forked from efficient/cicada-exp-sigmod2017-silo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
masstree_btree.h
874 lines (791 loc) · 25.3 KB
/
masstree_btree.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
// -*- c-basic-offset: 2 -*-
#pragma once
#include <assert.h>
#include <malloc.h>
#include <pthread.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <iostream>
#include <string>
#include <vector>
#include <utility>
#include <atomic>
#include "log2.hh"
#include "ndb_type_traits.h"
#include "varkey.h"
#include "counter.h"
#include "macros.h"
#include "prefetch.h"
#include "amd64.h"
#include "rcu.h"
#include "util.h"
#include "small_vector.h"
#include "ownership_checker.h"
#include "masstree/masstree_scan.hh"
#include "masstree/masstree_insert.hh"
#include "masstree/masstree_remove.hh"
#include "masstree/masstree_print.hh"
#include "masstree/timestamp.hh"
#include "masstree/mtcounters.hh"
#include "masstree/circular_int.hh"
class simple_threadinfo {
public:
simple_threadinfo()
: ts_(0) { // XXX?
}
class rcu_callback {
public:
virtual void operator()(simple_threadinfo& ti) = 0;
};
private:
static inline void rcu_callback_function(void* p) {
simple_threadinfo ti;
static_cast<rcu_callback*>(p)->operator()(ti);
}
public:
// XXX Correct node timstamps are needed for recovery, but for no other
// reason.
kvtimestamp_t operation_timestamp() const {
return 0;
}
kvtimestamp_t update_timestamp() const {
return ts_;
}
kvtimestamp_t update_timestamp(kvtimestamp_t x) const {
if (circular_int<kvtimestamp_t>::less_equal(ts_, x))
// x might be a marker timestamp; ensure result is not
ts_ = (x | 1) + 1;
return ts_;
}
kvtimestamp_t update_timestamp(kvtimestamp_t x, kvtimestamp_t y) const {
if (circular_int<kvtimestamp_t>::less(x, y))
x = y;
if (circular_int<kvtimestamp_t>::less_equal(ts_, x))
// x might be a marker timestamp; ensure result is not
ts_ = (x | 1) + 1;
return ts_;
}
void increment_timestamp() {
ts_ += 2;
}
void advance_timestamp(kvtimestamp_t x) {
if (circular_int<kvtimestamp_t>::less(ts_, x))
ts_ = x;
}
// event counters
void mark(threadcounter) {
}
void mark(threadcounter, int64_t) {
}
bool has_counter(threadcounter) const {
return false;
}
uint64_t counter(threadcounter ci) const {
return 0;
}
/** @brief Return a function object that calls mark(ci); relax_fence().
*
* This function object can be used to count the number of relax_fence()s
* executed. */
relax_fence_function accounting_relax_fence(threadcounter) {
return relax_fence_function();
}
class accounting_relax_fence_function {
public:
template <typename V>
void operator()(V) {
relax_fence();
}
};
/** @brief Return a function object that calls mark(ci); relax_fence().
