){this.normal=[],this.centroid=[],this.offset=0,this.outside=null,this.mark=VISIBLE,this.edge=null,this.nVertices=0}getEdge(e){if("number"!=typeof e)throw Error("requires a number");let t=this.edge;for(;e>0;)t=t.next,e-=1;for(;e<0;)t=t.prev,e+=1;return t}computeNormal(){const e=this.edge,t=e.next;let r=t.next;const s=subtract([],t.head().point,e.head().point),o=[],i=[];for(this.nVertices=2,this.normal=[0,0,0];r!==e;)copy(i,s),subtract(s,r.head().point,e.head().point),add(this.normal,this.normal,cross(o,i,s)),r=r.next,this.nVertices+=1;this.area=length(this.normal),this.normal=scale(this.normal,this.normal,1/this.area)}computeNormalMinArea(e){if(this.computeNormal(),this.areat&&(e=r,t=s),r=r.next}while(r!==this.edge);const s=e.tail().point,o=e.head().point,i=subtract([],o,s),n=Math.sqrt(t);scale(i,i,1/n);const a=dot(this.normal,i);scale(i,i,-a),add(this.normal,this.normal,i),normalize(this.normal,this.normal)}}computeCentroid(){this.centroid=[0,0,0];let e=this.edge;do{add(this.centroid,this.centroid,e.head().point),e=e.next}while(e!==this.edge);scale(this.centroid,this.centroid,1/this.nVertices)}computeNormalAndCentroid(e){void 0!==e?this.computeNormalMinArea(e):this.computeNormal(),this.computeCentroid(),this.offset=dot(this.normal,this.centroid)}distanceToPlane(e){return dot(this.normal,e)-this.offset}connectHalfEdges(e,t){let r;if(e.opposite.face===t.opposite.face){const s=t.opposite.face;let o;e===this.edge&&(this.edge=t),3===s.nVertices?(o=t.opposite.prev.opposite,s.mark=DELETED,r=s):(o=t.opposite.next,s.edge===o.prev&&(s.edge=o),o.prev=o.prev.prev,o.prev.next=o),t.prev=e.prev,t.prev.next=t,t.setOpposite(o),s.computeNormalAndCentroid()}else e.next=t,t.prev=e;return r}mergeAdjacentFaces(e,t){const r=e.opposite,s=r.face;t.push(s),s.mark=DELETED;let o,i,n=e.prev,a=e.next,c=r.prev,h=r.next;for(;n.opposite.face===s;)n=n.prev,h=h.next;for(;a.opposite.face===s;)a=a.next,c=c.prev;for(o=h;o!==c.next;o=o.next)o.face=this;return this.edge=a,(i=this.connectHalfEdges(c,a))&&t.push(i),(i=this.connectHalfEdges(n,h))&&t.push(i),this.computeNormalAndCentroid(),t}collectIndices(){const e=[];let t=this.edge;do{e.push(t.head().index),t=t.next}while(t!==this.edge);return e}static createTriangle(e,t,r,s=0){const o=new Face,i=new HalfEdge(e,o),n=new HalfEdge(t,o),a=new HalfEdge(r,o);return i.next=a.prev=n,n.next=i.prev=a,a.next=n.prev=i,o.edge=i,o.computeNormalAndCentroid(s),o}}module.exports={VISIBLE:VISIBLE,NON_CONVEX:1,DELETED:DELETED,Face:Face}; - -},{"../../../maths/vec3/add":204,"../../../maths/vec3/copy":207,"../../../maths/vec3/cross":209,"../../../maths/vec3/dot":212,"../../../maths/vec3/length":218,"../../../maths/vec3/normalize":224,"../../../maths/vec3/scale":229,"../../../maths/vec3/subtract":233,"./HalfEdge":336}],336:[function(require,module,exports){ -const distance=require("../../../maths/vec3/distance"),squaredDistance=require("../../../maths/vec3/squaredDistance");class HalfEdge{constructor(t,e){this.vertex=t,this.face=e,this.next=null,this.prev=null,this.opposite=null}head(){return this.vertex}tail(){return this.prev?this.prev.vertex:null}length(){return this.tail()?distance(this.tail().point,this.head().point):-1}lengthSquared(){return this.tail()?squaredDistance(this.tail().point,this.head().point):-1}setOpposite(t){this.opposite=t,t.opposite=this}}module.exports=HalfEdge; - -},{"../../../maths/vec3/distance":210,"../../../maths/vec3/squaredDistance":231}],337:[function(require,module,exports){ -const dot=require("../../../maths/vec3/dot"),pointLineDistance=require("./point-line-distance"),getPlaneNormal=require("./get-plane-normal"),VertexList=require("./VertexList"),Vertex=require("./Vertex"),{Face:Face,VISIBLE:VISIBLE,NON_CONVEX:NON_CONVEX,DELETED:DELETED}=require("./Face"),MERGE_NON_CONVEX_WRT_LARGER_FACE=1,MERGE_NON_CONVEX=2;class QuickHull{constructor(e){if(!Array.isArray(e))throw TypeError("input is not a valid array");if(e.length<4)throw Error("cannot build a simplex out of <4 points");this.tolerance=-1,this.nFaces=0,this.nPoints=e.length,this.faces=[],this.newFaces=[],this.claimed=new VertexList,this.unclaimed=new VertexList,this.vertices=[];for(let t=0;tthis.tolerance?this.addVertexToFace(s,t):this.unclaimed.add(s)}}else this.unclaimed.addAll(i)}resolveUnclaimedPoints(e){let t=this.unclaimed.first();for(let i=t;i;i=t){t=i.next;let s,o=this.tolerance;for(let t=0;to&&(o=e,s=a),o>1e3*this.tolerance)break}}s&&this.addVertexToFace(i,s)}}computeExtremes(){const e=[],t=[],i=[],s=[];let o,a;for(o=0;o<3;o+=1)i[o]=s[o]=this.vertices[0];for(o=0;o<3;o+=1)e[o]=t[o]=this.vertices[0].point[o];for(o=1;ot[a]&&(t[a]=n[a],s[a]=c)}return this.tolerance=3*Number.EPSILON*(Math.max(Math.abs(e[0]),Math.abs(t[0]))+Math.max(Math.abs(e[1]),Math.abs(t[1]))+Math.max(Math.abs(e[2]),Math.abs(t[2]))),[i,s]}createInitialSimplex(){const e=this.vertices,[t,i]=this.computeExtremes();let s,o,a,c,n=0,r=0;for(a=0;a<3;a+=1){const e=i[a].point[a]-t[a].point[a];e>n&&(n=e,r=a)}const l=t[r],h=i[r];for(n=0,a=0;an&&(n=t,s=e)}}const d=getPlaneNormal([],l.point,h.point,s.point),p=dot(l.point,d);for(n=-1,a=0;an&&(n=t,o=e)}}const f=[];if(dot(o.point,d)-p<0)for(f.push(Face.createTriangle(l,h,s),Face.createTriangle(o,h,l),Face.createTriangle(o,s,h),Face.createTriangle(o,l,s)),a=0;a<3;a+=1){const e=(a+1)%3;f[a+1].getEdge(2).setOpposite(f[0].getEdge(e)),f[a+1].getEdge(1).setOpposite(f[e+1].getEdge(0))}else for(f.push(Face.createTriangle(l,s,h),Face.createTriangle(o,l,h),Face.createTriangle(o,h,s),Face.createTriangle(o,s,l)),a=0;a<3;a+=1){const e=(a+1)%3;f[a+1].getEdge(2).setOpposite(f[0].getEdge((3-a)%3)),f[a+1].getEdge(0).setOpposite(f[e+1].getEdge(1))}for(a=0;a<4;a+=1)this.faces.push(f[a]);for(a=0;an&&(n=i,e=f[c])}e&&this.addVertexToFace(t,e)}}}reindexFaceAndVertices(){const e=[];for(let t=0;ti&&(i=o,e=t)}return e}}computeHorizon(e,t,i,s){let o;this.deleteFaceVertices(i),i.mark=DELETED,o=t?t.next:t=i.getEdge(0);do{const t=o.opposite,i=t.face;i.mark===VISIBLE&&(i.distanceToPlane(e)>this.tolerance?this.computeHorizon(e,t,i,s):s.push(o)),o=o.next}while(o!==t)}addAdjoiningFace(e,t){const i=Face.createTriangle(e,t.tail(),t.head());return this.faces.push(i),i.getEdge(-1).setOpposite(t.opposite),i.getEdge(0)}addNewFaces(e,t){let i,s;this.newFaces=[];for(let o=0;o=e.nVertices)throw Error("merge recursion limit exceeded");const a=i.opposite.face;let c=!1;if(t===MERGE_NON_CONVEX?(this.oppositeFaceDistance(i)>-this.tolerance||this.oppositeFaceDistance(i.opposite)>-this.tolerance)&&(c=!0):e.area>a.area?this.oppositeFaceDistance(i)>-this.tolerance?c=!0:this.oppositeFaceDistance(i.opposite)>-this.tolerance&&(s=!1):this.oppositeFaceDistance(i.opposite)>-this.tolerance?c=!0:this.oppositeFaceDistance(i)>-this.tolerance&&(s=!1),c){const t=e.mergeAdjacentFaces(i,[]);for(let i=0;i{const a=[0,0,0];return subtract(r,e,s),subtract(a,s,t),cross(r,r,a),normalize(r,r)};module.exports=planeNormal; - -},{"../../../maths/vec3/cross":209,"../../../maths/vec3/normalize":224,"../../../maths/vec3/subtract":233}],341:[function(require,module,exports){ -const QuickHull=require("./QuickHull"),runner=(u,l={})=>{const e=new QuickHull(u);return e.build(),e.collectFaces(l.skipTriangulation)};module.exports=runner; - -},{"./QuickHull":337}],342:[function(require,module,exports){ -const cross=require("../../../maths/vec3/cross"),subtract=require("../../../maths/vec3/subtract"),squaredLength=require("../../../maths/vec3/squaredLength"),distanceSquared=(e,t,r)=>{const s=[],a=[];subtract(s,r,t),subtract(a,e,t);const n=squaredLength(cross([],a,s)),c=squaredLength(s);if(0===c)throw Error("a and b are the same point");return n/c},pointLineDistance=(e,t,r)=>Math.sqrt(distanceSquared(e,t,r));module.exports=pointLineDistance; - -},{"../../../maths/vec3/cross":209,"../../../maths/vec3/squaredLength":232,"../../../maths/vec3/subtract":233}],343:[function(require,module,exports){ -const geom2=require("../../geometries/geom2"),geom3=require("../../geometries/geom3"),path2=require("../../geometries/path2"),toUniquePoints=o=>{const e=new Set,t=[],r=o=>{const r=o.toString();e.has(r)||(t.push(o),e.add(r))};return o.forEach(o=>{geom2.isA(o)?geom2.toPoints(o).forEach(r):geom3.isA(o)?geom3.toPoints(o).forEach(o=>o.forEach(r)):path2.isA(o)&&path2.toPoints(o).forEach(r)}),t};module.exports=toUniquePoints; - -},{"../../geometries/geom2":22,"../../geometries/geom3":37,"../../geometries/path2":58}],344:[function(require,module,exports){ -const flatten=require("../../utils/flatten"),measureEpsilon=require("../../measurements/measureEpsilon"),geom2=require("../../geometries/geom2"),geom3=require("../../geometries/geom3"),path2=require("../../geometries/path2"),snapPolygons=require("./snapPolygons"),mergePolygons=require("./mergePolygons"),insertTjunctions=require("./insertTjunctions"),triangulatePolygons=require("./triangulatePolygons"),generalizePath2=(e,r)=>r,generalizeGeom2=(e,r)=>r,generalizeGeom3=(e,r)=>{const{snap:n,simplify:o,triangulate:t}=Object.assign({},{snap:!1,simplify:!1,triangulate:!1},e),i=measureEpsilon(r);let s=geom3.toPolygons(r);n&&(s=snapPolygons(i,s)),o&&(s=mergePolygons(i,s)),t&&(s=insertTjunctions(s),s=triangulatePolygons(i,s));const g=Object.assign({},r);return g.polygons=s,g},generalize=(e,...r)=>{if(0===(r=flatten(r)).length)throw new Error("wrong number of arguments");const n=r.map(r=>{if(path2.isA(r))return generalizePath2(0,r);if(geom2.isA(r))return generalizeGeom2(0,r);if(geom3.isA(r))return generalizeGeom3(e,r);throw new Error("invalid geometry")});return 1===n.length?n[0]:n};module.exports=generalize; - -},{"../../geometries/geom2":22,"../../geometries/geom3":37,"../../geometries/path2":58,"../../measurements/measureEpsilon":258,"../../utils/flatten":391,"./insertTjunctions":346,"./mergePolygons":347,"./snapPolygons":351,"./triangulatePolygons":352}],345:[function(require,module,exports){ -module.exports={generalize:require("./generalize"),snap:require("./snap")}; - -},{"./generalize":344,"./snap":350}],346:[function(require,module,exports){ -const constants=require("../../maths/constants"),vec3=require("../../maths/vec3"),poly3=require("../../geometries/poly3"),assert=!1,getTag=e=>`${e}`,addSide=(e,t,s,n,r,c)=>{const o=getTag(n),g=getTag(r);const l=`${o}/${g}`,a=`${g}/${o}`;if(e.has(a))return deleteSide(e,t,s,r,n,null),null;const i={vertex0:n,vertex1:r,polygonindex:c};return e.has(l)?e.get(l).push(i):e.set(l,[i]),t.has(o)?t.get(o).push(l):t.set(o,[l]),s.has(g)?s.get(g).push(l):s.set(g,[l]),l},deleteSide=(e,t,s,n,r,c)=>{const o=getTag(n),g=getTag(r),l=`${o}/${g}`;let a=-1;const i=e.get(l);for(let e=0;e{const t=new Map;for(let s=0;s=3){let e=n.vertices[0],c=getTag(e);for(let o=0;o0){const s=new Map,n=new Map,r=new Map;for(const[e,c]of t)r.set(e,!0),c.forEach(t=>{const r=getTag(t.vertex0),c=getTag(t.vertex1);s.has(r)?s.get(r).push(e):s.set(r,[e]),n.has(c)?n.get(c).push(e):n.set(c,[e])});const c=e.slice(0);for(;0!==t.size;){for(const e of t.keys())r.set(e,!0);let e=!1;for(;;){const o=Array.from(r.keys());if(0===o.length)break;const g=o[0];let l=!0;if(t.has(g)){const o=t.get(g);0;const a=o[0];for(let o=0;o<2;o++){const g=0===o?a.vertex0:a.vertex1,i=0===o?a.vertex1:a.vertex0,v=getTag(g),d=getTag(i);let h=[];0===o?n.has(v)&&(h=n.get(v)):s.has(v)&&(h=s.get(v));for(let a=0;a0&&x<1){const g=vec3.scale(vec3.create(),h,x);if(vec3.add(g,g,a),vec3.squaredDistance(g,v){const n=poly3.toPoints(e),t=[];for(let e=0;e{const t=`${n.v1}:${n.v2}`;e.set(t,n)},deleteEdge=(e,n)=>{const t=`${n.v1}:${n.v2}`;e.delete(t)},findOppositeEdge=(e,n)=>{const t=`${n.v2}:${n.v1}`;return e.get(t)},calculateAnglesBetween=(e,n,t)=>{let l=e.prev.v1,r=e.prev.v2,o=n.next.v2;const v=calculateAngle(l,r,o,t);return l=n.prev.v1,r=n.prev.v2,o=e.next.v2,[v,calculateAngle(l,r,o,t)]},v1=vec3.create(),v2=vec3.create(),calculateAngle=(e,n,t,l)=>{const r=vec3.subtract(v1,n,e),o=vec3.subtract(v2,t,n);return vec3.cross(r,r,o),vec3.dot(r,l)},createPolygonAnd=e=>{let n;const t=[];for(;e.next;){const n=e.next;t.push(e.v1),e.v1=null,e.v2=null,e.next=null,e.prev=null,e=n}return t.length>0&&(n=poly3.create(t)),n},mergeCoplanarPolygons=e=>{if(e.length<2)return e;const n=e[0].plane,t=e.slice(),l=new Map;for(;t.length>0;){const e=t.shift(),r=createEdges(e);for(let e=0;e=0&&e[1]>=0){const n=o.next,r=t.next;t.prev.next=o.next,t.next.prev=o.prev,o.prev.next=t.next,o.next.prev=t.prev,t.v1=null,t.v2=null,t.next=null,t.prev=null,deleteEdge(l,o),o.v1=null,o.v2=null,o.next=null,o.prev=null;const v=(e,n,t)=>{const l={v1:t.v1,v2:n.v2,next:n.next,prev:t.prev};t.prev.next=l,n.next.prev=l,deleteEdge(e,n),n.v1=null,n.v2=null,n.next=null,n.prev=null,deleteEdge(e,t),t.v1=null,t.v2=null,t.next=null,t.prev=null};0===e[0]&&v(l,n,n.prev),0===e[1]&&v(l,r,r.prev)}}else t.next&&insertEdge(l,t)}}const r=[];return l.forEach(e=>{const n=createPolygonAnd(e);n&&r.push(n)}),l.clear(),r},coplanar=(e,n)=>Math.abs(e[3]-n[3])<1.5e-7&&aboutEqualNormals(e,n),mergePolygons=(e,n)=>{const t=[];n.forEach(e=>{const n=t.find(n=>coplanar(n[0],poly3.plane(e)));if(n){n[1].push(e)}else t.push([poly3.plane(e),[e]])});let l=[];return t.forEach(e=>{const n=e[1],t=mergeCoplanarPolygons(n);l=l.concat(t)}),l};module.exports=mergePolygons; - -},{"../../geometries/poly3":75,"../../maths/utils/aboutEqualNormals":162,"../../maths/vec3":217}],348:[function(require,module,exports){ -const{EPS:EPS}=require("../../maths/constants"),line2=require("../../maths/line2"),vec2=require("../../maths/vec2"),OrthoNormalBasis=require("../../maths/OrthoNormalBasis"),interpolateBetween2DPointsForY=require("../../maths/utils/interpolateBetween2DPointsForY"),{insertSorted:insertSorted,fnNumberSort:fnNumberSort}=require("../../utils"),poly3=require("../../geometries/poly3"),reTesselateCoplanarPolygons=t=>{if(t.length<2)return t;const e=[],o=t.length,n=poly3.plane(t[0]),l=new OrthoNormalBasis(n),i=[],r=[],s=new Map,f=new Map,p=new Map,h=10/EPS;for(let e=0;e0){let t,i;for(let r=0;ri)&&(i=u);let m=f.get(u);m||(m={},f.set(u,m)),m[e]=!0}if(t>=i)n=[],g=0,c=-1;else{let o=s.get(t);o||(o=[],s.set(t,o)),o.push(e)}}n.reverse(),c=g-c-1,i.push(n),r.push(c)}const g=[];f.forEach((t,e)=>g.push(e)),g.sort(fnNumberSort);let c=[],a=[];for(let t=0;t=l&&(t=0),n[t][1]!==p)break;r=t}let f=s-1;if(f<0&&(f=l-1),n[f][1]===p&&(s=f),r!==e.leftvertexindex&&r===s)c.splice(t,1),--t;else{e.leftvertexindex=r,e.rightvertexindex=s,e.topleft=n[r],e.topright=n[s];let t=r+1;t>=l&&(t=0),e.bottomleft=n[t];let o=s-1;o<0&&(o=l-1),e.bottomright=n[o]}}}let u;if(t>=g.length-1)c=[],u=null;else{const e=.5*(p+(u=Number(g[t+1]))),o=s.get(p);for(const t in o){const n=o[t],l=i[n],s=l.length,f=r[n];let h=f;for(;;){let t=h+1;if(t>=s&&(t=0),l[t][1]!==p)break;if(t===f)break;h=t}let g=f;for(;;){let t=g-1;if(t<0&&(t=s-1),l[t][1]!==p)break;if(t===h)break;g=t}let a=h+1;a>=s&&(a=0);let u=g-1;u<0&&(u=s-1);const m={polygonindex:n,leftvertexindex:h,rightvertexindex:g,topleft:l[h],topright:l[g],bottomleft:l[a],bottomright:l[u]};insertSorted(c,m,(t,o)=>{const n=interpolateBetween2DPointsForY(t.topleft,t.bottomleft,e),l=interpolateBetween2DPointsForY(o.topleft,o.bottomleft,e);return n>l?1:n0){const t=o[o.length-1],e=vec2.distance(f.topleft,t.topright),n=vec2.distance(f.bottomleft,t.bottomright);e0){const t=new Set,i=new Set;for(let e=0;e=0;(g||s>=0)&&a&&(n.outpolygon=o.outpolygon,n.leftlinecontinues=g,n.rightlinecontinues=c,t.add(e));break}}}for(let o=0;oEPS&&t.outpolygon.leftpoints.push(t.bottomleft),t.outpolygon.leftpoints.reverse();const i=t.outpolygon.rightpoints.concat(t.outpolygon.leftpoints).map(t=>l.to3D(t)),r=poly3.fromPointsAndPlane(i,n);r.vertices.length&&e.push(r)}}for(let t=0;tEPS&&e.outpolygon.rightpoints.push(e.topright))}a=o}return e};module.exports=reTesselateCoplanarPolygons; - -},{"../../geometries/poly3":75,"../../maths/OrthoNormalBasis":89,"../../maths/constants":90,"../../maths/line2":101,"../../maths/utils/interpolateBetween2DPointsForY":165,"../../maths/vec2":186,"../../utils":393}],349:[function(require,module,exports){ -const geom3=require("../../geometries/geom3"),poly3=require("../../geometries/poly3"),aboutEqualNormals=require("../../maths/utils/aboutEqualNormals"),reTesselateCoplanarPolygons=require("./reTesselateCoplanarPolygons"),coplanar=(e,o)=>Math.abs(e[3]-o[3])<1.5e-7&&aboutEqualNormals(e,o),retessellate=e=>{if(e.isRetesselated)return e;const o=geom3.toPolygons(e),s=[];o.forEach(e=>{const o=s.find(o=>coplanar(o[0],poly3.plane(e)));if(o){o[1].push(e)}else s.push([poly3.plane(e),[e]])});let a=[];s.forEach(e=>{const o=e[1],s=reTesselateCoplanarPolygons(o);a=a.concat(s)});const l=geom3.create(a);return l.isRetesselated=!0,l};module.exports=retessellate; - -},{"../../geometries/geom3":37,"../../geometries/poly3":75,"../../maths/utils/aboutEqualNormals":162,"./reTesselateCoplanarPolygons":348}],350:[function(require,module,exports){ -const flatten=require("../../utils/flatten"),vec2=require("../../maths/vec2"),geom2=require("../../geometries/geom2"),geom3=require("../../geometries/geom3"),path2=require("../../geometries/path2"),measureEpsilon=require("../../measurements/measureEpsilon"),snapPolygons=require("./snapPolygons"),snapPath2=e=>{const s=measureEpsilon(e),r=path2.toPoints(e).map(e=>vec2.snap(vec2.create(),e,s));return path2.create(r)},snapGeom2=e=>{const s=measureEpsilon(e);let r=geom2.toSides(e).map(e=>[vec2.snap(vec2.create(),e[0],s),vec2.snap(vec2.create(),e[1],s)]);return r=r.filter(e=>!vec2.equals(e[0],e[1])),geom2.create(r)},snapGeom3=e=>{const s=measureEpsilon(e),r=geom3.toPolygons(e),o=snapPolygons(s,r);return geom3.create(o)},snap=(...e)=>{if(0===(e=flatten(e)).length)throw new Error("wrong number of arguments");const s=e.map(e=>path2.isA(e)?snapPath2(e):geom2.isA(e)?snapGeom2(e):geom3.isA(e)?snapGeom3(e):e);return 1===s.length?s[0]:s};module.exports=snap; - -},{"../../geometries/geom2":22,"../../geometries/geom3":37,"../../geometries/path2":58,"../../maths/vec2":186,"../../measurements/measureEpsilon":258,"../../utils/flatten":391,"./snapPolygons":351}],351:[function(require,module,exports){ -const vec3=require("../../maths/vec3"),poly3=require("../../geometries/poly3"),isValidPoly3=(e,o)=>{const r=Math.abs(poly3.measureArea(o));return Number.isFinite(r)&&r>e},snapPolygons=(e,o)=>{let r=o.map(o=>{const r=o.vertices.map(o=>vec3.snap(vec3.create(),o,e)),t=[];for(let e=0;eisValidPoly3(t,e))};module.exports=snapPolygons; - -},{"../../geometries/poly3":75,"../../maths/vec3":217}],352:[function(require,module,exports){ -const vec3=require("../../maths/vec3"),poly3=require("../../geometries/poly3"),triangulatePolygon=(e,o,r)=>{const t=o.vertices.length;if(t>3){if(t>4){const c=[0,0,0];o.vertices.forEach(e=>vec3.add(c,c,e)),vec3.snap(c,vec3.divide(c,c,[t,t,t]),e);for(let e=0;e{const r=[];return o.forEach(o=>{triangulatePolygon(e,o,r)}),r};module.exports=triangulatePolygons; - -},{"../../geometries/poly3":75,"../../maths/vec3":217}],353:[function(require,module,exports){ -const flatten=require("../../utils/flatten"),padArrayToLength=require("../../utils/padArrayToLength"),measureAggregateBoundingBox=require("../../measurements/measureAggregateBoundingBox"),{translate:translate}=require("./translate"),validateOptions=e=>{if(!Array.isArray(e.modes)||e.modes.length>3)throw new Error("align(): modes must be an array of length <= 3");if(e.modes=padArrayToLength(e.modes,"none",3),3!==e.modes.filter(e=>["center","max","min","none"].includes(e)).length)throw new Error('align(): all modes must be one of "center", "max" or "min"');if(!Array.isArray(e.relativeTo)||e.relativeTo.length>3)throw new Error("align(): relativeTo must be an array of length <= 3");if(e.relativeTo=padArrayToLength(e.relativeTo,0,3),3!==e.relativeTo.filter(e=>Number.isFinite(e)||null==e).length)throw new Error("align(): all relativeTo values must be a number, or null.");if("boolean"!=typeof e.grouped)throw new Error("align(): grouped must be a boolean value.");return e},populateRelativeToFromBounds=(e,r,t)=>{for(let n=0;n<3;n++)null==e[n]&&("center"===r[n]?e[n]=(t[0][n]+t[1][n])/2:"max"===r[n]?e[n]=t[1][n]:"min"===r[n]&&(e[n]=t[0][n]));return e},alignGeometries=(e,r,t)=>{const n=measureAggregateBoundingBox(e),o=[0,0,0];for(let e=0;e<3;e++)"center"===r[e]?o[e]=t[e]-(n[0][e]+n[1][e])/2:"max"===r[e]?o[e]=t[e]-n[1][e]:"min"===r[e]&&(o[e]=t[e]-n[0][e]);return translate(o,e)},align=(e,...r)=>{e=Object.assign({},{modes:["center","center","min"],relativeTo:[0,0,0],grouped:!1},e),e=validateOptions(e);let{modes:t,relativeTo:n,grouped:o}=e;if(0===(r=flatten(r)).length)throw new Error("align(): No geometries were provided to act upon");if(n.filter(e=>null==e).length){const e=measureAggregateBoundingBox(r);n=populateRelativeToFromBounds(n,t,e)}return 1===(r=o?alignGeometries(r,t,n):r.map(e=>alignGeometries(e,t,n))).length?r[0]:r};module.exports=align; - -},{"../../measurements/measureAggregateBoundingBox":249,"../../utils/flatten":391,"../../utils/padArrayToLength":395,"./translate":360}],354:[function(require,module,exports){ -const flatten=require("../../utils/flatten"),geom2=require("../../geometries/geom2"),geom3=require("../../geometries/geom3"),path2=require("../../geometries/path2"),measureBoundingBox=require("../../measurements/measureBoundingBox"),{translate:translate}=require("./translate"),centerGeometry=(e,r)=>{const{axes:t,relativeTo:n}=Object.assign({},{axes:[!0,!0,!0],relativeTo:[0,0,0]},e),a=measureBoundingBox(r),o=[0,0,0];return t[0]&&(o[0]=n[0]-(a[0][0]+(a[1][0]-a[0][0])/2)),t[1]&&(o[1]=n[1]-(a[0][1]+(a[1][1]-a[0][1])/2)),t[2]&&(o[2]=n[2]-(a[0][2]+(a[1][2]-a[0][2])/2)),translate(o,r)},center=(e,...r)=>{const{axes:t,relativeTo:n}=Object.assign({},{axes:[!0,!0,!0],relativeTo:[0,0,0]},e);if(0===(r=flatten(r)).length)throw new Error("wrong number of arguments");if(3!==n.length)throw new Error("relativeTo must be an array of length 3");e={axes:t,relativeTo:n};const a=r.map(r=>path2.isA(r)?centerGeometry(e,r):geom2.isA(r)?centerGeometry(e,r):geom3.isA(r)?centerGeometry(e,r):r);return 1===a.length?a[0]:a},centerX=(...e)=>center({axes:[!0,!1,!1]},e),centerY=(...e)=>center({axes:[!1,!0,!1]},e),centerZ=(...e)=>center({axes:[!1,!1,!0]},e);module.exports={center:center,centerX:centerX,centerY:centerY,centerZ:centerZ}; - -},{"../../geometries/geom2":22,"../../geometries/geom3":37,"../../geometries/path2":58,"../../measurements/measureBoundingBox":253,"../../utils/flatten":391,"./translate":360}],355:[function(require,module,exports){ -module.exports={align:require("./align"),center:require("./center").center,centerX:require("./center").centerX,centerY:require("./center").centerY,centerZ:require("./center").centerZ,mirror:require("./mirror").mirror,mirrorX:require("./mirror").mirrorX,mirrorY:require("./mirror").mirrorY,mirrorZ:require("./mirror").mirrorZ,rotate:require("./rotate").rotate,rotateX:require("./rotate").rotateX,rotateY:require("./rotate").rotateY,rotateZ:require("./rotate").rotateZ,scale:require("./scale").scale,scaleX:require("./scale").scaleX,scaleY:require("./scale").scaleY,scaleZ:require("./scale").scaleZ,transform:require("./transform"),translate:require("./translate").translate,translateX:require("./translate").translateX,translateY:require("./translate").translateY,translateZ:require("./translate").translateZ}; - -},{"./align":353,"./center":354,"./mirror":356,"./rotate":357,"./scale":358,"./transform":359,"./translate":360}],356:[function(require,module,exports){ -const flatten=require("../../utils/flatten"),mat4=require("../../maths/mat4"),plane=require("../../maths/plane"),geom2=require("../../geometries/geom2"),geom3=require("../../geometries/geom3"),path2=require("../../geometries/path2"),mirror=(r,...e)=>{const{origin:o,normal:m}=Object.assign({},{origin:[0,0,0],normal:[0,0,1]},r);if(0===(e=flatten(e)).length)throw new Error("wrong number of arguments");const i=plane.fromNormalAndPoint(plane.create(),m,o);if(Number.isNaN(i[0]))throw new Error("the given origin and normal do not define a proper plane");const n=mat4.mirrorByPlane(mat4.create(),i),t=e.map(r=>path2.isA(r)?path2.transform(n,r):geom2.isA(r)?geom2.transform(n,r):geom3.isA(r)?geom3.transform(n,r):r);return 1===t.length?t[0]:t},mirrorX=(...r)=>mirror({normal:[1,0,0]},r),mirrorY=(...r)=>mirror({normal:[0,1,0]},r),mirrorZ=(...r)=>mirror({normal:[0,0,1]},r);module.exports={mirror:mirror,mirrorX:mirrorX,mirrorY:mirrorY,mirrorZ:mirrorZ}; - -},{"../../geometries/geom2":22,"../../geometries/geom3":37,"../../geometries/path2":58,"../../maths/mat4":139,"../../maths/plane":158,"../../utils/flatten":391}],357:[function(require,module,exports){ -const flatten=require("../../utils/flatten"),mat4=require("../../maths/mat4"),geom2=require("../../geometries/geom2"),geom3=require("../../geometries/geom3"),path2=require("../../geometries/path2"),rotate=(t,...e)=>{if(!Array.isArray(t))throw new Error("angles must be an array");if(0===(e=flatten(e)).length)throw new Error("wrong number of arguments");for(t=t.slice();t.length<3;)t.push(0);const r=t[2],o=t[1],a=t[0],m=mat4.fromTaitBryanRotation(mat4.create(),r,o,a),n=e.map(t=>path2.isA(t)?path2.transform(m,t):geom2.isA(t)?geom2.transform(m,t):geom3.isA(t)?geom3.transform(m,t):t);return 1===n.length?n[0]:n},rotateX=(t,...e)=>rotate([t,0,0],e),rotateY=(t,...e)=>rotate([0,t,0],e),rotateZ=(t,...e)=>rotate([0,0,t],e);module.exports={rotate:rotate,rotateX:rotateX,rotateY:rotateY,rotateZ:rotateZ}; - -},{"../../geometries/geom2":22,"../../geometries/geom3":37,"../../geometries/path2":58,"../../maths/mat4":139,"../../utils/flatten":391}],358:[function(require,module,exports){ -const flatten=require("../../utils/flatten"),mat4=require("../../maths/mat4"),geom2=require("../../geometries/geom2"),geom3=require("../../geometries/geom3"),path2=require("../../geometries/path2"),scale=(e,...r)=>{if(!Array.isArray(e))throw new Error("factors must be an array");if(0===(r=flatten(r)).length)throw new Error("wrong number of arguments");for(e=e.slice();e.length<3;)e.push(1);if(e[0]<=0||e[1]<=0||e[2]<=0)throw new Error("factors must be positive");const a=mat4.fromScaling(mat4.create(),e),t=r.map(e=>path2.isA(e)?path2.transform(a,e):geom2.isA(e)?geom2.transform(a,e):geom3.isA(e)?geom3.transform(a,e):e);return 1===t.length?t[0]:t},scaleX=(e,...r)=>scale([e,1,1],r),scaleY=(e,...r)=>scale([1,e,1],r),scaleZ=(e,...r)=>scale([1,1,e],r);module.exports={scale:scale,scaleX:scaleX,scaleY:scaleY,scaleZ:scaleZ}; - -},{"../../geometries/geom2":22,"../../geometries/geom3":37,"../../geometries/path2":58,"../../maths/mat4":139,"../../utils/flatten":391}],359:[function(require,module,exports){ -const flatten=require("../../utils/flatten"),geom2=require("../../geometries/geom2"),geom3=require("../../geometries/geom3"),path2=require("../../geometries/path2"),transform=(e,...r)=>{if(0===(r=flatten(r)).length)throw new Error("wrong number of arguments");const t=r.map(r=>path2.isA(r)?path2.transform(e,r):geom2.isA(r)?geom2.transform(e,r):geom3.isA(r)?geom3.transform(e,r):r);return 1===t.length?t[0]:t};module.exports=transform; - -},{"../../geometries/geom2":22,"../../geometries/geom3":37,"../../geometries/path2":58,"../../utils/flatten":391}],360:[function(require,module,exports){ -const flatten=require("../../utils/flatten"),mat4=require("../../maths/mat4"),geom2=require("../../geometries/geom2"),geom3=require("../../geometries/geom3"),path2=require("../../geometries/path2"),translate=(t,...e)=>{if(!Array.isArray(t))throw new Error("offset must be an array");if(0===(e=flatten(e)).length)throw new Error("wrong number of arguments");for(t=t.slice();t.length<3;)t.push(0);const r=mat4.fromTranslation(mat4.create(),t),a=e.map(t=>path2.isA(t)?path2.transform(r,t):geom2.isA(t)?geom2.transform(r,t):geom3.isA(t)?geom3.transform(r,t):t);return 1===a.length?a[0]:a},translateX=(t,...e)=>translate([t,0,0],e),translateY=(t,...e)=>translate([0,t,0],e),translateZ=(t,...e)=>translate([0,0,t],e);module.exports={translate:translate,translateX:translateX,translateY:translateY,translateZ:translateZ}; - -},{"../../geometries/geom2":22,"../../geometries/geom3":37,"../../geometries/path2":58,"../../maths/mat4":139,"../../utils/flatten":391}],361:[function(require,module,exports){ -const{EPS:EPS,TAU:TAU}=require("../maths/constants"),vec2=require("../maths/vec2"),path2=require("../geometries/path2"),{isGT:isGT,isGTE:isGTE,isNumberArray:isNumberArray}=require("./commonChecks"),arc=e=>{const r={center:[0,0],radius:1,startAngle:0,endAngle:TAU,makeTangent:!1,segments:32};let{center:t,radius:s,startAngle:n,endAngle:a,makeTangent:o,segments:c}=Object.assign({},r,e);if(!isNumberArray(t,2))throw new Error("center must be an array of X and Y values");if(!isGT(s,0))throw new Error("radius must be greater than zero");if(!isGTE(n,0))throw new Error("startAngle must be positive");if(!isGTE(a,0))throw new Error("endAngle must be positive");if(!isGTE(c,4))throw new Error("segments must be four or more");let i=TAU;(n%=TAU)<(a%=TAU)&&(i=a-n),n>a&&(i=a+(TAU-n));const m=Math.acos((s*s+s*s-EPS*EPS)/(2*s*s)),l=vec2.clone(t);let u;const A=[];if(i.25&&(r=.25);const t=o?e+2:e;for(let a=0;a<=t;a++){let t=a;o&&((t=(a-1)*(e-2*r)/e+r)<0&&(t=0),t>e&&(t=e));const c=n+t*(i/e);u=vec2.fromAngleRadians(vec2.create(),c),vec2.scale(u,u,s),vec2.add(u,u,l),A.push(u)}}return path2.fromPoints({closed:!1},A)};module.exports=arc; - -},{"../geometries/path2":58,"../maths/constants":90,"../maths/vec2":186,"./commonChecks":363}],362:[function(require,module,exports){ -const{TAU:TAU}=require("../maths/constants"),ellipse=require("./ellipse"),{isGT:isGT}=require("./commonChecks"),circle=e=>{const s={center:[0,0],radius:1,startAngle:0,endAngle:TAU,segments:32};let{center:r,radius:t,startAngle:n,endAngle:i,segments:l}=Object.assign({},s,e);if(!isGT(t,0))throw new Error("radius must be greater than zero");return ellipse({center:r,radius:t=[t,t],startAngle:n,endAngle:i,segments:l})};module.exports=circle; - -},{"../maths/constants":90,"./commonChecks":363,"./ellipse":368}],363:[function(require,module,exports){ -const isNumberArray=(i,r)=>!!(Array.isArray(i)&&i.length>=r)&&i.every(i=>Number.isFinite(i)),isGT=(i,r)=>Number.isFinite(i)&&i>r,isGTE=(i,r)=>Number.isFinite(i)&&i>=r;module.exports={isNumberArray:isNumberArray,isGT:isGT,isGTE:isGTE}; - -},{}],364:[function(require,module,exports){ -const cuboid=require("./cuboid"),{isGT:isGT}=require("./commonChecks"),cube=e=>{let{center:r,size:i}=Object.assign({},{center:[0,0,0],size:2},e);if(!isGT(i,0))throw new Error("size must be greater than zero");return cuboid({center:r,size:i=[i,i,i]})};module.exports=cube; - -},{"./commonChecks":363,"./cuboid":365}],365:[function(require,module,exports){ -const geom3=require("../geometries/geom3"),poly3=require("../geometries/poly3"),{isNumberArray:isNumberArray}=require("./commonChecks"),cuboid=e=>{const{center:r,size:o}=Object.assign({},{center:[0,0,0],size:[2,2,2]},e);if(!isNumberArray(r,3))throw new Error("center must be an array of X, Y and Z values");if(!isNumberArray(o,3))throw new Error("size must be an array of width, depth and height values");if(!o.every(e=>e>0))throw new Error("size values must be greater than zero");return geom3.create([[[0,4,6,2],[-1,0,0]],[[1,3,7,5],[1,0,0]],[[0,1,5,4],[0,-1,0]],[[2,6,7,3],[0,1,0]],[[0,2,3,1],[0,0,-1]],[[4,5,7,6],[0,0,1]]].map(e=>{const t=e[0].map(e=>{return[r[0]+o[0]/2*(2*!!(1&e)-1),r[1]+o[1]/2*(2*!!(2&e)-1),r[2]+o[2]/2*(2*!!(4&e)-1)]});return poly3.create(t)}))};module.exports=cuboid; - -},{"../geometries/geom3":37,"../geometries/poly3":75,"./commonChecks":363}],366:[function(require,module,exports){ -const cylinderElliptic=require("./cylinderElliptic"),{isGT:isGT}=require("./commonChecks"),cylinder=e=>{const{center:i,height:r,radius:t,segments:s}=Object.assign({},{center:[0,0,0],height:2,radius:1,segments:32},e);if(!isGT(t,0))throw new Error("radius must be greater than zero");return cylinderElliptic({center:i,height:r,startRadius:[t,t],endRadius:[t,t],segments:s})};module.exports=cylinder; - -},{"./commonChecks":363,"./cylinderElliptic":367}],367:[function(require,module,exports){ -const{EPS:EPS,TAU:TAU}=require("../maths/constants"),vec3=require("../maths/vec3"),geom3=require("../geometries/geom3"),poly3=require("../geometries/poly3"),{sin:sin,cos:cos}=require("../maths/utils/trigonometry"),{isGT:isGT,isGTE:isGTE,isNumberArray:isNumberArray}=require("./commonChecks"),cylinderElliptic=e=>{const r={center:[0,0,0],height:2,startRadius:[1,1],startAngle:0,endRadius:[1,1],endAngle:TAU,segments:32};let{center:s,height:t,startRadius:a,startAngle:i,endRadius:o,endAngle:n,segments:u}=Object.assign({},r,e);if(!isNumberArray(s,3))throw new Error("center must be an array of X, Y and Z values");if(!isGT(t,0))throw new Error("height must be greater then zero");if(!isNumberArray(a,2))throw new Error("startRadius must be an array of X and Y values");if(!a.every(e=>e>=0))throw new Error("startRadius values must be positive");if(!isNumberArray(o,2))throw new Error("endRadius must be an array of X and Y values");if(!o.every(e=>e>=0))throw new Error("endRadius values must be positive");if(o.every(e=>0===e)&&a.every(e=>0===e))throw new Error("at least one radius must be positive");if(!isGTE(i,0))throw new Error("startAngle must be positive");if(!isGTE(n,0))throw new Error("endAngle must be positive");if(!isGTE(u,4))throw new Error("segments must be four or more");let c=TAU;(i%=TAU)<(n%=TAU)&&(c=n-i),i>n&&(c=n+(TAU-i));const l=Math.min(a[0],a[1],o[0],o[1]),m=Math.acos((l*l+l*l-EPS*EPS)/(2*l*l));if(c{const t=r*c+i;return vec3.scale(A,g,s[0]*cos(t)),vec3.scale(w,p,s[1]*sin(t)),vec3.add(A,A,w),vec3.scale(E,f,e),vec3.add(E,E,d),vec3.add(vec3.create(),A,E)},T=(...e)=>{const r=e.map(e=>vec3.add(vec3.create(),e,s));return poly3.create(r)},b=[];for(let e=0;e0&&a[1]>0&&b.push(T(d,y(0,s,a),y(0,r,a))),(a[0]>0||a[1]>0)&&b.push(T(y(0,r,a),y(0,s,a),y(1,r,o))),o[0]>0&&o[1]>0&&b.push(T(v,y(1,r,o),y(1,s,o))),(o[0]>0||o[1]>0)&&b.push(T(y(1,r,o),y(0,s,a),y(1,s,o))))}return c{const r={center:[0,0],radius:[1,1],startAngle:0,endAngle:TAU,segments:32};let{center:s,radius:t,startAngle:n,endAngle:o,segments:i}=Object.assign({},r,e);if(!isNumberArray(s,2))throw new Error("center must be an array of X and Y values");if(!isNumberArray(t,2))throw new Error("radius must be an array of X and Y values");if(!t.every(e=>e>0))throw new Error("radius values must be greater than zero");if(!isGTE(n,0))throw new Error("startAngle must be positive");if(!isGTE(o,0))throw new Error("endAngle must be positive");if(!isGTE(i,3))throw new Error("segments must be three or more");let a=TAU;(n%=TAU)<(o%=TAU)&&(a=o-n),n>o&&(a=o+(TAU-n));const m=Math.min(t[0],t[1]);if(a{const{center:c,radius:r,segments:a,axes:s}=Object.assign({},{center:[0,0,0],radius:[1,1,1],segments:32,axes:[[1,0,0],[0,-1,0],[0,0,1]]},e);if(!isNumberArray(c,3))throw new Error("center must be an array of X, Y and Z values");if(!isNumberArray(r,3))throw new Error("radius must be an array of X, Y and Z values");if(!r.every(e=>e>0))throw new Error("radius values must be greater than zero");if(!isGTE(a,4))throw new Error("segments must be four or more");const t=vec3.scale(vec3.create(),vec3.normalize(vec3.create(),s[0]),r[0]),v=vec3.scale(vec3.create(),vec3.normalize(vec3.create(),s[1]),r[1]),o=vec3.scale(vec3.create(),vec3.normalize(vec3.create(),s[2]),r[2]),l=Math.round(a/4);let u;const i=[],d=vec3.create(),n=vec3.create();for(let e=0;e<=a;e++){const r=TAU*e/a,s=vec3.add(vec3.create(),vec3.scale(d,t,cos(r)),vec3.scale(n,v,sin(r)));if(e>0){let e,r;for(let a=0;a<=l;a++){const t=TAU/4*a/l,v=cos(t),m=sin(t);if(a>0){let t,h=[];t=vec3.subtract(vec3.create(),vec3.scale(d,u,e),vec3.scale(n,o,r)),h.push(vec3.add(t,t,c)),t=vec3.subtract(vec3.create(),vec3.scale(d,s,e),vec3.scale(n,o,r)),h.push(vec3.add(t,t,c)),a{let{radius:r,frequency:t}=Object.assign({},{radius:1,frequency:6},e);if(!isGT(r,0))throw new Error("radius must be greater than zero");if(!isGTE(t,6))throw new Error("frequency must be six or more");t=Math.floor(t/6);const o=[[.850651,0,-.525731],[.850651,-0,.525731],[-.850651,-0,.525731],[-.850651,0,-.525731],[0,-.525731,.850651],[0,.525731,.850651],[0,.525731,-.850651],[0,-.525731,-.850651],[-.525731,-.850651,-0],[.525731,-.850651,-0],[.525731,.850651,0],[-.525731,.850651,0]],s=[[0,9,1],[1,10,0],[6,7,0],[10,6,0],[7,9,0],[5,1,4],[4,1,9],[5,10,1],[2,8,3],[3,11,2],[2,5,4],[4,8,2],[2,11,5],[3,7,6],[6,11,3],[8,7,3],[9,8,4],[11,10,5],[10,11,6],[8,9,7]],n=(e,r,t)=>{const o=e[0],s=e[1],n=e[2];let c=t;const a=[],l=[];for(let e=0;e{const o=1-t,s=[];for(let n=0;n<3;n++)s[n]=e[n]*o+r[n]*t;return s};let c=[],a=[],l=0;for(let e=0;e{if(!Array.isArray(r))throw new Error("points must be an array");return path2.fromPoints({},r)};module.exports=line; - -},{"../geometries/path2":58}],373:[function(require,module,exports){ -const geom2=require("../geometries/geom2"),polygon=r=>{const{points:o,paths:t}=Object.assign({},{points:[],paths:[]},r);if(!Array.isArray(o)||!Array.isArray(t))throw new Error("points and paths must be arrays");let a=o;Array.isArray(o[0])&&(Array.isArray(o[0][0])||(a=[o])),a.forEach((r,o)=>{if(!Array.isArray(r))throw new Error("list of points "+o+" must be an array");if(r.length<3)throw new Error("list of points "+o+" must contain three or more points");r.forEach((r,t)=>{if(!Array.isArray(r))throw new Error("list of points "+o+", point "+t+" must be an array");if(r.length<2)throw new Error("list of points "+o+", point "+t+" must contain by X and Y values")})});let s=t;if(0===t.length){let r=0;s=a.map(o=>o.map(o=>r++))}const e=[];a.forEach(r=>r.forEach(r=>e.push(r)));let n=[];return s.forEach(r=>{const o=r.map(r=>e[r]),t=geom2.fromPoints(o);n=n.concat(geom2.toSides(t))}),geom2.create(n)};module.exports=polygon; - -},{"../geometries/geom2":22}],374:[function(require,module,exports){ -const geom3=require("../geometries/geom3"),poly3=require("../geometries/poly3"),{isNumberArray:isNumberArray}=require("./commonChecks"),polyhedron=r=>{const e={points:[],faces:[],colors:void 0,orientation:"outward"},{points:o,faces:a,colors:t,orientation:n}=Object.assign({},e,r);if(!Array.isArray(o)||!Array.isArray(a))throw new Error("points and faces must be arrays");if(o.length<3)throw new Error("three or more points are required");if(a.length<1)throw new Error("one or more faces are required");if(t){if(!Array.isArray(t))throw new Error("colors must be an array");if(t.length!==a.length)throw new Error("faces and colors must have the same length")}o.forEach((r,e)=>{if(!isNumberArray(r,3))throw new Error(`point ${e} must be an array of X, Y, Z values`)}),a.forEach((r,e)=>{if(r.length<3)throw new Error(`face ${e} must contain 3 or more indexes`);if(!isNumberArray(r,r.length))throw new Error(`face ${e} must be an array of numbers`)}),"outward"!==n&&a.forEach(r=>r.reverse());const s=a.map((r,e)=>{const a=poly3.create(r.map(r=>o[r]));return t&&t[e]&&(a.color=t[e]),a});return geom3.create(s)};module.exports=polyhedron; - -},{"../geometries/geom3":37,"../geometries/poly3":75,"./commonChecks":363}],375:[function(require,module,exports){ -const vec2=require("../maths/vec2"),geom2=require("../geometries/geom2"),{isNumberArray:isNumberArray}=require("./commonChecks"),rectangle=e=>{const{center:r,size:t}=Object.assign({},{center:[0,0],size:[2,2]},e);if(!isNumberArray(r,2))throw new Error("center must be an array of X and Y values");if(!isNumberArray(t,2))throw new Error("size must be an array of X and Y values");if(!t.every(e=>e>0))throw new Error("size values must be greater than zero");const a=[t[0]/2,t[1]/2],c=[a[0],-a[1]],s=[vec2.subtract(vec2.create(),r,a),vec2.add(vec2.create(),r,c),vec2.add(vec2.create(),r,a),vec2.subtract(vec2.create(),r,c)];return geom2.fromPoints(s)};module.exports=rectangle; - -},{"../geometries/geom2":22,"../maths/vec2":186,"./commonChecks":363}],376:[function(require,module,exports){ -const{EPS:EPS,TAU:TAU}=require("../maths/constants"),vec2=require("../maths/vec2"),vec3=require("../maths/vec3"),geom3=require("../geometries/geom3"),poly3=require("../geometries/poly3"),{sin:sin,cos:cos}=require("../maths/utils/trigonometry"),{isGT:isGT,isGTE:isGTE,isNumberArray:isNumberArray}=require("./commonChecks"),createCorners=(e,r,t,s,c,o)=>{const a=TAU/4*c/s,n=cos(a),i=sin(a),u=s-c;let l=t*n,h=r[2]-(t-t*i);o||(h=t-t*i-r[2]),l=l>EPS?l:0;const d=vec3.add(vec3.create(),e,[r[0]-t,r[1]-t,h]),v=vec3.add(vec3.create(),e,[t-r[0],r[1]-t,h]),m=vec3.add(vec3.create(),e,[t-r[0],t-r[1],h]),p=vec3.add(vec3.create(),e,[r[0]-t,t-r[1],h]),f=[],g=[],E=[],y=[];for(let e=0;e<=u;e++){const r=u>0?TAU/4*e/u:0,t=vec2.fromAngleRadians(vec2.create(),r);vec2.scale(t,t,l);const s=vec3.fromVec2(vec3.create(),t);f.push(vec3.add(vec3.create(),d,s)),vec3.rotateZ(s,s,[0,0,0],TAU/4),g.push(vec3.add(vec3.create(),v,s)),vec3.rotateZ(s,s,[0,0,0],TAU/4),E.push(vec3.add(vec3.create(),m,s)),vec3.rotateZ(s,s,[0,0,0],TAU/4),y.push(vec3.add(vec3.create(),p,s))}return o?[f,g,E,y]:(f.reverse(),g.reverse(),E.reverse(),y.reverse(),[y,E,g,f])},stitchCorners=(e,r)=>{const t=[];for(let s=0;s{const t=[];for(let s=0;s{e=(e=[e[3],e[2],e[1],e[0]]).map(e=>e.slice().reverse());const t=[];e.forEach(e=>{e.forEach(e=>t.push(e))});const s=[];r.forEach(e=>{e.forEach(e=>s.push(e))});const c=[];for(let e=0;e{let{center:r,size:t,roundRadius:s,segments:c}=Object.assign({},{center:[0,0,0],size:[2,2,2],roundRadius:.2,segments:32},e);if(!isNumberArray(r,3))throw new Error("center must be an array of X, Y and Z values");if(!isNumberArray(t,3))throw new Error("size must be an array of X, Y and Z values");if(!t.every(e=>e>0))throw new Error("size values must be greater than zero");if(!isGT(s,0))throw new Error("roundRadius must be greater than zero");if(!isGTE(c,4))throw new Error("segments must be four or more");if(s>(t=t.map(e=>e/2))[0]-EPS||s>t[1]-EPS||s>t[2]-EPS)throw new Error("roundRadius must be smaller then the radius of all dimensions");c=Math.floor(c/4);let o=null,a=null,n=[];for(let e=0;e<=c;e++){const i=createCorners(r,t,s,c,e,!0),u=createCorners(r,t,s,c,e,!1);if(0===e&&(n=n.concat(stitchSides(u,i))),o&&(n=n.concat(stitchCorners(o,i),stitchWalls(o,i))),a&&(n=n.concat(stitchCorners(a,u),stitchWalls(a,u))),e===c){let e=i.map(e=>e[0]);n.push(poly3.create(e)),e=u.map(e=>e[0]),n.push(poly3.create(e))}o=i,a=u}return geom3.create(n)};module.exports=roundedCuboid; - -},{"../geometries/geom3":37,"../geometries/poly3":75,"../maths/constants":90,"../maths/utils/trigonometry":168,"../maths/vec2":186,"../maths/vec3":217,"./commonChecks":363}],377:[function(require,module,exports){ -const{EPS:EPS,TAU:TAU}=require("../maths/constants"),vec3=require("../maths/vec3"),geom3=require("../geometries/geom3"),poly3=require("../geometries/poly3"),{sin:sin,cos:cos}=require("../maths/utils/trigonometry"),{isGT:isGT,isGTE:isGTE,isNumberArray:isNumberArray}=require("./commonChecks"),roundedCylinder=e=>{const{center:c,height:r,radius:s,roundRadius:a,segments:t}=Object.assign({},{center:[0,0,0],height:2,radius:1,roundRadius:.2,segments:32},e);if(!isNumberArray(c,3))throw new Error("center must be an array of X, Y and Z values");if(!isGT(r,0))throw new Error("height must be greater then zero");if(!isGT(s,0))throw new Error("radius must be greater then zero");if(!isGT(a,0))throw new Error("roundRadius must be greater then zero");if(a>s-EPS)throw new Error("roundRadius must be smaller then the radius");if(!isGTE(t,4))throw new Error("segments must be four or more");const v=[0,0,-r/2],o=[0,0,r/2],u=vec3.subtract(vec3.create(),o,v);if(2*a>vec3.length(u)-EPS)throw new Error("height must be larger than twice roundRadius");let d;d=Math.abs(u[0])>Math.abs(u[1])?vec3.fromValues(0,1,0):vec3.fromValues(1,0,0);const i=vec3.scale(vec3.create(),vec3.normalize(vec3.create(),u),a),n=vec3.scale(vec3.create(),vec3.normalize(vec3.create(),vec3.cross(vec3.create(),i,d)),s),l=vec3.scale(vec3.create(),vec3.normalize(vec3.create(),vec3.cross(vec3.create(),n,i)),s);vec3.add(v,v,i),vec3.subtract(o,o,i);const h=Math.floor(.25*t),m=e=>{const r=e.map(e=>vec3.add(e,e,c));return poly3.create(r)},p=[],b=vec3.create(),g=vec3.create();let f;for(let e=0;e<=t;e++){const c=TAU*e/t,r=vec3.add(vec3.create(),vec3.scale(b,n,cos(c)),vec3.scale(g,l,sin(c)));if(e>0){let e,c,s=[];s.push(vec3.add(vec3.create(),v,r)),s.push(vec3.add(vec3.create(),v,f)),s.push(vec3.add(vec3.create(),o,f)),s.push(vec3.add(vec3.create(),o,r)),p.push(m(s));for(let a=0;a<=h;a++){const t=TAU/4*a/h,u=cos(t),d=sin(t);if(a>0){let t;s=[],t=vec3.add(vec3.create(),v,vec3.subtract(b,vec3.scale(b,f,e),vec3.scale(g,i,c))),s.push(t),t=vec3.add(vec3.create(),v,vec3.subtract(b,vec3.scale(b,r,e),vec3.scale(g,i,c))),s.push(t),a{let{center:r,size:a,roundRadius:t,segments:s}=Object.assign({},{center:[0,0],size:[2,2],roundRadius:.2,segments:32},e);if(!isNumberArray(r,2))throw new Error("center must be an array of X and Y values");if(!isNumberArray(a,2))throw new Error("size must be an array of X and Y values");if(!a.every(e=>e>0))throw new Error("size values must be greater than zero");if(!isGT(t,0))throw new Error("roundRadius must be greater than zero");if(!isGTE(s,4))throw new Error("segments must be four or more");if(t>(a=a.map(e=>e/2))[0]-EPS||t>a[1]-EPS)throw new Error("roundRadius must be smaller then the radius of all dimensions");const c=Math.floor(s/4),o=vec2.add(vec2.create(),r,[a[0]-t,a[1]-t]),n=vec2.add(vec2.create(),r,[t-a[0],a[1]-t]),i=vec2.add(vec2.create(),r,[t-a[0],t-a[1]]),u=vec2.add(vec2.create(),r,[a[0]-t,t-a[1]]),d=[],v=[],m=[],h=[];for(let e=0;e<=c;e++){const r=TAU/4*e/c,a=vec2.fromAngleRadians(vec2.create(),r);vec2.scale(a,a,t),d.push(vec2.add(vec2.create(),o,a)),vec2.rotate(a,a,vec2.create(),TAU/4),v.push(vec2.add(vec2.create(),n,a)),vec2.rotate(a,a,vec2.create(),TAU/4),m.push(vec2.add(vec2.create(),i,a)),vec2.rotate(a,a,vec2.create(),TAU/4),h.push(vec2.add(vec2.create(),u,a))}return geom2.fromPoints(d.concat(v,m,h))};module.exports=roundedRectangle; - -},{"../geometries/geom2":22,"../maths/constants":90,"../maths/vec2":186,"./commonChecks":363}],379:[function(require,module,exports){ -const ellipsoid=require("./ellipsoid"),{isGT:isGT}=require("./commonChecks"),sphere=e=>{let{center:s,radius:r,segments:i,axes:t}=Object.assign({},{center:[0,0,0],radius:1,segments:32,axes:[[1,0,0],[0,-1,0],[0,0,1]]},e);if(!isGT(r,0))throw new Error("radius must be greater than zero");return ellipsoid({center:s,radius:r=[r,r,r],segments:i,axes:t})};module.exports=sphere; - -},{"./commonChecks":363,"./ellipsoid":369}],380:[function(require,module,exports){ -const rectangle=require("./rectangle"),{isGT:isGT}=require("./commonChecks"),square=e=>{let{center:r,size:s}=Object.assign({},{center:[0,0],size:2},e);if(!isGT(s,0))throw new Error("size must be greater than zero");return rectangle({center:r,size:s=[s,s]})};module.exports=square; - -},{"./commonChecks":363,"./rectangle":375}],381:[function(require,module,exports){ -const{TAU:TAU}=require("../maths/constants"),vec2=require("../maths/vec2"),geom2=require("../geometries/geom2"),{isGT:isGT,isGTE:isGTE,isNumberArray:isNumberArray}=require("./commonChecks"),getRadiusRatio=(e,r)=>e>0&&r>1&&r{const o=TAU/e,i=[];for(let a=0;a{let{center:r,vertices:t,outerRadius:s,innerRadius:o,density:i,startAngle:a}=Object.assign({},{center:[0,0],vertices:5,outerRadius:1,innerRadius:0,density:2,startAngle:0},e);if(!isNumberArray(r,2))throw new Error("center must be an array of X and Y values");if(!isGTE(t,2))throw new Error("vertices must be two or more");if(!isGT(s,0))throw new Error("outerRadius must be greater than zero");if(!isGTE(o,0))throw new Error("innerRadius must be greater than zero");if(!isGTE(a,0))throw new Error("startAngle must be greater than zero");if(t=Math.floor(t),i=Math.floor(i),a%=TAU,0===o){if(!isGTE(i,2))throw new Error("density must be two or more");o=s*getRadiusRatio(t,i)}const n=vec2.clone(r),u=getPoints(t,s,a,n),c=getPoints(t,o,a+Math.PI/t,n),h=[];for(let e=0;e{const r={innerRadius:1,innerSegments:32,outerRadius:4,outerSegments:32,innerRotation:0,startAngle:0,outerRotation:TAU},{innerRadius:t,innerSegments:o,outerRadius:n,outerSegments:s,innerRotation:i,startAngle:a,outerRotation:u}=Object.assign({},r,e);if(!isGT(t,0))throw new Error("innerRadius must be greater than zero");if(!isGTE(o,3))throw new Error("innerSegments must be three or more");if(!isGT(n,0))throw new Error("outerRadius must be greater than zero");if(!isGTE(s,3))throw new Error("outerSegments must be three or more");if(!isGTE(a,0))throw new Error("startAngle must be positive");if(!isGT(u,0))throw new Error("outerRotation must be greater than zero");if(t>=n)throw new Error("inner circle is two large to rotate about the outer circle");let m=circle({radius:t,segments:o});return 0!==i&&(m=rotate([0,0,i],m)),m=translate([n,0],m),extrudeRotate({startAngle:a,angle:u,segments:s},m)};module.exports=torus; - -},{"../maths/constants":90,"../operations/extrusions/extrudeRotate":310,"../operations/transforms/rotate":357,"../operations/transforms/translate":360,"./circle":362,"./commonChecks":363}],383:[function(require,module,exports){ -const{NEPS:NEPS}=require("../maths/constants"),vec2=require("../maths/vec2"),geom2=require("../geometries/geom2"),{isNumberArray:isNumberArray}=require("./commonChecks"),solveAngleFromSSS=(e,r,t)=>Math.acos((e*e+r*r-t*t)/(2*e*r)),solveSideFromSAS=(e,r,t)=>r>NEPS?Math.sqrt(e*e+t*t-2*e*t*Math.cos(r)):Math.sqrt((e-t)*(e-t)+e*t*r*r*(1-r*r/12)),solveAAA=e=>{if(Math.abs(e[0]+e[1]+e[2]-Math.PI)>NEPS)throw new Error("AAA triangles require angles that sum to PI");const r=e[0],t=e[1],s=Math.PI-r-t,a=1/Math.sin(s)*Math.sin(r),n=1/Math.sin(s)*Math.sin(t);return createTriangle(r,t,s,a,n,1)},solveAAS=e=>{const r=e[0],t=e[1],s=Math.PI+NEPS-r-t;if(s{const r=e[0],t=e[2],s=Math.PI+NEPS-r-t;if(s{const r=e[0],t=e[1],s=e[2],a=solveSideFromSAS(r,t,s),n=solveAngleFromSSS(a,r,s),o=Math.PI-n-t;return createTriangle(n,t,o,s,a,r)},solveSSA=e=>{const r=e[0],t=e[1],s=e[2],a=Math.asin(t*Math.sin(s)/r),n=Math.PI-a-s,o=r/Math.sin(s)*Math.sin(n);return createTriangle(a,n,s,t,o,r)},solveSSS=e=>{const r=e[1],t=e[2],s=e[0];if(r+t<=s||t+s<=r||s+r<=t)throw new Error("SSS triangle is incorrect, as the longest side is longer than the sum of the other sides");const a=solveAngleFromSSS(t,s,r),n=solveAngleFromSSS(s,r,t),o=Math.PI-a-n;return createTriangle(a,n,o,r,t,s)},createTriangle=(e,r,t,s,a,n)=>{const o=vec2.fromValues(0,0),i=vec2.fromValues(n,0),S=vec2.fromValues(s,0);return vec2.add(S,vec2.rotate(S,S,[0,0],Math.PI-r),i),geom2.fromPoints([o,i,S])},triangle=e=>{let{type:r,values:t}=Object.assign({},{type:"SSS",values:[1,1,1]},e);if("string"!=typeof r)throw new Error("triangle type must be a string");if("A"!==(r=r.toUpperCase())[0]&&"S"!==r[0]||"A"!==r[1]&&"S"!==r[1]||"A"!==r[2]&&"S"!==r[2])throw new Error("triangle type must contain three letters; A or S");if(!isNumberArray(t,3))throw new Error("triangle values must contain three values");if(!t.every(e=>e>0))throw new Error("triangle values must be greater than zero");switch(r){case"AAA":return solveAAA(t);case"AAS":return solveAAS(t);case"ASA":return solveASA(t);case"SAS":return solveSAS(t);case"SSA":return solveSSA(t);case"SSS":return solveSSS(t);default:throw new Error("invalid triangle type, try again")}};module.exports=triangle; - -},{"../geometries/geom2":22,"../maths/constants":90,"../maths/vec2":186,"./commonChecks":363}],384:[function(require,module,exports){ -module.exports={height:14,32:[16],33:[10,5,21,5,7,void 0,5,2,4,1,5,0,6,1,5,2],34:[16,4,21,4,14,void 0,12,21,12,14],35:[21,11,25,4,-7,void 0,17,25,10,-7,void 0,4,12,18,12,void 0,3,6,17,6],36:[20,8,25,8,-4,void 0,12,25,12,-4,void 0,17,18,15,20,12,21,8,21,5,20,3,18,3,16,4,14,5,13,7,12,13,10,15,9,16,8,17,6,17,3,15,1,12,0,8,0,5,1,3,3],37:[24,21,21,3,0,void 0,8,21,10,19,10,17,9,15,7,14,5,14,3,16,3,18,4,20,6,21,8,21,10,20,13,19,16,19,19,20,21,21,void 0,17,7,15,6,14,4,14,2,16,0,18,0,20,1,21,3,21,5,19,7,17,7],38:[26,23,12,23,13,22,14,21,14,20,13,19,11,17,6,15,3,13,1,11,0,7,0,5,1,4,2,3,4,3,6,4,8,5,9,12,13,13,14,14,16,14,18,13,20,11,21,9,20,8,18,8,16,9,13,11,10,16,3,18,1,20,0,22,0,23,1,23,2],39:[10,5,19,4,20,5,21,6,20,6,18,5,16,4,15],40:[14,11,25,9,23,7,20,5,16,4,11,4,7,5,2,7,-2,9,-5,11,-7],41:[14,3,25,5,23,7,20,9,16,10,11,10,7,9,2,7,-2,5,-5,3,-7],42:[16,8,21,8,9,void 0,3,18,13,12,void 0,13,18,3,12],43:[26,13,18,13,0,void 0,4,9,22,9],44:[10,6,1,5,0,4,1,5,2,6,1,6,-1,5,-3,4,-4],45:[26,4,9,22,9],46:[10,5,2,4,1,5,0,6,1,5,2],47:[22,20,25,2,-7],48:[20,9,21,6,20,4,17,3,12,3,9,4,4,6,1,9,0,11,0,14,1,16,4,17,9,17,12,16,17,14,20,11,21,9,21],49:[20,6,17,8,18,11,21,11,0],50:[20,4,16,4,17,5,19,6,20,8,21,12,21,14,20,15,19,16,17,16,15,15,13,13,10,3,0,17,0],51:[20,5,21,16,21,10,13,13,13,15,12,16,11,17,8,17,6,16,3,14,1,11,0,8,0,5,1,4,2,3,4],52:[20,13,21,3,7,18,7,void 0,13,21,13,0],53:[20,15,21,5,21,4,12,5,13,8,14,11,14,14,13,16,11,17,8,17,6,16,3,14,1,11,0,8,0,5,1,4,2,3,4],54:[20,16,18,15,20,12,21,10,21,7,20,5,17,4,12,4,7,5,3,7,1,10,0,11,0,14,1,16,3,17,6,17,7,16,10,14,12,11,13,10,13,7,12,5,10,4,7],55:[20,17,21,7,0,void 0,3,21,17,21],56:[20,8,21,5,20,4,18,4,16,5,14,7,13,11,12,14,11,16,9,17,7,17,4,16,2,15,1,12,0,8,0,5,1,4,2,3,4,3,7,4,9,6,11,9,12,13,13,15,14,16,16,16,18,15,20,12,21,8,21],57:[20,16,14,15,11,13,9,10,8,9,8,6,9,4,11,3,14,3,15,4,18,6,20,9,21,10,21,13,20,15,18,16,14,16,9,15,4,13,1,10,0,8,0,5,1,4,3],58:[10,5,14,4,13,5,12,6,13,5,14,void 0,5,2,4,1,5,0,6,1,5,2],59:[10,5,14,4,13,5,12,6,13,5,14,void 0,6,1,5,0,4,1,5,2,6,1,6,-1,5,-3,4,-4],60:[24,20,18,4,9,20,0],61:[26,4,12,22,12,void 0,4,6,22,6],62:[24,4,18,20,9,4,0],63:[18,3,16,3,17,4,19,5,20,7,21,11,21,13,20,14,19,15,17,15,15,14,13,13,12,9,10,9,7,void 0,9,2,8,1,9,0,10,1,9,2],64:[27,18,13,17,15,15,16,12,16,10,15,9,14,8,11,8,8,9,6,11,5,14,5,16,6,17,8,void 0,12,16,10,14,9,11,9,8,10,6,11,5,void 0,18,16,17,8,17,6,19,5,21,5,23,7,24,10,24,12,23,15,22,17,20,19,18,20,15,21,12,21,9,20,7,19,5,17,4,15,3,12,3,9,4,6,5,4,7,2,9,1,12,0,15,0,18,1,20,2,21,3,void 0,19,16,18,8,18,6,19,5],65:[18,9,21,1,0,void 0,9,21,17,0,void 0,4,7,14,7],66:[21,4,21,4,0,void 0,4,21,13,21,16,20,17,19,18,17,18,15,17,13,16,12,13,11,void 0,4,11,13,11,16,10,17,9,18,7,18,4,17,2,16,1,13,0,4,0],67:[21,18,16,17,18,15,20,13,21,9,21,7,20,5,18,4,16,3,13,3,8,4,5,5,3,7,1,9,0,13,0,15,1,17,3,18,5],68:[21,4,21,4,0,void 0,4,21,11,21,14,20,16,18,17,16,18,13,18,8,17,5,16,3,14,1,11,0,4,0],69:[19,4,21,4,0,void 0,4,21,17,21,void 0,4,11,12,11,void 0,4,0,17,0],70:[18,4,21,4,0,void 0,4,21,17,21,void 0,4,11,12,11],71:[21,18,16,17,18,15,20,13,21,9,21,7,20,5,18,4,16,3,13,3,8,4,5,5,3,7,1,9,0,13,0,15,1,17,3,18,5,18,8,void 0,13,8,18,8],72:[22,4,21,4,0,void 0,18,21,18,0,void 0,4,11,18,11],73:[8,4,21,4,0],74:[16,12,21,12,5,11,2,10,1,8,0,6,0,4,1,3,2,2,5,2,7],75:[21,4,21,4,0,void 0,18,21,4,7,void 0,9,12,18,0],76:[17,4,21,4,0,void 0,4,0,16,0],77:[24,4,21,4,0,void 0,4,21,12,0,void 0,20,21,12,0,void 0,20,21,20,0],78:[22,4,21,4,0,void 0,4,21,18,0,void 0,18,21,18,0],79:[22,9,21,7,20,5,18,4,16,3,13,3,8,4,5,5,3,7,1,9,0,13,0,15,1,17,3,18,5,19,8,19,13,18,16,17,18,15,20,13,21,9,21],80:[21,4,21,4,0,void 0,4,21,13,21,16,20,17,19,18,17,18,14,17,12,16,11,13,10,4,10],81:[22,9,21,7,20,5,18,4,16,3,13,3,8,4,5,5,3,7,1,9,0,13,0,15,1,17,3,18,5,19,8,19,13,18,16,17,18,15,20,13,21,9,21,void 0,12,4,18,-2],82:[21,4,21,4,0,void 0,4,21,13,21,16,20,17,19,18,17,18,15,17,13,16,12,13,11,4,11,void 0,11,11,18,0],83:[20,17,18,15,20,12,21,8,21,5,20,3,18,3,16,4,14,5,13,7,12,13,10,15,9,16,8,17,6,17,3,15,1,12,0,8,0,5,1,3,3],84:[16,8,21,8,0,void 0,1,21,15,21],85:[22,4,21,4,6,5,3,7,1,10,0,12,0,15,1,17,3,18,6,18,21],86:[18,1,21,9,0,void 0,17,21,9,0],87:[24,2,21,7,0,void 0,12,21,7,0,void 0,12,21,17,0,void 0,22,21,17,0],88:[20,3,21,17,0,void 0,17,21,3,0],89:[18,1,21,9,11,9,0,void 0,17,21,9,11],90:[20,17,21,3,0,void 0,3,21,17,21,void 0,3,0,17,0],91:[14,4,25,4,-7,void 0,5,25,5,-7,void 0,4,25,11,25,void 0,4,-7,11,-7],92:[14,0,21,14,-3],93:[14,9,25,9,-7,void 0,10,25,10,-7,void 0,3,25,10,25,void 0,3,-7,10,-7],94:[16,6,15,8,18,10,15,void 0,3,12,8,17,13,12,void 0,8,17,8,0],95:[16,0,-2,16,-2],96:[10,6,21,5,20,4,18,4,16,5,15,6,16,5,17],97:[19,15,14,15,0,void 0,15,11,13,13,11,14,8,14,6,13,4,11,3,8,3,6,4,3,6,1,8,0,11,0,13,1,15,3],98:[19,4,21,4,0,void 0,4,11,6,13,8,14,11,14,13,13,15,11,16,8,16,6,15,3,13,1,11,0,8,0,6,1,4,3],99:[18,15,11,13,13,11,14,8,14,6,13,4,11,3,8,3,6,4,3,6,1,8,0,11,0,13,1,15,3],100:[19,15,21,15,0,void 0,15,11,13,13,11,14,8,14,6,13,4,11,3,8,3,6,4,3,6,1,8,0,11,0,13,1,15,3],101:[18,3,8,15,8,15,10,14,12,13,13,11,14,8,14,6,13,4,11,3,8,3,6,4,3,6,1,8,0,11,0,13,1,15,3],102:[12,10,21,8,21,6,20,5,17,5,0,void 0,2,14,9,14],103:[19,15,14,15,-2,14,-5,13,-6,11,-7,8,-7,6,-6,void 0,15,11,13,13,11,14,8,14,6,13,4,11,3,8,3,6,4,3,6,1,8,0,11,0,13,1,15,3],104:[19,4,21,4,0,void 0,4,10,7,13,9,14,12,14,14,13,15,10,15,0],105:[8,3,21,4,20,5,21,4,22,3,21,void 0,4,14,4,0],106:[10,5,21,6,20,7,21,6,22,5,21,void 0,6,14,6,-3,5,-6,3,-7,1,-7],107:[17,4,21,4,0,void 0,14,14,4,4,void 0,8,8,15,0],108:[8,4,21,4,0],109:[30,4,14,4,0,void 0,4,10,7,13,9,14,12,14,14,13,15,10,15,0,void 0,15,10,18,13,20,14,23,14,25,13,26,10,26,0],110:[19,4,14,4,0,void 0,4,10,7,13,9,14,12,14,14,13,15,10,15,0],111:[19,8,14,6,13,4,11,3,8,3,6,4,3,6,1,8,0,11,0,13,1,15,3,16,6,16,8,15,11,13,13,11,14,8,14],112:[19,4,14,4,-7,void 0,4,11,6,13,8,14,11,14,13,13,15,11,16,8,16,6,15,3,13,1,11,0,8,0,6,1,4,3],113:[19,15,14,15,-7,void 0,15,11,13,13,11,14,8,14,6,13,4,11,3,8,3,6,4,3,6,1,8,0,11,0,13,1,15,3],114:[13,4,14,4,0,void 0,4,8,5,11,7,13,9,14,12,14],115:[17,14,11,13,13,10,14,7,14,4,13,3,11,4,9,6,8,11,7,13,6,14,4,14,3,13,1,10,0,7,0,4,1,3,3],116:[12,5,21,5,4,6,1,8,0,10,0,void 0,2,14,9,14],117:[19,4,14,4,4,5,1,7,0,10,0,12,1,15,4,void 0,15,14,15,0],118:[16,2,14,8,0,void 0,14,14,8,0],119:[22,3,14,7,0,void 0,11,14,7,0,void 0,11,14,15,0,void 0,19,14,15,0],120:[17,3,14,14,0,void 0,14,14,3,0],121:[16,2,14,8,0,void 0,14,14,8,0,6,-4,4,-6,2,-7,1,-7],122:[17,14,14,3,0,void 0,3,14,14,14,void 0,3,0,14,0],123:[14,9,25,7,24,6,23,5,21,5,19,6,17,7,16,8,14,8,12,6,10,void 0,7,24,6,22,6,20,7,18,8,17,9,15,9,13,8,11,4,9,8,7,9,5,9,3,8,1,7,0,6,-2,6,-4,7,-6,void 0,6,8,8,6,8,4,7,2,6,1,5,-1,5,-3,6,-5,7,-6,9,-7],124:[8,4,25,4,-7],125:[14,5,25,7,24,8,23,9,21,9,19,8,17,7,16,6,14,6,12,8,10,void 0,7,24,8,22,8,20,7,18,6,17,5,15,5,13,6,11,10,9,6,7,5,5,5,3,6,1,7,0,8,-2,8,-4,7,-6,void 0,8,8,6,6,6,4,7,2,8,1,9,-1,9,-3,8,-5,7,-6,5,-7],126:[24,3,6,3,8,4,11,6,12,8,12,10,11,14,8,16,7,18,7,20,8,21,10,void 0,3,8,4,10,6,11,8,11,10,10,14,7,16,6,18,6,20,7,21,10,21,12]}; - -},{}],385:[function(require,module,exports){ -module.exports={vectorChar:require("./vectorChar"),vectorText:require("./vectorText")}; - -},{"./vectorChar":386,"./vectorText":388}],386:[function(require,module,exports){ -const vectorParams=require("./vectorParams"),vectorChar=(t,e)=>{const{xOffset:r,yOffset:s,input:h,font:o,height:c,extrudeOffset:n}=vectorParams(t,e);let a=h.charCodeAt(0);a&&o[a]||(a=63);const f=[].concat(o[a]),i=(c-n)/o.height,u=n/2,g=f.shift()*i,l=[];let v=[];for(let t=0,e=f.length;t{e||"string"!=typeof t||(t={input:t}),t=t||{};const s=Object.assign({},defaultsVectorParams,t);return s.input=e||s.input,s};module.exports=vectorParams; - -},{"./fonts/single-line/hershey/simplex.js":384}],388:[function(require,module,exports){ -const vectorChar=require("./vectorChar"),vectorParams=require("./vectorParams"),translateLine=(t,e)=>{const{x:n,y:s}=Object.assign({x:0,y:0},t||{}),r=e.segments;let h=null,a=null;for(let t=0,e=r.length;t{const{xOffset:n,yOffset:s,input:r,font:h,height:a,align:o,extrudeOffset:i,lineSpacing:c,letterSpacing:g}=vectorParams(t,e);let l,f,m,x,u,d,[v,w]=[n,s],O={width:0,segments:[]};const p=[];let y=[],C=0;const L=v,P=()=>{p.push(O),C=Math.max(C,O.width),O={width:0,segments:[]}};for(l=0,f=r.length;lO.width&&(d=C-O.width,"right"===o?O=translateLine({x:d},O):"center"===o&&(O=translateLine({x:d/2},O))),y=y.concat(O.segments);return y};module.exports=vectorText; - -},{"./vectorChar":386,"./vectorParams":387}],389:[function(require,module,exports){ -const geom2=require("../geometries/geom2"),geom3=require("../geometries/geom3"),path2=require("../geometries/path2"),areAllShapesTheSameType=e=>{let r;for(const o of e){let e=0;if(geom2.isA(o)&&(e=1),geom3.isA(o)&&(e=2),path2.isA(o)&&(e=3),r&&e!==r)return!1;r=e}return!0};module.exports=areAllShapesTheSameType; - -},{"../geometries/geom2":22,"../geometries/geom3":37,"../geometries/path2":58}],390:[function(require,module,exports){ -const degToRad=d=>.017453292519943295*d;module.exports=degToRad; - -},{}],391:[function(require,module,exports){ -const flatten=t=>t.reduce((t,a)=>Array.isArray(a)?t.concat(flatten(a)):t.concat(a),[]);module.exports=flatten; - -},{}],392:[function(require,module,exports){ -const fnNumberSort=(o,r)=>o-r;module.exports=fnNumberSort; - -},{}],393:[function(require,module,exports){ -module.exports={areAllShapesTheSameType:require("./areAllShapesTheSameType"),degToRad:require("./degToRad"),flatten:require("./flatten"),fnNumberSort:require("./fnNumberSort"),insertSorted:require("./insertSorted"),radiusToSegments:require("./radiusToSegments"),radToDeg:require("./radToDeg")}; - -},{"./areAllShapesTheSameType":389,"./degToRad":390,"./flatten":391,"./fnNumberSort":392,"./insertSorted":394,"./radToDeg":396,"./radiusToSegments":397}],394:[function(require,module,exports){ -const insertSorted=(t,e,o)=>{let r=0,s=t.length;for(;s>r;){const l=Math.floor((r+s)/2);o(e,t[l])>0?r=l+1:s=l}t.splice(r,0,e)};module.exports=insertSorted; - -},{}],395:[function(require,module,exports){ -const padArrayToLength=(r,e,o)=>{for(r=r.slice();r.length57.29577951308232*o;module.exports=radToDeg; - -},{}],397:[function(require,module,exports){ -const{TAU:TAU}=require("../maths/constants"),radiusToSegments=(t,e,s)=>{const a=e>0?t*TAU/e:0,n=s>0?TAU/s:0;return Math.ceil(Math.max(a,n,4))};module.exports=radiusToSegments; - -},{"../maths/constants":90}]},{},[88])(88) -}); +/** + * Constructive Solid Geometry (CSG) Library for JSCAD + * @jscad/modeling + * Version 2.10.0 + * MIT License + */ + +(function (global, factory) { + typeof exports === 'object' && typeof module !== 'undefined' ? factory(exports) : + typeof define === 'function' && define.amd ? define(['exports'], factory) : + (global = typeof globalThis !== 'undefined' ? globalThis : global || self, factory(global.jscadModeling = {})); +})(this, (function (exports) { 'use strict'; + + /** + * @alias module:modeling/colors.cssColors + * @see CSS color table from http://www.w3.org/TR/css3-color/ + * @enum {Array} + * @example + * let newShape = colorize(cssColors.red, oldShape) + */ + const cssColors = { + // basic color keywords + black: [0 / 255, 0 / 255, 0 / 255], + silver: [192 / 255, 192 / 255, 192 / 255], + gray: [128 / 255, 128 / 255, 128 / 255], + white: [255 / 255, 255 / 255, 255 / 255], + maroon: [128 / 255, 0 / 255, 0 / 255], + red: [255 / 255, 0 / 255, 0 / 255], + purple: [128 / 255, 0 / 255, 128 / 255], + fuchsia: [255 / 255, 0 / 255, 255 / 255], + green: [0 / 255, 128 / 255, 0 / 255], + lime: [0 / 255, 255 / 255, 0 / 255], + olive: [128 / 255, 128 / 255, 0 / 255], + yellow: [255 / 255, 255 / 255, 0 / 255], + navy: [0 / 255, 0 / 255, 128 / 255], + blue: [0 / 255, 0 / 255, 255 / 255], + teal: [0 / 255, 128 / 255, 128 / 255], + aqua: [0 / 255, 255 / 255, 255 / 255], + // extended color keywords + aliceblue: [240 / 255, 248 / 255, 255 / 255], + antiquewhite: [250 / 255, 235 / 255, 215 / 255], + // 'aqua': [ 0 / 255, 255 / 255, 255 / 255 ], + aquamarine: [127 / 255, 255 / 255, 212 / 255], + azure: [240 / 255, 255 / 255, 255 / 255], + beige: [245 / 255, 245 / 255, 220 / 255], + bisque: [255 / 255, 228 / 255, 196 / 255], + // 'black': [ 0 / 255, 0 / 255, 0 / 255 ], + blanchedalmond: [255 / 255, 235 / 255, 205 / 255], + // 'blue': [ 0 / 255, 0 / 255, 255 / 255 ], + blueviolet: [138 / 255, 43 / 255, 226 / 255], + brown: [165 / 255, 42 / 255, 42 / 255], + burlywood: [222 / 255, 184 / 255, 135 / 255], + cadetblue: [95 / 255, 158 / 255, 160 / 255], + chartreuse: [127 / 255, 255 / 255, 0 / 255], + chocolate: [210 / 255, 105 / 255, 30 / 255], + coral: [255 / 255, 127 / 255, 80 / 255], + cornflowerblue: [100 / 255, 149 / 255, 237 / 255], + cornsilk: [255 / 255, 248 / 255, 220 / 255], + crimson: [220 / 255, 20 / 255, 60 / 255], + cyan: [0 / 255, 255 / 255, 255 / 255], + darkblue: [0 / 255, 0 / 255, 139 / 255], + darkcyan: [0 / 255, 139 / 255, 139 / 255], + darkgoldenrod: [184 / 255, 134 / 255, 11 / 255], + darkgray: [169 / 255, 169 / 255, 169 / 255], + darkgreen: [0 / 255, 100 / 255, 0 / 255], + darkgrey: [169 / 255, 169 / 255, 169 / 255], + darkkhaki: [189 / 255, 183 / 255, 107 / 255], + darkmagenta: [139 / 255, 0 / 255, 139 / 255], + darkolivegreen: [85 / 255, 107 / 255, 47 / 255], + darkorange: [255 / 255, 140 / 255, 0 / 255], + darkorchid: [153 / 255, 50 / 255, 204 / 255], + darkred: [139 / 255, 0 / 255, 0 / 255], + darksalmon: [233 / 255, 150 / 255, 122 / 255], + darkseagreen: [143 / 255, 188 / 255, 143 / 255], + darkslateblue: [72 / 255, 61 / 255, 139 / 255], + darkslategray: [47 / 255, 79 / 255, 79 / 255], + darkslategrey: [47 / 255, 79 / 255, 79 / 255], + darkturquoise: [0 / 255, 206 / 255, 209 / 255], + darkviolet: [148 / 255, 0 / 255, 211 / 255], + deeppink: [255 / 255, 20 / 255, 147 / 255], + deepskyblue: [0 / 255, 191 / 255, 255 / 255], + dimgray: [105 / 255, 105 / 255, 105 / 255], + dimgrey: [105 / 255, 105 / 255, 105 / 255], + dodgerblue: [30 / 255, 144 / 255, 255 / 255], + firebrick: [178 / 255, 34 / 255, 34 / 255], + floralwhite: [255 / 255, 250 / 255, 240 / 255], + forestgreen: [34 / 255, 139 / 255, 34 / 255], + // 'fuchsia': [ 255 / 255, 0 / 255, 255 / 255 ], + gainsboro: [220 / 255, 220 / 255, 220 / 255], + ghostwhite: [248 / 255, 248 / 255, 255 / 255], + gold: [255 / 255, 215 / 255, 0 / 255], + goldenrod: [218 / 255, 165 / 255, 32 / 255], + // 'gray': [ 128 / 255, 128 / 255, 128 / 255 ], + // 'green': [ 0 / 255, 128 / 255, 0 / 255 ], + greenyellow: [173 / 255, 255 / 255, 47 / 255], + grey: [128 / 255, 128 / 255, 128 / 255], + honeydew: [240 / 255, 255 / 255, 240 / 255], + hotpink: [255 / 255, 105 / 255, 180 / 255], + indianred: [205 / 255, 92 / 255, 92 / 255], + indigo: [75 / 255, 0 / 255, 130 / 255], + ivory: [255 / 255, 255 / 255, 240 / 255], + khaki: [240 / 255, 230 / 255, 140 / 255], + lavender: [230 / 255, 230 / 255, 250 / 255], + lavenderblush: [255 / 255, 240 / 255, 245 / 255], + lawngreen: [124 / 255, 252 / 255, 0 / 255], + lemonchiffon: [255 / 255, 250 / 255, 205 / 255], + lightblue: [173 / 255, 216 / 255, 230 / 255], + lightcoral: [240 / 255, 128 / 255, 128 / 255], + lightcyan: [224 / 255, 255 / 255, 255 / 255], + lightgoldenrodyellow: [250 / 255, 250 / 255, 210 / 255], + lightgray: [211 / 255, 211 / 255, 211 / 255], + lightgreen: [144 / 255, 238 / 255, 144 / 255], + lightgrey: [211 / 255, 211 / 255, 211 / 255], + lightpink: [255 / 255, 182 / 255, 193 / 255], + lightsalmon: [255 / 255, 160 / 255, 122 / 255], + lightseagreen: [32 / 255, 178 / 255, 170 / 255], + lightskyblue: [135 / 255, 206 / 255, 250 / 255], + lightslategray: [119 / 255, 136 / 255, 153 / 255], + lightslategrey: [119 / 255, 136 / 255, 153 / 255], + lightsteelblue: [176 / 255, 196 / 255, 222 / 255], + lightyellow: [255 / 255, 255 / 255, 224 / 255], + // 'lime': [ 0 / 255, 255 / 255, 0 / 255 ], + limegreen: [50 / 255, 205 / 255, 50 / 255], + linen: [250 / 255, 240 / 255, 230 / 255], + magenta: [255 / 255, 0 / 255, 255 / 255], + // 'maroon': [ 128 / 255, 0 / 255, 0 / 255 ], + mediumaquamarine: [102 / 255, 205 / 255, 170 / 255], + mediumblue: [0 / 255, 0 / 255, 205 / 255], + mediumorchid: [186 / 255, 85 / 255, 211 / 255], + mediumpurple: [147 / 255, 112 / 255, 219 / 255], + mediumseagreen: [60 / 255, 179 / 255, 113 / 255], + mediumslateblue: [123 / 255, 104 / 255, 238 / 255], + mediumspringgreen: [0 / 255, 250 / 255, 154 / 255], + mediumturquoise: [72 / 255, 209 / 255, 204 / 255], + mediumvioletred: [199 / 255, 21 / 255, 133 / 255], + midnightblue: [25 / 255, 25 / 255, 112 / 255], + mintcream: [245 / 255, 255 / 255, 250 / 255], + mistyrose: [255 / 255, 228 / 255, 225 / 255], + moccasin: [255 / 255, 228 / 255, 181 / 255], + navajowhite: [255 / 255, 222 / 255, 173 / 255], + // 'navy': [ 0 / 255, 0 / 255, 128 / 255 ], + oldlace: [253 / 255, 245 / 255, 230 / 255], + // 'olive': [ 128 / 255, 128 / 255, 0 / 255 ], + olivedrab: [107 / 255, 142 / 255, 35 / 255], + orange: [255 / 255, 165 / 255, 0 / 255], + orangered: [255 / 255, 69 / 255, 0 / 255], + orchid: [218 / 255, 112 / 255, 214 / 255], + palegoldenrod: [238 / 255, 232 / 255, 170 / 255], + palegreen: [152 / 255, 251 / 255, 152 / 255], + paleturquoise: [175 / 255, 238 / 255, 238 / 255], + palevioletred: [219 / 255, 112 / 255, 147 / 255], + papayawhip: [255 / 255, 239 / 255, 213 / 255], + peachpuff: [255 / 255, 218 / 255, 185 / 255], + peru: [205 / 255, 133 / 255, 63 / 255], + pink: [255 / 255, 192 / 255, 203 / 255], + plum: [221 / 255, 160 / 255, 221 / 255], + powderblue: [176 / 255, 224 / 255, 230 / 255], + // 'purple': [ 128 / 255, 0 / 255, 128 / 255 ], + // 'red': [ 255 / 255, 0 / 255, 0 / 255 ], + rosybrown: [188 / 255, 143 / 255, 143 / 255], + royalblue: [65 / 255, 105 / 255, 225 / 255], + saddlebrown: [139 / 255, 69 / 255, 19 / 255], + salmon: [250 / 255, 128 / 255, 114 / 255], + sandybrown: [244 / 255, 164 / 255, 96 / 255], + seagreen: [46 / 255, 139 / 255, 87 / 255], + seashell: [255 / 255, 245 / 255, 238 / 255], + sienna: [160 / 255, 82 / 255, 45 / 255], + // 'silver': [ 192 / 255, 192 / 255, 192 / 255 ], + skyblue: [135 / 255, 206 / 255, 235 / 255], + slateblue: [106 / 255, 90 / 255, 205 / 255], + slategray: [112 / 255, 128 / 255, 144 / 255], + slategrey: [112 / 255, 128 / 255, 144 / 255], + snow: [255 / 255, 250 / 255, 250 / 255], + springgreen: [0 / 255, 255 / 255, 127 / 255], + steelblue: [70 / 255, 130 / 255, 180 / 255], + tan: [210 / 255, 180 / 255, 140 / 255], + // 'teal': [ 0 / 255, 128 / 255, 128 / 255 ], + thistle: [216 / 255, 191 / 255, 216 / 255], + tomato: [255 / 255, 99 / 255, 71 / 255], + turquoise: [64 / 255, 224 / 255, 208 / 255], + violet: [238 / 255, 130 / 255, 238 / 255], + wheat: [245 / 255, 222 / 255, 179 / 255], + // 'white': [ 255 / 255, 255 / 255, 255 / 255 ], + whitesmoke: [245 / 255, 245 / 255, 245 / 255], + // 'yellow': [ 255 / 255, 255 / 255, 0 / 255 ], + yellowgreen: [154 / 255, 205 / 255, 50 / 255] + }; + + /** + * Converts a CSS color name to RGB color. + * + * @param {String} s - the CSS color name + * @return {Array} the RGB color, or undefined if not found + * @alias module:modeling/colors.colorNameToRgb + * @example + * let mySphere = colorize(colorNameToRgb('lightblue'), sphere()) + */ + const colorNameToRgb = (s) => cssColors[s.toLowerCase()]; + + /** + * Flatten the given list of arguments into a single flat array. + * The arguments can be composed of multiple depths of objects and arrays. + * @param {Array} arr - list of arguments + * @returns {Array} a flat list of arguments + * @alias module:modeling/utils.flatten + */ + const flatten = (arr) => arr.reduce((acc, val) => Array.isArray(val) ? acc.concat(flatten(val)) : acc.concat(val), []); + + /** + * Performs a shallow clone of the given geometry. + * @param {geom2} geometry - the geometry to clone + * @returns {geom2} new geometry + * @alias module:modeling/geometries/geom2.clone + */ + const clone$b = (geometry) => Object.assign({}, geometry); + + /** + * Adds the two matrices (A+B). + * + * @param {mat4} out - receiving matrix + * @param {mat4} a - first operand + * @param {mat4} b - second operand + * @returns {mat4} out + * @alias module:modeling/maths/mat4.add + */ + const add$2 = (out, a, b) => { + out[0] = a[0] + b[0]; + out[1] = a[1] + b[1]; + out[2] = a[2] + b[2]; + out[3] = a[3] + b[3]; + out[4] = a[4] + b[4]; + out[5] = a[5] + b[5]; + out[6] = a[6] + b[6]; + out[7] = a[7] + b[7]; + out[8] = a[8] + b[8]; + out[9] = a[9] + b[9]; + out[10] = a[10] + b[10]; + out[11] = a[11] + b[11]; + out[12] = a[12] + b[12]; + out[13] = a[13] + b[13]; + out[14] = a[14] + b[14]; + out[15] = a[15] + b[15]; + return out + }; + + /** + * Represents a 4x4 matrix which is column-major (when typed out it looks row-major). + * See fromValues(). + * @typedef {Array} mat4 + */ + + /** + * Creates a new identity matrix. + * + * @returns {mat4} a new matrix + * @alias module:modeling/maths/mat4.create + */ + const create$c = () => [ + 1, 0, 0, 0, + 0, 1, 0, 0, + 0, 0, 1, 0, + 0, 0, 0, 1 + ]; + + /** + * Creates a clone of the given matrix. + * + * @param {mat4} matrix - matrix to clone + * @returns {mat4} a new matrix + * @alias module:modeling/maths/mat4.clone + */ + const clone$a = (matrix) => { + const out = create$c(); + out[0] = matrix[0]; + out[1] = matrix[1]; + out[2] = matrix[2]; + out[3] = matrix[3]; + out[4] = matrix[4]; + out[5] = matrix[5]; + out[6] = matrix[6]; + out[7] = matrix[7]; + out[8] = matrix[8]; + out[9] = matrix[9]; + out[10] = matrix[10]; + out[11] = matrix[11]; + out[12] = matrix[12]; + out[13] = matrix[13]; + out[14] = matrix[14]; + out[15] = matrix[15]; + return out + }; + + /** + * Creates a copy of the given matrix. + * + * @param {mat4} out - receiving matrix + * @param {mat4} matrix - matrix to copy + * @returns {mat4} out + * @alias module:modeling/maths/mat4.copy + */ + const copy$5 = (out, matrix) => { + out[0] = matrix[0]; + out[1] = matrix[1]; + out[2] = matrix[2]; + out[3] = matrix[3]; + out[4] = matrix[4]; + out[5] = matrix[5]; + out[6] = matrix[6]; + out[7] = matrix[7]; + out[8] = matrix[8]; + out[9] = matrix[9]; + out[10] = matrix[10]; + out[11] = matrix[11]; + out[12] = matrix[12]; + out[13] = matrix[13]; + out[14] = matrix[14]; + out[15] = matrix[15]; + return out + }; + + /** + * Creates an inverted copy of the given matrix. + * @author Julian Lloyd + * code from https://github.com/jlmakes/rematrix/blob/master/src/index.js + * + * @param {mat4} out - receiving matrix + * @param {mat4} matrix - matrix to invert + * @returns {mat4} out + * @alias module:modeling/maths/mat4.invert + */ + const invert$2 = (out, matrix) => { + const a00 = matrix[0]; + const a01 = matrix[1]; + const a02 = matrix[2]; + const a03 = matrix[3]; + const a10 = matrix[4]; + const a11 = matrix[5]; + const a12 = matrix[6]; + const a13 = matrix[7]; + const a20 = matrix[8]; + const a21 = matrix[9]; + const a22 = matrix[10]; + const a23 = matrix[11]; + const a30 = matrix[12]; + const a31 = matrix[13]; + const a32 = matrix[14]; + const a33 = matrix[15]; + + const b00 = a00 * a11 - a01 * a10; + const b01 = a00 * a12 - a02 * a10; + const b02 = a00 * a13 - a03 * a10; + const b03 = a01 * a12 - a02 * a11; + const b04 = a01 * a13 - a03 * a11; + const b05 = a02 * a13 - a03 * a12; + const b06 = a20 * a31 - a21 * a30; + const b07 = a20 * a32 - a22 * a30; + const b08 = a20 * a33 - a23 * a30; + const b09 = a21 * a32 - a22 * a31; + const b10 = a21 * a33 - a23 * a31; + const b11 = a22 * a33 - a23 * a32; + + // Calculate the determinant + let det = + b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06; + + if (!det) { + return null + } + det = 1.0 / det; + + out[0] = (a11 * b11 - a12 * b10 + a13 * b09) * det; + out[1] = (a02 * b10 - a01 * b11 - a03 * b09) * det; + out[2] = (a31 * b05 - a32 * b04 + a33 * b03) * det; + out[3] = (a22 * b04 - a21 * b05 - a23 * b03) * det; + out[4] = (a12 * b08 - a10 * b11 - a13 * b07) * det; + out[5] = (a00 * b11 - a02 * b08 + a03 * b07) * det; + out[6] = (a32 * b02 - a30 * b05 - a33 * b01) * det; + out[7] = (a20 * b05 - a22 * b02 + a23 * b01) * det; + out[8] = (a10 * b10 - a11 * b08 + a13 * b06) * det; + out[9] = (a01 * b08 - a00 * b10 - a03 * b06) * det; + out[10] = (a30 * b04 - a31 * b02 + a33 * b00) * det; + out[11] = (a21 * b02 - a20 * b04 - a23 * b00) * det; + out[12] = (a11 * b07 - a10 * b09 - a12 * b06) * det; + out[13] = (a00 * b09 - a01 * b07 + a02 * b06) * det; + out[14] = (a31 * b01 - a30 * b03 - a32 * b00) * det; + out[15] = (a20 * b03 - a21 * b01 + a22 * b00) * det; + + return out + }; + + /** + * Returns whether the matrices have exactly the same elements in the same position. + * + * @param {mat4} a - first matrix + * @param {mat4} b - second matrix + * @returns {Boolean} true if the matrices are equal + * @alias module:modeling/maths/mat4.equals + */ + const equals$8 = (a, b) => ( + a[0] === b[0] && a[1] === b[1] && a[2] === b[2] && a[3] === b[3] && + a[4] === b[4] && a[5] === b[5] && a[6] === b[6] && a[7] === b[7] && + a[8] === b[8] && a[9] === b[9] && a[10] === b[10] && a[11] === b[11] && + a[12] === b[12] && a[13] === b[13] && a[14] === b[14] && a[15] === b[15] + ); + + /** + * Epsilon used during determination of near zero distances. + * This should be 1 / spacialResolution. + * @default + * @alias module:modeling/maths.EPS + * @example + * const { EPS } = maths.constants + */ + const EPS = 1e-5; + + /** + * Smaller epsilon used for measuring near zero distances. + * @default + * @alias module:modeling/maths.NEPS + * @example + * const { NEPS } = maths.constants + */ + const NEPS = 1e-13; + // NEPS is derived from a series of tests to determine the optimal precision + // for comparing coplanar polygons, as provided by the sphere primitive at high + // segmentation. NEPS is for 64-bit Number values. + + /** + * The TAU property represents the ratio of the circumference of a circle to its radius. + * Approximately 6.28318530717958647692 + * @alias module:modeling/maths.TAU + * @default + * @example + * const { TAU } = maths.constants + */ + const TAU = Math.PI * 2; + + var constants = /*#__PURE__*/Object.freeze({ + __proto__: null, + EPS: EPS, + NEPS: NEPS, + TAU: TAU + }); + + /* + * Returns zero if n is within epsilon of zero, otherwise return n + */ + const rezero = (n) => Math.abs(n) < NEPS ? 