-
Notifications
You must be signed in to change notification settings - Fork 5
/
movement.c
1022 lines (872 loc) · 40.2 KB
/
movement.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* MIT License
*
* Copyright (c) 2022 Joey Castillo
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#define MOVEMENT_LONG_PRESS_TICKS 64
#include <stdio.h>
#include <string.h>
#include <limits.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include "app.h"
#include "watch.h"
#include "watch_utility.h"
#include "usb.h"
#include "watch_private.h"
#include "movement.h"
#include "filesystem.h"
#include "shell.h"
#include "utz.h"
#include "zones.h"
#include "lis2dw.h"
#include "tc.h"
#include "evsys.h"
#include "movement_config.h"
#include "movement_custom_signal_tunes.h"
#if __EMSCRIPTEN__
#include <emscripten.h>
#else
#include "watch_usb_cdc.h"
#endif
movement_state_t movement_state;
void * watch_face_contexts[MOVEMENT_NUM_FACES];
watch_date_time_t scheduled_tasks[MOVEMENT_NUM_FACES];
const int32_t movement_le_inactivity_deadlines[8] = {INT_MAX, 600, 3600, 7200, 21600, 43200, 86400, 604800};
const int16_t movement_timeout_inactivity_deadlines[4] = {60, 120, 300, 1800};
movement_event_t event;
int8_t _movement_dst_offset_cache[NUM_ZONE_NAMES] = {0};
#define TIMEZONE_DOES_NOT_OBSERVE (-127)
const char movement_valid_position_0_chars[] = " AaBbCcDdEeFGgHhIiJKLMNnOoPQrSTtUuWXYZ-='+\\/0123456789";
const char movement_valid_position_1_chars[] = " ABCDEFHlJLNORTtUX-='01378";
void cb_mode_btn_interrupt(void);
void cb_light_btn_interrupt(void);
void cb_alarm_btn_interrupt(void);
void cb_alarm_btn_extwake(void);
void cb_alarm_fired(void);
void cb_fast_tick(void);
void cb_tick(void);
#ifdef HAS_ACCELEROMETER
void cb_accelerometer_event(void);
void cb_accelerometer_wake(void);
uint8_t stationary_minutes = 0;
#endif
#if __EMSCRIPTEN__
void yield(void) {
}
#else
void yield(void) {
tud_task();
cdc_task();
}
#endif
static udatetime_t _movement_convert_date_time_to_udate(watch_date_time_t date_time) {
return (udatetime_t) {
.date.dayofmonth = date_time.unit.day,
.date.dayofweek = dayofweek(UYEAR_FROM_YEAR(date_time.unit.year + WATCH_RTC_REFERENCE_YEAR), date_time.unit.month, date_time.unit.day),
.date.month = date_time.unit.month,
.date.year = UYEAR_FROM_YEAR(date_time.unit.year + WATCH_RTC_REFERENCE_YEAR),
.time.hour = date_time.unit.hour,
.time.minute = date_time.unit.minute,
.time.second = date_time.unit.second
};
}
static bool _movement_update_dst_offset_cache(void) {
uzone_t local_zone;
udatetime_t udate_time;
bool dst_changed = false;
watch_date_time_t system_date_time = watch_rtc_get_date_time();
for (uint8_t i = 0; i < NUM_ZONE_NAMES; i++) {
unpack_zone(&zone_defns[i], "", &local_zone);
watch_date_time_t date_time = watch_utility_date_time_convert_zone(system_date_time, 0, local_zone.offset.hours * 3600 + local_zone.offset.minutes * 60);
if (!!local_zone.rules_len) {
// if local zone has DST rules, we need to see if DST applies.
udate_time = _movement_convert_date_time_to_udate(date_time);
uoffset_t offset;
get_current_offset(&local_zone, &udate_time, &offset);
int8_t new_offset = (offset.hours * 60 + offset.minutes) / 15;
if (_movement_dst_offset_cache[i] != new_offset) {
_movement_dst_offset_cache[i] = new_offset;
dst_changed = true;
}
} else {
// otherwise set the cache to a constant value that indicates no DST check needs to be performed.
_movement_dst_offset_cache[i] = TIMEZONE_DOES_NOT_OBSERVE;
}
}
return dst_changed;
}
static inline void _movement_reset_inactivity_countdown(void) {
movement_state.le_mode_ticks = movement_le_inactivity_deadlines[movement_state.settings.bit.le_interval];
movement_state.timeout_ticks = movement_timeout_inactivity_deadlines[movement_state.settings.bit.to_interval];
}
static inline void _movement_enable_fast_tick_if_needed(void) {
if (!movement_state.fast_tick_enabled) {
movement_state.fast_ticks = 0;
watch_rtc_register_periodic_callback(cb_fast_tick, 128);
movement_state.fast_tick_enabled = true;
}
}
static inline void _movement_disable_fast_tick_if_possible(void) {
if ((movement_state.light_ticks == -1) &&
(movement_state.alarm_ticks == -1) &&
((movement_state.light_down_timestamp + movement_state.mode_down_timestamp + movement_state.alarm_down_timestamp) == 0)) {
movement_state.fast_tick_enabled = false;
watch_rtc_disable_periodic_callback(128);
}
}
static void _movement_handle_top_of_minute(void) {
watch_date_time_t date_time = watch_rtc_get_date_time();
#ifdef HAS_ACCELEROMETER
if (stationary_minutes < 5) {
// if the watch has been stationary for fewer than 5 minutes, find out if it's still stationary.