*
* This function object can be used to count the number of relax_fence()s
* executed. */
accounting_relax_fence_function stable_fence() {
return accounting_relax_fence_function();
}
relax_fence_function lock_fence(threadcounter) {
return relax_fence_function();
}
// memory allocation
void* allocate(size_t sz, memtag) {
return rcu::s_instance.alloc(sz);
}
void deallocate(void* p, size_t sz, memtag) {
// in C++ allocators, 'p' must be nonnull
rcu::s_instance.dealloc(p, sz);
}
void deallocate_rcu(void *p, size_t sz, memtag) {
assert(p);
rcu::s_instance.dealloc_rcu(p, sz);
}
void* pool_allocate(size_t sz, memtag) {
int nl = (sz + CACHE_LINE_SIZE - 1) / CACHE_LINE_SIZE;
return rcu::s_instance.alloc(nl * CACHE_LINE_SIZE);
}
void pool_deallocate(void* p, size_t sz, memtag) {
int nl = (sz + CACHE_LINE_SIZE - 1) / CACHE_LINE_SIZE;
rcu::s_instance.dealloc(p, nl * CACHE_LINE_SIZE);
}
void pool_deallocate_rcu(void* p, size_t sz, memtag) {
assert(p);
int nl = (sz + CACHE_LINE_SIZE - 1) / CACHE_LINE_SIZE;
rcu::s_instance.dealloc_rcu(p, nl * CACHE_LINE_SIZE);
}
// RCU
void rcu_register(rcu_callback *cb) {
scoped_rcu_base<false> guard;
rcu::s_instance.free_with_fn(cb, rcu_callback_function);
}
private:
mutable kvtimestamp_t ts_;
};
struct masstree_params : public Masstree::nodeparams<> {
typedef uint8_t* value_type;
typedef Masstree::value_print<value_type> value_print_type;
typedef simple_threadinfo threadinfo_type;
enum { RcuRespCaller = true };
};
struct masstree_single_threaded_params : public masstree_params {
static constexpr bool concurrent = false;
};
template <typename P>
class mbtree {
public:
typedef Masstree::node_base<P> node_base_type;
typedef Masstree::internode<P> internode_type;
typedef Masstree::leaf<P> leaf_type;
typedef Masstree::leaf<P> node_type;
typedef typename node_base_type::nodeversion_type nodeversion_type;
typedef varkey key_type;
typedef lcdf::Str string_type;
typedef uint64_t key_slice;
typedef typename P::value_type value_type;
typedef typename P::threadinfo_type threadinfo;
typedef typename std::conditional<!P::RcuRespCaller,
scoped_rcu_region,
disabled_rcu_region>::type rcu_region;
// public to assist in testing
static const unsigned int NKeysPerNode = P::leaf_width;
static const unsigned int NMinKeysPerNode = P::leaf_width / 2;
// XXX(stephentu): trying out a very opaque node API for now
typedef node_type node_opaque_t;
typedef std::pair< const node_opaque_t *, uint64_t > versioned_node_t;
struct insert_info_t {
const node_opaque_t* node;
uint64_t old_version;
uint64_t new_version;
};
void invariant_checker() {} // stub for now
#ifdef BTREE_LOCK_OWNERSHIP_CHECKING
public:
static inline void
NodeLockRegionBegin()
{
// XXX: implement me
ALWAYS_ASSERT(false);
//ownership_checker<mbtree<P>, node_base_type>::NodeLockRegionBegin();
}
static inline void
AssertAllNodeLocksReleased()
{
// XXX: implement me
ALWAYS_ASSERT(false);
//ownership_checker<mbtree<P>, node_base_type>::AssertAllNodeLocksReleased();
}
private:
static inline void
AddNodeToLockRegion(const node_base_type *n)
{
// XXX: implement me
ALWAYS_ASSERT(false);
//ownership_checker<mbtree<P>, node_base_type>::AddNodeToLockRegion(n);
}
public:
#endif
mbtree() {
threadinfo ti;
table_.initialize(ti);
}
~mbtree() {
rcu_region guard;
threadinfo ti;
table_.destroy(ti);
}
/**
* NOT THREAD SAFE
*/
inline void clear() {
rcu_region guard;
threadinfo ti;
table_.destroy(ti);
table_.initialize(ti);
}
/** Note: invariant checking is not thread safe */
inline void invariant_checker() const {
}
/** NOTE: the public interface assumes that the caller has taken care
* of setting up RCU */
inline bool search(const key_type &k, value_type &v,
versioned_node_t *search_info = nullptr) const;
/**
* The low level callback interface is as follows:
*
* Consider a scan in the range [a, b):
* 1) on_resp_node() is called at least once per node which
* has a responibility range that overlaps with the scan range
* 2) invoke() is called per <k, v>-pair such that k is in [a, b)
*
* The order of calling on_resp_node() and invoke() is up to the implementation.
*/
class low_level_search_range_callback {
public:
virtual ~low_level_search_range_callback() {}
/**
* This node lies within the search range (at version v)
*/
virtual void on_resp_node(const node_opaque_t *n, uint64_t version) = 0;
/**
* This key/value pair was read from node n @ version
*/
virtual bool invoke(const string_type &k, value_type v,
const node_opaque_t *n, uint64_t version) = 0;
};
/**
* For all keys in [lower, *upper), invoke callback in ascending order.