0 : n; + + /** + * Return Math.sin but accurate for TAU / 4 rotations. + * Fixes rounding errors when sin should be 0. + * + * @param {Number} radians - angle in radians + * @returns {Number} sine of the given angle + * @alias module:modeling/utils.sin + * @example + * sin(TAU / 2) == 0 + * sin(TAU) == 0 + */ + const sin = (radians) => rezero(Math.sin(radians)); + + /** + * Return Math.cos but accurate for TAU / 4 rotations. + * Fixes rounding errors when cos should be 0. + * + * @param {Number} radians - angle in radians + * @returns {Number} cosine of the given angle + * @alias module:modeling/utils.cos + * @example + * cos(TAU * 0.25) == 0 + * cos(TAU * 0.75) == 0 + */ + const cos = (radians) => rezero(Math.cos(radians)); + + /** + * Set a matrix to the identity transform. + * + * @param {mat4} out - receiving matrix + * @returns {mat4} out + * @alias module:modeling/maths/mat4.identity + */ + const identity = (out) => { + out[0] = 1; + out[1] = 0; + out[2] = 0; + out[3] = 0; + out[4] = 0; + out[5] = 1; + out[6] = 0; + out[7] = 0; + out[8] = 0; + out[9] = 0; + out[10] = 1; + out[11] = 0; + out[12] = 0; + out[13] = 0; + out[14] = 0; + out[15] = 1; + return out + }; + + /** + * Creates a matrix from a given angle around a given axis + * This is equivalent to (but much faster than): + * + * mat4.identity(dest) + * mat4.rotate(dest, dest, rad, axis) + * + * @param {mat4} out - receiving matrix + * @param {Number} rad - angle to rotate the matrix by + * @param {vec3} axis - axis of which to rotate around + * @returns {mat4} out + * @alias module:modeling/maths/mat4.fromRotation + * @example + * let matrix = fromRotation(create(), TAU / 4, [0, 0, 3]) + */ + const fromRotation = (out, rad, axis) => { + let [x, y, z] = axis; + const lengthSquared = x * x + y * y + z * z; + + if (Math.abs(lengthSquared) < EPS) { + // axis is 0,0,0 or almost + return identity(out) + } + + const len = 1 / Math.sqrt(lengthSquared); + x *= len; + y *= len; + z *= len; + + const s = sin(rad); + const c = cos(rad); + const t = 1 - c; + + // Perform rotation-specific matrix multiplication + out[0] = x * x * t + c; + out[1] = y * x * t + z * s; + out[2] = z * x * t - y * s; + out[3] = 0; + out[4] = x * y * t - z * s; + out[5] = y * y * t + c; + out[6] = z * y * t + x * s; + out[7] = 0; + out[8] = x * z * t + y * s; + out[9] = y * z * t - x * s; + out[10] = z * z * t + c; + out[11] = 0; + out[12] = 0; + out[13] = 0; + out[14] = 0; + out[15] = 1; + return out + }; + + /** + * Creates a matrix from a vector scaling. + * This is equivalent to (but much faster than): + * + * mat4.identity(dest) + * mat4.scale(dest, dest, vec) + * + * @param {mat4} out - receiving matrix + * @param {vec3} vector - X, Y, Z factors by which to scale + * @returns {mat4} out + * @alias module:modeling/maths/mat4.fromScaling + * @example + * let matrix = fromScaling([1, 2, 0.5]) + */ + const fromScaling = (out, vector) => { + out[0] = vector[0]; + out[1] = 0; + out[2] = 0; + out[3] = 0; + out[4] = 0; + out[5] = vector[1]; + out[6] = 0; + out[7] = 0; + out[8] = 0; + out[9] = 0; + out[10] = vector[2]; + out[11] = 0; + out[12] = 0; + out[13] = 0; + out[14] = 0; + out[15] = 1; + return out + }; + + /** + * Creates a matrix from the given Tait–Bryan angles. + * + * Tait-Bryan Euler angle convention using active, intrinsic rotations around the axes in the order z-y-x. + * @see https://en.wikipedia.org/wiki/Euler_angles + * + * @param {mat4} out - receiving matrix + * @param {Number} yaw - Z rotation in radians + * @param {Number} pitch - Y rotation in radians + * @param {Number} roll - X rotation in radians + * @returns {mat4} out + * @alias module:modeling/maths/mat4.fromTaitBryanRotation + * @example + * let matrix = fromTaitBryanRotation(create(), TAU / 4, 0, TAU / 2) + */ + const fromTaitBryanRotation = (out, yaw, pitch, roll) => { + // precompute sines and cosines of Euler angles + const sy = sin(yaw); + const cy = cos(yaw); + const sp = sin(pitch); + const cp = cos(pitch); + const sr = sin(roll); + const cr = cos(roll); + + // create and populate rotation matrix + // left-hand-rule rotation + // const els = [ + // cp*cy, sr*sp*cy - cr*sy, sr*sy + cr*sp*cy, 0, + // cp*sy, cr*cy + sr*sp*sy, cr*sp*sy - sr*cy, 0, + // -sp, sr*cp, cr*cp, 0, + // 0, 0, 0, 1 + // ] + // right-hand-rule rotation + out[0] = cp * cy; + out[1] = cp * sy; + out[2] = -sp; + out[3] = 0; + out[4] = sr * sp * cy - cr * sy; + out[5] = cr * cy + sr * sp * sy; + out[6] = sr * cp; + out[7] = 0; + out[8] = sr * sy + cr * sp * cy; + out[9] = cr * sp * sy - sr * cy; + out[10] = cr * cp; + out[11] = 0; + out[12] = 0; + out[13] = 0; + out[14] = 0; + out[15] = 1; + return out + }; + + /** + * Creates a matrix from a vector translation. + * This is equivalent to (but much faster than): + * + * mat4.identity(dest) + * mat4.translate(dest, dest, vec) + * + * @param {mat4} out - receiving matrix + * @param {vec3} vector - offset (vector) of translation + * @returns {mat4} out + * @alias module:modeling/maths/mat4.fromTranslation + * @example + * let matrix = fromTranslation(create(), [1, 2, 3]) + */ + const fromTranslation = (out, vector) => { + out[0] = 1; + out[1] = 0; + out[2] = 0; + out[3] = 0; + out[4] = 0; + out[5] = 1; + out[6] = 0; + out[7] = 0; + out[8] = 0; + out[9] = 0; + out[10] = 1; + out[11] = 0; + out[12] = vector[0]; + out[13] = vector[1]; + out[14] = vector[2]; + out[15] = 1; + return out + }; + + /** + * Create a matrix with the given values. + * + * @param {Number} m00 Component in column 0, row 0 position (index 0) + * @param {Number} m01 Component in column 0, row 1 position (index 1) + * @param {Number} m02 Component in column 0, row 2 position (index 2) + * @param {Number} m03 Component in column 0, row 3 position (index 3) + * @param {Number} m10 Component in column 1, row 0 position (index 4) + * @param {Number} m11 Component in column 1, row 1 position (index 5) + * @param {Number} m12 Component in column 1, row 2 position (index 6) + * @param {Number} m13 Component in column 1, row 3 position (index 7) + * @param {Number} m20 Component in column 2, row 0 position (index 8) + * @param {Number} m21 Component in column 2, row 1 position (index 9) + * @param {Number} m22 Component in column 2, row 2 position (index 10) + * @param {Number} m23 Component in column 2, row 3 position (index 11) + * @param {Number} m30 Component in column 3, row 0 position (index 12) + * @param {Number} m31 Component in column 3, row 1 position (index 13) + * @param {Number} m32 Component in column 3, row 2 position (index 14) + * @param {Number} m33 Component in column 3, row 3 position (index 15) + * @returns {mat4} a new matrix + * @alias module:modeling/maths/mat4.fromValues + * @example + * let matrix = fromValues( + * 1, 0, 0, 1, + * 0, 1, 0, 0, + * 0, 0, 1, 0, + * 0, 0, 0, 1 + * ) + */ + const fromValues$4 = (m00, m01, m02, m03, m10, m11, m12, m13, m20, m21, m22, m23, m30, m31, m32, m33) => { + const out = create$c(); + out[0] = m00; + out[1] = m01; + out[2] = m02; + out[3] = m03; + out[4] = m10; + out[5] = m11; + out[6] = m12; + out[7] = m13; + out[8] = m20; + out[9] = m21; + out[10] = m22; + out[11] = m23; + out[12] = m30; + out[13] = m31; + out[14] = m32; + out[15] = m33; + return out + }; + + /** + * Calculates the absolute coordinates of the give vector. + * + * @param {vec3} out - receiving vector + * @param {vec3} vector - vector of reference + * @returns {vec3} out + * @alias module:modeling/maths/vec3.abs + */ + const abs$1 = (out, vector) => { + out[0] = Math.abs(vector[0]); + out[1] = Math.abs(vector[1]); + out[2] = Math.abs(vector[2]); + return out + }; + + /** + * Adds the coordinates of two vectors (A+B). + * + * @param {vec3} out - receiving vector + * @param {vec3} a - first operand + * @param {vec3} b - second operand + * @returns {vec3} out + * @alias module:modeling/maths/vec3.add + */ + const add$1 = (out, a, b) => { + out[0] = a[0] + b[0]; + out[1] = a[1] + b[1]; + out[2] = a[2] + b[2]; + return out + }; + + /** + * Calculates the dot product of two vectors. + * + * @param {vec3} a - first operand + * @param {vec3} b - second operand + * @returns {Number} dot product + * @alias module:modeling/maths/vec3.dot + */ + const dot$2 = (a, b) => a[0] * b[0] + a[1] * b[1] + a[2] * b[2]; + + /** + * Calculate the angle between two vectors. + * + * @param {vec3} a - first operand + * @param {vec3} b - second operand + * @returns {Number} angle (radians) + * @alias module:modeling/maths/vec3.angle + */ + const angle = (a, b) => { + const ax = a[0]; + const ay = a[1]; + const az = a[2]; + const bx = b[0]; + const by = b[1]; + const bz = b[2]; + const mag1 = Math.sqrt(ax * ax + ay * ay + az * az); + const mag2 = Math.sqrt(bx * bx + by * by + bz * bz); + const mag = mag1 * mag2; + const cosine = mag && dot$2(a, b) / mag; + return Math.acos(Math.min(Math.max(cosine, -1), 1)) + }; + + /** + * Represents a three dimensional vector. + * See fromValues(). + * @typedef {Array} vec3 + */ + + /** + * Creates a new vector initialized to [0,0,0]. + * + * @returns {vec3} a new vector + * @alias module:modeling/maths/vec3.create + */ + const create$b = () => [0, 0, 0]; + + /** + * Create a clone of the given vector. + * + * @param {vec3} vector - vector to clone + * @returns {vec3} a new vector + * @alias module:modeling/maths/vec3.clone + */ + const clone$9 = (vector) => { + const out = create$b(); + out[0] = vector[0]; + out[1] = vector[1]; + out[2] = vector[2]; + return out + }; + + /** + * Create a copy of the given vector. + * + * @param {vec3} out - receiving vector + * @param {vec3} vector - vector to copy + * @returns {vec3} out + * @alias module:modeling/maths/vec3.copy + */ + const copy$4 = (out, vector) => { + out[0] = vector[0]; + out[1] = vector[1]; + out[2] = vector[2]; + return out + }; + + /** + * Computes the cross product of the given vectors (AxB). + * + * @param {vec3} out - receiving vector + * @param {vec3} a - first operand + * @param {vec3} b - second operand + * @returns {vec3} out + * @alias module:modeling/maths/vec3.cross + */ + const cross$1 = (out, a, b) => { + const ax = a[0]; + const ay = a[1]; + const az = a[2]; + const bx = b[0]; + const by = b[1]; + const bz = b[2]; + + out[0] = ay * bz - az * by; + out[1] = az * bx - ax * bz; + out[2] = ax * by - ay * bx; + return out + }; + + /** + * Calculates the Euclidian distance between the given vectors. + * + * @param {vec3} a - first operand + * @param {vec3} b - second operand + * @returns {Number} distance + * @alias module:modeling/maths/vec3.distance + */ + const distance$1 = (a, b) => { + const x = b[0] - a[0]; + const y = b[1] - a[1]; + const z = b[2] - a[2]; + return Math.sqrt(x * x + y * y + z * z) + }; + + /** + * Divides the coordinates of two vectors (A/B). + * + * @param {vec3} out - receiving vector + * @param {vec3} a - dividend vector + * @param {vec3} b - divisor vector + * @returns {vec3} out + * @alias module:modeling/maths/vec3.divide + */ + const divide$1 = (out, a, b) => { + out[0] = a[0] / b[0]; + out[1] = a[1] / b[1]; + out[2] = a[2] / b[2]; + return out + }; + + /** + * Compare the given vectors for equality. + * + * @param {vec3} a - first operand + * @param {vec3} b - second operand + * @returns {Boolean} true if a and b are equal + * @alias module:modeling/maths/vec3.equals + */ + const equals$7 = (a, b) => (a[0] === b[0]) && (a[1] === b[1]) && (a[2] === b[2]); + + /** + * Creates a vector from a single scalar value. + * All components of the resulting vector have the given value. + * + * @param {vec3} out - receiving vector + * @param {Number} scalar + * @returns {vec3} out + * @alias module:modeling/maths/vec3.fromScalar + */ + const fromScalar$2 = (out, scalar) => { + out[0] = scalar; + out[1] = scalar; + out[2] = scalar; + return out + }; + + /** + * Creates a new vector initialized with the given values. + * + * @param {Number} x - X component + * @param {Number} y - Y component + * @param {Number} z - Z component + * @returns {vec3} a new vector + * @alias module:modeling/maths/vec3.fromValues + */ + const fromValues$3 = (x, y, z) => { + const out = create$b(); + out[0] = x; + out[1] = y; + out[2] = z; + return out + }; + + /** + * Create a new vector by extending a 2D vector with a Z value. + * + * @param {vec3} out - receiving vector + * @param {Array} vector - 2D vector of values + * @param {Number} [z=0] - Z value + * @returns {vec3} out + * @alias module:modeling/maths/vec3.fromVec2 + */ + const fromVec2 = (out, vector, z = 0) => { + out[0] = vector[0]; + out[1] = vector[1]; + out[2] = z; + return out + }; + + /** + * Calculates the length of a vector. + * + * @param {vec3} vector - vector to calculate length of + * @returns {Number} length + * @alias module:modeling/maths/vec3.length + */ + const length$1 = (vector) => { + const x = vector[0]; + const y = vector[1]; + const z = vector[2]; + return Math.sqrt(x * x + y * y + z * z) + }; + + /** + * Performs a linear interpolation between two vectors. + * + * @param {vec3} out - receiving vector + * @param {vec3} a - first operand + * @param {vec3} b - second operand + * @param {Number} t - interpolant (0.0 to 1.0) applied between the two inputs + * @returns {vec3} out + * @alias module:modeling/maths/vec3.lerp + */ + const lerp$1 = (out, a, b, t) => { + out[0] = a[0] + t * (b[0] - a[0]); + out[1] = a[1] + t * (b[1] - a[1]); + out[2] = a[2] + t * (b[2] - a[2]); + return out + }; + + /** + * Returns the maximum coordinates of the given vectors. + * + * @param {vec3} out - receiving vector + * @param {vec3} a - first operand + * @param {vec3} b - second operand + * @returns {vec3} out + * @alias module:modeling/maths/vec3.max + */ + const max$2 = (out, a, b) => { + out[0] = Math.max(a[0], b[0]); + out[1] = Math.max(a[1], b[1]); + out[2] = Math.max(a[2], b[2]); + return out + }; + + /** + * Returns the minimum coordinates of the given vectors. + * + * @param {vec3} out - receiving vector + * @param {vec3} a - first operand + * @param {vec3} b - second operand + * @returns {vec3} out + * @alias module:modeling/maths/vec3.min + */ + const min$2 = (out, a, b) => { + out[0] = Math.min(a[0], b[0]); + out[1] = Math.min(a[1], b[1]); + out[2] = Math.min(a[2], b[2]); + return out + }; + + /** + * Multiply the coordinates of the given vectors (A*B). + * + * @param {vec3} out - receiving vector + * @param {vec3} a - first operand + * @param {vec3} b - second operand + * @returns {vec3} out + * @alias module:modeling/maths/vec3.multiply + */ + const multiply$2 = (out, a, b) => { + out[0] = a[0] * b[0]; + out[1] = a[1] * b[1]; + out[2] = a[2] * b[2]; + return out + }; + + /** + * Negates the coordinates of the given vector. + * + * @param {vec3} out - receiving vector + * @param {vec3} vector - vector to negate + * @returns {vec3} out + * @alias module:modeling/maths/vec3.negate + */ + const negate$1 = (out, vector) => { + out[0] = -vector[0]; + out[1] = -vector[1]; + out[2] = -vector[2]; + return out + }; + + /** + * Normalize the given vector. + * + * @param {vec3} out - receiving vector + * @param {vec3} vector - vector to normalize + * @returns {vec3} out + * @alias module:modeling/maths/vec3.normalize + */ + const normalize$1 = (out, vector) => { + const x = vector[0]; + const y = vector[1]; + const z = vector[2]; + let len = x * x + y * y + z * z; + if (len > 0) { + len = 1 / Math.sqrt(len); + } + out[0] = x * len; + out[1] = y * len; + out[2] = z * len; + return out + }; + + /** + * Create a new vector that is orthogonal to the given vector. + * + * @param {vec3} out - receiving vector + * @param {vec3} vector - vector of reference + * @returns {vec3} out + * @alias module:modeling/maths/vec3.orthogonal + */ + const orthogonal = (out, vector) => { + const bV = abs$1(create$b(), vector); + const b0 = 0 + ((bV[0] < bV[1]) && (bV[0] < bV[2])); + const b1 = 0 + ((bV[1] <= bV[0]) && (bV[1] < bV[2])); + const b2 = 0 + ((bV[2] <= bV[0]) && (bV[2] <= bV[1])); + + return cross$1(out, vector, [b0, b1, b2]) + }; + + /** + * Rotate the given vector around the given origin, X axis only. + * + * @param {vec3} out - receiving vector + * @param {vec3} vector - vector to rotate + * @param {vec3} origin - origin of the rotation + * @param {Number} radians - angle of rotation + * @returns {vec3} out + * @alias module:modeling/maths/vec3.rotateX + */ + const rotateX$2 = (out, vector, origin, radians) => { + const p = []; + const r = []; + + // translate point to the origin + p[0] = vector[0] - origin[0]; + p[1] = vector[1] - origin[1]; + p[2] = vector[2] - origin[2]; + + // perform rotation + r[0] = p[0]; + r[1] = p[1] * Math.cos(radians) - p[2] * Math.sin(radians); + r[2] = p[1] * Math.sin(radians) + p[2] * Math.cos(radians); + + // translate to correct position + out[0] = r[0] + origin[0]; + out[1] = r[1] + origin[1]; + out[2] = r[2] + origin[2]; + + return out + }; + + /** + * Rotate the given vector around the given origin, Y axis only. + * + * @param {vec3} out - receiving vector + * @param {vec3} vector - vector to rotate + * @param {vec3} origin - origin of the rotation + * @param {Number} radians - angle of rotation + * @returns {vec3} out + * @alias module:modeling/maths/vec3.rotateY + */ + const rotateY$2 = (out, vector, origin, radians) => { + const p = []; + const r = []; + + // translate point to the origin + p[0] = vector[0] - origin[0]; + p[1] = vector[1] - origin[1]; + p[2] = vector[2] - origin[2]; + + // perform rotation + r[0] = p[2] * Math.sin(radians) + p[0] * Math.cos(radians); + r[1] = p[1]; + r[2] = p[2] * Math.cos(radians) - p[0] * Math.sin(radians); + + // translate to correct position + out[0] = r[0] + origin[0]; + out[1] = r[1] + origin[1]; + out[2] = r[2] + origin[2]; + + return out + }; + + /** + * Rotate the given vector around the given origin, Z axis only. + * + * @param {vec3} out - receiving vector + * @param {vec3} vector - vector to rotate + * @param {vec3} origin - origin of the rotation + * @param {Number} radians - angle of rotation in radians + * @returns {vec3} out + * @alias module:modeling/maths/vec3.rotateZ + */ + const rotateZ$2 = (out, vector, origin, radians) => { + const p = []; + const r = []; + // Translate point to the origin + p[0] = vector[0] - origin[0]; + p[1] = vector[1] - origin[1]; + + // perform rotation + r[0] = (p[0] * Math.cos(radians)) - (p[1] * Math.sin(radians)); + r[1] = (p[0] * Math.sin(radians)) + (p[1] * Math.cos(radians)); + + // translate to correct position + out[0] = r[0] + origin[0]; + out[1] = r[1] + origin[1]; + out[2] = vector[2]; + + return out + }; + + /** + * Scales the coordinates of the given vector by a scalar number. + * + * @param {vec3} out - receiving vector + * @param {vec3} vector - vector to scale + * @param {Number} amount - amount to scale the vector by + * @returns {vec3} out + * @alias module:modeling/maths/vec3.scale + */ + const scale$3 = (out, vector, amount) => { + out[0] = vector[0] * amount; + out[1] = vector[1] * amount; + out[2] = vector[2] * amount; + return out + }; + + /** + * Snaps the coordinates of the given vector to the given epsilon. + * + * @param {vec3} out - receiving vector + * @param {vec3} vector - vector to snap + * @param {Number} epsilon - epsilon of precision, less than 0 + * @returns {vec3} out + * @alias module:modeling/maths/vec3.snap + */ + const snap$2 = (out, vector, epsilon) => { + out[0] = Math.round(vector[0] / epsilon) * epsilon + 0; + out[1] = Math.round(vector[1] / epsilon) * epsilon + 0; + out[2] = Math.round(vector[2] / epsilon) * epsilon + 0; + return out + }; + + /** + * Calculates the squared distance between two vectors. + * + * @param {vec3} a - first operand + * @param {vec3} b - second operand + * @returns {Number} squared distance + * @alias module:modeling/maths/vec3.squaredDistance + */ + const squaredDistance$1 = (a, b) => { + const x = b[0] - a[0]; + const y = b[1] - a[1]; + const z = b[2] - a[2]; + return x * x + y * y + z * z + }; + + /** + * Calculates the squared length of the given vector. + * + * @param {vec3} vector - vector to calculate squared length of + * @returns {Number} squared length + * @alias module:modeling/maths/vec3.squaredLength + */ + const squaredLength$1 = (vector) => { + const x = vector[0]; + const y = vector[1]; + const z = vector[2]; + return x * x + y * y + z * z + }; + + /** + * Subtracts the coordinates of two vectors (A-B). + * + * @param {vec3} out - receiving vector + * @param {vec3} a - minuend vector + * @param {vec3} b - subtrahend vector + * @returns {vec3} out + * @alias module:modeling/maths/vec3.subtract + */ + const subtract$3 = (out, a, b) => { + out[0] = a[0] - b[0]; + out[1] = a[1] - b[1]; + out[2] = a[2] - b[2]; + return out + }; + + /** + * Convert the given vector to a representative string. + * @param {vec3} vec - vector of reference + * @returns {String} string representation + * @alias module:modeling/maths/vec3.toString + */ + const toString$b = (vec) => `[${vec[0].toFixed(7)}, ${vec[1].toFixed(7)}, ${vec[2].toFixed(7)}]`; + + /** + * Transforms the given vector using the given matrix. + * + * @param {vec3} out - receiving vector + * @param {vec3} vector - vector to transform + * @param {mat4} matrix - transform matrix + * @returns {vec3} out + * @alias module:modeling/maths/vec3.transform + */ + const transform$c = (out, vector, matrix) => { + const x = vector[0]; + const y = vector[1]; + const z = vector[2]; + let w = matrix[3] * x + matrix[7] * y + matrix[11] * z + matrix[15]; + w = w || 1.0; + out[0] = (matrix[0] * x + matrix[4] * y + matrix[8] * z + matrix[12]) / w; + out[1] = (matrix[1] * x + matrix[5] * y + matrix[9] * z + matrix[13]) / w; + out[2] = (matrix[2] * x + matrix[6] * y + matrix[10] * z + matrix[14]) / w; + return out + }; + + /** + * Represents a three dimensional vector. + * @see {@link vec3} for data structure information. + * @module modeling/maths/vec3 + */ + + var index$s = /*#__PURE__*/Object.freeze({ + __proto__: null, + abs: abs$1, + add: add$1, + angle: angle, + clone: clone$9, + copy: copy$4, + create: create$b, + cross: cross$1, + distance: distance$1, + divide: divide$1, + dot: dot$2, + equals: equals$7, + fromScalar: fromScalar$2, + fromValues: fromValues$3, + fromVec2: fromVec2, + length: length$1, + lerp: lerp$1, + max: max$2, + min: min$2, + multiply: multiply$2, + negate: negate$1, + normalize: normalize$1, + orthogonal: orthogonal, + rotateX: rotateX$2, + rotateY: rotateY$2, + rotateZ: rotateZ$2, + scale: scale$3, + snap: snap$2, + squaredDistance: squaredDistance$1, + squaredLength: squaredLength$1, + subtract: subtract$3, + toString: toString$b, + transform: transform$c + }); + + /** + * Create a matrix that rotates the given source to the given target vector. + * + * Each vector must be a directional vector with a length greater than zero. + * @see https://gist.github.com/kevinmoran/b45980723e53edeb8a5a43c49f134724 + * @param {mat4} out - receiving matrix + * @param {vec3} source - source vector + * @param {vec3} target - target vector + * @returns {mat4} a new matrix + * @alias module:modeling/maths/mat4.fromVectorRotation + * @example + * let matrix = fromVectorRotation(create(), [1, 2, 2], [-3, 3, 12]) + */ + const fromVectorRotation = (out, source, target) => { + const sourceNormal = normalize$1(create$b(), source); + const targetNormal = normalize$1(create$b(), target); + + const axis = cross$1(create$b(), targetNormal, sourceNormal); + const cosA = dot$2(targetNormal, sourceNormal); + if (cosA === -1.0) return fromRotation(out, Math.PI, orthogonal(axis, sourceNormal)) + + const k = 1 / (1 + cosA); + out[0] = (axis[0] * axis[0] * k) + cosA; + out[1] = (axis[1] * axis[0] * k) - axis[2]; + out[2] = (axis[2] * axis[0] * k) + axis[1]; + out[3] = 0; + + out[4] = (axis[0] * axis[1] * k) + axis[2]; + out[5] = (axis[1] * axis[1] * k) + cosA; + out[6] = (axis[2] * axis[1] * k) - axis[0]; + out[7] = 0; + + out[8] = (axis[0] * axis[2] * k) - axis[1]; + out[9] = (axis[1] * axis[2] * k) + axis[0]; + out[10] = (axis[2] * axis[2] * k) + cosA; + out[11] = 0; + + out[12] = 0; + out[13] = 0; + out[14] = 0; + out[15] = 1; + return out + }; + + /** + * Creates a matrix from the given angle around the X axis. + * This is equivalent to (but much faster than): + * + * mat4.identity(dest) + * mat4.rotateX(dest, dest, radians) + * + * @param {mat4} out - receiving matrix + * @param {Number} radians - angle to rotate the matrix by + * @returns {mat4} out + * @alias module:modeling/maths/mat4.fromXRotation + * @example + * let matrix = fromXRotation(create(), TAU / 4) + */ + const fromXRotation = (out, radians) => { + const s = sin(radians); + const c = cos(radians); + + // Perform axis-specific matrix multiplication + out[0] = 1; + out[1] = 0; + out[2] = 0; + out[3] = 0; + out[4] = 0; + out[5] = c; + out[6] = s; + out[7] = 0; + out[8] = 0; + out[9] = -s; + out[10] = c; + out[11] = 0; + out[12] = 0; + out[13] = 0; + out[14] = 0; + out[15] = 1; + return out + }; + + /** + * Creates a matrix from the given angle around the Y axis. + * This is equivalent to (but much faster than): + * + * mat4.identity(dest) + * mat4.rotateY(dest, dest, radians) + * + * @param {mat4} out - receiving matrix + * @param {Number} radians - angle to rotate the matrix by + * @returns {mat4} out + * @alias module:modeling/maths/mat4.fromYRotation + * @example + * let matrix = fromYRotation(create(), TAU / 4) + */ + const fromYRotation = (out, radians) => { + const s = sin(radians); + const c = cos(radians); + + // Perform axis-specific matrix multiplication + out[0] = c; + out[1] = 0; + out[2] = -s; + out[3] = 0; + out[4] = 0; + out[5] = 1; + out[6] = 0; + out[7] = 0; + out[8] = s; + out[9] = 0; + out[10] = c; + out[11] = 0; + out[12] = 0; + out[13] = 0; + out[14] = 0; + out[15] = 1; + return out + }; + + /** + * Creates a matrix from the given angle around the Z axis. + * This is equivalent to (but much faster than): + * + * mat4.identity(dest) + * mat4.rotateZ(dest, dest, radians) + * + * @param {mat4} out - receiving matrix + * @param {Number} radians - angle to rotate the matrix by + * @returns {mat4} out + * @alias module:modeling/maths/mat4.fromZRotation + * @example + * let matrix = fromZRotation(create(), TAU / 4) + */ + const fromZRotation = (out, radians) => { + const s = sin(radians); + const c = cos(radians); + + // Perform axis-specific matrix multiplication + out[0] = c; + out[1] = s; + out[2] = 0; + out[3] = 0; + out[4] = -s; + out[5] = c; + out[6] = 0; + out[7] = 0; + out[8] = 0; + out[9] = 0; + out[10] = 1; + out[11] = 0; + out[12] = 0; + out[13] = 0; + out[14] = 0; + out[15] = 1; + return out + }; + + /** + * Determine whether the given matrix is the identity transform. + * This is equivalent to (but much faster than): + * + * mat4.equals(mat4.create(), matrix) + * + * @param {mat4} matrix - the matrix + * @returns {Boolean} true if matrix is the identity transform + * @alias module:modeling/maths/mat4.isIdentity + * @example + * if (mat4.isIdentity(myMatrix)) ... + */ + const isIdentity = (matrix) => ( + matrix[0] === 1 && matrix[1] === 0 && matrix[2] === 0 && matrix[3] === 0 && + matrix[4] === 0 && matrix[5] === 1 && matrix[6] === 0 && matrix[7] === 0 && + matrix[8] === 0 && matrix[9] === 0 && matrix[10] === 1 && matrix[11] === 0 && + matrix[12] === 0 && matrix[13] === 0 && matrix[14] === 0 && matrix[15] === 1 + ); + + /** + * Determine whether the given matrix is only translate and/or scale. + * This code returns true for TAU / 2 rotation as it can be interpreted as scale. + * + * @param {mat4} matrix - the matrix + * @returns {Boolean} true if matrix is for translate and/or scale + * @alias module:modeling/maths/mat4.isOnlyTransformScale + */ + const isOnlyTransformScale = (matrix) => ( + + // TODO check if it is worth the effort to add recognition of 90 deg rotations + + isZero(matrix[1]) && isZero(matrix[2]) && isZero(matrix[3]) && + isZero(matrix[4]) && isZero(matrix[6]) && isZero(matrix[7]) && + isZero(matrix[8]) && isZero(matrix[9]) && isZero(matrix[11]) && + matrix[15] === 1 + ); + + const isZero = (num) => Math.abs(num) < Number.EPSILON; + + /** + * Determine whether the given matrix is a mirroring transformation. + * + * @param {mat4} matrix - matrix of reference + * @returns {Boolean} true if matrix is a mirroring transformation + * @alias module:modeling/maths/mat4.isMirroring + */ + const isMirroring = (matrix) => { + // const xVector = [matrix[0], matrix[4], matrix[8]] + // const yVector = [matrix[1], matrix[5], matrix[9]] + // const zVector = [matrix[2], matrix[6], matrix[10]] + + // for a true orthogonal, non-mirrored base, xVector.cross(yVector) == zVector + // If they have an opposite direction then we are mirroring + // calculate xVector.cross(yVector) + const x = matrix[4] * matrix[9] - matrix[8] * matrix[5]; + const y = matrix[8] * matrix[1] - matrix[0] * matrix[9]; + const z = matrix[0] * matrix[5] - matrix[4] * matrix[1]; + // calculate dot(cross, zVector) + const d = x * matrix[2] + y * matrix[6] + z * matrix[10]; + return (d < 0) + }; + + /** + * Create a matrix for mirroring about the given plane. + * + * @param {mat4} out - receiving matrix + * @param {vec4} plane - plane of which to mirror the matrix + * @returns {mat4} out + * @alias module:modeling/maths/mat4.mirrorByPlane + */ + const mirrorByPlane = (out, plane) => { + const [nx, ny, nz, w] = plane; + + out[0] = (1.0 - 2.0 * nx * nx); + out[1] = (-2.0 * ny * nx); + out[2] = (-2.0 * nz * nx); + out[3] = 0; + out[4] = (-2.0 * nx * ny); + out[5] = (1.0 - 2.0 * ny * ny); + out[6] = (-2.0 * nz * ny); + out[7] = 0; + out[8] = (-2.0 * nx * nz); + out[9] = (-2.0 * ny * nz); + out[10] = (1.0 - 2.0 * nz * nz); + out[11] = 0; + out[12] = (2.0 * nx * w); + out[13] = (2.0 * ny * w); + out[14] = (2.0 * nz * w); + out[15] = 1; + + return out + }; + + /** + * Multiplies the two matrices. + * + * @param {mat4} out - receiving matrix + * @param {mat4} a - first operand + * @param {mat4} b - second operand + * @returns {mat4} out + * @alias module:modeling/maths/mat4.multiply + */ + const multiply$1 = (out, a, b) => { + const a00 = a[0]; + const a01 = a[1]; + const a02 = a[2]; + const a03 = a[3]; + const a10 = a[4]; + const a11 = a[5]; + const a12 = a[6]; + const a13 = a[7]; + const a20 = a[8]; + const a21 = a[9]; + const a22 = a[10]; + const a23 = a[11]; + const a30 = a[12]; + const a31 = a[13]; + const a32 = a[14]; + const a33 = a[15]; + + // Cache only the current line of the second matrix + let b0 = b[0]; + let b1 = b[1]; + let b2 = b[2]; + let b3 = b[3]; + out[0] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30; + out[1] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31; + out[2] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32; + out[3] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33; + + b0 = b[4]; + b1 = b[5]; + b2 = b[6]; + b3 = b[7]; + out[4] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30; + out[5] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31; + out[6] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32; + out[7] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33; + + b0 = b[8]; + b1 = b[9]; + b2 = b[10]; + b3 = b[11]; + out[8] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30; + out[9] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31; + out[10] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32; + out[11] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33; + + b0 = b[12]; + b1 = b[13]; + b2 = b[14]; + b3 = b[15]; + out[12] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30; + out[13] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31; + out[14] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32; + out[15] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33; + return out + }; + + /** + * Rotates a matrix by the given angle about the given axis. + * + * @param {mat4} out - receiving matrix + * @param {mat4} matrix - matrix to rotate + * @param {Number} radians - angle to rotate the matrix by + * @param {vec3} axis - axis to rotate around + * @returns {mat4} out + * @alias module:modeling/maths/mat4.rotate + */ + const rotate$2 = (out, matrix, radians, axis) => { + let [x, y, z] = axis; + const lengthSquared = x * x + y * y + z * z; + + if (Math.abs(lengthSquared) < EPS) { + // axis is 0,0,0 or almost + return copy$5(out, matrix) + } + + const len = 1 / Math.sqrt(lengthSquared); + x *= len; + y *= len; + z *= len; + + const s = sin(radians); + const c = cos(radians); + const t = 1 - c; + + const a00 = matrix[0]; + const a01 = matrix[1]; + const a02 = matrix[2]; + const a03 = matrix[3]; + const a10 = matrix[4]; + const a11 = matrix[5]; + const a12 = matrix[6]; + const a13 = matrix[7]; + const a20 = matrix[8]; + const a21 = matrix[9]; + const a22 = matrix[10]; + const a23 = matrix[11]; + + // Construct the elements of the rotation matrix + const b00 = x * x * t + c; + const b01 = y * x * t + z * s; + const b02 = z * x * t - y * s; + const b10 = x * y * t - z * s; + const b11 = y * y * t + c; + const b12 = z * y * t + x * s; + const b20 = x * z * t + y * s; + const b21 = y * z * t - x * s; + const b22 = z * z * t + c; + + // Perform rotation-specific matrix multiplication + out[0] = a00 * b00 + a10 * b01 + a20 * b02; + out[1] = a01 * b00 + a11 * b01 + a21 * b02; + out[2] = a02 * b00 + a12 * b01 + a22 * b02; + out[3] = a03 * b00 + a13 * b01 + a23 * b02; + out[4] = a00 * b10 + a10 * b11 + a20 * b12; + out[5] = a01 * b10 + a11 * b11 + a21 * b12; + out[6] = a02 * b10 + a12 * b11 + a22 * b12; + out[7] = a03 * b10 + a13 * b11 + a23 * b12; + out[8] = a00 * b20 + a10 * b21 + a20 * b22; + out[9] = a01 * b20 + a11 * b21 + a21 * b22; + out[10] = a02 * b20 + a12 * b21 + a22 * b22; + out[11] = a03 * b20 + a13 * b21 + a23 * b22; + + if (matrix !== out) { // If the source and destination differ, copy the unchanged last row + out[12] = matrix[12]; + out[13] = matrix[13]; + out[14] = matrix[14]; + out[15] = matrix[15]; + } + return out + }; + + /** + * Rotates a matrix by the given angle around the X axis. + * + * @param {mat4} out - receiving matrix + * @param {mat4} matrix - matrix to rotate + * @param {Number} radians - angle to rotate the matrix by + * @returns {mat4} out + * @alias module:modeling/maths/mat4.rotateX + */ + const rotateX$1 = (out, matrix, radians) => { + const s = sin(radians); + const c = cos(radians); + const a10 = matrix[4]; + const a11 = matrix[5]; + const a12 = matrix[6]; + const a13 = matrix[7]; + const a20 = matrix[8]; + const a21 = matrix[9]; + const a22 = matrix[10]; + const a23 = matrix[11]; + + if (matrix !== out) { // If the source and destination differ, copy the unchanged rows + out[0] = matrix[0]; + out[1] = matrix[1]; + out[2] = matrix[2]; + out[3] = matrix[3]; + out[12] = matrix[12]; + out[13] = matrix[13]; + out[14] = matrix[14]; + out[15] = matrix[15]; + } + + // Perform axis-specific matrix multiplication + out[4] = a10 * c + a20 * s; + out[5] = a11 * c + a21 * s; + out[6] = a12 * c + a22 * s; + out[7] = a13 * c + a23 * s; + out[8] = a20 * c - a10 * s; + out[9] = a21 * c - a11 * s; + out[10] = a22 * c - a12 * s; + out[11] = a23 * c - a13 * s; + return out + }; + + /** + * Rotates a matrix by the given angle around the Y axis. + * + * @param {mat4} out - receiving matrix + * @param {mat4} matrix - matrix to rotate + * @param {Number} radians - angle to rotate the matrix by + * @returns {mat4} out + * @alias module:modeling/maths/mat4.rotateY + */ + const rotateY$1 = (out, matrix, radians) => { + const s = sin(radians); + const c = cos(radians); + const a00 = matrix[0]; + const a01 = matrix[1]; + const a02 = matrix[2]; + const a03 = matrix[3]; + const a20 = matrix[8]; + const a21 = matrix[9]; + const a22 = matrix[10]; + const a23 = matrix[11]; + + if (matrix !== out) { // If the source and destination differ, copy the unchanged rows + out[4] = matrix[4]; + out[5] = matrix[5]; + out[6] = matrix[6]; + out[7] = matrix[7]; + out[12] = matrix[12]; + out[13] = matrix[13]; + out[14] = matrix[14]; + out[15] = matrix[15]; + } + + // Perform axis-specific matrix multiplication + out[0] = a00 * c - a20 * s; + out[1] = a01 * c - a21 * s; + out[2] = a02 * c - a22 * s; + out[3] = a03 * c - a23 * s; + out[8] = a00 * s + a20 * c; + out[9] = a01 * s + a21 * c; + out[10] = a02 * s + a22 * c; + out[11] = a03 * s + a23 * c; + return out + }; + + /** + * Rotates a matrix by the given angle around the Z axis. + * + * @param {mat4} out - receiving matrix + * @param {mat4} matrix - matrix to rotate + * @param {Number} radians - angle to rotate the matrix by + * @returns {mat4} out + * @alias module:modeling/maths/mat4.rotateZ + */ + const rotateZ$1 = (out, matrix, radians) => { + const s = sin(radians); + const c = cos(radians); + const a00 = matrix[0]; + const a01 = matrix[1]; + const a02 = matrix[2]; + const a03 = matrix[3]; + const a10 = matrix[4]; + const a11 = matrix[5]; + const a12 = matrix[6]; + const a13 = matrix[7]; + + if (matrix !== out) { // If the source and destination differ, copy the unchanged last row + out[8] = matrix[8]; + out[9] = matrix[9]; + out[10] = matrix[10]; + out[11] = matrix[11]; + out[12] = matrix[12]; + out[13] = matrix[13]; + out[14] = matrix[14]; + out[15] = matrix[15]; + } + + // Perform axis-specific matrix multiplication + out[0] = a00 * c + a10 * s; + out[1] = a01 * c + a11 * s; + out[2] = a02 * c + a12 * s; + out[3] = a03 * c + a13 * s; + out[4] = a10 * c - a00 * s; + out[5] = a11 * c - a01 * s; + out[6] = a12 * c - a02 * s; + out[7] = a13 * c - a03 * s; + return out + }; + + /** + * Scales the matrix by the given dimensions. + * + * @param {mat4} out - receiving matrix + * @param {mat4} matrix - matrix to scale + * @param {vec3} dimensions - dimensions to scale the matrix by + * @returns {mat4} out + * @alias module:modeling/maths/mat4.scale + */ + const scale$2 = (out, matrix, dimensions) => { + const x = dimensions[0]; + const y = dimensions[1]; + const z = dimensions[2]; + + out[0] = matrix[0] * x; + out[1] = matrix[1] * x; + out[2] = matrix[2] * x; + out[3] = matrix[3] * x; + out[4] = matrix[4] * y; + out[5] = matrix[5] * y; + out[6] = matrix[6] * y; + out[7] = matrix[7] * y; + out[8] = matrix[8] * z; + out[9] = matrix[9] * z; + out[10] = matrix[10] * z; + out[11] = matrix[11] * z; + out[12] = matrix[12]; + out[13] = matrix[13]; + out[14] = matrix[14]; + out[15] = matrix[15]; + return out + }; + + /** + * Subtracts matrix b from matrix a. (A-B) + * + * @param {mat4} out - receiving matrix + * @param {mat4} a - first operand + * @param {mat4} b - second operand + * @returns {mat4} out + * @alias module:modeling/maths/mat4.subtract + */ + const subtract$2 = (out, a, b) => { + out[0] = a[0] - b[0]; + out[1] = a[1] - b[1]; + out[2] = a[2] - b[2]; + out[3] = a[3] - b[3]; + out[4] = a[4] - b[4]; + out[5] = a[5] - b[5]; + out[6] = a[6] - b[6]; + out[7] = a[7] - b[7]; + out[8] = a[8] - b[8]; + out[9] = a[9] - b[9]; + out[10] = a[10] - b[10]; + out[11] = a[11] - b[11]; + out[12] = a[12] - b[12]; + out[13] = a[13] - b[13]; + out[14] = a[14] - b[14]; + out[15] = a[15] - b[15]; + return out + }; + + /** + * Return a string representing the given matrix. + * + * @param {mat4} mat - matrix of reference + * @returns {String} string representation + * @alias module:modeling/maths/mat4.toString + */ + const toString$a = (mat) => mat.map((n) => n.toFixed(7)).toString(); + + /** + * Translate the matrix by the given offset vector. + * + * @param {mat4} out - receiving matrix + * @param {mat4} matrix - matrix to translate + * @param {vec3} offsets - offset vector to translate by + * @returns {mat4} out + * @alias module:modeling/maths/mat4.translate + */ + const translate$1 = (out, matrix, offsets) => { + const x = offsets[0]; + const y = offsets[1]; + const z = offsets[2]; + let a00; + let a01; + let a02; + let a03; + let a10; + let a11; + let a12; + let a13; + let a20; + let a21; + let a22; + let a23; + + if (matrix === out) { + // 0-11 assignments are unnecessary + out[12] = matrix[0] * x + matrix[4] * y + matrix[8] * z + matrix[12]; + out[13] = matrix[1] * x + matrix[5] * y + matrix[9] * z + matrix[13]; + out[14] = matrix[2] * x + matrix[6] * y + matrix[10] * z + matrix[14]; + out[15] = matrix[3] * x + matrix[7] * y + matrix[11] * z + matrix[15]; + } else { + a00 = matrix[0]; a01 = matrix[1]; a02 = matrix[2]; a03 = matrix[3]; + a10 = matrix[4]; a11 = matrix[5]; a12 = matrix[6]; a13 = matrix[7]; + a20 = matrix[8]; a21 = matrix[9]; a22 = matrix[10]; a23 = matrix[11]; + + out[0] = a00; out[1] = a01; out[2] = a02; out[3] = a03; + out[4] = a10; out[5] = a11; out[6] = a12; out[7] = a13; + out[8] = a20; out[9] = a21; out[10] = a22; out[11] = a23; + + out[12] = a00 * x + a10 * y + a20 * z + matrix[12]; + out[13] = a01 * x + a11 * y + a21 * z + matrix[13]; + out[14] = a02 * x + a12 * y + a22 * z + matrix[14]; + out[15] = a03 * x + a13 * y + a23 * z + matrix[15]; + } + + return out + }; + + /** + * Represents a 4x4 matrix which is column-major (when typed out it looks row-major). + * @see {@link mat4} for data structure information. + * @module modeling/maths/mat4 + */ + + var index$r = /*#__PURE__*/Object.freeze({ + __proto__: null, + add: add$2, + clone: clone$a, + copy: copy$5, + create: create$c, + invert: invert$2, + equals: equals$8, + fromRotation: fromRotation, + fromScaling: fromScaling, + fromTaitBryanRotation: fromTaitBryanRotation, + fromTranslation: fromTranslation, + fromValues: fromValues$4, + fromVectorRotation: fromVectorRotation, + fromXRotation: fromXRotation, + fromYRotation: fromYRotation, + fromZRotation: fromZRotation, + identity: identity, + isIdentity: isIdentity, + isOnlyTransformScale: isOnlyTransformScale, + isMirroring: isMirroring, + mirrorByPlane: mirrorByPlane, + multiply: multiply$1, + rotate: rotate$2, + rotateX: rotateX$1, + rotateY: rotateY$1, + rotateZ: rotateZ$1, + scale: scale$2, + subtract: subtract$2, + toString: toString$a, + translate: translate$1 + }); + + /** + * Represents a 2D geometry consisting of outlines, where each outline is an ordered list of points. + * @typedef {Object} geom2 + * @property {Array} outlines - list of polygon outlines + * @property {mat4} transforms - transforms to apply to the geometry, see transform() + * @example + * // data structure + * { + * "outlines": [[[-1,-1],[1,-1],[1,1],[-1,1]]], + * "transforms": [1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1] + * } + */ + + /** + * Create a new 2D geometry composed of polygon outlines. + * @param {Array} [outlines] - list of outlines where each outline is an array of points + * @returns {geom2} a new geometry + * @alias module:modeling/geometries/geom2.create + * @example + * let myShape = create([ [[-1,-1], [1,-1], [1,1], [-1,1]] ]) + */ + const create$a = (outlines = []) => ({ + outlines, + transforms: create$c() + }); + + /** + * Calculates the absolute coordinates of the given vector. + * + * @param {vec2} out - receiving vector + * @param {vec2} vector - vector of reference + * @returns {vec2} out + * @alias module:modeling/maths/vec2.abs + */ + const abs = (out, vector) => { + out[0] = Math.abs(vector[0]); + out[1] = Math.abs(vector[1]); + return out + }; + + /** + * Adds the coordinates of two vectors (A+B). + * + * @param {vec2} out - receiving vector + * @param {vec2} a - first operand + * @param {vec2} b - second operand + * @returns {vec2} out + * @alias module:modeling/maths/vec2.add + */ + const add = (out, a, b) => { + out[0] = a[0] + b[0]; + out[1] = a[1] + b[1]; + return out + }; + + /** + * Calculate the angle of the given vector. + * + * @param {vec2} vector - vector of reference + * @returns {Number} angle in radians + * @alias module:modeling/maths/vec2.angleRadians + */ + const angleRadians = (vector) => Math.atan2(vector[1], vector[0]); // y=sin, x=cos + + /** + * Calculate the angle of the given vector. + * + * @param {vec2} vector - vector of reference + * @returns {Number} angle in degrees + * @alias module:modeling/maths/vec2.angleDegrees + */ + const angleDegrees = (vector) => angleRadians(vector) * 57.29577951308232; + + /** + * Represents a two dimensional vector. + * See fromValues(). + * @typedef {Array} vec2 + */ + + /** + * Creates a new vector, initialized to [0,0]. + * + * @returns {vec2} a new vector + * @alias module:modeling/maths/vec2.create + */ + const create$9 = () => [0, 0]; + + /** + * Create a clone of the given vector. + * + * @param {vec2} vector - vector to clone + * @returns {vec2} a new vector + * @alias module:modeling/maths/vec2.clone + */ + const clone$8 = (vector) => { + const out = create$9(); + out[0] = vector[0]; + out[1] = vector[1]; + return out + }; + + /** + * Create a copy of the given vector. + * + * @param {vec2} out - receiving vector + * @param {vec2} vector - source vector + * @returns {vec2} out + * @alias module:modeling/maths/vec2.copy + */ + const copy$3 = (out, vector) => { + out[0] = vector[0]; + out[1] = vector[1]; + return out + }; + + /** + * Computes the cross product (3D) of two vectors. + * + * @param {vec3} out - receiving vector (3D) + * @param {vec2} a - first operand + * @param {vec2} b - second operand + * @returns {vec3} out + * @alias module:modeling/maths/vec2.cross + */ + const cross = (out, a, b) => { + out[0] = 0; + out[1] = 0; + out[2] = a[0] * b[1] - a[1] * b[0]; + return out + }; + + /** + * Calculates the distance between two vectors. + * + * @param {vec2} a - first operand + * @param {vec2} b - second operand + * @returns {Number} distance + * @alias module:modeling/maths/vec2.distance + */ + const distance = (a, b) => { + const x = b[0] - a[0]; + const y = b[1] - a[1]; + return Math.sqrt(x * x + y * y) + }; + + /** + * Divides the coordinates of two vectors (A/B). + * + * @param {vec2} out - receiving vector + * @param {vec2} a - first operand + * @param {vec2} b - second operand + * @returns {vec2} out + * @alias module:modeling/maths/vec2.divide + */ + const divide = (out, a, b) => { + out[0] = a[0] / b[0]; + out[1] = a[1] / b[1]; + return out + }; + + /** + * Calculates the dot product of two vectors. + * + * @param {vec2} a - first operand + * @param {vec2} b - second operand + * @returns {Number} dot product + * @alias module:modeling/maths/vec2.dot + */ + const dot$1 = (a, b) => a[0] * b[0] + a[1] * b[1]; + + /** + * Compare the given vectors for equality. + * + * @param {vec2} a - first operand + * @param {vec2} b - second operand + * @returns {Boolean} true if a and b are equal + * @alias module:modeling/maths/vec2.equals + */ + const equals$6 = (a, b) => (a[0] === b[0]) && (a[1] === b[1]); + + /** + * Create a new vector in the direction of the given angle. + * + * @param {vec2} out - receiving vector + * @param {Number} radians - angle in radians + * @returns {vec2} out + * @alias module:modeling/maths/vec2.fromAngleRadians + */ + const fromAngleRadians = (out, radians) => { + out[0] = cos(radians); + out[1] = sin(radians); + return out + }; + + /** + * Create a new vector in the direction of the given angle. + * + * @param {vec2} out - receiving vector + * @param {Number} degrees - angle in degrees + * @returns {vec2} out + * @alias module:modeling/maths/vec2.fromAngleDegrees + */ + const fromAngleDegrees = (out, degrees) => fromAngleRadians(out, degrees * 0.017453292519943295); + + /** + * Create a vector from a single scalar value. + * + * @param {vec2} out - receiving vector + * @param {Number} scalar - the scalar value + * @returns {vec2} out + * @alias module:modeling/maths/vec2.fromScalar + */ + const fromScalar$1 = (out, scalar) => { + out[0] = scalar; + out[1] = scalar; + return out + }; + + /** + * Creates a new vector initialized with the given values. + * + * @param {Number} x - X coordinate + * @param {Number} y - Y coordinate + * @returns {vec2} a new vector + * @alias module:modeling/maths/vec2.fromValues + */ + const fromValues$2 = (x, y) => { + const out = create$9(); + out[0] = x; + out[1] = y; + return out + }; + + /** + * Calculates the length of the given vector. + * + * @param {vec2} vector - vector of reference + * @returns {Number} length + * @alias module:modeling/maths/vec2.length + */ + const length = (vector) => Math.sqrt(vector[0] * vector[0] + vector[1] * vector[1]); + + /** + * Performs a linear interpolation between two vectors. + * + * @param {vec2} out - receiving vector + * @param {vec2} a - first operand + * @param {vec2} b - second operand + * @param {Number} t - interpolation amount between the two vectors + * @returns {vec2} out + * @alias module:modeling/maths/vec2.lerp + */ + const lerp = (out, a, b, t) => { + const ax = a[0]; + const ay = a[1]; + out[0] = ax + t * (b[0] - ax); + out[1] = ay + t * (b[1] - ay); + return out + }; + + /** + * Returns the maximum coordinates of two vectors. + * + * @param {vec2} out - receiving vector + * @param {vec2} a - first operand + * @param {vec2} b - second operand + * @returns {vec2} out + * @alias module:modeling/maths/vec2.max + */ + const max$1 = (out, a, b) => { + out[0] = Math.max(a[0], b[0]); + out[1] = Math.max(a[1], b[1]); + return out + }; + + /** + * Returns the minimum coordinates of two vectors. + * + * @param {vec2} out - receiving vector + * @param {vec2} a - first operand + * @param {vec2} b - second operand + * @returns {vec2} out + * @alias module:modeling/maths/vec2.min + */ + const min$1 = (out, a, b) => { + out[0] = Math.min(a[0], b[0]); + out[1] = Math.min(a[1], b[1]); + return out + }; + + /** + * Multiplies the coordinates of two vectors (A*B). + * + * @param {vec2} out - receiving vector + * @param {vec2} a - first operand + * @param {vec2} b - second operand + * @returns {vec2} out + * @alias module:modeling/maths/vec2.multiply + */ + const multiply = (out, a, b) => { + out[0] = a[0] * b[0]; + out[1] = a[1] * b[1]; + return out + }; + + /** + * Negates the coordinates of the given vector. + * + * @param {vec2} out - receiving vector + * @param {vec2} vector - vector to negate + * @returns {vec2} out + * @alias module:modeling/maths/vec2.negate + */ + const negate = (out, vector) => { + out[0] = -vector[0]; + out[1] = -vector[1]; + return out + }; + + /** + * Rotates the given vector by the given angle. + * + * @param {vec2} out - receiving vector + * @param {vec2} vector - vector to rotate + * @param {vec2} origin - origin of the rotation + * @param {Number} radians - angle of rotation (radians) + * @returns {vec2} out + * @alias module:modeling/maths/vec2.rotate + */ + const rotate$1 = (out, vector, origin, radians) => { + const x = vector[0] - origin[0]; + const y = vector[1] - origin[1]; + const c = Math.cos(radians); + const s = Math.sin(radians); + + out[0] = x * c - y * s + origin[0]; + out[1] = x * s + y * c + origin[1]; + + return out + }; + + /** + * Calculates the normal of the given vector. + * The normal value is the given vector rotated 90 degrees. + * + * @param {vec2} out - receiving vector + * @param {vec2} vector - given value + * @returns {vec2} out + * @alias module:modeling/maths/vec2.normal + */ + const normal = (out, vector) => rotate$1(out, vector, create$9(), (TAU / 4)); + + /** + * Normalize the given vector. + * + * @param {vec2} out - receiving vector + * @param {vec2} vector - vector to normalize + * @returns {vec2} out + * @alias module:modeling/maths/vec2.normalize + */ + const normalize = (out, vector) => { + const x = vector[0]; + const y = vector[1]; + let len = x * x + y * y; + if (len > 0) { + len = 1 / Math.sqrt(len); + } + out[0] = x * len; + out[1] = y * len; + return out + }; + + /** + * Scales the coordinates of the given vector. + * + * @param {vec2} out - receiving vector + * @param {vec2} vector - vector to scale + * @param {Number} amount - amount to scale + * @returns {vec2} out + * @alias module:modeling/maths/vec2.scale + */ + const scale$1 = (out, vector, amount) => { + out[0] = vector[0] * amount; + out[1] = vector[1] * amount; + return out + }; + + /** + * Snaps the coordinates of the given vector to the given epsilon. + * + * @param {vec2} out - receiving vector + * @param {vec2} vector - vector to snap + * @param {Number} epsilon - epsilon of precision, less than 0 + * @returns {vec2} out + * @alias module:modeling/maths/vec2.snap + */ + const snap$1 = (out, vector, epsilon) => { + out[0] = Math.round(vector[0] / epsilon) * epsilon + 0; + out[1] = Math.round(vector[1] / epsilon) * epsilon + 0; + return out + }; + + /** + * Calculates the squared distance between the given vectors. + * + * @param {vec2} a - first operand + * @param {vec2} b - second operand + * @returns {Number} squared distance + * @alias module:modeling/maths/vec2.squaredDistance + */ + const squaredDistance = (a, b) => { + const x = b[0] - a[0]; + const y = b[1] - a[1]; + return x * x + y * y + }; + + /** + * Calculates the squared length of the given vector. + * + * @param {vec2} vector - vector of reference + * @returns {Number} squared length + * @alias module:modeling/maths/vec2.squaredLength + */ + const squaredLength = (vector) => { + const x = vector[0]; + const y = vector[1]; + return x * x + y * y + }; + + /** + * Subtracts the coordinates of two vectors (A-B). + * + * @param {vec2} out - receiving vector + * @param {vec2} a - first operand + * @param {vec2} b - second operand + * @returns {vec2} out + * @alias module:modeling/maths/vec2.subtract + */ + const subtract$1 = (out, a, b) => { + out[0] = a[0] - b[0]; + out[1] = a[1] - b[1]; + return out + }; + + /** + * Convert the given vector to a representative string. + * + * @param {vec2} vector - vector of reference + * @returns {String} string representation + * @alias module:modeling/maths/vec2.toString + */ + const toString$9 = (vector) => `[${vector[0].toFixed(7)}, ${vector[1].toFixed(7)}]`; + + /** + * Transforms the given vector using the given matrix. + * + * @param {vec2} out - receiving vector + * @param {vec2} vector - vector to transform + * @param {mat4} matrix - matrix to transform with + * @returns {vec2} out + * @alias module:modeling/maths/vec2.transform + */ + const transform$b = (out, vector, matrix) => { + const x = vector[0]; + const y = vector[1]; + out[0] = matrix[0] * x + matrix[4] * y + matrix[12]; + out[1] = matrix[1] * x + matrix[5] * y + matrix[13]; + return out + }; + + /** + * Represents a two dimensional vector. + * @module modeling/maths/vec2 + */ + + var index$q = /*#__PURE__*/Object.freeze({ + __proto__: null, + abs: abs, + add: add, + angle: angleRadians, + angleDegrees: angleDegrees, + angleRadians: angleRadians, + clone: clone$8, + copy: copy$3, + create: create$9, + cross: cross, + distance: distance, + divide: divide, + dot: dot$1, + equals: equals$6, + fromAngleDegrees: fromAngleDegrees, + fromAngleRadians: fromAngleRadians, + fromScalar: fromScalar$1, + fromValues: fromValues$2, + length: length, + lerp: lerp, + max: max$1, + min: min$1, + multiply: multiply, + negate: negate, + normal: normal, + normalize: normalize, + rotate: rotate$1, + scale: scale$1, + snap: snap$1, + squaredDistance: squaredDistance, + squaredLength: squaredLength, + subtract: subtract$1, + toString: toString$9, + transform: transform$b + }); + + /* + * Create a list of edges which SHARE points. + * This allows the edges to be traversed in order. + */ + const toSharedPoints = (sides) => { + const unique = new Map(); // {key: point} + const getUniquePoint = (point) => { + const key = point.toString(); + if (unique.has(key)) { + return unique.get(key) + } else { + unique.set(key, point); + return point + } + }; + + return sides.map((side) => side.map(getUniquePoint)) + }; + + /* + * Convert a list of sides into a map from point to edges. + */ + const toPointMap = (sides) => { + const pointMap = new Map(); + // first map to edges with shared vertices + const edges = toSharedPoints(sides); + // construct adjacent edges map + edges.forEach((edge) => { + if (pointMap.has(edge[0])) { + pointMap.get(edge[0]).push(edge); + } else { + pointMap.set(edge[0], [edge]); + } + }); + return pointMap + }; + + /** + * Create a new 2D geometry from a list of sides. + * @param {Array} sides - list of sides to create outlines from + * @returns {geom2} a new geometry + * + * @example + * let geometry = fromSides([[[0, 0], [1, 0]], [[1, 0], [1, 1]], [[1, 1], [0, 0]]]) + */ + const fromSides = (sides) => { + const pointMap = toPointMap(sides); // {point: [edges]} + const outlines = []; + while (true) { + let startSide; + for (const [point, edges] of pointMap) { + startSide = edges.shift(); + if (!startSide) { + pointMap.delete(point); + continue + } + break + } + if (startSide === undefined) break // all starting sides have been visited + + const connectedPoints = []; + const startPoint = startSide[0]; + while (true) { + connectedPoints.push(startSide[0]); + const nextPoint = startSide[1]; + if (nextPoint === startPoint) break // the outline has been closed + const nextPossibleSides = pointMap.get(nextPoint); + if (!nextPossibleSides) { + throw new Error(`geometry is not closed at point ${nextPoint}`) + } + const nextSide = popNextSide(startSide, nextPossibleSides); + if (nextPossibleSides.length === 0) { + pointMap.delete(nextPoint); + } + startSide = nextSide; + } // inner loop + + // due to the logic of fromPoints() + // move the first point to the last + if (connectedPoints.length > 0) { + connectedPoints.push(connectedPoints.shift()); + } + outlines.push(connectedPoints); + } // outer loop + pointMap.clear(); + return create$a(outlines) + }; + + // find the first counter-clockwise edge from startSide and pop from nextSides + const popNextSide = (startSide, nextSides) => { + if (nextSides.length === 1) { + return nextSides.pop() + } + const v0 = create$9(); + const startAngle = angleDegrees(subtract$1(v0, startSide[1], startSide[0])); + let bestAngle; + let bestIndex; + nextSides.forEach((nextSide, index) => { + const nextAngle = angleDegrees(subtract$1(v0, nextSide[1], nextSide[0])); + let angle = nextAngle - startAngle; + if (angle < -180) angle += 360; + if (angle >= 180) angle -= 360; + if (bestIndex === undefined || angle > bestAngle) { + bestIndex = index; + bestAngle = angle; + } + }); + const nextSide = nextSides[bestIndex]; + nextSides.splice(bestIndex, 1); // remove side from list + return nextSide + }; + + /** + * Create a new 2D geometry from the given compact binary data. + * @param {Array} data - compact binary data + * @returns {geom2} a new geometry + * @alias module:modeling/geometries/geom2.fromCompactBinary + */ + const fromCompactBinary$2 = (data) => { + if (data[0] !== 0) throw new Error('invalid compact binary data') + + const created = create$a(); + + created.transforms = clone$a(data.slice(1, 17)); + + for (let i = 21; i < data.length;) { + const length = data[i++]; // number of points for this polygon + if (length < 0 || i + length * 2 > data.length) { + throw new Error('invalid compact binary data') + } + const outline = []; + for (let j = 0; j < length; j++) { + const x = data[i + j * 2]; + const y = data[i + j * 2 + 1]; + outline.push(fromValues$2(x, y)); + } + created.outlines.push(outline); + i += length * 2; + } + + // transfer known properties, i.e. color + if (data[17] >= 0) { + created.color = [data[17], data[18], data[19], data[20]]; + } + // TODO: how about custom properties or fields ? + return created + }; + + /** + * Determine if the given object is a 2D geometry. + * @param {Object} object - the object to interrogate + * @returns {Boolean} true, if the object matches a geom2 based object + * @alias module:modeling/geometries/geom2.isA + */ + const isA$5 = (object) => { + if (object && typeof object === 'object') { + if ('outlines' in object && 'transforms' in object) { + if (Array.isArray(object.outlines) && 'length' in object.transforms) { + return true + } + } + } + return false + }; + + /** + * Reverses the given geometry so that the outline points are flipped in the opposite order. + * This swaps the left (interior) and right (exterior) edges. + * @param {geom2} geometry - the geometry to reverse + * @returns {geom2} the new reversed geometry + * @alias module:modeling/geometries/geom2.reverse + * + * @example + * let newGeometry = reverse(geometry) + */ + const reverse$5 = (geometry) => { + const reversed = clone$b(geometry); + reversed.outlines = reversed.outlines.map((outline) => outline.slice().reverse()); + return reversed + }; + + /* + * Apply the transforms of the given geometry. + * NOTE: This function must be called BEFORE exposing any data. See toOutlines(). + * @param {geom2} geometry - the geometry to transform + * @returns {geom2} the given geometry + * + * @example + * geometry = applyTransforms(geometry) + */ + const applyTransforms$2 = (geometry) => { + if (isIdentity(geometry.transforms)) return geometry + + // apply transforms to each side + geometry.outlines = geometry.outlines.map((outline) => outline.map((point) => transform$b(create$9(), point, geometry.transforms))); + geometry.transforms = create$c(); + return geometry + }; + + /** + * Create the outline(s) of the given geometry. + * @param {geom2} geometry - geometry to create outlines from + * @returns {Array} an array of outlines, where each outline is an array of ordered points + * @alias module:modeling/geometries/geom2.toOutlines + * + * @example + * let geometry = subtract(rectangle({size: [5, 5]}), rectangle({size: [3, 3]})) + * let outlines = toOutlines(geometry) // returns two outlines + */ + const toOutlines = (geometry) => applyTransforms$2(geometry).outlines; + + /** + * Produces an array of points from the given geometry. + * The returned array should not be modified as the points are shared with the geometry. + * NOTE: The points returned do NOT define an order. Use toOutlines() for ordered points. + * @param {geom2} geometry - the geometry + * @returns {Array} an array of points + * @alias module:modeling/geometries/geom2.toPoints + * + * @example + * let sharedPoints = toPoints(geometry) + */ + const toPoints$3 = (geometry) => { + const points = []; + toOutlines(geometry).forEach((outline) => { + outline.forEach((point) => { + points.push(point); + }); + }); + return points + }; + + /** + * Produces an array of sides from the given geometry. + * The returned array should not be modified as the data is shared with the geometry. + * NOTE: The sides returned do NOT define an order. Use toOutlines() for ordered points. + * @param {geom2} geometry - the geometry + * @returns {Array} an array of sides + * @alias module:modeling/geometries/geom2.toSides + * + * @example + * let sharedSides = toSides(geometry) + */ + const toSides = (geometry) => { + const sides = []; + toOutlines(geometry).forEach((outline) => { + outline.forEach((point, i) => { + const j = (i + 1) % outline.length; + sides.push([point, outline[j]]); + }); + }); + return sides + }; + + /** + * Create a string representing the contents of the given geometry. + * @param {geom2} geometry - the geometry + * @returns {String} a representative string + * @alias module:modeling/geometries/geom2.toString + * + * @example + * console.out(toString(geometry)) + */ + const toString$8 = (geometry) => { + const outlines = toOutlines(geometry); + let result = 'geom2 (' + outlines.length + ' outlines):\n[\n'; + outlines.forEach((outline) => { + result += ' [' + outline.map(toString$9).join() + ']\n'; + }); + result += ']\n'; + return result + }; + + /** + * Produces a compact binary representation from the given geometry. + * @param {geom2} geometry - the geometry + * @returns {TypedArray} compact binary representation + * @alias module:modeling/geometries/geom2.toCompactBinary + */ + const toCompactBinary$2 = (geometry) => { + const transforms = geometry.transforms; + let color = [-1, -1, -1, -1]; + if (geometry.color) color = geometry.color; + + // Compute array size + let size = 21; + geometry.outlines.forEach((outline) => { + size += 2 * outline.length + 1; + }); + + // FIXME why Float32Array? + const compacted = new Float32Array(size); // type + transforms + color + points + + compacted[0] = 0; // type code: 0 => geom2, 1 => geom3 , 2 => path2 + + compacted[1] = transforms[0]; + compacted[2] = transforms[1]; + compacted[3] = transforms[2]; + compacted[4] = transforms[3]; + compacted[5] = transforms[4]; + compacted[6] = transforms[5]; + compacted[7] = transforms[6]; + compacted[8] = transforms[7]; + compacted[9] = transforms[8]; + compacted[10] = transforms[9]; + compacted[11] = transforms[10]; + compacted[12] = transforms[11]; + compacted[13] = transforms[12]; + compacted[14] = transforms[13]; + compacted[15] = transforms[14]; + compacted[16] = transforms[15]; + + compacted[17] = color[0]; + compacted[18] = color[1]; + compacted[19] = color[2]; + compacted[20] = color[3]; + + let index = 21; + geometry.outlines.forEach((outline) => { + compacted[index++] = outline.length; + outline.forEach((point) => { + compacted[index++] = point[0]; + compacted[index++] = point[1]; + }); + }); + + // TODO: how about custom properties or fields ? + return compacted + }; + + /** + * Transform the given geometry using the given matrix. + * This is a lazy transform of the outlines, as this function only adjusts the transforms. + * The transforms are applied when accessing the outlines via toOutlines(). + * @param {mat4} matrix - the matrix to transform with + * @param {geom2} geometry - the geometry to transform + * @returns {geom2} a new geometry + * @alias module:modeling/geometries/geom2.transform + * + * @example + * let newGeometry = transform(fromZRotation(TAU / 4), geometry) + */ + const transform$a = (matrix, geometry) => { + const transforms = multiply$1(create$c(), matrix, geometry.transforms); + return Object.assign({}, geometry, { transforms }) + }; + + /** + * Calculate the intersect point of the two line segments (p1-p2 and p3-p4). + * If the endpointTouch parameter is false, intersections at segment end points are excluded. + * Note: If the line segments do NOT intersect then undefined is returned. + * @see http://paulbourke.net/geometry/pointlineplane/ + * @param {vec2} p1 - first point of first line segment + * @param {vec2} p2 - second point of first line segment + * @param {vec2} p3 - first point of second line segment + * @param {vec2} p4 - second point of second line segment + * @param {Boolean} endpointTouch - include intersections at segment endpoints + * @returns {vec2} intersection point of the two line segments, or undefined + * @alias module:modeling/maths/utils.intersect + */ + const intersect$1 = (p1, p2, p3, p4, endpointTouch = true) => { + // Check if none of the lines are of length 0 + if ((p1[0] === p2[0] && p1[1] === p2[1]) || (p3[0] === p4[0] && p3[1] === p4[1])) { + return undefined + } + + const denominator = ((p4[1] - p3[1]) * (p2[0] - p1[0]) - (p4[0] - p3[0]) * (p2[1] - p1[1])); + + // Lines are parallel + if (Math.abs(denominator) < Number.MIN_VALUE) { + return undefined + } + + const ua = ((p4[0] - p3[0]) * (p1[1] - p3[1]) - (p4[1] - p3[1]) * (p1[0] - p3[0])) / denominator; + const ub = ((p2[0] - p1[0]) * (p1[1] - p3[1]) - (p2[1] - p1[1]) * (p1[0] - p3[0])) / denominator; + + // is the intersection along the segments + if (ua < 0 || ua > 1 || ub < 0 || ub > 1) { + return undefined + } + + // is the intersection at the end of a segment + if (!endpointTouch && (ua === 0 || ua === 1 || ub === 0 || ub === 1)) { + return undefined + } + + // Return the x and y coordinates of the intersection + const x = p1[0] + ua * (p2[0] - p1[0]); + const y = p1[1] + ua * (p2[1] - p1[1]); + + return [x, y] + }; + + /** + * Determine if the given object is a valid geom2. + * Checks for closedness, self-edges, and valid data points. + * + * **If the geometry is not valid, an exception will be thrown with details of the geometry error.** + * + * @param {Object} object - the object to interrogate + * @throws {Error} error if the geometry is not valid + * @alias module:modeling/geometries/geom2.validate + */ + const validate$4 = (object) => { + if (!isA$5(object)) { + throw new Error('invalid geom2 structure') + } + + object.outlines.forEach((outline, i) => { + if (outline.length < 3) { + throw new Error(`geom2 outline ${i} must contain at least 3 points`) + } + // check for duplicate points + for (let i = 0; i < outline.length; i++) { + const j = (i + 1) % outline.length; + if (equals$6(outline[i], outline[j])) { + throw new Error(`geom2 outline ${i} found duplicate point ${outline[i]}`) + } + } + }); + + // check for self-intersection + toOutlines(object).forEach((outline, i) => { + // check for intersection between [a1, a2] and [b1, b2] + for (let a1 = 0; a1 < outline.length; a1++) { + const a2 = (a1 + 1) % outline.length; + for (let b1 = 0; b1 < outline.length; b1++) { + const b2 = (b1 + 1) % outline.length; + if (a1 !