if (HAL_GPIO_A4_read()) stationary_minutes++;
printf("Stationary minutes: %d\n", stationary_minutes);
// does this mark five stationary minutes? and are we not already asleep?
if (stationary_minutes == 5 && movement_state.le_mode_ticks != -1) {
// if so, enter low energy mode.
printf("Entering low energy mode due to inactivity.\n");
movement_request_sleep();
}
}
#endif
// update the DST offset cache every 30 minutes, since someplace in the world could change.
if (date_time.unit.minute % 30 == 0) {
_movement_update_dst_offset_cache();
}
for(uint8_t i = 0; i < MOVEMENT_NUM_FACES; i++) {
// For each face that offers an advisory...
if (watch_faces[i].advise != NULL) {
// ...we ask for one.
movement_watch_face_advisory_t advisory = watch_faces[i].advise(watch_face_contexts[i]);
// If it wants a background task...
if (advisory.wants_background_task) {
// we give it one. pretty straightforward!
movement_event_t background_event = { EVENT_BACKGROUND_TASK, 0 };
watch_faces[i].loop(background_event, watch_face_contexts[i]);
}
// TODO: handle other advisory types
}
}
movement_state.woke_from_alarm_handler = false;
}
static void _movement_handle_scheduled_tasks(void) {
watch_date_time_t date_time = watch_rtc_get_date_time();
uint8_t num_active_tasks = 0;
for(uint8_t i = 0; i < MOVEMENT_NUM_FACES; i++) {
if (scheduled_tasks[i].reg) {
if (scheduled_tasks[i].reg <= date_time.reg) {
scheduled_tasks[i].reg = 0;
movement_event_t background_event = { EVENT_BACKGROUND_TASK, 0 };
watch_faces[i].loop(background_event, watch_face_contexts[i]);
// check if loop scheduled a new task
if (scheduled_tasks[i].reg) {
num_active_tasks++;
}
} else {
num_active_tasks++;
}
}
}
if (num_active_tasks == 0) {
movement_state.has_scheduled_background_task = false;
} else {
_movement_reset_inactivity_countdown();
}
}
void movement_request_tick_frequency(uint8_t freq) {
// Movement uses the 128 Hz tick internally
if (freq == 128) return;
// Movement requires at least a 1 Hz tick.
// If we are asked for an invalid frequency, default back to 1 Hz.
if (freq == 0 || __builtin_popcount(freq) != 1) freq = 1;
// disable all callbacks except the 128 Hz one
watch_rtc_disable_matching_periodic_callbacks(0xFE);
movement_state.subsecond = 0;
movement_state.tick_frequency = freq;
watch_rtc_register_periodic_callback(cb_tick, freq);
}
void movement_illuminate_led(void) {
if (movement_state.settings.bit.led_duration != 0b111) {
watch_set_led_color_rgb(movement_state.settings.bit.led_red_color | movement_state.settings.bit.led_red_color << 4,
movement_state.settings.bit.led_green_color | movement_state.settings.bit.led_green_color << 4,
movement_state.settings.bit.led_blue_color | movement_state.settings.bit.led_blue_color << 4);
if (movement_state.settings.bit.led_duration == 0) {
movement_state.light_ticks = 1;
} else {
movement_state.light_ticks = (movement_state.settings.bit.led_duration * 2 - 1) * 128;
}
_movement_enable_fast_tick_if_needed();
}
}
void movement_force_led_on(uint8_t red, uint8_t green, uint8_t blue) {
// this is hacky, we need a way for watch faces to set an arbitrary color and prevent Movement from turning it right back off.