* If upper is NULL, then there is no upper bound
*
* This function by default provides a weakly consistent view of the b-tree. For
* instance, consider the following tree, where n = 3 is the max number of
* keys in a node:
*
* [D|G]
* / | \
* / | \
* / | \
* / | \
* [A|B|C]<->[D|E|F]<->[G|H|I]
*
* Suppose we want to scan [A, inf), so we traverse to the leftmost leaf node
* and start a left-to-right walk. Suppose we have emitted keys A, B, and C,
* and we are now just about to scan the middle leaf node. Now suppose
* another thread concurrently does delete(A), followed by a delete(H). Now
* the scaning thread resumes and emits keys D, E, F, G, and I, omitting H
* because H was deleted. This is an inconsistent view of the b-tree, since
* the scanning thread has observed the deletion of H but did not observe the
* deletion of A, but we know that delete(A) happens before delete(H).
*
* The weakly consistent guarantee provided is the following: all keys
* which, at the time of invocation, are known to exist in the btree
* will be discovered on a scan (provided the key falls within the scan's range),
* and provided there are no concurrent modifications/removals of that key
*
* Note that scans within a single node are consistent
*
* XXX: add other modes which provide better consistency:
* A) locking mode
* B) optimistic validation mode
*
* the last string parameter is an optional string buffer to use:
* if null, a stack allocated string will be used. if not null, must
* ensure:
* A) buf->empty() at the beginning
* B) no concurrent mutation of string
* note that string contents upon return are arbitrary
*/
void
search_range_call(const key_type &lower,
const key_type *upper,
low_level_search_range_callback &callback,
std::string *buf = nullptr) const;
// (lower, upper]
void
rsearch_range_call(const key_type &upper,
const key_type *lower,
low_level_search_range_callback &callback,
std::string *buf = nullptr) const;
class search_range_callback : public low_level_search_range_callback {
public:
virtual void
on_resp_node(const node_opaque_t *n, uint64_t version)
{
}
virtual bool
invoke(const string_type &k, value_type v,
const node_opaque_t *n, uint64_t version)
{
return invoke(k, v);
}
virtual bool invoke(const string_type &k, value_type v) = 0;
};
/**
* [lower, *upper)
*
* Callback is expected to implement bool operator()(key_slice k, value_type v),
* where the callback returns true if it wants to keep going, false otherwise
*/
template <typename F>
inline void
search_range(const key_type &lower,
const key_type *upper,
F& callback,
std::string *buf = nullptr) const;
/**
* (*lower, upper]
*
* Callback is expected to implement bool operator()(key_slice k, value_type v),
* where the callback returns true if it wants to keep going, false otherwise
*/
template <typename F>
inline void
rsearch_range(const key_type &upper,
const key_type *lower,
F& callback,
std::string *buf = nullptr) const;
/**
* returns true if key k did not already exist, false otherwise
* If k exists with a different mapping, still returns false
*
* If false and old_v is not NULL, then the overwritten value of v
* is written into old_v
*/
inline bool
insert(const key_type &k, value_type v,
value_type *old_v = NULL,
insert_info_t *insert_info = NULL);
/**
* Only puts k=>v if k does not exist in map. returns true
* if k inserted, false otherwise (k exists already)
*/
inline bool
insert_if_absent(const key_type &k, value_type v,
insert_info_t *insert_info = NULL);
/**
* Inserts k=>v or increment ref count
*/
inline bool
insert_refcount(const key_type &k, value_type v,
insert_info_t *insert_info = NULL);
/**
* return true if a value was removed, false otherwise.
*
* if true and old_v is not NULL, then the removed value of v
* is written into old_v
*/
inline bool
remove(const key_type &k, value_type *old_v = NULL);
/**
* return true if a value was removed, false otherwise.
*
* if true and old_v is not NULL, then the removed value of v
* is written into old_v
*/
inline bool
remove_refcount(const key_type &k, value_type *old_v = NULL);
/**
* The tree walk API is a bit strange, due to the optimistic nature of the
* btree.
*
* The way it works is that, on_node_begin() is first called. In
* on_node_begin(), a callback function should read (but not modify) the
* values it is interested in, and save them.
*
* Then, either one of on_node_success() or on_node_failure() is called. If
* on_node_success() is called, then the previous values read in
* on_node_begin() are indeed valid. If on_node_failure() is called, then
* the previous values are not valid and should be discarded.