== b1) { + const int = intersect$1(outline[a1], outline[a2], outline[b1], outline[b2], false); + if (int) { + throw new Error(`geom2 outline ${i} self intersection at ${int}`) + } + } + } + } + }); + + // check transforms + if (!object.transforms.every(Number.isFinite)) { + throw new Error(`geom2 invalid transforms ${object.transforms}`) + } + }; + + /** + * Represents a 2D geometry consisting of outlines, where each outline is an ordered list of points. + * The outline is always closed between the first and last points. + * @see {@link geom2} for data structure information. + * @module modeling/geometries/geom2 + * + * @example + * import { geometries } from '@jscad/modeling' + * let myShape = geometries.geom2.create([ [[-1,-1], [1,-1], [1,1], [-1,1]] ]) + */ + + var index$p = /*#__PURE__*/Object.freeze({ + __proto__: null, + clone: clone$b, + create: create$a, + fromSides: fromSides, + fromCompactBinary: fromCompactBinary$2, + isA: isA$5, + reverse: reverse$5, + toOutlines: toOutlines, + toPoints: toPoints$3, + toSides: toSides, + toString: toString$8, + toCompactBinary: toCompactBinary$2, + transform: transform$a, + validate: validate$4 + }); + + /** + * Performs a shallow clone of the given geometry. + * @param {geom3} geometry - the geometry to clone + * @returns {geom3} a new geometry + * @alias module:modeling/geometries/geom3.clone + */ + const clone$7 = (geometry) => Object.assign({}, geometry); + + /** + * Represents a 3D geometry consisting of a list of polygons. + * @typedef {Object} geom3 + * @property {Array} polygons - list of polygons, each polygon containing three or more vertices + * @property {mat4} transforms - transforms to apply to the polygons, see transform() + * @example + * { + * "polygons": [ + * {"vertices": [[-1,-1,-1], [-1,-1,1], [-1,1,1], [-1,1,-1]]}, + * {"vertices": [[1,-1,-1], [1,1,-1], [1,1,1], [1,-1,1]]}, + * {"vertices": [[-1,-1,-1], [1,-1,-1], [1,-1,1], [-1,-1,1]]}, + * {"vertices": [[-1,1,-1], [-1,1,1], [1,1,1], [1,1,-1]]}, + * {"vertices": [[-1,-1,-1], [-1,1,-1], [1,1,-1], [1,-1,-1]]}, + * {"vertices": [[-1,-1,1], [1,-1,1], [1,1,1], [-1,1,1]]} + * ], + * "transforms": [1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1], + * } + */ + + /** + * Create a new 3D geometry composed of the given polygons. + * @param {Array} [polygons] - list of polygons, or undefined + * @returns {geom3} a new geometry + * @alias module:modeling/geometries/geom3.create + */ + const create$8 = (polygons) => { + if (polygons === undefined) { + polygons = []; // empty contents + } + return { + polygons, + transforms: create$c() + } + }; + + /** + * Represents a convex 3D polygon. The vertices used to initialize a polygon must + * be coplanar and form a convex shape. The vertices do not have to be `vec3` + * instances but they must behave similarly. + * @typedef {Object} poly3 + * @property {Array} vertices - list of ordered vertices (3D) + * @example + * {"vertices": [[0,0,0], [4,0,0], [4,3,12]]} + */ + + /** + * Creates a new 3D polygon with initial values. + * + * @param {Array} [vertices] - a list of vertices (3D) + * @returns {poly3} a new polygon + * @alias module:modeling/geometries/poly3.create + * @example + * const polygon = create([[1, 0], [0, 1], [0, 0]]) + */ + const create$7 = (vertices) => { + if (vertices === undefined || vertices.length < 3) { + vertices = []; // empty contents + } + return { vertices } + }; + + /** + * Create a deep clone of the given polygon + * + * @param {poly3} [out] - receiving polygon + * @param {poly3} polygon - polygon to clone + * @returns {poly3} a new polygon + * @alias module:modeling/geometries/poly3.clone + */ + const clone$6 = (...params) => { + let out; + let poly3; + if (params.length === 1) { + out = create$7(); + poly3 = params[0]; + } else { + out = params[0]; + poly3 = params[1]; + } + // deep clone of vertices + out.vertices = poly3.vertices.map((vec) => clone$9(vec)); + return out + }; + + /** + * Create a polygon from the given vertices and plane. + * NOTE: No checks are performed on the parameters. + * @param {Array} vertices - list of vertices (3D) + * @param {plane} plane - plane of the polygon + * @returns {poly3} a new polygon + * @alias module:modeling/geometries/poly3.fromVerticesAndPlane + */ + const fromVerticesAndPlane = (vertices, plane) => { + const poly = create$7(vertices); + poly.plane = plane; // retain the plane for later use + return poly + }; + + /** + * Represents a four dimensional vector. + * See fromValues(). + * @typedef {Array} vec4 + */ + + /** + * Creates a new vector initialized to [0,0,0,0]. + * + * @returns {vec4} a new vector + * @alias module:modeling/maths/vec4.create + */ + const create$6 = () => [0, 0, 0, 0]; + + /** + * Create a clone of the given vector. + * + * @param {vec4} vector - source vector + * @returns {vec4} a new vector + * @alias module:modeling/maths/vec4.clone + */ + const clone$5 = (vector) => { + const out = create$6(); + out[0] = vector[0]; + out[1] = vector[1]; + out[2] = vector[2]; + out[3] = vector[3]; + return out + }; + + /** + * Create a copy of the given vector. + * + * @param {vec4} out - receiving vector + * @param {vec4} vector - source vector + * @returns {vec4} out + * @alias module:modeling/maths/vec4.copy + */ + const copy$2 = (out, vector) => { + out[0] = vector[0]; + out[1] = vector[1]; + out[2] = vector[2]; + out[3] = vector[3]; + return out + }; + + /** + * Compare the given vectors for equality. + * + * @param {vec4} a - first vector + * @param {vec4} b - second vector + * @return {Boolean} true if vectors are equal + * @alias module:modeling/maths/vec4.equals + */ + const equals$5 = (a, b) => ((a[0] === b[0]) && (a[1] === b[1]) && (a[2] === b[2]) && (a[3] === b[3])); + + /** + * Flip the given plane. + * + * @param {plane} out - receiving plane + * @param {plane} plane - plane to flip + * @return {plane} out + * @alias module:modeling/maths/plane.flip + */ + const flip = (out, plane) => { + out[0] = -plane[0]; + out[1] = -plane[1]; + out[2] = -plane[2]; + out[3] = -plane[3]; + return out + }; + + /** + * Represents a plane in 3D coordinate space as determined by a normal (perpendicular to the plane) + * and distance from 0,0,0. + * + * The contents of the array are a normal [0,1,2] and a distance [3]. + * @see https://en.wikipedia.org/wiki/Hesse_normal_form + * @typedef {Array} plane + */ + + /** + * Create a new plane from the given normal and point values. + * + * @param {plane} out - receiving plane + * @param {vec3} normal - directional vector + * @param {vec3} point - origin of plane + * @returns {plane} out + * @alias module:modeling/maths/plane.fromNormalAndPoint + */ + const fromNormalAndPoint = (out, normal, point) => { + const u = normalize$1(create$b(), normal); + const w = dot$2(point, u); + + out[0] = u[0]; + out[1] = u[1]; + out[2] = u[2]; + out[3] = w; + return out + }; + + /** + * Creates a new vector with the given values. + * + * @param {Number} x - X component + * @param {Number} y - Y component + * @param {Number} z - Z component + * @param {Number} w - W component + * @returns {vec4} a new vector + * @alias module:modeling/maths/vec4.fromValues + */ + const fromValues$1 = (x, y, z, w) => { + const out = create$6(); + out[0] = x; + out[1] = y; + out[2] = z; + out[3] = w; + return out + }; + + /** + * Create a plane from the given points. + * + * @param {plane} out - receiving plane + * @param {Array} vertices - points on the plane + * @returns {plane} out + * @alias module:modeling/maths/plane.fromPoints + */ + const fromPoints$4 = (out, ...vertices) => { + const len = vertices.length; + + // Calculate normal vector for a single vertex + // Inline to avoid allocations + const ba = create$b(); + const ca = create$b(); + const vertexNormal = (index) => { + const a = vertices[index]; + const b = vertices[(index + 1) % len]; + const c = vertices[(index + 2) % len]; + subtract$3(ba, b, a); // ba = b - a + subtract$3(ca, c, a); // ca = c - a + cross$1(ba, ba, ca); // ba = ba x ca + normalize$1(ba, ba); + return ba + }; + + out[0] = 0; + out[1] = 0; + out[2] = 0; + if (len === 3) { + // optimization for triangles, which are always coplanar + copy$4(out, vertexNormal(0)); + } else { + // sum of vertex normals + vertices.forEach((v, i) => { + add$1(out, out, vertexNormal(i)); + }); + // renormalize normal vector + normalize$1(out, out); + } + out[3] = dot$2(out, vertices[0]); + return out + }; + + /** + * Create a new plane from the given points like fromPoints, + * but allow the vectors to be on one point or one line. + * In such a case, a random plane through the given points is constructed. + * + * @param {plane} out - receiving plane + * @param {vec3} a - 3D point + * @param {vec3} b - 3D point + * @param {vec3} c - 3D point + * @returns {plane} out + * @alias module:modeling/maths/plane.fromPointsRandom + */ + const fromPointsRandom = (out, a, b, c) => { + let ba = subtract$3(create$b(), b, a); + let ca = subtract$3(create$b(), c, a); + if (length$1(ba) < EPS) { + ba = orthogonal(ba, ca); + } + if (length$1(ca) < EPS) { + ca = orthogonal(ca, ba); + } + let normal = cross$1(create$b(), ba, ca); + if (length$1(normal) < EPS) { + // this would mean that ba == ca.negated() + ca = orthogonal(ca, ba); + normal = cross$1(normal, ba, ca); + } + normal = normalize$1(normal, normal); + const w = dot$2(normal, a); + + out[0] = normal[0]; + out[1] = normal[1]; + out[2] = normal[2]; + out[3] = w; + return out + }; + + /** + * Project the given point on to the given plane. + * + * @param {plane} plane - plane of reference + * @param {vec3} point - point of reference + * @return {vec3} projected point on plane + * @alias module:modeling/maths/plane.projectionOfPoint + */ + const projectionOfPoint = (plane, point) => { + const a = point[0] * plane[0] + point[1] * plane[1] + point[2] * plane[2] - plane[3]; + const x = point[0] - a * plane[0]; + const y = point[1] - a * plane[1]; + const z = point[2] - a * plane[2]; + return fromValues$3(x, y, z) + }; + + /** + * Calculate the distance to the given point. + * + * @param {plane} plane - plane of reference + * @param {vec3} point - point of reference + * @return {Number} signed distance to point + * @alias module:modeling/maths/plane.signedDistanceToPoint + */ + const signedDistanceToPoint = (plane, point) => dot$2(plane, point) - plane[3]; + + /** + * Convert the given vector to a representative string. + * + * @param {vec4} vec - vector to convert + * @returns {String} representative string + * @alias module:modeling/maths/vec4.toString + */ + const toString$7 = (vec) => `(${vec[0].toFixed(9)}, ${vec[1].toFixed(9)}, ${vec[2].toFixed(9)}, ${vec[3].toFixed(9)})`; + + /** + * Transform the given plane using the given matrix + * + * @param {plane} out - receiving plane + * @param {plane} plane - plane to transform + * @param {mat4} matrix - matrix to transform with + * @return {plane} out + * @alias module:modeling/maths/plane.transform + */ + const transform$9 = (out, plane, matrix) => { + const isMirror = isMirroring(matrix); + // get two vectors in the plane: + const r = orthogonal(create$b(), plane); + const u = cross$1(r, plane, r); + const v = cross$1(create$b(), plane, u); + // get 3 points in the plane: + let point1 = fromScalar$2(create$b(), plane[3]); + multiply$2(point1, point1, plane); + let point2 = add$1(create$b(), point1, u); + let point3 = add$1(create$b(), point1, v); + // transform the points: + point1 = transform$c(point1, point1, matrix); + point2 = transform$c(point2, point2, matrix); + point3 = transform$c(point3, point3, matrix); + // and create a new plane from the transformed points: + fromPoints$4(out, point1, point2, point3); + if (isMirror) { + // the transform is mirroring so flip the plane + flip(out, out); + } + return out + }; + + /** + * Represents a plane in 3D coordinate space as determined by a normal (perpendicular to the plane) + * and distance from 0,0,0. + * @see {@link plane} for data structure information. + * @module modeling/maths/plane + */ + + var index$o = /*#__PURE__*/Object.freeze({ + __proto__: null, + clone: clone$5, + copy: copy$2, + create: create$6, + equals: equals$5, + flip: flip, + fromNormalAndPoint: fromNormalAndPoint, + fromValues: fromValues$1, + fromPoints: fromPoints$4, + fromPointsRandom: fromPointsRandom, + projectionOfPoint: projectionOfPoint, + signedDistanceToPoint: signedDistanceToPoint, + toString: toString$7, + transform: transform$9 + }); + + /** + * Invert the give polygon to face the opposite direction. + * + * @param {poly3} polygon - the polygon to invert + * @returns {poly3} a new poly3 + * @alias module:modeling/geometries/poly3.invert + */ + const invert$1 = (polygon) => { + const vertices = polygon.vertices.slice().reverse(); + const inverted = create$7(vertices); + if (polygon.plane) { + // Flip existing plane to save recompute + inverted.plane = flip(create$6(), polygon.plane); + } + return inverted + }; + + /** + * Determine if the given object is a polygon. + * @param {Object} object - the object to interrogate + * @returns {Boolean} true if the object matches a poly3 + * @alias module:modeling/geometries/poly3.isA + */ + const isA$4 = (object) => { + if (object && typeof object === 'object') { + if ('vertices' in object) { + if (Array.isArray(object.vertices)) { + return true + } + } + } + return false + }; + + /** + * Check whether the given polygon is convex. + * @param {poly3} polygon - the polygon to interrogate + * @returns {Boolean} true if convex + * @alias module:modeling/geometries/poly3.isConvex + */ + const isConvex$1 = (polygon) => areVerticesConvex(polygon.vertices); + + const areVerticesConvex = (vertices) => { + const numVertices = vertices.length; + if (numVertices > 2) { + // note: plane ~= normal vertex + const normal = fromPoints$4(create$6(), ...vertices); + let prevPrevPos = vertices[numVertices - 2]; + let prevPos = vertices[numVertices - 1]; + for (let i = 0; i < numVertices; i++) { + const pos = vertices[i]; + if (!isConvexVertex(prevPrevPos, prevPos, pos, normal)) { + return false + } + prevPrevPos = prevPos; + prevPos = pos; + } + } + return true + }; + + // calculate whether three vertices form a convex corner + // prevVertex, vertex, nextVertex: the 3 coordinates (Vector3D instances) + // normal: the normal vector of the plane + const isConvexVertex = (prevVertex, vertex, nextVertex, normal) => { + const crossProduct = cross$1( + create$b(), + subtract$3(create$b(), vertex, prevVertex), + subtract$3(create$b(), nextVertex, vertex) + ); + const crossDotNormal = dot$2(crossProduct, normal); + return crossDotNormal >= 0 + }; + + const plane = (polygon) => { + if (!polygon.plane) { + polygon.plane = fromPoints$4(create$6(), ...polygon.vertices); + } + return polygon.plane + }; + + /** + * Measure the area of the given polygon. + * @see 2000 softSurfer http://geomalgorithms.com + * @param {poly3} polygon - the polygon to measure + * @return {Number} area of the polygon + * @alias module:modeling/geometries/poly3.measureArea + */ + const measureArea$2 = (polygon) => { + const n = polygon.vertices.length; + if (n < 3) { + return 0 // degenerate polygon + } + const vertices = polygon.vertices; + + // calculate a normal vector + const normal = plane(polygon); + + // determine direction of projection + const ax = Math.abs(normal[0]); + const ay = Math.abs(normal[1]); + const az = Math.abs(normal[2]); + + if (ax + ay + az === 0) { + // normal does not exist + return 0 + } + + let coord = 3; // ignore Z coordinates + if ((ax > ay) && (ax > az)) { + coord = 1; // ignore X coordinates + } else + if (ay > az) { + coord = 2; // ignore Y coordinates + } + + let area = 0; + let h = 0; + let i = 1; + let j = 2; + switch (coord) { + case 1: // ignore X coordinates + // compute area of 2D projection + for (i = 1; i < n; i++) { + h = i - 1; + j = (i + 1) % n; + area += (vertices[i][1] * (vertices[j][2] - vertices[h][2])); + } + area += (vertices[0][1] * (vertices[1][2] - vertices[n - 1][2])); + // scale to get area + area /= (2 * normal[0]); + break + + case 2: // ignore Y coordinates + // compute area of 2D projection + for (i = 1; i < n; i++) { + h = i - 1; + j = (i + 1) % n; + area += (vertices[i][2] * (vertices[j][0] - vertices[h][0])); + } + area += (vertices[0][2] * (vertices[1][0] - vertices[n - 1][0])); + // scale to get area + area /= (2 * normal[1]); + break + + case 3: // ignore Z coordinates + default: + // compute area of 2D projection + for (i = 1; i < n; i++) { + h = i - 1; + j = (i + 1) % n; + area += (vertices[i][0] * (vertices[j][1] - vertices[h][1])); + } + area += (vertices[0][0] * (vertices[1][1] - vertices[n - 1][1])); + // scale to get area + area /= (2 * normal[2]); + break + } + return area + }; + + /** + * @param {poly3} polygon - the polygon to measure + * @returns {Array} an array of two vectors (3D); minimum and maximum coordinates + * @alias module:modeling/geometries/poly3.measureBoundingBox + */ + const measureBoundingBox$2 = (polygon) => { + const vertices = polygon.vertices; + const numVertices = vertices.length; + const min = numVertices === 0 ? create$b() : clone$9(vertices[0]); + const max = clone$9(min); + for (let i = 1; i < numVertices; i++) { + min$2(min, min, vertices[i]); + max$2(max, max, vertices[i]); + } + return [min, max] + }; + + /** + * Calculates the dot product of the given vectors. + * + * @param {vec4} a - first vector + * @param {vec4} b - second vector + * @returns {Number} dot product + * @alias module:modeling/maths/vec4.dot + */ + const dot = (a, b) => a[0] * b[0] + a[1] * b[1] + a[2] * b[2] + a[3] * b[3]; + + /** + * Create a new vector from the given scalar value. + * + * @param {vec4} out - receiving vector + * @param {Number} scalar + * @returns {vec4} out + * @alias module:modeling/maths/vec4.fromScalar + */ + const fromScalar = (out, scalar) => { + out[0] = scalar; + out[1] = scalar; + out[2] = scalar; + out[3] = scalar; + return out + }; + + /** + * Transform the given vector using the given matrix. + * + * @param {vec4} out - receiving vector + * @param {vec4} vector - vector to transform + * @param {mat4} matrix - matrix to transform with + * @returns {vec4} out + * @alias module:modeling/maths/vec4.transform + */ + const transform$8 = (out, vector, matrix) => { + const [x, y, z, w] = vector; + + out[0] = matrix[0] * x + matrix[4] * y + matrix[8] * z + matrix[12] * w; + out[1] = matrix[1] * x + matrix[5] * y + matrix[9] * z + matrix[13] * w; + out[2] = matrix[2] * x + matrix[6] * y + matrix[10] * z + matrix[14] * w; + out[3] = matrix[3] * x + matrix[7] * y + matrix[11] * z + matrix[15] * w; + return out + }; + + /** + * Represents a four dimensional vector. + * @see {@link vec4} for data structure information. + * @module modeling/maths/vec4 + */ + + var index$n = /*#__PURE__*/Object.freeze({ + __proto__: null, + clone: clone$5, + copy: copy$2, + create: create$6, + dot: dot, + equals: equals$5, + fromScalar: fromScalar, + fromValues: fromValues$1, + toString: toString$7, + transform: transform$8 + }); + + const cache$3 = new WeakMap(); + + /** + * Measure the bounding sphere of the given polygon. + * @param {poly3} polygon - the polygon to measure + * @returns {vec4} the computed bounding sphere; center vertex (3D) and radius + * @alias module:modeling/geometries/poly3.measureBoundingSphere + */ + const measureBoundingSphere$1 = (polygon) => { + const boundingSphere = cache$3.get(polygon); + if (boundingSphere) return boundingSphere + + const vertices = polygon.vertices; + const out = create$6(); + + if (vertices.length === 0) { + out[0] = 0; + out[1] = 0; + out[2] = 0; + out[3] = 0; + return out + } + + // keep a list of min/max vertices by axis + let minx = vertices[0]; + let miny = minx; + let minz = minx; + let maxx = minx; + let maxy = minx; + let maxz = minx; + + vertices.forEach((v) => { + if (minx[0] > v[0]) minx = v; + if (miny[1] > v[1]) miny = v; + if (minz[2] > v[2]) minz = v; + if (maxx[0] < v[0]) maxx = v; + if (maxy[1] < v[1]) maxy = v; + if (maxz[2] < v[2]) maxz = v; + }); + + out[0] = (minx[0] + maxx[0]) * 0.5; // center of sphere + out[1] = (miny[1] + maxy[1]) * 0.5; + out[2] = (minz[2] + maxz[2]) * 0.5; + const x = out[0] - maxx[0]; + const y = out[1] - maxy[1]; + const z = out[2] - maxz[2]; + out[3] = Math.sqrt(x * x + y * y + z * z); // radius of sphere + + cache$3.set(polygon, out); + + return out + }; + + /** + * Measure the signed volume of the given polygon, which must be convex. + * The volume is that formed by the tetrahedron connected to the axis [0,0,0], + * and will be positive or negative based on the rotation of the vertices. + * @see http://chenlab.ece.cornell.edu/Publication/Cha/icip01_Cha.pdf + * @param {poly3} polygon - the polygon to measure + * @return {Number} volume of the polygon + * @alias module:modeling/geometries/poly3.measureSignedVolume + */ + const measureSignedVolume = (polygon) => { + let signedVolume = 0; + const vertices = polygon.vertices; + // calculate based on triangular polygons + const cross = create$b(); + for (let i = 0; i < vertices.length - 2; i++) { + cross$1(cross, vertices[i + 1], vertices[i + 2]); + signedVolume += dot$2(vertices[0], cross); + } + signedVolume /= 6; + return signedVolume + }; + + /** + * Return the given polygon as a list of vertices. + * NOTE: The returned array should not be modified as the vertices are shared with the geometry. + * @param {poly3} polygon - the polygon + * @return {Array} list of vertices (3D) + * @alias module:modeling/geometries/poly3.toVertices + */ + const toVertices$1 = (polygon) => polygon.vertices; + + /** + * Convert the given polygon to a readable string. + * @param {poly3} polygon - the polygon to convert + * @return {String} the string representation + * @alias module:modeling/geometries/poly3.toString + */ + const toString$6 = (polygon) => `poly3: [${polygon.vertices.map(toString$b).join(', ')}]`; + + /** + * Transform the given polygon using the given matrix. + * @param {mat4} matrix - the matrix to transform with + * @param {poly3} polygon - the polygon to transform + * @returns {poly3} a new polygon + * @alias module:modeling/geometries/poly3.transform + */ + const transform$7 = (matrix, polygon) => { + const vertices = polygon.vertices.map((vertex) => transform$c(create$b(), vertex, matrix)); + if (isMirroring(matrix)) { + // reverse the order to preserve the orientation + vertices.reverse(); + } + return create$7(vertices) + }; + + /** + * Determine if the given object is a valid polygon. + * Checks for valid data structure, convex polygons, and duplicate vertices. + * + * **If the geometry is not valid, an exception will be thrown with details of the geometry error.** + * + * @param {Object} object - the object to interrogate + * @throws {Error} error if the geometry is not valid + * @alias module:modeling/geometries/poly3.validate + */ + const validate$3 = (object) => { + if (!isA$4(object)) { + throw new Error('invalid poly3 structure') + } + + // check for empty polygon + if (object.vertices.length < 3) { + throw new Error(`poly3 not enough vertices ${object.vertices.length}`) + } + // check area + if (measureArea$2(object) <= 0) { + throw new Error('poly3 area must be greater than zero') + } + + // check for duplicate vertices + for (let i = 0; i < object.vertices.length; i++) { + if (equals$7(object.vertices[i], object.vertices[(i + 1) % object.vertices.length])) { + throw new Error(`poly3 duplicate vertex ${object.vertices[i]}`) + } + } + + // check convexity + if (!isConvex$1(object)) { + throw new Error('poly3 must be convex') + } + + // check for infinity, nan + object.vertices.forEach((vertex) => { + if (!vertex.every(Number.isFinite)) { + throw new Error(`poly3 invalid vertex ${vertex}`) + } + }); + + // check that vertices are co-planar + if (object.vertices.length > 3) { + const normal = plane(object); + object.vertices.forEach((vertex) => { + const dist = Math.abs(signedDistanceToPoint(normal, vertex)); + if (dist > NEPS) { + throw new Error(`poly3 must be coplanar: vertex ${vertex} distance ${dist}`) + } + }); + } + }; + + /** + * Represents a convex 3D polygon consisting of a list of ordered vertices. + * @see {@link poly3} for data structure information. + * @module modeling/geometries/poly3 + * + * @example + * import { geometries } from '@jscad/modeling' + * const polygon = geometries.poly3.create([[0,0,0], [4,0,0], [4,3,12]]) + */ + + var index$m = /*#__PURE__*/Object.freeze({ + __proto__: null, + clone: clone$6, + create: create$7, + fromVerticesAndPlane: fromVerticesAndPlane, + invert: invert$1, + isA: isA$4, + isConvex: isConvex$1, + measureArea: measureArea$2, + measureBoundingBox: measureBoundingBox$2, + measureBoundingSphere: measureBoundingSphere$1, + measureSignedVolume: measureSignedVolume, + plane: plane, + toVertices: toVertices$1, + toString: toString$6, + transform: transform$7, + validate: validate$3 + }); + + /** + * Construct a new 3D geometry from a list of vertices. + * The list of vertices should contain sub-arrays, each defining a single polygon of vertices. + * In addition, the vertices should follow the right-hand rule for rotation in order to + * define an external facing polygon. + * @param {Array} listOfVertices - list of lists, where each list is a set of vertices to construct a polygon + * @returns {geom3} a new geometry + * @alias module:modeling/geometries/geom3.fromPoints + */ + const fromPoints$3 = (listOfLists) => { + if (!Array.isArray(listOfLists)) { + throw new Error('the given vertices must be an array') + } + + const polygons = listOfLists.map((vertices, index) => { + // TODO catch the error, and rethrow with index + return create$7(vertices) + }); + return create$8(polygons) + }; + + /** + * Construct a new 3D geometry from the given compact binary data. + * @param {TypedArray} data - compact binary data + * @returns {geom3} a new geometry + * @alias module:modeling/geometries/geom3.fromCompactBinary + */ + const fromCompactBinary$1 = (data) => { + if (data[0] !== 1) throw new Error('invalid compact binary data') + + const created = create$8(); + + created.transforms = clone$a(data.slice(1, 17)); + + const numberOfVertices = data[21]; + let ci = 22; + let vi = data.length - (numberOfVertices * 3); + while (vi < data.length) { + const verticesPerPolygon = data[ci]; + ci++; + + const vertices = []; + for (let i = 0; i < verticesPerPolygon; i++) { + vertices.push(fromValues$3(data[vi], data[vi + 1], data[vi + 2])); + vi += 3; + } + created.polygons.push(create$7(vertices)); + } + + // transfer known properties, i.e. color + if (data[17] >= 0) { + created.color = [data[17], data[18], data[19], data[20]]; + } + // TODO: how about custom properties or fields ? + return created + }; + + /* + * Apply the transforms of the given geometry. + * NOTE: This function must be called BEFORE exposing any data. See toPolygons. + * @param {geom3} geometry - the geometry to transform + * @returns {geom3} the given geometry + * @example + * geometry = applyTransforms(geometry) + */ + const applyTransforms$1 = (geometry) => { + if (isIdentity(geometry.transforms)) return geometry + + // apply transforms to each polygon + geometry.polygons = geometry.polygons.map((polygon) => transform$7(geometry.transforms, polygon)); + // reset transforms + geometry.transforms = create$c(); + return geometry + }; + + /** + * Produces an array of polygons from the given geometry, after applying transforms. + * The returned array should not be modified as the polygons are shared with the geometry. + * @param {geom3} geometry - the geometry + * @returns {Array} an array of polygons + * @alias module:modeling/geometries/geom3.toPolygons + * + * @example + * let sharedPolygons = toPolygons(geometry) + */ + const toPolygons$1 = (geometry) => applyTransforms$1(geometry).polygons; + + /** + * Invert the given geometry, transposing solid and empty space. + * @param {geom3} geometry - the geometry to invert + * @return {geom3} a new geometry + * @alias module:modeling/geometries/geom3.invert + */ + const invert = (geometry) => { + const polygons = toPolygons$1(geometry); + const newPolygons = polygons.map((polygon) => invert$1(polygon)); + return create$8(newPolygons) + }; + + /** + * Determine if the given object is a 3D geometry. + * @param {Object} object - the object to interrogate + * @returns {Boolean} true if the object matches a geom3 + * @alias module:modeling/geometries/geom3.isA + */ + const isA$3 = (object) => { + if (object && typeof object === 'object') { + if ('polygons' in object && 'transforms' in object) { + if (Array.isArray(object.polygons) && 'length' in object.transforms) { + return true + } + } + } + return false + }; + + /** + * Return the given geometry as a list of points, after applying transforms. + * The returned array should not be modified as the points are shared with the geometry. + * @param {geom3} geometry - the geometry + * @return {Array} list of points, where each sub-array represents a polygon + * @alias module:modeling/geometries/geom3.toPoints + */ + const toPoints$2 = (geometry) => { + const polygons = toPolygons$1(geometry); + return polygons.map((polygon) => toVertices$1(polygon)) + }; + + /** + * Create a string representing the contents of the given geometry. + * @param {geom3} geometry - the geometry + * @returns {String} a representative string + * @alias module:modeling/geometries/geom3.toString + * + * @example + * console.out(toString(geometry)) + */ + const toString$5 = (geometry) => { + const polygons = toPolygons$1(geometry); + let result = 'geom3 (' + polygons.length + ' polygons):\n'; + polygons.forEach((polygon) => { + result += ' ' + toString$6(polygon) + '\n'; + }); + return result + }; + + /** + * Return the given geometry in compact binary representation. + * @param {geom3} geometry - the geometry + * @return {TypedArray} compact binary representation + * @alias module:modeling/geometries/geom3.toCompactBinary + */ + const toCompactBinary$1 = (geometry) => { + const polygons = geometry.polygons; + const transforms = geometry.transforms; + + const numberOfPolygons = polygons.length; + const numberOfVertices = polygons.reduce((count, polygon) => count + polygon.vertices.length, 0); + let color = [-1, -1, -1, -1]; + if (geometry.color) color = geometry.color; + + // FIXME why Float32Array? + const compacted = new Float32Array(1 + 16 + 4 + 1 + numberOfPolygons + (numberOfVertices * 3)); + // type + transforms + color + numberOfPolygons + numberOfVerticesPerPolygon[] + vertices data[] + + compacted[0] = 1; // type code: 0 => geom2, 1 => geom3 , 2 => path2 + + compacted[1] = transforms[0]; + compacted[2] = transforms[1]; + compacted[3] = transforms[2]; + compacted[4] = transforms[3]; + compacted[5] = transforms[4]; + compacted[6] = transforms[5]; + compacted[7] = transforms[6]; + compacted[8] = transforms[7]; + compacted[9] = transforms[8]; + compacted[10] = transforms[9]; + compacted[11] = transforms[10]; + compacted[12] = transforms[11]; + compacted[13] = transforms[12]; + compacted[14] = transforms[13]; + compacted[15] = transforms[14]; + compacted[16] = transforms[15]; + + compacted[17] = color[0]; + compacted[18] = color[1]; + compacted[19] = color[2]; + compacted[20] = color[3]; + + compacted[21] = numberOfVertices; + + let ci = 22; + let vi = ci + numberOfPolygons; + polygons.forEach((polygon) => { + const vertices = toVertices$1(polygon); + // record the number of vertices per polygon + compacted[ci] = vertices.length; + ci++; + // convert the vertices + for (let i = 0; i < vertices.length; i++) { + const vertex = vertices[i]; + compacted[vi + 0] = vertex[0]; + compacted[vi + 1] = vertex[1]; + compacted[vi + 2] = vertex[2]; + vi += 3; + } + }); + // TODO: how about custom properties or fields ? + return compacted + }; + + /** + * Transform the given geometry using the given matrix. + * This is a lazy transform of the polygons, as this function only adjusts the transforms. + * See applyTransforms() for the actual application of the transforms to the polygons. + * @param {mat4} matrix - the matrix to transform with + * @param {geom3} geometry - the geometry to transform + * @returns {geom3} a new geometry + * @alias module:modeling/geometries/geom3.transform + * + * @example + * let newGeometry = transform(fromXRotation(TAU / 4), geometry) + */ + const transform$6 = (matrix, geometry) => { + const transforms = multiply$1(create$c(), matrix, geometry.transforms); + return Object.assign({}, geometry, { transforms }) + }; + + /** + * Determine if the given object is a valid 3D geometry. + * Checks for valid data structure, convex polygon faces, and manifold edges. + * + * **If the geometry is not valid, an exception will be thrown with details of the geometry error.** + * + * @param {Object} object - the object to interrogate + * @throws {Error} error if the geometry is not valid + * @alias module:modeling/geometries/geom3.validate + */ + const validate$2 = (object) => { + if (!isA$3(object)) { + throw new Error('invalid geom3 structure') + } + + // check polygons + object.polygons.forEach(validate$3); + validateManifold(object); + + // check transforms + if (!object.transforms.every(Number.isFinite)) { + throw new Error(`geom3 invalid transforms ${object.transforms}`) + } + + // TODO: check for self-intersecting + }; + + /* + * Check manifold edge condition: Every edge is in exactly 2 faces + */ + const validateManifold = (object) => { + // count of each edge + const edgeCount = new Map(); + object.polygons.forEach(({ vertices }) => { + vertices.forEach((v, i) => { + const v1 = `${v}`; + const v2 = `${vertices[(i + 1) % vertices.length]}`; + // sort for undirected edge + const edge = `${v1}/${v2}`; + const count = edgeCount.has(edge) ? edgeCount.get(edge) : 0; + edgeCount.set(edge, count + 1); + }); + }); + + // check that edges are always matched + const nonManifold = []; + edgeCount.forEach((count, edge) => { + const complementEdge = edge.split('/').reverse().join('/'); + const complementCount = edgeCount.get(complementEdge); + if (count !== complementCount) { + nonManifold.push(edge.replace('/', ' -> ')); + } + }); + if (nonManifold.length > 0) { + throw new Error(`non-manifold edges ${nonManifold.length}\n${nonManifold.join('\n')}`) + } + }; + + /** + * Represents a 3D geometry consisting of a list of polygons. + * @see {@link geom3} for data structure information. + * @module modeling/geometries/geom3 + * + * @example + * import { geometries } from '@jscad/modeling' + * const myShape = geometries.geom3.fromPoints([ + * [[-1,-1,-1], [-1,-1,1], [-1,1,1], [-1,1,-1]], + * [[1,-1,-1], [1,1,-1], [1,1,1], [1,-1,1]], + * [[-1,-1,-1], [1,-1,-1], [1,-1,1], [-1,-1,1]] + * [[-1,1,-1], [-1,1,1], [1,1,1], [1,1,-1]], + * [[-1,-1,-1], [-1,1,-1], [1,1,-1], [1,-1,-1]], + * [[-1,-1,1], [1,-1,1], [1,1,1], [-1,1,1]] + * ]) + */ + + var index$l = /*#__PURE__*/Object.freeze({ + __proto__: null, + clone: clone$7, + create: create$8, + fromPoints: fromPoints$3, + fromCompactBinary: fromCompactBinary$1, + invert: invert, + isA: isA$3, + toPoints: toPoints$2, + toPolygons: toPolygons$1, + toString: toString$5, + toCompactBinary: toCompactBinary$1, + transform: transform$6, + validate: validate$2 + }); + + /** + * Performs a shallow clone of the give geometry. + * @param {path2} geometry - the geometry to clone + * @returns {path2} a new path + * @alias module:modeling/geometries/path2.clone + */ + const clone$4 = (geometry) => Object.assign({}, geometry); + + /** + * Close the given geometry. + * @param {path2} geometry - the path to close + * @returns {path2} a new path + * @alias module:modeling/geometries/path2.close + */ + const close = (geometry) => { + if (geometry.isClosed) return geometry + + const cloned = clone$4(geometry); + cloned.isClosed = true; + + if (cloned.points.length > 1) { + // make sure the paths are formed properly + const points = cloned.points; + const p0 = points[0]; + let pn = points[points.length - 1]; + while (distance(p0, pn) < (EPS * EPS)) { + points.pop(); + if (points.length === 1) break + pn = points[points.length - 1]; + } + } + return cloned + }; + + /** + * Represents a 2D geometry consisting of a list of ordered points. + * @typedef {Object} path2 + * @property {Array} points - list of ordered points + * @property {Boolean} isClosed - true if the path is closed where start and end points are the same + * @property {mat4} transforms - transforms to apply to the points, see transform() + * @example + * { + * "points": [[0,0], [4,0], [4,3]], + * "isClosed": true, + * "transforms": [1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1], + * } + */ + + /** + * Create an empty, open path. + * @returns {path2} a new path + * @alias module:modeling/geometries/path2.create + * + * @example + * let newPath = create() + */ + const create$5 = (points) => { + if (points === undefined) { + points = []; + } + return { + points: points, + isClosed: false, + transforms: create$c() + } + }; + + /** + * Create a new path from the given points. + * The points must be provided an array of points, + * where each point is an array of two numbers. + * @param {Object} options - options for construction + * @param {Boolean} [options.closed=false] - if the path should be open or closed + * @param {Array} points - array of points (2D) from which to create the path + * @returns {path2} a new path + * @alias module:modeling/geometries/path2.fromPoints + * + * @example: + * my newPath = fromPoints({closed: true}, [[10, 10], [-10, 10]]) + */ + const fromPoints$2 = (options, points) => { + const defaults = { closed: false }; + let { closed } = Object.assign({}, defaults, options); + + let created = create$5(); + created.points = points.map((point) => clone$8(point)); + + // check if first and last points are equal + if (created.points.length > 1) { + const p0 = created.points[0]; + const pn = created.points[created.points.length - 1]; + if (distance(p0, pn) < (EPS * EPS)) { + // and close automatically + closed = true; + } + } + if (closed === true) created = close(created); + + return created + }; + + /* + * Apply the transforms of the given geometry. + * NOTE: This function must be called BEFORE exposing any data. See toPoints. + * @param {path} geometry - the geometry to transform + * @returns {path} the given geometry + * @example + * geometry = applyTransforms(geometry) + */ + const applyTransforms = (geometry) => { + if (isIdentity(geometry.transforms)) return geometry + + geometry.points = geometry.points.map((point) => transform$b(create$9(), point, geometry.transforms)); + geometry.transforms = create$c(); + return geometry + }; + + /** + * Produces an array of points from the given geometry. + * The returned array should not be modified as the data is shared with the geometry. + * @param {path2} geometry - the geometry + * @returns {Array} an array of points + * @alias module:modeling/geometries/path2.toPoints + * + * @example + * let sharedPoints = toPoints(geometry) + */ + const toPoints$1 = (geometry) => applyTransforms(geometry).points; + + /** + * Append a series of points to the given geometry that represent an arc. + * This implementation follows the SVG specifications. + * @see http://www.w3.org/TR/SVG/paths.html#PathDataEllipticalArcCommands + * @param {Object} options - options for construction + * @param {vec2} options.endpoint - end point of arc (REQUIRED) + * @param {vec2} [options.radius=[0,0]] - radius of arc (X and Y) + * @param {Number} [options.xaxisRotation=0] - rotation (RADIANS) of the X axis of the arc with respect to the X axis of the coordinate system + * @param {Boolean} [options.clockwise=false] - draw an arc clockwise with respect to the center point + * @param {Boolean} [options.large=false] - draw an arc longer than TAU / 2 radians + * @param {Number} [options.segments=16] - number of segments per full rotation + * @param {path2} geometry - the path of which to append the arc + * @returns {path2} a new path with the appended points + * @alias module:modeling/geometries/path2.appendArc + * + * @example + * let myShape = fromPoints({}, [[27.5,-22.96875]]); + * myShape = appendPoints([[27.5,-3.28125]], myShape); + * myShape = appendArc({endpoint: [12.5, -22.96875], radius: [15, -19.6875]}, myShape); + */ + const appendArc = (options, geometry) => { + const defaults = { + radius: [0, 0], // X and Y radius + xaxisRotation: 0, + clockwise: false, + large: false, + segments: 16 + }; + let { endpoint, radius, xaxisRotation, clockwise, large, segments } = Object.assign({}, defaults, options); + + // validate the given options + if (!Array.isArray(endpoint)) throw new Error('endpoint must be an array of X and Y values') + if (endpoint.length < 2) throw new Error('endpoint must contain X and Y values') + endpoint = clone$8(endpoint); + + if (!Array.isArray(radius)) throw new Error('radius must be an array of X and Y values') + if (radius.length < 2) throw new Error('radius must contain X and Y values') + + if (segments < 4) throw new Error('segments must be four or more') + + const decimals = 100000; + + // validate the given geometry + if (geometry.isClosed) { + throw new Error('the given path cannot be closed') + } + + const points = toPoints$1(geometry); + if (points.length < 1) { + throw new Error('the given path must contain one or more points (as the starting point for the arc)') + } + + let xRadius = radius[0]; + let yRadius = radius[1]; + const startpoint = points[points.length - 1]; + + // round to precision in order to have determinate calculations + xRadius = Math.round(xRadius * decimals) / decimals; + yRadius = Math.round(yRadius * decimals) / decimals; + endpoint = fromValues$2(Math.round(endpoint[0] * decimals) / decimals, Math.round(endpoint[1] * decimals) / decimals); + + const sweepFlag = !clockwise; + let newPoints = []; + if ((xRadius === 0) || (yRadius === 0)) { + // http://www.w3.org/TR/SVG/implnote.html#ArcImplementationNotes: + // If rx = 0 or ry = 0, then treat this as a straight line from (x1, y1) to (x2, y2) and stop + newPoints.push(endpoint); + } else { + xRadius = Math.abs(xRadius); + yRadius = Math.abs(yRadius); + + // see http://www.w3.org/TR/SVG/implnote.html#ArcImplementationNotes : + const phi = xaxisRotation; + const cosPhi = Math.cos(phi); + const sinPhi = Math.sin(phi); + const minusHalfDistance = subtract$1(create$9(), startpoint, endpoint); + scale$1(minusHalfDistance, minusHalfDistance, 0.5); + // F.6.5.1: + // round to precision in order to have determinate calculations + const x = Math.round((cosPhi * minusHalfDistance[0] + sinPhi * minusHalfDistance[1]) * decimals) / decimals; + const y = Math.round((-sinPhi * minusHalfDistance[0] + cosPhi * minusHalfDistance[1]) * decimals) / decimals; + const startTranslated = fromValues$2(x, y); + // F.6.6.2: + const bigLambda = (startTranslated[0] * startTranslated[0]) / (xRadius * xRadius) + (startTranslated[1] * startTranslated[1]) / (yRadius * yRadius); + if (bigLambda > 1.0) { + // F.6.6.3: + const sqrtBigLambda = Math.sqrt(bigLambda); + xRadius *= sqrtBigLambda; + yRadius *= sqrtBigLambda; + // round to precision in order to have determinate calculations + xRadius = Math.round(xRadius * decimals) / decimals; + yRadius = Math.round(yRadius * decimals) / decimals; + } + // F.6.5.2: + let multiplier1 = Math.sqrt((xRadius * xRadius * yRadius * yRadius - xRadius * xRadius * startTranslated[1] * startTranslated[1] - yRadius * yRadius * startTranslated[0] * startTranslated[0]) / (xRadius * xRadius * startTranslated[1] * startTranslated[1] + yRadius * yRadius * startTranslated[0] * startTranslated[0])); + if (sweepFlag === large) multiplier1 = -multiplier1; + const centerTranslated = fromValues$2(xRadius * startTranslated[1] / yRadius, -yRadius * startTranslated[0] / xRadius); + scale$1(centerTranslated, centerTranslated, multiplier1); + // F.6.5.3: + let center = fromValues$2(cosPhi * centerTranslated[0] - sinPhi * centerTranslated[1], sinPhi * centerTranslated[0] + cosPhi * centerTranslated[1]); + center = add(center, center, scale$1(create$9(), add(create$9(), startpoint, endpoint), 0.5)); + + // F.6.5.5: + const vector1 = fromValues$2((startTranslated[0] - centerTranslated[0]) / xRadius, (startTranslated[1] - centerTranslated[1]) / yRadius); + const vector2 = fromValues$2((-startTranslated[0] - centerTranslated[0]) / xRadius, (-startTranslated[1] - centerTranslated[1]) / yRadius); + const theta1 = angleRadians(vector1); + const theta2 = angleRadians(vector2); + let deltatheta = theta2 - theta1; + deltatheta = deltatheta % TAU; + if ((!sweepFlag) && (deltatheta > 0)) { + deltatheta -= TAU; + } else if ((sweepFlag) && (deltatheta < 0)) { + deltatheta += TAU; + } + + // Ok, we have the center point and angle range (from theta1, deltatheta radians) so we can create the ellipse + let numSteps = Math.ceil(Math.abs(deltatheta) / TAU * segments) + 1; + if (numSteps < 1) numSteps = 1; + for (let step = 1; step < numSteps; step++) { + const theta = theta1 + step / numSteps * deltatheta; + const cosTheta = Math.cos(theta); + const sinTheta = Math.sin(theta); + // F.6.3.1: + const point = fromValues$2(cosPhi * xRadius * cosTheta - sinPhi * yRadius * sinTheta, sinPhi * xRadius * cosTheta + cosPhi * yRadius * sinTheta); + add(point, point, center); + newPoints.push(point); + } + // ensure end point is precisely what user gave as parameter + if (numSteps) newPoints.push(options.endpoint); + } + newPoints = points.concat(newPoints); + const result = fromPoints$2({}, newPoints); + return result + }; + + /** + * Concatenate the given paths. + * + * If both contain the same point at the junction, merge it into one. + * A concatenation of zero paths is an empty, open path. + * A concatenation of one closed path to a series of open paths produces a closed path. + * A concatenation of a path to a closed path is an error. + * @param {...path2} paths - the paths to concatenate + * @returns {path2} a new path + * @alias module:modeling/geometries/path2.concat + * + * @example + * let newPath = concat(fromPoints({}, [[1, 2]]), fromPoints({}, [[3, 4]])) + */ + const concat = (...paths) => { + // Only the last path can be closed, producing a closed path. + let isClosed = false; + let newPoints = []; + paths.forEach((path, i) => { + const tmp = toPoints$1(path).slice(); + if (newPoints.length > 0 && tmp.length > 0 && equals$6(tmp[0], newPoints[newPoints.length - 1])) tmp.shift(); + if (tmp.length > 0 && isClosed) { + throw new Error(`Cannot concatenate to a closed path; check the ${i}th path`) + } + isClosed = path.isClosed; + newPoints = newPoints.concat(tmp); + }); + return fromPoints$2({ closed: isClosed }, newPoints) + }; + + /** + * Append the given list of points to the end of the given geometry. + * @param {Array} points - the points (2D) to append to the given path + * @param {path2} geometry - the given path + * @returns {path2} a new path with the appended points + * @alias module:modeling/geometries/path2.appendPoints + * @example + * let newPath = appendPoints([[3, 4], [4, 5]], oldPath) + */ + const appendPoints = (points, geometry) => concat(geometry, create$5(points)); + + /** + * Append a series of points to the given geometry that represent a Bézier curve. + * The Bézier curve starts at the last point in the given geometry, and ends at the last control point. + * The other control points are intermediate control points to transition the curve from start to end points. + * The first control point may be null to ensure a smooth transition occurs. In this case, + * the second to last point of the given geometry is mirrored into the control points of the Bézier curve. + * In other words, the trailing gradient of the geometry matches the new gradient of the curve. + * @param {Object} options - options for construction + * @param {Array} options.controlPoints - list of control points (2D) for the Bézier curve + * @param {Number} [options.segment=16] - number of segments per 360 rotation + * @param {path2} geometry - the path of which to append points + * @returns {path2} a new path with the appended points + * @alias module:modeling/geometries/path2.appendBezier + * + * @example + * let myShape = fromPoints({}, [[10,-20]]) + * myShape = appendBezier({controlPoints: [[10,-10],[25,-10],[25,-20]]}, myShape); + * myShape = appendBezier({controlPoints: [null, [25,-30],[40,-30],[40,-20]]}, myShape) + */ + const appendBezier = (options, geometry) => { + const defaults = { + segments: 16 + }; + let { controlPoints, segments } = Object.assign({}, defaults, options); + + // validate the given options + if (!Array.isArray(controlPoints)) throw new Error('controlPoints must be an array of one or more points') + if (controlPoints.length < 1) throw new Error('controlPoints must be an array of one or more points') + + if (segments < 4) throw new Error('segments must be four or more') + + // validate the given geometry + if (geometry.isClosed) { + throw new Error('the given geometry cannot be closed') + } + + const points = toPoints$1(geometry); + if (points.length < 1) { + throw new Error('the given path must contain one or more points (as the starting point for the bezier curve)') + } + + // make a copy of the control points + controlPoints = controlPoints.slice(); + + // special handling of null control point (only first is allowed) + const firstControlPoint = controlPoints[0]; + if (firstControlPoint === null) { + if (controlPoints.length < 2) { + throw new Error('a null control point must be passed with one more control points') + } + // special handling of a previous bezier curve + let lastBezierControlPoint = points[points.length - 2]; + if ('lastBezierControlPoint' in geometry) { + lastBezierControlPoint = geometry.lastBezierControlPoint; + } + if (!Array.isArray(lastBezierControlPoint)) { + throw new Error('the given path must contain TWO or more points if given a null control point') + } + // replace the first control point with the mirror of the last bezier control point + const controlPoint = scale$1(create$9(), points[points.length - 1], 2); + subtract$1(controlPoint, controlPoint, lastBezierControlPoint); + + controlPoints[0] = controlPoint; + } + + // add a control point for the previous end point + controlPoints.unshift(points[points.length - 1]); + + const bezierOrder = controlPoints.length - 1; + const factorials = []; + let fact = 1; + for (let i = 0; i <= bezierOrder; ++i) { + if (i > 0) fact *= i; + factorials.push(fact); + } + + const binomials = []; + for (let i = 0; i <= bezierOrder; ++i) { + const binomial = factorials[bezierOrder] / (factorials[i] * factorials[bezierOrder - i]); + binomials.push(binomial); + } + + const v0 = create$9(); + const v1 = create$9(); + const v3 = create$b(); + const getPointForT = (t) => { + let tk = 1; // = pow(t,k) + let oneMinusTNMinusK = Math.pow(1 - t, bezierOrder); // = pow( 1-t, bezierOrder - k) + const invOneMinusT = (t !== 1) ? (1 / (1 - t)) : 1; + const point = create$9(); // 0, 0, 0 + for (let k = 0; k <= bezierOrder; ++k) { + if (k === bezierOrder) oneMinusTNMinusK = 1; + const bernsteinCoefficient = binomials[k] * tk * oneMinusTNMinusK; + const derivativePoint = scale$1(v0, controlPoints[k], bernsteinCoefficient); + add(point, point, derivativePoint); + tk *= t; + oneMinusTNMinusK *= invOneMinusT; + } + return point + }; + + const newPoints = []; + const newPointsT = []; + const numSteps = bezierOrder + 1; + for (let i = 0; i < numSteps; ++i) { + const t = i / (numSteps - 1); + const point = getPointForT(t); + newPoints.push(point); + newPointsT.push(t); + } + + // subdivide each segment until the angle becomes small enough: + let subdivideBase = 1; + const maxAngle = TAU / segments; + const maxSinAngle = Math.sin(maxAngle); + while (subdivideBase < newPoints.length - 1) { + const dir1 = subtract$1(v0, newPoints[subdivideBase], newPoints[subdivideBase - 1]); + normalize(dir1, dir1); + const dir2 = subtract$1(v1, newPoints[subdivideBase + 1], newPoints[subdivideBase]); + normalize(dir2, dir2); + const sinAngle = cross(v3, dir1, dir2); // the sine of the angle + if (Math.abs(sinAngle[2]) > maxSinAngle) { + // angle is too big, we need to subdivide + const t0 = newPointsT[subdivideBase - 1]; + const t1 = newPointsT[subdivideBase + 1]; + const newt0 = t0 + (t1 - t0) * 1 / 3; + const newt1 = t0 + (t1 - t0) * 2 / 3; + const point0 = getPointForT(newt0); + const point1 = getPointForT(newt1); + // remove the point at subdivideBase and replace with 2 new points: + newPoints.splice(subdivideBase, 1, point0, point1); + newPointsT.splice(subdivideBase, 1, newt0, newt1); + // reevaluate the angles, starting at the previous junction since it has changed: + subdivideBase--; + if (subdivideBase < 1) subdivideBase = 1; + } else { + ++subdivideBase; + } + } + + // append to the new points to the given path + // but skip the first new point because it is identical to the last point in the given path + newPoints.shift(); + const result = appendPoints(newPoints, geometry); + result.lastBezierControlPoint = controlPoints[controlPoints.length - 2]; + return result + }; + + /** + * Determine if the given paths are equal. + * For closed paths, this includes equality under point order rotation. + * @param {path2} a - the first path to compare + * @param {path2} b - the second path to compare + * @returns {Boolean} + * @alias module:modeling/geometries/path2.equals + */ + const equals$4 = (a, b) => { + if (a.isClosed !== b.isClosed) { + return false + } + if (a.points.length !== b.points.length) { + return false + } + + const aPoints = toPoints$1(a); + const bPoints = toPoints$1(b); + + // closed paths might be equal under graph rotation + // so try comparison by rotating across all points + const length = aPoints.length; + let offset = 0; + do { + let unequal = false; + for (let i = 0; i < length; i++) { + if (!equals$6(aPoints[i], bPoints[(i + offset) % length])) { + unequal = true; + break + } + } + if (unequal === false) { + return true + } + // unequal open paths should only be compared once, never rotated + if (!a.isClosed) { + return false + } + } while (++offset < length) + return false + }; + + /** + * Create a new path from the given compact binary data. + * @param {TypedArray} data - compact binary data + * @returns {path2} a new path + * @alias module:modeling/geometries/path2.fromCompactBinary + */ + const fromCompactBinary = (data) => { + if (data[0] !== 2) throw new Error('invalid compact binary data') + + const created = create$5(); + + created.transforms = clone$a(data.slice(1, 17)); + + created.isClosed = !!data[17]; + + for (let i = 22; i < data.length; i += 2) { + const point = fromValues$2(data[i], data[i + 1]); + created.points.push(point); + } + // transfer known properties, i.e. color + if (data[18] >= 0) { + created.color = [data[18], data[19], data[20], data[21]]; + } + // TODO: how about custom properties or fields ? + return created + }; + + /** + * Determine if the given object is a path2 geometry. + * @param {Object} object - the object to interrogate + * @returns {Boolean} true if the object matches a path2 + * @alias module:modeling/geometries/path2.isA + */ + const isA$2 = (object) => { + if (object && typeof object === 'object') { + // see create for the required attributes and types + if ('points' in object && 'transforms' in object && 'isClosed' in object) { + // NOTE: transforms should be a TypedArray, which has a read-only length + if (Array.isArray(object.points) && 'length' in object.transforms) { + return true + } + } + } + return false + }; + + /** + * Reverses the path so that the points are in the opposite order. + * This swaps the left (interior) and right (exterior) edges. + * @param {path2} geometry - the path to reverse + * @returns {path2} a new path + * @alias module:modeling/geometries/path2.reverse + * + * @example + * let newPath = reverse(myPath) + */ + const reverse$4 = (geometry) => { + // NOTE: this only updates the order of the points + const cloned = clone$4(geometry); + cloned.points = geometry.points.slice().reverse(); + return cloned + }; + + /** + * Create a string representing the contents of the given path. + * @param {path2} geometry - the path + * @returns {String} a representative string + * @alias module:modeling/geometries/path2.toString + * + * @example + * console.out(toString(path)) + */ + const toString$4 = (geometry) => { + const points = toPoints$1(geometry); + let result = 'path (' + points.length + ' points, ' + geometry.isClosed + '):\n[\n'; + points.forEach((point) => { + result += ' ' + toString$9(point) + ',\n'; + }); + result += ']\n'; + return result + }; + + /** + * Produce a compact binary representation from the given path. + * @param {path2} geometry - the path geometry + * @returns {TypedArray} compact binary representation + * @alias module:modeling/geometries/path2.toCompactBinary + */ + const toCompactBinary = (geometry) => { + const points = geometry.points; + const transforms = geometry.transforms; + let color = [-1, -1, -1, -1]; + if (geometry.color) color = geometry.color; + + // FIXME why Float32Array? + const compacted = new Float32Array(1 + 16 + 1 + 4 + (points.length * 2)); // type + transforms + isClosed + color + points data + + compacted[0] = 2; // type code: 0 => geom2, 1 => geom3 , 2 => path2 + + compacted[1] = transforms[0]; + compacted[2] = transforms[1]; + compacted[3] = transforms[2]; + compacted[4] = transforms[3]; + compacted[5] = transforms[4]; + compacted[6] = transforms[5]; + compacted[7] = transforms[6]; + compacted[8] = transforms[7]; + compacted[9] = transforms[8]; + compacted[10] = transforms[9]; + compacted[11] = transforms[10]; + compacted[12] = transforms[11]; + compacted[13] = transforms[12]; + compacted[14] = transforms[13]; + compacted[15] = transforms[14]; + compacted[16] = transforms[15]; + + compacted[17] = geometry.isClosed ? 1 : 0; + + compacted[18] = color[0]; + compacted[19] = color[1]; + compacted[20] = color[2]; + compacted[21] = color[3]; + + for (let j = 0; j < points.length; j++) { + const ci = j * 2 + 22; + const point = points[j]; + compacted[ci] = point[0]; + compacted[ci + 1] = point[1]; + } + // TODO: how about custom properties or fields ? + return compacted + }; + + /** + * Transform the given geometry using the given matrix. + * This is a lazy transform of the points, as this function only adjusts the transforms. + * The transforms are applied when accessing the points via toPoints(). + * @param {mat4} matrix - the matrix to transform with + * @param {path2} geometry - the geometry to transform + * @returns {path2} a new path + * @alias module:modeling/geometries/path2.transform + * + * @example + * let newPath = transform(fromZRotation(TAU / 8), path) + */ + const transform$5 = (matrix, geometry) => { + const transforms = multiply$1(create$c(), matrix, geometry.transforms); + return Object.assign({}, geometry, { transforms }) + }; + + /** + * Determine if the given object is a valid path2. + * Checks for valid data points, and duplicate points. + * + * **If the geometry is not valid, an exception will be thrown with details of the geometry error.** + * + * @param {Object} object - the object to interrogate + * @throws {Error} error if the geometry is not valid + * @alias module:modeling/geometries/path2.validate + */ + const validate$1 = (object) => { + if (!isA$2(object)) { + throw new Error('invalid path2 structure') + } + + // check for duplicate points + if (object.points.length > 1) { + for (let i = 0; i < object.points.length; i++) { + if (equals$6(object.points[i], object.points[(i + 1) % object.points.length])) { + throw new Error(`path2 duplicate points ${object.points[i]}`) + } + } + } + + // check for infinity, nan + object.points.forEach((point) => { + if (!point.every(Number.isFinite)) { + throw new Error(`path2 invalid point ${point}`) + } + }); + + // check transforms + if (!object.transforms.every(Number.isFinite)) { + throw new Error(`path2 invalid transforms ${object.transforms}`) + } + }; + + /** + * Represents a 2D geometry consisting of a list of ordered points. + * @see {@link path2} for data structure information. + * @module modeling/geometries/path2 + * + * @example + * import { geometries } from '@jscad/modeling' + * let myShape = geometries.path2.fromPoints({ closed: true }, [[0,0], [4,0], [4,3]]) + */ + + var index$k = /*#__PURE__*/Object.freeze({ + __proto__: null, + appendArc: appendArc, + appendBezier: appendBezier, + appendPoints: appendPoints, + clone: clone$4, + close: close, + concat: concat, + create: create$5, + equals: equals$4, + fromPoints: fromPoints$2, + fromCompactBinary: fromCompactBinary, + isA: isA$2, + reverse: reverse$4, + toPoints: toPoints$1, + toString: toString$4, + toCompactBinary: toCompactBinary, + transform: transform$5, + validate: validate$1 + }); + + const colorGeom2 = (color, object) => { + const newGeom2 = clone$b(object); + newGeom2.color = color; + return newGeom2 + }; + + const colorGeom3 = (color, object) => { + const newGeom3 = clone$7(object); + newGeom3.color = color; + return newGeom3 + }; + + const colorPath2 = (color, object) => { + const newPath2 = clone$4(object); + newPath2.color = color; + return newPath2 + }; + + const colorPoly3 = (color, object) => { + const newPoly = clone$6(object); + newPoly.color = color; + return newPoly + }; + + /** + * Assign the given color to the given objects. + * @param {Array} color - RGBA color values, where each value is between 0 and 1.0 + * @param {Object|Array} objects - the objects of which to apply the given color + * @return {Object|Array} new object, or list of new objects with an additional attribute 'color' + * @alias module:modeling/colors.colorize + * + * @example + * let redSphere = colorize([1,0,0], sphere()) // red + * let greenCircle = colorize([0,1,0,0.8], circle()) // green transparent + * let blueArc = colorize([0,0,1], arc()) // blue + * let wildCylinder = colorize(colorNameToRgb('fuchsia'), cylinder()) // CSS color + */ + const colorize = (color, ...objects) => { + if (!Array.isArray(color)) throw new Error('color must be an array') + if (color.length < 3) throw new Error('color must contain R, G and B values') + if (color.length === 3) color = [color[0], color[1], color[2], 1.0]; // add alpha + + objects = flatten(objects); + if (objects.length === 0) throw new Error('wrong number of arguments') + + const results = objects.map((object) => { + if (isA$5(object)) return colorGeom2(color, object) + if (isA$3(object)) return colorGeom3(color, object) + if (isA$2(object)) return colorPath2(color, object) + if (isA$4(object)) return colorPoly3(color, object) + + object.color = color; + return object + }); + return results.length === 1 ? results[0] : results + }; + + /** + * Converts CSS color notations (string of hex values) to RGB values. + * + * @see https://www.w3.org/TR/css-color-3/ + * @param {String} notation - color notation + * @return {Array} RGB color values + * @alias module:modeling/colors.hexToRgb + * + * @example + * let mySphere = colorize(hexToRgb('#000080'), sphere()) // navy blue + */ + const hexToRgb = (notation) => { + notation = notation.replace('#', ''); + if (notation.length < 6) throw new Error('the given notation must contain 3 or more hex values') + + const r = parseInt(notation.substring(0, 2), 16) / 255; + const g = parseInt(notation.substring(2, 4), 16) / 255; + const b = parseInt(notation.substring(4, 6), 16) / 255; + if (notation.length >= 8) { + const a = parseInt(notation.substring(6, 8), 16) / 255; + return [r, g, b, a] + } + return [r, g, b] + }; + + /** + * Convert hue values to a color component (ie one of r, g, b) + * @param {Number} p + * @param {Number} q + * @param {Number} t + * @return {Number} color component + * @alias module:modeling/colors.hueToColorComponent + */ + const hueToColorComponent = (p, q, t) => { + if (t < 0) t += 1; + if (t > 1) t -= 1; + if (t < 1 / 6) return p + (q - p) * 6 * t + if (t < 1 / 2) return q + if (t < 2 / 3) return p + (q - p) * (2 / 3 - t) * 6 + return p + }; + + /** + * Converts HSL color values to RGB color values. + * + * @see http://en.wikipedia.org/wiki/HSL_color_space + * @param {...Number|Array} values - HSL or HSLA color values + * @return {Array} RGB or RGBA color values + * @alias module:modeling/colors.hslToRgb + * + * @example + * let mySphere = colorize(hslToRgb([0.9166666666666666, 1, 0.5]), sphere()) + */ + const hslToRgb = (...values) => { + values = flatten(values); + if (values.length < 3) throw new Error('values must contain H, S and L values') + + const h = values[0]; + const s = values[1]; + const l = values[2]; + + let r = l; // default is achromatic + let g = l; + let b = l; + + if (s !== 0) { + const q = l < 0.5 ? l * (1 + s) : l + s - l * s; + const p = 2 * l - q; + r = hueToColorComponent(p, q, h + 1 / 3); + g = hueToColorComponent(p, q, h); + b = hueToColorComponent(p, q, h - 1 / 3); + } + + if (values.length > 3) { + // add alpha value if provided + const a = values[3]; + return [r, g, b, a] + } + return [r, g, b] + }; + + /** + * Converts HSV color values to RGB color values. + * + * @see http://en.wikipedia.org/wiki/HSV_color_space. + * @param {...Number|Array} values - HSV or HSVA color values + * @return {Array} RGB or RGBA color values + * @alias module:modeling/colors.hsvToRgb + * + * @example + * let mySphere = colorize(hsvToRgb([0.9166666666666666, 1, 1]), sphere()) + */ + const hsvToRgb = (...values) => { + values = flatten(values); + if (values.length < 3) throw new Error('values must contain H, S and V values') + + const h = values[0]; + const s = values[1]; + const v = values[2]; + + let r = 0; + let g = 0; + let b = 0; + + const i = Math.floor(h * 6); + const f = h * 6 - i; + const p = v * (1 - s); + const q = v * (1 - f * s); + const t = v * (1 - (1 - f) * s); + + switch (i % 6) { + case 0: + r = v; + g = t; + b = p; + break + case 1: + r = q; + g = v; + b = p; + break + case 2: + r = p; + g = v; + b = t; + break + case 3: + r = p; + g = q; + b = v; + break + case 4: + r = t; + g = p; + b = v; + break + case 5: + r = v; + g = p; + b = q; + break + } + + if (values.length > 3) { + // add alpha value if provided + const a = values[3]; + return [r, g, b, a] + } + return [r, g, b] + }; + + /** + * Convert the given RGB color values to CSS color notation (string) + * @see https://www.w3.org/TR/css-color-3/ + * @param {...Number|Array} values - RGB or RGBA color values + * @return {String} CSS color notation + * @alias module:modeling/colors.rgbToHex + */ + const rgbToHex = (...values) => { + values = flatten(values); + if (values.length < 3) throw new Error('values must contain R, G and B values') + + const r = values[0] * 255; + const g = values[1] * 255; + const b = values[2] * 255; + + let s = `#${Number(0x1000000 + r * 0x10000 + g * 0x100 + b).toString(16).substring(1, 7)}`; + + if (values.length > 3) { + // convert alpha to opacity + s = s + Number(values[3] * 255).toString(16); + } + return s + }; + + /** + * Converts an RGB color value to HSL. + * + * @see http://en.wikipedia.org/wiki/HSL_color_space. + * @see http://axonflux.com/handy-rgb-to-hsl-and-rgb-to-hsv-color-model-c + * @param {...Number|Array} values - RGB or RGBA color values + * @return {Array} HSL or HSLA color values + * @alias module:modeling/colors.rgbToHsl + */ + const rgbToHsl = (...values) => { + values = flatten(values); + if (values.length < 3) throw new Error('values must contain R, G and B values') + + const r = values[0]; + const g = values[1]; + const b = values[2]; + + const max = Math.max(r, g, b); + const min = Math.min(r, g, b); + let h; + let s; + const l = (max + min) / 2; + + if (max === min) { + h = s = 0; // achromatic + } else { + const d = max - min; + s = l > 0.5 ? d / (2 - max - min) : d / (max + min); + switch (max) { + case r: + h = (g - b) / d + (g < b ? 6 : 0); + break + case g: + h = (b - r) / d + 2; + break + case b: + h = (r - g) / d + 4; + break + } + h /= 6; + } + + if (values.length > 3) { + // add alpha value if provided + const a = values[3]; + return [h, s, l, a] + } + return [h, s, l] + }; + + /** + * Converts an RGB color value to HSV. + * + * @see http://en.wikipedia.org/wiki/HSV_color_space. + * @param {...Number|Array} values - RGB or RGBA color values + * @return {Array} HSV or HSVA color values + * @alias module:modeling/colors.rgbToHsv + */ + const rgbToHsv = (...values) => { + values = flatten(values); + if (values.length < 3) throw new Error('values must contain R, G and B values') + + const r = values[0]; + const g = values[1]; + const b = values[2]; + + const max = Math.max(r, g, b); + const min = Math.min(r, g, b); + let h; + const v = max; + + const d = max - min; + const s = max === 0 ? 0 : d / max; + + if (max === min) { + h = 0; // achromatic + } else { + switch (max) { + case r: + h = (g - b) / d + (g < b ? 6 : 0); + break + case g: + h = (b - r) / d + 2; + break + case b: + h = (r - g) / d + 4; + break + } + h /= 6; + } + + if (values.length > 3) { + // add alpha if provided + const a = values[3]; + return [h, s, v, a] + } + return [h, s, v] + }; + + /** + * All shapes (primitives or the results of operations) can be assigned a color (RGBA). + * In all cases, the function returns the results, and never changes the original shapes. + * @module modeling/colors + * @example + * import { colors } from '@jscad/modeling' + * const { colorize, cssColors } = colors + */ + + var index$j = /*#__PURE__*/Object.freeze({ + __proto__: null, + colorNameToRgb: colorNameToRgb, + colorize: colorize, + cssColors: cssColors, + hexToRgb: hexToRgb, + hslToRgb: hslToRgb, + hsvToRgb: hsvToRgb, + hueToColorComponent: hueToColorComponent, + rgbToHex: rgbToHex, + rgbToHsl: rgbToHsl, + rgbToHsv: rgbToHsv + }); + + /** + * Represents a Bézier easing function. + * @typedef {Object} bezier + * @property {Array} points - The control points for the Bézier curve. The first and last point will also be the start and end of the curve + * @property {string} pointType - A reference to the type and dimensionality of the points that the curve was created from + * @property {number} dimensions - The dimensionality of the bezier + * @property {Array} permutations - A pre-calculation of the bezier algorithm's co-efficients + * @property {Array} tangentPermutations - A pre-calculation of the bezier algorithm's tangent co-efficients + * + */ + + /** + * Creates an object representing a bezier easing curve. + * Curves can have both an arbitrary number of control points, and an arbitrary number of dimensions. + * + * @example + * const b = bezier.create([0,10]) // a linear progression from 0 to 10 + * const b = bezier.create([0, 0, 10, 10]) // a symmetrical cubic easing curve that starts slowly and ends slowly from 0 to 10 + * const b = bezier.create([0,0,0], [0,5,10], [10,0,-5], [10,10,10]]) // a cubic 3 dimensional easing curve that can generate position arrays for modelling + * // Usage + * let position = bezier.valueAt(t,b) // where 0 < t < 1 + * let tangent = bezier.tangentAt(t,b) // where 0 < t < 1 + * + * @param {Array} points An array with at least 2 elements of either all numbers, or all arrays of numbers that are the same size. + * @returns {bezier} a new bezier data object + * @alias module:modeling/curves/bezier.create + */ + const create$4 = (points) => { + if (!Array.isArray(points)) throw new Error('Bezier points must be a valid array/') + if (points.length < 2) throw new Error('Bezier points must contain at least 2 values.') + const pointType = getPointType(points); + + return { + points: points, + pointType: pointType, + dimensions: pointType === 'float_single' ? 0 : points[0].length, + permutations: getPermutations(points.length - 1), + tangentPermutations: getPermutations(points.length - 2) + } + }; + + const getPointType = function (points) { + let firstPointType = null; + points.forEach((point) => { + let pType = ''; + if (Number.isFinite(point)) { + pType = 'float_single'; + } else if (Array.isArray(point)) { + point.forEach((val) => { + if (!Number.isFinite(val)) throw new Error('Bezier point values must all be numbers.') + }); + pType = 'float_' + point.length; + } else throw new Error('Bezier points must all be numbers or arrays of number.') + if (firstPointType == null) { + firstPointType = pType; + } else { + if (firstPointType !== pType) { + throw new Error('Bezier points must be either all numbers or all arrays of numbers of the same size.') + } + } + }); + return firstPointType + }; + + const getPermutations = function (c) { + const permutations = []; + for (let i = 0; i <= c; i++) { + permutations.push(factorial(c) / (factorial(i) * factorial(c - i))); + } + return permutations + }; + + const factorial = function (b) { + let out = 1; + for (let i = 2; i <= b; i++) { + out *= i; + } + return out + }; + + /** + * Calculates the value at a specific position along a bezier easing curve. + * For multidimensional curves, the tangent is the slope of each dimension at that point. + * See the example called extrudeAlongPath.js to see this in use. + * Math and explanation comes from {@link https://www.freecodecamp.org/news/nerding-out-with-bezier-curves-6e3c0bc48e2f/} + * + * @example + * const b = bezier.create([0,0,0], [0,5,10], [10,0,-5], [10,10,10]]) // a cubic 3 dimensional easing curve that can generate position arrays for modelling + * let position = bezier.valueAt(t,b) // where 0 < t < 1 + * + * @param {number} t : the position of which to calculate the value; 0 < t < 1 + * @param {Object} bezier : a Bézier curve created with bezier.create(). + * @returns {array | number} the value at the requested position. + * @alias module:modeling/curves/bezier.valueAt + */ + const valueAt = (t, bezier) => { + if (t < 0 || t > 1) { + throw new Error('Bezier valueAt() input must be between 0 and 1') + } + if (bezier.pointType === 'float_single') { + return bezierFunction(bezier, bezier.points, t) + } else { + const result = []; + for (let i = 0; i < bezier.dimensions; i++) { + const singleDimensionPoints = []; + for (let j = 0; j < bezier.points.length; j++) { + singleDimensionPoints.push(bezier.points[j][i]); + } + result.push(bezierFunction(bezier, singleDimensionPoints, t)); + } + return result + } + }; + + const bezierFunction = function (bezier, p, t) { + const n = p.length - 1; + let result = 0; + for (let i = 0; i <= n; i++) { + result += bezier.permutations[i] * Math.pow(1 - t, n - i) * Math.pow(t, i) * p[i]; + } + return result + }; + + /** + * Calculates the tangent at a specific position along a bezier easing curve. + * For multidimensional curves, the tangent is the slope of each dimension at that point. + * See the example called extrudeAlongPath.js + * + * @example + * const b = bezier.create([[0,0,0], [0,5,10], [10,0,-5], [10,10,10]]) // a cubic 3 dimensional easing curve that can generate position arrays for modelling + * let tangent = bezier.tangentAt(t, b) + * + * @param {number} t : the position of which to calculate the bezier's tangent value; 0 < t < 1 + * @param {Object} bezier : an array with at least 2 elements of either all numbers, or all arrays of numbers that are the same size. + * @return {array | number} the tangent at the requested position. + * @alias module:modeling/curves/bezier.tangentAt + */ + const tangentAt = (t, bezier) => { + if (t < 0 || t > 1) { + throw new Error('Bezier tangentAt() input must be between 0 and 1') + } + if (bezier.pointType === 'float_single') { + return bezierTangent(bezier, bezier.points, t) + } else { + const result = []; + for (let i = 0; i < bezier.dimensions; i++) { + const singleDimensionPoints = []; + for (let j = 0; j < bezier.points.length; j++) { + singleDimensionPoints.push(bezier.points[j][i]); + } + result.push(bezierTangent(bezier, singleDimensionPoints, t)); + } + return result + } + }; + + const bezierTangent = function (bezier, p, t) { + // from https://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/Bezier/bezier-der.html + const n = p.length - 1; + let result = 0; + for (let i = 0; i < n; i++) { + const q = n * (p[i + 1] - p[i]); + result += bezier.tangentPermutations[i] * Math.pow(1 - t, n - 1 - i) * Math.pow(t, i) * q; + } + return result + }; + + /** + * Represents a bezier easing function. + * @see {@link bezier} for data structure information. + * @module modeling/curves/bezier + * @example + * import { curves } from '@jscad/modeling' + * const { bezier } = curves + */ + + var index$i = /*#__PURE__*/Object.freeze({ + __proto__: null, + create: create$4, + valueAt: valueAt, + tangentAt: tangentAt + }); + + /** + * Curves are n-dimensional mathematical constructs that define a path from vertex 0 to vertex 1. + * @module modeling/curves + * @example + * import { curves } from '@jscad/modeling' + * const { bezier } = curves + */ + + var index$h = /*#__PURE__*/Object.freeze({ + __proto__: null, + bezier: index$i + }); + + /** + * Calculate the area under the given points. + * @param {Array} points - list of 2D points + * @return {Number} area under the given points + * @alias module:modeling/maths/utils.area + */ + const area$1 = (points) => { + let area = 0; + for (let i = 0; i < points.length; i++) { + const j = (i + 1) % points.length; + area += points[i][0] * points[j][1]; + area -= points[j][0] * points[i][1]; + } + return (area / 2.0) + }; + + /** + * Measure the area under the given polygon. + * + * @param {poly2} polygon - the polygon to measure + * @return {Number} the area of the polygon + * @alias module:modeling/geometries/poly2.measureArea + */ + const measureArea$1 = (polygon) => area$1(polygon.points); + + /** + * Represents a 2D polygon consisting of a list of ordered points + * which is closed between start and end points. + * @see https://en.wikipedia.org/wiki/Polygon + * @typedef {Object} poly2 + * @property {Array} points - list of ordered points (2D) + */ + + /** + * Creates a new polygon with initial values. + * + * @param {Array} [points] - list of points (2D) + * @returns {poly2} a new polygon + * @alias module:modeling/geometries/poly2.create + * + * @example + * let polygon = create([[0,0], [4,0], [4,3]]) + */ + const create$3 = (points) => { + if (points === undefined || points.length < 3) { + points = []; // empty contents + } + return { points } + }; + + /** + * Reverse the direction of points in the given polygon, rotating the opposite direction. + * + * @param {poly2} polygon - the polygon to reverse + * @returns {poly2} a new polygon + * @alias module:modeling/geometries/poly2.reverse + */ + const reverse$3 = (polygon) => { + const points = polygon.points.slice().reverse(); + return create$3(points) + }; + + /** + * Determine if the given points are inside the given polygon. + * + * @param {Array} points - a list of points, where each point is an array with X and Y values + * @param {poly2} polygon - a 2D polygon + * @return {number} 1 if all points are inside, 0 if some or none are inside + * @alias module:modeling/geometries/poly2.arePointsInside + */ + const arePointsInside = (points, polygon) => { + if (points.length === 0) return 0 // nothing to check + + if (polygon.points.length < 3) return 0 // nothing can be inside an empty polygon + + if (measureArea$1(polygon) < 0) { + polygon = reverse$3(polygon); // CCW is required + } + + const sum = points.reduce((acc, point) => acc + isPointInside(point, polygon.points), 0); + return sum === points.length ? 1 : 0 + }; + + /* + * Determine if the given point is inside the polygon. + * + * @see http://erich.realtimerendering.com/ptinpoly/ (Crossings Test) + * @param {Array} point - an array with X and Y values + * @param {Array} polygon - a list of points, where each point is an array with X and Y values + * @return {Integer} 1 if the point is inside, 0 if outside + */ + const isPointInside = (point, polygon) => { + const numPoints = polygon.length; + + const tx = point[0]; + const ty = point[1]; + + let vtx0 = polygon[numPoints - 1]; + let vtx1 = polygon[0]; + + let yFlag0 = (vtx0[1] > ty); + + let insideFlag = 0; + + let i = 0; + for (let j = (numPoints + 1); --j;) { + /* + * check if Y endpoints straddle (are on opposite sides) of point's Y + * if so, +X ray could intersect this edge. + */ + const yFlag1 = (vtx1[1] > ty); + if (yFlag0 !