-
Notifications
You must be signed in to change notification settings - Fork 9
/
fast_oopsi.m
executable file
·424 lines (378 loc) · 18.2 KB
/
fast_oopsi.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
function [n_best P_best V C]=fast_oopsi(F,V,P)
% this function solves the following optimization problem:
% (*) n_best = argmax_{n >= 0} P(n | F)
% which is a MAP estimate for the most likely spike train given the
% fluorescence signal. given the model:
%
% <latex>
% \begin{align}
% C_t &= \gamma*C_{t-1} + n_t, \qquad & n_t & \sim \text{Poisson}(n_t; \lamda_t \Delta)
% F_t &= \alpha(C_t + \beta) + \sigma \varepsilon_t, &\varepsilon_t &\sim \mathcal{N}(0,1)
% \end{align}
% </latex>
%
% if F_t is a vector, then 'a' is a vector as well
% we approx the Poisson with an Exponential (which means we don't require integer numbers of spikes).
% we take an "interior-point" approach to impose the nonnegative contraint on (*).
% each step is solved in O(T)
% time by utilizing gaussian elimination on the tridiagonal hessian, as
% opposed to the O(T^3) time typically required for non-negative
% deconvolution.
%
% Input---- only F is REQUIRED. the others are optional
% F: fluorescence time series (can be a vector (1 x T) or a matrix (Np x T)
%
% V. structure of algorithm Variables
% Ncells: # of cells within ROI
% T: # of time steps
% Npixels:# of pixels in ROI
% dt: time step size, ie, frame duration, ie, 1/(imaging rate)
% n: if true spike train is known, and we are plotting, plot it (only required is est_a==1)
% h: height of ROI (assumes square ROI) (# of pixels) (only required if est_a==1 and we are plotting)
% w: width of ROI (assumes square ROI) (# of pixels) (only required if est_a==1 and we are plotting)
%
% THE FOLLOWING FIELDS CORRESPOND TO CHOICES THAT THE USER MAKE
%
% fast_poiss: 1 if F_t ~ Poisson, 0 if F_t ~ Gaussian
% fast_nonlin: 1 if F_t is a nonlinear f(C_t), and 0 if F_t is a linear f(C_t)
% fast_plot: 1 to plot results after each pseudo-EM iteration, 0 otherwise
% fast_thr: 1 if thresholding inferred spike train before estiamting {a,b}
% fast_iter_max: max # of iterations of pseudo-EM (1 to use default initial parameters)
% fast_ignore_post: 1 to keep iterating pseudo-EM even if posterior is not increasing, 0 otherwise
%
% THE BELOW FIELDS INDICATE WHETHER ONE WANTS TO ESTIMATE EACH OF THE
% PARAMETERS. IF ANY IS SET TO ZERO, THEN WE DO NOT TRY TO UPDATE THE
% ORIGINAL ESTIMATE, GIVEN EITHER BY THE USER, OR THE INITIAL ESTIMATE
% FROM THE CODE
%
% est_sig: 1 to estimate sig
% est_lam: 1 to estimate lam
% est_gam: 1 to estimate gam
% est_b: 1 to estimate b
% est_a: 1 to estimate a
%
% P. structure of neuron model Parameters
%
% a: spatial filter
% b: background fluorescence
% sig: standard deviation of observation noise
% gam: decayish, ie, tau=dt/(1-gam)
% lam: firing rate-ish, ie, expected # of spikes per frame
%
% Output---
% n_best: inferred spike train
% P_best: inferred parameter structure
% V: structure of Variables for algorithm to run
%% check data
if any(isnan(F));
error('nan in your data')
end
%% initialize algorithm Variables
starttime = cputime;
siz = size(F); if siz(2)==1, F=F'; siz=size(F); end
j=0;
% variables determined by the data
if nargin < 2, V = struct; end
if ~isfield(V,'Ncells'), V.Ncells = 1; end % # of cells in image
if ~isfield(V,'T'), V.T = siz(2); end % # of time steps
