forked from efficient/cicada-exp-sigmod2017-silo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
txn_proto2_impl.cc
716 lines (657 loc) · 23.9 KB
/
txn_proto2_impl.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
#include <iostream>
#include <thread>
#include <fcntl.h>
#include <unistd.h>
#include <sys/uio.h>
#include <limits.h>
#include <numa.h>
#include "txn_proto2_impl.h"
#include "counter.h"
#include "util.h"
using namespace std;
using namespace util;
/** logger subsystem **/
/*{{{*/
bool txn_logger::g_persist = false;
bool txn_logger::g_call_fsync = true;
bool txn_logger::g_use_compression = false;
bool txn_logger::g_fake_writes = false;
size_t txn_logger::g_nworkers = 0;
txn_logger::epoch_array
txn_logger::per_thread_sync_epochs_[txn_logger::g_nmax_loggers];
aligned_padded_elem<atomic<uint64_t>>
txn_logger::system_sync_epoch_(0);
percore<txn_logger::persist_ctx>
txn_logger::g_persist_ctxs;
percore<txn_logger::persist_stats>
txn_logger::g_persist_stats;
event_counter
txn_logger::g_evt_log_buffer_epoch_boundary("log_buffer_epoch_boundary");
event_counter
txn_logger::g_evt_log_buffer_out_of_space("log_buffer_out_of_space");
event_counter
txn_logger::g_evt_log_buffer_bytes_before_compress("log_buffer_bytes_before_compress");
event_counter
txn_logger::g_evt_log_buffer_bytes_after_compress("log_buffer_bytes_after_compress");
event_counter
txn_logger::g_evt_logger_writev_limit_met("logger_writev_limit_met");
event_counter
txn_logger::g_evt_logger_max_lag_wait("logger_max_lag_wait");
event_avg_counter
txn_logger::g_evt_avg_log_buffer_compress_time_us("avg_log_buffer_compress_time_us");
event_avg_counter
txn_logger::g_evt_avg_log_entry_ntxns("avg_log_entry_ntxns_per_entry");
event_avg_counter
txn_logger::g_evt_avg_logger_bytes_per_writev("avg_logger_bytes_per_writev");
event_avg_counter
txn_logger::g_evt_avg_logger_bytes_per_sec("avg_logger_bytes_per_sec");
static event_avg_counter
evt_avg_log_buffer_iov_len("avg_log_buffer_iov_len");
void
txn_logger::Init(
size_t nworkers,
const vector<string> &logfiles,
const vector<vector<unsigned>> &assignments_given,
vector<vector<unsigned>> *assignments_used,
bool call_fsync,
bool use_compression,
bool fake_writes)
{
INVARIANT(!g_persist);
INVARIANT(g_nworkers == 0);
INVARIANT(nworkers > 0);
INVARIANT(!logfiles.empty());
INVARIANT(logfiles.size() <= g_nmax_loggers);
INVARIANT(!use_compression || g_perthread_buffers > 1); // need 1 as scratch buf
vector<int> fds;
for (auto &fname : logfiles) {
int fd = open(fname.c_str(), O_CREAT|O_WRONLY|O_TRUNC, 0664);
if (fd == -1) {
perror("open");
ALWAYS_ASSERT(false);
}
fds.push_back(fd);
}
g_persist = true;
g_call_fsync = call_fsync;
g_use_compression = use_compression;
g_fake_writes = fake_writes;
g_nworkers = nworkers;
for (size_t i = 0; i < g_nmax_loggers; i++)
for (size_t j = 0; j < g_nworkers; j++)
per_thread_sync_epochs_[i].epochs_[j].store(0, memory_order_release);
vector<thread> writers;
vector<vector<unsigned>> assignments(assignments_given);
if (assignments.empty()) {
// compute assuming homogenous disks
if (g_nworkers <= fds.size()) {
// each thread gets its own logging worker
for (size_t i = 0; i < g_nworkers; i++)
assignments.push_back({(unsigned) i});
} else {
// XXX: currently we assume each logger is equally as fast- we should
// adjust ratios accordingly for non-homogenous loggers
const size_t threads_per_logger = g_nworkers / fds.size();
for (size_t i = 0; i < fds.size(); i++) {
assignments.emplace_back(
MakeRange<unsigned>(
i * threads_per_logger,
((i + 1) == fds.size()) ? g_nworkers : (i + 1) * threads_per_logger));