== yFlag1) { + /* + * check if X endpoints are on same side of the point's X + * if so, it's easy to test if edge hits or misses. + */ + const xFlag0 = (vtx0[0] > tx); + const xFlag1 = (vtx1[0] > tx); + if (xFlag0 && xFlag1) { + /* if edge's X values are both right of the point, then the point must be inside */ + insideFlag = !insideFlag; + } else { + /* + * if X endpoints straddle the point, then + * compute the intersection of polygon edge with +X ray + * if intersection >= point's X then the +X ray hits it. + */ + if ((vtx1[0] - (vtx1[1] - ty) * (vtx0[0] - vtx1[0]) / (vtx0[1] - vtx1[1])) >= tx) { + insideFlag = !insideFlag; + } + } + } + /* move to next pair of points, retaining info as possible */ + yFlag0 = yFlag1; + vtx0 = vtx1; + vtx1 = polygon[++i]; + } + return insideFlag + }; + + /** + * Create a shallow clone of the given polygon. + * + * @param {poly2} polygon - polygon to clone + * @returns {poly2} a new polygon + * @alias module:modeling/geometries/poly2.clone + */ + const clone$3 = (polygon) => Object.assign({}, polygon); + + /** + * Determine if the given object is a 2D polygon. + * @param {Object} object - the object to interrogate + * @returns {Boolean} true if the object matches a poly2 + * @alias module:modeling/geometries/poly2.isA + */ + const isA$1 = (object) => { + if (object && typeof object === 'object') { + if ('points' in object) { + if (Array.isArray(object.points)) { + return true + } + } + } + return false + }; + + /** + * Check whether the given polygon is convex. + * @param {poly2} polygon - the polygon to interrogate + * @returns {Boolean} true if convex + * @alias module:modeling/geometries/poly2.isConvex + */ + const isConvex = (polygon) => { + const numPoints = polygon.points.length; + if (numPoints > 2) { + const points = polygon.points; + let prev = 0; + let curr = 0; + for (let i = 0; i < numPoints; i++) { + curr = crossBetweenSegments(points[i], points[(i + 1) % numPoints], points[(i + 2) % numPoints]); + if (curr !== 0) { + // sum angle of crosses, looking for a change in direction + if (curr * prev < 0) { + return false + } + prev = curr; + } + } + } + return true + }; + + /* + * Calculate cross product between two consecutive line segments; p1 -> p2, p2 -> p3. + */ + const crossBetweenSegments = (p1, p2, p3) => { + const X1 = p2[0] - p1[0]; + const Y1 = p2[1] - p1[1]; + const X2 = p3[0] - p1[0]; + const Y2 = p3[1] - p1[1]; + + return (X1 * Y2 - Y1 * X2) + }; + + /** + * Check whether the given polygon is simple, i.e. does not intersect itself. + * @see https://en.wikipedia.org/wiki/Simple_polygon + * @param {poly2} polygon - the polygon to interrogate + * @returns {Boolean} true if simple + * @alias module:modeling/geometries/poly2.isSimple + */ + const isSimple = (polygon) => { + const numPoints = polygon.points.length; + if (numPoints < 3) return false // only polygons with an areas are simple + + if (numPoints === 3) return true // triangles are simple + + const points = polygon.points; + + // proof one: there are N unique points + const found = new Set(); + points.forEach((v) => found.add(v.toString())); + if (found.size !== numPoints) return false + + // proof two: line segments do not cross + for (let i = 0; i < numPoints; i++) { + for (let j = i + 2; j < numPoints; j++) { + const k = (j + 1) % numPoints; + if (i !== k) { + const s0 = points[i]; + const s1 = points[(i + 1) % numPoints]; + const z0 = points[j]; + const z1 = points[k]; + const ip = intersect$1(s0, s1, z0, z1); + if (ip) return false + } + } + } + return true + }; + + /** + * @param {poly2} polygon - the polygon to measure + * @returns {Array} an array of two vectors (2D); minimum and maximum coordinates + * @alias module:modeling/geometries/poly2.measureBoundingBox + */ + const measureBoundingBox$1 = (polygon) => { + const points = polygon.points; + const numPoints = points.length; + const min = numPoints === 0 ? create$9() : clone$8(points[0]); + const max = clone$8(min); + for (let i = 1; i < numPoints; i++) { + min$1(min, min, points[i]); + max$1(max, max, points[i]); + } + return [min, max] + }; + + /** + * Return the given polygon as a list of points. + * NOTE: The returned array should not be modified as the points are shared with the geometry. + * @param {poly2} polygon - the polygon + * @return {Array} list of points (2D) + * @alias module:modeling/geometries/poly2.toPoints + */ + const toPoints = (polygon) => polygon.points; + + /** + * Convert the given polygon to a readable string. + * @param {poly2} polygon - the polygon to convert + * @return {String} the string representation + * @alias module:modeling/geometries/poly2.toString + */ + const toString$3 = (polygon) => `poly2: [${polygon.points.map(toString$9).join(', ')}]`; + + /** + * Transform the given polygon using the given matrix. + * @param {mat4} matrix - the matrix to transform with + * @param {poly2} polygon - the polygon to transform + * @returns {poly2} a new polygon + * @alias module:modeling/geometries/poly2.transform + */ + const transform$4 = (matrix, polygon) => { + const points = polygon.points.map((point) => transform$b(create$9(), point, matrix)); + if (isMirroring(matrix)) { + // reverse the order to preserve the orientation + points.reverse(); + } + return create$3(points) + }; + + /** + * Determine if the given object is a valid polygon. + * Checks for valid data structure, convex polygons, and duplicate points. + * + * **If the geometry is not valid, an exception will be thrown with details of the geometry error.** + * + * @param {Object} object - the object to interrogate + * @throws {Error} error if the geometry is not valid + * @alias module:modeling/geometries/poly2.validate + */ + const validate = (object) => { + if (!isA$1(object)) { + throw new Error('invalid poly2 structure') + } + + // check for empty polygon + if (object.points.length < 3) { + throw new Error(`poly2 not enough points ${object.points.length}`) + } + // check area + if (measureArea$1(object) <= 0) { + throw new Error('poly2 area must be greater than zero') + } + + // check for duplicate points + for (let i = 0; i < object.points.length; i++) { + if (equals$6(object.points[i], object.points[(i + 1) % object.points.length])) { + throw new Error(`poly2 duplicate point at ${i}: [${object.points[i]}]`) + } + } + + // check for infinity, nan + object.points.forEach((point) => { + if (point.length !== 2) { + throw new Error(`poly2 invalid point ${point}`) + } + if (!point.every(Number.isFinite)) { + throw new Error(`poly2 invalid point ${point}`) + } + }); + }; + + /** + * Represents a 2D polygon consisting of a list of ordered points. + * @see {@link poly2} for data structure information. + * @module modeling/geometries/poly2 + * + * @example + * import { geometries } from '@jscad/modeling' + * const p1 = geometries.poly2.create([[0,0], [4,0], [4,3]]) + */ + + var index$g = /*#__PURE__*/Object.freeze({ + __proto__: null, + arePointsInside: arePointsInside, + clone: clone$3, + create: create$3, + isA: isA$1, + isConvex: isConvex, + isSimple: isSimple, + measureArea: measureArea$1, + measureBoundingBox: measureBoundingBox$1, + reverse: reverse$3, + toPoints: toPoints, + toString: toString$3, + transform: transform$4, + validate: validate + }); + + /** + * Calculate the plane of the given slice. + * NOTE: The slice (and all vertices) are assumed to be planar from the beginning. + * @param {slice} slice - the slice + * @returns {plane} the plane of the slice + * @alias module:modeling/geometries/slice.calculatePlane + * + * @example + * let myPlane = calculatePlane(slice) + */ + const calculatePlane = (slice) => { + if (slice.contours < 1) throw new Error('slices must have at least one contour to calculate a plane') + + // find the middle of the slice, which will lie on the plane by definition + const middle = create$b(); + let n = 0; // number of vertices + slice.contours.forEach((contour) => { + contour.forEach((vertex) => { + add$1(middle, middle, vertex); + n++; + }); + }); + scale$3(middle, middle, 1 / n); + + // find the farthest edge from the middle, which will be on an outside edge + let farthestContour; + let farthestBefore; + let farthestVertex; + let distance = 0; + slice.contours.forEach((contour) => { + let prev = contour[contour.length - 1]; + contour.forEach((vertex) => { + // make sure that the farthest edge is not a self-edge + if (!equals$7(prev, vertex)) { + const d = squaredDistance$1(middle, vertex); + if (d > distance) { + farthestContour = contour; + farthestBefore = prev; + farthestVertex = vertex; + distance = d; + } + } + prev = vertex; + }); + }); + + // find the after vertex + let farthestAfter; + let prev = farthestContour[farthestContour.length - 1]; + for (let i = 0; i < farthestContour.length; i++) { + const vertex = farthestContour[i]; + if (!equals$7(prev, vertex) && equals$7(prev, farthestVertex)) { + farthestAfter = vertex; + break + } + prev = vertex; + } + + return fromPoints$4(create$6(), farthestBefore, farthestVertex, farthestAfter) + }; + + /** + * Create a deep clone of the given slice. + * + * @param {slice} slice - slice to clone + * @returns {slice} a new slice + * @alias module:modeling/geometries/slice.clone + */ + const clone$2 = (slice) => Object.assign({}, slice); + + /** + * Represents a 3D geometry consisting of a list of contours, + * where each contour consists of a list of planar vertices. + * @typedef {Object} slice + * @property {Array} contours - list of contours, each contour containing a list of 3D vertices + * @example + * {"contours": [[[0,0,1], [4,0,1], [4,3,1]]]} + */ + + /** + * Creates a new slice from the given contours. + * + * @param {Array} [contours] - a list of contours, where each contour contains a list of vertices (3D) + * @returns {slice} a new slice + * @alias module:modeling/geometries/slice.create + * @example + * const slice = create([ [[0,0,1], [4,0,1], [4,3,1]] ]) + */ + const create$2 = (contours = []) => ({ contours }); + + /** + * Determine if the given slices have the same contours. + * @param {slice} a - the first slice to compare + * @param {slice} b - the second slice to compare + * @returns {Boolean} true if the slices are equal + * @alias module:modeling/geometries/slice.equals + */ + const equals$3 = (a, b) => { + if (a.contours.length !== b.contours.length) { + return false + } + + const len = a.contours.length; + for (let i = 0; i < len; i++) { + const aVertex = a.contours[i]; + for (let j = 0; j < len; j++) { + const bVertex = b.contours[j]; + if (!equals$7(aVertex, bVertex)) { + return false + } + } + } + + return true + }; + + /** + * Create a slice from a geom2. + * + * @param {Object} geometry - the 2D geometry to create a slice from + * @returns {slice} a new slice + * @alias module:modeling/geometries/slice.fromGeom2 + */ + const fromGeom2 = (geometry) => { + // Convert from 2D points to 3D vertices + const contours = toOutlines(geometry).map((outline) => outline.map((point) => fromVec2(create$b(), point))); + return create$2(contours) + }; + + /** + * Create a slice from the given vertices. + * + * @param {Array} vertices - list of vertices, where each vertex is either 2D or 3D + * @returns {slice} a new slice + * @alias module:modeling/geometries/slice.fromVertices + * + * @example + * const vertices = [ + * [0, 0, 3], + * [0, 10, 3], + * [0, 10, 6] + * ] + * const slice = fromVertices(vertices) + */ + const fromVertices = (vertices) => { + if (!Array.isArray(vertices)) throw new Error('the given vertices must be an array') + if (vertices.length < 3) throw new Error('the given vertices must contain THREE or more vertices') + + // Convert from 2D points to 3D vertices if needed + const cloned = vertices.map((vertex) => { + if (vertex.length === 3) { + return vertex + } else { + return fromVec2(create$b(), vertex) + } + }); + // create a slice with one contour containing all vertices + return create$2([cloned]) + }; + + /** + * Determine if the given object is a slice. + * @param {slice} object - the object to interrogate + * @returns {Boolean} true if the object matches a slice + * @alias module:modeling/geometries/slice.isA + */ + const isA = (object) => { + if (object && typeof object === 'object') { + if ('contours' in object) { + if (Array.isArray(object.contours)) { + return true + } + } + } + return false + }; + + /** + * Reverse the edges of the given slice. + * + * @param {slice} slice - slice to reverse + * @returns {slice} reverse of the slice + * @alias module:modeling/geometries/slice.reverse + */ + const reverse$2 = (slice) => { + // reverse each contour + const contours = slice.contours.map((contour) => contour.slice().reverse()); + return create$2(contours) + }; + + /** + * Produces an array of edges from the given slice. + * The returned array should not be modified as the data is shared with the slice. + * @param {slice} slice - the slice + * @returns {Array} an array of edges, each edge contains an array of two vertices (3D) + * @alias module:modeling/geometries/slice.toEdges + * + * @example + * let sharedEdges = toEdges(slice) + */ + const toEdges = (slice) => { + const edges = []; + slice.contours.forEach((contour) => { + contour.forEach((vertex, i) => { + const next = contour[(i + 1) % contour.length]; + edges.push([vertex, next]); + }); + }); + return edges + }; + + /** + * Produces an array of vertices from the given slice. + * The returned array should not be modified as the data is shared with the slice. + * @param {slice} slice - the slice + * @returns {Array} an array of 3D vertices + * @alias module:modeling/geometries/slice.toVertices + * + * @example + * let sharedVertices = toVertices(slice) + */ + const toVertices = (slice) => { + const vertices = []; + slice.contours.forEach((contour) => { + contour.forEach((vertex) => { + vertices.push(vertex); + }); + }); + return vertices + }; + + class Node$2 { + constructor (i, x, y) { + // vertex index in coordinates array + this.i = i; + + // vertex coordinates + this.x = x; + this.y = y; + + // previous and next vertex nodes in a polygon ring + this.prev = null; + this.next = null; + + // z-order curve value + this.z = null; + + // previous and next nodes in z-order + this.prevZ = null; + this.nextZ = null; + + // indicates whether this is a steiner point + this.steiner = false; + } + } + + /* + * create a node and optionally link it with previous one (in a circular doubly linked list) + */ + const insertNode = (i, x, y, last) => { + const p = new Node$2(i, x, y); + + if (!last) { + p.prev = p; + p.next = p; + } else { + p.next = last.next; + p.prev = last; + last.next.prev = p; + last.next = p; + } + + return p + }; + + /* + * remove a node and join prev with next nodes + */ + const removeNode = (p) => { + p.next.prev = p.prev; + p.prev.next = p.next; + + if (p.prevZ) p.prevZ.nextZ = p.nextZ; + if (p.nextZ) p.nextZ.prevZ = p.prevZ; + }; + + /* + * check if a point lies within a convex triangle + */ + const pointInTriangle = (ax, ay, bx, by, cx, cy, px, py) => ( + (cx - px) * (ay - py) - (ax - px) * (cy - py) >= 0 && + (ax - px) * (by - py) - (bx - px) * (ay - py) >= 0 && + (bx - px) * (cy - py) - (cx - px) * (by - py) >= 0 + ); + + /* + * signed area of a triangle + */ + const area = (p, q, r) => (q.y - p.y) * (r.x - q.x) - (q.x - p.x) * (r.y - q.y); + + /* + * create a circular doubly linked list from polygon points in the specified winding order + */ + const linkedPolygon = (data, start, end, dim, clockwise) => { + let last; + + if (clockwise === (signedArea$1(data, start, end, dim) > 0)) { + for (let i = start; i < end; i += dim) { + last = insertNode(i, data[i], data[i + 1], last); + } + } else { + for (let i = end - dim; i >= start; i -= dim) { + last = insertNode(i, data[i], data[i + 1], last); + } + } + + if (last && equals$2(last, last.next)) { + removeNode(last); + last = last.next; + } + + return last + }; + + /* + * eliminate colinear or duplicate points + */ + const filterPoints = (start, end) => { + if (!start) return start + if (!end) end = start; + + let p = start; + let again; + do { + again = false; + + if (!p.steiner && (equals$2(p, p.next) || area(p.prev, p, p.next) === 0)) { + removeNode(p); + p = end = p.prev; + if (p === p.next) break + again = true; + } else { + p = p.next; + } + } while (again || p !== end) + + return end + }; + + /* + * go through all polygon nodes and cure small local self-intersections + */ + const cureLocalIntersections = (start, triangles, dim) => { + let p = start; + do { + const a = p.prev; + const b = p.next.next; + + if (!equals$2(a, b) && intersects(a, p, p.next, b) && locallyInside(a, b) && locallyInside(b, a)) { + triangles.push(a.i / dim); + triangles.push(p.i / dim); + triangles.push(b.i / dim); + + // remove two nodes involved + removeNode(p); + removeNode(p.next); + + p = start = b; + } + + p = p.next; + } while (p !== start) + + return filterPoints(p) + }; + + /* + * check if a polygon diagonal intersects any polygon segments + */ + const intersectsPolygon = (a, b) => { + let p = a; + do { + if (p.i !== a.i && p.next.i !== a.i && p.i !== b.i && p.next.i !== b.i && + intersects(p, p.next, a, b)) return true + p = p.next; + } while (p !== a) + + return false + }; + + /* + * check if a polygon diagonal is locally inside the polygon + */ + const locallyInside = (a, b) => area(a.prev, a, a.next) < 0 + ? area(a, b, a.next) >= 0 && area(a, a.prev, b) >= 0 + : area(a, b, a.prev) < 0 || area(a, a.next, b) < 0; + + /* + * check if the middle point of a polygon diagonal is inside the polygon + */ + const middleInside = (a, b) => { + let p = a; + let inside = false; + const px = (a.x + b.x) / 2; + const py = (a.y + b.y) / 2; + do { + if (((p.y > py) !== (p.next.y > py)) && p.next.y !== p.y && + (px < (p.next.x - p.x) * (py - p.y) / (p.next.y - p.y) + p.x)) { inside = !inside; } + p = p.next; + } while (p !== a) + + return inside + }; + + /* + * link two polygon vertices with a bridge; if the vertices belong to the same ring, it splits polygon into two + * if one belongs to the outer ring and another to a hole, it merges it into a single ring + */ + const splitPolygon = (a, b) => { + const a2 = new Node$2(a.i, a.x, a.y); + const b2 = new Node$2(b.i, b.x, b.y); + const an = a.next; + const bp = b.prev; + + a.next = b; + b.prev = a; + + a2.next = an; + an.prev = a2; + + b2.next = a2; + a2.prev = b2; + + bp.next = b2; + b2.prev = bp; + + return b2 + }; + + /* + * check if a diagonal between two polygon nodes is valid (lies in polygon interior) + */ + const isValidDiagonal = (a, b) => a.next.i !== b.i && + a.prev.i !== b.i && + !intersectsPolygon(a, b) && // doesn't intersect other edges + ( + locallyInside(a, b) && locallyInside(b, a) && middleInside(a, b) && // locally visible + (area(a.prev, a, b.prev) || area(a, b.prev, b)) || // does not create opposite-facing sectors + equals$2(a, b) && area(a.prev, a, a.next) > 0 && area(b.prev, b, b.next) > 0 + ); + + /* + * check if two segments intersect + */ + const intersects = (p1, q1, p2, q2) => { + const o1 = Math.sign(area(p1, q1, p2)); + const o2 = Math.sign(area(p1, q1, q2)); + const o3 = Math.sign(area(p2, q2, p1)); + const o4 = Math.sign(area(p2, q2, q1)); + + if (o1 !== o2 && o3 !== o4) return true // general case + + if (o1 === 0 && onSegment(p1, p2, q1)) return true // p1, q1 and p2 are colinear and p2 lies on p1q1 + if (o2 === 0 && onSegment(p1, q2, q1)) return true // p1, q1 and q2 are colinear and q2 lies on p1q1 + if (o3 === 0 && onSegment(p2, p1, q2)) return true // p2, q2 and p1 are colinear and p1 lies on p2q2 + if (o4 === 0 && onSegment(p2, q1, q2)) return true // p2, q2 and q1 are colinear and q1 lies on p2q2 + + return false + }; + + /* + * for colinear points p, q, r, check if point q lies on segment pr + */ + const onSegment = (p, q, r) => q.x <= Math.max(p.x, r.x) && + q.x >= Math.min(p.x, r.x) && + q.y <= Math.max(p.y, r.y) && + q.y >= Math.min(p.y, r.y); + + const signedArea$1 = (data, start, end, dim) => { + let sum = 0; + for (let i = start, j = end - dim; i < end; i += dim) { + sum += (data[j] - data[i]) * (data[i + 1] + data[j + 1]); + j = i; + } + + return sum + }; + + /* + * check if two points are equal + */ + const equals$2 = (p1, p2) => p1.x === p2.x && p1.y === p2.y; + + /* + * link every hole into the outer loop, producing a single-ring polygon without holes + * + * Original source from https://github.com/mapbox/earcut + * Copyright (c) 2016 Mapbox + */ + const eliminateHoles = (data, holeIndices, outerNode, dim) => { + const queue = []; + + for (let i = 0, len = holeIndices.length; i < len; i++) { + const start = holeIndices[i] * dim; + const end = i < len - 1 ? holeIndices[i + 1] * dim : data.length; + const list = linkedPolygon(data, start, end, dim, false); + if (list === list.next) list.steiner = true; + queue.push(getLeftmost(list)); + } + + queue.sort((a, b) => a.x - b.x); // compare X + + // process holes from left to right + for (let i = 0; i < queue.length; i++) { + outerNode = eliminateHole(queue[i], outerNode); + outerNode = filterPoints(outerNode, outerNode.next); + } + + return outerNode + }; + + /* + * find a bridge between vertices that connects hole with an outer ring and link it + */ + const eliminateHole = (hole, outerNode) => { + const bridge = findHoleBridge(hole, outerNode); + if (!bridge) { + return outerNode + } + + const bridgeReverse = splitPolygon(bridge, hole); + + // filter colinear points around the cuts + const filteredBridge = filterPoints(bridge, bridge.next); + filterPoints(bridgeReverse, bridgeReverse.next); + + // Check if input node was removed by the filtering + return outerNode === bridge ? filteredBridge : outerNode + }; + + /* + * David Eberly's algorithm for finding a bridge between hole and outer polygon + */ + const findHoleBridge = (hole, outerNode) => { + let p = outerNode; + const hx = hole.x; + const hy = hole.y; + let qx = -Infinity; + let m; + + // find a segment intersected by a ray from the hole's leftmost point to the left + // segment's endpoint with lesser x will be potential connection point + do { + if (hy <= p.y && hy >= p.next.y && p.next.y !== p.y) { + const x = p.x + (hy - p.y) * (p.next.x - p.x) / (p.next.y - p.y); + if (x <= hx && x > qx) { + qx = x; + if (x === hx) { + if (hy === p.y) return p + if (hy === p.next.y) return p.next + } + + m = p.x < p.next.x ? p : p.next; + } + } + + p = p.next; + } while (p !== outerNode) + + if (!m) return null + + if (hx === qx) return m // hole touches outer segment; pick leftmost endpoint + + // look for points inside the triangle of hole point, segment intersection and endpoint + // if there are no points found, we have a valid connection + // otherwise choose the point of the minimum angle with the ray as connection point + + const stop = m; + const mx = m.x; + const my = m.y; + let tanMin = Infinity; + + p = m; + + do { + if (hx >= p.x && p.x >= mx && hx !== p.x && + pointInTriangle(hy < my ? hx : qx, hy, mx, my, hy < my ? qx : hx, hy, p.x, p.y)) { + const tan = Math.abs(hy - p.y) / (hx - p.x); // tangential + + if (locallyInside(p, hole) && (tan < tanMin || (tan === tanMin && (p.x > m.x || (p.x === m.x && sectorContainsSector(m, p)))))) { + m = p; + tanMin = tan; + } + } + + p = p.next; + } while (p !== stop) + + return m + }; + + /* + * whether sector in vertex m contains sector in vertex p in the same coordinates + */ + const sectorContainsSector = (m, p) => area(m.prev, m, p.prev) < 0 && area(p.next, m, m.next) < 0; + + /* + * find the leftmost node of a polygon ring + */ + const getLeftmost = (start) => { + let p = start; + let leftmost = start; + do { + if (p.x < leftmost.x || (p.x === leftmost.x && p.y < leftmost.y)) leftmost = p; + p = p.next; + } while (p !== start) + + return leftmost + }; + + // Simon Tatham's linked list merge sort algorithm + // https://www.chiark.greenend.org.uk/~sgtatham/algorithms/listsort.html + const linkedListSort = (list, fn) => { + let i, p, q, e, numMerges; + let inSize = 1; + + do { + p = list; + list = null; + let tail = null; + numMerges = 0; + + while (p) { + numMerges++; + q = p; + let pSize = 0; + for (i = 0; i < inSize; i++) { + pSize++; + q = q.nextZ; + if (!q) break + } + + let qSize = inSize; + + while (pSize > 0 || (qSize > 0 && q)) { + if (pSize !== 0 && (qSize === 0 || !q || fn(p) <= fn(q))) { + e = p; + p = p.nextZ; + pSize--; + } else { + e = q; + q = q.nextZ; + qSize--; + } + + if (tail) tail.nextZ = e; + else list = e; + + e.prevZ = tail; + tail = e; + } + + p = q; + } + + tail.nextZ = null; + inSize *= 2; + } while (numMerges > 1) + + return list + }; + + /* + * An implementation of the earcut polygon triangulation algorithm. + * + * Original source from https://github.com/mapbox/earcut + * Copyright (c) 2016 Mapbox + * + * @param {data} A flat array of vertex coordinates. + * @param {holeIndices} An array of hole indices if any. + * @param {dim} The number of coordinates per vertex in the input array. + */ + const triangulate = (data, holeIndices, dim = 2) => { + const hasHoles = holeIndices && holeIndices.length; + const outerLen = hasHoles ? holeIndices[0] * dim : data.length; + let outerNode = linkedPolygon(data, 0, outerLen, dim, true); + const triangles = []; + + if (!outerNode || outerNode.next === outerNode.prev) return triangles + + let minX, minY, maxX, maxY, invSize; + + if (hasHoles) outerNode = eliminateHoles(data, holeIndices, outerNode, dim); + + // if the shape is not too simple, we'll use z-order curve hash later; calculate polygon bbox + if (data.length > 80 * dim) { + minX = maxX = data[0]; + minY = maxY = data[1]; + + for (let i = dim; i < outerLen; i += dim) { + const x = data[i]; + const y = data[i + 1]; + if (x < minX) minX = x; + if (y < minY) minY = y; + if (x > maxX) maxX = x; + if (y > maxY) maxY = y; + } + + // minX, minY and invSize are later used to transform coords into integers for z-order calculation + invSize = Math.max(maxX - minX, maxY - minY); + invSize = invSize !== 0 ? 1 / invSize : 0; + } + + earcutLinked(outerNode, triangles, dim, minX, minY, invSize); + + return triangles + }; + + /* + * main ear slicing loop which triangulates a polygon (given as a linked list) + */ + const earcutLinked = (ear, triangles, dim, minX, minY, invSize, pass) => { + if (!ear) return + + // interlink polygon nodes in z-order + if (!pass && invSize) indexCurve(ear, minX, minY, invSize); + + let stop = ear; + let prev; + let next; + + // iterate through ears, slicing them one by one + while (ear.prev !== ear.next) { + prev = ear.prev; + next = ear.next; + + if (invSize ? isEarHashed(ear, minX, minY, invSize) : isEar(ear)) { + // cut off the triangle + triangles.push(prev.i / dim); + triangles.push(ear.i / dim); + triangles.push(next.i / dim); + + removeNode(ear); + + // skipping the next vertex leads to less sliver triangles + ear = next.next; + stop = next.next; + + continue + } + + ear = next; + + // if we looped through the whole remaining polygon and can't find any more ears + if (ear === stop) { + // try filtering points and slicing again + if (!pass) { + earcutLinked(filterPoints(ear), triangles, dim, minX, minY, invSize, 1); + + // if this didn't work, try curing all small self-intersections locally + } else if (pass === 1) { + ear = cureLocalIntersections(filterPoints(ear), triangles, dim); + earcutLinked(ear, triangles, dim, minX, minY, invSize, 2); + + // as a last resort, try splitting the remaining polygon into two + } else if (pass === 2) { + splitEarcut(ear, triangles, dim, minX, minY, invSize); + } + + break + } + } + }; + + /* + * check whether a polygon node forms a valid ear with adjacent nodes + */ + const isEar = (ear) => { + const a = ear.prev; + const b = ear; + const c = ear.next; + + if (area(a, b, c) >= 0) return false // reflex, can't be an ear + + // now make sure we don't have other points inside the potential ear + let p = ear.next.next; + + while (p !== ear.prev) { + if (pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y) && area(p.prev, p, p.next) >= 0) { + return false + } + p = p.next; + } + + return true + }; + + const isEarHashed = (ear, minX, minY, invSize) => { + const a = ear.prev; + const b = ear; + const c = ear.next; + + if (area(a, b, c) >= 0) return false // reflex, can't be an ear + + // triangle bbox; min & max are calculated like this for speed + const minTX = a.x < b.x ? (a.x < c.x ? a.x : c.x) : (b.x < c.x ? b.x : c.x); + const minTY = a.y < b.y ? (a.y < c.y ? a.y : c.y) : (b.y < c.y ? b.y : c.y); + const maxTX = a.x > b.x ? (a.x > c.x ? a.x : c.x) : (b.x > c.x ? b.x : c.x); + const maxTY = a.y > b.y ? (a.y > c.y ? a.y : c.y) : (b.y > c.y ? b.y : c.y); + + // z-order range for the current triangle bbox + const minZ = zOrder(minTX, minTY, minX, minY, invSize); + const maxZ = zOrder(maxTX, maxTY, minX, minY, invSize); + + let p = ear.prevZ; + let n = ear.nextZ; + + // look for points inside the triangle in both directions + while (p && p.z >= minZ && n && n.z <= maxZ) { + if (p !== ear.prev && p !== ear.next && + pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y) && + area(p.prev, p, p.next) >= 0) return false + p = p.prevZ; + + if (n !== ear.prev && n !== ear.next && + pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, n.x, n.y) && + area(n.prev, n, n.next) >= 0) return false + n = n.nextZ; + } + + // look for remaining points in decreasing z-order + while (p && p.z >= minZ) { + if (p !== ear.prev && p !== ear.next && + pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y) && + area(p.prev, p, p.next) >= 0) return false + p = p.prevZ; + } + + // look for remaining points in increasing z-order + while (n && n.z <= maxZ) { + if (n !== ear.prev && n !== ear.next && + pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, n.x, n.y) && + area(n.prev, n, n.next) >= 0) return false + n = n.nextZ; + } + + return true + }; + + /* + * try splitting polygon into two and triangulate them independently + */ + const splitEarcut = (start, triangles, dim, minX, minY, invSize) => { + // look for a valid diagonal that divides the polygon into two + let a = start; + do { + let b = a.next.next; + while (b !== a.prev) { + if (a.i !== b.i && isValidDiagonal(a, b)) { + // split the polygon in two by the diagonal + let c = splitPolygon(a, b); + + // filter colinear points around the cuts + a = filterPoints(a, a.next); + c = filterPoints(c, c.next); + + // run earcut on each half + earcutLinked(a, triangles, dim, minX, minY, invSize); + earcutLinked(c, triangles, dim, minX, minY, invSize); + return + } + + b = b.next; + } + + a = a.next; + } while (a !== start) + }; + + /* + * interlink polygon nodes in z-order + */ + const indexCurve = (start, minX, minY, invSize) => { + let p = start; + do { + if (p.z === null) p.z = zOrder(p.x, p.y, minX, minY, invSize); + p.prevZ = p.prev; + p.nextZ = p.next; + p = p.next; + } while (p !== start) + + p.prevZ.nextZ = null; + p.prevZ = null; + + linkedListSort(p, (p) => p.z); + }; + + /* + * z-order of a point given coords and inverse of the longer side of data bbox + */ + const zOrder = (x, y, minX, minY, invSize) => { + // coords are transformed into non-negative 15-bit integer range + x = 32767 * (x - minX) * invSize; + y = 32767 * (y - minY) * invSize; + + x = (x | (x << 8)) & 0x00FF00FF; + x = (x | (x << 4)) & 0x0F0F0F0F; + x = (x | (x << 2)) & 0x33333333; + x = (x | (x << 1)) & 0x55555555; + + y = (y | (y << 8)) & 0x00FF00FF; + y = (y | (y << 4)) & 0x0F0F0F0F; + y = (y | (y << 2)) & 0x33333333; + y = (y | (y << 1)) & 0x55555555; + + return x | (y << 1) + }; + + /** + * Compare two normals (unit vectors) for near equality. + * @param {vec3} a - normal a + * @param {vec3} b - normal b + * @returns {Boolean} true if a and b are nearly equal + * @alias module:modeling/maths/utils.aboutEqualNormals + */ + const aboutEqualNormals = (a, b) => (Math.abs(a[0] - b[0]) <= NEPS && Math.abs(a[1] - b[1]) <= NEPS && Math.abs(a[2] - b[2]) <= NEPS); + + /** + * Get the X coordinate of a point with a certain Y coordinate, interpolated between two points. + * Interpolation is robust even if the points have the same Y coordinate + * @param {vec2} point1 + * @param {vec2} point2 + * @param {Number} y + * @return {Array} X and Y of interpolated point + * @alias module:modeling/maths/utils.interpolateBetween2DPointsForY + */ + const interpolateBetween2DPointsForY = (point1, point2, y) => { + let f1 = y - point1[1]; + let f2 = point2[1] - point1[1]; + if (f2 < 0) { + f1 = -f1; + f2 = -f2; + } + let t; + if (f1 <= 0) { + t = 0.0; + } else if (f1 >= f2) { + t = 1.0; + } else if (f2 < 1e-10) { // FIXME Should this be EPS? + t = 0.5; + } else { + t = f1 / f2; + } + const result = point1[0] + t * (point2[0] - point1[0]); + return result + }; + + const solve2Linear = (a, b, c, d, u, v) => { + const det = a * d - b * c; + const invdet = 1.0 / det; + let x = u * d - b * v; + let y = -u * c + a * v; + x *= invdet; + y *= invdet; + return [x, y] + }; + + /* + * Class that defines the formula for convertion to/from orthonomal basis vectors. + * @see https://www.kristakingmath.com/blog/orthonormal-basis-for-a-vector-set + */ + class OrthonormalFormula { + /** + * Construct the standard basis formula from the given plane. + * @param {plane} the plane of which to convert vertices to/from the orthonormal basis + */ + constructor (plane) { + // plane normal is one component + this.plane = plane; + // orthogonal vector to plane normal is one component + const rightVector = orthogonal(create$b(), plane); + this.v = normalize$1(rightVector, cross$1(rightVector, plane, rightVector)); + // cross between plane normal and orthogonal vector is one component + this.u = cross$1(create$b(), this.v, plane); + + this.planeOrigin = scale$3(create$b(), plane, plane[3]); + this.basisMap = new Map(); + } + + /** + * Convert the basis formula to a projection matrix. + * return {mat4} matrix which can be used to convert 3D vertices to 2D points + */ + getProjectionMatrix () { + return fromValues$4( + this.u[0], this.v[0], this.plane[0], 0, + this.u[1], this.v[1], this.plane[1], 0, + this.u[2], this.v[2], this.plane[2], 0, + 0, 0, -this.plane[3], 1 + ) + } + + /** + * Convert the basis formula to an inverse projection matrix. + * return {mat4} matrix which can be used to convert 2D points to 3D vertices + */ + getInverseProjectionMatrix () { + return fromValues$4( + this.u[0], this.u[1], this.u[2], 0, + this.v[0], this.v[1], this.v[2], 0, + this.plane[0], this.plane[1], this.plane[2], 0, + this.planeOrigin[0], this.planeOrigin[1], this.planeOrigin[2], 1 + ) + } + + /** + * Convert the given 3D vertex to a 2D point which exists in the orthonormal basis + * @param {vec3} - 3D vertex which lies within the original basis (set) + * @return {vec2} - 2D point which lies within the orthonormal basis + */ + to2D (vertex) { + const point = fromValues$2(dot$2(vertex, this.u), dot$2(vertex, this.v)); + this.basisMap.set(point, vertex); + return point + } + + /** + * Convert the given 2D point to a 3D vertex which exists in the original basis (set) + * @param {vec2} - 2D point which lies within the orthonormal basis + * @return {vec3} - 3D vertex which lies within the original basis (set) + */ + to3D (point) { + // return the original vertex if possible, i.e. no floating point error + const original = this.basisMap.get(point); + if (original) return original + + // calculate a new 3D vertex from the orthonormal basis formula + const v1 = scale$3(create$b(), this.u, point[0]); + const v2 = scale$3(create$b(), this.v, point[1]); + const v3 = add$1(v1, v1, this.planeOrigin); + const v4 = add$1(v2, v2, v3); + return v4 + } + } + + /** + * Utility functions for maths. + * @module modeling/maths/utils + * @example + * import { maths } from '@jscad/modeling' + * const { aboutEqualNormals, area, intersect, solve2Linear } = maths.utils + */ + + var index$f = /*#__PURE__*/Object.freeze({ + __proto__: null, + cos: cos, + sin: sin, + aboutEqualNormals: aboutEqualNormals, + area: area$1, + interpolateBetween2DPointsForY: interpolateBetween2DPointsForY, + intersect: intersect$1, + solve2Linear: solve2Linear, + OrthonormalFormula: OrthonormalFormula + }); + + /* + * Constructs a polygon hierarchy of solids and holes. + * The hierarchy is represented as a forest of trees. All trees shall be depth at most 2. + * If a solid exists inside the hole of another solid, it will be split out as its own root. + * + * @param {geom2} geometry + * @returns {Array} an array of polygons with associated holes + * @alias module:modeling/geometries/geom2.toTree + * + * @example + * const geometry = subtract(rectangle({size: [5, 5]}), rectangle({size: [3, 3]})) + * console.log(assignHoles(geometry)) + * [{ + * "solid": [[-2.5,-2.5],[2.5,-2.5],[2.5,2.5],[-2.5,2.5]], + * "holes": [[[-1.5,1.5],[1.5,1.5],[1.5,-1.5],[-1.5,-1.5]]] + * }] + */ + const assignHoles = (geometry) => { + const outlines = toOutlines(geometry); + const solids = []; // solid indices + const holes = []; // hole indices + outlines.forEach((outline, i) => { + const a = area$1(outline); + if (a < 0) { + holes.push(i); + } else if (a > 0) { + solids.push(i); + } + }); + + // for each hole, determine what solids it is inside of + const children = []; // child holes of solid[i] + const parents = []; // parent solids of hole[i] + solids.forEach((s, i) => { + const solid = outlines[s]; + children[i] = []; + holes.forEach((h, j) => { + const hole = outlines[h]; + // check if a point of hole j is inside solid i + if (arePointsInside([hole[0]], create$3(solid))) { + children[i].push(h); + if (!parents[j]) parents[j] = []; + parents[j].push(i); + } + }); + }); + + // check if holes have multiple parents and choose one with fewest children + holes.forEach((h, j) => { + // ensure at least one parent exists + if (parents[j] && parents[j].length > 1) { + // the solid directly containing this hole + const directParent = minIndex(parents[j], (p) => children[p].length); + parents[j].forEach((p, i) => { + if (i !== directParent) { + // Remove hole from skip level parents + children[p] = children[p].filter((c) => c !== h); + } + }); + } + }); + + // map indices back to points + return children.map((holes, i) => ({ + solid: outlines[solids[i]], + holes: holes.map((h) => outlines[h]) + })) + }; + + /* + * Find the item in the list with smallest score(item). + * If the list is empty, return undefined. + */ + const minIndex = (list, score) => { + let bestIndex; + let best; + list.forEach((item, index) => { + const value = score(item); + if (best === undefined || value < best) { + bestIndex = index; + best = value; + } + }); + return bestIndex + }; + + /* + * Constructs a polygon hierarchy which associates holes with their outer solids. + * This class maps a 3D polygon onto a 2D space using an orthonormal basis. + * It tracks the mapping so that points can be reversed back to 3D losslessly. + */ + class PolygonHierarchy { + constructor (slice) { + this.plane = calculatePlane(slice); + + // create an orthonormal basis + // choose an arbitrary right hand vector, making sure it is somewhat orthogonal to the plane normal + const rightVector = orthogonal(create$b(), this.plane); + const perp = cross$1(create$b(), this.plane, rightVector); + this.v = normalize$1(perp, perp); + this.u = cross$1(create$b(), this.v, this.plane); + + // map from 2D to original 3D points + this.basisMap = new Map(); + + // project slice onto 2D plane + const projected = slice.contours.map((part) => part.map((v) => this.to2D(v))); + + // compute polygon hierarchies, assign holes to solids + const geometry = create$a(projected); + this.roots = assignHoles(geometry); + } + + /* + * project a 3D point onto the 2D plane + */ + to2D (vector3) { + const vector2 = fromValues$2(dot$2(vector3, this.u), dot$2(vector3, this.v)); + this.basisMap.set(vector2, vector3); + return vector2 + } + + /* + * un-project a 2D point back into 3D + */ + to3D (vector2) { + // use a map to get the original 3D, no floating point error + const original = this.basisMap.get(vector2); + if (original) { + return original + } else { + console.log('Warning: point not in original slice'); + const v1 = scale$3(create$b(), this.u, vector2[0]); + const v2 = scale$3(create$b(), this.v, vector2[1]); + + const planeOrigin = scale$3(create$b(), this.plane, this.plane[3]); + const v3 = add$1(v1, v1, planeOrigin); + return add$1(v2, v2, v3) + } + } + } + + /** + * Return a list of polygons which are enclosed by the slice. + * @param {slice} slice - the slice + * @return {Array} a list of polygons (3D) + * @alias module:modeling/geometries/slice.toPolygons + */ + const toPolygons = (slice) => { + const hierarchy = new PolygonHierarchy(slice); + + const polygons = []; + hierarchy.roots.forEach(({ solid, holes }) => { + // hole indices + let index = solid.length; + const holesIndex = []; + holes.forEach((hole, i) => { + holesIndex.push(index); + index += hole.length; + }); + + // compute earcut triangulation for each solid + const vertices = [solid, ...holes].flat(); + const data = vertices.flat(); + // Get original 3D vertex by index + const getVertex = (i) => hierarchy.to3D(vertices[i]); + const indices = triangulate(data, holesIndex); + for (let i = 0; i < indices.length; i += 3) { + // Map back to original vertices + const tri = indices.slice(i, i + 3).map(getVertex); + polygons.push(fromVerticesAndPlane(tri, hierarchy.plane)); + } + }); + + return polygons + }; + + /** + * Convert the given slice to a readable string. + * @param {slice} slice - the slice + * @return {String} the string representation + * @alias module:modeling/geometries/slice.toString + */ + const toString$2 = (slice) => { + let result = 'slice (' + slice.contours.length + ' contours):\n[\n'; + slice.contours.forEach((contour) => { + result += ' [' + contour.map(toString$b).join() + '],\n'; + }); + result += ']\n'; + return result + }; + + /** + * Transform the given slice using the given matrix. + * @param {mat4} matrix - transform matrix + * @param {slice} slice - slice to transform + * @returns {slice} the transformed slice + * @alias module:modeling/geometries/slice.transform + * + * @example + * let matrix = mat4.fromTranslation([1, 2, 3]) + * let newSlice = transform(matrix, oldSlice) + */ + const transform$3 = (matrix, slice) => { + const contours = slice.contours.map((contour) => contour.map((vertex) => transform$c(create$b(), vertex, matrix))); + return create$2(contours) + }; + + /** + * Represents a 3D geometry consisting of a list of contours, where each contour consists of a list of planar vertices. + * @see {@link slice} for data structure information. + * @module modeling/geometries/slice + * + * @example + * import { geometries } from '@jscad/modeling' + * const slice = geometries.slice.create([[[0,0,0], [4,0,0], [4,3,12]]]) + */ + + var index$e = /*#__PURE__*/Object.freeze({ + __proto__: null, + calculatePlane: calculatePlane, + clone: clone$2, + create: create$2, + equals: equals$3, + fromGeom2: fromGeom2, + fromVertices: fromVertices, + isA: isA, + reverse: reverse$2, + toEdges: toEdges, + toVertices: toVertices, + toPolygons: toPolygons, + toString: toString$2, + transform: transform$3 + }); + + /** + * Geometries are objects that represent the contents of primitives or the results of operations. + * Note: Geometries are considered immutable, so never change the contents directly. + * + * @see {@link geom2} - 2D geometry consisting of 2D outlines + * @see {@link geom3} - 3D geometry consisting of polygons + * @see {@link path2} - 2D geometry consisting of ordered points + * @see {@link poly2} - 2D polygon consisting of ordered vertices + * @see {@link poly3} - 3D polygon consisting of ordered vertices + * @see {@link slice} - 3D geometry consisting of 3D outlines + * + * @module modeling/geometries + * @example + * import { geometries } from '@jscad/modeling' + * const { geom2, geom3, path2, poly2, poly3 } = geometries + */ + + var index$d = /*#__PURE__*/Object.freeze({ + __proto__: null, + geom2: index$p, + geom3: index$l, + path2: index$k, + poly2: index$g, + poly3: index$m, + slice: index$e + }); + + /** + * Represents an unbounded line in 2D space, positioned at a point of origin. + * A line is parametrized by a normal vector (perpendicular to the line, + * rotated 90 degrees counterclockwise) and distance from the origin. + * + * Equation: A Point (P) is on Line (L) if dot(L.normal, P) == L.distance + * + * The contents of the array are a normal [0,1] and a distance [2]. + * @typedef {Array} line2 + */ + + /** + * Create a line, positioned at 0,0, and running along the X axis. + * + * @returns {line2} a new unbounded line + * @alias module:modeling/maths/line2.create + */ + const create$1 = () => [0, 1, 0]; // normal and distance + + /** + * Create a clone of the given line. + * + * @param {line2} line - line to clone + * @returns {line2} a new unbounded line + * @alias module:modeling/maths/line2.clone + */ + const clone$1 = (line) => { + const out = create$1(); + out[0] = line[0]; + out[1] = line[1]; + out[2] = line[2]; + return out + }; + + /** + * Return the direction of the given line. + * + * @param {line2} line - line of reference + * @return {vec2} a vector in the direction of the line + * @alias module:modeling/maths/line2.direction + */ + const direction$1 = (line) => { + const vector = normal(create$9(), line); + negate(vector, vector); + return vector + }; + + /** + * Return the origin of the given line. + * + * @param {line2} line - line of reference + * @return {vec2} the origin of the line + * @alias module:modeling/maths/line2.origin + */ + const origin$1 = (line) => scale$1(create$9(), line, line[2]); + + /** + * Determine the closest point on the given line to the given point. + * + * @param {line2} line - line of reference + * @param {vec2} point - point of reference + * @returns {vec2} closest point + * @alias module:modeling/maths/line2.closestPoint + */ + const closestPoint$1 = (line, point) => { + // linear function of AB + const a = origin$1(line); + const b = direction$1(line); + const m1 = (b[1] - a[1]) / (b[0] - a[0]); + const t1 = a[1] - m1 * a[0]; + // linear function of PC + const m2 = -1 / m1; // perpendicular + const t2 = point[1] - m2 * point[0]; + // c.x * m1 + t1 === c.x * m2 + t2 + const x = (t2 - t1) / (m1 - m2); + const y = m1 * x + t1; + + const closest = fromValues$2(x, y); + return closest + }; + + /** + * Copy the given line to the receiving line. + * + * @param {line2} out - receiving line + * @param {line2} line - line to copy + * @returns {line2} out + * @alias module:modeling/maths/line2.copy + */ + const copy$1 = (out, line) => { + out[0] = line[0]; + out[1] = line[1]; + out[2] = line[2]; + return out + }; + + /** + * Calculate the distance (positive) between the given point and line. + * + * @param {line2} line - line of reference + * @param {vec2} point - point of reference + * @return {Number} distance between line and point + * @alias module:modeling/maths/line2.distanceToPoint + */ + const distanceToPoint$1 = (line, point) => { + let distance = dot$1(point, line); + distance = Math.abs(distance - line[2]); + return distance + }; + + /** + * Compare the given lines for equality. + * + * @param {line2} line1 - first line to compare + * @param {line2} line2 - second line to compare + * @return {Boolean} true if lines are equal + * @alias module:modeling/maths/line2.equals + */ + const equals$1 = (line1, line2) => (line1[0] === line2[0]) && (line1[1] === line2[1] && (line1[2] === line2[2])); + + /** + * Create a new line that passes through the given points. + * + * @param {line2} out - receiving line + * @param {vec2} point1 - start point of the line + * @param {vec2} point2 - end point of the line + * @returns {line2} a new unbounded line + * @alias module:modeling/maths/line2.fromPoints + */ + const fromPoints$1 = (out, point1, point2) => { + const vector = subtract$1(create$9(), point2, point1); // directional vector + + normal(vector, vector); + normalize(vector, vector); // normalized + + const distance = dot$1(point1, vector); + + out[0] = vector[0]; + out[1] = vector[1]; + out[2] = distance; + return out + }; + + /** + * Creates a new line initialized with the given values. + * + * @param {Number} x - X coordinate of the unit normal + * @param {Number} y - Y coordinate of the unit normal + * @param {Number} d - distance of the line from [0,0] + * @returns {line2} a new unbounded line + * @alias module:modeling/maths/line2.fromValues + */ + const fromValues = (x, y, d) => { + const out = create$1(); + out[0] = x; + out[1] = y; + out[2] = d; + return out + }; + + /** + * Return the point of intersection between the given lines. + * + * NOTES: + * The point will have Infinity values if the lines are parallel. + * The point will have NaN values if the lines are the same. + * + * @param {line2} line1 - line of reference + * @param {line2} line2 - line of reference + * @return {vec2} the point of intersection + * @alias module:modeling/maths/line2.intersectPointOfLines + */ + const intersectPointOfLines = (line1, line2) => { + const point = solve2Linear(line1[0], line1[1], line2[0], line2[1], line1[2], line2[2]); + return clone$8(point) + }; + + /** + * Create a new line in the opposite direction as the given. + * + * @param {line2} out - receiving line + * @param {line2} line - line to reverse + * @returns {line2} out + * @alias module:modeling/maths/line2.reverse + */ + const reverse$1 = (out, line) => { + const normal = negate(create$9(), line); + const distance = -line[2]; + return copy$1(out, fromValues(normal[0], normal[1], distance)) + }; + + /** + * Return a string representing the given line. + * + * @param {line2} line - line of reference + * @returns {String} string representation + * @alias module:modeling/maths/line2.toString + */ + const toString$1 = (line) => `line2: (${line[0].toFixed(7)}, ${line[1].toFixed(7)}, ${line[2].toFixed(7)})`; + + /** + * Transforms the given line using the given matrix. + * + * @param {line2} out - receiving line + * @param {line2} line - line to transform + * @param {mat4} matrix - matrix to transform with + * @returns {line2} out + * @alias module:modeling/maths/line2.transform + */ + const transform$2 = (out, line, matrix) => { + const org = origin$1(line); + const dir = direction$1(line); + + transform$b(org, org, matrix); + transform$b(dir, dir, matrix); + + return fromPoints$1(out, org, dir) + }; + + /** + * Determine the X coordinate of the given line at the Y coordinate. + * + * The X coordinate will be Infinity if the line is parallel to the X axis. + * + * @param {line2} line - line of reference + * @param {Number} y - Y coordinate on the line + * @return {Number} the X coordinate on the line + * @alias module:modeling/maths/line2.xAtY + */ + const xAtY = (line, y) => { + let x = (line[2] - (line[1] * y)) / line[0]; + if (Number.isNaN(x)) { + const org = origin$1(line); + x = org[0]; + } + return x + }; + + /** + * Represents an unbounded line in 2D space, positioned at a point of origin. + * @see {@link line2} for data structure information. + * @module modeling/maths/line2 + */ + + var index$c = /*#__PURE__*/Object.freeze({ + __proto__: null, + clone: clone$1, + closestPoint: closestPoint$1, + copy: copy$1, + create: create$1, + direction: direction$1, + distanceToPoint: distanceToPoint$1, + equals: equals$1, + fromPoints: fromPoints$1, + fromValues: fromValues, + intersectPointOfLines: intersectPointOfLines, + origin: origin$1, + reverse: reverse$1, + toString: toString$1, + transform: transform$2, + xAtY: xAtY + }); + + /** + * Represents an unbounded line in 3D space, positioned at a point of origin. + * A line is parametrized by a point of origin and a directional vector. + * + * The array contents are two 3D vectors; origin [0,0,0] and directional vector [0,0,1]. + * @see https://en.wikipedia.org/wiki/Hesse_normal_form + * @typedef {Array} line3 + */ + + /** + * Create a line, positioned at 0,0,0 and lying on the X axis. + * + * @returns {line3} a new unbounded line + * @alias module:modeling/maths/line3.create + */ + const create = () => [ + fromValues$3(0, 0, 0), // origin + fromValues$3(0, 0, 1) // direction + ]; + + /** + * Create a clone of the given line. + * + * @param {line3} line - line to clone + * @returns {line3} a new unbounded line + * @alias module:modeling/maths/line3.clone + */ + const clone = (line) => { + const out = create(); + copy$4(out[0], line[0]); + copy$4(out[1], line[1]); + return out + }; + + /** + * Determine the closest point on the given line to the given point. + * + * @param {line3} line - line of reference + * @param {vec3} point - point of reference + * @returns {vec3} a point + * @alias module:modeling/maths/line3.closestPoint + */ + const closestPoint = (line, point) => { + const lPoint = line[0]; + const lDirection = line[1]; + + const a = dot$2(subtract$3(create$b(), point, lPoint), lDirection); + const b = dot$2(lDirection, lDirection); + const t = a / b; + + const closestPoint = scale$3(create$b(), lDirection, t); + add$1(closestPoint, closestPoint, lPoint); + return closestPoint + }; + + /** + * Copy the given line into the receiving line. + * + * @param {line3} out - receiving line + * @param {line3} line - line to copy + * @returns {line3} out + * @alias module:modeling/maths/line3.copy + */ + const copy = (out, line) => { + copy$4(out[0], line[0]); + copy$4(out[1], line[1]); + return out + }; + + /** + * Return the direction of the given line. + * + * @param {line3} line - line for reference + * @return {vec3} the relative vector in the direction of the line + * @alias module:modeling/maths/line3.direction + */ + const direction = (line) => line[1]; + + /** + * Calculate the distance (positive) between the given point and line. + * + * @param {line3} line - line of reference + * @param {vec3} point - point of reference + * @return {Number} distance between line and point + * @alias module:modeling/maths/line3.distanceToPoint + */ + const distanceToPoint = (line, point) => { + const closest = closestPoint(line, point); + const distanceVector = subtract$3(create$b(), point, closest); + return length$1(distanceVector) + }; + + /** + * Compare the given lines for equality. + * + * @param {line3} line1 - first line to compare + * @param {line3} line2 - second line to compare + * @return {Boolean} true if lines are equal + * @alias module:modeling/maths/line3.equals + */ + const equals = (line1, line2) => { + // compare directions (unit vectors) + if (!equals$7(line1[1], line2[1])) return false + + // compare points + if (!equals$7(line1[0], line2[0])) return false + + // why would lines with the same slope (direction) and different points be equal? + // let distance = distanceToPoint(line1, line2[0]) + // if (distance > EPS) return false + + return true + }; + + /** + * Create a line from the given point (origin) and direction. + * + * The point can be any random point on the line. + * The direction must be a vector with positive or negative distance from the point. + * + * See the logic of fromPoints() for appropriate values. + * + * @param {line3} out - receiving line + * @param {vec3} point - start point of the line segment + * @param {vec3} direction - direction of the line segment + * @returns {line3} out + * @alias module:modeling/maths/line3.fromPointAndDirection + */ + const fromPointAndDirection = (out, point, direction) => { + const unit = normalize$1(create$b(), direction); + + copy$4(out[0], point); + copy$4(out[1], unit); + return out + }; + + /** + * Create a line the intersection of the given planes. + * + * @param {line3} out - receiving line + * @param {plane} plane1 - first plane of reference + * @param {plane} plane2 - second plane of reference + * @returns {line3} out + * @alias module:modeling/maths/line3.fromPlanes + */ + const fromPlanes = (out, plane1, plane2) => { + let direction = cross$1(create$b(), plane1, plane2); + let length = length$1(direction); + if (length < EPS) { + throw new Error('parallel planes do not intersect') + } + length = (1.0 / length); + direction = scale$3(direction, direction, length); + + const absX = Math.abs(direction[0]); + const absY = Math.abs(direction[1]); + const absZ = Math.abs(direction[2]); + let origin; + let r; + if ((absX >= absY) && (absX >= absZ)) { + // find a point p for which x is zero + r = solve2Linear(plane1[1], plane1[2], plane2[1], plane2[2], plane1[3], plane2[3]); + origin = fromValues$3(0, r[0], r[1]); + } else if ((absY >= absX) && (absY >= absZ)) { + // find a point p for which y is zero + r = solve2Linear(plane1[0], plane1[2], plane2[0], plane2[2], plane1[3], plane2[3]); + origin = fromValues$3(r[0], 0, r[1]); + } else { + // find a point p for which z is zero + r = solve2Linear(plane1[0], plane1[1], plane2[0], plane2[1], plane1[3], plane2[3]); + origin = fromValues$3(r[0], r[1], 0); + } + return fromPointAndDirection(out, origin, direction) + }; + + /** + * Create a line that passes through the given points. + * + * @param {line3} out - receiving line + * @param {vec3} point1 - start point of the line segment + * @param {vec3} point2 - end point of the line segment + * @returns {line3} out + * @alias module:modeling/maths/line3.fromPoints + */ + const fromPoints = (out, point1, point2) => { + const direction = subtract$3(create$b(), point2, point1); + return fromPointAndDirection(out, point1, direction) + }; + + /** + * Determine the closest point on the given plane to the given line. + * + * NOTES: + * The point of intersection will be invalid if the line is parallel to the plane, e.g. NaN. + * + * @param {line3} line - line of reference + * @param {plane} plane - plane of reference + * @returns {vec3} a point on the line + * @alias module:modeling/maths/line3.intersectPointOfLineAndPlane + */ + const intersectPointOfLineAndPlane = (line, plane) => { + // plane: plane.normal * p = plane.w + const pNormal = plane; + const pw = plane[3]; + + const lPoint = line[0]; + const lDirection = line[1]; + + // point: p = line.point + labda * line.direction + const labda = (pw - dot$2(pNormal, lPoint)) / dot$2(pNormal, lDirection); + + return add$1(create$b(), lPoint, scale$3(create$b(), lDirection, labda)) + }; + + /** + * Return the origin of the given line. + * + * @param {line3} line - line of reference + * @return {vec3} the origin of the line + * @alias module:modeling/maths/line3.origin + */ + const origin = (line) => line[0]; + + /** + * Create a line in the opposite direction as the given. + * + * @param {line3} out - receiving line + * @param {line3} line - line to reverse + * @returns {line3} out + * @alias module:modeling/maths/line3.reverse + */ + const reverse = (out, line) => { + const point = clone$9(line[0]); + const direction = negate$1(create$b(), line[1]); + return fromPointAndDirection(out, point, direction) + }; + + /** + * Return a string representing the given line. + * + * @param {line3} line - line of reference + * @returns {String} string representation + * @alias module:modeling/maths/line3.toString + */ + const toString = (line) => { + const point = line[0]; + const direction = line[1]; + return `line3: point: (${point[0].toFixed(7)}, ${point[1].toFixed(7)}, ${point[2].toFixed(7)}) direction: (${direction[0].toFixed(7)}, ${direction[1].toFixed(7)}, ${direction[2].toFixed(7)})` + }; + + /** + * Transforms the given line using the given matrix. + * + * @param {line3} out - line to update + * @param {line3} line - line to transform + * @param {mat4} matrix - matrix to transform with + * @returns {line3} a new unbounded line + * @alias module:modeling/maths/line3.transform + */ + const transform$1 = (out, line, matrix) => { + const point = line[0]; + const direction = line[1]; + const pointPlusDirection = add$1(create$b(), point, direction); + + const newPoint = transform$c(create$b(), point, matrix); + const newPointPlusDirection = transform$c(pointPlusDirection, pointPlusDirection, matrix); + const newDirection = subtract$3(newPointPlusDirection, newPointPlusDirection, newPoint); + + return fromPointAndDirection(out, newPoint, newDirection) + }; + + /** + * Represents an unbounded line in 3D space, positioned at a point of origin. + * @see {@link line3} for data structure information. + * @module modeling/maths/line3 + */ + + var index$b = /*#__PURE__*/Object.freeze({ + __proto__: null, + clone: clone, + closestPoint: closestPoint, + copy: copy, + create: create, + direction: direction, + distanceToPoint: distanceToPoint, + equals: equals, + fromPlanes: fromPlanes, + fromPointAndDirection: fromPointAndDirection, + fromPoints: fromPoints, + intersectPointOfLineAndPlane: intersectPointOfLineAndPlane, + origin: origin, + reverse: reverse, + toString: toString, + transform: transform$1 + }); + + /** + * Maths are computational units for fundamental Euclidean geometry. All maths operate upon array data structures. + * Note: Maths data structures are considered immutable, so never change the contents directly. + * @see Most computations are based upon the glMatrix library (glmatrix.net) + * @module modeling/maths + * @example + * import { maths } from '@jscad/modeling' + * const { constants, line2, line3, mat4, plane, utils, vec2, vec3, vec4 } = maths + */ + + var index$a = /*#__PURE__*/Object.freeze({ + __proto__: null, + constants: constants, + line2: index$c, + line3: index$b, + mat4: index$r, + plane: index$o, + utils: index$f, + vec2: index$q, + vec3: index$s, + vec4: index$n + }); + + const cache$2 = new WeakMap(); + + /* + * Measure the area of the given geometry. + * NOTE: paths are infinitely narrow and do not have an area + * + * @param {path2} geometry - geometry to measure + * @returns {Number} area of the geometry + */ + const measureAreaOfPath2 = () => 0; + + /* + * Measure the area of the given geometry. + * For a counterclockwise rotating geometry (about Z) the area is positive, otherwise negative. + * + * @see http://paulbourke.net/geometry/polygonmesh/ + * @param {geom2} geometry - 2D geometry to measure + * @returns {Number} area of the geometry + */ + const measureAreaOfGeom2 = (geometry) => { + let area = cache$2.get(geometry); + if (area) return area + + const sides = toSides(geometry); + area = sides.reduce((area, side) => area + (side[0][0] * side[1][1] - side[0][1] * side[1][0]), 0); + area *= 0.5; + + cache$2.set(geometry, area); + + return area + }; + + /* + * Measure the area of the given geometry. + * + * @param {geom3} geometry - 3D geometry to measure + * @returns {Number} area of the geometry + */ + const measureAreaOfGeom3 = (geometry) => { + let area = cache$2.get(geometry); + if (area) return area + + const polygons = toPolygons$1(geometry); + area = polygons.reduce((area, polygon) => area + measureArea$2(polygon), 0); + + cache$2.set(geometry, area); + + return area + }; + + /** + * Measure the area of the given geometries. + * @param {...Objects} geometries - the geometries to measure + * @return {Number|Array} the area, or a list of areas for each geometry + * @alias module:modeling/measurements.measureArea + * + * @example + * let area = measureArea(sphere()) + */ + const measureArea = (...geometries) => { + geometries = flatten(geometries); + if (geometries.length === 0) throw new Error('wrong number of arguments') + + const results = geometries.map((geometry) => { + if (isA$2(geometry)) return measureAreaOfPath2() + if (isA$5(geometry)) return measureAreaOfGeom2(geometry) + if (isA$3(geometry)) return measureAreaOfGeom3(geometry) + return 0 + }); + return results.length === 1 ? results[0] : results + }; + + /** + * Measure the total (aggregate) area for the given geometries. + * Note: This measurement will not account for overlapping geometry + * @param {...Object} geometries - the geometries to measure. + * @return {Number} the total surface area for the group of geometry. + * @alias module:modeling/measurements.measureAggregateArea + * + * @example + * let totalArea = measureAggregateArea(sphere(),cube()) + */ + const measureAggregateArea = (...geometries) => { + geometries = flatten(geometries); + if (geometries.length === 0) throw new Error('measureAggregateArea: no geometries supplied') + const areas = measureArea(geometries); + if (geometries.length === 1) { + return areas + } + const result = 0; + return areas.reduce((result, area) => result + area, result) + }; + + const cache$1 = new WeakMap(); + + /* + * Measure the min and max bounds of the given (path2) geometry. + * @return {Array[]} the min and max bounds for the geometry + */ + const measureBoundingBoxOfPath2 = (geometry) => { + let boundingBox = cache$1.get(geometry); + if (boundingBox) return boundingBox + + const points = toPoints$1(geometry); + + let minPoint; + if (points.length === 0) { + minPoint = create$9(); + } else { + minPoint = clone$8(points[0]); + } + let maxPoint = clone$8(minPoint); + + points.forEach((point) => { + min$1(minPoint, minPoint, point); + max$1(maxPoint, maxPoint, point); + }); + minPoint = [minPoint[0], minPoint[1], 0]; + maxPoint = [maxPoint[0], maxPoint[1], 0]; + + boundingBox = [minPoint, maxPoint]; + + cache$1.set(geometry, boundingBox); + + return boundingBox + }; + + /* + * Measure the min and max bounds of the given (geom2) geometry. + * @return {Array[]} the min and max bounds for the geometry + */ + const measureBoundingBoxOfGeom2 = (geometry) => { + let boundingBox = cache$1.get(geometry); + if (boundingBox) return boundingBox + + const points = toPoints$3(geometry); + + let minPoint; + if (points.length === 0) { + minPoint = create$9(); + } else { + minPoint = clone$8(points[0]); + } + let maxPoint = clone$8(minPoint); + + points.forEach((point) => { + min$1(minPoint, minPoint, point); + max$1(maxPoint, maxPoint, point); + }); + + minPoint = [minPoint[0], minPoint[1], 0]; + maxPoint = [maxPoint[0], maxPoint[1], 0]; + + boundingBox = [minPoint, maxPoint]; + + cache$1.set(geometry, boundingBox); + + return boundingBox + }; + + /* + * Measure the min and max bounds of the given (geom3) geometry. + * @return {Array[]} the min and max bounds for the geometry + */ + const measureBoundingBoxOfGeom3 = (geometry) => { + let boundingBox = cache$1.get(geometry); + if (boundingBox) return boundingBox + + const polygons = toPolygons$1(geometry); + + let minVertex = create$b(); + if (polygons.length > 0) { + const vertices = toVertices$1(polygons[0]); + copy$4(minVertex, vertices[0]); + } + let maxVertex = clone$9(minVertex); + + polygons.forEach((polygon) => { + toVertices$1(polygon).forEach((vertex) => { + min$2(minVertex, minVertex, vertex); + max$2(maxVertex, maxVertex, vertex); + }); + }); + + minVertex = [minVertex[0], minVertex[1], minVertex[2]]; + maxVertex = [maxVertex[0], maxVertex[1], maxVertex[2]]; + + boundingBox = [minVertex, maxVertex]; + + cache$1.set(geometry, boundingBox); + + return boundingBox + }; + + /** + * Measure the min and max bounds of the given geometries. + * @param {...Object} geometries - the geometries to measure + * @return {Array} the min and max bounds, or a list of bounds for each geometry + * @alias module:modeling/measurements.measureBoundingBox + * + * @example + * let bounds = measureBoundingBox(sphere()) + */ + const measureBoundingBox = (...geometries) => { + geometries = flatten(geometries); + if (geometries.length === 0) throw new Error('wrong number of arguments') + + const results = geometries.map((geometry) => { + if (isA$2(geometry)) return measureBoundingBoxOfPath2(geometry) + if (isA$5(geometry)) return measureBoundingBoxOfGeom2(geometry) + if (isA$3(geometry)) return measureBoundingBoxOfGeom3(geometry) + return [[0, 0, 0], [0, 0, 0]] + }); + return results.length === 1 ? results[0] : results + }; + + /** + * Measure the aggregated minimum and maximum bounds for the given geometries. + * @param {...Object} geometries - the geometries to measure + * @return {Array} the min and max bounds for the group of geometry, i.e. [[x,y,z],[X,Y,Z]] + * @alias module:modeling/measurements.measureAggregateBoundingBox + * + * @example + * let bounds = measureAggregateBoundingBox(sphere(),cube()) + */ + const measureAggregateBoundingBox = (...geometries) => { + geometries = flatten(geometries); + if (geometries.length === 0) throw new Error('measureAggregateBoundingBox: no geometries supplied') + const bounds = measureBoundingBox(geometries); + if (geometries.length === 1) { + return bounds + } + const result = [[Number.MAX_VALUE, Number.MAX_VALUE, Number.MAX_VALUE], [-Number.MAX_VALUE, -Number.MAX_VALUE, -Number.MAX_VALUE]]; + return bounds.reduce((result, item) => { + result = [min$2(result[0], result[0], item[0]), max$2(result[1], result[1], item[1])]; + return result + }, result) + }; + + const calculateEpsilonFromBounds = (bounds, dimensions) => { + let total = 0; + for (let i = 0; i < dimensions; i++) { + total += bounds[1][i] - bounds[0][i]; + } + return EPS * total / dimensions + }; + + /** + * Measure the aggregated Epsilon for the given geometries. + * @param {...Object} geometries - the geometries to measure + * @return {Number} the aggregated Epsilon for the whole group of geometries + * @alias module:modeling/measurements.measureAggregateEpsilon + * + * @example + * let groupEpsilon = measureAggregateEpsilon(sphere(),cube()) + */ + const measureAggregateEpsilon = (...geometries) => { + geometries = flatten(geometries); + if (geometries.length === 0) throw new Error('measureAggregateEpsilon: no geometries supplied') + const bounds = measureAggregateBoundingBox(geometries); + + let dimensions = 0; + dimensions = geometries.reduce((dimensions, geometry) => { + if (isA$2(geometry) || isA$5(geometry)) return Math.max(dimensions, 2) + if (isA$3(geometry)) return Math.max(dimensions, 3) + return 0 + }, dimensions); + return calculateEpsilonFromBounds(bounds, dimensions) + }; + + const cache = new WeakMap(); + + /* + * Measure the volume of the given geometry. + * NOTE: paths are infinitely narrow and do not have a volume + * + * @param {Path2} geometry - geometry to measure + * @returns {Number} volume of the geometry + */ + const measureVolumeOfPath2 = () => 0; + + /* + * Measure the volume of the given geometry. + * NOTE: 2D geometry are infinitely thin and do not have a volume + * + * @param {Geom2} geometry - 2D geometry to measure + * @returns {Number} volume of the geometry + */ + const measureVolumeOfGeom2 = () => 0; + + /* + * Measure the volume of the given geometry. + * + * @param {Geom3} geometry - 3D geometry to measure + * @returns {Number} volume of the geometry + */ + const measureVolumeOfGeom3 = (geometry) => { + let volume = cache.get(geometry); + if (volume) return volume + + const polygons = toPolygons$1(geometry); + volume = polygons.reduce((volume, polygon) => volume + measureSignedVolume(polygon), 0); + + cache.set(geometry, volume); + + return volume + }; + + /** + * Measure the volume of the given geometries. + * @param {...Object} geometries - the geometries to measure + * @return {Number|Array} the volume, or a list of volumes for each geometry + * @alias module:modeling/measurements.measureVolume + * + * @example + * let volume = measureVolume(sphere()) + */ + const measureVolume = (...geometries) => { + geometries = flatten(geometries); + if (geometries.length === 0) throw new Error('wrong number of arguments') + + const results = geometries.map((geometry) => { + if (isA$2(geometry)) return measureVolumeOfPath2() + if (isA$5(geometry)) return measureVolumeOfGeom2() + if (isA$3(geometry)) return measureVolumeOfGeom3(geometry) + return 0 + }); + return results.length === 1 ? results[0] : results + }; + + /** + * Measure the total (aggregate) volume for the given geometries. + * Note: This measurement will not account for overlapping geometry + * @param {...Object} geometries - the geometries to measure. + * @return {Number} the volume for the group of geometry. + * @alias module:modeling/measurements.measureAggregateVolume + * + * @example + * let totalVolume = measureAggregateVolume(sphere(),cube()) + */ + const measureAggregateVolume = (...geometries) => { + geometries = flatten(geometries); + if (geometries.length === 0) throw new Error('measureAggregateVolume: no geometries supplied') + const volumes = measureVolume(geometries); + if (geometries.length === 1) { + return volumes + } + const result = 0; + return volumes.reduce((result, volume) => result + volume, result) + }; + + const cacheOfBoundingSpheres = new WeakMap(); + + /* + * Measure the bounding sphere of the given (path2) geometry. + * @return {[[x, y, z], radius]} the bounding sphere for the geometry + */ + const measureBoundingSphereOfPath2 = (geometry) => { + let boundingSphere = cacheOfBoundingSpheres.get(geometry); + if (boundingSphere !== undefined) return boundingSphere + + const centroid = create$b(); + let radius = 0; + + const points = toPoints$1(geometry); + + if (points.length > 0) { + // calculate the centroid of the geometry + let numPoints = 0; + const temp = create$b(); + points.forEach((point) => { + add$1(centroid, centroid, fromVec2(temp, point, 0)); + numPoints++; + }); + scale$3(centroid, centroid, 1 / numPoints); + + // find the farthest point from the centroid + points.forEach((point) => { + radius = Math.max(radius, squaredDistance(centroid, point)); + }); + radius = Math.sqrt(radius); + } + + boundingSphere = [centroid, radius]; + cacheOfBoundingSpheres.set(geometry, boundingSphere); + + return boundingSphere + }; + + /* + * Measure the bounding sphere of the given (geom2) geometry. + * @return {[[x, y, z], radius]} the bounding sphere for the geometry + */ + const measureBoundingSphereOfGeom2 = (geometry) => { + let boundingSphere = cacheOfBoundingSpheres.get(geometry); + if (boundingSphere !== undefined) return boundingSphere + + const centroid = create$b(); + let radius = 0; + + const points = toPoints$3(geometry); + + if (points.length > 0) { + // calculate the centroid of the geometry + let numPoints = 0; + const temp = create$b(); + points.forEach((point) => { + add$1(centroid, centroid, fromVec2(temp, point, 0)); + numPoints++; + }); + scale$3(centroid, centroid, 1 / numPoints); + + // find the farthest point from the centroid + points.forEach((point) => { + radius = Math.max(radius, squaredDistance(centroid, point)); + }); + radius = Math.sqrt(radius); + } + + boundingSphere = [centroid, radius]; + cacheOfBoundingSpheres.set(geometry, boundingSphere); + + return boundingSphere + }; + + /* + * Measure the bounding sphere of the given (geom3) geometry. + * @return {[[x, y, z], radius]} the bounding sphere for the geometry + */ + const measureBoundingSphereOfGeom3 = (geometry) => { + let boundingSphere = cacheOfBoundingSpheres.get(geometry); + if (boundingSphere !== undefined) return boundingSphere + + const centroid = create$b(); + let radius = 0; + + const polygons = toPolygons$1(geometry); + + if (polygons.length > 0) { + // calculate the centroid of the geometry + let numVertices = 0; + polygons.forEach((polygon) => { + toVertices$1(polygon).forEach((vertex) => { + add$1(centroid, centroid, vertex); + numVertices++; + }); + }); + scale$3(centroid, centroid, 1 / numVertices); + + // find the farthest vertex from the centroid + polygons.forEach((polygon) => { + toVertices$1(polygon).forEach((vertex) => { + radius = Math.max(radius, squaredDistance$1(centroid, vertex)); + }); + }); + radius = Math.sqrt(radius); + } + + boundingSphere = [centroid, radius]; + cacheOfBoundingSpheres.set(geometry, boundingSphere); + + return boundingSphere + }; + + /** + * Measure the (approximate) bounding sphere of the given geometries. + * @see https://en.wikipedia.org/wiki/Bounding_sphere + * @param {...Object} geometries - the geometries to measure + * @return {Array} the bounding sphere for each geometry, i.e. [centroid, radius] + * @alias module:modeling/measurements.measureBoundingSphere + * + * @example + * let bounds = measureBoundingSphere(cube()) + */ + const measureBoundingSphere = (...geometries) => { + geometries = flatten(geometries); + + const results = geometries.map((geometry) => { + if (isA$2(geometry)) return measureBoundingSphereOfPath2(geometry) + if (isA$5(geometry)) return measureBoundingSphereOfGeom2(geometry) + if (isA$3(geometry)) return measureBoundingSphereOfGeom3(geometry) + return [[0, 0, 0], 0] + }); + return results.length === 1 ? results[0] : results + }; + + /** + * Measure the center of the given geometries. + * @param {...Object} geometries - the geometries to measure + * @return {Array} the center vertex for each geometry, i.e. [X, Y, Z] + * @alias module:modeling/measurements.measureCenter + * + * @example + * let center = measureCenter(sphere()) + */ + const measureCenter = (...geometries) => { + geometries = flatten(geometries); + + const results = geometries.map((geometry) => { + const bounds = measureBoundingBox(geometry); + return [ + (bounds[0][0] + ((bounds[1][0] - bounds[0][0]) / 2)), + (bounds[0][1] + ((bounds[1][1] - bounds[0][1]) / 2)), + (bounds[0][2] + ((bounds[1][2] - bounds[0][2]) / 2)) + ] + }); + return results.length === 1 ? results[0] : results + }; + + const cacheOfCenterOfMass = new WeakMap(); + + /* + * Measure the center of mass for the given geometry. + * + * @see http://paulbourke.net/geometry/polygonmesh/ + * @return {Array} the center of mass for the geometry + */ + const measureCenterOfMassGeom2 = (geometry) => { + let centerOfMass = cacheOfCenterOfMass.get(geometry); + if (centerOfMass !