if ~isfield(V,'Npixels'), V.Npixels = siz(1); end % # of pixels in ROI
if ~isfield(V,'dt'), % frame duration
fr = input('\nwhat was the frame rate for this movie (in Hz)?: ');
V.dt = 1/fr;
end
% variables determined by the user
if ~isfield(V,'fast_poiss'),V.fast_poiss = 0; end % whether observations are Poisson
if ~isfield(V,'fast_nonlin'), V.fast_nonlin = 0; end
if V.fast_poiss && V.fast_nonlin,
reply = input('\ncan be nonlinear observations and poisson, \ntype 1 for nonlin, 2 for poisson, anything else for neither: ');
if reply==1, V.fast_poiss = 0; V.fast_nonlin = 1;
elseif reply==2, V.fast_poiss = 1; V.fast_nonlin = 0;
else V.fast_poiss = 0; V.fast_nonlin = 0;
end
end
if ~isfield(V,'fast_iter_max'), V.fast_iter_max=1; end % max # of iterations before convergence
% things that matter if we are iterating to estimate parameters
if V.fast_iter_max>1;
if V.fast_poiss || V.fast_nonlin,
disp('\ncode does not currrently support estimating parameters for \npoisson or nonlinear observations');
V.fast_iter_max=1;
end
if ~isfield(V,'fast_plot'), V.fast_plot = 0; end
if V.fast_plot==1
FigNum = 400;
if V.Npixels>1, figure(FigNum), clf, end % figure showing estimated spatial filter
figure(FigNum+1), clf % figure showing estimated spike trains
if isfield(V,'n'), siz=size(V.n); V.n(V.n==0)=NaN; if siz(1)<siz(2), V.n=V.n'; end; end
end
if ~isfield(V,'est_sig'), V.est_sig = 0; end % whether to estimate sig
if ~isfield(V,'est_lam'), V.est_lam = 0; end % whether to estimate lam
if ~isfield(V,'est_gam'), V.est_gam = 0; end % whether to estimate gam
if ~isfield(V,'est_a'), V.est_a = 0; end % whether to estimate a
if ~isfield(V,'est_b'), V.est_b = 1; end % whether to estimate b
if ~isfield(V,'fast_plot'), V.fast_plot = 1; end % whether to plot results from each iteration
if ~isfield(V,'fast_thr'), V.fast_thr = 0; end % whether to threshold spike train before estimating 'a' and 'b'
if ~isfield(V,'fast_ignore_post'), V.fast_ignore_post=0; end % whether to ignore the posterior, and just keep the last iteration
end
% normalize F if it is only a trace
if V.Npixels==1
F=detrend(F);
F=F-min(F)+eps;
end
%% set default model Parameters
if nargin < 3, P = struct; end
if ~isfield(P,'sig'), P.sig = mean(mad(F',1)*1.4826); end
if ~isfield(P,'gam'), P.gam = (1-V.dt/1)*ones(V.Ncells,1); end
if ~isfield(P,'lam'), P.lam = 10*ones(V.Ncells,1); end
if ~isfield(P,'a'), P.a = median(F,2); end
if ~isfield(P,'b'),
if V.Npixels==1, P.b = quantile(F,0.05);
else P.b=median(F,2);
end
end
%% define some stuff needed for est_MAP function
% for brevity and expediency
Z = zeros(V.Ncells*V.T,1); % zero vector
M = spdiags([repmat(-P.gam,V.T,1) repmat(Z,1,V.Ncells-1) (1+Z)], -V.Ncells:0,V.Ncells*V.T,V.Ncells*V.T); % matrix transforming calcium into spikes, ie n=M*C
I = speye(V.Ncells*V.T); % create out here cuz it must be reused
H1 = I; % initialize memory for Hessian matrix
H2 = I; % initialize memory for other part of Hessian matrix
d0 = 1:V.Ncells*V.T+1:(V.Ncells*V.T)^2; % index of diagonal elements of TxT matrices
d1 = 1+V.Ncells:V.Ncells*V.T+1:(V.Ncells*V.T)*(V.Ncells*(V.T-1)); % index of off-diagonal elements of TxT matrices
posts = Z(1:V.fast_iter_max); % initialize likelihood
if numel(P.lam)==V.Ncells
lam = V.dt*repmat(P.lam,V.T,1); % for lik
elseif numel(P.lam)==V.Ncells*V.T
lam = V.dt*P.lam;
else
error('lam must either be length V.T or 1');
end
if V.fast_poiss==1
H = I; % initialize memory for Hessian matrix