watch_set_led_color_rgb(red, green, blue);
movement_state.light_ticks = 32767;
}
void movement_force_led_off(void) {
watch_set_led_off();
movement_state.light_ticks = -1;
_movement_disable_fast_tick_if_possible();
}
bool movement_default_loop_handler(movement_event_t event) {
switch (event.event_type) {
case EVENT_MODE_BUTTON_UP:
movement_move_to_next_face();
break;
case EVENT_LIGHT_BUTTON_DOWN:
movement_illuminate_led();
break;
case EVENT_LIGHT_BUTTON_UP:
if (movement_state.settings.bit.led_duration == 0) {
movement_force_led_off();
}
break;
case EVENT_MODE_LONG_PRESS:
if (MOVEMENT_SECONDARY_FACE_INDEX && movement_state.current_face_idx == 0) {
movement_move_to_face(MOVEMENT_SECONDARY_FACE_INDEX);
} else {
movement_move_to_face(0);
}
break;
default:
break;
}
return true;
}
void movement_move_to_face(uint8_t watch_face_index) {
movement_state.watch_face_changed = true;
movement_state.next_face_idx = watch_face_index;
}
void movement_move_to_next_face(void) {
uint16_t face_max;
if (MOVEMENT_SECONDARY_FACE_INDEX) {
face_max = (movement_state.current_face_idx < (int16_t)MOVEMENT_SECONDARY_FACE_INDEX) ? MOVEMENT_SECONDARY_FACE_INDEX : MOVEMENT_NUM_FACES;
} else {
face_max = MOVEMENT_NUM_FACES;
}
movement_move_to_face((movement_state.current_face_idx + 1) % face_max);
}
void movement_schedule_background_task(watch_date_time_t date_time) {
movement_schedule_background_task_for_face(movement_state.current_face_idx, date_time);
}
void movement_cancel_background_task(void) {
movement_cancel_background_task_for_face(movement_state.current_face_idx);
}
void movement_schedule_background_task_for_face(uint8_t watch_face_index, watch_date_time_t date_time) {
watch_date_time_t now = watch_rtc_get_date_time();
if (date_time.reg > now.reg) {
movement_state.has_scheduled_background_task = true;
scheduled_tasks[watch_face_index].reg = date_time.reg;
}
}
void movement_cancel_background_task_for_face(uint8_t watch_face_index) {
scheduled_tasks[watch_face_index].reg = 0;
bool other_tasks_scheduled = false;
for(uint8_t i = 0; i < MOVEMENT_NUM_FACES; i++) {
if (scheduled_tasks[i].reg != 0) {
other_tasks_scheduled = true;
break;
}
}
movement_state.has_scheduled_background_task = other_tasks_scheduled;
}
void movement_request_sleep(void) {
/// FIXME: for #SecondMovement: This was a feature request to allow watch faces to request sleep.
/// Setting the ticks to 1 means the watch will sleep after the next tick. I'd like to say let's
/// set it to 0, have the watch face loop return false, and then we'll fall asleep immediately.
/// But could this lead to a race condition where the callback decrements to -1 before the loop?
/// This is the safest way but consider more testing here.
movement_state.le_mode_ticks = 1;
}
void movement_request_wake() {
movement_state.needs_wake = true;
_movement_reset_inactivity_countdown();
}
static void end_buzzing() {
movement_state.is_buzzing = false;
}
static void end_buzzing_and_disable_buzzer(void) {
end_buzzing();
watch_disable_buzzer();
}
void movement_play_signal(void) {
void *maybe_disable_buzzer = end_buzzing_and_disable_buzzer;
if (watch_is_buzzer_or_led_enabled()) {
maybe_disable_buzzer = end_buzzing;
} else {
watch_enable_buzzer();
}
movement_state.is_buzzing = true;
watch_buzzer_play_sequence(signal_tune, maybe_disable_buzzer);
if (movement_state.le_mode_ticks == -1) {
// the watch is asleep. wake it up for "1" round through the main loop.
// the sleep_mode_app_loop will notice the is_buzzing and note that it
// only woke up to beep and then it will spinlock until the callback
// turns off the is_buzzing flag.
movement_state.needs_wake = true;
movement_state.le_mode_ticks = 1;
}
}
void movement_play_alarm(void) {
movement_play_alarm_beeps(5, BUZZER_NOTE_C8);
}
void movement_play_alarm_beeps(uint8_t rounds, watch_buzzer_note_t alarm_note) {
if (rounds == 0) rounds = 1;
if (rounds > 20) rounds = 20;
movement_request_wake();
movement_state.alarm_note = alarm_note;
// our tone is 0.375 seconds of beep and 0.625 of silence, repeated as given.
movement_state.alarm_ticks = 128 * rounds - 75;
_movement_enable_fast_tick_if_needed();
}
uint8_t movement_claim_backup_register(void) {
if (movement_state.next_available_backup_register >= 8) return 0;
return movement_state.next_available_backup_register++;
}
int32_t movement_get_current_timezone_offset_for_zone(uint8_t zone_index) {
int8_t cached_dst_offset = _movement_dst_offset_cache[zone_index];
if (cached_dst_offset == TIMEZONE_DOES_NOT_OBSERVE) {
// if time zone doesn't observe DST, we can just return the standard time offset from the zone definition.
return (int32_t)zone_defns[zone_index].offset_inc_minutes * OFFSET_INCREMENT * 60;
} else {
// otherwise, we've precalculated the offset for this zone and can return it.
return (int32_t)cached_dst_offset * OFFSET_INCREMENT * 60;
}
}
int32_t movement_get_current_timezone_offset(void) {
return movement_get_current_timezone_offset_for_zone(movement_state.settings.bit.time_zone);
}
int32_t movement_get_timezone_index(void) {
return movement_state.settings.bit.time_zone;
}
void movement_set_timezone_index(uint8_t value) {
movement_state.settings.bit.time_zone = value;
}
watch_date_time_t movement_get_utc_date_time(void) {
return watch_rtc_get_date_time();
}
watch_date_time_t movement_get_date_time_in_zone(uint8_t zone_index) {
int32_t offset = movement_get_current_timezone_offset_for_zone(zone_index);
return watch_utility_date_time_convert_zone(watch_rtc_get_date_time(), 0, offset);
}
watch_date_time_t movement_get_local_date_time(void) {
watch_date_time_t date_time = watch_rtc_get_date_time();
return watch_utility_date_time_convert_zone(date_time, 0, movement_get_current_timezone_offset());
}
void movement_set_local_date_time(watch_date_time_t date_time) {
int32_t current_offset = movement_get_current_timezone_offset();
watch_date_time_t utc_date_time = watch_utility_date_time_convert_zone(date_time, current_offset, 0);
watch_rtc_set_date_time(utc_date_time);
// this may seem wasteful, but if the user's local time is in a zone that observes DST,
// they may have just crossed a DST boundary, which means the next call to this function
// could require a different offset to force local time back to UTC. Quelle horreur!