== undefined) return centerOfMass + + const sides = toSides(geometry); + + let area = 0; + let x = 0; + let y = 0; + if (sides.length > 0) { + for (let i = 0; i < sides.length; i++) { + const p1 = sides[i][0]; + const p2 = sides[i][1]; + + const a = p1[0] * p2[1] - p1[1] * p2[0]; + area += a; + x += (p1[0] + p2[0]) * a; + y += (p1[1] + p2[1]) * a; + } + area /= 2; + + const f = 1 / (area * 6); + x *= f; + y *= f; + } + + centerOfMass = fromValues$3(x, y, 0); + + cacheOfCenterOfMass.set(geometry, centerOfMass); + return centerOfMass + }; + + /* + * Measure the center of mass for the given geometry. + * @return {Array} the center of mass for the geometry + */ + const measureCenterOfMassGeom3 = (geometry) => { + let centerOfMass = cacheOfCenterOfMass.get(geometry); + if (centerOfMass !== undefined) return centerOfMass + + centerOfMass = create$b(); // 0, 0, 0 + + const polygons = toPolygons$1(geometry); + if (polygons.length === 0) return centerOfMass + + let totalVolume = 0; + const vector = create$b(); // for speed + polygons.forEach((polygon) => { + // calculate volume and center of each tetrahedron + const vertices = polygon.vertices; + for (let i = 0; i < vertices.length - 2; i++) { + cross$1(vector, vertices[i + 1], vertices[i + 2]); + const volume = dot$2(vertices[0], vector) / 6; + + totalVolume += volume; + + add$1(vector, vertices[0], vertices[i + 1]); + add$1(vector, vector, vertices[i + 2]); + const weightedCenter = scale$3(vector, vector, 1 / 4 * volume); + + add$1(centerOfMass, centerOfMass, weightedCenter); + } + }); + scale$3(centerOfMass, centerOfMass, 1 / totalVolume); + + cacheOfCenterOfMass.set(geometry, centerOfMass); + return centerOfMass + }; + + /** + * Measure the center of mass for the given geometries. + * @param {...Object} geometries - the geometries to measure + * @return {Array} the center of mass for each geometry, i.e. [X, Y, Z] + * @alias module:modeling/measurements.measureCenterOfMass + * + * @example + * let center = measureCenterOfMass(sphere()) + */ + const measureCenterOfMass = (...geometries) => { + geometries = flatten(geometries); + + const results = geometries.map((geometry) => { + // NOTE: center of mass for geometry path2 is not possible + if (isA$5(geometry)) return measureCenterOfMassGeom2(geometry) + if (isA$3(geometry)) return measureCenterOfMassGeom3(geometry) + return [0, 0, 0] + }); + return results.length === 1 ? results[0] : results + }; + + /** + * Measure the dimensions of the given geometries. + * @param {...Object} geometries - the geometries to measure + * @return {Array} the dimensions for each geometry, i.e. [width, depth, height] + * @alias module:modeling/measurements.measureDimensions + * + * @example + * let dimensions = measureDimensions(sphere()) + */ + const measureDimensions = (...geometries) => { + geometries = flatten(geometries); + + const results = geometries.map((geometry) => { + const boundingBox = measureBoundingBox(geometry); + return [ + boundingBox[1][0] - boundingBox[0][0], + boundingBox[1][1] - boundingBox[0][1], + boundingBox[1][2] - boundingBox[0][2] + ] + }); + return results.length === 1 ? results[0] : results + }; + + /* + * Measure the epsilon of the given (path2) geometry. + * @return {Number} the epsilon (precision) of the geometry + */ + const measureEpsilonOfPath2 = (geometry) => calculateEpsilonFromBounds(measureBoundingBox(geometry), 2); + + /* + * Measure the epsilon of the given (geom2) geometry. + * @return {Number} the epsilon (precision) of the geometry + */ + const measureEpsilonOfGeom2 = (geometry) => calculateEpsilonFromBounds(measureBoundingBox(geometry), 2); + + /* + * Measure the epsilon of the given (geom3) geometry. + * @return {Float} the epsilon (precision) of the geometry + */ + const measureEpsilonOfGeom3 = (geometry) => calculateEpsilonFromBounds(measureBoundingBox(geometry), 3); + + /** + * Measure the epsilon of the given geometries. + * Epsilon values are used in various functions to determine minimum distances between vertices, planes, etc. + * @param {...Object} geometries - the geometries to measure + * @return {Number|Array} the epsilon, or a list of epsilons for each geometry + * @alias module:modeling/measurements.measureEpsilon + * + * @example + * let epsilon = measureEpsilon(sphere()) + */ + const measureEpsilon = (...geometries) => { + geometries = flatten(geometries); + if (geometries.length === 0) throw new Error('wrong number of arguments') + + const results = geometries.map((geometry) => { + if (isA$2(geometry)) return measureEpsilonOfPath2(geometry) + if (isA$5(geometry)) return measureEpsilonOfGeom2(geometry) + if (isA$3(geometry)) return measureEpsilonOfGeom3(geometry) + return 0 + }); + return results.length === 1 ? results[0] : results + }; + + /** + * All shapes (primitives or the results of operations) can be measured, e.g. calculate volume, etc. + * @module modeling/measurements + * @example + * import { measureArea, measureBoundingBox, measureVolume } from '@jscad/modeling/measurements') + */ + + var index$9 = /*#__PURE__*/Object.freeze({ + __proto__: null, + measureAggregateArea: measureAggregateArea, + measureAggregateBoundingBox: measureAggregateBoundingBox, + measureAggregateEpsilon: measureAggregateEpsilon, + measureAggregateVolume: measureAggregateVolume, + measureArea: measureArea, + measureBoundingBox: measureBoundingBox, + measureBoundingSphere: measureBoundingSphere, + measureCenter: measureCenter, + measureCenterOfMass: measureCenterOfMass, + measureDimensions: measureDimensions, + measureEpsilon: measureEpsilon, + measureVolume: measureVolume + }); + + // verify that the array has the given dimension, and contains Number values + const isNumberArray = (array, dimension) => { + if (Array.isArray(array) && array.length >= dimension) { + return array.every((n) => Number.isFinite(n)) + } + return false + }; + + // verify that the value is a Number greater than the constant + const isGT = (value, constant) => (Number.isFinite(value) && value > constant); + + // verify that the value is a Number greater than or equal to the constant + const isGTE = (value, constant) => (Number.isFinite(value) && value >= constant); + + /** + * Construct an arc in two dimensional space where all points are at the same distance from the center. + * @param {Object} [options] - options for construction + * @param {Array} [options.center=[0,0]] - center of arc + * @param {Number} [options.radius=1] - radius of arc + * @param {Number} [options.startAngle=0] - starting angle of the arc, in radians + * @param {Number} [options.endAngle=TAU] - ending angle of the arc, in radians + * @param {Number} [options.segments=32] - number of segments to create per full rotation + * @param {Boolean} [options.makeTangent=false] - adds line segments at both ends of the arc to ensure that the gradients at the edges are tangent + * @returns {path2} new 2D path + * @alias module:modeling/primitives.arc + */ + const arc = (options) => { + const defaults = { + center: [0, 0], + radius: 1, + startAngle: 0, + endAngle: TAU, + makeTangent: false, + segments: 32 + }; + let { center, radius, startAngle, endAngle, makeTangent, segments } = Object.assign({}, defaults, options); + + if (!isNumberArray(center, 2)) throw new Error('center must be an array of X and Y values') + if (!isGT(radius, 0)) throw new Error('radius must be greater than zero') + if (!isGTE(startAngle, 0)) throw new Error('startAngle must be positive') + if (!isGTE(endAngle, 0)) throw new Error('endAngle must be positive') + if (!isGTE(segments, 4)) throw new Error('segments must be four or more') + + startAngle = startAngle % TAU; + endAngle = endAngle % TAU; + + let rotation = TAU; + if (startAngle < endAngle) { + rotation = endAngle - startAngle; + } + if (startAngle > endAngle) { + rotation = endAngle + (TAU - startAngle); + } + + const minAngle = Math.acos(((radius * radius) + (radius * radius) - (EPS * EPS)) / (2 * radius * radius)); + + const centerV = clone$8(center); + let point; + const pointArray = []; + if (rotation < minAngle) { + // there is no rotation, just a single point + point = fromAngleRadians(create$9(), startAngle); + scale$1(point, point, radius); + add(point, point, centerV); + pointArray.push(point); + } else { + // note: add one additional step to achieve full rotation + const numSteps = Math.max(1, Math.floor(segments * (rotation / TAU))) + 1; + let edgeStepSize = numSteps * 0.5 / rotation; // step size for half a degree + if (edgeStepSize > 0.25) edgeStepSize = 0.25; + + const totalSteps = makeTangent ? (numSteps + 2) : numSteps; + for (let i = 0; i <= totalSteps; i++) { + let step = i; + if (makeTangent) { + step = (i - 1) * (numSteps - 2 * edgeStepSize) / numSteps + edgeStepSize; + if (step < 0) step = 0; + if (step > numSteps) step = numSteps; + } + const angle = startAngle + (step * (rotation / numSteps)); + point = fromAngleRadians(create$9(), angle); + scale$1(point, point, radius); + add(point, point, centerV); + pointArray.push(point); + } + } + return fromPoints$2({ closed: false }, pointArray) + }; + + /** + * Construct an axis-aligned ellipse in two dimensional space. + * @see https://en.wikipedia.org/wiki/Ellipse + * @param {Object} [options] - options for construction + * @param {Array} [options.center=[0,0]] - center of ellipse + * @param {Array} [options.radius=[1,1]] - radius of ellipse, along X and Y + * @param {Number} [options.startAngle=0] - start angle of ellipse, in radians + * @param {Number} [options.endAngle=TAU] - end angle of ellipse, in radians + * @param {Number} [options.segments=32] - number of segments to create per full rotation + * @returns {geom2} new 2D geometry + * @alias module:modeling/primitives.ellipse + * @example + * let myshape = ellipse({radius: [5,10]}) + */ + const ellipse = (options) => { + const defaults = { + center: [0, 0], + radius: [1, 1], + startAngle: 0, + endAngle: TAU, + segments: 32 + }; + let { center, radius, startAngle, endAngle, segments } = Object.assign({}, defaults, options); + + if (!isNumberArray(center, 2)) throw new Error('center must be an array of X and Y values') + if (!isNumberArray(radius, 2)) throw new Error('radius must be an array of X and Y values') + if (!radius.every((n) => n > 0)) throw new Error('radius values must be greater than zero') + if (!isGTE(startAngle, 0)) throw new Error('startAngle must be positive') + if (!isGTE(endAngle, 0)) throw new Error('endAngle must be positive') + if (!isGTE(segments, 3)) throw new Error('segments must be three or more') + + startAngle = startAngle % TAU; + endAngle = endAngle % TAU; + + let rotation = TAU; + if (startAngle < endAngle) { + rotation = endAngle - startAngle; + } + if (startAngle > endAngle) { + rotation = endAngle + (TAU - startAngle); + } + + const minRadius = Math.min(radius[0], radius[1]); + const minAngle = Math.acos(((minRadius * minRadius) + (minRadius * minRadius) - (EPS * EPS)) / + (2 * minRadius * minRadius)); + if (rotation < minAngle) throw new Error('startAngle and endAngle do not define a significant rotation') + + segments = Math.floor(segments * (rotation / TAU)); + + const centerV = clone$8(center); + const step = rotation / segments; // radians per segment + + const points = []; + segments = (rotation < TAU) ? segments + 1 : segments; + for (let i = 0; i < segments; i++) { + const angle = (step * i) + startAngle; + const point = fromValues$2(radius[0] * cos(angle), radius[1] * sin(angle)); + add(point, centerV, point); + points.push(point); + } + if (rotation < TAU) points.push(centerV); + return create$a([points]) + }; + + /** + * Construct a circle in two dimensional space where all points are at the same distance from the center. + * @see [ellipse]{@link module:modeling/primitives.ellipse} for more options + * @param {Object} [options] - options for construction + * @param {Array} [options.center=[0,0]] - center of circle + * @param {Number} [options.radius=1] - radius of circle + * @param {Number} [options.startAngle=0] - start angle of circle, in radians + * @param {Number} [options.endAngle=TAU] - end angle of circle, in radians + * @param {Number} [options.segments=32] - number of segments to create per full rotation + * @returns {geom2} new 2D geometry + * @alias module:modeling/primitives.circle + * @example + * let myshape = circle({radius: 10}) + */ + const circle = (options) => { + const defaults = { + center: [0, 0], + radius: 1, + startAngle: 0, + endAngle: TAU, + segments: 32 + }; + let { center, radius, startAngle, endAngle, segments } = Object.assign({}, defaults, options); + + if (!isGT(radius, 0)) throw new Error('radius must be greater than zero') + + radius = [radius, radius]; + + return ellipse({ center, radius, startAngle, endAngle, segments }) + }; + + /** + * Construct an axis-aligned solid cuboid in three dimensional space. + * @param {Object} [options] - options for construction + * @param {Array} [options.center=[0,0,0]] - center of cuboid + * @param {Array} [options.size=[2,2,2]] - dimensions of cuboid; width, depth, height + * @returns {geom3} new 3D geometry + * @alias module:modeling/primitives.cuboid + * + * @example + * let myshape = cuboid(size: [5, 10, 5]}) + */ + const cuboid = (options) => { + const defaults = { + center: [0, 0, 0], + size: [2, 2, 2] + }; + const { center, size } = Object.assign({}, defaults, options); + + if (!isNumberArray(center, 3)) throw new Error('center must be an array of X, Y and Z values') + if (!isNumberArray(size, 3)) throw new Error('size must be an array of width, depth and height values') + if (!size.every((n) => n > 0)) throw new Error('size values must be greater than zero') + + const result = create$8( + // adjust a basic shape to size + [ + [[0, 4, 6, 2], [-1, 0, 0]], + [[1, 3, 7, 5], [+1, 0, 0]], + [[0, 1, 5, 4], [0, -1, 0]], + [[2, 6, 7, 3], [0, +1, 0]], + [[0, 2, 3, 1], [0, 0, -1]], + [[4, 5, 7, 6], [0, 0, +1]] + ].map((info) => { + const vertices = info[0].map((i) => { + const pos = [ + center[0] + (size[0] / 2) * (2 * !!(i & 1) - 1), + center[1] + (size[1] / 2) * (2 * !!(i & 2) - 1), + center[2] + (size[2] / 2) * (2 * !!(i & 4) - 1) + ]; + return pos + }); + return create$7(vertices) + }) + ); + return result + }; + + /** + * Construct an axis-aligned solid cube in three dimensional space with six square faces. + * @see [cuboid]{@link module:modeling/primitives.cuboid} for more options + * @param {Object} [options] - options for construction + * @param {Array} [options.center=[0,0,0]] - center of cube + * @param {Number} [options.size=2] - dimension of cube + * @returns {geom3} new 3D geometry + * @alias module:modeling/primitives.cube + * @example + * let myshape = cube({size: 10}) + */ + const cube = (options) => { + const defaults = { + center: [0, 0, 0], + size: 2 + }; + let { center, size } = Object.assign({}, defaults, options); + + if (!isGT(size, 0)) throw new Error('size must be greater than zero') + + size = [size, size, size]; + + return cuboid({ center, size }) + }; + + /** + * Construct a Z axis-aligned elliptic cylinder in three dimensional space. + * @param {Object} [options] - options for construction + * @param {Array} [options.center=[0,0,0]] - center of cylinder + * @param {Number} [options.height=2] - height of cylinder + * @param {Array} [options.startRadius=[1,1]] - radius of rounded start, must be two dimensional array + * @param {Number} [options.startAngle=0] - start angle of cylinder, in radians + * @param {Array} [options.endRadius=[1,1]] - radius of rounded end, must be two dimensional array + * @param {Number} [options.endAngle=TAU] - end angle of cylinder, in radians + * @param {Number} [options.segments=32] - number of segments to create per full rotation + * @returns {geom3} new geometry + * @alias module:modeling/primitives.cylinderElliptic + * + * @example + * let myshape = cylinderElliptic({height: 2, startRadius: [10,5], endRadius: [8,3]}) + */ + const cylinderElliptic = (options) => { + const defaults = { + center: [0, 0, 0], + height: 2, + startRadius: [1, 1], + startAngle: 0, + endRadius: [1, 1], + endAngle: TAU, + segments: 32 + }; + let { center, height, startRadius, startAngle, endRadius, endAngle, segments } = Object.assign({}, defaults, options); + + if (!isNumberArray(center, 3)) throw new Error('center must be an array of X, Y and Z values') + if (!isGT(height, 0)) throw new Error('height must be greater then zero') + if (!isNumberArray(startRadius, 2)) throw new Error('startRadius must be an array of X and Y values') + if (!startRadius.every((n) => n >= 0)) throw new Error('startRadius values must be positive') + if (!isNumberArray(endRadius, 2)) throw new Error('endRadius must be an array of X and Y values') + if (!endRadius.every((n) => n >= 0)) throw new Error('endRadius values must be positive') + if (endRadius.every((n) => n === 0) && startRadius.every((n) => n === 0)) throw new Error('at least one radius must be positive') + if (!isGTE(startAngle, 0)) throw new Error('startAngle must be positive') + if (!isGTE(endAngle, 0)) throw new Error('endAngle must be positive') + if (!isGTE(segments, 4)) throw new Error('segments must be four or more') + + startAngle = startAngle % TAU; + endAngle = endAngle % TAU; + + let rotation = TAU; + if (startAngle < endAngle) { + rotation = endAngle - startAngle; + } + if (startAngle > endAngle) { + rotation = endAngle + (TAU - startAngle); + } + + const minRadius = Math.min(startRadius[0], startRadius[1], endRadius[0], endRadius[1]); + const minAngle = Math.acos(((minRadius * minRadius) + (minRadius * minRadius) - (EPS * EPS)) / + (2 * minRadius * minRadius)); + if (rotation < minAngle) throw new Error('startAngle and endAngle do not define a significant rotation') + + const slices = Math.floor(segments * (rotation / TAU)); + + const start = fromValues$3(0, 0, -(height / 2)); + const end = fromValues$3(0, 0, height / 2); + const ray = subtract$3(create$b(), end, start); + + const axisX = fromValues$3(1, 0, 0); + const axisY = fromValues$3(0, 1, 0); + + const v1 = create$b(); + const v2 = create$b(); + const v3 = create$b(); + const genVertex = (stack, slice, radius) => { + const angle = slice * rotation + startAngle; + scale$3(v1, axisX, radius[0] * cos(angle)); + scale$3(v2, axisY, radius[1] * sin(angle)); + add$1(v1, v1, v2); + + scale$3(v3, ray, stack); + add$1(v3, v3, start); + return add$1(create$b(), v1, v3) + }; + + // adjust the vertices to center + const fromVertices = (...vertices) => { + const newVertices = vertices.map((vertex) => add$1(create$b(), vertex, center)); + return create$7(newVertices) + }; + + const polygons = []; + for (let i = 0; i < slices; i++) { + const t0 = i / slices; + let t1 = (i + 1) / slices; + // fix rounding error when rotating TAU radians + if (rotation === TAU && i === slices - 1) t1 = 0; + + if (endRadius[0] === startRadius[0] && endRadius[1] === startRadius[1]) { + polygons.push(fromVertices(start, genVertex(0, t1, endRadius), genVertex(0, t0, endRadius))); + polygons.push(fromVertices(genVertex(0, t1, endRadius), genVertex(1, t1, endRadius), genVertex(1, t0, endRadius), genVertex(0, t0, endRadius))); + polygons.push(fromVertices(end, genVertex(1, t0, endRadius), genVertex(1, t1, endRadius))); + } else { + if (startRadius[0] > 0 && startRadius[1] > 0) { + polygons.push(fromVertices(start, genVertex(0, t1, startRadius), genVertex(0, t0, startRadius))); + } + if (startRadius[0] > 0 || startRadius[1] > 0) { + polygons.push(fromVertices(genVertex(0, t0, startRadius), genVertex(0, t1, startRadius), genVertex(1, t0, endRadius))); + } + if (endRadius[0] > 0 && endRadius[1] > 0) { + polygons.push(fromVertices(end, genVertex(1, t0, endRadius), genVertex(1, t1, endRadius))); + } + if (endRadius[0] > 0 || endRadius[1] > 0) { + polygons.push(fromVertices(genVertex(1, t0, endRadius), genVertex(0, t1, startRadius), genVertex(1, t1, endRadius))); + } + } + } + if (rotation < TAU) { + polygons.push(fromVertices(start, genVertex(0, 0, startRadius), end)); + polygons.push(fromVertices(genVertex(0, 0, startRadius), genVertex(1, 0, endRadius), end)); + polygons.push(fromVertices(start, end, genVertex(0, 1, startRadius))); + polygons.push(fromVertices(genVertex(0, 1, startRadius), end, genVertex(1, 1, endRadius))); + } + const result = create$8(polygons); + return result + }; + + /** + * Construct a Z axis-aligned cylinder in three dimensional space. + * @see [cylinderElliptic]{@link module:modeling/primitives.cylinderElliptic} for more options + * @param {Object} [options] - options for construction + * @param {Array} [options.center=[0,0,0]] - center of cylinder + * @param {Number} [options.height=2] - height of cylinder + * @param {Number} [options.radius=1] - radius of cylinder (at both start and end) + * @param {Number} [options.segments=32] - number of segments to create per full rotation + * @returns {geom3} new geometry + * @alias module:modeling/primitives.cylinder + * + * @example + * let myshape = cylinder({height: 2, radius: 10}) + */ + const cylinder = (options) => { + const defaults = { + center: [0, 0, 0], + height: 2, + radius: 1, + segments: 32 + }; + const { center, height, radius, segments } = Object.assign({}, defaults, options); + + if (!isGT(radius, 0)) throw new Error('radius must be greater than zero') + + const newOptions = { + center, + height, + startRadius: [radius, radius], + endRadius: [radius, radius], + segments + }; + + return cylinderElliptic(newOptions) + }; + + /** + * Construct an axis-aligned ellipsoid in three dimensional space. + * @param {Object} [options] - options for construction + * @param {Array} [options.center=[0,0,0]] - center of ellipsoid + * @param {Array} [options.radius=[1,1,1]] - radius of ellipsoid, along X, Y and Z + * @param {Number} [options.segments=32] - number of segments to create per full rotation + * @param {Array} [options.axes] - an array with three vectors for the x, y and z base vectors + * @returns {geom3} new 3D geometry + * @alias module:modeling/primitives.ellipsoid + * + * @example + * let myshape = ellipsoid({radius: [5, 10, 20]}) + */ + const ellipsoid = (options) => { + const defaults = { + center: [0, 0, 0], + radius: [1, 1, 1], + segments: 32, + axes: [[1, 0, 0], [0, -1, 0], [0, 0, 1]] + }; + const { center, radius, segments, axes } = Object.assign({}, defaults, options); + + if (!isNumberArray(center, 3)) throw new Error('center must be an array of X, Y and Z values') + if (!isNumberArray(radius, 3)) throw new Error('radius must be an array of X, Y and Z values') + if (!radius.every((n) => n > 0)) throw new Error('radius values must be greater than zero') + if (!isGTE(segments, 4)) throw new Error('segments must be four or more') + + const xVector = scale$3(create$b(), normalize$1(create$b(), axes[0]), radius[0]); + const yVector = scale$3(create$b(), normalize$1(create$b(), axes[1]), radius[1]); + const zVector = scale$3(create$b(), normalize$1(create$b(), axes[2]), radius[2]); + + const qSegments = Math.round(segments / 4); + let prevCylinderVertex; + const polygons = []; + const p1 = create$b(); + const p2 = create$b(); + for (let slice1 = 0; slice1 <= segments; slice1++) { + const angle = TAU * slice1 / segments; + const cylinderVertex = add$1(create$b(), scale$3(p1, xVector, cos(angle)), scale$3(p2, yVector, sin(angle))); + if (slice1 > 0) { + let prevCosPitch, prevSinPitch; + for (let slice2 = 0; slice2 <= qSegments; slice2++) { + const pitch = TAU / 4 * slice2 / qSegments; + const cosPitch = cos(pitch); + const sinPitch = sin(pitch); + if (slice2 > 0) { + let vertices = []; + let vertex; + vertex = subtract$3(create$b(), scale$3(p1, prevCylinderVertex, prevCosPitch), scale$3(p2, zVector, prevSinPitch)); + vertices.push(add$1(vertex, vertex, center)); + vertex = subtract$3(create$b(), scale$3(p1, cylinderVertex, prevCosPitch), scale$3(p2, zVector, prevSinPitch)); + vertices.push(add$1(vertex, vertex, center)); + if (slice2 < qSegments) { + vertex = subtract$3(create$b(), scale$3(p1, cylinderVertex, cosPitch), scale$3(p2, zVector, sinPitch)); + vertices.push(add$1(vertex, vertex, center)); + } + vertex = subtract$3(create$b(), scale$3(p1, prevCylinderVertex, cosPitch), scale$3(p2, zVector, sinPitch)); + vertices.push(add$1(vertex, vertex, center)); + + polygons.push(create$7(vertices)); + + vertices = []; + vertex = add$1(create$b(), scale$3(p1, prevCylinderVertex, prevCosPitch), scale$3(p2, zVector, prevSinPitch)); + vertices.push(add$1(create$b(), center, vertex)); + vertex = add$1(vertex, scale$3(p1, cylinderVertex, prevCosPitch), scale$3(p2, zVector, prevSinPitch)); + vertices.push(add$1(create$b(), center, vertex)); + if (slice2 < qSegments) { + vertex = add$1(vertex, scale$3(p1, cylinderVertex, cosPitch), scale$3(p2, zVector, sinPitch)); + vertices.push(add$1(create$b(), center, vertex)); + } + vertex = add$1(vertex, scale$3(p1, prevCylinderVertex, cosPitch), scale$3(p2, zVector, sinPitch)); + vertices.push(add$1(create$b(), center, vertex)); + vertices.reverse(); + + polygons.push(create$7(vertices)); + } + prevCosPitch = cosPitch; + prevSinPitch = sinPitch; + } + } + prevCylinderVertex = cylinderVertex; + } + return create$8(polygons) + }; + + /** + * Construct a polyhedron in three dimensional space from the given set of 3D vertices and faces. + * The faces can define outward or inward facing polygons (orientation). + * However, each face must define a counterclockwise rotation of vertices which follows the right hand rule. + * @param {Object} options - options for construction + * @param {Array} options.points - list of points in 3D space + * @param {Array} options.faces - list of faces, where each face is a set of indexes into the points + * @param {Array} [options.colors=undefined] - list of RGBA colors to apply to each face + * @param {String} [options.orientation='outward'] - orientation of faces + * @returns {geom3} new 3D geometry + * @alias module:modeling/primitives.polyhedron + * + * @example + * let myPoints = [ [10, 10, 0], [10, -10, 0], [-10, -10, 0], [-10, 10, 0], [0, 0, 10] ] + * let myFaces = [ [0, 1, 4], [1, 2, 4], [2, 3, 4], [3, 0, 4], [1, 0, 3], [2, 1, 3] ] + * let myShape = polyhedron({points: myPoints, faces: myFaces, orientation: 'inward'}) + */ + const polyhedron = (options) => { + const defaults = { + points: [], + faces: [], + colors: undefined, + orientation: 'outward' + }; + const { points, faces, colors, orientation } = Object.assign({}, defaults, options); + + if (!(Array.isArray(points) && Array.isArray(faces))) { + throw new Error('points and faces must be arrays') + } + if (points.length < 3) { + throw new Error('three or more points are required') + } + if (faces.length < 1) { + throw new Error('one or more faces are required') + } + if (colors) { + if (!Array.isArray(colors)) { + throw new Error('colors must be an array') + } + if (colors.length !== faces.length) { + throw new Error('faces and colors must have the same length') + } + } + points.forEach((vertex, i) => { + if (!isNumberArray(vertex, 3)) throw new Error(`vertex ${i} must be an array of X, Y, Z values`) + }); + faces.forEach((face, i) => { + if (face.length < 3) throw new Error(`face ${i} must contain 3 or more indexes`) + if (!isNumberArray(face, face.length)) throw new Error(`face ${i} must be an array of numbers`) + }); + + // invert the faces if orientation is inwards, as all internals expect outward facing polygons + if (orientation !== 'outward') { + faces.forEach((face) => face.reverse()); + } + + const polygons = faces.map((face, findex) => { + const polygon = create$7(face.map((pindex) => points[pindex])); + if (colors && colors[findex]) polygon.color = colors[findex]; + return polygon + }); + + return create$8(polygons) + }; + + /** + * Construct a geodesic sphere based on icosahedron symmetry. + * @param {Object} [options] - options for construction + * @param {Number} [options.radius=1] - target radius of sphere + * @param {Number} [options.frequency=6] - subdivision frequency per face, multiples of 6 + * @returns {geom3} new 3D geometry + * @alias module:modeling/primitives.geodesicSphere + * + * @example + * let myshape = geodesicSphere({radius: 15, frequency: 18}) + */ + const geodesicSphere = (options) => { + const defaults = { + radius: 1, + frequency: 6 + }; + let { radius, frequency } = Object.assign({}, defaults, options); + + if (!isGT(radius, 0)) throw new Error('radius must be greater than zero') + if (!isGTE(frequency, 6)) throw new Error('frequency must be six or more') + + // adjust the frequency to base 6 + frequency = Math.floor(frequency / 6); + + const ci = [ // hard-coded data of icosahedron (20 faces, all triangles) + [0.850651, 0.000000, -0.525731], + [0.850651, -0.000000, 0.525731], + [-0.850651, -0.000000, 0.525731], + [-0.850651, 0.000000, -0.525731], + [0.000000, -0.525731, 0.850651], + [0.000000, 0.525731, 0.850651], + [0.000000, 0.525731, -0.850651], + [0.000000, -0.525731, -0.850651], + [-0.525731, -0.850651, -0.000000], + [0.525731, -0.850651, -0.000000], + [0.525731, 0.850651, 0.000000], + [-0.525731, 0.850651, 0.000000]]; + + const ti = [[0, 9, 1], [1, 10, 0], [6, 7, 0], [10, 6, 0], [7, 9, 0], [5, 1, 4], [4, 1, 9], [5, 10, 1], [2, 8, 3], [3, 11, 2], [2, 5, 4], + [4, 8, 2], [2, 11, 5], [3, 7, 6], [6, 11, 3], [8, 7, 3], [9, 8, 4], [11, 10, 5], [10, 11, 6], [8, 9, 7]]; + + const geodesicSubDivide = (p, frequency, offset) => { + const p1 = p[0]; + const p2 = p[1]; + const p3 = p[2]; + let n = offset; + const c = []; + const f = []; + + // p3 + // /\ + // /__\ frequency = 3 + // i /\ /\ + // /__\/__\ total triangles = 9 (frequency*frequency) + // /\ /\ /\ + // 0/__\/__\/__\ + // p1 0 j p2 + + for (let i = 0; i < frequency; i++) { + for (let j = 0; j < frequency - i; j++) { + const t0 = i / frequency; + const t1 = (i + 1) / frequency; + const s0 = j / (frequency - i); + const s1 = (j + 1) / (frequency - i); + const s2 = frequency - i - 1 ? j / (frequency - i - 1) : 1; + const q = []; + + q[0] = mix3(mix3(p1, p2, s0), p3, t0); + q[1] = mix3(mix3(p1, p2, s1), p3, t0); + q[2] = mix3(mix3(p1, p2, s2), p3, t1); + + // -- normalize + for (let k = 0; k < 3; k++) { + const r = length$1(q[k]); + for (let l = 0; l < 3; l++) { + q[k][l] /= r; + } + } + c.push(q[0], q[1], q[2]); + f.push([n, n + 1, n + 2]); n += 3; + + if (j < frequency - i - 1) { + const s3 = frequency - i - 1 ? (j + 1) / (frequency - i - 1) : 1; + q[0] = mix3(mix3(p1, p2, s1), p3, t0); + q[1] = mix3(mix3(p1, p2, s3), p3, t1); + q[2] = mix3(mix3(p1, p2, s2), p3, t1); + + // -- normalize + for (let k = 0; k < 3; k++) { + const r = length$1(q[k]); + for (let l = 0; l < 3; l++) { + q[k][l] /= r; + } + } + c.push(q[0], q[1], q[2]); + f.push([n, n + 1, n + 2]); n += 3; + } + } + } + return { vertices: c, triangles: f, offset: n } + }; + + const mix3 = (a, b, f) => { + const _f = 1 - f; + const c = []; + for (let i = 0; i < 3; i++) { + c[i] = a[i] * _f + b[i] * f; + } + return c + }; + + let vertices = []; + let faces = []; + let offset = 0; + + for (let i = 0; i < ti.length; i++) { + const g = geodesicSubDivide([ci[ti[i][0]], ci[ti[i][1]], ci[ti[i][2]]], frequency, offset); + vertices = vertices.concat(g.vertices); + faces = faces.concat(g.triangles); + offset = g.offset; + } + + let geometry = polyhedron({ points: vertices, faces: faces, orientation: 'inward' }); + if (radius !== 1) geometry = transform$6(fromScaling(create$c(), [radius, radius, radius]), geometry); + return geometry + }; + + /** + * Construct a new line in two dimensional space from the given points. + * The points must be provided as an array, where each element is a 2D point. + * @param {Array} points - array of points from which to create the path + * @returns {path2} new 2D path + * @alias module:modeling/primitives.line + * + * @example + * let myshape = line([[10, 10], [-10, 10]]) + */ + const line = (points) => { + if (!Array.isArray(points)) throw new Error('points must be an array') + + return fromPoints$2({}, points) + }; + + /** + * Construct a polygon in two dimensional space from a list of points, or a list of points and paths. + * NOTE: The ordering of points is VERY IMPORTANT. + * @param {Object} options - options for construction + * @param {Array} options.points - points of the polygon : either flat or nested array of 2D points + * @param {Array} [options.paths] - paths of the polygon : either flat or nested array of point indexes + * @returns {geom2} new 2D geometry + * @alias module:modeling/primitives.polygon + * + * @example + * let roof = [[10,11], [0,11], [5,20]] + * let wall = [[0,0], [10,0], [10,10], [0,10]] + * + * let poly = polygon({ points: roof }) + * or + * let poly = polygon({ points: [roof, wall] }) + * or + * let poly = polygon({ points: roof, paths: [0, 1, 2] }) + * or + * let poly = polygon({ points: [roof, wall], paths: [[0, 1, 2], [3, 4, 5, 6]] }) + */ + const polygon = (options) => { + const defaults = { + points: [], + paths: [] + }; + const { points, paths } = Object.assign({}, defaults, options); + + if (!(Array.isArray(points) && Array.isArray(paths))) throw new Error('points and paths must be arrays') + + let listOfPolys = points; + if (Array.isArray(points[0])) { + if (!Array.isArray(points[0][0])) { + // points is an array of something... convert to list + listOfPolys = [points]; + } + } + + listOfPolys.forEach((list, i) => { + if (!Array.isArray(list)) throw new Error('list of points ' + i + ' must be an array') + if (list.length < 3) throw new Error('list of points ' + i + ' must contain three or more points') + list.forEach((point, j) => { + if (!Array.isArray(point)) throw new Error('list of points ' + i + ', point ' + j + ' must be an array') + if (point.length < 2) throw new Error('list of points ' + i + ', point ' + j + ' must contain by X and Y values') + }); + }); + + let listOfPaths = paths; + if (paths.length === 0) { + // create a list of paths based on the points + let count = 0; + listOfPaths = listOfPolys.map((list) => list.map((point) => count++)); + } + + // flatten the listOfPoints for indexed access + const allPoints = []; + listOfPolys.forEach((list) => list.forEach((point) => allPoints.push(point))); + + const outlines = []; + listOfPaths.forEach((path) => { + const setOfPoints = path.map((index) => allPoints[index]); + outlines.push(setOfPoints); + }); + return create$a(outlines) + }; + + /** + * Construct an axis-aligned rectangle in two dimensional space with four sides at right angles. + * @param {Object} [options] - options for construction + * @param {Array} [options.center=[0,0]] - center of rectangle + * @param {Array} [options.size=[2,2]] - dimension of rectangle, width and length + * @returns {geom2} new 2D geometry + * @alias module:modeling/primitives.rectangle + * + * @example + * let myshape = rectangle({size: [10, 20]}) + */ + const rectangle = (options) => { + const defaults = { + center: [0, 0], + size: [2, 2] + }; + const { center, size } = Object.assign({}, defaults, options); + + if (!isNumberArray(center, 2)) throw new Error('center must be an array of X and Y values') + if (!isNumberArray(size, 2)) throw new Error('size must be an array of X and Y values') + if (!size.every((n) => n > 0)) throw new Error('size values must be greater than zero') + + const point = [size[0] / 2, size[1] / 2]; + const swapped = [point[0], -point[1]]; + + const points = [ + subtract$1(create$9(), center, point), + add(create$9(), center, swapped), + add(create$9(), center, point), + subtract$1(create$9(), center, swapped) + ]; + return create$a([points]) + }; + + const createCorners = (center, size, radius, segments, slice, positive) => { + const pitch = (TAU / 4) * slice / segments; + const cosPitch = cos(pitch); + const sinPitch = sin(pitch); + + const layerSegments = segments - slice; + let layerRadius = radius * cosPitch; + let layerOffset = size[2] - (radius - (radius * sinPitch)); + if (!positive) layerOffset = (radius - (radius * sinPitch)) - size[2]; + + layerRadius = layerRadius > EPS ? layerRadius : 0; + + const corner0 = add$1(create$b(), center, [size[0] - radius, size[1] - radius, layerOffset]); + const corner1 = add$1(create$b(), center, [radius - size[0], size[1] - radius, layerOffset]); + const corner2 = add$1(create$b(), center, [radius - size[0], radius - size[1], layerOffset]); + const corner3 = add$1(create$b(), center, [size[0] - radius, radius - size[1], layerOffset]); + const corner0Vertices = []; + const corner1Vertices = []; + const corner2Vertices = []; + const corner3Vertices = []; + for (let i = 0; i <= layerSegments; i++) { + const radians = layerSegments > 0 ? TAU / 4 * i / layerSegments : 0; + // FIXME allocate only once + const point2d = fromAngleRadians(create$9(), radians); + scale$1(point2d, point2d, layerRadius); + const point3d = fromVec2(create$b(), point2d); + corner0Vertices.push(add$1(create$b(), corner0, point3d)); + rotateZ$2(point3d, point3d, [0, 0, 0], TAU / 4); + corner1Vertices.push(add$1(create$b(), corner1, point3d)); + rotateZ$2(point3d, point3d, [0, 0, 0], TAU / 4); + corner2Vertices.push(add$1(create$b(), corner2, point3d)); + rotateZ$2(point3d, point3d, [0, 0, 0], TAU / 4); + corner3Vertices.push(add$1(create$b(), corner3, point3d)); + } + if (!positive) { + corner0Vertices.reverse(); + corner1Vertices.reverse(); + corner2Vertices.reverse(); + corner3Vertices.reverse(); + return [corner3Vertices, corner2Vertices, corner1Vertices, corner0Vertices] + } + return [corner0Vertices, corner1Vertices, corner2Vertices, corner3Vertices] + }; + + const stitchCorners = (previousCorners, currentCorners) => { + const polygons = []; + for (let i = 0; i < previousCorners.length; i++) { + const previous = previousCorners[i]; + const current = currentCorners[i]; + for (let j = 0; j < (previous.length - 1); j++) { + polygons.push(create$7([previous[j], previous[j + 1], current[j]])); + + if (j < (current.length - 1)) { + polygons.push(create$7([current[j], previous[j + 1], current[j + 1]])); + } + } + } + return polygons + }; + + const stitchWalls = (previousCorners, currentCorners) => { + const polygons = []; + for (let i = 0; i < previousCorners.length; i++) { + let previous = previousCorners[i]; + let current = currentCorners[i]; + const p0 = previous[previous.length - 1]; + const c0 = current[current.length - 1]; + + const j = (i + 1) % previousCorners.length; + previous = previousCorners[j]; + current = currentCorners[j]; + const p1 = previous[0]; + const c1 = current[0]; + + polygons.push(create$7([p0, p1, c1, c0])); + } + return polygons + }; + + const stitchSides = (bottomCorners, topCorners) => { + // make a copy and reverse the bottom corners + bottomCorners = [bottomCorners[3], bottomCorners[2], bottomCorners[1], bottomCorners[0]]; + bottomCorners = bottomCorners.map((corner) => corner.slice().reverse()); + + const bottomVertices = []; + bottomCorners.forEach((corner) => { + corner.forEach((vertex) => bottomVertices.push(vertex)); + }); + + const topVertices = []; + topCorners.forEach((corner) => { + corner.forEach((vertex) => topVertices.push(vertex)); + }); + + const polygons = []; + for (let i = 0; i < topVertices.length; i++) { + const j = (i + 1) % topVertices.length; + polygons.push(create$7([bottomVertices[i], bottomVertices[j], topVertices[j], topVertices[i]])); + } + return polygons + }; + + /** + * Construct an axis-aligned solid cuboid in three dimensional space with rounded corners. + * @param {Object} [options] - options for construction + * @param {Array} [options.center=[0,0,0]] - center of rounded cube + * @param {Array} [options.size=[2,2,2]] - dimension of rounded cube; width, depth, height + * @param {Number} [options.roundRadius=0.2] - radius of rounded edges + * @param {Number} [options.segments=32] - number of segments to create per full rotation + * @returns {geom3} new 3D geometry + * @alias module:modeling/primitives.roundedCuboid + * + * @example + * let myCube = roundedCuboid({size: [10, 20, 10], roundRadius: 2, segments: 16}) + */ + const roundedCuboid = (options) => { + const defaults = { + center: [0, 0, 0], + size: [2, 2, 2], + roundRadius: 0.2, + segments: 32 + }; + let { center, size, roundRadius, segments } = Object.assign({}, defaults, options); + + if (!isNumberArray(center, 3)) throw new Error('center must be an array of X, Y and Z values') + if (!isNumberArray(size, 3)) throw new Error('size must be an array of X, Y and Z values') + if (!size.every((n) => n > 0)) throw new Error('size values must be greater than zero') + if (!isGT(roundRadius, 0)) throw new Error('roundRadius must be greater than zero') + if (!isGTE(segments, 4)) throw new Error('segments must be four or more') + + size = size.map((v) => v / 2); // convert to radius + + if (roundRadius > (size[0] - EPS) || + roundRadius > (size[1] - EPS) || + roundRadius > (size[2] - EPS)) throw new Error('roundRadius must be smaller then the radius of all dimensions') + + segments = Math.floor(segments / 4); + + let prevCornersPos = null; + let prevCornersNeg = null; + let polygons = []; + for (let slice = 0; slice <= segments; slice++) { + const cornersPos = createCorners(center, size, roundRadius, segments, slice, true); + const cornersNeg = createCorners(center, size, roundRadius, segments, slice, false); + + if (slice === 0) { + polygons = polygons.concat(stitchSides(cornersNeg, cornersPos)); + } + + if (prevCornersPos) { + polygons = polygons.concat(stitchCorners(prevCornersPos, cornersPos), + stitchWalls(prevCornersPos, cornersPos)); + } + if (prevCornersNeg) { + polygons = polygons.concat(stitchCorners(prevCornersNeg, cornersNeg), + stitchWalls(prevCornersNeg, cornersNeg)); + } + + if (slice === segments) { + // add the top + let vertices = cornersPos.map((corner) => corner[0]); + polygons.push(create$7(vertices)); + // add the bottom + vertices = cornersNeg.map((corner) => corner[0]); + polygons.push(create$7(vertices)); + } + + prevCornersPos = cornersPos; + prevCornersNeg = cornersNeg; + } + + return create$8(polygons) + }; + + /** + * Construct a Z axis-aligned solid cylinder in three dimensional space with rounded ends. + * @param {Object} [options] - options for construction + * @param {Array} [options.center=[0,0,0]] - center of cylinder + * @param {Number} [options.height=2] - height of cylinder + * @param {Number} [options.radius=1] - radius of cylinder + * @param {Number} [options.roundRadius=0.2] - radius of rounded edges + * @param {Number} [options.segments=32] - number of segments to create per full rotation + * @returns {geom3} new 3D geometry + * @alias module:modeling/primitives.roundedCylinder + * + * @example + * let myshape = roundedCylinder({ height: 10, radius: 2, roundRadius: 0.5 }) + */ + const roundedCylinder = (options) => { + const defaults = { + center: [0, 0, 0], + height: 2, + radius: 1, + roundRadius: 0.2, + segments: 32 + }; + const { center, height, radius, roundRadius, segments } = Object.assign({}, defaults, options); + + if (!isNumberArray(center, 3)) throw new Error('center must be an array of X, Y and Z values') + if (!isGT(height, 0)) throw new Error('height must be greater then zero') + if (!isGT(radius, 0)) throw new Error('radius must be greater then zero') + if (!isGT(roundRadius, 0)) throw new Error('roundRadius must be greater then zero') + if (roundRadius > (radius - EPS)) throw new Error('roundRadius must be smaller then the radius') + if (!isGTE(segments, 4)) throw new Error('segments must be four or more') + + const start = [0, 0, -(height / 2)]; + const end = [0, 0, height / 2]; + const direction = subtract$3(create$b(), end, start); + const length = length$1(direction); + + if ((2 * roundRadius) > (length - EPS)) throw new Error('height must be larger than twice roundRadius') + + let defaultNormal; + if (Math.abs(direction[0]) > Math.abs(direction[1])) { + defaultNormal = fromValues$3(0, 1, 0); + } else { + defaultNormal = fromValues$3(1, 0, 0); + } + + const zVector = scale$3(create$b(), normalize$1(create$b(), direction), roundRadius); + const xVector = scale$3(create$b(), normalize$1(create$b(), cross$1(create$b(), zVector, defaultNormal)), radius); + const yVector = scale$3(create$b(), normalize$1(create$b(), cross$1(create$b(), xVector, zVector)), radius); + + add$1(start, start, zVector); + subtract$3(end, end, zVector); + + const qSegments = Math.floor(0.25 * segments); + + const fromVertices = (vertices) => { + // adjust the vertices to center + const newVertices = vertices.map((vertex) => add$1(vertex, vertex, center)); + return create$7(newVertices) + }; + + const polygons = []; + const v1 = create$b(); + const v2 = create$b(); + let prevCylinderVertex; + for (let slice1 = 0; slice1 <= segments; slice1++) { + const angle = TAU * slice1 / segments; + const cylinderVertex = add$1(create$b(), scale$3(v1, xVector, cos(angle)), scale$3(v2, yVector, sin(angle))); + if (slice1 > 0) { + // cylinder wall + let vertices = []; + vertices.push(add$1(create$b(), start, cylinderVertex)); + vertices.push(add$1(create$b(), start, prevCylinderVertex)); + vertices.push(add$1(create$b(), end, prevCylinderVertex)); + vertices.push(add$1(create$b(), end, cylinderVertex)); + polygons.push(fromVertices(vertices)); + + let prevCosPitch, prevSinPitch; + let vertex; + for (let slice2 = 0; slice2 <= qSegments; slice2++) { + const pitch = TAU / 4 * slice2 / qSegments; + const cosPitch = cos(pitch); + const sinPitch = sin(pitch); + if (slice2 > 0) { + // cylinder rounding, start + vertices = []; + vertex = add$1(create$b(), start, subtract$3(v1, scale$3(v1, prevCylinderVertex, prevCosPitch), scale$3(v2, zVector, prevSinPitch))); + vertices.push(vertex); + vertex = add$1(create$b(), start, subtract$3(v1, scale$3(v1, cylinderVertex, prevCosPitch), scale$3(v2, zVector, prevSinPitch))); + vertices.push(vertex); + if (slice2 < qSegments) { + vertex = add$1(create$b(), start, subtract$3(v1, scale$3(v1, cylinderVertex, cosPitch), scale$3(v2, zVector, sinPitch))); + vertices.push(vertex); + } + vertex = add$1(create$b(), start, subtract$3(v1, scale$3(v1, prevCylinderVertex, cosPitch), scale$3(v2, zVector, sinPitch))); + vertices.push(vertex); + + polygons.push(fromVertices(vertices)); + + // cylinder rounding, end + vertices = []; + vertex = add$1(create$b(), scale$3(v1, prevCylinderVertex, prevCosPitch), scale$3(v2, zVector, prevSinPitch)); + add$1(vertex, vertex, end); + vertices.push(vertex); + vertex = add$1(create$b(), scale$3(v1, cylinderVertex, prevCosPitch), scale$3(v2, zVector, prevSinPitch)); + add$1(vertex, vertex, end); + vertices.push(vertex); + if (slice2 < qSegments) { + vertex = add$1(create$b(), scale$3(v1, cylinderVertex, cosPitch), scale$3(v2, zVector, sinPitch)); + add$1(vertex, vertex, end); + vertices.push(vertex); + } + vertex = add$1(create$b(), scale$3(v1, prevCylinderVertex, cosPitch), scale$3(v2, zVector, sinPitch)); + add$1(vertex, vertex, end); + vertices.push(vertex); + vertices.reverse(); + + polygons.push(fromVertices(vertices)); + } + prevCosPitch = cosPitch; + prevSinPitch = sinPitch; + } + } + prevCylinderVertex = cylinderVertex; + } + return create$8(polygons) + }; + + /** + * Construct an axis-aligned rectangle in two dimensional space with rounded corners. + * @param {Object} [options] - options for construction + * @param {Array} [options.center=[0,0]] - center of rounded rectangle + * @param {Array} [options.size=[2,2]] - dimension of rounded rectangle; width and length + * @param {Number} [options.roundRadius=0.2] - round radius of corners + * @param {Number} [options.segments=32] - number of segments to create per full rotation + * @returns {geom2} new 2D geometry + * @alias module:modeling/primitives.roundedRectangle + * + * @example + * let myshape = roundedRectangle({size: [10, 20], roundRadius: 2}) + */ + const roundedRectangle = (options) => { + const defaults = { + center: [0, 0], + size: [2, 2], + roundRadius: 0.2, + segments: 32 + }; + let { center, size, roundRadius, segments } = Object.assign({}, defaults, options); + + if (!isNumberArray(center, 2)) throw new Error('center must be an array of X and Y values') + if (!isNumberArray(size, 2)) throw new Error('size must be an array of X and Y values') + if (!size.every((n) => n > 0)) throw new Error('size values must be greater than zero') + if (!isGT(roundRadius, 0)) throw new Error('roundRadius must be greater than zero') + if (!isGTE(segments, 4)) throw new Error('segments must be four or more') + + size = size.map((v) => v / 2); // convert to radius + + if (roundRadius > (size[0] - EPS) || + roundRadius > (size[1] - EPS)) throw new Error('roundRadius must be smaller then the radius of all dimensions') + + const cornerSegments = Math.floor(segments / 4); + + // create sets of points that define the corners + const corner0 = add(create$9(), center, [size[0] - roundRadius, size[1] - roundRadius]); + const corner1 = add(create$9(), center, [roundRadius - size[0], size[1] - roundRadius]); + const corner2 = add(create$9(), center, [roundRadius - size[0], roundRadius - size[1]]); + const corner3 = add(create$9(), center, [size[0] - roundRadius, roundRadius - size[1]]); + const corner0Points = []; + const corner1Points = []; + const corner2Points = []; + const corner3Points = []; + for (let i = 0; i <= cornerSegments; i++) { + const radians = TAU / 4 * i / cornerSegments; + const point = fromAngleRadians(create$9(), radians); + scale$1(point, point, roundRadius); + corner0Points.push(add(create$9(), corner0, point)); + rotate$1(point, point, create$9(), TAU / 4); + corner1Points.push(add(create$9(), corner1, point)); + rotate$1(point, point, create$9(), TAU / 4); + corner2Points.push(add(create$9(), corner2, point)); + rotate$1(point, point, create$9(), TAU / 4); + corner3Points.push(add(create$9(), corner3, point)); + } + + const points = corner0Points.concat(corner1Points, corner2Points, corner3Points); + return create$a([points]) + }; + + /** + * Construct a sphere in three dimensional space where all vertices are at the same distance from the center. + * @see [ellipsoid]{@link module:modeling/primitives.ellipsoid} for more options + * @param {Object} [options] - options for construction + * @param {Array} [options.center=[0,0,0]] - center of sphere + * @param {Number} [options.radius=1] - radius of sphere + * @param {Number} [options.segments=32] - number of segments to create per full rotation + * @param {Array} [options.axes] - an array with three vectors for the x, y and z base vectors + * @returns {geom3} new 3D geometry + * @alias module:modeling/primitives.sphere + * + * @example + * let myshape = sphere({radius: 5}) + */ + const sphere = (options) => { + const defaults = { + center: [0, 0, 0], + radius: 1, + segments: 32, + axes: [[1, 0, 0], [0, -1, 0], [0, 0, 1]] + }; + let { center, radius, segments, axes } = Object.assign({}, defaults, options); + + if (!isGT(radius, 0)) throw new Error('radius must be greater than zero') + + radius = [radius, radius, radius]; + + return ellipsoid({ center, radius, segments, axes }) + }; + + /** + * Construct an axis-aligned square in two dimensional space with four equal sides at right angles. + * @see [rectangle]{@link module:modeling/primitives.rectangle} for more options + * @param {Object} [options] - options for construction + * @param {Array} [options.center=[0,0]] - center of square + * @param {Number} [options.size=2] - dimension of square + * @returns {geom2} new 2D geometry + * @alias module:modeling/primitives.square + * + * @example + * let myshape = square({size: 10}) + */ + const square = (options) => { + const defaults = { + center: [0, 0], + size: 2 + }; + let { center, size } = Object.assign({}, defaults, options); + + if (!isGT(size, 0)) throw new Error('size must be greater than zero') + + size = [size, size]; + + return rectangle({ center, size }) + }; + + // @see http://www.jdawiseman.com/papers/easymath/surds_star_inner_radius.html + const getRadiusRatio = (vertices, density) => { + if (vertices > 0 && density > 1 && density < vertices / 2) { + return Math.cos(Math.PI * density / vertices) / Math.cos(Math.PI * (density - 1) / vertices) + } + return 0 + }; + + const getPoints = (vertices, radius, startAngle, center) => { + const a = TAU / vertices; + + const points = []; + for (let i = 0; i < vertices; i++) { + const point = fromAngleRadians(create$9(), a * i + startAngle); + scale$1(point, point, radius); + add(point, center, point); + points.push(point); + } + return points + }; + + /** + * Construct a star in two dimensional space. + * @see https://en.wikipedia.org/wiki/Star_polygon + * @param {Object} [options] - options for construction + * @param {Array} [options.center=[0,0]] - center of star + * @param {Number} [options.vertices=5] - number of vertices (P) on the star + * @param {Number} [options.density=2] - density (Q) of star + * @param {Number} [options.outerRadius=1] - outer radius of vertices + * @param {Number} [options.innerRadius=0] - inner radius of vertices, or zero to calculate + * @param {Number} [options.startAngle=0] - starting angle for first vertex, in radians + * @returns {geom2} new 2D geometry + * @alias module:modeling/primitives.star + * + * @example + * let star1 = star({vertices: 8, outerRadius: 10}) // star with 8/2 density + * let star2 = star({vertices: 12, outerRadius: 40, innerRadius: 20}) // star with given radius + */ + const star = (options) => { + const defaults = { + center: [0, 0], + vertices: 5, + outerRadius: 1, + innerRadius: 0, + density: 2, + startAngle: 0 + }; + let { center, vertices, outerRadius, innerRadius, density, startAngle } = Object.assign({}, defaults, options); + + if (!isNumberArray(center, 2)) throw new Error('center must be an array of X and Y values') + if (!isGTE(vertices, 2)) throw new Error('vertices must be two or more') + if (!isGT(outerRadius, 0)) throw new Error('outerRadius must be greater than zero') + if (!isGTE(innerRadius, 0)) throw new Error('innerRadius must be greater than zero') + if (!isGTE(startAngle, 0)) throw new Error('startAngle must be greater than zero') + + // force integers + vertices = Math.floor(vertices); + density = Math.floor(density); + + startAngle = startAngle % TAU; + + if (innerRadius === 0) { + if (!isGTE(density, 2)) throw new Error('density must be two or more') + innerRadius = outerRadius * getRadiusRatio(vertices, density); + } + + const centerV = clone$8(center); + + const outerPoints = getPoints(vertices, outerRadius, startAngle, centerV); + const innerPoints = getPoints(vertices, innerRadius, startAngle + Math.PI / vertices, centerV); + + const allPoints = []; + for (let i = 0; i < vertices; i++) { + allPoints.push(outerPoints[i]); + allPoints.push(innerPoints[i]); + } + + return create$a([allPoints]) + }; + + /** + * Mirror the given objects using the given options. + * @param {Object} options - options for mirror + * @param {Array} [options.origin=[0,0,0]] - the origin of the plane + * @param {Array} [options.normal=[0,0,1]] - the normal vector of the plane + * @param {...Object} objects - the objects to mirror + * @return {Object|Array} the mirrored object, or a list of mirrored objects + * @alias module:modeling/transforms.mirror + * + * @example + * let myshape = mirror({normal: [0,0,10]}, cube({center: [0,0,15], radius: [20, 25, 5]})) + */ + const mirror = (options, ...objects) => { + const defaults = { + origin: [0, 0, 0], + normal: [0, 0, 1] // Z axis + }; + const { origin, normal } = Object.assign({}, defaults, options); + + objects = flatten(objects); + if (objects.length === 0) throw new Error('wrong number of arguments') + + const planeOfMirror = fromNormalAndPoint(create$6(), normal, origin); + // verify the plane, i.e. check that the given normal was valid + if (Number.isNaN(planeOfMirror[0])) { + throw new Error('the given origin and normal do not define a proper plane') + } + + const matrix = mirrorByPlane(create$c(), planeOfMirror); + + const results = objects.map((object) => { + if (isA$2(object)) return transform$5(matrix, object) + if (isA$5(object)) return transform$a(matrix, object) + if (isA$3(object)) return transform$6(matrix, object) + return object + }); + return results.length === 1 ? results[0] : results + }; + + /** + * Mirror the given objects about the X axis. + * @param {...Object} objects - the objects to mirror + * @return {Object|Array} the mirrored object, or a list of mirrored objects + * @alias module:modeling/transforms.mirrorX + */ + const mirrorX = (...objects) => mirror({ normal: [1, 0, 0] }, objects); + + /** + * Mirror the given objects about the Y axis. + * @param {...Object} objects - the geometries to mirror + * @return {Object|Array} the mirrored object, or a list of mirrored objects + * @alias module:modeling/transforms.mirrorY + */ + const mirrorY = (...objects) => mirror({ normal: [0, 1, 0] }, objects); + + /** + * Mirror the given objects about the Z axis. + * @param {...Object} objects - the geometries to mirror + * @return {Object|Array} the mirrored object, or a list of mirrored objects + * @alias module:modeling/transforms.mirrorZ + */ + const mirrorZ = (...objects) => mirror({ normal: [0, 0, 1] }, objects); + + // https://en.wikipedia.org/wiki/Greatest_common_divisor#Using_Euclid's_algorithm + const gcd = (a, b) => { + if (a === b) { return a } + if (a < b) { return gcd(b, a) } + if (b === 1) { return 1 } + if (b === 0) { return a } + return gcd(b, a % b) + }; + + const lcm = (a, b) => (a * b) / gcd(a, b); + + // Return a set of edges that encloses the same area by splitting + // the given edges to have newLength total edges. + const repartitionEdges = (newLength, edges) => { + // NOTE: This implementation splits each edge evenly. + const multiple = newLength / edges.length; + if (multiple === 1) { + return edges + } + + const divisor = fromValues$3(multiple, multiple, multiple); + + const newEdges = []; + edges.forEach((edge) => { + const increment = subtract$3(create$b(), edge[1], edge[0]); + divide$1(increment, increment, divisor); + + // repartition the edge + let prev = edge[0]; + for (let i = 1; i <= multiple; ++i) { + const next = add$1(create$b(), prev, increment); + newEdges.push([prev, next]); + prev = next; + } + }); + return newEdges + }; + + const EPSAREA = (EPS * EPS / 2) * Math.sin(Math.PI / 3); + + /* + * Extrude (build) walls between the given slices. + * Each wall consists of two triangles, which may be invalid if slices are overlapping. + */ + const extrudeWalls = (slice0, slice1) => { + let edges0 = toEdges(slice0); + let edges1 = toEdges(slice1); + + if (edges0.length !== edges1.length) { + // different shapes, so adjust one or both to the same number of edges + const newLength = lcm(edges0.length, edges1.length); + if (newLength !== edges0.length) edges0 = repartitionEdges(newLength, edges0); + if (newLength !== edges1.length) edges1 = repartitionEdges(newLength, edges1); + } + + const walls = []; + edges0.forEach((edge0, i) => { + const edge1 = edges1[i]; + + const poly0 = create$7([edge0[0], edge0[1], edge1[1]]); + const poly0area = measureArea$2(poly0); + if (Number.isFinite(poly0area) && poly0area > EPSAREA) walls.push(poly0); + + const poly1 = create$7([edge0[0], edge1[1], edge1[0]]); + const poly1area = measureArea$2(poly1); + if (Number.isFinite(poly1area) && poly1area > EPSAREA) walls.push(poly1); + }); + return walls + }; + + const defaultCallback = (progress, index, base) => { + let baseSlice = null; + if (isA$5(base)) baseSlice = fromGeom2(base); + if (isA$4(base)) baseSlice = fromVertices(toVertices$1(base)); + + return progress === 0 || progress === 1 ? transform$3(fromTranslation(create$c(), [0, 0, progress]), baseSlice) : null + }; + + /** + * Extrude a solid from the slices as returned by the callback function. + * @see slice + * + * @param {Object} options - options for extrude + * @param {Integer} [options.numberOfSlices=2] the number of slices to be generated by the callback + * @param {Boolean} [options.capStart=true] the solid should have a cap at the start + * @param {Boolean} [options.capEnd=true] the solid should have a cap at the end + * @param {Boolean} [options.close=false] the solid should have a closing section between start and end + * @param {Boolean} [options.repair=true] - repair gaps in the geometry + * @param {Function} [options.callback] the callback function that generates each slice + * @param {Object} base - the base object which is used to create slices (see the example for callback information) + * @return {geom3} the extruded shape + * @alias module:modeling/extrusions.extrudeFromSlices + * + * @example + * // Parameters: + * // progress : the percent complete [0..1] + * // index : the index of the current slice [0..numberOfSlices - 1] + * // base : the base object as given + * // Return Value: + * // slice or null (to skip) + * const callback = (progress, index, base) => { + * ... + * return slice + * } + */ + const extrudeFromSlices = (options, base) => { + const defaults = { + numberOfSlices: 2, + capStart: true, + capEnd: true, + close: false, + callback: defaultCallback + }; + const { numberOfSlices, capStart, capEnd, close, callback: generate } = Object.assign({ }, defaults, options); + + if (numberOfSlices < 2) throw new Error('numberOfSlices must be 2 or more') + + const sMax = numberOfSlices - 1; + + let startSlice = null; + let endSlice = null; + let prevSlice = null; + let polygons = []; + for (let s = 0; s < numberOfSlices; s++) { + // invoke the callback function to get the next slice + // NOTE: callback can return null to skip the slice + const currentSlice = generate(s / sMax, s, base); + + if (currentSlice) { + if (!isA(currentSlice)) throw new Error('the callback function must return slice objects') + + if (currentSlice.contours.length === 0) throw new Error('the callback function must return slices with one or more contours') + + if (prevSlice) { + polygons = polygons.concat(extrudeWalls(prevSlice, currentSlice)); + } + + // save start and end slices for caps if necessary + if (s === 0) startSlice = currentSlice; + if (s === (numberOfSlices - 1)) endSlice = currentSlice; + + prevSlice = currentSlice; + } + } + + if (capEnd) { + // create a cap at the end + const endPolygons = toPolygons(endSlice); + polygons = polygons.concat(endPolygons); + } + if (capStart) { + // create a cap at the start + const startPolygons = toPolygons(startSlice).map(invert$1); + polygons = polygons.concat(startPolygons); + } + if (!capStart && !capEnd) { + // create walls between end and start slices + if (close && !equals$3(endSlice, startSlice)) { + polygons = polygons.concat(extrudeWalls(endSlice, startSlice)); + } + } + return create$8(polygons) + }; + + /** + * Rotate extrude the given geometry using the given options. + * + * @param {Object} options - options for extrusion + * @param {Number} [options.angle=TAU] - angle of the extrusion (RADIANS) + * @param {Number} [options.startAngle=0] - start angle of the extrusion (RADIANS) + * @param {String} [options.overflow='cap'] - what to do with points outside of bounds (+ / - x) : + * defaults to capping those points to 0 (only supported behaviour for now) + * @param {Number} [options.segments=12] - number of segments of the extrusion + * @param {geom2} geometry - the geometry to extrude + * @returns {geom3} the extruded geometry + * @alias module:modeling/extrusions.extrudeRotate + * + * @example + * const myshape = extrudeRotate({segments: 8, angle: TAU / 2}, circle({size: 3, center: [4, 0]})) + */ + const extrudeRotate = (options, geometry) => { + const defaults = { + segments: 12, + startAngle: 0, + angle: TAU, + overflow: 'cap' + }; + let { segments, startAngle, angle, overflow } = Object.assign({}, defaults, options); + + if (segments < 3) throw new Error('segments must be greater then 3') + + startAngle = Math.abs(startAngle) > TAU ? startAngle % TAU : startAngle; + angle = Math.abs(angle) > TAU ? angle % TAU : angle; + + let endAngle = startAngle + angle; + endAngle = Math.abs(endAngle) > TAU ? endAngle % TAU : endAngle; + + if (endAngle < startAngle) { + const x = startAngle; + startAngle = endAngle; + endAngle = x; + } + let totalRotation = endAngle - startAngle; + if (totalRotation <= 0.0) totalRotation = TAU; + + if (Math.abs(totalRotation) < TAU) { + // adjust the segments to achieve the total rotation requested + const anglePerSegment = TAU / segments; + segments = Math.floor(Math.abs(totalRotation) / anglePerSegment); + if (Math.abs(totalRotation) > (segments * anglePerSegment)) segments++; + } + + // convert geometry to an array of sides, easier to deal with + let shapeSides = toSides(geometry); + if (shapeSides.length === 0) throw new Error('the given geometry cannot be empty') + + // determine if the extrusion can be computed in the first place + // ie all the points have to be either x > 0 or x < 0 + + // generic solution to always have a valid solid, even if points go beyond x/ -x + // 1. split points up between all those on the 'left' side of the axis (x<0) & those on the 'right' (x>0) + // 2. for each set of points do the extrusion operation IN OPPOSITE DIRECTIONS + // 3. union the two resulting solids + + // 1. alt : OR : just cap of points at the axis ? + + const pointsWithNegativeX = shapeSides.filter((s) => (s[0][0] < 0)); + const pointsWithPositiveX = shapeSides.filter((s) => (s[0][0] >= 0)); + const arePointsWithNegAndPosX = pointsWithNegativeX.length > 0 && pointsWithPositiveX.length > 0; + + // FIXME actually there are cases where setting X=0 will change the basic shape + // - Alternative #1 : don't allow shapes with both negative and positive X values + // - Alternative #2 : remove one half of the shape (costly) + if (arePointsWithNegAndPosX && overflow === 'cap') { + if (pointsWithNegativeX.length > pointsWithPositiveX.length) { + shapeSides = shapeSides.map((side) => { + let point0 = side[0]; + let point1 = side[1]; + point0 = [Math.min(point0[0], 0), point0[1]]; + point1 = [Math.min(point1[0], 0), point1[1]]; + return [point0, point1] + }); + // recreate the geometry from the (-) capped points + geometry = reverse$5(fromSides(shapeSides)); + geometry = mirrorX(geometry); + } else if (pointsWithPositiveX.length >= pointsWithNegativeX.length) { + shapeSides = shapeSides.map((side) => { + let point0 = side[0]; + let point1 = side[1]; + point0 = [Math.max(point0[0], 0), point0[1]]; + point1 = [Math.max(point1[0], 0), point1[1]]; + return [point0, point1] + }); + // recreate the geometry from the (+) capped points + geometry = fromSides(shapeSides); + } + } + + const rotationPerSlice = totalRotation / segments; + const isCapped = Math.abs(totalRotation) < TAU; + let baseSlice = fromGeom2(geometry); + baseSlice = reverse$2(baseSlice); + + const matrix = create$c(); + const createSlice = (progress, index, base) => { + let Zrotation = rotationPerSlice * index + startAngle; + // fix rounding error when rotating TAU radians + if (totalRotation === TAU && index === segments) { + Zrotation = startAngle; + } + multiply$1(matrix, fromZRotation(matrix, Zrotation), fromXRotation(create$c(), TAU / 4)); + + return transform$3(matrix, base) + }; + + options = { + numberOfSlices: segments + 1, + capStart: isCapped, + capEnd: isCapped, + close: !isCapped, + callback: createSlice + }; + return extrudeFromSlices(options, baseSlice) + }; + + /** + * Rotate the given objects using the given options. + * @param {Array} angles - angle (RADIANS) of rotations about X, Y, and Z axis + * @param {...Object} objects - the objects to rotate + * @return {Object|Array} the rotated object, or a list of rotated objects + * @alias module:modeling/transforms.rotate + * + * @example + * const newSphere = rotate([TAU / 8, 0, 0], sphere()) + */ + const rotate = (angles, ...objects) => { + if (!Array.isArray(angles)) throw new Error('angles must be an array') + + objects = flatten(objects); + if (objects.length === 0) throw new Error('wrong number of arguments') + + // adjust the angles if necessary + angles = angles.slice(); // don't modify the original + while (angles.length < 3) angles.push(0); + + const yaw = angles[2]; + const pitch = angles[1]; + const roll = angles[0]; + + const matrix = fromTaitBryanRotation(create$c(), yaw, pitch, roll); + + const results = objects.map((object) => { + if (isA$2(object)) return transform$5(matrix, object) + if (isA$5(object)) return transform$a(matrix, object) + if (isA$3(object)) return transform$6(matrix, object) + return object + }); + return results.length === 1 ? results[0] : results + }; + + /** + * Rotate the given objects about the X axis, using the given options. + * @param {Number} angle - angle (RADIANS) of rotations about X + * @param {...Object} objects - the objects to rotate + * @return {Object|Array} the rotated object, or a list of rotated objects + * @alias module:modeling/transforms.rotateX + */ + const rotateX = (angle, ...objects) => rotate([angle, 0, 0], objects); + + /** + * Rotate the given objects about the Y axis, using the given options. + * @param {Number} angle - angle (RADIANS) of rotations about Y + * @param {...Object} objects - the objects to rotate + * @return {Object|Array} the rotated object, or a list of rotated objects + * @alias module:modeling/transforms.rotateY + */ + const rotateY = (angle, ...objects) => rotate([0, angle, 0], objects); + + /** + * Rotate the given objects about the Z axis, using the given options. + * @param {Number} angle - angle (RADIANS) of rotations about Z + * @param {...Object} objects - the objects to rotate + * @return {Object|Array} the rotated object, or a list of rotated objects + * @alias module:modeling/transforms.rotateZ + */ + const rotateZ = (angle, ...objects) => rotate([0, 0, angle], objects); + + /** + * Translate the given objects using the given options. + * @param {Array} offset - offset (vector) of which to translate the objects + * @param {...Object} objects - the objects to translate + * @return {Object|Array} the translated object, or a list of translated objects + * @alias module:modeling/transforms.translate + * + * @example + * const newSphere = translate([5, 0, 10], sphere()) + */ + const translate = (offset, ...objects) => { + if (!Array.isArray(offset)) throw new Error('offset must be an array') + + objects = flatten(objects); + if (objects.length === 0) throw new Error('wrong number of arguments') + + // adjust the offset if necessary + offset = offset.slice(); // don't modify the original + while (offset.length < 3) offset.push(0); + + const matrix = fromTranslation(create$c(), offset); + + const results = objects.map((object) => { + if (isA$2(object)) return transform$5(matrix, object) + if (isA$5(object)) return transform$a(matrix, object) + if (isA$3(object)) return transform$6(matrix, object) + return object + }); + return results.length === 1 ? results[0] : results + }; + + /** + * Translate the given objects along the X axis using the given options. + * @param {Number} offset - X offset of which to translate the objects + * @param {...Object} objects - the objects to translate + * @return {Object|Array} the translated object, or a list of translated objects + * @alias module:modeling/transforms.translateX + */ + const translateX = (offset, ...objects) => translate([offset, 0, 0], objects); + + /** + * Translate the given objects along the Y axis using the given options. + * @param {Number} offset - Y offset of which to translate the geometries + * @param {...Object} objects - the objects to translate + * @return {Object|Array} the translated object, or a list of translated objects + * @alias module:modeling/transforms.translateY + */ + const translateY = (offset, ...objects) => translate([0, offset, 0], objects); + + /** + * Translate the given objects along the Z axis using the given options. + * @param {Number} offset - Z offset of which to translate the geometries + * @param {...Object} objects - the objects to translate + * @return {Object|Array} the translated object, or a list of translated objects + * @alias module:modeling/transforms.translateZ + */ + const translateZ = (offset, ...objects) => translate([0, 0, offset], objects); + + /** + * Construct a torus by revolving a small circle (inner) about the circumference of a large (outer) circle. + * @param {Object} [options] - options for construction + * @param {Number} [options.innerRadius=1] - radius of small (inner) circle + * @param {Number} [options.outerRadius=4] - radius of large (outer) circle + * @param {Integer} [options.innerSegments=32] - number of segments to create per rotation + * @param {Integer} [options.outerSegments=32] - number of segments to create per rotation + * @param {Integer} [options.innerRotation=0] - rotation of small (inner) circle in radians + * @param {Number} [options.outerRotation=TAU] - rotation (outer) of the torus (RADIANS) + * @param {Number} [options.startAngle=0] - start angle of the torus (RADIANS) + * @returns {geom3} new 3D geometry + * @alias module:modeling/primitives.torus + * + * @example + * let myshape = torus({ innerRadius: 10, outerRadius: 100 }) + */ + const torus = (options) => { + const defaults = { + innerRadius: 1, + innerSegments: 32, + outerRadius: 4, + outerSegments: 32, + innerRotation: 0, + startAngle: 0, + outerRotation: TAU + }; + const { innerRadius, innerSegments, outerRadius, outerSegments, innerRotation, startAngle, outerRotation } = Object.assign({}, defaults, options); + + if (!isGT(innerRadius, 0)) throw new Error('innerRadius must be greater than zero') + if (!isGTE(innerSegments, 3)) throw new Error('innerSegments must be three or more') + if (!isGT(outerRadius, 0)) throw new Error('outerRadius must be greater than zero') + if (!isGTE(outerSegments, 3)) throw new Error('outerSegments must be three or more') + if (!isGTE(startAngle, 0)) throw new Error('startAngle must be positive') + if (!isGT(outerRotation, 0)) throw new Error('outerRotation must be greater than zero') + + if (innerRadius >= outerRadius) throw new Error('inner circle is two large to rotate about the outer circle') + + let innerCircle = circle({ radius: innerRadius, segments: innerSegments }); + + if (innerRotation !