}
}
}
INVARIANT(AssignmentsValid(assignments, fds.size(), g_nworkers));
for (size_t i = 0; i < assignments.size(); i++) {
writers.emplace_back(
&txn_logger::writer,
i, fds[i], assignments[i]);
writers.back().detach();
}
thread persist_thread(&txn_logger::persister, assignments);
persist_thread.detach();
if (assignments_used)
*assignments_used = assignments;
}
void
txn_logger::persister(
vector<vector<unsigned>> assignments)
{
timer loop_timer;
for (;;) {
const uint64_t last_loop_usec = loop_timer.lap();
const uint64_t delay_time_usec = ticker::tick_us;
if (last_loop_usec < delay_time_usec) {
const uint64_t sleep_ns = (delay_time_usec - last_loop_usec) * 1000;
struct timespec t;
t.tv_sec = sleep_ns / ONE_SECOND_NS;
t.tv_nsec = sleep_ns % ONE_SECOND_NS;
nanosleep(&t, nullptr);
}
advance_system_sync_epoch(assignments);
}
}
void
txn_logger::advance_system_sync_epoch(
const vector<vector<unsigned>> &assignments)
{
uint64_t min_so_far = numeric_limits<uint64_t>::max();
const uint64_t best_tick_ex =
ticker::s_instance.global_current_tick();
// special case 0
const uint64_t best_tick_inc =
best_tick_ex ? (best_tick_ex - 1) : 0;
for (size_t i = 0; i < assignments.size(); i++)
for (auto j : assignments[i])
for (size_t k = j; k < NMAXCORES; k += g_nworkers) {
persist_ctx &ctx = persist_ctx_for(k, INITMODE_NONE);
// we need to arbitrarily advance threads which are not "doing
// anything", so they don't drag down the persistence of the system. if
// we can see that a thread is NOT in a guarded section AND its
// core->logger queue is empty, then that means we can advance its sync
// epoch up to best_tick_inc, b/c it is guaranteed that the next time
// it does any actions will be in epoch > best_tick_inc
if (!ctx.persist_buffers_.peek()) {
spinlock &l = ticker::s_instance.lock_for(k);
if (!l.is_locked()) {
bool did_lock = false;
for (size_t c = 0; c < 3; c++) {
if (l.try_lock()) {
did_lock = true;
break;
}
}
if (did_lock) {
if (!ctx.persist_buffers_.peek()) {
min_so_far = min(min_so_far, best_tick_inc);
per_thread_sync_epochs_[i].epochs_[k].store(
best_tick_inc, memory_order_release);
l.unlock();
continue;
}
l.unlock();
}
}
}
min_so_far = min(
per_thread_sync_epochs_[i].epochs_[k].load(
memory_order_acquire),
min_so_far);
}
const uint64_t syssync =
system_sync_epoch_->load(memory_order_acquire);
INVARIANT(min_so_far < numeric_limits<uint64_t>::max());
INVARIANT(syssync <= min_so_far);
// need to aggregate from [syssync + 1, min_so_far]
const uint64_t now_us = timer::cur_usec();
for (size_t i = 0; i < g_persist_stats.size(); i++) {
auto &ps = g_persist_stats[i];
for (uint64_t e = syssync + 1; e <= min_so_far; e++) {
auto &pes = ps.d_[e % g_max_lag_epochs];
const uint64_t ntxns_in_epoch = pes.ntxns_.load(memory_order_acquire);
const uint64_t start_us = pes.earliest_start_us_.load(memory_order_acquire);
INVARIANT(now_us >= start_us);
non_atomic_fetch_add(ps.ntxns_persisted_, ntxns_in_epoch);
non_atomic_fetch_add(
ps.latency_numer_,
(now_us - start_us) * ntxns_in_epoch);
pes.ntxns_.store(0, memory_order_release);
pes.earliest_start_us_.store(0, memory_order_release);
}
}
system_sync_epoch_->store(min_so_far, memory_order_release);
}
void
txn_logger::writer(
unsigned id, int fd,
vector<unsigned> assignment)
{
if (g_pin_loggers_to_numa_nodes) {
ALWAYS_ASSERT(!numa_run_on_node(id % numa_num_configured_nodes()));
ALWAYS_ASSERT(!sched_yield());
}
vector<iovec> iovs(
min(size_t(IOV_MAX), g_nworkers * g_perthread_buffers));
vector<pbuffer *> pxs;
timer loop_timer;
// XXX: sense is not useful for now, unless we want to
// fsync in the background...