_movement_update_dst_offset_cache();
}
bool movement_button_should_sound(void) {
return movement_state.settings.bit.button_should_sound;
}
void movement_set_button_should_sound(bool value) {
movement_state.settings.bit.button_should_sound = value;
}
movement_clock_mode_t movement_clock_mode_24h(void) {
return movement_state.settings.bit.clock_mode_24h ? MOVEMENT_CLOCK_MODE_24H : MOVEMENT_CLOCK_MODE_12H;
}
void movement_set_clock_mode_24h(movement_clock_mode_t value) {
movement_state.settings.bit.clock_mode_24h = (value == MOVEMENT_CLOCK_MODE_24H);
}
bool movement_use_imperial_units(void) {
return movement_state.settings.bit.use_imperial_units;
}
void movement_set_use_imperial_units(bool value) {
movement_state.settings.bit.use_imperial_units = value;
}
uint8_t movement_get_fast_tick_timeout(void) {
return movement_state.settings.bit.to_interval;
}
void movement_set_fast_tick_timeout(uint8_t value) {
movement_state.settings.bit.to_interval = value;
}
uint8_t movement_get_low_energy_timeout(void) {
return movement_state.settings.bit.le_interval;
}
void movement_set_low_energy_timeout(uint8_t value) {
movement_state.settings.bit.le_interval = value;
}
movement_color_t movement_backlight_color(void) {
return (movement_color_t) {
.red = movement_state.settings.bit.led_red_color,
.green = movement_state.settings.bit.led_green_color,
.blue = movement_state.settings.bit.led_blue_color
};
}
void movement_set_backlight_color(movement_color_t color) {
movement_state.settings.bit.led_red_color = color.red;
movement_state.settings.bit.led_green_color = color.green;
movement_state.settings.bit.led_blue_color = color.blue;
}
uint8_t movement_get_backlight_dwell(void) {
return movement_state.settings.bit.led_duration;
}
void movement_set_backlight_dwell(uint8_t value) {
movement_state.settings.bit.led_duration = value;
}
void movement_store_settings(void) {
watch_store_backup_data(movement_state.settings.reg, 0);
}
bool movement_alarm_enabled(void) {
return movement_state.settings.bit.alarm_enabled;
}
void movement_set_alarm_enabled(bool value) {
movement_state.settings.bit.alarm_enabled = value;
}
void movement_enable_tap_detection_if_available(void) {
#ifdef HAS_ACCELEROMETER
// disable event on INT1/A3 (normally tracks orientation changes)
eic_disable_event(HAL_GPIO_A3_pin());
// configure tap duration threshold and enable Z axis
lis2dw_configure_tap_threshold(0, 0, 12, LIS2DW_REG_TAP_THS_Z_Z_AXIS_ENABLE);
lis2dw_configure_tap_duration(10, 2, 2);
// ramp data rate up to 400 Hz and high performance mode
lis2dw_set_low_noise_mode(true);
lis2dw_set_data_rate(LIS2DW_DATA_RATE_HP_400_HZ);
lis2dw_set_mode(LIS2DW_MODE_HIGH_PERFORMANCE);
// Settling time (1 sample duration, i.e. 1/400Hz)
delay_ms(3);
// enable tap detection on INT1/A3.
lis2dw_configure_int1(LIS2DW_CTRL4_INT1_SINGLE_TAP | LIS2DW_CTRL4_INT1_6D);
// and enable the cb_accelerometer_event interrupt callback, so we can catch tap events.
watch_register_interrupt_callback(HAL_GPIO_A3_pin(), cb_accelerometer_event, INTERRUPT_TRIGGER_RISING);
#endif
}
void movement_disable_tap_detection_if_available(void) {
#ifdef HAS_ACCELEROMETER
// Ramp data rate back down to the usual lowest rate to save power.
lis2dw_set_low_noise_mode(false);
lis2dw_set_data_rate(LIS2DW_DATA_RATE_LOWEST);
lis2dw_set_mode(LIS2DW_MODE_LOW_POWER);
// disable the interrupt on INT1/A3...
eic_disable_interrupt(HAL_GPIO_A3_pin());
// ...disable Z axis (not sure if this is needed, does this save power?)...
lis2dw_configure_tap_threshold(0, 0, 0, 0);
// ...re-enable tracking of orientation changes...
lis2dw_configure_int1(LIS2DW_CTRL4_INT1_6D);
// ...and re-enable the event.
eic_enable_event(HAL_GPIO_A3_pin());
#endif
}
void app_init(void) {
_watch_init();
watch_date_time_t date_time = watch_rtc_get_date_time();
if (date_time.reg == 0) {
// at first boot, set year to 2024
date_time.unit.year = 2024 - WATCH_RTC_REFERENCE_YEAR;
date_time.unit.month = 1;
date_time.unit.day = 1;
watch_rtc_set_date_time(date_time);
}
// check if we are plugged into USB power.