== 0) { + innerCircle = rotate([0, 0, innerRotation], innerCircle); + } + + innerCircle = translate([outerRadius, 0], innerCircle); + + const extrudeOptions = { + startAngle: startAngle, + angle: outerRotation, + segments: outerSegments + }; + return extrudeRotate(extrudeOptions, innerCircle) + }; + + // returns angle C + const solveAngleFromSSS = (a, b, c) => Math.acos(((a * a) + (b * b) - (c * c)) / (2 * a * b)); + + // returns side c + const solveSideFromSAS = (a, C, b) => { + if (C > NEPS) { + return Math.sqrt(a * a + b * b - 2 * a * b * Math.cos(C)) + } + + // Explained in https://www.nayuki.io/page/numerically-stable-law-of-cosines + return Math.sqrt((a - b) * (a - b) + a * b * C * C * (1 - C * C / 12)) + }; + + // AAA is when three angles of a triangle, but no sides + const solveAAA = (angles) => { + const eps = Math.abs(angles[0] + angles[1] + angles[2] - Math.PI); + if (eps > NEPS) throw new Error('AAA triangles require angles that sum to PI') + + const A = angles[0]; + const B = angles[1]; + const C = Math.PI - A - B; + + // Note: This is not 100% proper but... + // default the side c length to 1 + // solve the other lengths + const c = 1; + const a = (c / Math.sin(C)) * Math.sin(A); + const b = (c / Math.sin(C)) * Math.sin(B); + return createTriangle(A, B, C, a, b, c) + }; + + // AAS is when two angles and one side are known, and the side is not between the angles + const solveAAS = (values) => { + const A = values[0]; + const B = values[1]; + const C = Math.PI + NEPS - A - B; + + if (C < NEPS) throw new Error('AAS triangles require angles that sum to PI') + + const a = values[2]; + const b = (a / Math.sin(A)) * Math.sin(B); + const c = (a / Math.sin(A)) * Math.sin(C); + return createTriangle(A, B, C, a, b, c) + }; + + // ASA is when two angles and the side between the angles are known + const solveASA = (values) => { + const A = values[0]; + const B = values[2]; + const C = Math.PI + NEPS - A - B; + + if (C < NEPS) throw new Error('ASA triangles require angles that sum to PI') + + const c = values[1]; + const a = (c / Math.sin(C)) * Math.sin(A); + const b = (c / Math.sin(C)) * Math.sin(B); + return createTriangle(A, B, C, a, b, c) + }; + + // SAS is when two sides and the angle between them are known + const solveSAS = (values) => { + const c = values[0]; + const B = values[1]; + const a = values[2]; + + const b = solveSideFromSAS(c, B, a); + + const A = solveAngleFromSSS(b, c, a); // solve for A + const C = Math.PI - A - B; + return createTriangle(A, B, C, a, b, c) + }; + + // SSA is when two sides and an angle that is not the angle between the sides are known + const solveSSA = (values) => { + const c = values[0]; + const a = values[1]; + const C = values[2]; + + const A = Math.asin(a * Math.sin(C) / c); + const B = Math.PI - A - C; + + const b = (c / Math.sin(C)) * Math.sin(B); + return createTriangle(A, B, C, a, b, c) + }; + + // SSS is when we know three sides of the triangle + const solveSSS = (lengths) => { + const a = lengths[1]; + const b = lengths[2]; + const c = lengths[0]; + if (((a + b) <= c) || ((b + c) <= a) || ((c + a) <= b)) { + throw new Error('SSS triangle is incorrect, as the longest side is longer than the sum of the other sides') + } + + const A = solveAngleFromSSS(b, c, a); // solve for A + const B = solveAngleFromSSS(c, a, b); // solve for B + const C = Math.PI - A - B; + return createTriangle(A, B, C, a, b, c) + }; + + const createTriangle = (A, B, C, a, b, c) => { + const p0 = fromValues$2(0, 0); // everything starts from 0, 0 + const p1 = fromValues$2(c, 0); + const p2 = fromValues$2(a, 0); + add(p2, rotate$1(p2, p2, [0, 0], Math.PI - B), p1); + return create$a([[p0, p1, p2]]) + }; + + /** + * Construct a triangle in two dimensional space from the given options. + * The triangle is always constructed CCW from the origin, [0, 0, 0]. + * @see https://www.mathsisfun.com/algebra/trig-solving-triangles.html + * @param {Object} [options] - options for construction + * @param {String} [options.type='SSS'] - type of triangle to construct; A ~ angle, S ~ side + * @param {Array} [options.values=[1,1,1]] - angle (radians) of corners or length of sides + * @returns {geom2} new 2D geometry + * @alias module:modeling/primitives.triangle + * + * @example + * let myshape = triangle({type: 'AAS', values: [degToRad(62), degToRad(35), 7]}) + */ + const triangle = (options) => { + const defaults = { + type: 'SSS', + values: [1, 1, 1] + }; + let { type, values } = Object.assign({}, defaults, options); + + if (typeof (type) !== 'string') throw new Error('triangle type must be a string') + type = type.toUpperCase(); + if (!((type[0] === 'A' || type[0] === 'S') && + (type[1] === 'A' || type[1] === 'S') && + (type[2] === 'A' || type[2] === 'S'))) throw new Error('triangle type must contain three letters; A or S') + + if (!isNumberArray(values, 3)) throw new Error('triangle values must contain three values') + if (!values.every((n) => n > 0)) throw new Error('triangle values must be greater than zero') + + switch (type) { + case 'AAA': + return solveAAA(values) + case 'AAS': + return solveAAS(values) + case 'ASA': + return solveASA(values) + case 'SAS': + return solveSAS(values) + case 'SSA': + return solveSSA(values) + case 'SSS': + return solveSSS(values) + default: + throw new Error('invalid triangle type, try again') + } + }; + + /** + * Primitives provide the building blocks for complex parts. + * Each primitive is a geometrical object that can be described mathematically, and therefore precise. + * Primitives can be logically combined, transformed, extruded, etc. + * @module modeling/primitives + * @example + * import { cube, ellipse, star } = require('@jscad/modeling/primitives') + */ + + var index$8 = /*#__PURE__*/Object.freeze({ + __proto__: null, + arc: arc, + circle: circle, + cube: cube, + cuboid: cuboid, + cylinder: cylinder, + cylinderElliptic: cylinderElliptic, + ellipse: ellipse, + ellipsoid: ellipsoid, + geodesicSphere: geodesicSphere, + line: line, + polygon: polygon, + polyhedron: polyhedron, + rectangle: rectangle, + roundedCuboid: roundedCuboid, + roundedCylinder: roundedCylinder, + roundedRectangle: roundedRectangle, + sphere: sphere, + square: square, + star: star, + torus: torus, + triangle: triangle + }); + + // -- data source from from http://paulbourke.net/dataformats/hershey/ + // -- reduced to save some bytes... + // { [ascii code]: [width, x, y, ...] } - undefined value as path separator + const simplex = { + height: 14, + 32: [16], + 33: [10, 5, 21, 5, 7, undefined, 5, 2, 4, 1, 5, 0, 6, 1, 5, 2], + 34: [16, 4, 21, 4, 14, undefined, 12, 21, 12, 14], + 35: [21, 11, 25, 4, -7, undefined, 17, 25, 10, -7, undefined, 4, 12, 18, 12, undefined, 3, 6, 17, 6], + 36: [20, 8, 25, 8, -4, undefined, 12, 25, 12, -4, undefined, 17, 18, 15, 20, 12, 21, 8, 21, 5, 20, 3, 18, 3, 16, 4, 14, 5, 13, 7, 12, 13, 10, 15, 9, 16, 8, 17, 6, 17, 3, 15, 1, 12, 0, 8, 0, 5, 1, 3, 3], + 37: [24, 21, 21, 3, 0, undefined, 8, 21, 10, 19, 10, 17, 9, 15, 7, 14, 5, 14, 3, 16, 3, 18, 4, 20, 6, 21, 8, 21, 10, 20, 13, 19, 16, 19, 19, 20, 21, 21, undefined, 17, 7, 15, 6, 14, 4, 14, 2, 16, 0, 18, 0, 20, 1, 21, 3, 21, 5, 19, 7, 17, 7], + 38: [26, 23, 12, 23, 13, 22, 14, 21, 14, 20, 13, 19, 11, 17, 6, 15, 3, 13, 1, 11, 0, 7, 0, 5, 1, 4, 2, 3, 4, 3, 6, 4, 8, 5, 9, 12, 13, 13, 14, 14, 16, 14, 18, 13, 20, 11, 21, 9, 20, 8, 18, 8, 16, 9, 13, 11, 10, 16, 3, 18, 1, 20, 0, 22, 0, 23, 1, 23, 2], + 39: [10, 5, 19, 4, 20, 5, 21, 6, 20, 6, 18, 5, 16, 4, 15], + 40: [14, 11, 25, 9, 23, 7, 20, 5, 16, 4, 11, 4, 7, 5, 2, 7, -2, 9, -5, 11, -7], + 41: [14, 3, 25, 5, 23, 7, 20, 9, 16, 10, 11, 10, 7, 9, 2, 7, -2, 5, -5, 3, -7], + 42: [16, 8, 21, 8, 9, undefined, 3, 18, 13, 12, undefined, 13, 18, 3, 12], + 43: [26, 13, 18, 13, 0, undefined, 4, 9, 22, 9], + 44: [10, 6, 1, 5, 0, 4, 1, 5, 2, 6, 1, 6, -1, 5, -3, 4, -4], + 45: [26, 4, 9, 22, 9], + 46: [10, 5, 2, 4, 1, 5, 0, 6, 1, 5, 2], + 47: [22, 20, 25, 2, -7], + 48: [20, 9, 21, 6, 20, 4, 17, 3, 12, 3, 9, 4, 4, 6, 1, 9, 0, 11, 0, 14, 1, 16, 4, 17, 9, 17, 12, 16, 17, 14, 20, 11, 21, 9, 21], + 49: [20, 6, 17, 8, 18, 11, 21, 11, 0], + 50: [20, 4, 16, 4, 17, 5, 19, 6, 20, 8, 21, 12, 21, 14, 20, 15, 19, 16, 17, 16, 15, 15, 13, 13, 10, 3, 0, 17, 0], + 51: [20, 5, 21, 16, 21, 10, 13, 13, 13, 15, 12, 16, 11, 17, 8, 17, 6, 16, 3, 14, 1, 11, 0, 8, 0, 5, 1, 4, 2, 3, 4], + 52: [20, 13, 21, 3, 7, 18, 7, undefined, 13, 21, 13, 0], + 53: [20, 15, 21, 5, 21, 4, 12, 5, 13, 8, 14, 11, 14, 14, 13, 16, 11, 17, 8, 17, 6, 16, 3, 14, 1, 11, 0, 8, 0, 5, 1, 4, 2, 3, 4], + 54: [20, 16, 18, 15, 20, 12, 21, 10, 21, 7, 20, 5, 17, 4, 12, 4, 7, 5, 3, 7, 1, 10, 0, 11, 0, 14, 1, 16, 3, 17, 6, 17, 7, 16, 10, 14, 12, 11, 13, 10, 13, 7, 12, 5, 10, 4, 7], + 55: [20, 17, 21, 7, 0, undefined, 3, 21, 17, 21], + 56: [20, 8, 21, 5, 20, 4, 18, 4, 16, 5, 14, 7, 13, 11, 12, 14, 11, 16, 9, 17, 7, 17, 4, 16, 2, 15, 1, 12, 0, 8, 0, 5, 1, 4, 2, 3, 4, 3, 7, 4, 9, 6, 11, 9, 12, 13, 13, 15, 14, 16, 16, 16, 18, 15, 20, 12, 21, 8, 21], + 57: [20, 16, 14, 15, 11, 13, 9, 10, 8, 9, 8, 6, 9, 4, 11, 3, 14, 3, 15, 4, 18, 6, 20, 9, 21, 10, 21, 13, 20, 15, 18, 16, 14, 16, 9, 15, 4, 13, 1, 10, 0, 8, 0, 5, 1, 4, 3], + 58: [10, 5, 14, 4, 13, 5, 12, 6, 13, 5, 14, undefined, 5, 2, 4, 1, 5, 0, 6, 1, 5, 2], + 59: [10, 5, 14, 4, 13, 5, 12, 6, 13, 5, 14, undefined, 6, 1, 5, 0, 4, 1, 5, 2, 6, 1, 6, -1, 5, -3, 4, -4], + 60: [24, 20, 18, 4, 9, 20, 0], + 61: [26, 4, 12, 22, 12, undefined, 4, 6, 22, 6], + 62: [24, 4, 18, 20, 9, 4, 0], + 63: [18, 3, 16, 3, 17, 4, 19, 5, 20, 7, 21, 11, 21, 13, 20, 14, 19, 15, 17, 15, 15, 14, 13, 13, 12, 9, 10, 9, 7, undefined, 9, 2, 8, 1, 9, 0, 10, 1, 9, 2], + 64: [27, 18, 13, 17, 15, 15, 16, 12, 16, 10, 15, 9, 14, 8, 11, 8, 8, 9, 6, 11, 5, 14, 5, 16, 6, 17, 8, undefined, 12, 16, 10, 14, 9, 11, 9, 8, 10, 6, 11, 5, undefined, 18, 16, 17, 8, 17, 6, 19, 5, 21, 5, 23, 7, 24, 10, 24, 12, 23, 15, 22, 17, 20, 19, 18, 20, 15, 21, 12, 21, 9, 20, 7, 19, 5, 17, 4, 15, 3, 12, 3, 9, 4, 6, 5, 4, 7, 2, 9, 1, 12, 0, 15, 0, 18, 1, 20, 2, 21, 3, undefined, 19, 16, 18, 8, 18, 6, 19, 5], + 65: [18, 9, 21, 1, 0, undefined, 9, 21, 17, 0, undefined, 4, 7, 14, 7], + 66: [21, 4, 21, 4, 0, undefined, 4, 21, 13, 21, 16, 20, 17, 19, 18, 17, 18, 15, 17, 13, 16, 12, 13, 11, undefined, 4, 11, 13, 11, 16, 10, 17, 9, 18, 7, 18, 4, 17, 2, 16, 1, 13, 0, 4, 0], + 67: [21, 18, 16, 17, 18, 15, 20, 13, 21, 9, 21, 7, 20, 5, 18, 4, 16, 3, 13, 3, 8, 4, 5, 5, 3, 7, 1, 9, 0, 13, 0, 15, 1, 17, 3, 18, 5], + 68: [21, 4, 21, 4, 0, undefined, 4, 21, 11, 21, 14, 20, 16, 18, 17, 16, 18, 13, 18, 8, 17, 5, 16, 3, 14, 1, 11, 0, 4, 0], + 69: [19, 4, 21, 4, 0, undefined, 4, 21, 17, 21, undefined, 4, 11, 12, 11, undefined, 4, 0, 17, 0], + 70: [18, 4, 21, 4, 0, undefined, 4, 21, 17, 21, undefined, 4, 11, 12, 11], + 71: [21, 18, 16, 17, 18, 15, 20, 13, 21, 9, 21, 7, 20, 5, 18, 4, 16, 3, 13, 3, 8, 4, 5, 5, 3, 7, 1, 9, 0, 13, 0, 15, 1, 17, 3, 18, 5, 18, 8, undefined, 13, 8, 18, 8], + 72: [22, 4, 21, 4, 0, undefined, 18, 21, 18, 0, undefined, 4, 11, 18, 11], + 73: [8, 4, 21, 4, 0], + 74: [16, 12, 21, 12, 5, 11, 2, 10, 1, 8, 0, 6, 0, 4, 1, 3, 2, 2, 5, 2, 7], + 75: [21, 4, 21, 4, 0, undefined, 18, 21, 4, 7, undefined, 9, 12, 18, 0], + 76: [17, 4, 21, 4, 0, undefined, 4, 0, 16, 0], + 77: [24, 4, 21, 4, 0, undefined, 4, 21, 12, 0, undefined, 20, 21, 12, 0, undefined, 20, 21, 20, 0], + 78: [22, 4, 21, 4, 0, undefined, 4, 21, 18, 0, undefined, 18, 21, 18, 0], + 79: [22, 9, 21, 7, 20, 5, 18, 4, 16, 3, 13, 3, 8, 4, 5, 5, 3, 7, 1, 9, 0, 13, 0, 15, 1, 17, 3, 18, 5, 19, 8, 19, 13, 18, 16, 17, 18, 15, 20, 13, 21, 9, 21], + 80: [21, 4, 21, 4, 0, undefined, 4, 21, 13, 21, 16, 20, 17, 19, 18, 17, 18, 14, 17, 12, 16, 11, 13, 10, 4, 10], + 81: [22, 9, 21, 7, 20, 5, 18, 4, 16, 3, 13, 3, 8, 4, 5, 5, 3, 7, 1, 9, 0, 13, 0, 15, 1, 17, 3, 18, 5, 19, 8, 19, 13, 18, 16, 17, 18, 15, 20, 13, 21, 9, 21, undefined, 12, 4, 18, -2], + 82: [21, 4, 21, 4, 0, undefined, 4, 21, 13, 21, 16, 20, 17, 19, 18, 17, 18, 15, 17, 13, 16, 12, 13, 11, 4, 11, undefined, 11, 11, 18, 0], + 83: [20, 17, 18, 15, 20, 12, 21, 8, 21, 5, 20, 3, 18, 3, 16, 4, 14, 5, 13, 7, 12, 13, 10, 15, 9, 16, 8, 17, 6, 17, 3, 15, 1, 12, 0, 8, 0, 5, 1, 3, 3], + 84: [16, 8, 21, 8, 0, undefined, 1, 21, 15, 21], + 85: [22, 4, 21, 4, 6, 5, 3, 7, 1, 10, 0, 12, 0, 15, 1, 17, 3, 18, 6, 18, 21], + 86: [18, 1, 21, 9, 0, undefined, 17, 21, 9, 0], + 87: [24, 2, 21, 7, 0, undefined, 12, 21, 7, 0, undefined, 12, 21, 17, 0, undefined, 22, 21, 17, 0], + 88: [20, 3, 21, 17, 0, undefined, 17, 21, 3, 0], + 89: [18, 1, 21, 9, 11, 9, 0, undefined, 17, 21, 9, 11], + 90: [20, 17, 21, 3, 0, undefined, 3, 21, 17, 21, undefined, 3, 0, 17, 0], + 91: [14, 4, 25, 4, -7, undefined, 5, 25, 5, -7, undefined, 4, 25, 11, 25, undefined, 4, -7, 11, -7], + 92: [14, 0, 21, 14, -3], + 93: [14, 9, 25, 9, -7, undefined, 10, 25, 10, -7, undefined, 3, 25, 10, 25, undefined, 3, -7, 10, -7], + 94: [16, 6, 15, 8, 18, 10, 15, undefined, 3, 12, 8, 17, 13, 12, undefined, 8, 17, 8, 0], + 95: [16, 0, -2, 16, -2], + 96: [10, 6, 21, 5, 20, 4, 18, 4, 16, 5, 15, 6, 16, 5, 17], + 97: [19, 15, 14, 15, 0, undefined, 15, 11, 13, 13, 11, 14, 8, 14, 6, 13, 4, 11, 3, 8, 3, 6, 4, 3, 6, 1, 8, 0, 11, 0, 13, 1, 15, 3], + 98: [19, 4, 21, 4, 0, undefined, 4, 11, 6, 13, 8, 14, 11, 14, 13, 13, 15, 11, 16, 8, 16, 6, 15, 3, 13, 1, 11, 0, 8, 0, 6, 1, 4, 3], + 99: [18, 15, 11, 13, 13, 11, 14, 8, 14, 6, 13, 4, 11, 3, 8, 3, 6, 4, 3, 6, 1, 8, 0, 11, 0, 13, 1, 15, 3], + 100: [19, 15, 21, 15, 0, undefined, 15, 11, 13, 13, 11, 14, 8, 14, 6, 13, 4, 11, 3, 8, 3, 6, 4, 3, 6, 1, 8, 0, 11, 0, 13, 1, 15, 3], + 101: [18, 3, 8, 15, 8, 15, 10, 14, 12, 13, 13, 11, 14, 8, 14, 6, 13, 4, 11, 3, 8, 3, 6, 4, 3, 6, 1, 8, 0, 11, 0, 13, 1, 15, 3], + 102: [12, 10, 21, 8, 21, 6, 20, 5, 17, 5, 0, undefined, 2, 14, 9, 14], + 103: [19, 15, 14, 15, -2, 14, -5, 13, -6, 11, -7, 8, -7, 6, -6, undefined, 15, 11, 13, 13, 11, 14, 8, 14, 6, 13, 4, 11, 3, 8, 3, 6, 4, 3, 6, 1, 8, 0, 11, 0, 13, 1, 15, 3], + 104: [19, 4, 21, 4, 0, undefined, 4, 10, 7, 13, 9, 14, 12, 14, 14, 13, 15, 10, 15, 0], + 105: [8, 3, 21, 4, 20, 5, 21, 4, 22, 3, 21, undefined, 4, 14, 4, 0], + 106: [10, 5, 21, 6, 20, 7, 21, 6, 22, 5, 21, undefined, 6, 14, 6, -3, 5, -6, 3, -7, 1, -7], + 107: [17, 4, 21, 4, 0, undefined, 14, 14, 4, 4, undefined, 8, 8, 15, 0], + 108: [8, 4, 21, 4, 0], + 109: [30, 4, 14, 4, 0, undefined, 4, 10, 7, 13, 9, 14, 12, 14, 14, 13, 15, 10, 15, 0, undefined, 15, 10, 18, 13, 20, 14, 23, 14, 25, 13, 26, 10, 26, 0], + 110: [19, 4, 14, 4, 0, undefined, 4, 10, 7, 13, 9, 14, 12, 14, 14, 13, 15, 10, 15, 0], + 111: [19, 8, 14, 6, 13, 4, 11, 3, 8, 3, 6, 4, 3, 6, 1, 8, 0, 11, 0, 13, 1, 15, 3, 16, 6, 16, 8, 15, 11, 13, 13, 11, 14, 8, 14], + 112: [19, 4, 14, 4, -7, undefined, 4, 11, 6, 13, 8, 14, 11, 14, 13, 13, 15, 11, 16, 8, 16, 6, 15, 3, 13, 1, 11, 0, 8, 0, 6, 1, 4, 3], + 113: [19, 15, 14, 15, -7, undefined, 15, 11, 13, 13, 11, 14, 8, 14, 6, 13, 4, 11, 3, 8, 3, 6, 4, 3, 6, 1, 8, 0, 11, 0, 13, 1, 15, 3], + 114: [13, 4, 14, 4, 0, undefined, 4, 8, 5, 11, 7, 13, 9, 14, 12, 14], + 115: [17, 14, 11, 13, 13, 10, 14, 7, 14, 4, 13, 3, 11, 4, 9, 6, 8, 11, 7, 13, 6, 14, 4, 14, 3, 13, 1, 10, 0, 7, 0, 4, 1, 3, 3], + 116: [12, 5, 21, 5, 4, 6, 1, 8, 0, 10, 0, undefined, 2, 14, 9, 14], + 117: [19, 4, 14, 4, 4, 5, 1, 7, 0, 10, 0, 12, 1, 15, 4, undefined, 15, 14, 15, 0], + 118: [16, 2, 14, 8, 0, undefined, 14, 14, 8, 0], + 119: [22, 3, 14, 7, 0, undefined, 11, 14, 7, 0, undefined, 11, 14, 15, 0, undefined, 19, 14, 15, 0], + 120: [17, 3, 14, 14, 0, undefined, 14, 14, 3, 0], + 121: [16, 2, 14, 8, 0, undefined, 14, 14, 8, 0, 6, -4, 4, -6, 2, -7, 1, -7], + 122: [17, 14, 14, 3, 0, undefined, 3, 14, 14, 14, undefined, 3, 0, 14, 0], + 123: [14, 9, 25, 7, 24, 6, 23, 5, 21, 5, 19, 6, 17, 7, 16, 8, 14, 8, 12, 6, 10, undefined, 7, 24, 6, 22, 6, 20, 7, 18, 8, 17, 9, 15, 9, 13, 8, 11, 4, 9, 8, 7, 9, 5, 9, 3, 8, 1, 7, 0, 6, -2, 6, -4, 7, -6, undefined, 6, 8, 8, 6, 8, 4, 7, 2, 6, 1, 5, -1, 5, -3, 6, -5, 7, -6, 9, -7], + 124: [8, 4, 25, 4, -7], + 125: [14, 5, 25, 7, 24, 8, 23, 9, 21, 9, 19, 8, 17, 7, 16, 6, 14, 6, 12, 8, 10, undefined, 7, 24, 8, 22, 8, 20, 7, 18, 6, 17, 5, 15, 5, 13, 6, 11, 10, 9, 6, 7, 5, 5, 5, 3, 6, 1, 7, 0, 8, -2, 8, -4, 7, -6, undefined, 8, 8, 6, 6, 6, 4, 7, 2, 8, 1, 9, -1, 9, -3, 8, -5, 7, -6, 5, -7], + 126: [24, 3, 6, 3, 8, 4, 11, 6, 12, 8, 12, 10, 11, 14, 8, 16, 7, 18, 7, 20, 8, 21, 10, undefined, 3, 8, 4, 10, 6, 11, 8, 11, 10, 10, 14, 7, 16, 6, 18, 6, 20, 7, 21, 10, 21, 12] + }; + + const defaultsVectorParams = { + xOffset: 0, + yOffset: 0, + input: '?', + align: 'left', + font: simplex, + height: 14, // old vector_xxx simplex font height + lineSpacing: 30/14, // old vector_xxx ratio + letterSpacing: 0, // proportion of font size, i.e. CSS em + extrudeOffset: 0 + }; + + // vectorsXXX parameters handler + const vectorParams = (options, input) => { + if (!input && typeof options === 'string') { + options = { input: options }; + } + options = options || {}; + const params = Object.assign({}, defaultsVectorParams, options); + params.input = input || params.input; + return params + }; + + /** + * Represents a character as an anonymous object containing a list of 2D paths. + * @typedef {Object} VectorChar + * @property {number} width - character width + * @property {number} height - character height (uppercase) + * @property {Array} paths - list of 2D paths + */ + + /** + * Construct a {@link VectorChar} from an ASCII character whose code is between 31 and 127. + * If the character is not supported it is replaced by a question mark. + * + * @param {Object} [options] - options for construction + * @param {number} [options.xOffset=0] - x offset + * @param {number} [options.yOffset=0] - y offset + * @param {number} [options.height=21] - font size/character height (uppercase height) + * @param {number} [options.extrudeOffset=0] - width of the extrusion that will be applied (manually) after the creation of the character + * @param {String} [options.input='?'] - ascii character (ignored/overwritten if provided as second parameter) + * @param {String} [character='?'] - ascii character + * @returns {VectorChar} a new vertor char object + * @alias module:modeling/text.vectorChar + * + * @example + * let mycharacter = vectorChar() + * or + * let mycharacter = vectorChar('A') + * or + * let mycharacter = vectorChar({ xOffset: 57 }, 'C') + * or + * let mycharacter = vectorChar({ xOffset: 78, input: '!' }) + */ + const vectorChar = (options, character) => { + const { + xOffset, yOffset, input, font, height, extrudeOffset + } = vectorParams(options, character); + + let code = input.charCodeAt(0); + if (!code || !font[code]) { + code = 63; // invalid character so use ? + } + + const glyph = [].concat(font[code]); + const ratio = (height - extrudeOffset) / font.height; + const extrudeYOffset = (extrudeOffset / 2); + const width = glyph.shift() * ratio; + + const paths = []; + let polyline = []; + for (let i = 0, il = glyph.length; i < il; i += 2) { + const gx = ratio * glyph[i] + xOffset; + const gy = ratio * glyph[i + 1] + yOffset + extrudeYOffset; + if (glyph[i] !== undefined) { + polyline.push([gx, gy]); + continue + } + paths.push(fromPoints$2({}, polyline)); + polyline = []; + i--; + } + if (polyline.length) { + paths.push(fromPoints$2({}, polyline)); + } + + return { width, height, paths } + }; + + /** + * Represents a line of characters as an anonymous object containing a list of VectorChar. + * @typedef {Object} VectorLine + * @property {number} width - sum of character width and letter spacing + * @property {number} height - maximum height of character heights + * @property {Array} characters - list of vector characters + */ + + const matrix = create$c(); + + const translateLine = (options, line) => { + const { x, y } = Object.assign({ x: 0, y: 0 }, options); + + identity(matrix); + translate$1(matrix, matrix, [x, y, 0]); + + line.chars = line.chars.map((vchar) => { + vchar.paths = vchar.paths.map((path) => { + return transform$5(matrix, path) + }); + return vchar + }); + return line + }; + + /** + * Construct an array of character segments from an ascii string whose characters code is between 31 and 127, + * if one character is not supported it is replaced by a question mark. + * @param {Object|String} [options] - options for construction or ascii string + * @param {Float} [options.xOffset=0] - x offset + * @param {Float} [options.yOffset=0] - y offset + * @param {Float} [options.height=14] - height of requested characters (uppercase height), i.e. font height in points + * @param {Float} [options.lineSpacing=30/14] - line spacing expressed as a percentage of height + * @param {Float} [options.letterSpacing=0] - extra letter spacing, expressed as a proportion of height, i.e. like CSS em + * @param {String} [options.align='left'] - multi-line text alignment: left, center, right + * @param {Float} [options.extrudeOffset=0] - width of the extrusion that will be applied (manually) after the creation of the character + * @param {String} [options.input='?'] - ascii string (ignored/overwrited if provided as seconds parameter) + * @param {String} [text='?'] - ascii string + * @returns {Array} list of vector line objects, where each line contains a list of vector character objects + * @alias module:modeling/text.vectorText + * + * @example + * let mylines = vectorText() + * or + * let mylines = vectorText('OpenJSCAD') + * or + * let mylines = vectorText({ yOffset: -50 }, 'OpenJSCAD') + * or + * let mylines = vectorText({ yOffset: -80, input: 'OpenJSCAD' }) + */ + const vectorText = (options, text) => { + const { + xOffset, yOffset, input, font, height, align, extrudeOffset, lineSpacing, letterSpacing + } = vectorParams(options, text); + + // NOTE: Just like CSS letter-spacing, the spacing could be positive or negative + const extraLetterSpacing = (height * letterSpacing); + + // manage the list of lines + let maxWidth = 0; // keep track of max width for final alignment + let line = { width: 0, height: 0, chars: [] }; + let lines = []; + + const pushLine = () => { + maxWidth = Math.max(maxWidth, line.width); + + if (line.chars.length) lines.push(line); + line = { width: 0, height: 0, chars: [] }; + }; + + // convert the text into a list of vector lines + let x = xOffset; + let y = yOffset; + let vchar; + let il = input.length; + for (let i = 0; i < il; i++) { + const character = input[i]; + if (character === '\n') { + pushLine(); + + // reset x and y for a new line + x = xOffset; + y -= height * lineSpacing; + continue + } + // convert the character + vchar = vectorChar({ xOffset: x, yOffset: y, font, height, extrudeOffset }, character); + + let width = vchar.width + extraLetterSpacing; + x += width; + + // update current line + line.width += width; + line.height = Math.max(line.height, vchar.height); + if (character !== ' ') { + line.chars = line.chars.concat(vchar); + } + } + if (line.chars.length) pushLine(); + + // align all lines as requested + lines = lines.map((line) => { + const diff = maxWidth - line.width; + if (align === 'right') { + return translateLine({ x: diff }, line) + } else if (align === 'center') { + return translateLine({ x: diff / 2 }, line) + } else { + return line + } + }); + return lines + }; + + /** + * Texts provide sets of segments for each character or text strings. + * The segments can be used to create outlines for both 2D and 3D geometry. + * Note: Only ASCII characters are supported. + * @module modeling/text + * @example + * import { vectorChar, vectorText } from '@jscad/modeling/text' + */ + + var index$7 = /*#__PURE__*/Object.freeze({ + __proto__: null, + vectorChar: vectorChar, + vectorText: vectorText + }); + + // list of supported geometries + + /** + * @param {Array} shapes - list of shapes to compare + * @returns {Boolean} true if the given shapes are of the same type + * @alias module:modeling/utils.areAllShapesTheSameType + */ + const areAllShapesTheSameType = (shapes) => { + let previousType; + for (const shape of shapes) { + let currentType = 0; + if (isA$5(shape)) currentType = 1; + if (isA$3(shape)) currentType = 2; + if (isA$2(shape)) currentType = 3; + + if (previousType && currentType !== previousType) return false + previousType = currentType; + } + return true + }; + + /** + * Convert the given angle (degrees) to radians. + * @param {Number} degrees - angle in degrees + * @returns {Number} angle in radians + * @alias module:modeling/utils.degToRad + */ + const degToRad = (degrees) => degrees * 0.017453292519943295; + + /** + * @alias module:modeling/utils.fnNumberSort + */ + const fnNumberSort = (a, b) => a - b; + + /** + * Insert the given element into the give array using the compareFunction. + * @alias module:modeling/utils.insertSorted + */ + const insertSorted = (array, element, compareFunc) => { + let leftBound = 0; + let rightBound = array.length; + while (rightBound > leftBound) { + const testIndex = Math.floor((leftBound + rightBound) / 2); + const testElement = array[testIndex]; + const compareResult = compareFunc(element, testElement); + if (compareResult > 0) { // element > testElement + leftBound = testIndex + 1; + } else { + rightBound = testIndex; + } + } + array.splice(leftBound, 0, element); + }; + + /** + * Build an array of at minimum a specified length from an existing array and a padding value. IF the array is already larger than the target length, it will not be shortened. + * @param {Array} anArray - the source array to copy into the result. + * @param {*} padding - the value to add to the new array to reach the desired length. + * @param {Number} targetLength - The desired length of the return array. + * @returns {Array} an array of at least 'targetLength' length + * @alias module:modeling/utils.padArrayToLength + */ + const padArrayToLength = (anArray, padding, targetLength) => { + anArray = anArray.slice(); + while (anArray.length < targetLength) { + anArray.push(padding); + } + return anArray + }; + + /** + * Calculate the number of segments from the given radius based on minimum length or angle. + * @param {Number} radius - radius of the requested shape + * @param {Number} minimumLength - minimum length of segments; length > 0 + * @param {Number} minimumAngle - minimum angle (radians) between segments; 0 > angle < TAU + * @returns {Number} number of segments to complete the radius + * @alias module:modeling/utils.radiusToSegments + */ + const radiusToSegments = (radius, minimumLength, minimumAngle) => { + const ss = minimumLength > 0 ? radius * TAU / minimumLength : 0; + const as = minimumAngle > 0 ? TAU / minimumAngle : 0; + // minimum segments is four(4) for round primitives + return Math.ceil(Math.max(ss, as, 4)) + }; + + /** + * Convert the given angle (radians) to degrees. + * @param {Number} radians - angle in radians + * @returns {Number} angle in degrees + * @alias module:modeling/utils.radToDeg + */ + const radToDeg = (radians) => radians * 57.29577951308232; + + /** + * Utility functions of various sorts. + * @module modeling/utils + * @example + * import { flatten, insertSorted } from '@jscad/modeling/utils' + */ + + var index$6 = /*#__PURE__*/Object.freeze({ + __proto__: null, + areAllShapesTheSameType: areAllShapesTheSameType, + degToRad: degToRad, + flatten: flatten, + fnNumberSort: fnNumberSort, + insertSorted: insertSorted, + padArrayToLength: padArrayToLength, + radiusToSegments: radiusToSegments, + radToDeg: radToDeg + }); + + const INTERSECTION = 0; + const UNION = 1; + const DIFFERENCE = 2; + const XOR = 3; + + /* + * Follows "An implementation of top-down splaying" + * by D. Sleator March 1992 + * + * Copyright (c) 2018 Alexander Milevski + * https://github.com/w8r/splay-tree + */ + + const DEFAULT_COMPARE = (a, b) => a > b ? 1 : a < b ? -1 : 0; + + class Node$1 { + constructor (key, data) { + this.key = key; + this.data = data; + this.left = null; + this.right = null; + this.next = null; + } + } + + /** + * Simple top down splay, not requiring i to be in the tree t. + */ + const splay = (i, t, comparator) => { + const N = new Node$1(null, null); + let l = N; + let r = N; + + while (true) { + const cmp = comparator(i, t.key); + // if (i < t.key) { + if (cmp < 0) { + if (t.left === null) break + // if (i < t.left.key) { + if (comparator(i, t.left.key) < 0) { + const y = t.left; /* rotate right */ + t.left = y.right; + y.right = t; + t = y; + if (t.left === null) break + } + r.left = t; /* link right */ + r = t; + t = t.left; + // } else if (i > t.key) { + } else if (cmp > 0) { + if (t.right === null) break + // if (i > t.right.key) { + if (comparator(i, t.right.key) > 0) { + const y = t.right; /* rotate left */ + t.right = y.left; + y.left = t; + t = y; + if (t.right === null) break + } + l.right = t; /* link left */ + l = t; + t = t.right; + } else break + } + /* assemble */ + l.right = t.left; + r.left = t.right; + t.left = N.right; + t.right = N.left; + return t + }; + + const insert = (i, data, t, comparator) => { + const node = new Node$1(i, data); + + if (t === null) { + node.left = node.right = null; + return node + } + + t = splay(i, t, comparator); + const cmp = comparator(i, t.key); + if (cmp < 0) { + node.left = t.left; + node.right = t; + t.left = null; + } else if (cmp >= 0) { + node.right = t.right; + node.left = t; + t.right = null; + } + return node + }; + + const split = (key, v, comparator) => { + let left = null; + let right = null; + if (v) { + v = splay(key, v, comparator); + + const cmp = comparator(v.key, key); + if (cmp === 0) { + left = v.left; + right = v.right; + } else if (cmp < 0) { + right = v.right; + v.right = null; + left = v; + } else { + left = v.left; + v.left = null; + right = v; + } + } + return { left, right } + }; + + const merge = (left, right, comparator) => { + if (right === null) return left + if (left === null) return right + + right = splay(left.key, right, comparator); + right.left = left; + return right + }; + + /** + * Prints level of the tree + */ + const printRow = (root, prefix, isTail, out, printNode) => { + if (root) { + out(`${prefix}${isTail ? '└── ' : '├── '}${printNode(root)}\n`); + const indent = prefix + (isTail ? ' ' : '│ '); + if (root.left) printRow(root.left, indent, false, out, printNode); + if (root.right) printRow(root.right, indent, true, out, printNode); + } + }; + + class Tree$1 { + constructor (comparator = DEFAULT_COMPARE) { + this._comparator = comparator; + this._root = null; + this._size = 0; + } + + /** + * Inserts a key, allows duplicates + */ + insert (key, data) { + this._size++; + this._root = insert(key, data, this._root, this._comparator); + return this._root + } + + /** + * Adds a key, if it is not present in the tree + */ + add (key, data) { + const node = new Node$1(key, data); + + if (this._root === null) { + node.left = node.right = null; + this._size++; + this._root = node; + } + + const comparator = this._comparator; + const t = splay(key, this._root, comparator); + const cmp = comparator(key, t.key); + if (cmp === 0) this._root = t; + else { + if (cmp < 0) { + node.left = t.left; + node.right = t; + t.left = null; + } else if (cmp > 0) { + node.right = t.right; + node.left = t; + t.right = null; + } + this._size++; + this._root = node; + } + + return this._root + } + + /** + * @param {Key} key + * @return {Node|null} + */ + remove (key) { + this._root = this._remove(key, this._root, this._comparator); + } + + /** + * Deletes i from the tree if it's there + */ + _remove (i, t, comparator) { + let x; + if (t === null) return null + t = splay(i, t, comparator); + const cmp = comparator(i, t.key); + if (cmp === 0) { /* found it */ + if (t.left === null) { + x = t.right; + } else { + x = splay(i, t.left, comparator); + x.right = t.right; + } + this._size--; + return x + } + return t /* It wasn't there */ + } + + /** + * Removes and returns the node with smallest key + */ + pop () { + let node = this._root; + if (node) { + while (node.left) node = node.left; + this._root = splay(node.key, this._root, this._comparator); + this._root = this._remove(node.key, this._root, this._comparator); + return { key: node.key, data: node.data } + } + return null + } + + /** + * Find without splaying + */ + findStatic (key) { + let current = this._root; + const compare = this._comparator; + while (current) { + const cmp = compare(key, current.key); + if (cmp === 0) return current + else if (cmp < 0) current = current.left; + else current = current.right; + } + return null + } + + find (key) { + if (this._root) { + this._root = splay(key, this._root, this._comparator); + if (this._comparator(key, this._root.key) !== 0) return null + } + return this._root + } + + contains (key) { + let current = this._root; + const compare = this._comparator; + while (current) { + const cmp = compare(key, current.key); + if (cmp === 0) return true + else if (cmp < 0) current = current.left; + else current = current.right; + } + return false + } + + forEach (visitor, ctx) { + let current = this._root; + const Q = []; /* Initialize stack s */ + let done = false; + + while (!done) { + if (current !== null) { + Q.push(current); + current = current.left; + } else { + if (Q.length !== 0) { + current = Q.pop(); + visitor.call(ctx, current); + + current = current.right; + } else done = true; + } + } + return this + } + + /** + * Walk key range from `low` to `high`. Stops if `fn` returns a value. + */ + range (low, high, fn, ctx) { + const Q = []; + const compare = this._comparator; + let node = this._root; + let cmp; + + while (Q.length !== 0 || node) { + if (node) { + Q.push(node); + node = node.left; + } else { + node = Q.pop(); + cmp = compare(node.key, high); + if (cmp > 0) { + break + } else if (compare(node.key, low) >= 0) { + if (fn.call(ctx, node)) return this // stop if smth is returned + } + node = node.right; + } + } + return this + } + + /** + * Returns array of keys + */ + keys () { + const keys = []; + this.forEach(({ key }) => keys.push(key)); + return keys + } + + /** + * Returns array of all the data in the nodes + */ + values () { + const values = []; + this.forEach(({ data }) => values.push(data)); + return values + } + + min () { + if (this._root) return this.minNode(this._root).key + return null + } + + max () { + if (this._root) return this.maxNode(this._root).key + return null + } + + minNode (t = this._root) { + if (t) while (t.left) t = t.left; + return t + } + + maxNode (t = this._root) { + if (t) while (t.right) t = t.right; + return t + } + + /** + * Returns node at given index + */ + at (index) { + let current = this._root; + let done = false; + let i = 0; + const Q = []; + + while (!done) { + if (current) { + Q.push(current); + current = current.left; + } else { + if (Q.length > 0) { + current = Q.pop(); + if (i === index) return current + i++; + current = current.right; + } else done = true; + } + } + return null + } + + next (d) { + let root = this._root; + let successor = null; + + if (d.right) { + successor = d.right; + while (successor.left) successor = successor.left; + return successor + } + + const comparator = this._comparator; + while (root) { + const cmp = comparator(d.key, root.key); + if (cmp === 0) break + else if (cmp < 0) { + successor = root; + root = root.left; + } else root = root.right; + } + + return successor + } + + prev (d) { + let root = this._root; + let predecessor = null; + + if (d.left !== null) { + predecessor = d.left; + while (predecessor.right) predecessor = predecessor.right; + return predecessor + } + + const comparator = this._comparator; + while (root) { + const cmp = comparator(d.key, root.key); + if (cmp === 0) break + else if (cmp < 0) root = root.left; + else { + predecessor = root; + root = root.right; + } + } + return predecessor + } + + clear () { + this._root = null; + this._size = 0; + return this + } + + toList () { + return toList(this._root) + } + + /** + * Bulk-load items. Both array have to be same size + */ + load (keys, values = [], presort = false) { + let size = keys.length; + const comparator = this._comparator; + + // sort if needed + if (presort) sort(keys, values, 0, size - 1, comparator); + + if (this._root === null) { // empty tree + this._root = loadRecursive(keys, values, 0, size); + this._size = size; + } else { // that re-builds the whole tree from two in-order traversals + const mergedList = mergeLists(this.toList(), createList(keys, values), comparator); + size = this._size + size; + this._root = sortedListToBST({ head: mergedList }, 0, size); + } + return this + } + + isEmpty () { return this._root === null } + + size () { return this._size } + root () { return this._root } + + toString (printNode = (n) => String(n.key)) { + const out = []; + printRow(this._root, '', true, (v) => out.push(v), printNode); + return out.join('') + } + + update (key, newKey, newData) { + const comparator = this._comparator; + let { left, right } = split(key, this._root, comparator); + if (comparator(key, newKey) < 0) { + right = insert(newKey, newData, right, comparator); + } else { + left = insert(newKey, newData, left, comparator); + } + this._root = merge(left, right, comparator); + } + + split (key) { + return split(key, this._root, this._comparator) + } + + * [Symbol.iterator] () { + let n = this.minNode(); + while (n) { + yield n; + n = this.next(n); + } + } + } + + const loadRecursive = (keys, values, start, end) => { + const size = end - start; + if (size > 0) { + const middle = start + Math.floor(size / 2); + const key = keys[middle]; + const data = values[middle]; + const node = new Node$1(key, data); + node.left = loadRecursive(keys, values, start, middle); + node.right = loadRecursive(keys, values, middle + 1, end); + return node + } + return null + }; + + const createList = (keys, values) => { + const head = new Node$1(null, null); + let p = head; + for (let i = 0; i < keys.length; i++) { + p = p.next = new Node$1(keys[i], values[i]); + } + p.next = null; + return head.next + }; + + const toList = (root) => { + let current = root; + const Q = []; + let done = false; + + const head = new Node$1(null, null); + let p = head; + + while (!done) { + if (current) { + Q.push(current); + current = current.left; + } else { + if (Q.length > 0) { + current = p = p.next = Q.pop(); + current = current.right; + } else done = true; + } + } + p.next = null; // that'll work even if the tree was empty + return head.next + }; + + const sortedListToBST = (list, start, end) => { + const size = end - start; + if (size > 0) { + const middle = start + Math.floor(size / 2); + const left = sortedListToBST(list, start, middle); + + const root = list.head; + root.left = left; + + list.head = list.head.next; + + root.right = sortedListToBST(list, middle + 1, end); + return root + } + return null + }; + + const mergeLists = (l1, l2, compare) => { + const head = new Node$1(null, null); // dummy + let p = head; + + let p1 = l1; + let p2 = l2; + + while (p1 !== null && p2 !== null) { + if (compare(p1.key, p2.key) < 0) { + p.next = p1; + p1 = p1.next; + } else { + p.next = p2; + p2 = p2.next; + } + p = p.next; + } + + if (p1 !== null) { + p.next = p1; + } else if (p2 !== null) { + p.next = p2; + } + + return head.next + }; + + const sort = (keys, values, left, right, compare) => { + if (left >= right) return + + const pivot = keys[(left + right) >> 1]; + let i = left - 1; + let j = right + 1; + + while (true) { + do i++; while (compare(keys[i], pivot) < 0) + do j--; while (compare(keys[j], pivot) > 0) + if (i >= j) break + + let tmp = keys[i]; + keys[i] = keys[j]; + keys[j] = tmp; + + tmp = values[i]; + values[i] = values[j]; + values[j] = tmp; + } + + sort(keys, values, left, j, compare); + sort(keys, values, j + 1, right, compare); + }; + + const NORMAL = 0; + const NON_CONTRIBUTING = 1; + const SAME_TRANSITION = 2; + const DIFFERENT_TRANSITION = 3; + + /* + * Implementation of the Martinez 2D polygon clipping algorithm + * Copyright (c) 2018 Alexander Milevski + * https://github.com/w8r/martinez + */ + + /** + * @param {SweepEvent} event + * @param {SweepEvent} prev + * @param {Operation} operation + */ + const computeFields = (event, prev, operation) => { + // compute inOut and otherInOut fields + if (prev === null) { + event.inOut = false; + event.otherInOut = true; + + // previous line segment in sweepline belongs to the same polygon + } else { + if (event.isSubject === prev.isSubject) { + event.inOut = !prev.inOut; + event.otherInOut = prev.otherInOut; + + // previous line segment in sweepline belongs to the clipping polygon + } else { + event.inOut = !prev.otherInOut; + event.otherInOut = prev.isVertical() ? !prev.inOut : prev.inOut; + } + + // compute prevInResult field + if (prev) { + event.prevInResult = (!inResult(prev, operation) || prev.isVertical()) ? prev.prevInResult : prev; + } + } + + // check if the line segment belongs to the Boolean operation + const isInResult = inResult(event, operation); + if (isInResult) { + event.resultTransition = determineResultTransition(event, operation); + } else { + event.resultTransition = 0; + } + }; + + const inResult = (event, operation) => { + switch (event.type) { + case NORMAL: + switch (operation) { + case INTERSECTION: + return !event.otherInOut + case UNION: + return event.otherInOut + case DIFFERENCE: + // return (event.isSubject && !event.otherInOut) || + // (!event.isSubject && event.otherInOut) + return (event.isSubject && event.otherInOut) || + (!event.isSubject && !event.otherInOut) + case XOR: + return true + } + break + case SAME_TRANSITION: + return operation === INTERSECTION || operation === UNION + case DIFFERENT_TRANSITION: + return operation === DIFFERENCE + case NON_CONTRIBUTING: + return false + } + return false + }; + + const determineResultTransition = (event, operation) => { + const thisIn = !event.inOut; + const thatIn = !event.otherInOut; + + let isIn; + switch (operation) { + case INTERSECTION: + isIn = thisIn && thatIn; + break + case UNION: + isIn = thisIn || thatIn; + break + case XOR: + isIn = thisIn ^ thatIn; + break + case DIFFERENCE: + if (event.isSubject) { + isIn = thisIn && !thatIn; + } else { + isIn = thatIn && !thisIn; + } + break + } + return isIn ? +1 : -1 + }; + + class SweepEvent { + /** + * Sweepline event + * + * @class {SweepEvent} + * @param {Array.} point + * @param {Boolean} left + * @param {SweepEvent=} otherEvent + * @param {Boolean} isSubject + * @param {Number} edgeType + */ + constructor (point, left, otherEvent, isSubject, edgeType) { + /** + * Is left endpoint? + * @type {Boolean} + */ + this.left = left; + + /** + * @type {Array.} + */ + this.point = point; + + /** + * Other edge reference + * @type {SweepEvent} + */ + this.otherEvent = otherEvent; + + /** + * Belongs to source or clipping polygon + * @type {Boolean} + */ + this.isSubject = isSubject; + + /** + * Edge contribution type + * @type {Number} + */ + this.type = edgeType || NORMAL; + + /** + * In-out transition for the sweepline crossing polygon + * @type {Boolean} + */ + this.inOut = false; + + /** + * @type {Boolean} + */ + this.otherInOut = false; + + /** + * Previous event in result? + * @type {SweepEvent} + */ + this.prevInResult = null; + + /** + * Type of result transition (0 = not in result, +1 = out-in, -1, in-out) + * @type {Number} + */ + this.resultTransition = 0; + + // connection step + + /** + * @type {Number} + */ + this.otherPos = -1; + + /** + * @type {Number} + */ + this.outputContourId = -1; + + this.isExteriorRing = true; // TODO: Looks unused, remove? + } + + /** + * @param {Array.} p + * @return {Boolean} + */ + isBelow (p) { + const p0 = this.point; + const p1 = this.otherEvent.point; + return this.left + ? (p0[0] - p[0]) * (p1[1] - p[1]) - (p1[0] - p[0]) * (p0[1] - p[1]) > 0 + // signedArea(this.point, this.otherEvent.point, p) > 0 : + : (p1[0] - p[0]) * (p0[1] - p[1]) - (p0[0] - p[0]) * (p1[1] - p[1]) > 0 + // signedArea(this.otherEvent.point, this.point, p) > 0 + } + + /** + * @param {Array.} p + * @return {Boolean} + */ + isAbove (p) { + return !this.isBelow(p) + } + + /** + * @return {Boolean} + */ + isVertical () { + return this.point[0] === this.otherEvent.point[0] + } + + /** + * Does event belong to result? + * @return {Boolean} + */ + get inResult () { + return this.resultTransition !== 0 + } + + clone () { + const copy = new SweepEvent( + this.point, this.left, this.otherEvent, this.isSubject, this.type); + + copy.contourId = this.contourId; + copy.resultTransition = this.resultTransition; + copy.prevInResult = this.prevInResult; + copy.isExteriorRing = this.isExteriorRing; + copy.inOut = this.inOut; + copy.otherInOut = this.otherInOut; + + return copy + } + } + + const orient2d = (ax, ay, bx, by, cx, cy) => (ay - cy) * (bx - cx) - (ax - cx) * (by - cy); + + /** + * Signed area of the triangle (p0, p1, p2) + * @param {Array.} p0 + * @param {Array.} p1 + * @param {Array.} p2 + * @return {Number} + */ + const signedArea = (p0, p1, p2) => { + const res = orient2d(p0[0], p0[1], p1[0], p1[1], p2[0], p2[1]); + if (res > 0) return -1 + if (res < 0) return 1 + return 0 + }; + + /* + * Implementation of the Martinez 2D polygon clipping algorithm + * Copyright (c) 2018 Alexander Milevski + * https://github.com/w8r/martinez + */ + + /** + * @param {SweepEvent} e1 + * @param {SweepEvent} e2 + * @return {Number} + */ + const compareEvents = (e1, e2) => { + const p1 = e1.point; + const p2 = e2.point; + + // Different x-coordinate + if (p1[0] > p2[0]) return 1 + if (p1[0] < p2[0]) return -1 + + // Different points, but same x-coordinate + // Event with lower y-coordinate is processed first + if (p1[1] !== p2[1]) return p1[1] > p2[1] ? 1 : -1 + + return specialCases(e1, e2, p1) + }; + + const specialCases = (e1, e2, p1, p2) => { + // Same coordinates, but one is a left endpoint and the other is + // a right endpoint. The right endpoint is processed first + if (e1.left !== e2.left) { return e1.left ? 1 : -1 } + + // const p2 = e1.otherEvent.point, p3 = e2.otherEvent.point + // const sa = (p1[0] - p3[0]) * (p2[1] - p3[1]) - (p2[0] - p3[0]) * (p1[1] - p3[1]) + // Same coordinates, both events + // are left endpoints or right endpoints. + // not collinear + if (signedArea(p1, e1.otherEvent.point, e2.otherEvent.point) !== 0) { + // the event associate to the bottom segment is processed first + return (!e1.isBelow(e2.otherEvent.point)) ? 1 : -1 + } + + return (!e1.isSubject && e2.isSubject) ? 1 : -1 + }; + + /** + * @param {SweepEvent} se + * @param {Array.} p + * @param {Queue} queue + * @return {Queue} + */ + const divideSegment = (se, p, queue) => { + const r = new SweepEvent(p, false, se, se.isSubject); + const l = new SweepEvent(p, true, se.otherEvent, se.isSubject); + + r.contourId = l.contourId = se.contourId; + + // avoid a rounding error. The left event would be processed after the right event + if (compareEvents(l, se.otherEvent) > 0) { + se.otherEvent.left = true; + l.left = false; + } + + // avoid a rounding error. The left event would be processed after the right event + // if (compareEvents(se, r) > 0) {} + + se.otherEvent.otherEvent = l; + se.otherEvent = r; + + queue.push(l); + queue.push(r); + + return queue + }; + + /* + * Implementation of the Martinez 2D polygon clipping algorithm + * Copyright (c) 2018 Alexander Milevski + * https://github.com/w8r/martinez + */ + + /** + * Finds the magnitude of the cross product of two vectors (if we pretend + * they're in three dimensions) + * + * @param {Object} a First vector + * @param {Object} b Second vector + * @private + * @returns {Number} The magnitude of the cross product + */ + const crossProduct = (a, b) => (a[0] * b[1]) - (a[1] * b[0]); + + /** + * Finds the intersection (if any) between two line segments a and b, given the + * line segments' end points a1, a2 and b1, b2. + * + * This algorithm is based on Schneider and Eberly. + * http://www.cimec.org.ar/~ncalvo/Schneider_Eberly.pdf + * Page 244. + * + * @param {Array.} a1 point of first line + * @param {Array.} a2 point of first line + * @param {Array.} b1 point of second line + * @param {Array.} b2 point of second line + * @param {Boolean=} noEndpointTouch whether to skip single touchpoints (meaning connected segments) as intersections + * @returns {Array.>|Null} If the lines intersect, the point of + * intersection. If they overlap, the two end points of the overlapping segment. + * Otherwise, null. + */ + const segmentIntersection = (a1, a2, b1, b2, noEndpointTouch) => { + // The algorithm expects our lines in the form P + sd, where P is a point, + // s is on the interval [0, 1], and d is a vector. + // We are passed two points. P can be the first point of each pair. The + // vector, then, could be thought of as the distance (in x and y components) + // from the first point to the second point. + // So first, let's make our vectors: + const va = [a2[0] - a1[0], a2[1] - a1[1]]; + const vb = [b2[0] - b1[0], b2[1] - b1[1]]; + // We also define a function to convert back to regular point form: + + const toPoint = (p, s, d) => [ + p[0] + s * d[0], + p[1] + s * d[1] + ]; + + // The rest is pretty much a straight port of the algorithm. + const e = [b1[0] - a1[0], b1[1] - a1[1]]; + let kross = crossProduct(va, vb); + let sqrKross = kross * kross; + const sqrLenA = dot$1(va, va); + // const sqrLenB = dotProduct(vb, vb) + + // Check for line intersection. This works because of the properties of the + // cross product -- specifically, two vectors are parallel if and only if the + // cross product is the 0 vector. The full calculation involves relative error + // to account for possible very small line segments. See Schneider & Eberly + // for details. + if (sqrKross > 0/* EPS * sqrLenB * sqLenA */) { + // If they're not parallel, then (because these are line segments) they + // still might not actually intersect. This code checks that the + // intersection point of the lines is actually on both line segments. + const s = crossProduct(e, vb) / kross; + if (s < 0 || s > 1) { + // not on line segment a + return null + } + const t = crossProduct(e, va) / kross; + if (t < 0 || t > 1) { + // not on line segment b + return null + } + if (s === 0 || s === 1) { + // on an endpoint of line segment a + return noEndpointTouch ? null : [toPoint(a1, s, va)] + } + if (t === 0 || t === 1) { + // on an endpoint of line segment b + return noEndpointTouch ? null : [toPoint(b1, t, vb)] + } + return [toPoint(a1, s, va)] + } + + // If we've reached this point, then the lines are either parallel or the + // same, but the segments could overlap partially or fully, or not at all. + // So we need to find the overlap, if any. To do that, we can use e, which is + // the (vector) difference between the two initial points. If this is parallel + // with the line itself, then the two lines are the same line, and there will + // be overlap. + // const sqrLenE = dotProduct(e, e) + kross = crossProduct(e, va); + sqrKross = kross * kross; + + if (sqrKross > 0 /* EPS * sqLenB * sqLenE */) { + // Lines are just parallel, not the same. No overlap. + return null + } + + const sa = dot$1(va, e) / sqrLenA; + const sb = sa + dot$1(va, vb) / sqrLenA; + const smin = Math.min(sa, sb); + const smax = Math.max(sa, sb); + + // this is, essentially, the FindIntersection acting on floats from + // Schneider & Eberly, just inlined into this function. + if (smin <= 1 && smax >= 0) { + // overlap on an end point + if (smin === 1) { + return noEndpointTouch ? null : [toPoint(a1, smin > 0 ? smin : 0, va)] + } + + if (smax === 0) { + return noEndpointTouch ? null : [toPoint(a1, smax < 1 ? smax : 1, va)] + } + + if (noEndpointTouch && smin === 0 && smax === 1) return null + + // There's overlap on a segment -- two points of intersection. Return both. + return [ + toPoint(a1, smin > 0 ? smin : 0, va), + toPoint(a1, smax < 1 ? smax : 1, va) + ] + } + + return null + }; + + /* + * Implementation of the Martinez 2D polygon clipping algorithm + * Copyright (c) 2018 Alexander Milevski + * https://github.com/w8r/martinez + */ + + /** + * @param {SweepEvent} se1 + * @param {SweepEvent} se2 + * @param {Queue} queue + * @return {Number} + */ + const possibleIntersection = (se1, se2, queue) => { + // that disallows self-intersecting polygons, + // did cost us half a day, so I'll leave it + // out of respect + // if (se1.isSubject === se2.isSubject) return + const inter = segmentIntersection( + se1.point, se1.otherEvent.point, + se2.point, se2.otherEvent.point + ); + + const nIntersections = inter ? inter.length : 0; + if (nIntersections === 0) return 0 // no intersection + + // the line segments intersect at an endpoint of both line segments + if ((nIntersections === 1) && + (equals$6(se1.point, se2.point) || + equals$6(se1.otherEvent.point, se2.otherEvent.point))) { + return 0 + } + + if (nIntersections === 2 && se1.isSubject === se2.isSubject) { + return 0 + } + + // The line segments associated to se1 and se2 intersect + if (nIntersections === 1) { + // if the intersection point is not an endpoint of se1 + if (!equals$6(se1.point, inter[0]) && !equals$6(se1.otherEvent.point, inter[0])) { + divideSegment(se1, inter[0], queue); + } + + // if the intersection point is not an endpoint of se2 + if (!equals$6(se2.point, inter[0]) && !equals$6(se2.otherEvent.point, inter[0])) { + divideSegment(se2, inter[0], queue); + } + return 1 + } + + // The line segments associated to se1 and se2 overlap + const events = []; + let leftCoincide = false; + let rightCoincide = false; + + if (equals$6(se1.point, se2.point)) { + leftCoincide = true; // linked + } else if (compareEvents(se1, se2) === 1) { + events.push(se2, se1); + } else { + events.push(se1, se2); + } + + if (equals$6(se1.otherEvent.point, se2.otherEvent.point)) { + rightCoincide = true; + } else if (compareEvents(se1.otherEvent, se2.otherEvent) === 1) { + events.push(se2.otherEvent, se1.otherEvent); + } else { + events.push(se1.otherEvent, se2.otherEvent); + } + + if ((leftCoincide && rightCoincide) || leftCoincide) { + // both line segments are equal or share the left endpoint + se2.type = NON_CONTRIBUTING; + se1.type = (se2.inOut === se1.inOut) ? SAME_TRANSITION : DIFFERENT_TRANSITION; + + if (leftCoincide && !rightCoincide) { + // honestly no idea, but changing events selection from [2, 1] + // to [0, 1] fixes the overlapping self-intersecting polygons issue + divideSegment(events[1].otherEvent, events[0].point, queue); + } + return 2 + } + + // the line segments share the right endpoint + if (rightCoincide) { + divideSegment(events[0], events[1].point, queue); + return 3 + } + + // no line segment includes totally the other one + if (events[0] !== events[3].otherEvent) { + divideSegment(events[0], events[1].point, queue); + divideSegment(events[1], events[2].point, queue); + return 3 + } + + // one line segment includes the other one + divideSegment(events[0], events[1].point, queue); + divideSegment(events[3].otherEvent, events[2].point, queue); + + return 3 + }; + + /* + * Implementation of the Martinez 2D polygon clipping algorithm + * Copyright (c) 2018 Alexander Milevski + * https://github.com/w8r/martinez + */ + + /** + * @param {SweepEvent} le1 + * @param {SweepEvent} le2 + * @return {Number} + */ + const compareSegments = (le1, le2) => { + if (le1 === le2) return 0 + + // Segments are not collinear + if (signedArea(le1.point, le1.otherEvent.point, le2.point) !== 0 || + signedArea(le1.point, le1.otherEvent.point, le2.otherEvent.point) !== 0) { + // If they share their left endpoint use the right endpoint to sort + if (equals$6(le1.point, le2.point)) return le1.isBelow(le2.otherEvent.point) ? -1 : 1 + + // Different left endpoint: use the left endpoint to sort + if (le1.point[0] === le2.point[0]) return le1.point[1] < le2.point[1] ? -1 : 1 + + // has the line segment associated to e1 been inserted + // into S after the line segment associated to e2 ? + if (compareEvents(le1, le2) === 1) return le2.isAbove(le1.point) ? -1 : 1 + + // The line segment associated to e2 has been inserted + // into S after the line segment associated to e1 + return le1.isBelow(le2.point) ? -1 : 1 + } + + if (le1.isSubject === le2.isSubject) { // same polygon + let p1 = le1.point; + let p2 = le2.point; + if (p1[0] === p2[0] && p1[1] === p2[1]/* equals(le1.point, le2.point) */) { + p1 = le1.otherEvent.point; + p2 = le2.otherEvent.point; + if (p1[0] === p2[0] && p1[1] === p2[1]) return 0 + else return le1.contourId > le2.contourId ? 1 : -1 + } + } else { // Segments are collinear, but belong to separate polygons + return le1.isSubject ? -1 : 1 + } + + return compareEvents(le1, le2) === 1 ? 1 : -1 + }; + + /* + * Implementation of the Martinez 2D polygon clipping algorithm + * Copyright (c) 2018 Alexander Milevski + * https://github.com/w8r/martinez + */ + + const subdivideSegments = (eventQueue, subject, clipping, sbbox, cbbox, operation) => { + const sweepLine = new Tree$1(compareSegments); + const sortedEvents = []; + + const rightBound = Math.min(sbbox[2], cbbox[2]); + + let prev, next, begin; + + while (eventQueue.length !== 0) { + let event = eventQueue.pop(); + sortedEvents.push(event); + + // optimization by bboxes for intersection and difference goes here + if ((operation === INTERSECTION && event.point[0] > rightBound) || + (operation === DIFFERENCE && event.point[0] > sbbox[2])) { + break + } + + if (event.left) { + next = prev = sweepLine.insert(event); + begin = sweepLine.minNode(); + + if (prev !== begin) prev = sweepLine.prev(prev); + else prev = null; + + next = sweepLine.next(next); + + const prevEvent = prev ? prev.key : null; + let prevprevEvent; + computeFields(event, prevEvent, operation); + if (next) { + if (possibleIntersection(event, next.key, eventQueue) === 2) { + computeFields(event, prevEvent, operation); + computeFields(next.key, event, operation); + } + } + + if (prev) { + if (possibleIntersection(prev.key, event, eventQueue) === 2) { + let prevprev = prev; + if (prevprev !== begin) prevprev = sweepLine.prev(prevprev); + else prevprev = null; + + prevprevEvent = prevprev ? prevprev.key : null; + computeFields(prevEvent, prevprevEvent, operation); + computeFields(event, prevEvent, operation); + } + } + } else { + event = event.otherEvent; + next = prev = sweepLine.find(event); + + if (prev && next) { + if (prev !== begin) prev = sweepLine.prev(prev); + else prev = null; + + next = sweepLine.next(next); + sweepLine.remove(event); + + if (next && prev) { + possibleIntersection(prev.key, next.key, eventQueue); + } + } + } + } + return sortedEvents + }; + + class Contour { + constructor () { + this.points = []; + this.holeIds = []; + this.holeOf = null; + this.depth = null; + } + + isExterior () { + return this.holeOf == null + } + } + + /* + * Implementation of the Martinez 2D polygon clipping algorithm + * Copyright (c) 2018 Alexander Milevski + * https://github.com/w8r/martinez + */ + + /** + * @param {Array.} sortedEvents + * @return {Array.} + */ + const orderEvents = (sortedEvents) => { + let event, i, len, tmp; + const resultEvents = []; + for (i = 0, len = sortedEvents.length; i < len; i++) { + event = sortedEvents[i]; + if ((event.left && event.inResult) || + (!event.left && event.otherEvent.inResult)) { + resultEvents.push(event); + } + } + // Due to overlapping edges the resultEvents array can be not wholly sorted + let sorted = false; + while (!sorted) { + sorted = true; + for (i = 0, len = resultEvents.length; i < len; i++) { + if ((i + 1) < len && + compareEvents(resultEvents[i], resultEvents[i + 1]) === 1) { + tmp = resultEvents[i]; + resultEvents[i] = resultEvents[i + 1]; + resultEvents[i + 1] = tmp; + sorted = false; + } + } + } + + for (i = 0, len = resultEvents.length; i < len; i++) { + event = resultEvents[i]; + event.otherPos = i; + } + + // imagine, the right event is found in the beginning of the queue, + // when his left counterpart is not marked yet + for (i = 0, len = resultEvents.length; i < len; i++) { + event = resultEvents[i]; + if (!event.left) { + tmp = event.otherPos; + event.otherPos = event.otherEvent.otherPos; + event.otherEvent.otherPos = tmp; + } + } + + return resultEvents + }; + + /** + * @param {Number} pos + * @param {Array.} resultEvents + * @param {Object>} processed + * @return {Number} + */ + const nextPos = (pos, resultEvents, processed, origPos) => { + let newPos = pos + 1; + const p = resultEvents[pos].point; + let p1; + const length = resultEvents.length; + + if (newPos < length) { p1 = resultEvents[newPos].point; } + + while (newPos < length && p1[0] === p[0] && p1[1] === p[1]) { + if (!processed[newPos]) { + return newPos + } else { + newPos++; + } + if (newPos < length) { + p1 = resultEvents[newPos].point; + } + } + + newPos = pos - 1; + + while (processed[newPos] && newPos > origPos) { + newPos--; + } + + return newPos + }; + + const initializeContourFromContext = (event, contours, contourId) => { + const contour = new Contour(); + if (event.prevInResult != null) { + const prevInResult = event.prevInResult; + // Note that it is valid to query the "previous in result" for its output contour id, + // because we must have already processed it (i.e., assigned an output contour id) + // in an earlier iteration, otherwise it wouldn't be possible that it is "previous in + // result". + const lowerContourId = prevInResult.outputContourId; + const lowerResultTransition = prevInResult.resultTransition; + if (lowerContourId < 0) { + contour.holeOf = null; + contour.depth = 0; + } else if (lowerResultTransition > 0) { + // We are inside. Now we have to check if the thing below us is another hole or + // an exterior contour. + const lowerContour = contours[lowerContourId]; + if (lowerContour.holeOf != null) { + // The lower contour is a hole => Connect the new contour as a hole to its parent, + // and use same depth. + const parentContourId = lowerContour.holeOf; + contours[parentContourId].holeIds.push(contourId); + contour.holeOf = parentContourId; + contour.depth = contours[lowerContourId].depth; + } else { + // The lower contour is an exterior contour => Connect the new contour as a hole, + // and increment depth. + contours[lowerContourId].holeIds.push(contourId); + contour.holeOf = lowerContourId; + contour.depth = contours[lowerContourId].depth + 1; + } + } else { + // We are outside => this contour is an exterior contour of same depth. + contour.holeOf = null; + contour.depth = contours[lowerContourId].depth; + } + } else { + // There is no lower/previous contour => this contour is an exterior contour of depth 0. + contour.holeOf = null; + contour.depth = 0; + } + return contour + }; + + /** + * @param {Array.} sortedEvents + * @return {Array.<*>} polygons + */ + const connectEdges = (sortedEvents) => { + const resultEvents = orderEvents(sortedEvents); + const len = resultEvents.length; + + // "false"-filled array + const processed = {}; + const contours = []; + + for (let i = 0; i < len; i++) { + if (processed[i]) { + continue + } + + const contourId = contours.length; + const contour = initializeContourFromContext(resultEvents[i], contours, contourId); + + // Helper function that combines marking an event as processed with assigning its output contour ID + const markAsProcessed = (pos) => { + processed[pos] = true; + if (pos < resultEvents.length && resultEvents[pos]) { + resultEvents[pos].outputContourId = contourId; + } + }; + + let pos = i; + const origPos = i; + + const initial = resultEvents[i].point; + contour.points.push(initial); + + while (true) { + markAsProcessed(pos); + + pos = resultEvents[pos].otherPos; + + markAsProcessed(pos); + contour.points.push(resultEvents[pos].point); + + pos = nextPos(pos, resultEvents, processed, origPos); + + if (pos === origPos || pos >= resultEvents.length || !resultEvents[pos]) { + break + } + } + + contours.push(contour); + } + + return contours + }; + + /* + * The smallest and simplest binary heap priority queue in JavaScript + * Copyright (c) 2017, Vladimir Agafonkin + * https://github.com/mourner/tinyqueue + */ + + class Queue { + constructor (data, compare) { + this.data = data; + this.length = this.data.length; + this.compare = compare; + + if (this.length > 0) { + for (let i = (this.length >> 1) - 1; i >= 0; i--) this._down(i); + } + } + + push (item) { + this.data.push(item); + this._up(this.length++); + } + + pop () { + if (this.length === 0) return undefined + + const top = this.data[0]; + const bottom = this.data.pop(); + + if (--this.length > 0) { + this.data[0] = bottom; + this._down(0); + } + + return top + } + + peek () { + return this.data[0] + } + + _up (pos) { + const { data, compare } = this; + const item = data[pos]; + + while (pos > 0) { + const parent = (pos - 1) >> 1; + const current = data[parent]; + if (compare(item, current) >= 0) break + data[pos] = current; + pos = parent; + } + + data[pos] = item; + } + + _down (pos) { + const { data, compare } = this; + const halfLength = this.length >> 1; + const item = data[pos]; + + while (pos < halfLength) { + let bestChild = (pos << 1) + 1; // initially it is the left child + const right = bestChild + 1; + + if (right < this.length && compare(data[right], data[bestChild]) < 0) { + bestChild = right; + } + if (compare(data[bestChild], item) >= 0) break + + data[pos] = data[bestChild]; + pos = bestChild; + } + + data[pos] = item; + } + } + + /* + * Implementation of the Martinez 2D polygon clipping algorithm + * Copyright (c) 2018 Alexander Milevski + * https://github.com/w8r/martinez + */ + + const max = Math.max; + const min = Math.min; + + let contourId = 0; + + const processPolygon = (contourOrHole, isSubject, depth, queue, bbox, isExteriorRing) => { + const len = contourOrHole.length - 1; + let s1, s2, e1, e2; + for (let i = 0; i < len; i++) { + s1 = contourOrHole[i]; + s2 = contourOrHole[i + 1]; + e1 = new SweepEvent(s1, false, undefined, isSubject); + e2 = new SweepEvent(s2, false, e1, isSubject); + e1.otherEvent = e2; + + if (s1[0] === s2[0] && s1[1] === s2[1]) { + continue // skip collapsed edges, or it breaks + } + + e1.contourId = e2.contourId = depth; + if (!isExteriorRing) { + e1.isExteriorRing = false; + e2.isExteriorRing = false; + } + if (compareEvents(e1, e2) > 0) { + e2.left = true; + } else { + e1.left = true; + } + + const x = s1[0]; + const y = s1[1]; + bbox[0] = min(bbox[0], x); + bbox[1] = min(bbox[1], y); + bbox[2] = max(bbox[2], x); + bbox[3] = max(bbox[3], y); + + // Pushing it so the queue is sorted from left to right, + // with object on the left having the highest priority. + queue.push(e1); + queue.push(e2); + } + }; + + const fillQueue = (subject, clipping, sbbox, cbbox, operation) => { + const eventQueue = new Queue([], compareEvents); + let polygonSet, isExteriorRing, i, ii, j, jj; //, k, kk + + for (i = 0, ii = subject.length; i < ii; i++) { + polygonSet = subject[i]; + for (j = 0, jj = polygonSet.length; j < jj; j++) { + isExteriorRing = j === 0; + if (isExteriorRing) contourId++; + processPolygon(polygonSet[j], true, contourId, eventQueue, sbbox, isExteriorRing); + } + } + + for (i = 0, ii = clipping.length; i < ii; i++) { + polygonSet = clipping[i]; + for (j = 0, jj = polygonSet.length; j < jj; j++) { + isExteriorRing = j === 0; + if (operation === DIFFERENCE) isExteriorRing = false; + if (isExteriorRing) contourId++; + processPolygon(polygonSet[j], false, contourId, eventQueue, cbbox, isExteriorRing); + } + } + + return eventQueue + }; + + /* + * Implementation of the Martinez 2D polygon clipping algorithm. + * Copyright (c) 2018 Alexander Milevski + * https://github.com/w8r/martinez + * + * Adapted for JSCAD by @platypii + */ + + const EMPTY = []; + + /* + * Fast path for trivial operations like intersection with empty geometry + * Returns null if operation is non-trivial + */ + const trivialOperation = (subject, clipping, operation) => { + let result = null; + if (subject.length * clipping.length === 0) { + if (operation === INTERSECTION) { + return EMPTY + } else if (operation === DIFFERENCE) { + result = subject; + } else if (operation === UNION || + operation === XOR) { + result = (subject.length === 0) ? clipping : subject; + } + } + if (result === EMPTY) { + return create$a() + } else if (result) { + return fromOutlines(result.flat()) + } else { + return null + } + }; + + /* + * Fast path for non-intersecting subjects + * Returns null if operation is non-trivial + */ + const compareBBoxes = (subject, clipping, sbbox, cbbox, operation) => { + let result = null; + if (sbbox[0] > cbbox[2] || + cbbox[0] > sbbox[2] || + sbbox[1] > cbbox[3] || + cbbox[1] > sbbox[3]) { + if (operation === INTERSECTION) { + result = EMPTY; + } else if (operation === DIFFERENCE) { + result = subject; + } else if (operation === UNION || + operation === XOR) { + result = subject.concat(clipping); + } + } + if (result === EMPTY) { + return create$a() + } else if (result) { + return fromOutlines(result.flat()) + } else { + return null + } + }; + + /* + * Convert from geom2 to martinez data structure + */ + const toMartinez = (geometry) => { + const outlines = []; + toOutlines(geometry).forEach((outline) => { + // Martinez expects first point == last point + if (equals$6(outline[0], outline[outline.length - 1])) { + outlines.push(outline); + } else { + outlines.push([...outline, outline[0]]); + } + }); + return [outlines] + }; + + /* + * Convert martinez data structure to geom2 + */ + const fromOutlines = (outlines) => { + outlines.forEach((outline) => { + if (equals$6(outline[0], outline[outline.length - 1])) { + outline.pop(); // first == last point + } + }); + // Martinez sometime returns empty outlines, filter them out + outlines = outlines.filter((o) => o.length >= 3); + return create$a(outlines) + }; + + const boolean = (subjectGeom, clippingGeom, operation) => { + // Convert from geom2 to outlines + const subject = toMartinez(subjectGeom); + const clipping = toMartinez(clippingGeom); + + let trivial = trivialOperation(subject, clipping, operation); + if (trivial) { + return trivial + } + const sbbox = [Infinity, Infinity, -Infinity, -Infinity]; + const cbbox = [Infinity, Infinity, -Infinity, -Infinity]; + + const eventQueue = fillQueue(subject, clipping, sbbox, cbbox, operation); + + trivial = compareBBoxes(subject, clipping, sbbox, cbbox, operation); + if (trivial) { + return trivial + } + const sortedEvents = subdivideSegments(eventQueue, subject, clipping, sbbox, cbbox, operation); + + const contours = connectEdges(sortedEvents); + + // Convert contours to geom2 + const polygons = []; + for (let i = 0; i < contours.length; i++) { + const contour = contours[i]; + if (contour.isExterior()) { + // The exterior ring goes first + const rings = [contour.points]; + // Followed by holes if any + for (let j = 0; j < contour.holeIds.length; j++) { + const holeId = contour.holeIds[j]; + const holePoints = contours[holeId].points; + const hole = []; + for (let k = holePoints.length - 2; k >= 0; k--) { + hole.push(holePoints[k]); + } + rings.push(hole); + } + polygons.push(rings); + } + } + + if (polygons) { + return fromOutlines(polygons.flat()) + } else { + return create$a() + } + }; + + /* + * Return a new 2D geometry representing space in both the first geometry and + * in the subsequent geometries. None of the given geometries are modified. + * @param {...geom2} geometries - list of 2D geometries + * @returns {geom2} new 2D geometry + */ + const intersectGeom2 = (...geometries) => { + geometries = flatten(geometries); + + let newGeometry = geometries.shift(); + geometries.forEach((geometry) => { + newGeometry = boolean(newGeometry, geometry, INTERSECTION); + }); + + return newGeometry + }; + + /* + * Retesselation for a set of COPLANAR polygons. + * @param {poly3[]} sourcePolygons - list of polygons + * @returns {poly3[]} new set of polygons + */ + const reTesselateCoplanarPolygons = (sourcePolygons) => { + if (sourcePolygons.length < 2) return sourcePolygons + + const destPolygons = []; + const numPolygons = sourcePolygons.length; + const plane$1 = plane(sourcePolygons[0]); + const orthonormalFormula = new OrthonormalFormula(plane$1); + const polygonVertices2d = []; // array of array of Vector2D + const polygonTopVertexIndexes = []; // array of indexes of topmost vertex per polygon + const topy2polygonIndexes = new Map(); + const yCoordinateToPolygonIndexes = new Map(); + + // convert all polygon vertices to 2D + // Make a list of all encountered y coordinates + // And build a map of all polygons that have a vertex at a certain y coordinate: + const yCoordinateBins = new Map(); + const yCoordinateBinningFactor = 10 / EPS; + for (let polygonIndex = 0; polygonIndex < numPolygons; polygonIndex++) { + const poly3d = sourcePolygons[polygonIndex]; + let vertices2d = []; + let numVertices = poly3d.vertices.length; + let minIndex = -1; + if (numVertices > 0) { + let miny; + let maxy; + for (let i = 0; i < numVertices; i++) { + let pos2d = orthonormalFormula.to2D(poly3d.vertices[i]); + // perform binning of y coordinates: If we have multiple vertices very + // close to each other, give them the same y coordinate: + const yCoordinateBin = Math.floor(pos2d[1] * yCoordinateBinningFactor); + let newY; + if (yCoordinateBins.has(yCoordinateBin)) { + newY = yCoordinateBins.get(yCoordinateBin); + } else if (yCoordinateBins.has(yCoordinateBin + 1)) { + newY = yCoordinateBins.get(yCoordinateBin + 1); + } else if (yCoordinateBins.has(yCoordinateBin - 1)) { + newY = yCoordinateBins.get(yCoordinateBin - 1); + } else { + newY = pos2d[1]; + yCoordinateBins.set(yCoordinateBin, pos2d[1]); + } + pos2d = fromValues$2(pos2d[0], newY); + vertices2d.push(pos2d); + const y = pos2d[1]; + if ((i === 0) || (y < miny)) { + miny = y; + minIndex = i; + } + if ((i === 0) || (y > maxy)) { + maxy = y; + } + let polygonIndexes = yCoordinateToPolygonIndexes.get(y); + if (!polygonIndexes) { + polygonIndexes = {}; // PERF + yCoordinateToPolygonIndexes.set(y, polygonIndexes); + } + polygonIndexes[polygonIndex] = true; + } + if (miny >= maxy) { + // degenerate polygon, all vertices have same y coordinate. Just ignore it from now: + vertices2d = []; + numVertices = 0; + minIndex = -1; + } else { + let polygonIndexes = topy2polygonIndexes.get(miny); + if (!polygonIndexes) { + polygonIndexes = []; + topy2polygonIndexes.set(miny, polygonIndexes); + } + polygonIndexes.push(polygonIndex); + } + } // if(numVertices > 0) + // reverse the vertex order: + vertices2d.reverse(); + minIndex = numVertices - minIndex - 1; + polygonVertices2d.push(vertices2d); + polygonTopVertexIndexes.push(minIndex); + } + + const yCoordinates = []; + yCoordinateToPolygonIndexes.forEach((polylist, y) => yCoordinates.push(y)); + yCoordinates.sort(fnNumberSort); + + // Now we will iterate over all y coordinates, from lowest to highest y coordinate + // activePolygons: source polygons that are 'active', i.e. intersect with our y coordinate + // Is sorted so the polygons are in left to right order + // Each element in activePolygons has these properties: + // polygonIndex: the index of the source polygon (i.e. an index into the sourcePolygons + // and polygonVertices2d arrays) + // leftVertexIndex: the index of the vertex at the left side of the polygon (lowest x) + // that is at or just above the current y coordinate + // rightVertexIndex: ditto at right hand side of polygon + // topLeft, bottomLeft: coordinates of the left side of the polygon crossing the current y coordinate + // topRight, bottomRight: coordinates of the right hand side of the polygon crossing the current y coordinate + let activePolygons = []; + let prevOutPolygonRow = []; + for (let yIndex = 0; yIndex < yCoordinates.length; yIndex++) { + const newOutPolygonRow = []; + const yCoordinate = yCoordinates[yIndex]; + + // update activePolygons for this y coordinate: + // - Remove any polygons that end at this y coordinate + // - update leftVertexIndex and rightVertexIndex (which point to the current vertex index + // at the left and right side of the polygon + // Iterate over all polygons that have a corner at this y coordinate: + const polygonIndexesWithCorner = yCoordinateToPolygonIndexes.get(yCoordinate); + for (let activePolygonIndex = 0; activePolygonIndex < activePolygons.length; ++activePolygonIndex) { + const activePolygon = activePolygons[activePolygonIndex]; + const polygonIndex = activePolygon.polygonIndex; + if (polygonIndexesWithCorner[polygonIndex]) { + // this active polygon has a corner at this y coordinate: + const vertices2d = polygonVertices2d[polygonIndex]; + const numVertices = vertices2d.length; + let newLeftVertexIndex = activePolygon.leftVertexIndex; + let newRightVertexIndex = activePolygon.rightVertexIndex; + // See if we need to increase leftVertexIndex or decrease rightVertexIndex: + while (true) { + let nextLeftVertexIndex = newLeftVertexIndex + 1; + if (nextLeftVertexIndex >= numVertices) nextLeftVertexIndex = 0; + if (vertices2d[nextLeftVertexIndex][1] !