bool sense = false; // cur is at sense, prev is at !sense
uint64_t epoch_prefixes[2][NMAXCORES];
NDB_MEMSET(&epoch_prefixes[0], 0, sizeof(epoch_prefixes[0]));
NDB_MEMSET(&epoch_prefixes[1], 0, sizeof(epoch_prefixes[1]));
// NOTE: a core id in the persistence system really represets
// all cores in the regular system modulo g_nworkers
size_t nbufswritten = 0, nbyteswritten = 0;
for (;;) {
const uint64_t last_loop_usec = loop_timer.lap();
const uint64_t delay_time_usec = ticker::tick_us;
// don't allow this loop to proceed less than an epoch's worth of time,
// so we can batch IO
if (last_loop_usec < delay_time_usec && nbufswritten < iovs.size()) {
const uint64_t sleep_ns = (delay_time_usec - last_loop_usec) * 1000;
struct timespec t;
t.tv_sec = sleep_ns / ONE_SECOND_NS;
t.tv_nsec = sleep_ns % ONE_SECOND_NS;
nanosleep(&t, nullptr);
}
// we need g_persist_stats[cur_sync_epoch_ex % g_nmax_loggers]
// to remain untouched (until the syncer can catch up), so we
// cannot read any buffers with epoch >=
// (cur_sync_epoch_ex + g_max_lag_epochs)
const uint64_t cur_sync_epoch_ex =
system_sync_epoch_->load(memory_order_acquire) + 1;
nbufswritten = nbyteswritten = 0;
for (auto idx : assignment) {
INVARIANT(idx >= 0 && idx < g_nworkers);
for (size_t k = idx; k < NMAXCORES; k += g_nworkers) {
persist_ctx &ctx = persist_ctx_for(k, INITMODE_NONE);
ctx.persist_buffers_.peekall(pxs);
for (auto px : pxs) {
INVARIANT(px);
INVARIANT(!px->io_scheduled_);
INVARIANT(nbufswritten <= iovs.size());
INVARIANT(px->header()->nentries_);
INVARIANT(px->core_id_ == k);
if (nbufswritten == iovs.size()) {
++g_evt_logger_writev_limit_met;
goto process;
}
if (transaction_proto2_static::EpochId(px->header()->last_tid_) >=
cur_sync_epoch_ex + g_max_lag_epochs) {
++g_evt_logger_max_lag_wait;
break;
}
iovs[nbufswritten].iov_base = (void *) &px->buf_start_[0];
#ifdef LOGGER_UNSAFE_REDUCE_BUFFER_SIZE
#define PXLEN(px) (((px)->curoff_ < 4) ? (px)->curoff_ : ((px)->curoff_ / 4))
#else
#define PXLEN(px) ((px)->curoff_)
#endif
const size_t pxlen = PXLEN(px);
iovs[nbufswritten].iov_len = pxlen;
evt_avg_log_buffer_iov_len.offer(pxlen);
px->io_scheduled_ = true;
nbufswritten++;
nbyteswritten += pxlen;
#ifdef CHECK_INVARIANTS
auto last_tid_cid = transaction_proto2_static::CoreId(px->header()->last_tid_);
auto px_cid = px->core_id_;
if (last_tid_cid != px_cid) {
cerr << "header: " << *px->header() << endl;
cerr << g_proto_version_str(last_tid_cid) << endl;
cerr << "last_tid_cid: " << last_tid_cid << endl;
cerr << "px_cid: " << px_cid << endl;
}
#endif
const uint64_t px_epoch =
transaction_proto2_static::EpochId(px->header()->last_tid_);
INVARIANT(
transaction_proto2_static::CoreId(px->header()->last_tid_) ==
px->core_id_);
INVARIANT(epoch_prefixes[sense][k] <= px_epoch);
INVARIANT(px_epoch > 0);
epoch_prefixes[sense][k] = px_epoch - 1;