HAL_GPIO_VBUS_DET_in();
HAL_GPIO_VBUS_DET_pulldown();
if (HAL_GPIO_VBUS_DET_read()){
/// if so, enable USB functionality.
_watch_enable_usb();
}
HAL_GPIO_VBUS_DET_off();
#if defined(NO_FREQCORR)
watch_rtc_freqcorr_write(0, 0);
#elif defined(WATCH_IS_BLUE_BOARD)
watch_rtc_freqcorr_write(11, 0);
#else
watch_rtc_freqcorr_write(22, 0);
#endif
memset(&movement_state, 0, sizeof(movement_state));
movement_state.settings.bit.clock_mode_24h = MOVEMENT_DEFAULT_24H_MODE;
movement_state.settings.bit.time_zone = UTZ_UTC;
movement_state.settings.bit.led_red_color = MOVEMENT_DEFAULT_RED_COLOR;
movement_state.settings.bit.led_green_color = MOVEMENT_DEFAULT_GREEN_COLOR;
#if defined(WATCH_BLUE_TCC_CHANNEL) && !defined(WATCH_GREEN_TCC_CHANNEL)
// If there is a blue LED but no green LED, this is a blue Special Edition board.
// In the past, the "green color" showed up as the blue color on the blue board.
if (MOVEMENT_DEFAULT_RED_COLOR == 0 && MOVEMENT_DEFAULT_BLUE_COLOR == 0) {
// If the red color is 0 and the blue color is 0, we'll fall back to the old
// behavior, since otherwise there would be no default LED color.
movement_state.settings.bit.led_blue_color = MOVEMENT_DEFAULT_GREEN_COLOR;
} else {
// however if either the red or blue color is nonzero, we'll assume the user
// has used the new defaults and knows what color they want. this could be red
// if blue is 0, or a custom color if both are nonzero.
movement_state.settings.bit.led_blue_color = MOVEMENT_DEFAULT_BLUE_COLOR;
}
#else
movement_state.settings.bit.led_blue_color = MOVEMENT_DEFAULT_BLUE_COLOR;
#endif
movement_state.settings.bit.button_should_sound = MOVEMENT_DEFAULT_BUTTON_SOUND;
movement_state.settings.bit.to_interval = MOVEMENT_DEFAULT_TIMEOUT_INTERVAL;
movement_state.settings.bit.le_interval = MOVEMENT_DEFAULT_LOW_ENERGY_INTERVAL;
movement_state.settings.bit.led_duration = MOVEMENT_DEFAULT_LED_DURATION;
movement_state.light_ticks = -1;
movement_state.alarm_ticks = -1;
movement_state.next_available_backup_register = 4;
_movement_reset_inactivity_countdown();
filesystem_init();
}
void app_wake_from_backup(void) {
/// TODO: #SecondMovement needs to restore settings from file system.
}
void app_setup(void) {
watch_store_backup_data(movement_state.settings.reg, 0);
static bool is_first_launch = true;
if (is_first_launch) {
#ifdef MOVEMENT_CUSTOM_BOOT_COMMANDS
MOVEMENT_CUSTOM_BOOT_COMMANDS()
#endif
for(uint8_t i = 0; i < MOVEMENT_NUM_FACES; i++) {
watch_face_contexts[i] = NULL;
scheduled_tasks[i].reg = 0;
is_first_launch = false;
}
// populate the DST offset cache
_movement_update_dst_offset_cache();
#if __EMSCRIPTEN__
int32_t time_zone_offset = EM_ASM_INT({
return -new Date().getTimezoneOffset();
});
for (int i = 0; i < NUM_ZONE_NAMES; i++) {
if (movement_get_current_timezone_offset_for_zone(i) == time_zone_offset * 60) {
movement_state.settings.bit.time_zone = i;
break;
}
}
#endif
// set up the 1 minute alarm (for background tasks and low power updates)
watch_date_time_t alarm_time;
alarm_time.reg = 0;
alarm_time.unit.second = 59; // after a match, the alarm fires at the next rising edge of CLK_RTC_CNT, so 59 seconds lets us update at :00
watch_rtc_register_alarm_callback(cb_alarm_fired, alarm_time, ALARM_MATCH_SS);
}
if (movement_state.le_mode_ticks != -1) {
watch_disable_extwake_interrupt(HAL_GPIO_BTN_ALARM_pin());
watch_enable_external_interrupts();
watch_register_interrupt_callback(HAL_GPIO_BTN_MODE_pin(), cb_mode_btn_interrupt, INTERRUPT_TRIGGER_BOTH);
watch_register_interrupt_callback(HAL_GPIO_BTN_LIGHT_pin(), cb_light_btn_interrupt, INTERRUPT_TRIGGER_BOTH);
watch_register_interrupt_callback(HAL_GPIO_BTN_ALARM_pin(), cb_alarm_btn_interrupt, INTERRUPT_TRIGGER_BOTH);
#ifdef HAS_ACCELEROMETER
// gossamer doesn't include all the chip-specific constants, so we have to fake them here.