gamlnF = gammaln(F+1); % for lik
sumF = sum(F,1)'; % for grad & Hess
end
%% if not iterating to estimate parameters, only this is necessary
[n C posts(1)] = est_MAP(F,P);
n_best = n;
P_best = P;
V.fast_iter_tot = 1;
V.post = posts(1);
post_max = posts(1);
if V.fast_iter_max>1
options = optimset('Display','off'); % don't show warnings for parameter estimation
i = 1; % iteration #
i_best = i; % iteration with highest likelihood
conv = 0; % whether algorithm has converged yet
else
conv = 1;
end
%% if parameters are unknown, do pseudo-EM iterations
while conv == 0
if V.fast_plot == 1, MakePlot(n,F,P,V); end % plot results from previous iteration
i = i+1; % update iteratation number
V.fast_iter_tot = i; % record of total # of iterations
P = est_params(n,C,F,P,b); % update parameters based on previous iteration
[n C posts(i)] = est_MAP(F,P); % update inferred spike train based on new parameters
if posts(i)>post_max || V.fast_ignore_post==1% if this is the best one, keep n and P
n_best = n; % keep n
P_best = P; % keep P
i_best = i; % keep track of which was best
post_max= posts(i); % keep max posterior
end
% if lik doesn't change much (relatively), or returns to some previous state, stop iterating
if i>=V.fast_iter_max || (abs((posts(i)-posts(i-1))/posts(i))<1e-3 || any(posts(1:i-1)-posts(i))<1e-5)% abs((posts(i)-posts(i-1))/posts(i))<1e-5 || posts(i-1)-posts(i)>1e5;
MakePlot(n,F,P,V);
disp('convergence criteria met')
V.post = posts(1:i);
conv = 1;
end
sound(3*sin(linspace(0,90*pi,2000))) % play sound to indicate iteration is over
end
V.fast_time = cputime-starttime; % time to run code
V = orderfields(V); % order fields alphabetically to they are easier to read
P_best = orderfields(P_best);
% n_best = n_best./repmat(max(n_best),V.T,1);
P_best.j=j;
%% fast filter function
function [n C post] = est_MAP(F,P)
% initialize n and C
z = 1; % weight on barrier function
llam = reshape(1./lam',1,V.Ncells*V.T)';
if V.fast_nonlin==1
n = V.gauss_n;
else
n = 0.01+0*llam; % initialize spike train
end
C = 0*n; % initialize calcium
for j=1:V.Ncells
C(j:V.Ncells:end) = filter(1,[1, -P.gam(j)],n(j:V.Ncells:end)); %(1-P.gam(j))*P.b(j);
end
% precompute parameters required for evaluating and maximizing likelihood
b = repmat(P.b,1,V.T); % for lik
if V.fast_poiss==1
suma = sum(P.a); % for grad
else
M(d1) = -repmat(P.gam,V.T-1,1); % matrix transforming calcium into spikes, ie n=M*C
ba = P.a'*b; ba=ba(:); % for grad
aa = repmat(diag(P.a'*P.a),V.T,1);% for grad
aF = P.a'*F; aF=aF(:); % for grad
e = 1/(2*P.sig^2); % scale of variance
H1(d0) = -2*e*aa; % for Hess
end
grad_lnprior = M'*llam; % for grad
% find C = argmin_{C_z} lik + prior + barrier_z
while z>1e-13 % this is an arbitrary threshold
if V.fast_poiss==1
Fexpect = P.a*(C+b')'; % expected poisson observation rate
lik = -sum(sum(-Fexpect+ F.*log(Fexpect) - gamlnF)); % lik
else
if V.fast_nonlin==1
S = C./(C+P.k_d);
else
S = C;
end
D = F-P.a*(reshape(S,V.Ncells,V.T))-b; % difference vector to be used in likelihood computation
lik = e*D(:)'*D(:); % lik
end
post = lik + llam'*n - z*sum(log(n));
s = 1; % step size
d = 1; % direction
while norm(d)>5e-2 && s > 1e-3 % converge for this z (again, these thresholds are arbitrary)
if V.fast_poiss==1
glik = suma - sumF./(C+b');
H1(d0) = sumF.*(C+b').^(-2); % lik contribution to Hessian
elseif V.fast_nonlin==1
glik = -2*P.a*P.k_d*D'.*(C+P.k_d).^-2;