== yCoordinate) break + newLeftVertexIndex = nextLeftVertexIndex; + } + let nextRightVertexIndex = newRightVertexIndex - 1; + if (nextRightVertexIndex < 0) nextRightVertexIndex = numVertices - 1; + if (vertices2d[nextRightVertexIndex][1] === yCoordinate) { + newRightVertexIndex = nextRightVertexIndex; + } + if ((newLeftVertexIndex !== activePolygon.leftVertexIndex) && (newLeftVertexIndex === newRightVertexIndex)) { + // We have increased leftVertexIndex or decreased rightVertexIndex, and now they point to the same vertex + // This means that this is the bottom point of the polygon. We'll remove it: + activePolygons.splice(activePolygonIndex, 1); + --activePolygonIndex; + } else { + activePolygon.leftVertexIndex = newLeftVertexIndex; + activePolygon.rightVertexIndex = newRightVertexIndex; + activePolygon.topLeft = vertices2d[newLeftVertexIndex]; + activePolygon.topRight = vertices2d[newRightVertexIndex]; + let nextLeftVertexIndex = newLeftVertexIndex + 1; + if (nextLeftVertexIndex >= numVertices) nextLeftVertexIndex = 0; + activePolygon.bottomLeft = vertices2d[nextLeftVertexIndex]; + let nextRightVertexIndex = newRightVertexIndex - 1; + if (nextRightVertexIndex < 0) nextRightVertexIndex = numVertices - 1; + activePolygon.bottomRight = vertices2d[nextRightVertexIndex]; + } + } // if polygon has corner here + } // for activePolygonIndex + let nextYcoordinate; + if (yIndex >= yCoordinates.length - 1) { + // last row, all polygons must be finished here: + activePolygons = []; + nextYcoordinate = null; + } else { // yIndex < yCoordinates.length-1 + nextYcoordinate = Number(yCoordinates[yIndex + 1]); + const middleYcoordinate = 0.5 * (yCoordinate + nextYcoordinate); + // update activePolygons by adding any polygons that start here: + const startingPolygonIndexes = topy2polygonIndexes.get(yCoordinate); + for (const polygonIndexKey in startingPolygonIndexes) { + const polygonIndex = startingPolygonIndexes[polygonIndexKey]; + const vertices2d = polygonVertices2d[polygonIndex]; + const numVertices = vertices2d.length; + const topVertexIndex = polygonTopVertexIndexes[polygonIndex]; + // the top of the polygon may be a horizontal line. In that case topVertexIndex can point to any point on this line. + // Find the left and right topmost vertices which have the current y coordinate: + let topLeftVertexIndex = topVertexIndex; + while (true) { + let i = topLeftVertexIndex + 1; + if (i >= numVertices) i = 0; + if (vertices2d[i][1] !== yCoordinate) break + if (i === topVertexIndex) break // should not happen, but just to prevent endless loops + topLeftVertexIndex = i; + } + let topRightVertexIndex = topVertexIndex; + while (true) { + let i = topRightVertexIndex - 1; + if (i < 0) i = numVertices - 1; + if (vertices2d[i][1] !== yCoordinate) break + if (i === topLeftVertexIndex) break // should not happen, but just to prevent endless loops + topRightVertexIndex = i; + } + let nextLeftVertexIndex = topLeftVertexIndex + 1; + if (nextLeftVertexIndex >= numVertices) nextLeftVertexIndex = 0; + let nextRightVertexIndex = topRightVertexIndex - 1; + if (nextRightVertexIndex < 0) nextRightVertexIndex = numVertices - 1; + const newActivePolygon = { + polygonIndex, + leftVertexIndex: topLeftVertexIndex, + rightVertexIndex: topRightVertexIndex, + topLeft: vertices2d[topLeftVertexIndex], + topRight: vertices2d[topRightVertexIndex], + bottomLeft: vertices2d[nextLeftVertexIndex], + bottomRight: vertices2d[nextRightVertexIndex] + }; + insertSorted(activePolygons, newActivePolygon, (el1, el2) => { + const x1 = interpolateBetween2DPointsForY(el1.topLeft, el1.bottomLeft, middleYcoordinate); + const x2 = interpolateBetween2DPointsForY(el2.topLeft, el2.bottomLeft, middleYcoordinate); + if (x1 > x2) return 1 + if (x1 < x2) return -1 + return 0 + }); + } // for(let polygonIndex in startingPolygonIndexes) + } // yIndex < yCoordinates.length-1 + + // Now activePolygons is up to date + // Build the output polygons for the next row in newOutPolygonRow: + for (const activePolygonKey in activePolygons) { + const activePolygon = activePolygons[activePolygonKey]; + + let x = interpolateBetween2DPointsForY(activePolygon.topLeft, activePolygon.bottomLeft, yCoordinate); + const topLeft = fromValues$2(x, yCoordinate); + x = interpolateBetween2DPointsForY(activePolygon.topRight, activePolygon.bottomRight, yCoordinate); + const topRight = fromValues$2(x, yCoordinate); + x = interpolateBetween2DPointsForY(activePolygon.topLeft, activePolygon.bottomLeft, nextYcoordinate); + const bottomLeft = fromValues$2(x, nextYcoordinate); + x = interpolateBetween2DPointsForY(activePolygon.topRight, activePolygon.bottomRight, nextYcoordinate); + const bottomRight = fromValues$2(x, nextYcoordinate); + const outPolygon = { + topLeft, + topRight, + bottomLeft, + bottomRight, + leftLine: fromPoints$1(create$1(), topLeft, bottomLeft), + rightLine: fromPoints$1(create$1(), bottomRight, topRight) + }; + if (newOutPolygonRow.length > 0) { + const prevOutPolygon = newOutPolygonRow[newOutPolygonRow.length - 1]; + const d1 = distance(outPolygon.topLeft, prevOutPolygon.topRight); + const d2 = distance(outPolygon.bottomLeft, prevOutPolygon.bottomRight); + if ((d1 < EPS) && (d2 < EPS)) { + // we can join this polygon with the one to the left: + outPolygon.topLeft = prevOutPolygon.topLeft; + outPolygon.leftLine = prevOutPolygon.leftLine; + outPolygon.bottomLeft = prevOutPolygon.bottomLeft; + newOutPolygonRow.splice(newOutPolygonRow.length - 1, 1); + } + } + newOutPolygonRow.push(outPolygon); + } // for(activePolygon in activePolygons) + if (yIndex > 0) { + // try to match the new polygons against the previous row: + const prevContinuedIndexes = new Set(); + const matchedIndexes = new Set(); + for (let i = 0; i < newOutPolygonRow.length; i++) { + const thisPolygon = newOutPolygonRow[i]; + for (let ii = 0; ii < prevOutPolygonRow.length; ii++) { + if (!matchedIndexes.has(ii)) { // not already processed? + // We have a match if the sidelines are equal or if the top coordinates + // are on the sidelines of the previous polygon + const prevPolygon = prevOutPolygonRow[ii]; + if (distance(prevPolygon.bottomLeft, thisPolygon.topLeft) < EPS) { + if (distance(prevPolygon.bottomRight, thisPolygon.topRight) < EPS) { + // Yes, the top of this polygon matches the bottom of the previous: + matchedIndexes.add(ii); + // Now check if the joined polygon would remain convex: + const v1 = direction$1(thisPolygon.leftLine); + const v2 = direction$1(prevPolygon.leftLine); + const d1 = v1[0] - v2[0]; + + const v3 = direction$1(thisPolygon.rightLine); + const v4 = direction$1(prevPolygon.rightLine); + const d2 = v3[0] - v4[0]; + + const leftLineContinues = Math.abs(d1) < EPS; + const rightLineContinues = Math.abs(d2) < EPS; + const leftLineIsConvex = leftLineContinues || (d1 >= 0); + const rightLineIsConvex = rightLineContinues || (d2 >= 0); + if (leftLineIsConvex && rightLineIsConvex) { + // yes, both sides have convex corners: + // This polygon will continue the previous polygon + thisPolygon.outPolygon = prevPolygon.outPolygon; + thisPolygon.leftLineContinues = leftLineContinues; + thisPolygon.rightLineContinues = rightLineContinues; + prevContinuedIndexes.add(ii); + } + break + } + } + } // if(!prevContinuedIndexes.has(ii)) + } // for ii + } // for i + for (let ii = 0; ii < prevOutPolygonRow.length; ii++) { + if (!prevContinuedIndexes.has(ii)) { + // polygon ends here + // Finish the polygon with the last point(s): + const prevPolygon = prevOutPolygonRow[ii]; + prevPolygon.outPolygon.rightPoints.push(prevPolygon.bottomRight); + if (distance(prevPolygon.bottomRight, prevPolygon.bottomLeft) > EPS) { + // polygon ends with a horizontal line: + prevPolygon.outPolygon.leftPoints.push(prevPolygon.bottomLeft); + } + // reverse the left half so we get a counterclockwise circle: + prevPolygon.outPolygon.leftPoints.reverse(); + const points2d = prevPolygon.outPolygon.rightPoints.concat(prevPolygon.outPolygon.leftPoints); + const vertices3d = points2d.map((point2d) => orthonormalFormula.to3D(point2d)); + const polygon = fromVerticesAndPlane(vertices3d, plane$1); // TODO support shared + + // if we let empty polygon out, next retesselate will crash + if (polygon.vertices.length) destPolygons.push(polygon); + } + } + } // if(yIndex > 0) + for (let i = 0; i < newOutPolygonRow.length; i++) { + const thisPolygon = newOutPolygonRow[i]; + if (!thisPolygon.outPolygon) { + // polygon starts here: + thisPolygon.outPolygon = { + leftPoints: [], + rightPoints: [] + }; + thisPolygon.outPolygon.leftPoints.push(thisPolygon.topLeft); + if (distance(thisPolygon.topLeft, thisPolygon.topRight) > EPS) { + // we have a horizontal line at the top: + thisPolygon.outPolygon.rightPoints.push(thisPolygon.topRight); + } + } else { + // continuation of a previous row + if (!thisPolygon.leftLineContinues) { + thisPolygon.outPolygon.leftPoints.push(thisPolygon.topLeft); + } + if (!thisPolygon.rightLineContinues) { + thisPolygon.outPolygon.rightPoints.push(thisPolygon.topRight); + } + } + } + prevOutPolygonRow = newOutPolygonRow; + } // for yIndex + return destPolygons + }; + + const coplanar$1 = (plane1, plane2) => { + // expect the same distance from the origin, within tolerance + if (Math.abs(plane1[3] - plane2[3]) < 0.00000015) { + return aboutEqualNormals(plane1, plane2) + } + return false + }; + + /* + After boolean operations all coplanar polygon fragments are joined by a retesselating + operation. geom3.reTesselate(geom). + Retesselation is done through a linear sweep over the polygon surface. + The sweep line passes over the y coordinates of all vertices in the polygon. + Polygons are split at each sweep line, and the fragments are joined horizontally and vertically into larger polygons + (making sure that we will end up with convex polygons). + */ + const retessellate = (geometry) => { + if (geometry.isRetesselated) { + return geometry + } + + const polygons = toPolygons$1(geometry); + const polygonsPerPlane = []; // elements: [plane, [poly3...]] + polygons.forEach((polygon) => { + const mapping = polygonsPerPlane.find((element) => coplanar$1(element[0], plane(polygon))); + if (mapping) { + const polygons = mapping[1]; + polygons.push(polygon); + } else { + polygonsPerPlane.push([plane(polygon), [polygon]]); + } + }); + + let destPolygons = []; + polygonsPerPlane.forEach((mapping) => { + const sourcePolygons = mapping[1]; + const retesselatedPolygons = reTesselateCoplanarPolygons(sourcePolygons); + destPolygons = destPolygons.concat(retesselatedPolygons); + }); + + const result = create$8(destPolygons); + result.isRetesselated = true; + + return result + }; + + // # class Node + // Holds a node in a BSP tree. + // A BSP tree is built from a collection of polygons by picking a polygon to split along. + // Polygons are not stored directly in the tree, but in PolygonTreeNodes, stored in this.polygontreenodes. + // Those PolygonTreeNodes are children of the owning Tree.polygonTree. + // This is not a leafy BSP tree since there is no distinction between internal and leaf nodes. + class Node { + constructor (parent) { + this.plane = null; + this.front = null; + this.back = null; + this.polygontreenodes = []; + this.parent = parent; + } + + // Convert solid space to empty space and empty space to solid space. + invert () { + const queue = [this]; + let node; + for (let i = 0; i < queue.length; i++) { + node = queue[i]; + if (node.plane) node.plane = flip(create$6(), node.plane); + if (node.front) queue.push(node.front); + if (node.back) queue.push(node.back); + const temp = node.front; + node.front = node.back; + node.back = temp; + } + } + + // clip polygontreenodes to our plane + // calls remove() for all clipped PolygonTreeNodes + clipPolygons (polygonTreeNodes, alsoRemoveCoplanarFront) { + let current = { node: this, polygonTreeNodes }; + let node; + const stack = []; + + do { + node = current.node; + polygonTreeNodes = current.polygonTreeNodes; + + if (node.plane) { + const plane = node.plane; + + const backNodes = []; + const frontNodes = []; + const coplanarFrontNodes = alsoRemoveCoplanarFront ? backNodes : frontNodes; + polygonTreeNodes.forEach((treeNode) => { + if (!treeNode.isRemoved()) { + // split this polygon tree node using the plane + // NOTE: children are added to the tree if there are spanning polygons + treeNode.splitByPlane(plane, coplanarFrontNodes, backNodes, frontNodes, backNodes); + } + }); + + if (node.front && (frontNodes.length > 0)) { + // add front node for further splitting + stack.push({ node: node.front, polygonTreeNodes: frontNodes }); + } + const numBackNodes = backNodes.length; + if (node.back && (numBackNodes > 0)) { + // add back node for further splitting + stack.push({ node: node.back, polygonTreeNodes: backNodes }); + } else { + // remove all back nodes from processing + for (let i = 0; i < numBackNodes; i++) { + backNodes[i].remove(); + } + } + } + current = stack.pop(); + } while (current !== undefined) + } + + // Remove all polygons in this BSP tree that are inside the other BSP tree + // `tree`. + clipTo (tree, alsoRemoveCoplanarFront) { + let node = this; + const stack = []; + do { + if (node.polygontreenodes.length > 0) { + tree.rootnode.clipPolygons(node.polygontreenodes, alsoRemoveCoplanarFront); + } + if (node.front) stack.push(node.front); + if (node.back) stack.push(node.back); + node = stack.pop(); + } while (node !== undefined) + } + + addPolygonTreeNodes (newPolygonTreeNodes) { + let current = { node: this, polygonTreeNodes: newPolygonTreeNodes }; + const stack = []; + do { + const node = current.node; + const polygonTreeNodes = current.polygonTreeNodes; + const len = polygonTreeNodes.length; + + if (len === 0) { + current = stack.pop(); + continue + } + if (!node.plane) { + let index = 0; // default + index = Math.floor(len / 2); + // index = len >> 1 + // index = Math.floor(Math.random() * len) + const bestPoly = polygonTreeNodes[index].getPolygon(); + node.plane = plane(bestPoly); + } + const frontNodes = []; + const backNodes = []; + for (let i = 0; i < len; ++i) { + polygonTreeNodes[i].splitByPlane(node.plane, node.polygontreenodes, backNodes, frontNodes, backNodes); + } + + if (frontNodes.length > 0) { + if (!node.front) node.front = new Node(node); + + // unable to split by any of the current nodes + const stopCondition = len === frontNodes.length && backNodes.length === 0; + if (stopCondition) node.front.polygontreenodes = frontNodes; + else stack.push({ node: node.front, polygonTreeNodes: frontNodes }); + } + if (backNodes.length > 0) { + if (!node.back) node.back = new Node(node); + + // unable to split by any of the current nodes + const stopCondition = len === backNodes.length && frontNodes.length === 0; + + if (stopCondition) node.back.polygontreenodes = backNodes; + else stack.push({ node: node.back, polygonTreeNodes: backNodes }); + } + + current = stack.pop(); + } while (current !== undefined) + } + } + + const splitLineSegmentByPlane = (plane, p1, p2) => { + const direction = subtract$3(create$b(), p2, p1); + let lambda = (plane[3] - dot$2(plane, p1)) / dot$2(plane, direction); + if (Number.isNaN(lambda)) lambda = 0; + if (lambda > 1) lambda = 1; + if (lambda < 0) lambda = 0; + + scale$3(direction, direction, lambda); + add$1(direction, p1, direction); + return direction + }; + + // Returns object: + // .type: + // 0: coplanar-front + // 1: coplanar-back + // 2: front + // 3: back + // 4: spanning + // In case the polygon is spanning, returns: + // .front: a Polygon3 of the front part + // .back: a Polygon3 of the back part + const splitPolygonByPlane = (splane, polygon) => { + const result = { + type: null, + front: null, + back: null + }; + // cache in local lets (speedup): + const vertices = polygon.vertices; + const numVertices = vertices.length; + const pplane = plane(polygon); + if (equals$5(pplane, splane)) { + result.type = 0; + } else { + let hasFront = false; + let hasBack = false; + const vertexIsBack = []; + const MINEPS = -EPS; + for (let i = 0; i < numVertices; i++) { + const t = dot$2(splane, vertices[i]) - splane[3]; + const isback = (t < MINEPS); + vertexIsBack.push(isback); + if (t > EPS) hasFront = true; + if (t < MINEPS) hasBack = true; + } + if ((!hasFront) && (!hasBack)) { + // all points coplanar + const t = dot$2(splane, pplane); + result.type = (t >= 0) ? 0 : 1; + } else if (!hasBack) { + result.type = 2; + } else if (!hasFront) { + result.type = 3; + } else { + // spanning + result.type = 4; + const frontVertices = []; + const backVertices = []; + let isback = vertexIsBack[0]; + for (let vertexIndex = 0; vertexIndex < numVertices; vertexIndex++) { + const vertex = vertices[vertexIndex]; + let nextVertexIndex = vertexIndex + 1; + if (nextVertexIndex >= numVertices) nextVertexIndex = 0; + const nextIsBack = vertexIsBack[nextVertexIndex]; + if (isback === nextIsBack) { + // line segment is on one side of the plane: + if (isback) { + backVertices.push(vertex); + } else { + frontVertices.push(vertex); + } + } else { + // line segment intersects plane: + const nextPoint = vertices[nextVertexIndex]; + const intersectionPoint = splitLineSegmentByPlane(splane, vertex, nextPoint); + if (isback) { + backVertices.push(vertex); + backVertices.push(intersectionPoint); + frontVertices.push(intersectionPoint); + } else { + frontVertices.push(vertex); + frontVertices.push(intersectionPoint); + backVertices.push(intersectionPoint); + } + } + isback = nextIsBack; + } // for vertexIndex + // remove duplicate vertices: + const EPS_SQUARED = EPS * EPS; + if (backVertices.length >= 3) { + let prevVertex = backVertices[backVertices.length - 1]; + for (let vertexIndex = 0; vertexIndex < backVertices.length; vertexIndex++) { + const vertex = backVertices[vertexIndex]; + if (squaredDistance$1(vertex, prevVertex) < EPS_SQUARED) { + backVertices.splice(vertexIndex, 1); + vertexIndex--; + } + prevVertex = vertex; + } + } + if (frontVertices.length >= 3) { + let prevVertex = frontVertices[frontVertices.length - 1]; + for (let vertexIndex = 0; vertexIndex < frontVertices.length; vertexIndex++) { + const vertex = frontVertices[vertexIndex]; + if (squaredDistance$1(vertex, prevVertex) < EPS_SQUARED) { + frontVertices.splice(vertexIndex, 1); + vertexIndex--; + } + prevVertex = vertex; + } + } + if (frontVertices.length >= 3) { + result.front = fromVerticesAndPlane(frontVertices, pplane); + } + if (backVertices.length >= 3) { + result.back = fromVerticesAndPlane(backVertices, pplane); + } + } + } + return result + }; + + // # class PolygonTreeNode + // This class manages hierarchical splits of polygons. + // At the top is a root node which does not hold a polygon, only child PolygonTreeNodes. + // Below that are zero or more 'top' nodes; each holds a polygon. + // The polygons can be in different planes. + // splitByPlane() splits a node by a plane. If the plane intersects the polygon, + // two new child nodes are created holding the split polygon. + // getPolygons() retrieves the polygons from the tree. If for PolygonTreeNode the polygon is split but + // the two split parts (child nodes) are still intact, then the unsplit polygon is returned. + // This ensures that we can safely split a polygon into many fragments. If the fragments are untouched, + // getPolygons() will return the original unsplit polygon instead of the fragments. + // remove() removes a polygon from the tree. Once a polygon is removed, the parent polygons are invalidated + // since they are no longer intact. + class PolygonTreeNode { + // constructor creates the root node + constructor (parent, polygon) { + this.parent = parent; + this.children = []; + this.polygon = polygon; + this.removed = false; // state of branch or leaf + } + + // fill the tree with polygons. Should be called on the root node only; child nodes must + // always be a derivate (split) of the parent node. + addPolygons (polygons) { + // new polygons can only be added to root node; children can only be split polygons + if (!this.isRootNode()) { + throw new Error('Assertion failed') + } + const _this = this; + polygons.forEach((polygon) => { + _this.addChild(polygon); + }); + } + + // remove a node + // - the siblings become toplevel nodes + // - the parent is removed recursively + remove () { + if (!this.removed) { + this.removed = true; + this.polygon = null; + + // remove ourselves from the parent's children list: + const parentschildren = this.parent.children; + const i = parentschildren.indexOf(this); + if (i < 0) throw new Error('Assertion failed') + parentschildren.splice(i, 1); + + // invalidate the parent's polygon, and of all parents above it: + this.parent.recursivelyInvalidatePolygon(); + } + } + + isRemoved () { + return this.removed + } + + isRootNode () { + return !this.parent + } + + // invert all polygons in the tree. Call on the root node + invert () { + if (!this.isRootNode()) throw new Error('Assertion failed') // can only call this on the root node + this.invertSub(); + } + + getPolygon () { + if (!this.polygon) throw new Error('Assertion failed') // doesn't have a polygon, which means that it has been broken down + return this.polygon + } + + getPolygons (result) { + let children = [this]; + const queue = [children]; + let i, j, l, node; + for (i = 0; i < queue.length; ++i) { // queue size can change in loop, don't cache length + children = queue[i]; + for (j = 0, l = children.length; j < l; j++) { // ok to cache length + node = children[j]; + if (node.polygon) { + // the polygon hasn't been broken yet. We can ignore the children and return our polygon: + result.push(node.polygon); + } else { + // our polygon has been split up and broken, so gather all subpolygons from the children + if (node.children.length > 0) queue.push(node.children); + } + } + } + } + + // split the node by a plane; add the resulting nodes to the frontNodes and backNodes array + // If the plane doesn't intersect the polygon, the 'this' object is added to one of the arrays + // If the plane does intersect the polygon, two new child nodes are created for the front and back fragments, + // and added to both arrays. + splitByPlane (plane, coplanarFrontNodes, coplanarBackNodes, frontNodes, backNodes) { + if (this.children.length) { + const queue = [this.children]; + let i; + let j; + let l; + let node; + let nodes; + for (i = 0; i < queue.length; i++) { // queue.length can increase, do not cache + nodes = queue[i]; + for (j = 0, l = nodes.length; j < l; j++) { // ok to cache length + node = nodes[j]; + if (node.children.length > 0) { + queue.push(node.children); + } else { + // no children. Split the polygon: + node._splitByPlane(plane, coplanarFrontNodes, coplanarBackNodes, frontNodes, backNodes); + } + } + } + } else { + this._splitByPlane(plane, coplanarFrontNodes, coplanarBackNodes, frontNodes, backNodes); + } + } + + // only to be called for nodes with no children + _splitByPlane (splane, coplanarFrontNodes, coplanarBackNodes, frontNodes, backNodes) { + const polygon = this.polygon; + if (polygon) { + const bound = measureBoundingSphere$1(polygon); + const sphereRadius = bound[3] + EPS; // ensure radius is LARGER then polygon + const sphereCenter = bound; + const d = dot$2(splane, sphereCenter) - splane[3]; + if (d > sphereRadius) { + frontNodes.push(this); + } else if (d < -sphereRadius) { + backNodes.push(this); + } else { + const splitResult = splitPolygonByPlane(splane, polygon); + switch (splitResult.type) { + case 0: + // coplanar front: + coplanarFrontNodes.push(this); + break + + case 1: + // coplanar back: + coplanarBackNodes.push(this); + break + + case 2: + // front: + frontNodes.push(this); + break + + case 3: + // back: + backNodes.push(this); + break + + case 4: + // spanning: + if (splitResult.front) { + const frontNode = this.addChild(splitResult.front); + frontNodes.push(frontNode); + } + if (splitResult.back) { + const backNode = this.addChild(splitResult.back); + backNodes.push(backNode); + } + break + } + } + } + } + + // PRIVATE methods from here: + // add child to a node + // this should be called whenever the polygon is split + // a child should be created for every fragment of the split polygon + // returns the newly created child + addChild (polygon) { + const newChild = new PolygonTreeNode(this, polygon); + this.children.push(newChild); + return newChild + } + + invertSub () { + let children = [this]; + const queue = [children]; + let i, j, l, node; + for (i = 0; i < queue.length; i++) { + children = queue[i]; + for (j = 0, l = children.length; j < l; j++) { + node = children[j]; + if (node.polygon) { + node.polygon = invert$1(node.polygon); + } + if (node.children.length > 0) queue.push(node.children); + } + } + } + + // private method + // remove the polygon from the node, and all parent nodes above it + // called to invalidate parents of removed nodes + recursivelyInvalidatePolygon () { + this.polygon = null; + if (this.parent) { + this.parent.recursivelyInvalidatePolygon(); + } + } + + clear () { + let children = [this]; + const queue = [children]; + for (let i = 0; i < queue.length; ++i) { // queue size can change in loop, don't cache length + children = queue[i]; + const l = children.length; + for (let j = 0; j < l; j++) { + const node = children[j]; + if (node.polygon) { + node.polygon = null; + } + if (node.parent) { + node.parent = null; + } + if (node.children.length > 0) queue.push(node.children); + node.children = []; + } + } + } + + toString () { + let result = ''; + let children = [this]; + const queue = [children]; + let i, j, l, node; + for (i = 0; i < queue.length; ++i) { // queue size can change in loop, don't cache length + children = queue[i]; + const prefix = ' '.repeat(i); + for (j = 0, l = children.length; j < l; j++) { // ok to cache length + node = children[j]; + result += `${prefix}PolygonTreeNode (${node.isRootNode()}): ${node.children.length}`; + if (node.polygon) { + result += `\n ${prefix}polygon: ${node.polygon.vertices}\n`; + } else { + result += '\n'; + } + if (node.children.length > 0) queue.push(node.children); + } + } + return result + } + } + + // # class Tree + // This is the root of a BSP tree. + // This separate class for the root of the tree in order to hold the PolygonTreeNode root. + // The actual tree is kept in this.rootnode + class Tree { + constructor (polygons) { + this.polygonTree = new PolygonTreeNode(); + this.rootnode = new Node(null); + if (polygons) this.addPolygons(polygons); + } + + invert () { + this.polygonTree.invert(); + this.rootnode.invert(); + } + + // Remove all polygons in this BSP tree that are inside the other BSP tree + // `tree`. + clipTo (tree, alsoRemoveCoplanarFront = false) { + this.rootnode.clipTo(tree, alsoRemoveCoplanarFront); + } + + allPolygons () { + const result = []; + this.polygonTree.getPolygons(result); + return result + } + + addPolygons (polygons) { + const polygonTreeNodes = new Array(polygons.length); + for (let i = 0; i < polygons.length; i++) { + polygonTreeNodes[i] = this.polygonTree.addChild(polygons[i]); + } + this.rootnode.addPolygonTreeNodes(polygonTreeNodes); + } + + clear () { + this.polygonTree.clear(); + } + + toString () { + return 'Tree: ' + this.polygonTree.toString('') + } + } + + /* + * Determine if the given geometries overlap by comparing min and max bounds. + * NOTE: This is used in union for performance gains. + * @param {geom3} geometry1 - geometry for comparison + * @param {geom3} geometry2 - geometry for comparison + * @returns {boolean} true if the geometries overlap + */ + const mayOverlap = (geometry1, geometry2) => { + // FIXME accessing the data structure of the geometry should not be allowed + if ((geometry1.polygons.length === 0) || (geometry2.polygons.length === 0)) { + return false + } + + const bounds1 = measureBoundingBox(geometry1); + const min1 = bounds1[0]; + const max1 = bounds1[1]; + + const bounds2 = measureBoundingBox(geometry2); + const min2 = bounds2[0]; + const max2 = bounds2[1]; + + if ((min2[0] - max1[0]) > EPS) return false + if ((min1[0] - max2[0]) > EPS) return false + if ((min2[1] - max1[1]) > EPS) return false + if ((min1[1] - max2[1]) > EPS) return false + if ((min2[2] - max1[2]) > EPS) return false + if ((min1[2] - max2[2]) > EPS) return false + return true + }; + + /* + * Return a new 3D geometry representing the space in both the first geometry and + * the second geometry. None of the given geometries are modified. + * @param {geom3} geometry1 - a geometry + * @param {geom3} geometry2 - a geometry + * @returns {geom3} new 3D geometry + */ + const intersectGeom3Sub = (geometry1, geometry2) => { + if (!mayOverlap(geometry1, geometry2)) { + return create$8() // empty geometry + } + + const a = new Tree(toPolygons$1(geometry1)); + const b = new Tree(toPolygons$1(geometry2)); + + a.invert(); + b.clipTo(a); + b.invert(); + a.clipTo(b); + b.clipTo(a); + a.addPolygons(b.allPolygons()); + a.invert(); + + const newPolygons = a.allPolygons(); + return create$8(newPolygons) + }; + + /* + * Return a new 3D geometry representing space in both the first geometry and + * in the subsequent geometries. None of the given geometries are modified. + * @param {...geom3} geometries - list of 3D geometries + * @returns {geom3} new 3D geometry + */ + const intersectGeom3 = (...geometries) => { + geometries = flatten(geometries); + + let newGeometry = geometries.shift(); + geometries.forEach((geometry) => { + newGeometry = intersectGeom3Sub(newGeometry, geometry); + }); + + newGeometry = retessellate(newGeometry); + return newGeometry + }; + + /** + * Return a new geometry representing space in both the first geometry and + * all subsequent geometries. + * The given geometries should be of the same type, either geom2 or geom3. + * + * @param {...Object} geometries - list of geometries + * @returns {geom2|geom3} a new geometry + * @alias module:modeling/booleans.intersect + * + * @example + * let myshape = intersect(cube({size: [5,5,5]}), cube({size: [5,5,5], center: [5,5,5]})) + * + * @example + * +-------+ + * | | + * | A | + * | +--+----+ = +--+ + * +----+--+ | +--+ + * | B | + * | | + * +-------+ + */ + const intersect = (...geometries) => { + geometries = flatten(geometries); + if (geometries.length === 0) throw new Error('wrong number of arguments') + + if (!areAllShapesTheSameType(geometries)) { + throw new Error('only intersect of the types are supported') + } + + const geometry = geometries[0]; + // if (path.isA(geometry)) return intersectPath(matrix, geometries) + if (isA$5(geometry)) return intersectGeom2(geometries) + if (isA$3(geometry)) return intersectGeom3(geometries) + return geometry + }; + + // returns array numerically sorted and duplicates removed + const sortNb = (array) => array.sort((a, b) => a - b).filter((item, pos, ary) => !pos || item !== ary[pos - 1]); + + const insertMapping = (map, vertex, index) => { + const key = `${vertex}`; + const mapping = map.get(key); + if (mapping === undefined) { + map.set(key, [index]); + } else { + mapping.push(index); + } + }; + + const findMapping = (map, vertex) => { + const key = `${vertex}`; + return map.get(key) + }; + + const scissionGeom3 = (geometry) => { + // construit table de correspondance entre polygones + // build polygons lookup table + const eps = measureEpsilon(geometry); + const polygons = toPolygons$1(geometry); + const pl = polygons.length; + + const indexesPerVertex = new Map(); + const temp = create$b(); + polygons.forEach((polygon, index) => { + polygon.vertices.forEach((vertex) => { + insertMapping(indexesPerVertex, snap$2(temp, vertex, eps), index); + }); + }); + + const indexesPerPolygon = polygons.map((polygon) => { + let indexes = []; + polygon.vertices.forEach((vertex) => { + indexes = indexes.concat(findMapping(indexesPerVertex, snap$2(temp, vertex, eps))); + }); + return { e: 1, d: sortNb(indexes) } // for each polygon, push the list of indexes + }); + + indexesPerVertex.clear(); + + // regroupe les correspondances des polygones se touchant + // boucle ne s'arrêtant que quand deux passages retournent le même nb de polygones + // merge lookup data from linked polygons as long as possible + let merges = 0; + const ippl = indexesPerPolygon.length; + for (let i = 0; i < ippl; i++) { + const mapi = indexesPerPolygon[i]; + // merge mappings if necessary + if (mapi.e > 0) { + const indexes = new Array(pl); + indexes[i] = true; // include ourself + do { + merges = 0; + // loop through the known indexes + indexes.forEach((e, j) => { + const mapj = indexesPerPolygon[j]; + // merge this mapping if necessary + if (mapj.e > 0) { + mapj.e = -1; // merged + for (let d = 0; d < mapj.d.length; d++) { + indexes[mapj.d[d]] = true; + } + merges++; + } + }); + } while (merges > 0) + mapi.indexes = indexes; + } + } + + // construit le tableau des geometry à retourner + // build array of geometry to return + const newgeometries = []; + for (let i = 0; i < ippl; i++) { + if (indexesPerPolygon[i].indexes) { + const newpolygons = []; + indexesPerPolygon[i].indexes.forEach((e, p) => newpolygons.push(polygons[p])); + newgeometries.push(create$8(newpolygons)); + } + } + + return newgeometries + }; + + /** + * Scission (divide) the given geometry into the component pieces. + * + * @param {...Object} objects - list of geometries + * @returns {Array} list of pieces from each geometry + * @alias module:modeling/booleans.scission + * + * @example + * let figure = use('./my.stl') + * let pieces = scission(figure) + * + * @example + * +-------+ +-------+ + * | | | | + * | +---+ | A +---+ + * | | +---+ = | | +---+ + * +---+ | | +---+ | | + * +---+ | +---+ | + * | | | B | + * +-------+ +-------+ + */ + const scission = (...objects) => { + objects = flatten(objects); + if (objects.length === 0) throw new Error('wrong number of arguments') + + const results = objects.map((object) => { + // if (path2.isA(object)) return path2.transform(matrix, object) + // if (geom2.isA(object)) return geom2.transform(matrix, object) + if (isA$3(object)) return scissionGeom3(object) + return object + }); + return results.length === 1 ? results[0] : results + }; + + /* + * Return a new 2D geometry representing space in the first geometry but + * not in the subsequent geometries. None of the given geometries are modified. + * @param {...geom2} geometries - list of geometries + * @returns {geom2} new 2D geometry + */ + const subtractGeom2 = (...geometries) => { + geometries = flatten(geometries); + + let newGeometry = geometries.shift(); + geometries.forEach((geometry) => { + newGeometry = boolean(newGeometry, geometry, DIFFERENCE); + }); + + return newGeometry + }; + + /* + * Return a new 3D geometry representing the space in the first geometry but not + * in the second geometry. None of the given geometries are modified. + * @param {geom3} geometry1 - a geometry + * @param {geom3} geometry2 - a geometry + * @returns {geom3} new 3D geometry + */ + const subtractGeom3Sub = (geometry1, geometry2) => { + if (!mayOverlap(geometry1, geometry2)) { + return clone$7(geometry1) + } + + const a = new Tree(toPolygons$1(geometry1)); + const b = new Tree(toPolygons$1(geometry2)); + + a.invert(); + a.clipTo(b); + b.clipTo(a, true); + a.addPolygons(b.allPolygons()); + a.invert(); + + const newPolygons = a.allPolygons(); + return create$8(newPolygons) + }; + + /* + * Return a new 3D geometry representing space in this geometry but not in the given geometries. + * Neither this geometry nor the given geometries are modified. + * @param {...geom3} geometries - list of geometries + * @returns {geom3} new 3D geometry + */ + const subtractGeom3 = (...geometries) => { + geometries = flatten(geometries); + + let newGeometry = geometries.shift(); + geometries.forEach((geometry) => { + newGeometry = subtractGeom3Sub(newGeometry, geometry); + }); + + newGeometry = retessellate(newGeometry); + return newGeometry + }; + + /** + * Return a new geometry representing space in the first geometry but + * not in all subsequent geometries. + * The given geometries should be of the same type, either geom2 or geom3. + * + * @param {...Object} geometries - list of geometries + * @returns {geom2|geom3} a new geometry + * @alias module:modeling/booleans.subtract + * + * @example + * let myshape = subtract(cuboid({size: [5,5,5]}), cuboid({size: [5,5,5], center: [5,5,5]})) + * + * @example + * +-------+ +-------+ + * | | | | + * | A | | | + * | +--+----+ = | +--+ + * +----+--+ | +----+ + * | B | + * | | + * +-------+ + */ + const subtract = (...geometries) => { + geometries = flatten(geometries); + if (geometries.length === 0) throw new Error('wrong number of arguments') + + if (!areAllShapesTheSameType(geometries)) { + throw new Error('only subtract of the types are supported') + } + + const geometry = geometries[0]; + // if (path.isA(geometry)) return subtractPath(matrix, geometries) + if (isA$5(geometry)) return subtractGeom2(geometries) + if (isA$3(geometry)) return subtractGeom3(geometries) + return geometry + }; + + /* + * Return a new 2D geometry representing the total space in the given 2D geometries. + * @param {...geom2} geometries - list of 2D geometries to union + * @returns {geom2} new 2D geometry + */ + const unionGeom2 = (...geometries) => { + geometries = flatten(geometries); + + let newGeometry = geometries.shift(); + geometries.forEach((geometry) => { + newGeometry = boolean(newGeometry, geometry, UNION); + }); + + return newGeometry + }; + + /* + * Return a new 3D geometry representing the space in the given geometries. + * @param {geom3} geometry1 - geometry to union + * @param {geom3} geometry2 - geometry to union + * @returns {geom3} new 3D geometry + */ + const unionGeom3Sub = (geometry1, geometry2) => { + if (!mayOverlap(geometry1, geometry2)) { + return unionForNonIntersecting(geometry1, geometry2) + } + + const a = new Tree(toPolygons$1(geometry1)); + const b = new Tree(toPolygons$1(geometry2)); + + a.clipTo(b, false); + // b.clipTo(a, true); // ERROR: doesn't work + b.clipTo(a); + b.invert(); + b.clipTo(a); + b.invert(); + + const newPolygons = a.allPolygons().concat(b.allPolygons()); + return create$8(newPolygons) + }; + + // Like union, but when we know that the two solids are not intersecting + // Do not use if you are not completely sure that the solids do not intersect! + const unionForNonIntersecting = (geometry1, geometry2) => { + let newpolygons = toPolygons$1(geometry1); + newpolygons = newpolygons.concat(toPolygons$1(geometry2)); + return create$8(newpolygons) + }; + + /* + * Return a new 3D geometry representing the space in the given 3D geometries. + * @param {...objects} geometries - list of geometries to union + * @returns {geom3} new 3D geometry + */ + const unionGeom3 = (...geometries) => { + geometries = flatten(geometries); + + // combine geometries in a way that forms a balanced binary tree pattern + let i; + for (i = 1; i < geometries.length; i += 2) { + geometries.push(unionGeom3Sub(geometries[i - 1], geometries[i])); + } + let newGeometry = geometries[i - 1]; + newGeometry = retessellate(newGeometry); + return newGeometry + }; + + /** + * Return a new geometry representing the total space in the given geometries. + * The given geometries should be of the same type, either geom2 or geom3. + * + * @param {...Object} geometries - list of geometries + * @returns {geom2|geom3} a new geometry + * @alias module:modeling/booleans.union + * + * @example + * let myshape = union(cube({size: [5,5,5]}), cube({size: [5,5,5], center: [5,5,5]})) + * + * @example + * +-------+ +-------+ + * | | | | + * | A | | | + * | +--+----+ = | +----+ + * +----+--+ | +----+ | + * | B | | | + * | | | | + * +-------+ +-------+ + */ + const union = (...geometries) => { + geometries = flatten(geometries); + if (geometries.length === 0) throw new Error('wrong number of arguments') + + if (!areAllShapesTheSameType(geometries)) { + throw new Error('only unions of the same type are supported') + } + + const geometry = geometries[0]; + // if (path.isA(geometry)) return unionPath(matrix, geometries) + if (isA$5(geometry)) return unionGeom2(geometries) + if (isA$3(geometry)) return unionGeom3(geometries) + return geometry + }; + + /** + * All shapes (primitives or the results of operations) can be passed to boolean functions + * to perform logical operations, e.g. remove a hole from a board. + * In all cases, the function returns the results, and never changes the original shapes. + * @module modeling/booleans + * @example + * import { booleans } from '@jscad/modeling' + * const { intersect, scission, subtract, union } = booleans + */ + + var index$5 = /*#__PURE__*/Object.freeze({ + __proto__: null, + intersect: intersect, + scission: scission, + subtract: subtract, + union: union + }); + + /* + * Create a set of offset points from the given points using the given options (if any). + * @param {Object} options - options for offset + * @param {Float} [options.delta=1] - delta of offset (+ to exterior, - from interior) + * @param {String} [options.corners='edge'] - type corner to create during of expansion; edge, chamfer, round + * @param {Integer} [options.segments=16] - number of segments when creating round corners + * @param {Integer} [options.closed=false] - is the last point connected back to the first point? + * @param {Array} points - array of 2D points + * @returns {Array} new set of offset points, plus points for each rounded corner + */ + const offsetFromPoints = (options, points) => { + const defaults = { + delta: 1, + corners: 'edge', + closed: false, + segments: 16 + }; + let { delta, corners, closed, segments } = Object.assign({ }, defaults, options); + + if (Math.abs(delta) < EPS) return points + + let rotation = options.closed ? area$1(points) : 1.0; // + counter clockwise, - clockwise + if (rotation === 0) rotation = 1.0; + + // use right hand normal? + const orientation = ((rotation > 0) && (delta >= 0)) || ((rotation < 0) && (delta < 0)); + delta = Math.abs(delta); // sign is no longer required + + let previousSegment = null; + let newPoints = []; + const newCorners = []; + const of = create$9(); + const n = points.length; + for (let i = 0; i < n; i++) { + const j = (i + 1) % n; + const p0 = points[i]; + const p1 = points[j]; + // calculate the unit normal + orientation ? subtract$1(of, p0, p1) : subtract$1(of, p1, p0); + normal(of, of); + normalize(of, of); + // calculate the offset vector + scale$1(of, of, delta); + // calculate the new points (edge) + const n0 = add(create$9(), p0, of); + const n1 = add(create$9(), p1, of); + + const currentSegment = [n0, n1]; + if (previousSegment != null) { + if (closed || (!closed && j !== 0)) { + // check for intersection of new line segments + const ip = intersect$1(previousSegment[0], previousSegment[1], currentSegment[0], currentSegment[1], true); + if (ip) { + // adjust the previous points + newPoints.pop(); + // adjust current points + currentSegment[0] = ip; + } else { + newCorners.push({ c: p0, s0: previousSegment, s1: currentSegment }); + } + } + } + previousSegment = [n0, n1]; + + if (j === 0 && !closed) continue + + newPoints.push(currentSegment[0]); + newPoints.push(currentSegment[1]); + } + // complete the closure if required + if (closed && previousSegment != null) { + // check for intersection of closing line segments + const n0 = newPoints[0]; + const n1 = newPoints[1]; + const ip = intersect$1(previousSegment[0], previousSegment[1], n0, n1, true); + if (ip) { + // adjust the previous points + newPoints[0] = ip; + newPoints.pop(); + } else { + const p0 = points[0]; + const currentSegment = [n0, n1]; + newCorners.push({ c: p0, s0: previousSegment, s1: currentSegment }); + } + } + + // generate corners if necessary + + if (corners === 'edge') { + // map for fast point index lookup + const pointIndex = new Map(); // {point: index} + newPoints.forEach((point, index) => pointIndex.set(point, index)); + + // create edge corners + const line0 = create$1(); + const line1 = create$1(); + newCorners.forEach((corner) => { + fromPoints$1(line0, corner.s0[0], corner.s0[1]); + fromPoints$1(line1, corner.s1[0], corner.s1[1]); + const ip = intersectPointOfLines(line0, line1); + if (Number.isFinite(ip[0]) && Number.isFinite(ip[1])) { + const p0 = corner.s0[1]; + const i = pointIndex.get(p0); + newPoints[i] = ip; + newPoints[(i + 1) % newPoints.length] = undefined; + } else { + // parallel segments, drop one + const p0 = corner.s1[0]; + const i = pointIndex.get(p0); + newPoints[i] = undefined; + } + }); + newPoints = newPoints.filter((p) => p !== undefined); + } + + if (corners === 'round') { + // create rounded corners + let cornerSegments = Math.floor(segments / 4); + const v0 = create$9(); + newCorners.forEach((corner) => { + // calculate angle of rotation + let rotation = angleRadians(subtract$1(v0, corner.s1[0], corner.c)); + rotation -= angleRadians(subtract$1(v0, corner.s0[1], corner.c)); + if (orientation && rotation < 0) { + rotation = rotation + Math.PI; + if (rotation < 0) rotation = rotation + Math.PI; + } + if ((!orientation) && rotation > 0) { + rotation = rotation - Math.PI; + if (rotation > 0) rotation = rotation - Math.PI; + } + + if (rotation !== 0.0) { + // generate the segments + cornerSegments = Math.floor(segments * (Math.abs(rotation) / TAU)); + const step = rotation / cornerSegments; + const start = angleRadians(subtract$1(v0, corner.s0[1], corner.c)); + const cornerPoints = []; + for (let i = 1; i < cornerSegments; i++) { + const radians = start + (step * i); + const point = fromAngleRadians(create$9(), radians); + scale$1(point, point, delta); + add(point, point, corner.c); + cornerPoints.push(point); + } + if (cornerPoints.length > 0) { + const p0 = corner.s0[1]; + let i = newPoints.findIndex((point) => equals$6(p0, point)); + i = (i + 1) % newPoints.length; + newPoints.splice(i, 0, ...cornerPoints); + } + } else { + // parallel segments, drop one + const p0 = corner.s1[0]; + const i = newPoints.findIndex((point) => equals$6(p0, point)); + newPoints.splice(i, 1); + } + }); + } + return newPoints + }; + + /* + * Expand the given geometry (geom2) using the given options (if any). + * @param {Object} options - options for expand + * @param {Number} [options.delta=1] - delta (+/-) of expansion + * @param {String} [options.corners='edge'] - type corner to create during of expansion; edge, chamfer, round + * @param {Integer} [options.segments=16] - number of segments when creating round corners + * @param {geom2} geometry - the geometry to expand + * @returns {geom2} expanded geometry + */ + const expandGeom2 = (options, geometry) => { + const defaults = { + delta: 1, + corners: 'edge', + segments: 16 + }; + const { delta, corners, segments } = Object.assign({ }, defaults, options); + + if (!(corners === 'edge' || corners === 'chamfer' || corners === 'round')) { + throw new Error('corners must be "edge", "chamfer", or "round"') + } + + // convert the geometry to outlines, and generate offsets from each + const outlines = toOutlines(geometry); + const newOutlines = outlines.map((outline) => { + options = { + delta, + corners, + closed: true, + segments + }; + return offsetFromPoints(options, outline) + }); + + // create a composite geometry from the new outlines + return create$a(newOutlines) + }; + + // Extrude a polygon in the direction of the offset vector. + // Returns (geom3) a new geometry + const extrudePolygon = (offsetVector, polygon1) => { + const direction = dot$2(plane(polygon1), offsetVector); + if (direction > 0) { + polygon1 = invert$1(polygon1); + } + + const newPolygons = [polygon1]; + + const polygon2 = transform$7(fromTranslation(create$c(), offsetVector), polygon1); + const numVertices = polygon1.vertices.length; + for (let i = 0; i < numVertices; i++) { + const nexti = (i < (numVertices - 1)) ? i + 1 : 0; + const sideFacePolygon = create$7([ + polygon1.vertices[i], + polygon2.vertices[i], + polygon2.vertices[nexti], + polygon1.vertices[nexti] + ]); + newPolygons.push(sideFacePolygon); + } + newPolygons.push(invert$1(polygon2)); + + return create$8(newPolygons) + }; + + /* + * Collect all planes adjacent to each vertex + */ + const mapPlaneToVertex = (map, vertex, plane) => { + const key = vertex.toString(); + if (!map.has(key)) { + const entry = [vertex, [plane]]; + map.set(key, entry); + } else { + const planes = map.get(key)[1]; + planes.push(plane); + } + }; + + /* + * Collect all planes adjacent to each edge. + * Combine undirected edges, no need for duplicate cylinders. + */ + const mapPlaneToEdge = (map, edge, plane) => { + const key0 = edge[0].toString(); + const key1 = edge[1].toString(); + // Sort keys to make edges undirected + const key = key0 < key1 ? `${key0},${key1}` : `${key1},${key0}`; + if (!map.has(key)) { + const entry = [edge, [plane]]; + map.set(key, entry); + } else { + const planes = map.get(key)[1]; + planes.push(plane); + } + }; + + const addUniqueAngle = (map, angle) => { + const i = map.findIndex((item) => item === angle); + if (i < 0) { + map.push(angle); + } + }; + + /* + * Create the expanded shell of the solid: + * All faces are extruded to 2 times delta + * Cylinders are constructed around every side + * Spheres are placed on every vertex + * the result is a true expansion of the solid + * @param {Number} delta + * @param {Integer} segments + */ + const expandShell = (options, geometry) => { + const defaults = { + delta: 1, + segments: 12 + }; + const { delta, segments } = Object.assign({ }, defaults, options); + + let result = create$8(); + const vertices2planes = new Map(); // {vertex: [vertex, [plane, ...]]} + const edges2planes = new Map(); // {edge: [[vertex, vertex], [plane, ...]]} + + const v1 = create$b(); + const v2 = create$b(); + + // loop through the polygons + // - extruded the polygon, and add to the composite result + // - add the plane to the unique vertex map + // - add the plane to the unique edge map + const polygons = toPolygons$1(geometry); + polygons.forEach((polygon, index) => { + const extrudeVector = scale$3(create$b(), plane(polygon), 2 * delta); + const translatedPolygon = transform$7(fromTranslation(create$c(), scale$3(create$b(), extrudeVector, -0.5)), polygon); + const extrudedFace = extrudePolygon(extrudeVector, translatedPolygon); + result = unionGeom3Sub(result, extrudedFace); + + const vertices = polygon.vertices; + for (let i = 0; i < vertices.length; i++) { + mapPlaneToVertex(vertices2planes, vertices[i], plane(polygon)); + const j = (i + 1) % vertices.length; + const edge = [vertices[i], vertices[j]]; + mapPlaneToEdge(edges2planes, edge, plane(polygon)); + } + }); + + // now construct a cylinder on every side + // The cylinder is always an approximation of a true cylinder, having polygons + // around the sides. We will make sure though that the cylinder will have an edge at every + // face that touches this side. This ensures that we will get a smooth fill even + // if two edges are at, say, 10 degrees and the segments is low. + edges2planes.forEach((item) => { + const edge = item[0]; + const planes = item[1]; + const startVertex = edge[0]; + const endVertex = edge[1]; + + // our x,y and z vectors: + const zBase = subtract$3(create$b(), endVertex, startVertex); + normalize$1(zBase, zBase); + const xBase = planes[0]; + const yBase = cross$1(create$b(), xBase, zBase); + + // make a list of angles that the cylinder should traverse: + let angles = []; + + // first of all equally spaced around the cylinder: + for (let i = 0; i < segments; i++) { + addUniqueAngle(angles, (i * TAU / segments)); + } + + // and also at every normal of all touching planes: + for (let i = 0, iMax = planes.length; i < iMax; i++) { + const planeNormal = planes[i]; + const si = dot$2(yBase, planeNormal); + const co = dot$2(xBase, planeNormal); + let angle = Math.atan2(si, co); + + if (angle < 0) angle += TAU; + addUniqueAngle(angles, angle); + angle = Math.atan2(-si, -co); + if (angle < 0) angle += TAU; + addUniqueAngle(angles, angle); + } + + // this will result in some duplicate angles but we will get rid of those later. + angles = angles.sort(fnNumberSort); + + // Now construct the cylinder by traversing all angles: + const numAngles = angles.length; + let prevP1; + let prevP2; + const startFaceVertices = []; + const endFaceVertices = []; + const polygons = []; + for (let i = -1; i < numAngles; i++) { + const angle = angles[(i < 0) ? (i + numAngles) : i]; + const si = Math.sin(angle); + const co = Math.cos(angle); + scale$3(v1, xBase, co * delta); + scale$3(v2, yBase, si * delta); + add$1(v1, v1, v2); + const p1 = add$1(create$b(), startVertex, v1); + const p2 = add$1(create$b(), endVertex, v1); + let skip = false; + if (i >= 0) { + if (distance$1(p1, prevP1) < EPS) { + skip = true; + } + } + if (!skip) { + if (i >= 0) { + startFaceVertices.push(p1); + endFaceVertices.push(p2); + const vertices = [prevP2, p2, p1, prevP1]; + const polygon = create$7(vertices); + polygons.push(polygon); + } + prevP1 = p1; + prevP2 = p2; + } + } + endFaceVertices.reverse(); + polygons.push(create$7(startFaceVertices)); + polygons.push(create$7(endFaceVertices)); + + const cylinder = create$8(polygons); + result = unionGeom3Sub(result, cylinder); + }); + + // build spheres at each unique vertex + // We will try to set the x and z axis to the normals of 2 planes + // This will ensure that our sphere tesselation somewhat matches 2 planes + vertices2planes.forEach((item) => { + const vertex = item[0]; + const planes = item[1]; + // use the first normal to be the x axis of our sphere: + const xaxis = planes[0]; + // and find a suitable z axis. We will use the normal which is most perpendicular to the x axis: + let bestzaxis = null; + let bestzaxisOrthogonality = 0; + for (let i = 1; i < planes.length; i++) { + const normal = planes[i]; + const cross = cross$1(v1, xaxis, normal); + const crossLength = length$1(cross); + if (crossLength > 0.05) { // FIXME why 0.05? + if (crossLength > bestzaxisOrthogonality) { + bestzaxisOrthogonality = crossLength; + bestzaxis = normal; + } + } + } + if (!bestzaxis) { + bestzaxis = orthogonal(v1, xaxis); + } + const yaxis = cross$1(v1, xaxis, bestzaxis); + normalize$1(yaxis, yaxis); + const zaxis = cross$1(v2, yaxis, xaxis); + const corner = sphere({ + center: [vertex[0], vertex[1], vertex[2]], + radius: delta, + segments: segments, + axes: [xaxis, yaxis, zaxis] + }); + result = unionGeom3Sub(result, corner); + }); + return retessellate(result) + }; + + /* + * Expand the given geometry (geom3) using the given options (if any). + * @param {Object} options - options for expand + * @param {Number} [options.delta=1] - delta (+/-) of expansion + * @param {String} [options.corners='round'] - type corner to create during of expansion; round + * @param {Integer} [options.segments=12] - number of segments when creating round corners + * @param {geom3} geometry - the geometry to expand + * @returns {geom3} expanded geometry + */ + const expandGeom3 = (options, geometry) => { + const defaults = { + delta: 1, + corners: 'round', + segments: 12 + }; + const { delta, corners, segments } = Object.assign({ }, defaults, options); + + if (!(corners === 'round')) { + throw new Error('corners must be "round" for 3D geometries') + } + + const polygons = toPolygons$1(geometry); + if (polygons.length === 0) throw new Error('the given geometry cannot be empty') + + options = { delta, corners, segments }; + const expanded = expandShell(options, geometry); + return union(geometry, expanded) + }; + + const createGeometryFromClosedOffsets = (paths) => { + let { external, internal } = paths; + if (area$1(external) < 0) { + external = external.reverse(); + } else { + internal = internal.reverse(); + } + return create$a([external, internal]) + }; + + const createGeometryFromExpandedOpenPath = (paths, segments, corners, delta) => { + const { points, external, internal } = paths; + const capSegments = Math.floor(segments / 2); // rotation is 180 degrees + const e2iCap = []; + const i2eCap = []; + if (corners === 'round' && capSegments > 0) { + // added round caps to the geometry + const step = Math.PI / capSegments; + const eCorner = points[points.length - 1]; + const e2iStart = angleRadians(subtract$1(create$9(), external[external.length - 1], eCorner)); + const iCorner = points[0]; + const i2eStart = angleRadians(subtract$1(create$9(), internal[0], iCorner)); + for (let i = 1; i < capSegments; i++) { + let radians = e2iStart + (step * i); + let point = fromAngleRadians(create$9(), radians); + scale$1(point, point, delta); + add(point, point, eCorner); + e2iCap.push(point); + + radians = i2eStart + (step * i); + point = fromAngleRadians(create$9(), radians); + scale$1(point, point, delta); + add(point, point, iCorner); + i2eCap.push(point); + } + } + const allPoints = []; + allPoints.push(...external, ...e2iCap, ...internal.reverse(), ...i2eCap); + return create$a([allPoints]) + }; + + /* + * Expand the given geometry (path2) using the given options (if any). + * @param {Object} options - options for expand + * @param {Number} [options.delta=1] - delta (+) of expansion + * @param {String} [options.corners='edge'] - type corner to create during of expansion; edge, chamfer, round + * @param {Integer} [options.segments=16] - number of segments when creating round corners + * @param {path2} geometry - the geometry to expand + * @returns {geom2} expanded geometry + */ + const expandPath2 = (options, geometry) => { + const defaults = { + delta: 1, + corners: 'edge', + segments: 16 + }; + + options = Object.assign({ }, defaults, options); + const { delta, corners, segments } = options; + + if (delta <= 0) throw new Error('the given delta must be positive for paths') + + if (!(corners === 'edge' || corners === 'chamfer' || corners === 'round')) { + throw new Error('corners must be "edge", "chamfer", or "round"') + } + + const closed = geometry.isClosed; + const points = toPoints$1(geometry); + if (points.length === 0) throw new Error('the given geometry cannot be empty') + + const paths = { + points: points, + external: offsetFromPoints({ delta, corners, segments, closed }, points), + internal: offsetFromPoints({ delta: -delta, corners, segments, closed }, points) + }; + + if (geometry.isClosed) { + return createGeometryFromClosedOffsets(paths) + } else { + return createGeometryFromExpandedOpenPath(paths, segments, corners, delta) + } + }; + + /** + * Expand the given geometry using the given options. + * Both internal and external space is expanded for 2D and 3D shapes. + * + * Note: Contract is expand using a negative delta. + * @param {Object} options - options for expand + * @param {Number} [options.delta=1] - delta (+/-) of expansion + * @param {String} [options.corners='edge'] - type of corner to create after expanding; edge, chamfer, round + * @param {Integer} [options.segments=16] - number of segments when creating round corners + * @param {...Objects} objects - the geometries to expand + * @return {Object|Array} new geometry, or list of new geometries + * @alias module:modeling/expansions.expand + * + * @example + * let newArc = expand({delta: 5, corners: 'edge'}, arc({})) + * let newSquare = expand({delta: 5, corners: 'chamfer'}, square({size: 30})) + * let newSphere = expand({delta: 2, corners: 'round'}, cuboid({size: [20, 25, 5]})) + */ + const expand = (options, ...objects) => { + objects = flatten(objects); + if (objects.length === 0) throw new Error('wrong number of arguments') + + const results = objects.map((object) => { + if (isA$2(object)) return expandPath2(options, object) + if (isA$5(object)) return expandGeom2(options, object) + if (isA$3(object)) return expandGeom3(options, object) + return object + }); + return results.length === 1 ? results[0] : results + }; + + /* + * Create an offset geometry from the given geom2 using the given options (if any). + * @param {Object} options - options for offset + * @param {Float} [options.delta=1] - delta of offset (+ to exterior, - from interior) + * @param {String} [options.corners='edge'] - type corner to create during of expansion; edge, chamfer, round + * @param {Integer} [options.segments=16] - number of segments when creating round corners + * @param {geom2} geometry - geometry from which to create the offset + * @returns {geom2} offset geometry, plus rounded corners + */ + const offsetGeom2 = (options, geometry) => { + const defaults = { + delta: 1, + corners: 'edge', + segments: 0 + }; + const { delta, corners, segments } = Object.assign({ }, defaults, options); + + if (!(corners === 'edge' || corners === 'chamfer' || corners === 'round')) { + throw new Error('corners must be "edge", "chamfer", or "round"') + } + + // convert the geometry to outlines, and generate offsets from each + const outlines = toOutlines(geometry); + const newOutlines = outlines.map((outline) => { + const level = outlines.reduce((acc, polygon) => acc + arePointsInside(outline, create$3(polygon)), 0); + const outside = (level % 2) === 0; + + options = { + delta: outside ? delta : -delta, + corners, + closed: true, + segments + }; + return offsetFromPoints(options, outline) + }); + + // create a composite geometry from the new outlines + return create$a(newOutlines) + }; + + /* + * Create an offset geometry from the given path using the given options (if any). + * @param {Object} options - options for offset + * @param {Float} [options.delta=1] - delta of offset (+ to exterior, - from interior) + * @param {String} [options.corners='edge'] - type corner to create during of expansion; edge, chamfer, round + * @param {Integer} [options.segments=16] - number of segments when creating round corners + * @param {path2} geometry - geometry from which to create the offset + * @returns {path2} offset geometry, plus rounded corners + */ + const offsetPath2 = (options, geometry) => { + const defaults = { + delta: 1, + corners: 'edge', + closed: geometry.isClosed, + segments: 16 + }; + const { delta, corners, closed, segments } = Object.assign({ }, defaults, options); + + if (!(corners === 'edge' || corners === 'chamfer' || corners === 'round')) { + throw new Error('corners must be "edge", "chamfer", or "round"') + } + + options = { delta, corners, closed, segments }; + const newPoints = offsetFromPoints(options, toPoints$1(geometry)); + return fromPoints$2({ closed: closed }, newPoints) + }; + + /** + * Create offset geometry from the given geometry using the given options. + * Offsets from internal and external space are created. + * @param {Object} options - options for offset + * @param {Float} [options.delta=1] - delta of offset (+ to exterior, - from interior) + * @param {String} [options.corners='edge'] - type of corner to create after offseting; edge, chamfer, round + * @param {Integer} [options.segments=16] - number of segments when creating round corners + * @param {...Object} objects - the geometries to offset + * @return {Object|Array} new geometry, or list of new geometries + * @alias module:modeling/expansions.offset + * + * @example + * let small = offset({ delta: -4, corners: 'chamfer' }, square({size: 40})) // contract + */ + const offset = (options, ...objects) => { + objects = flatten(objects); + if (objects.length === 0) throw new Error('wrong number of arguments') + + const results = objects.map((object) => { + if (isA$2(object)) return offsetPath2(options, object) + if (isA$5(object)) return offsetGeom2(options, object) + // if (geom3.isA(object)) return geom3.transform(matrix, object) + return object + }); + return results.length === 1 ? results[0] : results + }; + + /** + * All shapes (primitives or the results of operations) can be expanded (or contracted.) + * In all cases, the function returns the results, and never changes the original shapes. + * @module modeling/expansions + * @example + * import { expansions } from '@jscad/modeling' + * const { expand, offset } = expansions' + */ + + var index$4 = /*#__PURE__*/Object.freeze({ + __proto__: null, + expand: expand, + offset: offset + }); + + /* + * Extrude the given geometry using the given options. + * + * @param {Object} [options] - options for extrude + * @param {Array} [options.offset] - the direction of the extrusion as a 3D vector + * @param {Number} [options.twistAngle] - the final rotation (RADIANS) about the origin + * @param {Integer} [options.twistSteps] - the number of steps created to produce the twist (if any) + * @param {Boolean} [options.repair] - repair gaps in the geometry + * @param {geom2} geometry - the geometry to extrude + * @returns {geom3} the extruded 3D geometry + */ + const extrudeLinearGeom2 = (options, geometry) => { + const defaults = { + offset: [0, 0, 1], + twistAngle: 0, + twistSteps: 12, + repair: true + }; + let { offset, twistAngle, twistSteps, repair } = Object.assign({ }, defaults, options); + + if (twistSteps < 1) throw new Error('twistSteps must be 1 or more') + + if (twistAngle === 0) { + twistSteps = 1; + } + + // convert to vector in order to perform transforms + const offsetV = clone$9(offset); + + let baseSlice = fromGeom2(geometry); + if (offsetV[2] < 0) baseSlice = reverse$2(baseSlice); + + const matrix = create$c(); + const createTwist = (progress, index, base) => { + const Zrotation = index / twistSteps * twistAngle; + const Zoffset = scale$3(create$b(), offsetV, index / twistSteps); + multiply$1(matrix, fromZRotation(matrix, Zrotation), fromTranslation(create$c(), Zoffset)); + + return transform$3(matrix, base) + }; + + options = { + numberOfSlices: twistSteps + 1, + capStart: true, + capEnd: true, + repair, + callback: createTwist + }; + return extrudeFromSlices(options, baseSlice) + }; + + /* + * Extrude the given geometry using the given options. + * + * @param {Object} [options] - options for extrude + * @param {Array} [options.offset] - the direction of the extrusion as a 3D vector + * @param {Number} [options.twistAngle] - the final rotation (RADIANS) about the origin + * @param {Integer} [options.twistSteps] - the number of steps created to produce the twist (if any) + * @param {path2} geometry - the geometry to extrude + * @returns {geom3} the extruded 3D geometry + */ + const extrudeLinearPath2 = (options, geometry) => { + if (!geometry.isClosed) throw new Error('extruded path must be closed') + // Convert path2 to geom2 + const points = toPoints$1(geometry); + const geometry2 = create$a([points]); + return extrudeLinearGeom2(options, geometry2) + }; + + /** + * Extrude the given geometry in an upward linear direction using the given options. + * Accepts path2 or geom2 objects as input. Paths must be closed. + * + * @param {Object} options - options for extrude + * @param {Number} [options.height=1] the height of the extrusion + * @param {Number} [options.twistAngle=0] the final rotation (RADIANS) about the origin of the shape (if any) + * @param {Integer} [options.twistSteps=1] the resolution of the twist about the axis (if any) + * @param {...Object} objects - the geometries to extrude + * @return {Object|Array} the extruded geometry, or a list of extruded geometry + * @alias module:modeling/extrusions.extrudeLinear + * + * @example + * let myshape = extrudeLinear({height: 10}, rectangle({size: [20, 25]})) + */ + const extrudeLinear = (options, ...objects) => { + const defaults = { + height: 1, + twistAngle: 0, + twistSteps: 1, + repair: true + }; + const { height, twistAngle, twistSteps, repair } = Object.assign({ }, defaults, options); + + objects = flatten(objects); + if (objects.length === 0) throw new Error('wrong number of arguments') + + options = { offset: [0, 0, height], twistAngle, twistSteps, repair }; + + const results = objects.map((object) => { + if (isA$2(object)) return extrudeLinearPath2(options, object) + if (isA$5(object)) return extrudeLinearGeom2(options, object) + // if (geom3.isA(object)) return geom3.extrude(options, object) + return object + }); + return results.length === 1 ? results[0] : results + }; + + /* + * Expand and extrude the given geometry (path2). + * @See expand for addition options + * @param {Object} options - options for extrusion, if any + * @param {Number} [options.size=1] - size of the rectangle + * @param {Number} [options.height=1] - height of the extrusion + * @param {path2} geometry - the geometry to extrude + * @return {geom3} the extruded geometry + */ + const extrudeRectangularPath2 = (options, geometry) => { + const defaults = { + size: 1, + height: 1 + }; + const { size, height } = Object.assign({ }, defaults, options); + + options.delta = size; + options.offset = [0, 0, height]; + + const points = toPoints$1(geometry); + if (points.length === 0) throw new Error('the given geometry cannot be empty') + + const newGeometry = expand(options, geometry); + return extrudeLinearGeom2(options, newGeometry) + }; + + /* + * Expand and extrude the given geometry (geom2). + * @see expand for additional options + * @param {Object} options - options for extrusion, if any + * @param {Number} [options.size=1] - size of the rectangle + * @param {Number} [options.height=1] - height of the extrusion + * @param {geom2} geometry - the geometry to extrude + * @return {geom3} the extruded geometry + */ + const extrudeRectangularGeom2 = (options, geometry) => { + const defaults = { + size: 1, + height: 1 + }; + const { size, height } = Object.assign({ }, defaults, options); + + options.delta = size; + options.offset = [0, 0, height]; + + // convert the geometry to outlines + const outlines = toOutlines(geometry); + if (outlines.length === 0) throw new Error('the given geometry cannot be empty') + + // create a composite geometry + let expanded = []; + outlines.forEach((outline) => { + if (area$1(outline) < 0) { + outline = outline.slice().reverse(); // all outlines must wind counterclockwise + } + // expand the outline + const part = expand(options, fromPoints$2({ closed: true }, outline)); + expanded = expanded.concat(toOutlines(part)); + }); + const newGeometry = create$a(expanded); + + return extrudeLinearGeom2(options, newGeometry) + }; + + /** + * Extrude the given geometry by following the outline(s) with a rectangle. + * @See expand for addition options + * @param {Object} options - options for extrusion, if any + * @param {Number} [options.size=1] - size of the rectangle + * @param {Number} [options.height=1] - height of the extrusion + * @param {...Object} objects - the geometries to extrude + * @return {Object|Array} the extruded object, or a list of extruded objects + * @alias module:modeling/extrusions.extrudeRectangular + * + * @example + * let myWalls = extrudeRectangular({size: 1, height: 3}, square({size: 20})) + * let myWalls = extrudeRectangular({size: 1, height: 300, twistAngle: TAU / 2}, square({size: 20})) + */ + const extrudeRectangular = (options, ...objects) => { + const defaults = { + size: 1, + height: 1 + }; + const { size, height } = Object.assign({}, defaults, options); + + objects = flatten(objects); + if (objects.length === 0) throw new Error('wrong number of arguments') + + if (size <= 0) throw new Error('size must be positive') + if (height <= 0) throw new Error('height must be positive') + + const results = objects.map((object) => { + if (isA$2(object)) return extrudeRectangularPath2(options, object) + if (isA$5(object)) return extrudeRectangularGeom2(options, object) + // if (geom3.isA(object)) return geom3.transform(matrix, object) + return object + }); + return results.length === 1 ? results[0] : results + }; + + const projectGeom3 = (options, geometry) => { + // create a plane from the options, and verify + const projPlane = fromNormalAndPoint(create$6(), options.axis, options.origin); + if (Number.isNaN(projPlane[0]) || Number.isNaN(projPlane[1]) || Number.isNaN(projPlane[2]) || Number.isNaN(projPlane[3])) { + throw new Error('project: invalid axis or origin') + } + + const epsilon = measureEpsilon(geometry); + const epsilonArea = (epsilon * epsilon * Math.sqrt(3) / 4); + + if (epsilon === 0) return create$a() + + // project the polygons to the plane + const polygons = toPolygons$1(geometry); + let projPolys = []; + for (let i = 0; i < polygons.length; i++) { + const newVertices = polygons[i].vertices.map((v) => projectionOfPoint(projPlane, v)); + const newPoly = create$7(newVertices); + // only keep projections that face the same direction as the plane + const newPlane = plane(newPoly); + if (!aboutEqualNormals(projPlane, newPlane)) continue + // only keep projections that have a measurable area + if (measureArea$2(newPoly) < epsilonArea) continue + projPolys.push(newPoly); + } + + // rotate the polygons to lay on X/Y axes if necessary + if (!aboutEqualNormals(projPlane, [0, 0, 1])) { + const rotation = fromVectorRotation(create$c(), projPlane, [0, 0, 1]); + projPolys = projPolys.map((p) => transform$7(rotation, p)); + } + + // sort the polygons to allow the union to ignore small pieces efficiently + projPolys = projPolys.sort((a, b) => measureArea$2(b) - measureArea$2(a)); + + // convert polygons to geometry, and union all pieces into a single geometry + const projGeoms = projPolys.map((p) => { + // This clones the points from vec3 to vec2 + const cloned = p.vertices.map(clone$8); + return create$a([cloned]) + }); + + return unionGeom2(projGeoms) + }; + + /** + * Project the given 3D geometry on to the given plane. + * @param {Object} options - options for project + * @param {Array} [options.axis=[0,0,1]] the axis of the plane (default is Z axis) + * @param {Array} [options.origin=[0,0,0]] the origin of the plane + * @param {...Object} objects - the list of 3D geometry to project + * @return {geom2|Array} the projected 2D geometry, or a list of 2D projected geometry + * @alias module:modeling/extrusions.project + * + * @example + * let myshape = project({}, sphere({radius: 20, segments: 5})) + */ + const project = (options, ...objects) => { + const defaults = { + axis: [0, 0, 1], // Z axis + origin: [0, 0, 0] + }; + const { axis, origin } = Object.assign({ }, defaults, options); + + objects = flatten(objects); + if (objects.length === 0) throw new Error('wrong number of arguments') + + options = { axis, origin }; + + const results = objects.map((object) => { + // if (path.isA(object)) return project(options, object) + // if (geom2.isA(object)) return project(options, object) + if (isA$3(object)) return projectGeom3(options, object) + return object + }); + return results.length === 1 ? results[0] : results + }; + + /** + * All 2D shapes (primitives or the results of operations) can be extruded in various ways. + * In all cases, the function returns the results, and never changes the original shapes. + * @module modeling/extrusions + * @example + * import { extrusions } from '@jscad/modeling' + * const { extrudeFromSlices, extrudeLinear, extrudeRectangular, extrudeRotate, project } = extrusions + */ + + var index$3 = /*#__PURE__*/Object.freeze({ + __proto__: null, + extrudeFromSlices: extrudeFromSlices, + extrudeLinear: extrudeLinear, + extrudeRectangular: extrudeRectangular, + extrudeRotate: extrudeRotate, + project: project + }); + + /* + * Create a convex hull of the given set of points, where each point is an array of [x,y]. + * Uses https://en.wikipedia.org/wiki/Graham_scan + * @param {Array} uniquePoints - list of UNIQUE points from which to create a hull + * @returns {Array} a list of points that form the hull + */ + const hullPoints2 = (uniquePoints) => { + // find min point + let min = fromValues$2(Infinity, Infinity); + uniquePoints.forEach((point) => { + if (point[1] < min[1] || (point[1] === min[1] && point[0] < min[0])) { + min = point; + } + }); + + // gather information for sorting by polar coordinates (point, angle, distSq) + const points = []; + uniquePoints.forEach((point) => { + // use faster fakeAtan2 instead of Math.atan2 + const angle = fakeAtan2(point[1] - min[1], point[0] - min[0]); + const distSq = squaredDistance(point, min); + points.push({ point, angle, distSq }); + }); + + // sort by polar coordinates + points.sort((pt1, pt2) => pt1.angle < pt2.angle + ? -1 + : pt1.angle > pt2.angle + ? 