#ifndef EVSYS_ID_GEN_EIC_EXTINT_3
#define EVSYS_ID_GEN_EIC_EXTINT_3 18
#endif
#ifndef EVSYS_ID_USER_TC2_EVU
#define EVSYS_ID_USER_TC2_EVU 17
#endif
watch_enable_i2c();
if (lis2dw_begin()) {
lis2dw_set_mode(LIS2DW_MODE_LOW_POWER); // select low power (not high performance) mode
lis2dw_set_low_power_mode(LIS2DW_LP_MODE_1); // lowest power mode, 12-bit
lis2dw_set_low_noise_mode(false); // low noise mode raises power consumption slightly; we don't need it
lis2dw_set_data_rate(LIS2DW_DATA_RATE_LOWEST); // sample at 1.6 Hz, lowest rate available
lis2dw_enable_stationary_motion_detection(); // stationary/motion detection mode keeps the data rate at 1.6 Hz even in sleep
lis2dw_set_range(LIS2DW_RANGE_2_G); // Application note AN5038 recommends 2g range
lis2dw_enable_sleep(); // allow acceleromter to sleep and wake on activity
lis2dw_configure_wakeup_threshold(8); // g threshold to wake up: (2 * FS / 64) where FS is "full scale" of ±2g.
lis2dw_configure_6d_threshold(3); // 0-3 is 80, 70, 60, or 50 degrees. 50 is least precise, hopefully most sensitive?
// set up interrupts:
// INT1 is wired to pin A3. We'll configure the accelerometer to output an interrupt on INT1 when it detects an orientation change.
lis2dw_configure_int1(LIS2DW_CTRL4_INT1_6D);
HAL_GPIO_A3_in();
HAL_GPIO_A3_pmuxen(HAL_GPIO_PMUX_EIC);
eic_configure_pin(HAL_GPIO_A3_pin(), INTERRUPT_TRIGGER_RISING);
// but rather than hooking it up to an interrupt callback, we'll have it trigger an event.
eic_enable_event(HAL_GPIO_A3_pin());
// that event will increment a counter on TC2. So let's set that up:
if (!tc_is_enabled(2)) {
// TC2 clocked from GCLK3, the 1024 Hz clock. No further division.
tc_init(2, GENERIC_CLOCK_3, TC_PRESCALER_DIV1);
}
// COUNT16 mode, count up to 65535 orientation changes (we will reset before it overflows)
tc_set_counter_mode(2, TC_COUNTER_MODE_16BIT);
// run in standby (we spend most of our time in standby)
tc_set_run_in_standby(2, true);
// finally set the event action to count up when an event is received.
tc_set_event_action(2, TC_EVENT_ACTION_COUNT);
// enable TC2!
tc_enable(2);
// now configure the event system:
// on channel 0, route the INT3 event generator to the TC2 event user. Run in standby, on the asynchronous path.
evsys_configure_channel(0, EVSYS_ID_GEN_EIC_EXTINT_3, EVSYS_ID_USER_TC2_EVU, true, true);
// this concludes the setup for orientation tracking.
// next: INT2 is wired to pin A4. We'll configure the accelerometer to output the sleep state on INT2.
// a falling edge on INT2 indicates the accelerometer has woken up.
lis2dw_configure_int2(LIS2DW_CTRL5_INT2_SLEEP_STATE | LIS2DW_CTRL5_INT2_SLEEP_CHG);
HAL_GPIO_A4_in();
watch_register_extwake_callback(HAL_GPIO_A4_pin(), cb_accelerometer_wake, false);
lis2dw_enable_interrupts();
}
#endif
watch_enable_buzzer();
watch_enable_leds();
watch_enable_display();
movement_request_tick_frequency(1);
for(uint8_t i = 0; i < MOVEMENT_NUM_FACES; i++) {
watch_faces[i].setup(i, &watch_face_contexts[i]);
}
watch_faces[movement_state.current_face_idx].activate(watch_face_contexts[movement_state.current_face_idx]);
event.subsecond = 0;
event.event_type = EVENT_ACTIVATE;
}
}
static void _sleep_mode_app_loop(void) {
movement_state.needs_wake = false;
// as long as le_mode_ticks is -1 (i.e. we are in low energy mode), we wake up here, update the screen, and go right back to sleep.
while (movement_state.le_mode_ticks == -1) {
// we also have to handle top-of-the-minute tasks here in the mini-runloop
if (movement_state.woke_from_alarm_handler) _movement_handle_top_of_minute();
event.event_type = EVENT_LOW_ENERGY_UPDATE;
watch_faces[movement_state.current_face_idx].loop(event, watch_face_contexts[movement_state.current_face_idx]);
// if we need to wake immediately, do it!
if (movement_state.needs_wake) return;
// otherwise enter sleep mode, and when the extwake handler is called, it will reset le_mode_ticks and force us out at the next loop.