auto &pes = g_persist_stats[k].d_[px_epoch % g_max_lag_epochs];
if (!pes.ntxns_.load(memory_order_acquire))
pes.earliest_start_us_.store(px->earliest_start_us_, memory_order_release);
non_atomic_fetch_add(pes.ntxns_, px->header()->nentries_);
g_evt_avg_log_entry_ntxns.offer(px->header()->nentries_);
}
}
}
process:
if (!nbufswritten) {
// XXX: should probably sleep here
nop_pause();
continue;
}
const bool dosense = sense;
if (!g_fake_writes) {
#ifdef ENABLE_EVENT_COUNTERS
timer write_timer;
#endif
const ssize_t ret = writev(fd, &iovs[0], nbufswritten);
if (unlikely(ret == -1)) {
perror("writev");
ALWAYS_ASSERT(false);
}
if (g_call_fsync) {
const int fret = fdatasync(fd);
if (unlikely(fret == -1)) {
perror("fdatasync");
ALWAYS_ASSERT(false);
}
}
#ifdef ENABLE_EVENT_COUNTERS
{
g_evt_avg_logger_bytes_per_writev.offer(nbyteswritten);
const double bytes_per_sec =
double(nbyteswritten)/(write_timer.lap_ms() / 1000.0);
g_evt_avg_logger_bytes_per_sec.offer(bytes_per_sec);
}
#endif
}
// update metadata from previous write
//
// return all buffers that have been io_scheduled_ - we can do this as
// soon as write returns. we take care to return to the proper buffer
epoch_array &ea = per_thread_sync_epochs_[id];
for (auto idx: assignment) {
for (size_t k = idx; k < NMAXCORES; k += g_nworkers) {
const uint64_t x0 = ea.epochs_[k].load(memory_order_acquire);
const uint64_t x1 = epoch_prefixes[dosense][k];
if (x1 > x0)
ea.epochs_[k].store(x1, memory_order_release);
persist_ctx &ctx = persist_ctx_for(k, INITMODE_NONE);
pbuffer *px, *px0;
while ((px = ctx.persist_buffers_.peek()) && px->io_scheduled_) {
#ifdef LOGGER_STRIDE_OVER_BUFFER
{
const size_t pxlen = PXLEN(px);
const size_t stridelen = 1;
for (size_t p = 0; p < pxlen; p += stridelen)
if ((&px->buf_start_[0])[p] & 0xF)
non_atomic_fetch_add(ea.dummy_work_, 1UL);
}
#endif
px0 = ctx.persist_buffers_.deq();
INVARIANT(px == px0);
INVARIANT(px->header()->nentries_);
px0->reset();
INVARIANT(ctx.init_);
INVARIANT(px0->core_id_ == k);
ctx.all_buffers_.enq(px0);
}
}
}
// bump the sense
sense = !sense;
}
}
tuple<uint64_t, uint64_t, double>
txn_logger::compute_ntxns_persisted_statistics()
{
uint64_t acc = 0, acc1 = 0, acc2 = 0;
uint64_t num = 0;
for (size_t i = 0; i < g_persist_stats.size(); i++) {
acc += g_persist_stats[i].ntxns_persisted_.load(memory_order_acquire);
acc1 += g_persist_stats[i].ntxns_pushed_.load(memory_order_acquire);
acc2 += g_persist_stats[i].ntxns_committed_.load(memory_order_acquire);
num += g_persist_stats[i].latency_numer_.load(memory_order_acquire);
}
INVARIANT(acc <= acc1);
INVARIANT(acc1 <= acc2);
if (acc == 0)
return make_tuple(0, acc1, 0.0);
return make_tuple(acc, acc1, double(num)/double(acc));
}
void
txn_logger::clear_ntxns_persisted_statistics()
{
for (size_t i = 0; i < g_persist_stats.size(); i++) {
auto &ps = g_persist_stats[i];
ps.ntxns_persisted_.store(0, memory_order_release);