*/
class tree_walk_callback {
public:
virtual ~tree_walk_callback() {}
virtual void on_node_begin(const node_opaque_t *n) = 0;
virtual void on_node_success() = 0;
virtual void on_node_failure() = 0;
};
void tree_walk(tree_walk_callback &callback) const;
/**
* Is thread-safe, but not really designed to perform well with concurrent
* modifications. also the value returned is not consistent given concurrent
* modifications
*/
inline size_t size() const;
static inline uint64_t
ExtractVersionNumber(const node_opaque_t *n) {
// XXX(stephentu): I think we must use stable_version() for
// correctness, but I am not 100% sure. It's definitely correct to use it,
// but maybe we can get away with unstable_version()?
return n->full_version_value();
}
// [value, has_suffix]
static std::vector< std::pair<value_type, bool> >
ExtractValues(const node_opaque_t *n);
/**
* Not well defined if n is being concurrently modified, just for debugging
*/
static std::string
NodeStringify(const node_opaque_t *n);
void print();
static inline size_t InternalNodeSize() {
return sizeof(internode_type);
}
static inline size_t LeafNodeSize() {
return sizeof(leaf_type);
}
private:
Masstree::basic_table<P> table_;
static leaf_type* leftmost_descend_layer(node_base_type* n);
class size_walk_callback;
template <bool Reverse> class search_range_scanner_base;
template <bool Reverse> class low_level_search_range_scanner;
template <typename F> class low_level_search_range_callback_wrapper;
};
template <typename P>
typename mbtree<P>::leaf_type *
mbtree<P>::leftmost_descend_layer(node_base_type *n)
{
node_base_type *cur = n;
while (true) {
if (cur->isleaf())
return static_cast<leaf_type*>(cur);
internode_type *in = static_cast<internode_type*>(cur);
nodeversion_type version = cur->stable();
node_base_type *child = in->child_[0];
if (unlikely(in->has_changed(version)))
continue;
cur = child;
}
}
template <typename P>
void mbtree<P>::tree_walk(tree_walk_callback &callback) const {
rcu_region guard;
INVARIANT(rcu::s_instance.in_rcu_region());
std::vector<node_base_type *> q, layers;
q.push_back(table_.root());
while (!q.empty()) {
node_base_type *cur = q.back();
q.pop_back();
prefetch(cur);
leaf_type *leaf = leftmost_descend_layer(cur);
INVARIANT(leaf);
while (leaf) {
leaf->prefetch();
process:
auto version = leaf->stable();
auto perm = leaf->permutation();
for (int i = 0; i != perm.size(); ++i)
if (leaf->is_layer(perm[i]))
layers.push_back(leaf->lv_[perm[i]].layer());
leaf_type *next = leaf->safe_next();
callback.on_node_begin(leaf);
if (unlikely(leaf->has_changed(version))) {
callback.on_node_failure();
layers.clear();
goto process;
}
callback.on_node_success();
leaf = next;
if (!layers.empty()) {
q.insert(q.end(), layers.begin(), layers.end());
layers.clear();
}
}
}
}
template <typename P>
class mbtree<P>::size_walk_callback : public tree_walk_callback {
public:
size_walk_callback()
: size_(0) {
}
virtual void on_node_begin(const node_opaque_t *n);
virtual void on_node_success();
virtual void on_node_failure();
size_t size_;
int node_size_;
};
template <typename P>
void
mbtree<P>::size_walk_callback::on_node_begin(const node_opaque_t *n)
{
auto perm = n->permutation();
node_size_ = 0;
for (int i = 0; i != perm.size(); ++i)
if (!n->is_layer(perm[i]))
++node_size_;
}
template <typename P>
void
mbtree<P>::size_walk_callback::on_node_success()
{
size_ += node_size_;
}
template <typename P>
void
mbtree<P>::size_walk_callback::on_node_failure()
{
}
template <typename P>
inline size_t mbtree<P>::size() const
{
size_walk_callback c;
tree_walk(c);
return c.size_;
}
template <typename P>
inline bool mbtree<P>::search(const key_type &k, value_type &v,
versioned_node_t *search_info) const