else watch_enter_sleep_mode();
}
}
bool app_loop(void) {
const watch_face_t *wf = &watch_faces[movement_state.current_face_idx];
bool woke_up_for_buzzer = false;
if (movement_state.watch_face_changed) {
if (movement_state.settings.bit.button_should_sound) {
// low note for nonzero case, high note for return to watch_face 0
watch_buzzer_play_note_with_volume(movement_state.next_face_idx ? BUZZER_NOTE_C7 : BUZZER_NOTE_C8, 50, WATCH_BUZZER_VOLUME_SOFT);
}
wf->resign(watch_face_contexts[movement_state.current_face_idx]);
movement_state.current_face_idx = movement_state.next_face_idx;
// we have just updated the face idx, so we must recache the watch face pointer.
wf = &watch_faces[movement_state.current_face_idx];
watch_clear_display();
movement_request_tick_frequency(1);
wf->activate(watch_face_contexts[movement_state.current_face_idx]);
event.subsecond = 0;
event.event_type = EVENT_ACTIVATE;
movement_state.watch_face_changed = false;
}
// if the LED should be off, turn it off
if (movement_state.light_ticks == 0) {
// unless the user is holding down the LIGHT button, in which case, give them more time.
if (HAL_GPIO_BTN_LIGHT_read()) {
movement_state.light_ticks = 1;
} else {
movement_force_led_off();
}
}
// handle top-of-minute tasks, if the alarm handler told us we need to
if (movement_state.woke_from_alarm_handler) _movement_handle_top_of_minute();
// if we have a scheduled background task, handle that here:
if (event.event_type == EVENT_TICK && movement_state.has_scheduled_background_task) _movement_handle_scheduled_tasks();
// if we have timed out of our low energy mode countdown, enter low energy mode.
if (movement_state.le_mode_ticks == 0) {
movement_state.le_mode_ticks = -1;
watch_register_extwake_callback(HAL_GPIO_BTN_ALARM_pin(), cb_alarm_btn_extwake, true);
event.event_type = EVENT_NONE;
event.subsecond = 0;
// _sleep_mode_app_loop takes over at this point and loops until le_mode_ticks is reset by the extwake handler,
// or wake is requested using the movement_request_wake function.
_sleep_mode_app_loop();
// as soon as _sleep_mode_app_loop returns, we prepare to reactivate
// ourselves, but first, we check to see if we woke up for the buzzer:
if (movement_state.is_buzzing) {
woke_up_for_buzzer = true;
}
event.event_type = EVENT_ACTIVATE;
// this is a hack tho: waking from sleep mode, app_setup does get called, but it happens before we have reset our ticks.
// need to figure out if there's a better heuristic for determining how we woke up.
app_setup();
}
// default to being allowed to sleep by the face.
bool can_sleep = true;
if (event.event_type) {
event.subsecond = movement_state.subsecond;
// the first trip through the loop overrides the can_sleep state
can_sleep = wf->loop(event, watch_face_contexts[movement_state.current_face_idx]);
// Keep light on if user is still interacting with the watch.
if (movement_state.light_ticks > 0) {
switch (event.event_type) {
case EVENT_LIGHT_BUTTON_DOWN:
case EVENT_MODE_BUTTON_DOWN:
case EVENT_ALARM_BUTTON_DOWN:
movement_illuminate_led();
}
}
event.event_type = EVENT_NONE;
}
// if we have timed out of our timeout countdown, give the app a hint that they can resign.
if (movement_state.timeout_ticks == 0 && movement_state.current_face_idx != 0) {
movement_state.timeout_ticks = -1;
event.event_type = EVENT_TIMEOUT;
event.subsecond = movement_state.subsecond;
// if we run through the loop again to time out, we need to reconsider whether or not we can sleep.
// if the first trip said true, but this trip said false, we need the false to override, thus
// we will be using boolean AND:
//
// first trip | can sleep | cannot sleep | can sleep | cannot sleep
// second trip | can sleep | cannot sleep | cannot sleep | can sleep
// && | can sleep | cannot sleep | cannot sleep | cannot sleep
bool can_sleep2 = wf->loop(event, watch_face_contexts[movement_state.current_face_idx]);
can_sleep = can_sleep && can_sleep2;
event.event_type = EVENT_NONE;
}
// Now that we've handled all display update tasks, handle the alarm.
if (movement_state.alarm_ticks >= 0) {
uint8_t buzzer_phase = (movement_state.alarm_ticks + 80) % 128;
if(buzzer_phase == 127) {
// failsafe: buzzer could have been disabled in the meantime
if (!watch_is_buzzer_or_led_enabled()) watch_enable_buzzer();
// play 4 beeps plus pause
for(uint8_t i = 0; i < 4; i++) {
// TODO: This method of playing the buzzer blocks the UI while it's beeping.
