forked from tensorflow/minigo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvalidate.py
92 lines (73 loc) · 3.01 KB
/
validate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
# Copyright 2018 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Validate a network.
Usage:
python validate.py tfrecord_dir/ tfrecord_dir2/
"""
import os
from absl import app, flags
import dual_net
import preprocessing
import utils
flags.DEFINE_integer('examples_to_validate', 50 * 2048,
'Number of examples to run validation on.')
flags.DEFINE_string('validate_name', 'holdout',
'Name of validation set (i.e. holdout or human).')
flags.DEFINE_bool('expand_validation_dirs', True,
'Whether to expand the input paths by globbing. If false, '
'directly read and validate on the given files.')
# From dual_net.py
flags.declare_key_flag('work_dir')
flags.declare_key_flag('use_tpu')
flags.declare_key_flag('num_tpu_cores')
FLAGS = flags.FLAGS
def validate(*tf_records):
"""Validate a model's performance on a set of holdout data."""
if FLAGS.use_tpu:
def _input_fn(params):
return preprocessing.get_tpu_input_tensors(
params['train_batch_size'], params['input_layout'], tf_records,
filter_amount=1.0)
else:
def _input_fn():
return preprocessing.get_input_tensors(
FLAGS.train_batch_size, FLAGS.input_layout, tf_records,
filter_amount=1.0, shuffle_examples=False)
steps = FLAGS.examples_to_validate // FLAGS.train_batch_size
if FLAGS.use_tpu:
steps //= FLAGS.num_tpu_cores
estimator = dual_net.get_estimator()
with utils.logged_timer("Validating"):
estimator.evaluate(_input_fn, steps=steps, name=FLAGS.validate_name)
def main(argv):
"""Validate a model's performance on a set of holdout data."""
_, *validation_paths = argv
if FLAGS.expand_validation_dirs:
tf_records = []
with utils.logged_timer("Building lists of holdout files"):
dirs = validation_paths
while dirs:
d = dirs.pop()
for path, newdirs, files in os.walk(d):
tf_records.extend(os.path.join(path, f) for f in files if f.endswith('.zz'))
dirs.extend(os.path.join(path, d) for d in newdirs)
else:
tf_records = validation_paths
if not tf_records:
print("Validation paths:", validation_paths)
print(["{}:\n\t{}".format(p, os.listdir(p)) for p in validation_paths])
raise RuntimeError("Did not find any holdout files for validating!")
validate(*tf_records)
if __name__ == "__main__":
app.run(main)