ps.ntxns_pushed_.store(0, memory_order_release);
ps.ntxns_committed_.store(0, memory_order_release);
ps.latency_numer_.store(0, memory_order_release);
for (size_t e = 0; e < g_max_lag_epochs; e++) {
auto &pes = ps.d_[e];
pes.ntxns_.store(0, memory_order_release);
pes.earliest_start_us_.store(0, memory_order_release);
}
}
}
void
txn_logger::wait_for_idle_state()
{
for (size_t i = 0; i < NMAXCORES; i++) {
persist_ctx &ctx = persist_ctx_for(i, INITMODE_NONE);
if (!ctx.init_)
continue;
pbuffer *px;
while (!(px = ctx.all_buffers_.peek()) || px->header()->nentries_)
nop_pause();
while (ctx.persist_buffers_.peek())
nop_pause();
}
}
void
txn_logger::wait_until_current_point_persisted()
{
const uint64_t e = ticker::s_instance.global_current_tick();
cerr << "waiting for system_sync_epoch_="
<< system_sync_epoch_->load(memory_order_acquire)
<< " to be < e=" << e << endl;
while (system_sync_epoch_->load(memory_order_acquire) < e)
nop_pause();
}
/*}}}*/
/** garbage collection subsystem **/
static event_counter evt_local_chain_cleanups("local_chain_cleanups");
static event_counter evt_try_delete_unlinks("try_delete_unlinks");
static event_avg_counter evt_avg_time_inbetween_ro_epochs_usec(
"avg_time_inbetween_ro_epochs_usec");
void
transaction_proto2_static::InitGC()
{
g_flags->g_gc_init.store(true, memory_order_release);
}
static void
sleep_ro_epoch()
{
const uint64_t sleep_ns = transaction_proto2_static::ReadOnlyEpochUsec * 1000;
struct timespec t;
t.tv_sec = sleep_ns / ONE_SECOND_NS;
t.tv_nsec = sleep_ns % ONE_SECOND_NS;
nanosleep(&t, nullptr);
}
void
transaction_proto2_static::PurgeThreadOutstandingGCTasks()
{
#ifdef PROTO2_CAN_DISABLE_GC
if (!IsGCEnabled())
return;
#endif
INVARIANT(!rcu::s_instance.in_rcu_region());
threadctx &ctx = g_threadctxs.my();
uint64_t e;
if (!ctx.queue_.get_latest_epoch(e))
return;
// wait until we can clean up e
for (;;) {
const uint64_t last_tick_ex = ticker::s_instance.global_last_tick_exclusive();
const uint64_t ro_tick_ex = to_read_only_tick(last_tick_ex);
if (unlikely(!ro_tick_ex)) {
sleep_ro_epoch();
continue;
}
const uint64_t ro_tick_geq = ro_tick_ex - 1;
if (ro_tick_geq < e) {
sleep_ro_epoch();
continue;
}
break;
}
clean_up_to_including(ctx, e);
INVARIANT(ctx.queue_.empty());
}
//#ifdef CHECK_INVARIANTS
//// make sure hidden is blocked by version e, when traversing from start
//static bool
//IsBlocked(dbtuple *start, dbtuple *hidden, uint64_t e)
//{
// dbtuple *c = start;
// while (c) {
// if (c == hidden)
// return false;
// if (c->is_not_behind(e))
// // blocked
// return true;
// c = c->next;
// }
// ALWAYS_ASSERT(false); // hidden should be found on chain
//}
//#endif
void
transaction_proto2_static::clean_up_to_including(threadctx &ctx, uint64_t ro_tick_geq)
{
INVARIANT(!rcu::s_instance.in_rcu_region());
INVARIANT(ctx.last_reaped_epoch_ <= ro_tick_geq);