// It might be better to time it with the fast tick.
watch_buzzer_play_note(movement_state.alarm_note, (i != 3) ? 50 : 75);
if (i != 3) watch_buzzer_play_note(BUZZER_NOTE_REST, 50);
}
}
if (movement_state.alarm_ticks == 0) {
movement_state.alarm_ticks = -1;
_movement_disable_fast_tick_if_possible();
}
}
// if we are plugged into USB, handle the serial shell
if (usb_is_enabled()) {
shell_task();
}
event.subsecond = 0;
// if the watch face changed, we can't sleep because we need to update the display.
if (movement_state.watch_face_changed) can_sleep = false;
// if we woke up for the buzzer, stay awake until it's finished.
if (woke_up_for_buzzer) {
while(watch_is_buzzer_or_led_enabled());
}
// if the LED is on, we need to stay awake to keep the TCC running.
if (movement_state.light_ticks != -1) can_sleep = false;
// if we are plugged into USB, we can't sleep because we need to keep the serial shell running.
if (usb_is_enabled()) {
yield();
can_sleep = false;
}
return can_sleep;
}
static movement_event_type_t _figure_out_button_event(bool pin_level, movement_event_type_t button_down_event_type, uint16_t *down_timestamp) {
// force alarm off if the user pressed a button.
if (movement_state.alarm_ticks) movement_state.alarm_ticks = 0;
if (pin_level) {
// handle rising edge
_movement_enable_fast_tick_if_needed();
*down_timestamp = movement_state.fast_ticks + 1;
return button_down_event_type;
} else {
// this line is hack but it handles the situation where the light button was held for more than 20 seconds.
// fast tick is disabled by then, and the LED would get stuck on since there's no one left decrementing light_ticks.
if (movement_state.light_ticks == 1) movement_state.light_ticks = 0;
// now that that's out of the way, handle falling edge
uint16_t diff = movement_state.fast_ticks - *down_timestamp;
*down_timestamp = 0;
_movement_disable_fast_tick_if_possible();
// any press over a half second is considered a long press. Fire the long-up event
if (diff > MOVEMENT_LONG_PRESS_TICKS) return button_down_event_type + 3;
else return button_down_event_type + 1;
}
}
void cb_light_btn_interrupt(void) {
bool pin_level = HAL_GPIO_BTN_LIGHT_read();
_movement_reset_inactivity_countdown();
event.event_type = _figure_out_button_event(pin_level, EVENT_LIGHT_BUTTON_DOWN, &movement_state.light_down_timestamp);
}
void cb_mode_btn_interrupt(void) {
bool pin_level = HAL_GPIO_BTN_MODE_read();
_movement_reset_inactivity_countdown();
event.event_type = _figure_out_button_event(pin_level, EVENT_MODE_BUTTON_DOWN, &movement_state.mode_down_timestamp);
}
void cb_alarm_btn_interrupt(void) {
bool pin_level = HAL_GPIO_BTN_ALARM_read();
_movement_reset_inactivity_countdown();
event.event_type = _figure_out_button_event(pin_level, EVENT_ALARM_BUTTON_DOWN, &movement_state.alarm_down_timestamp);
}
void cb_alarm_btn_extwake(void) {
// wake up!
_movement_reset_inactivity_countdown();
}
void cb_alarm_fired(void) {
movement_state.woke_from_alarm_handler = true;
}
void cb_fast_tick(void) {
movement_state.fast_ticks++;
if (movement_state.light_ticks > 0) movement_state.light_ticks--;
if (movement_state.alarm_ticks > 0) movement_state.alarm_ticks--;
// check timestamps and auto-fire the long-press events
// Notice: is it possible that two or more buttons have an identical timestamp? In this case
// only one of these buttons would receive the long press event. Don't bother for now...
if (movement_state.light_down_timestamp > 0)
if (movement_state.fast_ticks - movement_state.light_down_timestamp == MOVEMENT_LONG_PRESS_TICKS + 1)
event.event_type = EVENT_LIGHT_LONG_PRESS;
if (movement_state.mode_down_timestamp > 0)
if (movement_state.fast_ticks - movement_state.mode_down_timestamp == MOVEMENT_LONG_PRESS_TICKS + 1)
event.event_type = EVENT_MODE_LONG_PRESS;
if (movement_state.alarm_down_timestamp > 0)
if (movement_state.fast_ticks - movement_state.alarm_down_timestamp == MOVEMENT_LONG_PRESS_TICKS + 1)
event.event_type = EVENT_ALARM_LONG_PRESS;
// this is just a fail-safe; fast tick should be disabled as soon as the button is up, the LED times out, and/or the alarm finishes.
// but if for whatever reason it isn't, this forces the fast tick off after 20 seconds.
if (movement_state.fast_ticks >= 128 * 20) {
watch_rtc_disable_periodic_callback(128);
movement_state.fast_tick_enabled = false;
}
}
void cb_tick(void) {
event.event_type = EVENT_TICK;
watch_date_time_t date_time = watch_rtc_get_date_time();
if (date_time.unit.second != movement_state.last_second) {
// TODO: can we consolidate these two ticks?
if (movement_state.le_mode_ticks > 0) movement_state.le_mode_ticks--;
if (movement_state.timeout_ticks > 0) movement_state.timeout_ticks--;
movement_state.last_second = date_time.unit.second;
movement_state.subsecond = 0;
} else {
movement_state.subsecond++;
}
}
#ifdef HAS_ACCELEROMETER