{
rcu_region guard;
threadinfo ti;
Masstree::unlocked_tcursor<P> lp(table_, k.data(), k.length());
bool found = lp.find_unlocked(ti);
if (found)
v = lp.value();
if (search_info)
*search_info = versioned_node_t(lp.node(), lp.full_version_value());
return found;
}
template <typename P>
inline bool mbtree<P>::insert(const key_type &k, value_type v,
value_type *old_v,
insert_info_t *insert_info)
{
rcu_region guard;
threadinfo ti;
Masstree::tcursor<P> lp(table_, k.data(), k.length());
bool found = lp.find_insert(ti);
if (!found)
ti.advance_timestamp(lp.node_timestamp());
if (found && old_v)
*old_v = lp.value();
lp.value() = v;
if (insert_info) {
insert_info->node = lp.node();
insert_info->old_version = lp.previous_full_version_value();
insert_info->new_version = lp.next_full_version_value(1);
}
lp.finish(1, ti);
return !found;
}
template <typename P>
inline bool mbtree<P>::insert_if_absent(const key_type &k, value_type v,
insert_info_t *insert_info)
{
rcu_region guard;
threadinfo ti;
Masstree::tcursor<P> lp(table_, k.data(), k.length());
bool found = lp.find_insert(ti);
if (!found) {
ti.advance_timestamp(lp.node_timestamp());
lp.value() = v;
if (insert_info) {
insert_info->node = lp.node();
insert_info->old_version = lp.previous_full_version_value();
insert_info->new_version = lp.next_full_version_value(1);
}
}
lp.finish(!found, ti);
return !found;
}
template <typename P>
inline bool mbtree<P>::insert_refcount(const key_type &k, value_type v,
insert_info_t *insert_info)
{
//return insert_if_absent(k, v, insert_info);
rcu_region guard;
threadinfo ti;
Masstree::tcursor<P> lp(table_, k.data(), k.length());
bool found = lp.find_insert(ti);
ti.advance_timestamp(lp.node_timestamp());
if (!found)
lp.value() = v;
else
++lp.value().refcount;
if (insert_info) {
insert_info->node = lp.node();
insert_info->old_version = lp.previous_full_version_value();
insert_info->new_version = lp.next_full_version_value(1);
}
lp.finish(1, ti);
return true;
}
/**
* return true if a value was removed, false otherwise.
*
* if true and old_v is not NULL, then the removed value of v
* is written into old_v
*/
template <typename P>
inline bool mbtree<P>::remove(const key_type &k, value_type *old_v)
{
rcu_region guard;
threadinfo ti;
Masstree::tcursor<P> lp(table_, k.data(), k.length());
bool found = lp.find_locked(ti);
if (found && old_v)
*old_v = lp.value();
lp.finish(found ? -1 : 0, ti);
return found;
}
template <typename P>
inline bool mbtree<P>::remove_refcount(const key_type &k, value_type *old_v)
{
//return remove(k, old_v);
rcu_region guard;
threadinfo ti;
Masstree::tcursor<P> lp(table_, k.data(), k.length());
bool found = lp.find_locked(ti);
if (found) {
if (--lp.value().refcount != 0) {
ti.advance_timestamp(lp.node_timestamp());
lp.finish(1, ti);
} else{
if (old_v)
*old_v = lp.value();
lp.finish(-1, ti);
}
}
else
lp.finish(0, ti);
return found;
}
template <typename P>
template <bool Reverse>
class mbtree<P>::search_range_scanner_base {
public:
search_range_scanner_base(const key_type* boundary)
: boundary_(boundary), boundary_compar_(false) {
}
void check(const Masstree::scanstackelt<P>& iter,
const Masstree::key<uint64_t>& key) {
int min = std::min(boundary_->length(), key.prefix_length());
int cmp = memcmp(boundary_->data(), key.full_string().data(), min);
if (!Reverse) {
if (cmp < 0 || (cmp == 0 && boundary_->length() <= key.prefix_length()))
boundary_compar_ = true;
else if (cmp == 0) {
uint64_t last_ikey = iter.node()->ikey0_[iter.permutation()[iter.permutation().size() - 1]];
boundary_compar_ = boundary_->slice_at(key.prefix_length()) <= last_ikey;
}
} else {
if (cmp >= 0)
boundary_compar_ = true;
}
}
protected:
const key_type* boundary_;