INVARIANT(ctx.scratch_.empty());
if (ctx.last_reaped_epoch_ == ro_tick_geq)
return;
#ifdef ENABLE_EVENT_COUNTERS
const uint64_t now = timer::cur_usec();
if (ctx.last_reaped_timestamp_us_ > 0) {
const uint64_t diff = now - ctx.last_reaped_timestamp_us_;
evt_avg_time_inbetween_ro_epochs_usec.offer(diff);
}
ctx.last_reaped_timestamp_us_ = now;
#endif
ctx.last_reaped_epoch_ = ro_tick_geq;
#ifdef CHECK_INVARIANTS
const uint64_t last_tick_ex = ticker::s_instance.global_last_tick_exclusive();
INVARIANT(last_tick_ex);
const uint64_t last_consistent_tid = ComputeReadOnlyTid(last_tick_ex - 1);
const uint64_t computed_last_tick_ex = ticker::s_instance.compute_global_last_tick_exclusive();
INVARIANT(last_tick_ex <= computed_last_tick_ex);
INVARIANT(to_read_only_tick(last_tick_ex) > ro_tick_geq);
#endif
// XXX: hacky
char rcu_guard[sizeof(scoped_rcu_base<false>)] = {0};
const size_t max_niters_with_rcu = 128;
#define ENTER_RCU() \
do { \
new (&rcu_guard[0]) scoped_rcu_base<false>(); \
} while (0)
#define EXIT_RCU() \
do { \
scoped_rcu_base<false> *px = (scoped_rcu_base<false> *) &rcu_guard[0]; \
px->~scoped_rcu_base<false>(); \
} while (0)
ctx.scratch_.empty_accept_from(ctx.queue_, ro_tick_geq);
ctx.scratch_.transfer_freelist(ctx.queue_);
px_queue &q = ctx.scratch_;
if (q.empty())
return;
bool in_rcu = false;
size_t niters_with_rcu = 0, n = 0;
for (auto it = q.begin(); it != q.end(); ++it, ++n, ++niters_with_rcu) {
auto &delent = *it;
INVARIANT(delent.tuple()->opaque.load(std::memory_order_acquire) == 1);
if (!delent.key_.get_flags()) {
// guaranteed to be gc-able now (even w/o RCU)
#ifdef CHECK_INVARIANTS
if (delent.trigger_tid_ > last_consistent_tid /*|| !IsBlocked(delent.tuple_ahead_, delent.tuple(), last_consistent_tid) */) {
cerr << "tuple ahead : " << g_proto_version_str(delent.tuple_ahead_->version) << endl;
cerr << "tuple ahead : " << *delent.tuple_ahead_ << endl;
cerr << "trigger tid : " << g_proto_version_str(delent.trigger_tid_) << endl;
cerr << "tuple : " << g_proto_version_str(delent.tuple()->version) << endl;
cerr << "last_consist_tid: " << g_proto_version_str(last_consistent_tid) << endl;
cerr << "last_tick_ex : " << last_tick_ex << endl;
cerr << "ro_tick_geq : " << ro_tick_geq << endl;
cerr << "rcu_block_tick : " << it.tick() << endl;
}
INVARIANT(delent.trigger_tid_ <= last_consistent_tid);
delent.tuple()->opaque.store(0, std::memory_order_release);
#endif
dbtuple::release_no_rcu(delent.tuple());
} else {
INVARIANT(!delent.tuple_ahead_);
INVARIANT(delent.btr_);
// check if an element preceeds the (deleted) tuple before doing the delete
::lock_guard<dbtuple> lg_tuple(delent.tuple(), false);
#ifdef CHECK_INVARIANTS
if (!delent.tuple()->is_not_behind(last_consistent_tid)) {
cerr << "trigger tid : " << g_proto_version_str(delent.trigger_tid_) << endl;
cerr << "tuple : " << g_proto_version_str(delent.tuple()->version) << endl;