1 + : pt1.distSq < pt2.distSq ? -1 : pt1.distSq > pt2.distSq ? 1 : 0); + + const stack = []; // start with empty stack + points.forEach((point) => { + let cnt = stack.length; + while (cnt > 1 && ccw(stack[cnt - 2], stack[cnt - 1], point.point) <= Number.EPSILON) { + stack.pop(); // get rid of colinear and interior (clockwise) points + cnt = stack.length; + } + stack.push(point.point); + }); + + return stack + }; + + // returns: < 0 clockwise, 0 colinear, > 0 counter-clockwise + const ccw = (v1, v2, v3) => (v2[0] - v1[0]) * (v3[1] - v1[1]) - (v2[1] - v1[1]) * (v3[0] - v1[0]); + + // Returned "angle" is really 1/tan (inverse of slope) made negative to increase with angle. + // This function is strictly for sorting in this algorithm. + const fakeAtan2 = (y, x) => { + // The "if" is a special case for when the minimum vector found in loop above is present. + // We need to ensure that it sorts as the minimum point. Otherwise, this becomes NaN. + if (y === 0 && x === 0) { + return -Infinity + } else { + return -x / y + } + }; + + /* + * Return the unique vertices of a geometry + */ + const toUniquePoints = (geometries) => { + const found = new Set(); + const uniquePoints = []; + + const addPoint = (point) => { + const key = point.toString(); + if (!found.has(key)) { + uniquePoints.push(point); + found.add(key); + } + }; + + geometries.forEach((geometry) => { + if (isA$5(geometry)) { + toPoints$3(geometry).forEach(addPoint); + } else if (isA$3(geometry)) { + // points are grouped by polygon + toPoints$2(geometry).forEach((points) => points.forEach(addPoint)); + } else if (isA$2(geometry)) { + toPoints$1(geometry).forEach(addPoint); + } + }); + + return uniquePoints + }; + + /* + * Create a convex hull of the given geometries (path2). + * @param {...geometries} geometries - list of path2 geometries + * @returns {path2} new geometry + */ + const hullPath2 = (...geometries) => { + geometries = flatten(geometries); + + // extract the unique points from the geometries + const unique = toUniquePoints(geometries); + + const hullPoints = hullPoints2(unique); + + // assemble a new geometry from the list of points + return fromPoints$2({ closed: true }, hullPoints) + }; + + /* + * Create a convex hull of the given geom2 geometries. + * @param {...geometries} geometries - list of geom2 geometries + * @returns {geom2} new geometry + */ + const hullGeom2 = (...geometries) => { + geometries = flatten(geometries); + + // extract the unique points from the geometries + const unique = toUniquePoints(geometries); + + const hullPoints = hullPoints2(unique); + + // NOTE: more than three points are required to create a new geometry + if (hullPoints.length < 3) return create$a() + + // assemble a new geometry from the list of points + return create$a([hullPoints]) + }; + + /* + * Original source from quickhull3d (https://github.com/mauriciopoppe/quickhull3d) + * Copyright (c) 2015 Mauricio Poppe + * + * Adapted to JSCAD by Jeff Gay + */ + + const distanceSquared = (p, a, b) => { + // == parallelogram solution + // + // s + // __a________b__ + // / | / + // / h| / + // /_____|__/ + // p + // + // s = b - a + // area = s * h + // |ap x s| = s * h + // h = |ap x s| / s + // + const ab = []; + const ap = []; + const cr = []; + subtract$3(ab, b, a); + subtract$3(ap, p, a); + const area = squaredLength$1(cross$1(cr, ap, ab)); + const s = squaredLength$1(ab); + if (s === 0) { + throw Error('a and b are the same point') + } + return area / s + }; + + const pointLineDistance = (point, a, b) => Math.sqrt(distanceSquared(point, a, b)); + + /* + * Original source from quickhull3d (https://github.com/mauriciopoppe/quickhull3d) + * Copyright (c) 2015 Mauricio Poppe + * + * Adapted to JSCAD by Jeff Gay + */ + class VertexList { + constructor () { + this.head = null; + this.tail = null; + } + + clear () { + this.head = this.tail = null; + } + + /** + * Inserts a `node` before `target`, it's assumed that + * `target` belongs to this doubly linked list + * + * @param {*} target + * @param {*} node + */ + insertBefore (target, node) { + node.prev = target.prev; + node.next = target; + if (!node.prev) { + this.head = node; + } else { + node.prev.next = node; + } + target.prev = node; + } + + /** + * Inserts a `node` after `target`, it's assumed that + * `target` belongs to this doubly linked list + * + * @param {Vertex} target + * @param {Vertex} node + */ + insertAfter (target, node) { + node.prev = target; + node.next = target.next; + if (!node.next) { + this.tail = node; + } else { + node.next.prev = node; + } + target.next = node; + } + + /** + * Appends a `node` to the end of this doubly linked list + * Note: `node.next` will be unlinked from `node` + * Note: if `node` is part of another linked list call `addAll` instead + * + * @param {*} node + */ + add (node) { + if (!this.head) { + this.head = node; + } else { + this.tail.next = node; + } + node.prev = this.tail; + // since node is the new end it doesn't have a next node + node.next = null; + this.tail = node; + } + + /** + * Appends a chain of nodes where `node` is the head, + * the difference with `add` is that it correctly sets the position + * of the node list `tail` property + * + * @param {*} node + */ + addAll (node) { + if (!this.head) { + this.head = node; + } else { + this.tail.next = node; + } + node.prev = this.tail; + + // find the end of the list + while (node.next) { + node = node.next; + } + this.tail = node; + } + + /** + * Deletes a `node` from this linked list, it's assumed that `node` is a + * member of this linked list + * + * @param {*} node + */ + remove (node) { + if (!node.prev) { + this.head = node.next; + } else { + node.prev.next = node.next; + } + + if (!node.next) { + this.tail = node.prev; + } else { + node.next.prev = node.prev; + } + } + + /** + * Removes a chain of nodes whose head is `a` and whose tail is `b`, + * it's assumed that `a` and `b` belong to this list and also that `a` + * comes before `b` in the linked list + * + * @param {*} a + * @param {*} b + */ + removeChain (a, b) { + if (!a.prev) { + this.head = b.next; + } else { + a.prev.next = b.next; + } + + if (!b.next) { + this.tail = a.prev; + } else { + b.next.prev = a.prev; + } + } + + first () { + return this.head + } + + isEmpty () { + return !this.head + } + } + + /* + * Original source from quickhull3d (https://github.com/mauriciopoppe/quickhull3d) + * Copyright (c) 2015 Mauricio Poppe + * + * Adapted to JSCAD by Jeff Gay + */ + + class Vertex { + constructor (point, index) { + this.point = point; + // index in the input array + this.index = index; + // vertex is a double linked list node + this.next = null; + this.prev = null; + // the face that is able to see this point + this.face = null; + } + } + + /* + * Original source from quickhull3d (https://github.com/mauriciopoppe/quickhull3d) + * Copyright (c) 2015 Mauricio Poppe + * + * Adapted to JSCAD by Jeff Gay + */ + + class HalfEdge { + constructor (vertex, face) { + this.vertex = vertex; + this.face = face; + this.next = null; + this.prev = null; + this.opposite = null; + } + + head () { + return this.vertex + } + + tail () { + return this.prev + ? this.prev.vertex + : null + } + + length () { + if (this.tail()) { + return distance$1( + this.tail().point, + this.head().point + ) + } + return -1 + } + + lengthSquared () { + if (this.tail()) { + return squaredDistance$1( + this.tail().point, + this.head().point + ) + } + return -1 + } + + setOpposite (edge) { + this.opposite = edge; + edge.opposite = this; + } + } + + const VISIBLE = 0; + const NON_CONVEX = 1; + const DELETED = 2; + + class Face { + constructor () { + this.normal = []; + this.centroid = []; + // signed distance from face to the origin + this.offset = 0; + // pointer to the vertex in a double linked list this face can see + this.outside = null; + this.mark = VISIBLE; + this.edge = null; + this.nVertices = 0; + } + + getEdge (i) { + if (typeof i !== 'number') { + throw Error('requires a number') + } + let it = this.edge; + while (i > 0) { + it = it.next; + i -= 1; + } + while (i < 0) { + it = it.prev; + i += 1; + } + return it + } + + computeNormal () { + const e0 = this.edge; + const e1 = e0.next; + let e2 = e1.next; + const v2 = subtract$3([], e1.head().point, e0.head().point); + const t = []; + const v1 = []; + + this.nVertices = 2; + this.normal = [0, 0, 0]; + while (e2 !== e0) { + copy$4(v1, v2); + subtract$3(v2, e2.head().point, e0.head().point); + add$1(this.normal, this.normal, cross$1(t, v1, v2)); + e2 = e2.next; + this.nVertices += 1; + } + this.area = length$1(this.normal); + // normalize the vector, since we've already calculated the area + // it's cheaper to scale the vector using this quantity instead of + // doing the same operation again + this.normal = scale$3(this.normal, this.normal, 1 / this.area); + } + + computeNormalMinArea (minArea) { + this.computeNormal(); + if (this.area < minArea) { + // compute the normal without the longest edge + let maxEdge; + let maxSquaredLength = 0; + let edge = this.edge; + + // find the longest edge (in length) in the chain of edges + do { + const lengthSquared = edge.lengthSquared(); + if (lengthSquared > maxSquaredLength) { + maxEdge = edge; + maxSquaredLength = lengthSquared; + } + edge = edge.next; + } while (edge !== this.edge) + + const p1 = maxEdge.tail().point; + const p2 = maxEdge.head().point; + const maxVector = subtract$3([], p2, p1); + const maxLength = Math.sqrt(maxSquaredLength); + // maxVector is normalized after this operation + scale$3(maxVector, maxVector, 1 / maxLength); + // compute the projection of maxVector over this face normal + const maxProjection = dot$2(this.normal, maxVector); + // subtract the quantity maxEdge adds on the normal + scale$3(maxVector, maxVector, -maxProjection); + add$1(this.normal, this.normal, maxVector); + // renormalize `this.normal` + normalize$1(this.normal, this.normal); + } + } + + computeCentroid () { + this.centroid = [0, 0, 0]; + let edge = this.edge; + do { + add$1(this.centroid, this.centroid, edge.head().point); + edge = edge.next; + } while (edge !== this.edge) + scale$3(this.centroid, this.centroid, 1 / this.nVertices); + } + + computeNormalAndCentroid (minArea) { + if (typeof minArea !== 'undefined') { + this.computeNormalMinArea(minArea); + } else { + this.computeNormal(); + } + this.computeCentroid(); + this.offset = dot$2(this.normal, this.centroid); + } + + distanceToPlane (point) { + return dot$2(this.normal, point) - this.offset + } + + /** + * @private + * + * Connects two edges assuming that prev.head().point === next.tail().point + * + * @param {HalfEdge} prev + * @param {HalfEdge} next + */ + connectHalfEdges (prev, next) { + let discardedFace; + if (prev.opposite.face === next.opposite.face) { + // `prev` is remove a redundant edge + const oppositeFace = next.opposite.face; + let oppositeEdge; + if (prev === this.edge) { + this.edge = next; + } + if (oppositeFace.nVertices === 3) { + // case: + // remove the face on the right + // + // /|\ + // / | \ the face on the right + // / | \ --> opposite edge + // / a | \ + // *----*----* + // / b | \ + // ▾ + // redundant edge + // + // Note: the opposite edge is actually in the face to the right + // of the face to be destroyed + oppositeEdge = next.opposite.prev.opposite; + oppositeFace.mark = DELETED; + discardedFace = oppositeFace; + } else { + // case: + // t + // *---- + // /| <- right face's redundant edge + // / | opposite edge + // / | ▴ / + // / a | | / + // *----*----* + // / b | \ + // ▾ + // redundant edge + oppositeEdge = next.opposite.next; + // make sure that the link `oppositeFace.edge` points correctly even + // after the right face redundant edge is removed + if (oppositeFace.edge === oppositeEdge.prev) { + oppositeFace.edge = oppositeEdge; + } + + // /| / + // / | t/opposite edge + // / | / ▴ / + // / a |/ | / + // *----*----* + // / b \ + oppositeEdge.prev = oppositeEdge.prev.prev; + oppositeEdge.prev.next = oppositeEdge; + } + // /| + // / | + // / | + // / a | + // *----*----* + // / b ▴ \ + // | + // redundant edge + next.prev = prev.prev; + next.prev.next = next; + + // / \ \ + // / \->\ + // / \<-\ opposite edge + // / a \ \ + // *----*----* + // / b ^ \ + next.setOpposite(oppositeEdge); + + oppositeFace.computeNormalAndCentroid(); + } else { + // trivial case + // * + // /|\ + // / | \ + // / |--> next + // / a | \ + // *----*----* + // \ b | / + // \ |--> prev + // \ | / + // \|/ + // * + prev.next = next; + next.prev = prev; + } + return discardedFace + } + + mergeAdjacentFaces (adjacentEdge, discardedFaces) { + const oppositeEdge = adjacentEdge.opposite; + const oppositeFace = oppositeEdge.face; + + discardedFaces.push(oppositeFace); + oppositeFace.mark = DELETED; + + // find the chain of edges whose opposite face is `oppositeFace` + // + // ===> + // \ face / + // * ---- * ---- * ---- * + // / opposite face \ + // <=== + // + let adjacentEdgePrev = adjacentEdge.prev; + let adjacentEdgeNext = adjacentEdge.next; + let oppositeEdgePrev = oppositeEdge.prev; + let oppositeEdgeNext = oppositeEdge.next; + + // left edge + while (adjacentEdgePrev.opposite.face === oppositeFace) { + adjacentEdgePrev = adjacentEdgePrev.prev; + oppositeEdgeNext = oppositeEdgeNext.next; + } + // right edge + while (adjacentEdgeNext.opposite.face === oppositeFace) { + adjacentEdgeNext = adjacentEdgeNext.next; + oppositeEdgePrev = oppositeEdgePrev.prev; + } + // adjacentEdgePrev \ face / adjacentEdgeNext + // * ---- * ---- * ---- * + // oppositeEdgeNext / opposite face \ oppositeEdgePrev + + // fix the face reference of all the opposite edges that are not part of + // the edges whose opposite face is not `face` i.e. all the edges that + // `face` and `oppositeFace` do not have in common + let edge; + for (edge = oppositeEdgeNext; edge !== oppositeEdgePrev.next; edge = edge.next) { + edge.face = this; + } + + // make sure that `face.edge` is not one of the edges to be destroyed + // Note: it's important for it to be a `next` edge since `prev` edges + // might be destroyed on `connectHalfEdges` + this.edge = adjacentEdgeNext; + + // connect the extremes + // Note: it might be possible that after connecting the edges a triangular + // face might be redundant + let discardedFace; + discardedFace = this.connectHalfEdges(oppositeEdgePrev, adjacentEdgeNext); + if (discardedFace) { + discardedFaces.push(discardedFace); + } + discardedFace = this.connectHalfEdges(adjacentEdgePrev, oppositeEdgeNext); + if (discardedFace) { + discardedFaces.push(discardedFace); + } + + this.computeNormalAndCentroid(); + // TODO: additional consistency checks + return discardedFaces + } + + collectIndices () { + const indices = []; + let edge = this.edge; + do { + indices.push(edge.head().index); + edge = edge.next; + } while (edge !== this.edge) + return indices + } + + static createTriangle (v0, v1, v2, minArea = 0) { + const face = new Face(); + const e0 = new HalfEdge(v0, face); + const e1 = new HalfEdge(v1, face); + const e2 = new HalfEdge(v2, face); + + // join edges + e0.next = e2.prev = e1; + e1.next = e0.prev = e2; + e2.next = e1.prev = e0; + + // main half edge reference + face.edge = e0; + face.computeNormalAndCentroid(minArea); + return face + } + } + + /* + * Original source from quickhull3d (https://github.com/mauriciopoppe/quickhull3d) + * Copyright (c) 2015 Mauricio Poppe + * + * Adapted to JSCAD by Jeff Gay + */ + + // merge types + // non-convex with respect to the large face + const MERGE_NON_CONVEX_WRT_LARGER_FACE = 1; + const MERGE_NON_CONVEX = 2; + + class QuickHull { + constructor (points) { + if (!Array.isArray(points)) { + throw TypeError('input is not a valid array') + } + if (points.length < 4) { + throw Error('cannot build a simplex out of <4 points') + } + + this.tolerance = -1; + + // buffers + this.nFaces = 0; + this.nPoints = points.length; + + this.faces = []; + this.newFaces = []; + // helpers + // + // let `a`, `b` be `Face` instances + // let `v` be points wrapped as instance of `Vertex` + // + // [v, v, ..., v, v, v, ...] + // ^ ^ + // | | + // a.outside b.outside + // + this.claimed = new VertexList(); + this.unclaimed = new VertexList(); + + // vertices of the hull(internal representation of points) + this.vertices = []; + for (let i = 0; i < points.length; i += 1) { + this.vertices.push(new Vertex(points[i], i)); + } + this.discardedFaces = []; + this.vertexPointIndices = []; + } + + addVertexToFace (vertex, face) { + vertex.face = face; + if (!face.outside) { + this.claimed.add(vertex); + } else { + this.claimed.insertBefore(face.outside, vertex); + } + face.outside = vertex; + } + + /** + * Removes `vertex` for the `claimed` list of vertices, it also makes sure + * that the link from `face` to the first vertex it sees in `claimed` is + * linked correctly after the removal + * + * @param {Vertex} vertex + * @param {Face} face + */ + removeVertexFromFace (vertex, face) { + if (vertex === face.outside) { + // fix face.outside link + if (vertex.next && vertex.next.face === face) { + // face has at least 2 outside vertices, move the `outside` reference + face.outside = vertex.next; + } else { + // vertex was the only outside vertex that face had + face.outside = null; + } + } + this.claimed.remove(vertex); + } + + /** + * Removes all the visible vertices that `face` is able to see which are + * stored in the `claimed` vertext list + * + * @param {Face} face + * @return {Vertex|undefined} If face had visible vertices returns + * `face.outside`, otherwise undefined + */ + removeAllVerticesFromFace (face) { + if (face.outside) { + // pointer to the last vertex of this face + // [..., outside, ..., end, outside, ...] + // | | | + // a a b + let end = face.outside; + while (end.next && end.next.face === face) { + end = end.next; + } + this.claimed.removeChain(face.outside, end); + // b + // [ outside, ...] + // | removes this link + // [ outside, ..., end ] -┘ + // | | + // a a + end.next = null; + return face.outside + } + } + + /** + * Removes all the visible vertices that `face` is able to see, additionally + * checking the following: + * + * If `absorbingFace` doesn't exist then all the removed vertices will be + * added to the `unclaimed` vertex list + * + * If `absorbingFace` exists then this method will assign all the vertices of + * `face` that can see `absorbingFace`, if a vertex cannot see `absorbingFace` + * it's added to the `unclaimed` vertex list + * + * @param {Face} face + * @param {Face} [absorbingFace] + */ + deleteFaceVertices (face, absorbingFace) { + const faceVertices = this.removeAllVerticesFromFace(face); + if (faceVertices) { + if (!absorbingFace) { + // mark the vertices to be reassigned to some other face + this.unclaimed.addAll(faceVertices); + } else { + // if there's an absorbing face try to assign as many vertices + // as possible to it + + // the reference `vertex.next` might be destroyed on + // `this.addVertexToFace` (see VertexList#add), nextVertex is a + // reference to it + let nextVertex; + for (let vertex = faceVertices; vertex; vertex = nextVertex) { + nextVertex = vertex.next; + const distance = absorbingFace.distanceToPlane(vertex.point); + + // check if `vertex` is able to see `absorbingFace` + if (distance > this.tolerance) { + this.addVertexToFace(vertex, absorbingFace); + } else { + this.unclaimed.add(vertex); + } + } + } + } + } + + /** + * Reassigns as many vertices as possible from the unclaimed list to the new + * faces + * + * @param {Faces[]} newFaces + */ + resolveUnclaimedPoints (newFaces) { + // cache next vertex so that if `vertex.next` is destroyed it's still + // recoverable + let vertexNext = this.unclaimed.first(); + for (let vertex = vertexNext; vertex; vertex = vertexNext) { + vertexNext = vertex.next; + let maxDistance = this.tolerance; + let maxFace; + for (let i = 0; i < newFaces.length; i += 1) { + const face = newFaces[i]; + if (face.mark === VISIBLE) { + const dist = face.distanceToPlane(vertex.point); + if (dist > maxDistance) { + maxDistance = dist; + maxFace = face; + } + if (maxDistance > 1000 * this.tolerance) { + break + } + } + } + + if (maxFace) { + this.addVertexToFace(vertex, maxFace); + } + } + } + + /** + * Computes the extremes of a tetrahedron which will be the initial hull + * + * @return {number[]} The min/max vertices in the x,y,z directions + */ + computeExtremes () { + const min = []; + const max = []; + + // min vertex on the x,y,z directions + const minVertices = []; + // max vertex on the x,y,z directions + const maxVertices = []; + + let i, j; + + // initially assume that the first vertex is the min/max + for (i = 0; i < 3; i += 1) { + minVertices[i] = maxVertices[i] = this.vertices[0]; + } + // copy the coordinates of the first vertex to min/max + for (i = 0; i < 3; i += 1) { + min[i] = max[i] = this.vertices[0].point[i]; + } + + // compute the min/max vertex on all 6 directions + for (i = 1; i < this.vertices.length; i += 1) { + const vertex = this.vertices[i]; + const point = vertex.point; + // update the min coordinates + for (j = 0; j < 3; j += 1) { + if (point[j] < min[j]) { + min[j] = point[j]; + minVertices[j] = vertex; + } + } + // update the max coordinates + for (j = 0; j < 3; j += 1) { + if (point[j] > max[j]) { + max[j] = point[j]; + maxVertices[j] = vertex; + } + } + } + + // compute epsilon + this.tolerance = 3 * Number.EPSILON * ( + Math.max(Math.abs(min[0]), Math.abs(max[0])) + + Math.max(Math.abs(min[1]), Math.abs(max[1])) + + Math.max(Math.abs(min[2]), Math.abs(max[2])) + ); + return [minVertices, maxVertices] + } + + /** + * Compues the initial tetrahedron assigning to its faces all the points that + * are candidates to form part of the hull + */ + createInitialSimplex () { + const vertices = this.vertices; + const [min, max] = this.computeExtremes(); + let v2, v3; + let i, j; + + // Find the two vertices with the greatest 1d separation + // (max.x - min.x) + // (max.y - min.y) + // (max.z - min.z) + let maxDistance = 0; + let indexMax = 0; + for (i = 0; i < 3; i += 1) { + const distance = max[i].point[i] - min[i].point[i]; + if (distance > maxDistance) { + maxDistance = distance; + indexMax = i; + } + } + const v0 = min[indexMax]; + const v1 = max[indexMax]; + + // the next vertex is the one farthest to the line formed by `v0` and `v1` + maxDistance = 0; + for (i = 0; i < this.vertices.length; i += 1) { + const vertex = this.vertices[i]; + if (vertex !== v0 && vertex !== v1) { + const distance = pointLineDistance( + vertex.point, v0.point, v1.point + ); + if (distance > maxDistance) { + maxDistance = distance; + v2 = vertex; + } + } + } + + // the next vertex is the one farthest to the plane `v0`, `v1`, `v2` + // normalize((v2 - v1) x (v0 - v1)) + const normal = fromPoints$4([], v0.point, v1.point, v2.point); + // distance from the origin to the plane + const distPO = dot$2(v0.point, normal); + maxDistance = -1; + for (i = 0; i < this.vertices.length; i += 1) { + const vertex = this.vertices[i]; + if (vertex !== v0 && vertex !== v1 && vertex !== v2) { + const distance = Math.abs(dot$2(normal, vertex.point) - distPO); + if (distance > maxDistance) { + maxDistance = distance; + v3 = vertex; + } + } + } + + // initial simplex + // Taken from http://everything2.com/title/How+to+paint+a+tetrahedron + // + // v2 + // ,|, + // ,7``\'VA, + // ,7` |, `'VA, + // ,7` `\ `'VA, + // ,7` |, `'VA, + // ,7` `\ `'VA, + // ,7` |, `'VA, + // ,7` `\ ,..ooOOTK` v3 + // ,7` |,.ooOOT''` AV + // ,7` ,..ooOOT`\` /7 + // ,7` ,..ooOOT''` |, AV + // ,T,..ooOOT''` `\ /7 + // v0 `'TTs., |, AV + // `'TTs., `\ /7 + // `'TTs., |, AV + // `'TTs., `\ /7 + // `'TTs., |, AV + // `'TTs.,\/7 + // `'T` + // v1 + // + const faces = []; + if (dot$2(v3.point, normal) - distPO < 0) { + // the face is not able to see the point so `planeNormal` + // is pointing outside the tetrahedron + faces.push( + Face.createTriangle(v0, v1, v2), + Face.createTriangle(v3, v1, v0), + Face.createTriangle(v3, v2, v1), + Face.createTriangle(v3, v0, v2) + ); + + // set the opposite edge + for (i = 0; i < 3; i += 1) { + const j = (i + 1) % 3; + // join face[i] i > 0, with the first face + faces[i + 1].getEdge(2).setOpposite(faces[0].getEdge(j)); + // join face[i] with face[i + 1], 1 <= i <= 3 + faces[i + 1].getEdge(1).setOpposite(faces[j + 1].getEdge(0)); + } + } else { + // the face is able to see the point so `planeNormal` + // is pointing inside the tetrahedron + faces.push( + Face.createTriangle(v0, v2, v1), + Face.createTriangle(v3, v0, v1), + Face.createTriangle(v3, v1, v2), + Face.createTriangle(v3, v2, v0) + ); + + // set the opposite edge + for (i = 0; i < 3; i += 1) { + const j = (i + 1) % 3; + // join face[i] i > 0, with the first face + faces[i + 1].getEdge(2).setOpposite(faces[0].getEdge((3 - i) % 3)); + // join face[i] with face[i + 1] + faces[i + 1].getEdge(0).setOpposite(faces[j + 1].getEdge(1)); + } + } + + // the initial hull is the tetrahedron + for (i = 0; i < 4; i += 1) { + this.faces.push(faces[i]); + } + + // initial assignment of vertices to the faces of the tetrahedron + for (i = 0; i < vertices.length; i += 1) { + const vertex = vertices[i]; + if (vertex !== v0 && vertex !== v1 && vertex !== v2 && vertex !== v3) { + maxDistance = this.tolerance; + let maxFace; + for (j = 0; j < 4; j += 1) { + const distance = faces[j].distanceToPlane(vertex.point); + if (distance > maxDistance) { + maxDistance = distance; + maxFace = faces[j]; + } + } + + if (maxFace) { + this.addVertexToFace(vertex, maxFace); + } + } + } + } + + reindexFaceAndVertices () { + // remove inactive faces + const activeFaces = []; + for (let i = 0; i < this.faces.length; i += 1) { + const face = this.faces[i]; + if (face.mark === VISIBLE) { + activeFaces.push(face); + } + } + this.faces = activeFaces; + } + + collectFaces (skipTriangulation) { + const faceIndices = []; + for (let i = 0; i < this.faces.length; i += 1) { + if (this.faces[i].mark !== VISIBLE) { + throw Error('attempt to include a destroyed face in the hull') + } + const indices = this.faces[i].collectIndices(); + if (skipTriangulation) { + faceIndices.push(indices); + } else { + for (let j = 0; j < indices.length - 2; j += 1) { + faceIndices.push( + [indices[0], indices[j + 1], indices[j + 2]] + ); + } + } + } + return faceIndices + } + + /** + * Finds the next vertex to make faces with the current hull + * + * - let `face` be the first face existing in the `claimed` vertex list + * - if `face` doesn't exist then return since there are no vertices left + * - otherwise for each `vertex` that face sees find the one furthest away + * from `face` + * + * @return {Vertex|undefined} Returns undefined when there are no more + * visible vertices + */ + nextVertexToAdd () { + if (!this.claimed.isEmpty()) { + let eyeVertex, vertex; + let maxDistance = 0; + const eyeFace = this.claimed.first().face; + for (vertex = eyeFace.outside; vertex && vertex.face === eyeFace; vertex = vertex.next) { + const distance = eyeFace.distanceToPlane(vertex.point); + if (distance > maxDistance) { + maxDistance = distance; + eyeVertex = vertex; + } + } + return eyeVertex + } + } + + /** + * Computes a chain of half edges in ccw order called the `horizon`, for an + * edge to be part of the horizon it must join a face that can see + * `eyePoint` and a face that cannot see `eyePoint` + * + * @param {number[]} eyePoint - The coordinates of a point + * @param {HalfEdge} crossEdge - The edge used to jump to the current `face` + * @param {Face} face - The current face being tested + * @param {HalfEdge[]} horizon - The edges that form part of the horizon in + * ccw order + */ + computeHorizon (eyePoint, crossEdge, face, horizon) { + // moves face's vertices to the `unclaimed` vertex list + this.deleteFaceVertices(face); + + face.mark = DELETED; + + let edge; + if (!crossEdge) { + edge = crossEdge = face.getEdge(0); + } else { + // start from the next edge since `crossEdge` was already analyzed + // (actually `crossEdge.opposite` was the face who called this method + // recursively) + edge = crossEdge.next; + } + + // All the faces that are able to see `eyeVertex` are defined as follows + // + // v / + // / <== visible face + // / + // | + // | <== not visible face + // + // dot(v, visible face normal) - visible face offset > this.tolerance + // + do { + const oppositeEdge = edge.opposite; + const oppositeFace = oppositeEdge.face; + if (oppositeFace.mark === VISIBLE) { + if (oppositeFace.distanceToPlane(eyePoint) > this.tolerance) { + this.computeHorizon(eyePoint, oppositeEdge, oppositeFace, horizon); + } else { + horizon.push(edge); + } + } + edge = edge.next; + } while (edge !== crossEdge) + } + + /** + * Creates a face with the points `eyeVertex.point`, `horizonEdge.tail` and + * `horizonEdge.tail` in ccw order + * + * @param {Vertex} eyeVertex + * @param {HalfEdge} horizonEdge + * @return {HalfEdge} The half edge whose vertex is the eyeVertex + */ + addAdjoiningFace (eyeVertex, horizonEdge) { + // all the half edges are created in ccw order thus the face is always + // pointing outside the hull + // edges: + // + // eyeVertex.point + // / \ + // / \ + // 1 / \ 0 + // / \ + // / \ + // / \ + // horizon.tail --- horizon.head + // 2 + // + const face = Face.createTriangle( + eyeVertex, + horizonEdge.tail(), + horizonEdge.head() + ); + this.faces.push(face); + // join face.getEdge(-1) with the horizon's opposite edge + // face.getEdge(-1) = face.getEdge(2) + face.getEdge(-1).setOpposite(horizonEdge.opposite); + return face.getEdge(0) + } + + /** + * Adds horizon.length faces to the hull, each face will be 'linked' with the + * horizon opposite face and the face on the left/right + * + * @param {Vertex} eyeVertex + * @param {HalfEdge[]} horizon - A chain of half edges in ccw order + */ + addNewFaces (eyeVertex, horizon) { + this.newFaces = []; + let firstSideEdge, previousSideEdge; + for (let i = 0; i < horizon.length; i += 1) { + const horizonEdge = horizon[i]; + // returns the right side edge + const sideEdge = this.addAdjoiningFace(eyeVertex, horizonEdge); + if (!firstSideEdge) { + firstSideEdge = sideEdge; + } else { + // joins face.getEdge(1) with previousFace.getEdge(0) + sideEdge.next.setOpposite(previousSideEdge); + } + this.newFaces.push(sideEdge.face); + previousSideEdge = sideEdge; + } + firstSideEdge.next.setOpposite(previousSideEdge); + } + + /** + * Computes the distance from `edge` opposite face's centroid to + * `edge.face` + * + * @param {HalfEdge} edge + * @return {number} + * - A positive number when the centroid of the opposite face is above the + * face i.e. when the faces are concave + * - A negative number when the centroid of the opposite face is below the + * face i.e. when the faces are convex + */ + oppositeFaceDistance (edge) { + return edge.face.distanceToPlane(edge.opposite.face.centroid) + } + + /** + * Merges a face with none/any/all its neighbors according to the strategy + * used + * + * if `mergeType` is MERGE_NON_CONVEX_WRT_LARGER_FACE then the merge will be + * decided based on the face with the larger area, the centroid of the face + * with the smaller area will be checked against the one with the larger area + * to see if it's in the merge range [tolerance, -tolerance] i.e. + * + * dot(centroid smaller face, larger face normal) - larger face offset > -tolerance + * + * Note that the first check (with +tolerance) was done on `computeHorizon` + * + * If the above is not true then the check is done with respect to the smaller + * face i.e. + * + * dot(centroid larger face, smaller face normal) - smaller face offset > -tolerance + * + * If true then it means that two faces are non-convex (concave), even if the + * dot(...) - offset value is > 0 (that's the point of doing the merge in the + * first place) + * + * If two faces are concave then the check must also be done on the other face + * but this is done in another merge pass, for this to happen the face is + * marked in a temporal NON_CONVEX state + * + * if `mergeType` is MERGE_NON_CONVEX then two faces will be merged only if + * they pass the following conditions + * + * dot(centroid smaller face, larger face normal) - larger face offset > -tolerance + * dot(centroid larger face, smaller face normal) - smaller face offset > -tolerance + * + * @param {Face} face + * @param {number} mergeType - Either MERGE_NON_CONVEX_WRT_LARGER_FACE or + * MERGE_NON_CONVEX + */ + doAdjacentMerge (face, mergeType) { + let edge = face.edge; + let convex = true; + let it = 0; + do { + if (it >= face.nVertices) { + throw Error('merge recursion limit exceeded') + } + const oppositeFace = edge.opposite.face; + let merge = false; + + // Important notes about the algorithm to merge faces + // + // - Given a vertex `eyeVertex` that will be added to the hull + // all the faces that cannot see `eyeVertex` are defined as follows + // + // dot(v, not visible face normal) - not visible offset < tolerance + // + // - Two faces can be merged when the centroid of one of these faces + // projected to the normal of the other face minus the other face offset + // is in the range [tolerance, -tolerance] + // - Since `face` (given in the input for this method) has passed the + // check above we only have to check the lower bound e.g. + // + // dot(v, not visible face normal) - not visible offset > -tolerance + // + if (mergeType === MERGE_NON_CONVEX) { + if (this.oppositeFaceDistance(edge) > -this.tolerance || + this.oppositeFaceDistance(edge.opposite) > -this.tolerance) { + merge = true; + } + } else { + if (face.area > oppositeFace.area) { + if (this.oppositeFaceDistance(edge) > -this.tolerance) { + merge = true; + } else if (this.oppositeFaceDistance(edge.opposite) > -this.tolerance) { + convex = false; + } + } else { + if (this.oppositeFaceDistance(edge.opposite) > -this.tolerance) { + merge = true; + } else if (this.oppositeFaceDistance(edge) > -this.tolerance) { + convex = false; + } + } + } + + if (merge) { + // when two faces are merged it might be possible that redundant faces + // are destroyed, in that case move all the visible vertices from the + // destroyed faces to the `unclaimed` vertex list + const discardedFaces = face.mergeAdjacentFaces(edge, []); + for (let i = 0; i < discardedFaces.length; i += 1) { + this.deleteFaceVertices(discardedFaces[i], face); + } + return true + } + + edge = edge.next; + it += 1; + } while (edge !== face.edge) + if (!convex) { + face.mark = NON_CONVEX; + } + return false + } + + /** + * Adds a vertex to the hull with the following algorithm + * + * - Compute the `horizon` which is a chain of half edges, for an edge to + * belong to this group it must be the edge connecting a face that can + * see `eyeVertex` and a face which cannot see `eyeVertex` + * - All the faces that can see `eyeVertex` have its visible vertices removed + * from the claimed VertexList + * - A new set of faces is created with each edge of the `horizon` and + * `eyeVertex`, each face is connected with the opposite horizon face and + * the face on the left/right + * - The new faces are merged if possible with the opposite horizon face first + * and then the faces on the right/left + * - The vertices removed from all the visible faces are assigned to the new + * faces if possible + * + * @param {Vertex} eyeVertex + */ + addVertexToHull (eyeVertex) { + const horizon = []; + + this.unclaimed.clear(); + + // remove `eyeVertex` from `eyeVertex.face` so that it can't be added to the + // `unclaimed` vertex list + this.removeVertexFromFace(eyeVertex, eyeVertex.face); + this.computeHorizon(eyeVertex.point, null, eyeVertex.face, horizon); + this.addNewFaces(eyeVertex, horizon); + + // first merge pass + // Do the merge with respect to the larger face + for (let i = 0; i < this.newFaces.length; i += 1) { + const face = this.newFaces[i]; + if (face.mark === VISIBLE) { + while (this.doAdjacentMerge(face, MERGE_NON_CONVEX_WRT_LARGER_FACE)) {} // eslint-disable-line no-empty + } + } + + // second merge pass + // Do the merge on non-convex faces (a face is marked as non-convex in the + // first pass) + for (let i = 0; i < this.newFaces.length; i += 1) { + const face = this.newFaces[i]; + if (face.mark === NON_CONVEX) { + face.mark = VISIBLE; + while (this.doAdjacentMerge(face, MERGE_NON_CONVEX)) {} // eslint-disable-line no-empty + } + } + + // reassign `unclaimed` vertices to the new faces + this.resolveUnclaimedPoints(this.newFaces); + } + + build () { + let eyeVertex; + this.createInitialSimplex(); + while ((eyeVertex = this.nextVertexToAdd())) { + this.addVertexToHull(eyeVertex); + } + this.reindexFaceAndVertices(); + } + } + + /* + * Original source from quickhull3d (https://github.com/mauriciopoppe/quickhull3d) + * Copyright (c) 2015 Mauricio Poppe + * + * Adapted to JSCAD by Jeff Gay + */ + + const runner = (points, options = {}) => { + const instance = new QuickHull(points); + instance.build(); + return instance.collectFaces(options.skipTriangulation) + }; + + /* + * Create a convex hull of the given geometries (geom3). + * @param {...geometries} geometries - list of geom3 geometries + * @returns {geom3} new geometry + */ + const hullGeom3 = (...geometries) => { + geometries = flatten(geometries); + + if (geometries.length === 1) return geometries[0] + + // extract the unique vertices from the geometries + const unique = toUniquePoints(geometries); + + const faces = runner(unique, { skipTriangulation: true }); + + const polygons = faces.map((face) => { + const vertices = face.map((index) => unique[index]); + return create$7(vertices) + }); + + return create$8(polygons) + }; + + /** + * Create a convex hull of the given geometries. + * The given geometries should be of the same type, either geom2 or geom3 or path2. + * @param {...Objects} geometries - list of geometries from which to create a hull + * @returns {geom2|geom3} new geometry + * @alias module:modeling/hulls.hull + * + * @example + * let myshape = hull(rectangle({center: [-5,-5]}), ellipse({center: [5,5]})) + * + * @example + * +-------+ +-------+ + * | | | \ + * | A | | \ + * | | | \ + * +-------+ + \ + * = \ \ + * +-------+ \ + + * | | \ | + * | B | \ | + * | | \ | + * +-------+ +-------+ + */ + const hull = (...geometries) => { + geometries = flatten(geometries); + if (geometries.length === 0) throw new Error('wrong number of arguments') + + if (!areAllShapesTheSameType(geometries)) { + throw new Error('only hulls of the same type are supported') + } + + const geometry = geometries[0]; + if (isA$2(geometry)) return hullPath2(geometries) + if (isA$5(geometry)) return hullGeom2(geometries) + if (isA$3(geometry)) return hullGeom3(geometries) + + // FIXME should this throw an error for unknown geometries? + return geometry + }; + + /** + * Create a chain of hulled geometries from the given geometries. + * Essentially hull A+B, B+C, C+D, etc., then union the results. + * The given geometries should be of the same type, either geom2 or geom3 or path2. + * + * @param {...Objects} geometries - list of geometries from which to create a hull + * @returns {geom2|geom3} new geometry + * @alias module:modeling/hulls.hullChain + * + * @example + * let newShape = hullChain(rectangle({center: [-5,-5]}), circle({center: [0,0]}), rectangle({center: [5,5]})) + * + * @example + * +-------+ +-------+ +-------+ +------+ + * | | | | | \ / | + * | A | | C | | | | + * | | | | | | + * +-------+ +-------+ + + + * = \ / + * +-------+ \ / + * | | \ / + * | B | \ / + * | | \ / + * +-------+ +-------+ + */ + const hullChain = (...geometries) => { + geometries = flatten(geometries); + if (geometries.length < 2) throw new Error('wrong number of arguments') + + const hulls = []; + for (let i = 1; i < geometries.length; i++) { + hulls.push(hull(geometries[i - 1], geometries[i])); + } + return union(hulls) + }; + + /** + * All shapes (primitives or the results of operations) can be passed to hull functions + * to determine the convex hull of all points. + * In all cases, the function returns the results, and never changes the original shapes. + * @module modeling/hulls + * @example + * const { hull, hullChain } = require('@jscad/modeling').hulls + */ + + var index$2 = /*#__PURE__*/Object.freeze({ + __proto__: null, + hull: hull, + hullChain: hullChain + }); + + const isValidPoly3 = (epsilon, polygon) => { + const area = Math.abs(measureArea$2(polygon)); + return (Number.isFinite(area) && area > epsilon) + }; + + /* + * Snap the given list of polygons to the epsilon. + */ + const snapPolygons = (epsilon, polygons) => { + let newPolygons = polygons.map((polygon) => { + const snapVertices = polygon.vertices.map((vertex) => snap$2(create$b(), vertex, epsilon)); + // only retain unique vertices + const newVertices = []; + for (let i = 0; i < snapVertices.length; i++) { + const j = (i + 1) % snapVertices.length; + if (!equals$7(snapVertices[i], snapVertices[j])) newVertices.push(snapVertices[i]); + } + const newPolygon = create$7(newVertices); + if (polygon.color) newPolygon.color = polygon.color; + return newPolygon + }); + // snap can produce polygons with zero (0) area, remove those + const epsilonArea = (epsilon * epsilon * Math.sqrt(3) / 4); + newPolygons = newPolygons.filter((polygon) => isValidPoly3(epsilonArea, polygon)); + return newPolygons + }; + + // create a set of edges from the given polygon, and link the edges as well + const createEdges = (polygon) => { + const vertices = toVertices$1(polygon); + const edges = []; + for (let i = 0; i < vertices.length; i++) { + const j = (i + 1) % vertices.length; + const edge = { + v1: vertices[i], + v2: vertices[j] + }; + edges.push(edge); + } + // link the edges together + for (let i = 0; i < edges.length; i++) { + const j = (i + 1) % vertices.length; + edges[i].next = edges[j]; + edges[j].prev = edges[i]; + } + return edges + }; + + const insertEdge = (edges, edge) => { + const key = `${edge.v1}:${edge.v2}`; + edges.set(key, edge); + }; + + const deleteEdge = (edges, edge) => { + const key = `${edge.v1}:${edge.v2}`; + edges.delete(key); + }; + + const findOppositeEdge = (edges, edge) => { + const key = `${edge.v2}:${edge.v1}`; // NOTE: OPPOSITE OF INSERT KEY + return edges.get(key) + }; + + // calculate the two adjoining angles between the opposing edges + const calculateAnglesBetween = (current, opposite, normal) => { + let v0 = current.prev.v1; + let v1 = current.prev.v2; + let v2 = opposite.next.v2; + const angle1 = calculateAngle(v0, v1, v2, normal); + + v0 = opposite.prev.v1; + v1 = opposite.prev.v2; + v2 = current.next.v2; + const angle2 = calculateAngle(v0, v1, v2, normal); + + return [angle1, angle2] + }; + + const v1 = create$b(); + const v2 = create$b(); + + const calculateAngle = (prevVertex, midVertex, nextVertex, normal) => { + const d0 = subtract$3(v1, midVertex, prevVertex); + const d1 = subtract$3(v2, nextVertex, midVertex); + cross$1(d0, d0, d1); + return dot$2(d0, normal) + }; + + // create a polygon starting from the given edge (if possible) + const createPolygonAnd = (edge) => { + let polygon; + const vertices = []; + while (edge.next) { + const next = edge.next; + + vertices.push(edge.v1); + + edge.v1 = null; + edge.v2 = null; + edge.next = null; + edge.prev = null; + + edge = next; + } + if (vertices.length > 0) polygon = create$7(vertices); + return polygon + }; + + /* + * Merge COPLANAR polygons that share common edges. + * @param {poly3[]} sourcePolygons - list of polygons + * @returns {poly3[]} new set of polygons + */ + const mergeCoplanarPolygons = (sourcePolygons) => { + if (sourcePolygons.length < 2) return sourcePolygons + + const normal = sourcePolygons[0].plane; + const polygons = sourcePolygons.slice(); + const edgeList = new Map(); + + while (polygons.length > 0) { // NOTE: the length of polygons WILL change + const polygon = polygons.shift(); + const edges = createEdges(polygon); + for (let i = 0; i < edges.length; i++) { + const current = edges[i]; + const opposite = findOppositeEdge(edgeList, current); + if (opposite) { + const angles = calculateAnglesBetween(current, opposite, normal); + if (angles[0] >= 0 && angles[1] >= 0) { + const edge1 = opposite.next; + const edge2 = current.next; + // adjust the edges, linking together opposing polygons + current.prev.next = opposite.next; + current.next.prev = opposite.prev; + + opposite.prev.next = current.next; + opposite.next.prev = current.prev; + + // remove the opposing edges + current.v1 = null; + current.v2 = null; + current.next = null; + current.prev = null; + + deleteEdge(edgeList, opposite); + + opposite.v1 = null; + opposite.v2 = null; + opposite.next = null; + opposite.prev = null; + + const mergeEdges = (list, e1, e2) => { + const newEdge = { + v1: e2.v1, + v2: e1.v2, + next: e1.next, + prev: e2.prev + }; + // link in newEdge + e2.prev.next = newEdge; + e1.next.prev = newEdge; + // remove old edges + deleteEdge(list, e1); + e1.v1 = null; + e1.v2 = null; + e1.next = null; + e1.prev = null; + + deleteEdge(list, e2); + e2.v1 = null; + e2.v2 = null; + e2.next = null; + e2.prev = null; + }; + + if (angles[0] === 0.0) { + mergeEdges(edgeList, edge1, edge1.prev); + } + if (angles[1] === 0.0) { + mergeEdges(edgeList, edge2, edge2.prev); + } + } + } else { + if (current.next) insertEdge(edgeList, current); + } + } + } + + // build a set of polygons from the remaining edges + const destPolygons = []; + edgeList.forEach((edge) => { + const polygon = createPolygonAnd(edge); + if (polygon) destPolygons.push(polygon); + }); + + edgeList.clear(); + + return destPolygons + }; + + const coplanar = (plane1, plane2) => { + // expect the same distance from the origin, within tolerance + if (Math.abs(plane1[3] - plane2[3]) < 0.00000015) { + return aboutEqualNormals(plane1, plane2) + } + return false + }; + + const mergePolygons = (epsilon, polygons) => { + const polygonsPerPlane = []; // elements: [plane, [poly3...]] + polygons.forEach((polygon) => { + const mapping = polygonsPerPlane.find((element) => coplanar(element[0], plane(polygon))); + if (mapping) { + const polygons = mapping[1]; + polygons.push(polygon); + } else { + polygonsPerPlane.push([plane(polygon), [polygon]]); + } + }); + + let destPolygons = []; + polygonsPerPlane.forEach((mapping) => { + const sourcePolygons = mapping[1]; + const retesselatedPolygons = mergeCoplanarPolygons(sourcePolygons); + destPolygons = destPolygons.concat(retesselatedPolygons); + }); + return destPolygons + }; + + const getTag = (vertex) => `${vertex}`; + + const addSide = (sideMap, vertextag2sidestart, vertextag2sideend, vertex0, vertex1, polygonIndex) => { + const startTag = getTag(vertex0); + const endTag = getTag(vertex1); + const newSideTag = `${startTag}/${endTag}`; + const reverseSideTag = `${endTag}/${startTag}`; + if (sideMap.has(reverseSideTag)) { + // remove the opposing side from mappings + deleteSide(sideMap, vertextag2sidestart, vertextag2sideend, vertex1, vertex0, null); + return null + } + // add the side to the mappings + const newSideObj = { + vertex0: vertex0, + vertex1: vertex1, + polygonIndex + }; + if (!(sideMap.has(newSideTag))) { + sideMap.set(newSideTag, [newSideObj]); + } else { + sideMap.get(newSideTag).push(newSideObj); + } + if (vertextag2sidestart.has(startTag)) { + vertextag2sidestart.get(startTag).push(newSideTag); + } else { + vertextag2sidestart.set(startTag, [newSideTag]); + } + if (vertextag2sideend.has(endTag)) { + vertextag2sideend.get(endTag).push(newSideTag); + } else { + vertextag2sideend.set(endTag, [newSideTag]); + } + return newSideTag + }; + + const deleteSide = (sidemap, vertextag2sidestart, vertextag2sideend, vertex0, vertex1, polygonIndex) => { + const startTag = getTag(vertex0); + const endTag = getTag(vertex1); + const sideTag = `${startTag}/${endTag}`; + let idx = -1; + const sideObjs = sidemap.get(sideTag); + for (let i = 0; i < sideObjs.length; i++) { + const sideObj = sideObjs[i]; + let sideTag = getTag(sideObj.vertex0); + if (sideTag !== startTag) continue + sideTag = getTag(sideObj.vertex1); + if (sideTag !== endTag) continue + if (polygonIndex !== null) { + if (sideObj.polygonIndex !== polygonIndex) continue + } + idx = i; + break + } + sideObjs.splice(idx, 1); + if (sideObjs.length === 0) { + sidemap.delete(sideTag); + } + + // adjust start and end lists + idx = vertextag2sidestart.get(startTag).indexOf(sideTag); + vertextag2sidestart.get(startTag).splice(idx, 1); + if (vertextag2sidestart.get(startTag).length === 0) { + vertextag2sidestart.delete(startTag); + } + + idx = vertextag2sideend.get(endTag).indexOf(sideTag); + vertextag2sideend.get(endTag).splice(idx, 1); + if (vertextag2sideend.get(endTag).length === 0) { + vertextag2sideend.delete(endTag); + } + }; + + /* + Suppose we have two polygons ACDB and EDGF: + + A-----B + | | + | E--F + | | | + C-----D--G + + Note that vertex E forms a T-junction on the side BD. In this case some STL slicers will complain + that the solid is not watertight. This is because the watertightness check is done by checking if + each side DE is matched by another side ED. + + This function will return a new solid with ACDB replaced by ACDEB + + Note that this can create polygons that are slightly non-convex (due to rounding errors). + Therefore, the result should not be used for further CSG operations! + + Note this function is meant to be used to preprocess geometries when triangulation is required, i.e. AMF, STL, etc. + Do not use the results in other operations. + */ + + /* + * Insert missing vertices for T-junctions, which creates polygons that can be triangulated. + * @param {Array} polygons - the original polygons which may or may not have T-junctions + * @return original polygons (if no T-junctions found) or new polygons with updated vertices + */ + const insertTjunctions = (polygons) => { + // STEP 1 : build a map of 'unmatched' sides from the polygons + // i.e. side AB in one polygon does not have a matching side BA in another polygon + const sideMap = new Map(); + for (let polygonIndex = 0; polygonIndex < polygons.length; polygonIndex++) { + const polygon = polygons[polygonIndex]; + const numVertices = polygon.vertices.length; + if (numVertices >= 3) { + let vertex = polygon.vertices[0]; + let vertexTag = getTag(vertex); + for (let vertexIndex = 0; vertexIndex < numVertices; vertexIndex++) { + let nextVertexIndex = vertexIndex + 1; + if (nextVertexIndex === numVertices) nextVertexIndex = 0; + + const nextVertex = polygon.vertices[nextVertexIndex]; + const nextVertexTag = getTag(nextVertex); + + const sideTag = `${vertexTag}/${nextVertexTag}`; + const reverseSideTag = `${nextVertexTag}/${vertexTag}`; + if (sideMap.has(reverseSideTag)) { + // this side matches the same side in another polygon. Remove from sidemap + // FIXME is this check necessary? there should only be ONE(1) opposing side + // FIXME assert ? + const ar = sideMap.get(reverseSideTag); + ar.splice(-1, 1); + if (ar.length === 0) { + sideMap.delete(reverseSideTag); + } + } else { + const sideobj = { + vertex0: vertex, + vertex1: nextVertex, + polygonIndex + }; + if (!(sideMap.has(sideTag))) { + sideMap.set(sideTag, [sideobj]); + } else { + sideMap.get(sideTag).push(sideobj); + } + } + vertex = nextVertex; + vertexTag = nextVertexTag; + } + } else { + console.warn('warning: invalid polygon found during insertTjunctions'); + } + } + + if (sideMap.size > 0) { + // STEP 2 : create a list of starting sides and ending sides + const vertextag2sidestart = new Map(); + const vertextag2sideend = new Map(); + const sidesToCheck = new Map(); + for (const [sidetag, sideObjs] of sideMap) { + sidesToCheck.set(sidetag, true); + sideObjs.forEach((sideObj) => { + const starttag = getTag(sideObj.vertex0); + const endtag = getTag(sideObj.vertex1); + if (vertextag2sidestart.has(starttag)) { + vertextag2sidestart.get(starttag).push(sidetag); + } else { + vertextag2sidestart.set(starttag, [sidetag]); + } + if (vertextag2sideend.has(endtag)) { + vertextag2sideend.get(endtag).push(sidetag); + } else { + vertextag2sideend.set(endtag, [sidetag]); + } + }); + } + + // STEP 3 : if sideMap is not empty + const newPolygons = polygons.slice(0); // make a copy in order to replace polygons inline + while (true) { + if (sideMap.size === 0) break + + for (const sideTag of sideMap.keys()) { + sidesToCheck.set(sideTag, true); + } + + let doneSomething = false; + while (true) { + const sideTags = Array.from(sidesToCheck.keys()); + if (sideTags.length === 0) break // sidesToCheck is empty, we're done! + const sideTagToCheck = sideTags[0]; + let doneWithSide = true; + if (sideMap.has(sideTagToCheck)) { + const sideObjs = sideMap.get(sideTagToCheck); + const sideObj = sideObjs[0]; + for (let directionIndex = 0; directionIndex < 2; directionIndex++) { + const startVertex = (directionIndex === 0) ? sideObj.vertex0 : sideObj.vertex1; + const endVertex = (directionIndex === 0) ? sideObj.vertex1 : sideObj.vertex0; + const startVertexTag = getTag(startVertex); + const endVertexTag = getTag(endVertex); + let matchingSides = []; + if (directionIndex === 0) { + if (vertextag2sideend.has(startVertexTag)) { + matchingSides = vertextag2sideend.get(startVertexTag); + } + } else { + if (vertextag2sidestart.has(startVertexTag)) { + matchingSides = vertextag2sidestart.get(startVertexTag); + } + } + for (let matchingSideIndex = 0; matchingSideIndex < matchingSides.length; matchingSideIndex++) { + const matchingSideTag = matchingSides[matchingSideIndex]; + const matchingSide = sideMap.get(matchingSideTag)[0]; + const matchingSideStartVertex = (directionIndex === 0) ? matchingSide.vertex0 : matchingSide.vertex1; + (directionIndex === 0) ? matchingSide.vertex1 : matchingSide.vertex0; + const matchingSideStartVertexTag = getTag(matchingSideStartVertex); + if (matchingSideStartVertexTag === endVertexTag) { + // matchingSide cancels sideTagToCheck + deleteSide(sideMap, vertextag2sidestart, vertextag2sideend, startVertex, endVertex, null); + deleteSide(sideMap, vertextag2sidestart, vertextag2sideend, endVertex, startVertex, null); + doneWithSide = false; + directionIndex = 2; // skip reverse direction check + doneSomething = true; + break + } else { + const startPos = startVertex; + const endPos = endVertex; + const checkPos = matchingSideStartVertex; + const direction = subtract$3(create$b(), checkPos, startPos); + // Now we need to check if endPos is on the line startPos-checkPos: + const t = dot$2(subtract$3(create$b(), endPos, startPos), direction) / dot$2(direction, direction); + if ((t > 0) && (t < 1)) { + const closestVertex = scale$3(create$b(), direction, t); + add$1(closestVertex, closestVertex, startPos); + const distanceSquared = squaredDistance$1(closestVertex, endPos); + if (distanceSquared < (EPS * EPS)) { + // Yes it's a t-junction! We need to split matchingSide in two: + const polygonIndex = matchingSide.polygonIndex; + const polygon = newPolygons[polygonIndex]; + // find the index of startVertexTag in polygon: + const insertionVertexTag = getTag(matchingSide.vertex1); + let insertionVertexTagIndex = -1; + for (let i = 0; i < polygon.vertices.length; i++) { + if (getTag(polygon.vertices[i]) === insertionVertexTag) { + insertionVertexTagIndex = i; + break + } + } + // split the side by inserting the vertex: + const newVertices = polygon.vertices.slice(0); + newVertices.splice(insertionVertexTagIndex, 0, endVertex); + const newPolygon = create$7(newVertices); + + newPolygons[polygonIndex] = newPolygon; + + // remove the original sides from our maps + deleteSide(sideMap, vertextag2sidestart, vertextag2sideend, matchingSide.vertex0, matchingSide.vertex1, polygonIndex); + const newSideTag1 = addSide(sideMap, vertextag2sidestart, vertextag2sideend, matchingSide.vertex0, endVertex, polygonIndex); + const newSideTag2 = addSide(sideMap, vertextag2sidestart, vertextag2sideend, endVertex, matchingSide.vertex1, polygonIndex); + if (newSideTag1 !== null) sidesToCheck.set(newSideTag1, true); + if (newSideTag2 !== null) sidesToCheck.set(newSideTag2, true); + doneWithSide = false; + directionIndex = 2; // skip reverse direction check + doneSomething = true; + break + } // if(distanceSquared < 1e-10) + } // if( (t > 0) && (t < 1) ) + } // if(endingSideStartVertexTag === endVertexTag) + } // for matchingSideIndex + } // for directionIndex + } // if(sideTagToCheck in sideMap) + if (doneWithSide) { + sidesToCheck.delete(sideTagToCheck); + } + } + if (!doneSomething) break + } + polygons = newPolygons; + } + sideMap.clear(); + + return polygons + }; + + const triangulatePolygon = (epsilon, polygon, triangles) => { + const nv = polygon.vertices.length; + if (nv > 3) { + if (nv > 4) { + // split the polygon using a midpoint + const midpoint = [0, 0, 0]; + polygon.vertices.forEach((vertex) => add$1(midpoint, midpoint, vertex)); + snap$2(midpoint, divide$1(midpoint, midpoint, [nv, nv, nv]), epsilon); + for (let i = 0; i < nv; i++) { + const poly = create$7([midpoint, polygon.vertices[i], polygon.vertices[(i + 1) % nv]]); + if (polygon.color) poly.color = polygon.color; + triangles.push(poly); + } + return + } + // exactly 4 vertices, use simple triangulation + const poly0 = create$7([polygon.vertices[0], polygon.vertices[1], polygon.vertices[2]]); + const poly1 = create$7([polygon.vertices[0], polygon.vertices[2], polygon.vertices[3]]); + if (polygon.color) { + poly0.color = polygon.color; + poly1.color = polygon.color; + } + triangles.push(poly0, poly1); + return + } + // exactly 3 vertices, so return the original + triangles.push(polygon); + }; + + /* + * Convert the given polygons into a list of triangles (polygons with 3 vertices). + * NOTE: this is possible because poly3 is CONVEX by definition + */ + const triangulatePolygons = (epsilon, polygons) => { + const triangles = []; + polygons.forEach((polygon) => { + triangulatePolygon(epsilon, polygon, triangles); + }); + return triangles + }; + + /* + */ + const generalizePath2 = (options, geometry) => geometry; + + /* + */ + const generalizeGeom2 = (options, geometry) => geometry; + + /* + */ + const generalizeGeom3 = (options, geometry) => { + const defaults = { + snap: false, + simplify: false, + triangulate: false + }; + const { snap, simplify, triangulate } = Object.assign({}, defaults, options); + + const epsilon = measureEpsilon(geometry); + let polygons = toPolygons$1(geometry); + + // snap the given geometry if requested + if (snap) { + polygons = snapPolygons(epsilon, polygons); + } + + // simplify the polygons if requested + if (simplify) { + // TODO implement some mesh decimations + polygons = mergePolygons(epsilon, polygons); + } + + // triangulate the polygons if requested + if (triangulate) { + polygons = insertTjunctions(polygons); + polygons = triangulatePolygons(epsilon, polygons); + } + + // FIXME replace with geom3.cloneShallow() when available + const clone = Object.assign({}, geometry); + clone.polygons = polygons; + + return clone + }; + + /** + * Apply various modifications in proper order to produce a generalized geometry. + * @param {Object} options - options for modifications + * @param {Boolean} [options.snap=false] the geometries should be snapped to epsilons + * @param {Boolean} [options.simplify=false] the geometries should be simplified + * @param {Boolean} [options.triangulate=false] the geometries should be triangulated + * @param {...Object} geometries - the geometries to generalize + * @return {Object|Array} the modified geometry, or a list of modified geometries + * @alias module:modeling/modifiers.generalize + */ + const generalize = (options, ...geometries) => { + geometries = flatten(geometries); + if (geometries.length === 0) throw new Error('wrong number of arguments') + + const results = geometries.map((geometry) => { + if (isA$2(geometry)) return generalizePath2(options, geometry) + if (isA$5(geometry)) return generalizeGeom2(options, geometry) + if (isA$3(geometry)) return generalizeGeom3(options, geometry) + throw new Error('invalid geometry') + }); + return results.length === 1 ? results[0] : results + }; + + const snapPath2 = (geometry) => { + const epsilon = measureEpsilon(geometry); + const points = toPoints$1(geometry); + const newPoints = points.map((point) => snap$1(create$9(), point, epsilon)); + // snap can produce duplicate points, remove those + return create$5(newPoints) + }; + + const snapGeom2 = (geometry) => { + const epsilon = measureEpsilon(geometry); + const outlines = toOutlines(geometry); + let newOutlines = outlines.map((outline) => { + let prev = snap$1(create$9(), outline[outline.length - 1], epsilon); + const newOutline = []; + outline.forEach((point) => { + const snapped = snap$1(create$9(), point, epsilon); + // remove duplicate points + if (!equals$6(prev, snapped)) { + newOutline.push(snapped); + } + prev = snapped; + }); + return newOutline + }); + // remove zero-area outlines + newOutlines = newOutlines.filter((outline) => measureArea$1(create$3(outline))); + return create$a(newOutlines) + }; + + const snapGeom3 = (geometry) => { + const epsilon = measureEpsilon(geometry); + const polygons = toPolygons$1(geometry); + const newPolygons = snapPolygons(epsilon, polygons); + return create$8(newPolygons) + }; + + /** + * Snap the given geometries to the overall precision (epsilon) of the geometry. + * @see measurements.measureEpsilon() + * @param {...Object} geometries - the geometries to snap + * @return {Object|Array} the snapped geometry, or a list of snapped geometries + * @alias module:modeling/modifiers.snap + */ + const snap = (...geometries) => { + geometries = flatten(geometries); + if (geometries.length === 0) throw new Error('wrong number of arguments') + + const results = geometries.map((geometry) => { + if (isA$2(geometry)) return snapPath2(geometry) + if (isA$5(geometry)) return snapGeom2(geometry) + if (isA$3(geometry)) return snapGeom3(geometry) + return geometry + }); + return results.length === 1 ? results[0] : results + }; + + /** + * All shapes (primitives or the results of operations) can be modified to correct issues, etc. + * In all cases, these functions returns the results, and never changes the original geometry. + * @module modeling/modifiers + * @example + * import { generalize, snap } from '@jscad/modeling/modifiers' + */ + + var index$1 = /*#__PURE__*/Object.freeze({ + __proto__: null, + generalize: generalize, + snap: snap + }); + + const validateOptions = (options) => { + if (!Array.isArray(options.modes) || options.modes.length > 3) throw new Error('align(): modes must be an array of length <= 3') + options.modes = padArrayToLength(options.modes, 'none', 3); + if (options.modes.filter((mode) => ['center', 'max', 'min', 'none'].includes(mode)).length !== 3) throw new Error('align(): all modes must be one of "center", "max" or "min"') + + if (!Array.isArray(options.relativeTo) || options.relativeTo.length > 3) throw new Error('align(): relativeTo must be an array of length <= 3') + options.relativeTo = padArrayToLength(options.relativeTo, 0, 3); + if (options.relativeTo.filter((alignVal) => (Number.isFinite(alignVal) || alignVal == null)).length !== 3) throw new Error('align(): all relativeTo values must be a number, or null.') + + if (typeof options.grouped !== 'boolean') throw new Error('align(): grouped must be a boolean value.') + + return options + }; + + const populateRelativeToFromBounds = (relativeTo, modes, bounds) => { + for (let i = 0; i < 3; i++) { + if (relativeTo[i] == null) { + if (modes[i] === 'center') { + relativeTo[i] = (bounds[0][i] + bounds[1][i]) / 2; + } else if (modes[i] === 'max') { + relativeTo[i] = bounds[1][i]; + } else if (modes[i] === 'min') { + relativeTo[i] = bounds[0][i]; + } + } + } + return relativeTo + }; + + const alignGeometries = (geometry, modes, relativeTo) => { + const bounds = measureAggregateBoundingBox(geometry); + const translation = [0, 0, 0]; + for (let i = 0; i < 3; i++) { + if (modes[i] === 'center') { + translation[i] = relativeTo[i] - (bounds[0][i] + bounds[1][i]) / 2; + } else if (modes[i] === 'max') { + translation[i] = relativeTo[i] - bounds[1][i]; + } else if (modes[i] === 'min') { + translation[i] = relativeTo[i] - bounds[0][i]; + } + } + + return translate(translation, geometry) + }; + + /** + * Align the boundaries of the given geometries using the given options. + * @param {Object} options - options for aligning + * @param {Array} [options.modes = ['center', 'center', 'min']] - the point on the geometries to align to for each axis. Valid options are "center", "max", "min", and "none". + * @param {Array} [options.relativeTo = [0,0,0]] - The point one each axis on which to align the geometries upon. If the value is null, then the corresponding value from the group's bounding box is used. + * @param {Boolean} [options.grouped = false] - if true, transform all geometries by the same amount, maintaining the relative positions to each other. + * @param {...Object} geometries - the geometries to align + * @return {Object|Array} the aligned geometry, or a list of aligned geometries + * @alias module:modeling/transforms.align + * + * @example + * let alignedGeometries = align({modes: ['min', 'center', 'none'], relativeTo: [10, null, 10], grouped: true }, geometries) + */ + const align = (options, ...geometries) => { + const defaults = { + modes: ['center', 'center', 'min'], + relativeTo: [0, 0, 0], + grouped: false + }; + options = Object.assign({}, defaults, options); + + options = validateOptions(options); + let { modes, relativeTo, grouped } = options; + geometries = flatten(geometries); + if (geometries.length === 0) throw new Error('align(): No geometries were provided to act upon') + + if (relativeTo.filter((val) => val == null).length) { + const bounds = measureAggregateBoundingBox(geometries); + relativeTo = populateRelativeToFromBounds(relativeTo, modes, bounds); + } + if (grouped) { + geometries = alignGeometries(geometries, modes, relativeTo); + } else { + geometries = geometries.map((geometry) => alignGeometries(geometry, modes, relativeTo)); + } + return geometries.length === 1 ? geometries[0] : geometries + }; + + const centerGeometry = (options, object) => { + const defaults = { + axes: [true, true, true], + relativeTo: [0, 0, 0] + }; + const { axes, relativeTo } = Object.assign({}, defaults, options); + + const bounds = measureBoundingBox(object); + const offset = [0, 0, 0]; + if (axes[0]) offset[0] = relativeTo[0] - (bounds[0][0] + ((bounds[1][0] - bounds[0][0]) / 2)); + if (axes[1]) offset[1] = relativeTo[1] - (bounds[0][1] + ((bounds[1][1] - bounds[0][1]) / 2)); + if (axes[2]) offset[2] = relativeTo[2] - (bounds[0][2] + ((bounds[1][2] - bounds[0][2]) / 2)); + return translate(offset, object) + }; + + /** + * Center the given objects using the given options. + * @param {Object} options - options for centering + * @param {Array} [options.axes=[true,true,true]] - axis of which to center, true or false + * @param {Array} [options.relativeTo=[0,0,0]] - relative point of which to center the objects + * @param {...Object} objects - the objects to center + * @return {Object|Array} the centered object, or a list of centered objects + * @alias module:modeling/transforms.center + * + * @example + * let myshape = center({axes: [true,false,false]}, sphere()) // center about the X axis + */ + const center = (options, ...objects) => { + const defaults = { + axes: [true, true, true], + relativeTo: [0, 0, 0] + // TODO: Add additional 'methods' of centering: midpoint, centroid + }; + const { axes, relativeTo } = Object.assign({}, defaults, options); + + objects = flatten(objects); + if (objects.length === 0) throw new Error('wrong number of arguments') + if (relativeTo.length !== 3) throw new Error('relativeTo must be an array of length 3') + + options = { axes, relativeTo }; + + const results = objects.map((object) => { + if (isA$2(object)) return centerGeometry(options, object) + if (isA$5(object)) return centerGeometry(options, object) + if (isA$3(object)) return centerGeometry(options, object) + return object + }); + return results.length === 1 ? results[0] : results + }; + + /** + * Center the given objects about the X axis. + * @param {...Object} objects - the objects to center + * @return {Object|Array} the centered object, or a list of centered objects + * @alias module:modeling/transforms.centerX + */ + const centerX = (...objects) => center({ axes: [true, false, false] }, objects); + + /** + * Center the given objects about the Y axis. + * @param {...Object} objects - the objects to center + * @return {Object|Array} the centered object, or a list of centered objects + * @alias module:modeling/transforms.centerY + */ + const centerY = (...objects) => center({ axes: [false, true, false] }, objects); + + /** + * Center the given objects about the Z axis. + * @param {...Object} objects - the objects to center + * @return {Object|Array} the centered object, or a list of centered objects + * @alias module:modeling/transforms.centerZ + */ + const centerZ = (...objects) => center({ axes: [false, false, true] }, objects); + + /** + * Scale the given objects using the given options. + * @param {Array} factors - X, Y, Z factors by which to scale the objects + * @param {...Object} objects - the objects to scale + * @return {Object|Array} the scaled object, or a list of scaled objects + * @alias module:modeling/transforms.scale + * + * @example + * let myshape = scale([5, 0, 10], sphere()) + */ + const scale = (factors, ...objects) => { + if (!Array.isArray(factors)) throw new Error('factors must be an array') + + objects = flatten(objects); + if (objects.length === 0) throw new Error('wrong number of arguments') + + // adjust the factors if necessary + factors = factors.slice(); // don't modify the original + while (factors.length < 3) factors.push(1); + + if (factors[0] <= 0 || factors[1] <= 0 || factors[2] <= 0) throw new Error('factors must be positive') + + const matrix = fromScaling(create$c(), factors); + + const results = objects.map((object) => { + if (isA$2(object)) return transform$5(matrix, object) + if (isA$5(object)) return transform$a(matrix, object) + if (isA$3(object)) return transform$6(matrix, object) + return object + }); + return results.length === 1 ? results[0] : results + }; + + /** + * Scale the given objects about the X axis using the given options. + * @param {Number} factor - X factor by which to scale the objects + * @param {...Object} objects - the objects to scale + * @return {Object|Array} the scaled object, or a list of scaled objects + * @alias module:modeling/transforms.scaleX + */ + const scaleX = (factor, ...objects) => scale([factor, 1, 1], objects); + + /** + * Scale the given objects about the Y axis using the given options. + * @param {Number} factor - Y factor by which to scale the objects + * @param {...Object} objects - the objects to scale + * @return {Object|Array} the scaled object, or a list of scaled objects + * @alias module:modeling/transforms.scaleY + */ + const scaleY = (factor, ...objects) => scale([1, factor, 1], objects); + + /** + * Scale the given objects about the Z axis using the given options. + * @param {Number} factor - Z factor by which to scale the objects + * @param {...Object} objects - the objects to scale + * @return {Object|Array} the scaled object, or a list of scaled objects + * @alias module:modeling/transforms.scaleZ + */ + const scaleZ = (factor, ...objects) => scale([1, 1, factor], objects); + + /** + * Transform the given objects using the given matrix. + * @param {mat4} matrix - a transformation matrix + * @param {...Object} objects - the objects to transform + * @return {Object|Array} the transformed object, or a list of transformed objects + * @alias module:modeling/transforms.transform + * + * @example + * const newSphere = transform(mat4.rotateX(TAU / 8), sphere()) + */ + const transform = (matrix, ...objects) => { + // TODO how to check that the matrix is REAL? + + objects = flatten(objects); + if (objects.length === 0) throw new Error('wrong number of arguments') + + const results = objects.map((object) => { + if (isA$2(object)) return transform$5(matrix, object) + if (isA$5(object)) return transform$a(matrix, object) + if (isA$3(object)) return transform$6(matrix, object) + return object + }); + return results.length === 1 ? results[0] : results + }; + + /** + * All shapes (primitives or the results of operations) can be transformed, such as scaled or rotated. + * In all cases, the function returns the results, and never changes the original shapes. + * @module modeling/transforms + * @example + * import { center, rotateX, translate } from '@jscad/modeling/transforms' + */ + + var index = /*#__PURE__*/Object.freeze({ + __proto__: null, + align: align, + center: center, + centerX: centerX, + centerY: centerY, + centerZ: centerZ, + mirror: mirror, + mirrorX: mirrorX, + mirrorY: mirrorY, + mirrorZ: mirrorZ, + rotate: rotate, + rotateX: rotateX, + rotateY: rotateY, + rotateZ: rotateZ, + scale: scale, + scaleX: scaleX, + scaleY: scaleY, + scaleZ: scaleZ, + translate: translate, + translateX: translateX, + translateY: translateY, + translateZ: translateZ, + transform: transform + }); + + exports.booleans = index$5; + exports.colors = index$j; + exports.curves = index$h; + exports.expansions = index$4; + exports.extrusions = index$3; + exports.geometries = index$d; + exports.hulls = index$2; + exports.maths = index$a; + exports.measurements = index$9; + exports.modifiers = index$1; + exports.primitives = index$8; + exports.text = index$7; + exports.transforms = index; + exports.utils = index$6; + + Object.defineProperty(exports, '__esModule', { value: true }); + +})); diff --git a/packages/modeling/package.json b/packages/modeling/package.json index 1c3b7c483..694ec0325 100644 --- a/packages/modeling/package.json +++ b/packages/modeling/package.json @@ -14,7 +14,7 @@ "coverage": "nyc --all --reporter=html --reporter=text npm test", "test": "ava 'src/**/*.test.js' --verbose --timeout 2m", "test:tsd": "tsd", - "version": "npm run build && git add dist" + "version": "pnpm run build && git add dist" }, "contributors": [ {