H1diag = (-P.a*P.k_d-2*(C+P.k_d).*D').*((C+P.k_d).^-4);
H1(d0) = H1diag;
else
glik = -2*e*(aF-aa.*C-ba); % gradient
end
g = glik + grad_lnprior - z*M'*(n.^-1);
H2(d0) = n.^-2; % log barrier part of the Hessian
H = H1 - z*(M'*H2*M); % Hessian
d = H\g; % direction to step using newton-raphson
hit = -n./(M*d); % step within constraint boundaries
hit=hit(hit>0);
if any(hit<1)
s = min(1,0.99*min(hit));
else
s = 1;
end
post1 = post+1;
while post1>=post+1e-7 % make sure newton step doesn't increase objective
C1 = C+s*d;
n = M*C1;
if V.fast_poiss==1
Fexpect = P.a*(C1+b')';
lik1 = -sum(sum(-Fexpect+ F.*log(Fexpect) - gamlnF));
else
if V.fast_nonlin==1
S1 = C1./(C1+P.k_d);
else
S1 = C1;
end
D = F-P.a*(reshape(S1,V.Ncells,V.T))-b; % difference vector to be used in likelihood computation
lik1 = e*D(:)'*D(:); % lik
end
post1 = lik1 + llam'*n - z*sum(log(n));
s = s/5; % if step increases objective function, decrease step size
if s<1e-20; disp('reducing s further did not increase likelihood'), break; end % if decreasing step size just doesn't do it
end
C = C1; % update C
post = post1; % update post
end
z=z/10; % reduce z (sequence of z reductions is arbitrary)
end
% reshape things in the case of multiple neurons within the ROI
n=reshape(n,V.Ncells,V.T)';
C=reshape(C,V.Ncells,V.T)';
end
%% Parameter Update
function P = est_params(n,C,F,P,b)
% generate regressor for spatial filter
if V.est_a==1 || V.est_b==1
if V.fast_thr==1
CC=0*C;
for j=1:V.Ncells
nsort = sort(n(:,j));
nthr = nsort(round(0.98*V.T));
nn = Z(1:V.T);
nn(n(:,j)<=nthr)=0;
nn(n(:,j)>nthr)=1;
CC(:,j) = filter(1,[1 -P.gam(j)],nn) + (1-P.gam(j))*P.b(j);
end
else
CC = C;
end
if V.est_b==1
A = [CC -1+Z(1:V.T)];
else
A=CC;
end
X = A\F';
P.a = X(1:V.Ncells,:)';
if V.est_b==1
P.b = X(end,:)';
b = repmat(P.b,1,V.T);
end
D = F-P.a*(reshape(C,V.Ncells,V.T)) - b;
mse = D(:)'*D(:);
end
if V.est_a==0 && V.est_b==0 && (V.est_sig==1 || V.est_lam==1),
D = F-P.a*(reshape(C,V.Ncells,V.T)+b);
mse = D(:)'*D(:);
end
% estimate other parameters
if V.est_sig==1,
P.sig = sqrt(mse)/V.T;
end
if V.est_lam==1,
nnorm = n./repmat(max(n),V.T,1);
if numel(P.lam)==V.Ncells
P.lam = sum(nnorm)'/(V.T*V.dt);
lam = repmat(P.lam,V.T,1)*V.dt;
else
P.lam = nnorm/(V.T*V.dt);
lam = P.lam*V.dt;
end
end
end
%% MakePlot
function MakePlot(n,F,P,V)
if V.fast_plot == 1
if V.Npixels>1 % plot spatial filter
figure(FigNum), nrows=V.Ncells;
for j=1:V.Ncells, subplot(1,nrows,j),
imagesc(reshape(P.a(:,j),V.w,V.h)),
title('a')
end
end
figure(FigNum+1), ncols=V.Ncells; nrows=3; END=V.T; h=zeros(V.Ncells,2);
for j=1:V.Ncells % plot inferred spike train
h(j,1)=subplot(nrows,ncols,(j-1)*ncols+1); cla
if V.Npixels>1, Ftemp=mean(F); else Ftemp=F; end
plot(z1(Ftemp(2:END))+1), hold on,
bar(z1(n_best(2:END,j)))
title(['best iteration ' num2str(i_best)]),
axis('tight')
set(gca,'XTickLabel',[],'YTickLabel',[])
h(j,2)=subplot(nrows,ncols,(j-1)*ncols+2); cla
bar(z1(n(2:END,j)))
if isfield(V,'n'), hold on,
for k=1:V.Ncells
stem(V.n(2:END,k)+k/10,'LineStyle','none','Marker','v','MarkerEdgeColor','k','MarkerFaceColor','k','MarkerSize',2)
end
end
set(gca,'XTickLabel',[],'YTickLabel',[])
title(['current iteration ' num2str(i)]),
axis('tight')
end
subplot(nrows,ncols,j*nrows),
plot(1:i,posts(1:i)) % plot record of likelihoods
title(['max lik ' num2str(post_max,4), ', lik ' num2str(posts(i),4)])
set(gca,'XTick',2:i,'XTickLabel',2:i)
drawnow
end
end
end