bool boundary_compar_;
};
template <typename P>
template <bool Reverse>
class mbtree<P>::low_level_search_range_scanner
: public search_range_scanner_base<Reverse> {
public:
low_level_search_range_scanner(const key_type* boundary,
low_level_search_range_callback& callback)
: search_range_scanner_base<Reverse>(boundary), callback_(callback) {
}
void visit_leaf(const Masstree::scanstackelt<P>& iter,
const Masstree::key<uint64_t>& key, threadinfo&) {
this->n_ = iter.node();
this->v_ = iter.full_version_value();
callback_.on_resp_node(this->n_, this->v_);
if (this->boundary_)
this->check(iter, key);
}
bool visit_value(const Masstree::key<uint64_t>& key,
value_type value, threadinfo&) {
if (this->boundary_compar_) {
lcdf::Str bs(this->boundary_->data(), this->boundary_->size());
if ((!Reverse && bs <= key.full_string()) ||
( Reverse && bs >= key.full_string()))
return false;
}
return callback_.invoke(key.full_string(), value, this->n_, this->v_);
}
private:
Masstree::leaf<P>* n_;
uint64_t v_;
low_level_search_range_callback& callback_;
};
template <typename P>
template <typename F>
class mbtree<P>::low_level_search_range_callback_wrapper :
public mbtree<P>::low_level_search_range_callback {
public:
low_level_search_range_callback_wrapper(F& callback) : callback_(callback) {}
void on_resp_node(const node_opaque_t *n, uint64_t version) OVERRIDE {}
bool
invoke(const string_type &k, value_type v,
const node_opaque_t *n, uint64_t version) OVERRIDE
{
return callback_(k, v);
}
private:
F& callback_;
};
template <typename P>
inline void mbtree<P>::search_range_call(const key_type &lower,
const key_type *upper,
low_level_search_range_callback &callback,
std::string*) const {
low_level_search_range_scanner<false> scanner(upper, callback);
threadinfo ti;
table_.scan(lcdf::Str(lower.data(), lower.length()), true, scanner, ti);
}
template <typename P>
inline void mbtree<P>::rsearch_range_call(const key_type &upper,
const key_type *lower,
low_level_search_range_callback &callback,
std::string*) const {
low_level_search_range_scanner<true> scanner(lower, callback);
threadinfo ti;
table_.rscan(lcdf::Str(upper.data(), upper.length()), true, scanner, ti);
}
template <typename P> template <typename F>
inline void mbtree<P>::search_range(const key_type &lower,
const key_type *upper,
F& callback,
std::string*) const {
low_level_search_range_callback_wrapper<F> wrapper(callback);
low_level_search_range_scanner<false> scanner(upper, wrapper);
threadinfo ti;
table_.scan(lcdf::Str(lower.data(), lower.length()), true, scanner, ti);
}
template <typename P> template <typename F>
inline void mbtree<P>::rsearch_range(const key_type &upper,
const key_type *lower,
F& callback,
std::string*) const {
low_level_search_range_callback_wrapper<F> wrapper(callback);
low_level_search_range_scanner<true> scanner(lower, wrapper);
threadinfo ti;
table_.rscan(lcdf::Str(upper.data(), upper.length()), true, scanner, ti);
}
template <typename P>
std::string mbtree<P>::NodeStringify(const node_opaque_t *n)
{
std::ostringstream b;
b << "node[v=" << n->version_value() << "]";
return b.str();
}
template <typename P>
std::vector<std::pair<typename mbtree<P>::value_type, bool>>
mbtree<P>::ExtractValues(const node_opaque_t *n)
{
std::vector< std::pair<value_type, bool> > ret;
auto perm = n->permutation();
for (int i = 0; i != perm.size(); ++i) {
int keylenx = n->keylenx_[perm[i]];
if (!n->keylenx_is_layer(keylenx))
ret.emplace_back(n->lv_[perm[i]].value(), n->keylenx_has_ksuf(keylenx));
}
return ret;
}
template <typename P>
void mbtree<P>::print() {
table_.print();
}
typedef mbtree<masstree_params> concurrent_btree;
typedef mbtree<masstree_single_threaded_params> single_threaded_btree;