cerr << "last_consist_tid: " << g_proto_version_str(last_consistent_tid) << endl;
cerr << "last_tick_ex : " << last_tick_ex << endl;
cerr << "ro_tick_geq : " << ro_tick_geq << endl;
cerr << "rcu_block_tick : " << it.tick() << endl;
}
INVARIANT(delent.tuple()->version == delent.trigger_tid_);
INVARIANT(delent.tuple()->is_not_behind(last_consistent_tid));
INVARIANT(delent.tuple()->is_deleting());
#endif
if (unlikely(!delent.tuple()->is_latest())) {
// requeue it up, except this time as a regular delete
const uint64_t my_ro_tick = to_read_only_tick(
ticker::s_instance.global_current_tick());
ctx.queue_.enqueue(
delete_entry(
nullptr,
MakeTid(CoreMask, NumIdMask >> NumIdShift, (my_ro_tick + 1) * ReadOnlyEpochMultiplier - 1),
delent.tuple(),
marked_ptr<string>(),
nullptr),
my_ro_tick);
++g_evt_proto_gc_delete_requeue;
// reclaim string ptrs
string *spx = delent.key_.get();
if (unlikely(spx))
ctx.pool_.emplace_back(spx);
continue;
}
#ifdef CHECK_INVARIANTS
delent.tuple()->opaque.store(0, std::memory_order_release);
#endif
// if delent.key_ is nullptr, then the key is stored in the tuple
// record storage location, and the size field contains the length of
// the key
//
// otherwise, delent.key_ is a pointer to a string containing the
// key
varkey k;
string *spx = delent.key_.get();
if (likely(!spx)) {
k = varkey(delent.tuple()->get_value_start(), delent.tuple()->size);
} else {
k = varkey(*spx);
ctx.pool_.emplace_back(spx);
}
if (!in_rcu) {
ENTER_RCU();
niters_with_rcu = 0;
in_rcu = true;
}
typename concurrent_btree::value_type removed = 0;
const bool did_remove = delent.btr_->remove(k, &removed);
ALWAYS_ASSERT(did_remove);
INVARIANT(removed == (typename concurrent_btree::value_type) delent.tuple());
delent.tuple()->clear_latest();
dbtuple::release(delent.tuple()); // rcu free it
}
if (in_rcu && niters_with_rcu >= max_niters_with_rcu) {
EXIT_RCU();
niters_with_rcu = 0;
in_rcu = false;
}
}
q.clear();
g_evt_avg_proto_gc_queue_len.offer(n);
if (in_rcu)
EXIT_RCU();
INVARIANT(!rcu::s_instance.in_rcu_region());
}
aligned_padded_elem<transaction_proto2_static::hackstruct>
transaction_proto2_static::g_hack;
aligned_padded_elem<transaction_proto2_static::flags>
transaction_proto2_static::g_flags;
percore_lazy<transaction_proto2_static::threadctx>
transaction_proto2_static::g_threadctxs;
event_counter
transaction_proto2_static::g_evt_worker_thread_wait_log_buffer(
"worker_thread_wait_log_buffer");
event_counter
transaction_proto2_static::g_evt_dbtuple_no_space_for_delkey(
"dbtuple_no_space_for_delkey");
event_counter
transaction_proto2_static::g_evt_proto_gc_delete_requeue(
"proto_gc_delete_requeue");
event_avg_counter
transaction_proto2_static::g_evt_avg_log_entry_size(
"avg_log_entry_size");
event_avg_counter
transaction_proto2_static::g_evt_avg_proto_gc_queue_len(
"avg_proto_gc_queue_len");